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Abstract— The Automatic Dependent Surveillance
Broadcast (ADS-B) system is a critical communication
and surveillance technology used in the Next Generation
(NextGen) project as it improves the accuracy and
efficiency of air navigation. These systems allow air
traffic controllers to have more precise and real-time
information on the location and movement of aircraft,
leading to increased safety and improved efficiency in
the airspace. While ADS-B has been made mandatory
for all aircraft in the Federal Aviation Administration
(FAA) monitored airspace, its lack of security measures
leaves it vulnerable to cybersecurity threats.
Particularly, ADS-B signals are susceptible to false data
injection attacks due to the lack of authentication and
integrity measures, which poses a serious threat to the
safety of the National Airspace System (NAS). Many
studies have attempted to address these vulnerabilities;
however, machine learning and deep learning
approaches have gained significant interest due to their
ability to enhance security without modifying the
existing infrastructure. This paper investigates the use
of Recurrent Neural Networks for detecting injection
attacks in ADS-B data, leveraging the time-dependent
nature of the data. The paper reviews previous studies
that used different machine learning and deep learning
techniques and presents the potential benefits of using
RNN algorithms to improve ADS-B security.

Keywords— Automatic dependent surveillance broadcast,
gated recurrent unit, injection attacks, long short-term
memory, recurrent neural networks, time series.

L. INTRODUCTION

Automatic Dependent Surveillance Broadcast
(ADS-B) is a revolutionary technology designed to
improve communication and surveillance within the
aviation industry. Developed as a crucial component
of the Next Generation (NextGen) project, its primary
goal is to enhance the efficiency and reliability of air
navigation [1]. Additionally, ADS-B aims to reduce
the maintenance costs associated with air traffic
control infrastructure [2]. Recognizing its immense
potential for advancing aviation safety, the Federal
Aviation Administration (FAA) and the European
Aviation Safety Agency (EASA) have made it
mandatory for all aircraft operating within their
monitored airspace to be equipped with ADS-B
devices by 2020 [3] [4]. This mandate ensures

more comprehensive and streamlined approach to air
traffic management.

By leveraging ADS-B, aircraft can autonomously
broadcast vital information, such as their Global
Positioning System (GPS)-derived positions, airspeed,
altitude, and identification data. Ground-based
receivers and other equipped aircraft can then access
and utilize this real-time data, resulting in enhanced
situational awareness for pilots and air traffic
controllers alike. The seamless sharing of crucial flight
information facilitates more precise and -efficient
routing, ultimately contributing to safer and more
reliable air travel. ADS-B represents a significant leap
forward in modernizing the aviation industry, and its
implementation is a critical step toward achieving a
more interconnected and technologically advanced air
transportation system.

Prior to the implementation of ADS-B, traditional
radar systems only updated aircraft positions once
every few seconds, resulting in less accurate and
potentially outdated information for pilots. With ADS-
B, pilots receive more accurate and frequent position
updates at a frequency of at least one message per
second [5], allowing them to make better-informed
decisions and avoid potential hazards [1]. While ADS-
B has proven to be a significant advancement in air
navigation, its design did not prioritize security,
leaving it susceptible to various cybersecurity threats.

One of the key vulnerabilities lies in the fact that
data transmitted through the 1090ES datalink is
unencrypted, making it accessible to all parties on the
network [1]. This lack of encryption exposes ADS-B
data to potential risks, including unauthorized
manipulation, deletion, or injection of information [6-
7]. Furthermore, the absence of authentication
techniques during data transmission and reception
makes the ADS-B system vulnerable to unauthorized
access and potential security breaches. The lack of
robust authentication opens the door for malicious
actors to interfere with the data exchange process and
possibly compromise the integrity and reliability of the
entire system.
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Thus, addressing these security concerns is crucial
to ensuring the safe and dependable operation of ADS-
B. Given the vulnerabilities of ADS-B and the need to
safeguard airspace from potential malicious attacks,
finding efficient solutions is of utmost importance.
Over the past years, numerous studies have been
presented in the literature to address this issue,
offering various approaches, such as traffic modeling
[8], group validation [9], physical layer fingerprinting
[10], and data fusing [11].

However, many of these methods require
modifications to the existing ADS-B infrastructure,
prior knowledge of the system, or the addition of extra
hardware [6]. with the increasing availability of
publicly accessible ADS-B data, machine learning,
and deep learning approaches have emerged as
promising alternatives for enhancing security without
necessitating any changes to the current ADS-B
infrastructure. Leveraging the power of these
advanced computational techniques, these approaches
can analyze and interpret vast amounts of ADS-B data
in real time, identifying patterns and anomalies that
could indicate potential security threats.

By harnessing machine learning and deep learning,
it becomes possible to proactively detect and respond
to suspicious activities or unauthorized intrusions
within the ADS-B network. These algorithms can
continuously learn from historical data, adapt to
evolving threats, and improve their accuracy over
time, bolstering the security of the entire airspace
system. For example, in [12], the authors explored
various machine learning models to detect jamming on
ADS-B systems, including logistic regression,
artificial neural networks, support vector machine, k-
nearest neighbor, and decision trees. The results
indicated that a two-hidden-layer neural network with
15 neurons outperformed all other techniques.

In [13], a Bi-directional Long-Short Time Memory
(Bi-LSTM) model was proposed to detect track
outliers in ADS-B data, along with a multidimensional
outlier descriptor based on the dynamic time warping
algorithm. This method achieved acceptable results. In
[14], a deep learning-based approach was introduced
to identify three types of ADS-B spoofing attacks:
message replay attacks, ghost aircraft injection attacks,
and aircraft spoofing attacks. The model, consisting of
a two-layer neural network provides better
performance, compared to the other techniques.

Even though the proposed methods in detecting and
classifying false data injection attacks on ADS-B
provided high performance, there are a limited number
of studies that mainly focus on time series data. It is
worth mentioning that ADS-B data is time-dependent;

therefore, proposing any Deep Learning (DL) models,
relying on time series data can be important in
detecting and classifying injection attacks on ADS-B.
Motivated by the dependency of ADS-B on times
series data, this study widely proposes four DL
models, namely Long Short-Term Memory (LSTM),
Bi-directional LSTM (Bi-LSTM), Gated Recurrent
Unit (GRU), and Bi-directional GRU (Bi-GRU). In
short, the main key contributions of this study are as
follows:

e Proposing four DL models, depending on
time series data, namely LSTM, Bi-LSTM,
GRU, and Bi-GRU,

e Providing a comprehensive comparison of
these models in terms of accuracy,
probability of detection, misdetection, false
alarm, training time, testing time, and
memory during training and testing.

The remainder of the paper is structured as follows.
The methods used in this work, such as data collecting,
data preprocessing, modeling, and performance
evaluation of RNN models, are described in Section II.
While the research results and their discussion are
presented in section III. Lastly, section III offers a
thorough conclusion.

II. METHODOLOGY

This section provides an overview of the process
of collecting ADS-B data and the preprocessing steps
involved in making the data suitable for RNN models.
The ADS-B data is collected using receivers placed at
various locations, and it contains information about the
position, altitude, velocity, and other parameters of the
aircraft. The first preprocessing step involves data
cleaning, which removes any noisy or irrelevant data
points that may negatively impact the performance of
the RNN models.

The second preprocessing step is standardization,
which scales the data to a common range, between
zero and one, to make it easier for the RNN models to
process. Then, it discusses the different RNN
algorithms used for this purpose, Gated Recurrent Unit
(GRU) Long Short-Term Memory (LSTM), Bi-Long
Short-Term Memory (Bi-LSTM), and Bi-Gated
Recurrent Unit (Bi-GRU).

1I.1.1  ADS-B Data Collection and Pre-processing
Techniques
ADS-B data was collected and preprocessed as
previously described in [20]. The corresponding
dataset consists of 22,315 samples with s with equally
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distributed two classes (11,158 authentic messages
and 11,157 Injection attacks). In the given data, there
are three types of injection attacks, namely path
modification, ghost aircraft injection, and velocity
drift. This dataset underwent several data pre-
processing techniques, including data cleaning, feature
extraction, standardization, and encoding, as
highlighted in [20]. Additionally, a feature selection
process was also conducted to optimize the accuracy
and computational complexity of the RNN algorithms
used.

1I.1.2  Modeling and Performance Evaluation of

RNN Models

The focus of this study is a class of DL models,
namely Recurrent Neural Network (RNN), which was
developed to handle sequential data. They are
designed to process sequences by maintaining an
internal state that can capture information from past
inputs and pass it along to future inputs [21]. This
allows RNN models to maintain context and capture
patterns in sequential data. In a traditional neural
network, all inputs and outputs are assumed to be
independent of one another.

However, RNN models are recurrent since they
carry out the same calculations for each element of a
sequence, where the outcome is dependent on past
calculations, which makes these models have a
memory that can retain information about previous
calculations [21]. Another benefit of RNN models is
that they can handle inputs of varying lengths, making
them ideal for processing sequential data. They have
the ability to generalize the information learned from
one sequence to another, even if the sequences are of
different lengths.

RNN training utilizes the backpropagation over
time to update the weights of the model, which is a
similar algorithm to the backpropagation algorithm
that is used in traditional neural networks. In this
algorithm, the parameters are shared by all timesteps;
therefore, the gradient at each output is affected not
only by the current time step but also by prior ones. As
a result, RNN models struggle to learn long-term
dependencies due to the vanishing or expanding
gradient issue, which occurs when the gradients
become very small or big during backpropagation,
making it difficult for the network to learn [22]. To
overcome this problem, newer architectures that
employ gating methods to govern the flow of
information between neural network cells are utilized,
like GRU and LSTM models [22].

i3 22.1.LSTM

LSTM is a type of RNN model that was proposed
to overcome the problem of vanishing or exploding
gradients in traditional RNNs caused by the capturing
of both pertinent and irrelevant information [23].
LSTM introduces memory cells and gates that can
hold their state across several time steps and govern
the flow of information into and out of the memory
cells [24]. LSTMs have memory cells that may be
regarded as a form of internal state that the model can
utilize to recall information [24].

LSTMs also feature input, input modulation,
forget, and output gates that regulate information flow
into and out of the memory cell [25]. These input and
output gates allow the model to select what
information from the current time step is fed to the
memory cell, by taking the input, combining it with the
previous hidden state, and passing it through a sigmoid
function. The input modulation gate determines how
much of the new input should be added to the cell state.
It is similar to the input gate, but it uses a tanh
activation function [25].

On the other hand, the forget gate determines
which information from the previous time step should
be removed from the memory cell. It takes the
previous hidden state and the current input and passes
it through a sigmoid function [25]. The output gate
determines what information should be utilized for the
next time step from the memory cell, enabling it to
choose whether to keep or forget knowledge from
prior time steps, which makes it understand long-term
dependencies in sequential data that was a challenging
task in the past [26]. As a result, LSTMs are an
extremely effective tool for modeling complicated,
non-linear dependencies in sequential data.

1I.1.4  Bi-LSTM model

One of the other known time series models is Bi-
LSTM. This model can learn from the sequence of data
in both the backward and forward directions [23]. In
Bi-LSTM, the given data flows in two directions,
resulting in differentiation from the simple LSTM. In
the simple LSTM, the given data only flows in a
designated direction (forward or backward).
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Fig. 1. General Structure of the Models.

In contrast, Bi-LSTM can take the given data flows
from both directions to preserve past and future data.
In general, Bi-LSTM uses two-linked layers and
predicts the sequence of each element by applying a
finite sequence based on the input elements in the past
and future [23, 27]. This model can perform as two
LSTM models that run in parallel. In other words, one
of these models runs from left to right, and the other
model runs from right to left. The targeted class
prediction, composite output, can use the forward
function with the inputs L and H hidden units [23, 27,
28].

II.1.5 GRUModel

The GRU model is another popular type of RNN
that is more computationally efficient and has a
simpler topology than LSTMs [11]. A GRU cell is
comprised of only two gates that lower the gating
signals and associated parameters: the reset gate and
the update gate [29]. The hidden state output at time t,
like the LSTM cell, is computed using the hidden state
of time t-1 and the input time series value at time t [25].
To decrease the number of parameters, the GRU cell
incorporates the LSTM cell's forget gate and input gate
as an update gate. GRU cell is less powerful than the
original LSTM since it has fewer gates. Therefore, the
GRU can't be taught to count or answer context- free
language problems.

I.1.6  Bi-GRU Model

The Bi-GRU model consists of two GRU layers that
process the input sequence in two opposite directions,
forward and backward [30]. Each GRU layer consists
of multiple GRU cells, and each cell takes as input the

current input vector and the hidden state from the
previous time step. During the forward pass, the input
sequence is fed into the forward GRU layer, and the
hidden state of each cell is updated based on the input
and the previous hidden state. At the same time, the
backward GRU layer processes the input sequence in
reverse, and the hidden state of each cell is updated
based on the input and the previous hidden state. The
output of the forward and backward GRU layers are
then concatenated to produce the final output
sequence. This architecture allows the model to
capture dependencies in both directions of the input
sequence, which can exploit information both from the
past and the future [31].

In this work, a dropout layer was used after the
input layer in each model architecture as a means of
regularization and to avoid overfitting the training
data. The concept of dropout involves the temporary
removal of units within a neural network. This means
that a unit and all its incoming and outgoing
connections are dropped out or excluded from the
network. This technique aims to prevent overfitting by
forcing the network to learn more robust features,
which helps it generalize better to new data [32].

Additionally, the learning rate has been increased
to accelerate the training process, and the momentum
has been raised to enhance the model's ability to
overcome local minima and converge to the global
minimum of the loss function. These modifications
aim to improve the model's generalization
performance and prevent overfitting, resulting in a
more robust and accurate system. Furthermore, the
addition of a dense layer was added after each RNN
layer helped the model learn the internal connections
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of the data and boost the accuracy, as shown in Fig. 1.
Moreover, random search has been employed to find
the optimal hyperparameters in order to obtain the
highest accuracy and the minimum loss. The
performance of these models is evaluated using the
accuracy, probabilities of detection, misdetection, and
false alarm, as well as, training time, detection time,
memory usage during training, and memory usage
during detection [33, 34].

III. RESULTS AND DISCUSSION

In this work, the dataset was divided into two
subsets - a training set and a testing set. The training
set consists of 67% of the data, which was used to train
the RNN model, while the remaining 33% of the data
was set aside for testing the performance of the trained
model. To evaluate the performance of those models,
different evaluation metrics were utilized namely,
Probability of Detection (PoD), Probability of
Misdetection (PoM), Probability of False Alarm
(PoFA), and Accuracy (Acc).

The probability of correctly categorizing injected
messages divided by the total number of injected
messages is defined as PoD. On the other hand, PoM
is the proportion of injected messages assessed as
genuine over the total amount of injected messages.
The percentage of authentic communications that were
erroneously categorized over the total number of
legitimate messages is given by PoFA. The proportion
of successfully categorized messages over the entire
number of messages is denoted as Acc.

TP
PoD = x 100 )
+FN
FN
TP x 100 @)
PoM = 1o ¥ FN
pora=_ "
o= %1100 3)
TN + P
Acc = TP+ TN 100100 4
TP+FN+FP+ N )

Where TP and TN correspond to the number of
accurately classified malicious and legitimate
messages, respectively, whereas FN and FP indicate
the number of erroneously predicted malicious and
legitimate messages In this study, the RNN models are
constructed using Keras and they are trained on an
Intel 17-10700, 2.90GHz CPU. As shown in Table I,
those models employ stochastic gradient descent as an
optimizer with a learning rate of 0.05, and a
momentum of 0.8. The activation function used to
produce an output value is sigmoid and the number of

epochs used to update the network for the entire
training dataset is 180; whereas the batch size is 200.

TABLE L PARAMETERS SETTING
Parameter Setting
Epochs 180
Batch size 200

Learning-rate 0.05

Momentum 0.8

Optimizer Stochastic gradient descent

Fig. 2 shows the results of the confusion matrices
for Bi-GRU, GRU, Bi-LSTM, and LSTM. Fig. 3
presents the results of the performance evaluation of
the selected models in terms of their accuracy,
probabilities of detection, misdetection, and false alarm
rates. It is noteworthy that all models demonstrated
good overall performance with an accuracy rate of over
92% and a probability of detection of over 91%.
However, it is observed that the GRU and Bi-LSTM
models outperform the others with the highest accuracy
rate of 94.61% and the highest probability of detection
rate of 95.26%, respectively.

H 2635 [EREZ H 2577 PRV
£ 159 [EPLEY O 2910
e 2
Ablack Noit Attack Atack Mot Altack
Predicted labals Predicled labals
(@) (b}
] k]
f| 2676 [EREE i
2 2
] ]
: 228 [PIV 2
(=] [=]
= =
tack Mot Attack Attack Mot Aftack
Predicled labels Predicled labals
(c) (d)

Fi

&
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In addition, it was found that the GRU and Bi-
LSTM models not only demonstrated the highest
accuracy and probabilities of detection but they also
achieved the lowest rates of false alarms and
misdetection. Specifically, the GRU model had a false
alarm rate of 2.70%, while the Bi-LSTM model had a
misdetection rate of 4.73%. According to these
findings, the GRU and Bi-LSTM models are the most
effective at classifying the data points and detecting the
attacks. This information is critical for making
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decisions in situations where precise detection and
classification are paramount.

Table II provides a summary of the results obtained
from the performance evaluation of the four RNN
classifiers. This table presents the key metrics and
measures that were used to assess the performance of
the classifiers, including training time, detection time,
memory usage during training, and memory usage
during detection. It can be observed that the GRU
model has the best performance in terms of time and
used memory in the training phase, while the Bi-GRU
model has the best performance in terms of time and
used memory in the prediction phase. The optimized
computational performance of the GRU and Bi-GRU
models can be attributed to their simplified architecture
compared to the LSTM models since they use a
simplified gating mechanism that requires fewer
parameters, making them computationally efficient.

Based on the findings of the study, the evaluation
of the performance of the GRU, LSTM, Bi-GRU, and
Bi-LSTM models highlights the trade-offs between
computational efficiency and accuracy in deep learning
applications. This observation suggests that the choice
of the optimal model depends on the specific
requirements of the application and which aspects are
more important. The faster training and prediction
times and lower memory usage of the GRU and Bi-
GRU models make it ideal for applications where
computational efficiency is of utmost importance and
where real-time performance is a priority.

On the other hand, the high accuracy and low
misdetection of the Bi- LSTM model make it more
suitable for applications where it is crucial to accurately
detect attacks. In our case, ensuring high accuracy and
low misdetection rates were deemed the most critical
performance metrics, since missing an attack could
result in catastrophic consequences. In particular, a
missed attack could result in mid-air collisions, which
could lead to loss of life and significant damage. Given
the severity of the potential impact of missed attacks, it
is vital to minimize misdetection rates to reduce the risk
of such incidents.

VI. CONCLUSION

In this paper, we proposed a comparative study for
detecting false data injection attacks on ADS-B
systems based on four RNN models, LSTM, GRU, Bi-
LSTM, and Bi-GRU. The RNN models were trained
and tested on the previously collected and prepossessed
ADS-B data that includes legitimate and malicious
samples from three different types of injection attacks,
namely, path modification, ghost aircraft injection, and
velocity drift. Out of those models, the Bi-LSTM
model was able to detect injection attacks with high
accuracy and a low misdetection probability. From this
study's results, it can be concluded that detecting

anomalies in ADS-B signals can be efficiently done

without altering the ADS-B protocol or compromising
the integrity of the existing infrastructure.
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Fig. 2. Results of RNN classifiers in detecting ADS-B attacks.

TABLE I RNN MODELS PERFORMANCE RESULTS

Metrics LSTM GRU Bi-GRU Bi-LSTM
PoD 91.49% | 91.74% | 93.80% 95.26%
PoM 8.50% 8.25% 6.19% 4.73%
PoFA 6.05% 2.70% 5.31% 7.62%

Acc 92.75% 94.61 94.25% 93.77%
%

Tt (5) 86.6 53.2 91.7 88.8
Ta (s) 0.7 0.7 0.5 0.6
Mem: 122.8 109.2 159.6 158.4
(MiB)
Memq 0.148 0.129 0.070 0.125
(MiB)
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