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Abstract— The Automatic Dependent Surveillance 

Broadcast (ADS-B) system is a critical communication 

and surveillance technology used in the Next Generation 

(NextGen) project as it improves the accuracy and 

efficiency of air navigation. These systems allow air 

traffic controllers to have more precise and real-time 

information on the location and movement of aircraft, 

leading to increased safety and improved efficiency in 

the airspace. While ADS-B has been made mandatory 

for all aircraft in the Federal Aviation Administration 

(FAA) monitored airspace, its lack of security measures 

leaves it vulnerable to cybersecurity threats. 

Particularly, ADS-B signals are susceptible to false data 

injection attacks due to the lack of authentication and 

integrity measures, which poses a serious threat to the 

safety of the National Airspace System (NAS). Many 

studies have attempted to address these vulnerabilities; 

however, machine learning and deep learning 

approaches have gained significant interest due to their 

ability to enhance security without modifying the 

existing infrastructure. This paper investigates the use 

of Recurrent Neural Networks for detecting injection 

attacks in ADS-B data, leveraging the time-dependent 

nature of the data. The paper reviews previous studies 

that used different machine learning and deep learning 

techniques and presents the potential benefits of using 

RNN algorithms to improve ADS-B security. 

Keywords— Automatic dependent surveillance broadcast, 

gated recurrent unit, injection attacks, long short-term 

memory, recurrent neural networks, time series. 

I. INTRODUCTION 

Automatic Dependent Surveillance Broadcast 

(ADS-B) is a revolutionary technology designed to 

improve communication and surveillance within the 

aviation industry. Developed as a crucial component 

of the Next Generation (NextGen) project, its primary 

goal is to enhance the efficiency and reliability of air 

navigation [1]. Additionally, ADS-B aims to reduce 

the maintenance costs associated with air traffic 

control infrastructure [2]. Recognizing its immense 

potential for advancing aviation safety, the Federal 

Aviation Administration (FAA) and the European 

Aviation Safety Agency (EASA) have made it 

mandatory for all aircraft operating within their 

monitored airspace to be equipped with ADS-B 

devices by 2020 [3] [4]. This mandate ensures 

widespread adoption of the technology, enabling a 

more comprehensive and streamlined approach to air 

traffic management. 

By leveraging ADS-B, aircraft can autonomously 

broadcast vital information, such as their Global 

Positioning System (GPS)-derived positions, airspeed, 

altitude, and identification data. Ground-based 

receivers and other equipped aircraft can then access 

and utilize this real-time data, resulting in enhanced 

situational awareness for pilots and air traffic 

controllers alike. The seamless sharing of crucial flight 

information facilitates more precise and efficient 

routing, ultimately contributing to safer and more 

reliable air travel. ADS-B represents a significant leap 

forward in modernizing the aviation industry, and its 

implementation is a critical step toward achieving a 

more interconnected and technologically advanced air 

transportation system. 

Prior to the implementation of ADS-B, traditional 

radar systems only updated aircraft positions once 

every few seconds, resulting in less accurate and 

potentially outdated information for pilots. With ADS- 

B, pilots receive more accurate and frequent position 

updates at a frequency of at least one message per 

second [5], allowing them to make better-informed 

decisions and avoid potential hazards [1]. While ADS- 

B has proven to be a significant advancement in air 

navigation, its design did not prioritize security, 

leaving it susceptible to various cybersecurity threats. 

One of the key vulnerabilities lies in the fact that 

data transmitted through the 1090ES datalink is 

unencrypted, making it accessible to all parties on the 

network [1]. This lack of encryption exposes ADS-B 

data to potential risks, including unauthorized 

manipulation, deletion, or injection of information [6- 

7]. Furthermore, the absence of authentication 

techniques during data transmission and reception 

makes the ADS-B system vulnerable to unauthorized 

access and potential security breaches. The lack of 

robust authentication opens the door for malicious 

actors to interfere with the data exchange process and 

possibly compromise the integrity and reliability of the 

entire system. 
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Thus, addressing these security concerns is crucial 

to ensuring the safe and dependable operation of ADS- 

B. Given the vulnerabilities of ADS-B and the need to 

safeguard airspace from potential malicious attacks, 

finding efficient solutions is of utmost importance. 

Over the past years, numerous studies have been 

presented in the literature to address this issue, 

offering various approaches, such as traffic modeling 

[8], group validation [9], physical layer fingerprinting 

[10], and data fusing [11]. 

However, many of these methods require 

modifications to the existing ADS-B infrastructure, 

prior knowledge of the system, or the addition of extra 

hardware [6]. with the increasing availability of 

publicly accessible ADS-B data, machine learning, 

and deep learning approaches have emerged as 

promising alternatives for enhancing security without 

necessitating any changes to the current ADS-B 

infrastructure. Leveraging the power of these 

advanced computational techniques, these approaches 

can analyze and interpret vast amounts of ADS-B data 

in real time, identifying patterns and anomalies that 

could indicate potential security threats. 

By harnessing machine learning and deep learning, 

it becomes possible to proactively detect and respond 

to suspicious activities or unauthorized intrusions 

within the ADS-B network. These algorithms can 

continuously learn from historical data, adapt to 

evolving threats, and improve their accuracy over 

time, bolstering the security of the entire airspace 

system. For example, in [12], the authors explored 

various machine learning models to detect jamming on 

ADS-B systems, including logistic regression, 

artificial neural networks, support vector machine, k- 

nearest neighbor, and decision trees. The results 

indicated that a two-hidden-layer neural network with 

15 neurons outperformed all other techniques. 

In [13], a Bi-directional Long-Short Time Memory 

(Bi-LSTM) model was proposed to detect track 

outliers in ADS-B data, along with a multidimensional 

outlier descriptor based on the dynamic time warping 

algorithm. This method achieved acceptable results. In 

[14], a deep learning-based approach was introduced 

to identify three types of ADS-B spoofing attacks: 

message replay attacks, ghost aircraft injection attacks, 

and aircraft spoofing attacks. The model, consisting of 

a two-layer neural network provides better 

performance, compared to the other techniques. 

Even though the proposed methods in detecting and 

classifying false data injection attacks on ADS-B 

provided high performance, there are a limited number 

of studies that mainly focus on time series data. It is 

worth mentioning that ADS-B data is time-dependent; 

therefore, proposing any Deep Learning (DL) models, 

relying on time series data can be important in 

detecting and classifying injection attacks on ADS-B. 

Motivated by the dependency of ADS-B on times 

series data, this study widely proposes four DL 

models, namely Long Short-Term Memory (LSTM), 

Bi-directional LSTM (Bi-LSTM), Gated Recurrent 

Unit (GRU), and Bi-directional GRU (Bi-GRU). In 

short, the main key contributions of this study are as 

follows: 

• Proposing four DL models, depending on 

time series data, namely LSTM, Bi-LSTM, 

GRU, and Bi-GRU, 

• Providing a comprehensive comparison of 

these models in terms of accuracy, 

probability of detection, misdetection, false 

alarm, training time, testing time, and 

memory during training and testing. 

The remainder of the paper is structured as follows. 

The methods used in this work, such as data collecting, 

data preprocessing, modeling, and performance 

evaluation of RNN models, are described in Section II. 

While the research results and their discussion are 

presented in section III. Lastly, section III offers a 

thorough conclusion. 

II. METHODOLOGY 

This section provides an overview of the process 

of collecting ADS-B data and the preprocessing steps 

involved in making the data suitable for RNN models. 

The ADS-B data is collected using receivers placed at 

various locations, and it contains information about the 

position, altitude, velocity, and other parameters of the 

aircraft. The first preprocessing step involves data 

cleaning, which removes any noisy or irrelevant data 

points that may negatively impact the performance of 

the RNN models. 

The second preprocessing step is standardization, 

which scales the data to a common range, between 

zero and one, to make it easier for the RNN models to 

process. Then, it discusses the different RNN 

algorithms used for this purpose, Gated Recurrent Unit 

(GRU) Long Short-Term Memory (LSTM), Bi-Long 

Short-Term Memory (Bi-LSTM), and Bi-Gated 

Recurrent Unit (Bi-GRU). 

II.1.1 ADS-B Data Collection and Pre-processing 

Techniques 

ADS-B data was collected and preprocessed as 

previously described in [20]. The corresponding 

dataset consists of 22,315 samples with s with equally 
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distributed two classes (11,158 authentic messages 

and 11,157 Injection attacks). In the given data, there 

are three types of injection attacks, namely path 

modification, ghost aircraft injection, and velocity 

drift. This dataset underwent several data pre- 

processing techniques, including data cleaning, feature 

extraction, standardization, and encoding, as 

highlighted in [20]. Additionally, a feature selection 

process was also conducted to optimize the accuracy 

and computational complexity of the RNN algorithms 

used. 

II.1.2 Modeling and Performance Evaluation of 

RNN Models 

The focus of this study is a class of DL models, 

namely Recurrent Neural Network (RNN), which was 

developed to handle sequential data. They are 

designed to process sequences by maintaining an 

internal state that can capture information from past 

inputs and pass it along to future inputs [21]. This 

allows RNN models to maintain context and capture 

patterns in sequential data. In a traditional neural 

network, all inputs and outputs are assumed to be 

independent of one another. 

However, RNN models are recurrent since they 

carry out the same calculations for each element of a 

sequence, where the outcome is dependent on past 

calculations, which makes these models have a 

memory that can retain information about previous 

calculations [21]. Another benefit of RNN models is 

that they can handle inputs of varying lengths, making 

them ideal for processing sequential data. They have 

the ability to generalize the information learned from 

one sequence to another, even if the sequences are of 

different lengths. 

RNN training utilizes the backpropagation over 

time to update the weights of the model, which is a 

similar algorithm to the backpropagation algorithm 

that is used in traditional neural networks. In this 

algorithm, the parameters are shared by all timesteps; 

therefore, the gradient at each output is affected not 

only by the current time step but also by prior ones. As 

a result, RNN models struggle to learn long-term 

dependencies due to the vanishing or expanding 

gradient issue, which occurs when the gradients 

become very small or big during backpropagation, 

making it difficult for the network to learn [22]. To 

overcome this problem, newer architectures that 

employ gating methods to govern the flow of 

information between neural network cells are utilized, 

like GRU and LSTM models [22]. 

II.1.3 2.2.1. LSTM 

LSTM is a type of RNN model that was proposed 

to overcome the problem of vanishing or exploding 

gradients in traditional RNNs caused by the capturing 

of both pertinent and irrelevant information [23]. 

LSTM introduces memory cells and gates that can 

hold their state across several time steps and govern 

the flow of information into and out of the memory 

cells [24]. LSTMs have memory cells that may be 

regarded as a form of internal state that the model can 

utilize to recall information [24]. 

LSTMs also feature input, input modulation, 

forget, and output gates that regulate information flow 

into and out of the memory cell [25]. These input and 

output gates allow the model to select what 

information from the current time step is fed to the 

memory cell, by taking the input, combining it with the 

previous hidden state, and passing it through a sigmoid 

function. The input modulation gate determines how 

much of the new input should be added to the cell state. 

It is similar to the input gate, but it uses a tanh 

activation function [25]. 

On the other hand, the forget gate determines 

which information from the previous time step should 

be removed from the memory cell. It takes the 

previous hidden state and the current input and passes 

it through a sigmoid function [25]. The output gate 

determines what information should be utilized for the 

next time step from the memory cell, enabling it to 

choose whether to keep or forget knowledge from 

prior time steps, which makes it understand long-term 

dependencies in sequential data that was a challenging 

task in the past [26]. As a result, LSTMs are an 

extremely effective tool for modeling complicated, 

non-linear dependencies in sequential data. 

II.1.4 Bi-LSTM model 

One of the other known time series models is Bi- 

LSTM. This model can learn from the sequence of data 

in both the backward and forward directions [23]. In 

Bi-LSTM, the given data flows in two directions, 

resulting in differentiation from the simple LSTM. In 

the simple LSTM, the given data only flows in a 

designated direction (forward or backward). 
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Fig. 1. General Structure of the Models. 

 

In contrast, Bi-LSTM can take the given data flows 

from both directions to preserve past and future data. 

In general, Bi-LSTM uses two-linked layers and 

predicts the sequence of each element by applying a 

finite sequence based on the input elements in the past 

and future [23, 27]. This model can perform as two 

LSTM models that run in parallel. In other words, one 

of these models runs from left to right, and the other 

model runs from right to left. The targeted class 

prediction, composite output, can use the forward 

function with the inputs L and H hidden units [23, 27, 

28]. 

II.1.5 GRU Model 

The GRU model is another popular type of RNN 

that is more computationally efficient and has a 

simpler topology than LSTMs [11]. A GRU cell is 

comprised of only two gates that lower the gating 

signals and associated parameters: the reset gate and 

the update gate [29]. The hidden state output at time t, 

like the LSTM cell, is computed using the hidden state 

of time t-1 and the input time series value at time t [25]. 

To decrease the number of parameters, the GRU cell 

incorporates the LSTM cell's forget gate and input gate 

as an update gate. GRU cell is less powerful than the 

original LSTM since it has fewer gates. Therefore, the 

GRU can't be taught to count or answer context- free 

language problems. 

II.1.6 Bi-GRU Model 

The Bi-GRU model consists of two GRU layers that 

process the input sequence in two opposite directions, 

forward and backward [30]. Each GRU layer consists 

of multiple GRU cells, and each cell takes as input the 

current input vector and the hidden state from the 

previous time step. During the forward pass, the input 

sequence is fed into the forward GRU layer, and the 

hidden state of each cell is updated based on the input 

and the previous hidden state. At the same time, the 

backward GRU layer processes the input sequence in 

reverse, and the hidden state of each cell is updated 

based on the input and the previous hidden state. The 

output of the forward and backward GRU layers are 

then concatenated to produce the final output 

sequence. This architecture allows the model to 

capture dependencies in both directions of the input 

sequence, which can exploit information both from the 

past and the future [31]. 

In this work, a dropout layer was used after the 

input layer in each model architecture as a means of 

regularization and to avoid overfitting the training 

data. The concept of dropout involves the temporary 

removal of units within a neural network. This means 

that a unit and all its incoming and outgoing 

connections are dropped out or excluded from the 

network. This technique aims to prevent overfitting by 

forcing the network to learn more robust features, 

which helps it generalize better to new data [32]. 

Additionally, the learning rate has been increased 

to accelerate the training process, and the momentum 

has been raised to enhance the model's ability to 

overcome local minima and converge to the global 

minimum of the loss function. These modifications 

aim to improve the model's generalization 

performance and prevent overfitting, resulting in a 

more robust and accurate system. Furthermore, the 

addition of a dense layer was added after each RNN 

layer helped the model learn the internal connections 
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of the data and boost the accuracy, as shown in Fig. 1. 

Moreover, random search has been employed to find 

the optimal hyperparameters in order to obtain the 

highest accuracy and the minimum loss. The 

performance of these models is evaluated using the 

accuracy, probabilities of detection, misdetection, and 

false alarm, as well as, training time, detection time, 

memory usage during training, and memory usage 

during detection [33, 34]. 

III. RESULTS AND DISCUSSION 

In this work, the dataset was divided into two 

subsets - a training set and a testing set. The training 

set consists of 67% of the data, which was used to train 

the RNN model, while the remaining 33% of the data 

was set aside for testing the performance of the trained 

model. To evaluate the performance of those models, 

different evaluation metrics were utilized namely, 

Probability of Detection (PoD), Probability of 

Misdetection (PoM), Probability of False Alarm 

(PoFA), and Accuracy (Acc). 

The probability of correctly categorizing injected 

messages divided by the total number of injected 

messages is defined as PoD. On the other hand, PoM 

is the proportion of injected messages assessed as 

genuine over the total amount of injected messages. 

The percentage of authentic communications that were 

erroneously categorized over the total number of 

legitimate messages is given by PoFA. The proportion 

of successfully categorized messages over the entire 

number of messages is denoted as Acc. 

epochs used to update the network for the entire 

training dataset is 180; whereas the batch size is 200. 

TABLE I. PARAMETERS SETTING 
 

Parameter Setting 

Epochs 180 

Batch size 200 

Learning-rate 0.05 

Momentum 0.8 

Optimizer Stochastic gradient descent 

 

 

Fig. 2 shows the results of the confusion matrices 
for Bi-GRU, GRU, Bi-LSTM, and LSTM. Fig. 3 
presents the results of the performance evaluation of 
the selected models in terms of their accuracy, 
probabilities of detection, misdetection, and false alarm 
rates. It is noteworthy that all models demonstrated 
good overall performance with an accuracy rate of over 
92% and a probability of detection of over 91%. 
However, it is observed that the GRU and Bi-LSTM 
models outperform the others with the highest accuracy 
rate of 94.61% and the highest probability of detection 
rate of 95.26%, respectively. 

 = 
 

× 100 
 

+  

 

(1) 

  
× 100 (2) 

 = 
 +  

 = 


 

 +  

 

× 1100 (3) 

 

 
Fig. 2. Confusion matrix of (a) Bi-GRU, (b) GRU, (c) Bi-LSTM and 

(d) LSTM. 

 = 
 +  

 +  +  +  

 

× 100100 (4) 
 

Where  and  correspond to the number of 

accurately classified malicious and legitimate 

messages, respectively, whereas  and  indicate 

the number of erroneously predicted malicious and 

legitimate messages In this study, the RNN models are 

constructed using Keras and they are trained on an 

Intel i7-10700, 2.90GHz CPU. As shown in Table I, 

those models employ stochastic gradient descent as an 

optimizer with a learning rate of 0.05, and a 

momentum of 0.8. The activation function used to 

produce an output value is sigmoid and the number of 

 

In addition, it was found that the GRU and Bi- 
LSTM models not only demonstrated the highest 
accuracy and probabilities of detection but they also 
achieved the lowest rates of false alarms and 
misdetection. Specifically, the GRU model had a false 
alarm rate of 2.70%, while the Bi-LSTM model had a 
misdetection rate of 4.73%. According to these 
findings, the GRU and Bi-LSTM models are the most 
effective at classifying the data points and detecting the 
attacks. This information is critical for making 

(1) 

 

(2) 
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decisions in situations where precise detection and 
classification are paramount. 

Table II provides a summary of the results obtained 
from the performance evaluation of the four RNN 
classifiers. This table presents the key metrics and 
measures that were used to assess the performance of 
the classifiers, including training time, detection time, 
memory usage during training, and memory usage 
during detection. It can be observed that the GRU 
model has the best performance in terms of time and 
used memory in the training phase, while the Bi-GRU 
model has the best performance in terms of time and 
used memory in the prediction phase. The optimized 
computational performance of the GRU and Bi-GRU 
models can be attributed to their simplified architecture 
compared to the LSTM models since they use a 
simplified gating mechanism that requires fewer 
parameters, making them computationally efficient. 

Based on the findings of the study, the evaluation 
of the performance of the GRU, LSTM, Bi-GRU, and 
Bi-LSTM models highlights the trade-offs between 
computational efficiency and accuracy in deep learning 
applications. This observation suggests that the choice 
of the optimal model depends on the specific 
requirements of the application and which aspects are 
more important. The faster training and prediction 
times and lower memory usage of the GRU and Bi- 
GRU models make it ideal for applications where 
computational efficiency is of utmost importance and 
where real-time performance is a priority. 

On the other hand, the high accuracy and low 
misdetection of the Bi- LSTM model make it more 
suitable for applications where it is crucial to accurately 
detect attacks. In our case, ensuring high accuracy and 
low misdetection rates were deemed the most critical 
performance metrics, since missing an attack could 
result in catastrophic consequences. In particular, a 
missed attack could result in mid-air collisions, which 
could lead to loss of life and significant damage. Given 
the severity of the potential impact of missed attacks, it 
is vital to minimize misdetection rates to reduce the risk 
of such incidents. 

VI.  CONCLUSION 

In this paper, we proposed a comparative study for 
detecting false data injection attacks on ADS-B 
systems based on four RNN models, LSTM, GRU, Bi- 
LSTM, and Bi-GRU. The RNN models were trained 
and tested on the previously collected and prepossessed 
ADS-B data that includes legitimate and malicious 
samples from three different types of injection attacks, 
namely, path modification, ghost aircraft injection, and 
velocity drift. Out of those models, the Bi-LSTM 
model was able to detect injection attacks with high 
accuracy and a low misdetection probability. From this 
study's results, it can be concluded that detecting 

without altering the ADS-B protocol or compromising 
the integrity of the existing infrastructure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Results of RNN classifiers in detecting ADS-B attacks. 

 
TABLE II. RNN MODELS PERFORMANCE RESULTS 

 

Metrics LSTM GRU Bi-GRU Bi-LSTM 

PoD 91.49% 91.74% 93.80% 95.26% 

PoM 8.50% 8.25% 6.19% 4.73% 

PoFA 6.05% 2.70% 5.31% 7.62% 

Acc 92.75% 94.61 
% 

94.25% 93.77% 

Tt (s) 86.6 53.2 91.7 88.8 

Td (s) 0.7 0.7 0.5 0.6 

Memt 

(MiB) 
122.8 109.2 159.6 158.4 

Memd 

(MiB) 
0.148 0.129 0.070 0.125 
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