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Abstract— Unmanned Aerial Vehicles (UAV) are prone to cyber 

threats, including Global Positioning System (GPS) spoofing 

attacks. Several studies have been performed to detect and classify 

these attacks using machine learning and deep learning 

techniques. Although these studies provide satisfactory results, 

they deal with several limitations, including limited data samples, 

high costs of data annotations, and investigation of data patterns. 

Unsupervised learning models can address these limitations. 

Therefore, this paper compares the performance of four 

unsupervised deep learning models, namely Convolutional Auto-

Encoder, Convolutional Restricted Boltzmann Machine, Deep 

Belief Neural Network, and Adversarial Neural Network in 

detecting GPS spoofing attacks on UAVs. The performance 

evaluation of these models was done in terms of Gap static, 

Calinski harabasz score, Silhouette Score, homogeneity, 

completeness, and V-measure. The results show that the 

Convolutional Auto-Encoder has the best performance results 

among the other unsupervised deep learning models.   

Keywords— Artificial neural network, deep learning, Global 

positioning system, machine learning, unsupervised learning, 

unmanned aerial systems. 

I. INTRODUCTION 

The Global Navigation Satellite System (GNSS) plays a 
crucial role in the positioning and navigation of Unmanned 
Aerial Vehicles (UAVs). Despite significant advancements in 
automation and control of UAVs, their security has been 
overlooked. UAVs are vulnerable to various cyber threats, 
including GPS Spoofing attacks, which can have a significant 
impact on the safety of people and infrastructure q  [1, 2]. 
These attacks have been observed during the last decade, 
especially during conflicts in Ukraine, Russia, China, and Iraq, 
where malicious actors transmitted false Global Positioning 
Signals (GPS) signals to falsify the position, time, and velocity 
information. These signals are designed to mimic genuine 
satellite signals and can be difficult to detect depending on the 
attack sophistication [3].  

In the realm of securing GPS signals, certain studies have 
centered around cryptography techniques that aim to encrypt 
GPS signals; while this approach may present a good security 
solution, it is not practical for civilian applications that require 
unencrypted GPS signals. Other studies were based on the 
assumption that signals arriving at a different angle from the 
GPS constellation are due to spoofing attempts; thus, several 
angle-of-arrival determination-based techniques have been 
proposed. These techniques require additional hardware at 
the 

antenna architecture level (antenna array, circular antenna 
design. etc.) [5].  As a result of these constraints, Artificial 
Intelligence-based approaches have been proposed to detect and 
classify these attacks on UAVs. Traditional and ensemble 
machine learning (ML) [reference] and Deep Learning (DL) [] 
models, such as support vector machine, decision tree, gradient 
boosting, random forest, bagging, and Naive Bayes, were used 
for the detection. Despite the fact that these models provide high 
performance, several issues need to be addressed. To begin, the 
field of study is still in its early stages, and studies in the 
literature indicate that detection and misdetection rates need to 
be improved. Moreover, various research in the literature 
address overfitting/underfitting difficulties, which result in 
erroneous predictions. Furthermore, current studies in the 
literature have largely concentrated on supervised models; 
nevertheless, these models need large, labeled datasets which is 
tedious and time consuming [6, 7].  

Annotating datasets and performing data pre-processing 
steps are costly, resulting in increasing the computational 
complexity of the training process. In addition, supervised 
models do not discover hidden patterns of the given data. 
Furthermore, there are very limited datasets related to GPS 
spoofing. Therefore, to address these challenges, unsupervised 
models, are proposed in this paper. These models can detect 
patterns and relationships in data without the need for labels or 
classifications. This allows algorithms to learn from the data and 
make predictions based on the patterns they detect, resulting in 
low complexity and faster processes.  

Thus, in this paper, we provide a comprehensive assessment 
of unsupervised deep learning models to detect GPS spoofing 
attacks. The advantage of using DL models over ML models is 
their ability to do feature engineering on their own, which leads 
to higher scalability, self-learning capability, and cost-
effectiveness. Four unsupervised models, Convolutional Auto-
Encoder (CAE), Convolutional Restricted Boltzmann Machine 
(CRBM), Deep Belief Neural Network (DBNN), and 
Generative adversarial neural network (GAN) are chosen for 
this study. These models are evaluated in terms of Gap static, 
Calinski harabasz score, Silhouette Score, homogeneity, 
completeness, and V-measure. 

The remainder of this paper is organized as follows: Section 
II discusses the methodology used in this study. Section III 
indicates the results of this study. The conclusion and future 
work are outlined in Section IV. 
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II. RELATED WORKS 

Several studies have been performed on the detection, 
classification, and mitigation of GPS spoofing attacks on UAVs, 
as illustrated on Table I. In general, the proposed methods can 
be classified into three categories, namely UAV- characteristics, 
signal processing, and AI-based techniques. For example, the 
authors of [8] proposed IMU measurements, such as angle, 
velocity, and acceleration along with GPS data, longitude and 
latitude, to detect attacks on UAVs. In [9], the authors developed 
another UAV-characteristic based approach to detect GPS 
spoofing attacks on UAVs. In this approach, the authors mainly 
used Gyroscope Measurement and GPS data to detect attacks 
and avoid hijacking scenarios. In [10], the authors proposed 
another UAV-characteristic based approach that is highly 
dependent on the error calculated from IMU and GPS receiver.  

Several other studies have focused on vision-based 
approaches to detect, classify, and mitigate GPS spoofing 
attacks on UAVs. In [11], the authors proposed a vision-based 
approach based on the vision sensor, UAV's sensor, IMU, and 
monocular camera. In another study [12], the authors used 
Visual Odometry by employing UAV’s camera to obtain fake 
GPS signals in image format. The UAV trajectory can be 
obtained from these images using Visual Odometry. Then, the 
extracted trajectory can be compressively compared with the 
existing flight trajectory data from GPS positions to detect GPS 
spoofing attacks. Other studies focused on using AI-based 
approaches to detect, classify, and mitigate these attacks on 
UAVs. In these studies, malicious attackers can still coordinate 
complex spoofing assaults using some cutting-edge 
technologies. These technologies can be used by ML and DL 
models to bypass standard detection techniques, as summarized 
in table I.   

It is now widely recognized that machine learning is a 
powerful tool to detect anomalies and attacks, particularly in 
heterogeneous and uncertain environments. For instance, the 
authors of [13] used a supervised ML model, support vector 
machine (SVM), to detect GPS spoofing attacks. In this study, 
the authors used temporal drift of the receiver clock and the time 
derivative of the clock offset. In [14], the authors used several 
supervised ML models, namely Naïve Bayes, linear regression, 
decision tree, random forest, and SVM, and proposed a learning 
approach. They used Jitter and shimmer and their subcategories 
as input features. The extracted features consist of the GPS 
signal fundamental frequency and amplitude variations. K-
learning was applied as a voting technique for the developed ML 
models. In [15, 16], the authors compared the performance of 
four tree-based supervised ML models, namely Random Forest, 
Gradient Boost, Extreme Gradient Boosting, and Light Gradient 
Boosting, along with several instance-based supervised ML 
models, namely Support Vector Machine (SVM), Linear-SVM, 
Nu-SVM, K-nearest neighbor (KNN), and Radius Neighbors in 
detecting and classifying GPS spoofing attacks on UAVs. 

 In [17], the authors compared the performance of ensemble 
supervised ML models, namely bagging, boosting, and stacking 
for detecting these attacks on UAVs. In [18], the authors 
proposed two dynamic selection algorithms, namely Metric-
Optimized Dynamic and Weighted Metric-Optimized Dynamic  

to select the best performance model among a group of 
supervised models. All these approaches only perform well on 
structured data; however, real-world data are mostly not pre-
processed and structured; therefore, pre-processing the data and 
transferring it to the proper format is time-consuming and costly. 
To solve this problem, DL models have been proposed to 
address the limitations of traditional and convolutional ML 
models.   

One of the critical key factors of using DL models is to 
automatically learn complex and abstract representations from 
large amounts of data, which can be useful for identifying 
patterns or anomalies in network traffic or other types of data 
associated with cyber-attacks. Additionally, other used ML 
approaches in literature may deal with some shortcomings, such 
as a high rate of error and bias, low detection, and high 
misdetection rate.   For this purpose, several studies have 
focused on DL models to detect and classify these attacks on 
UAVs. For instance, the authors of [19] proposed a GPS replay 
attack detection method based on a supervised DL model, 
namely ANN. In this study, the authors showed the effect of 
several extracted features from the received signal on detection 
performance. The best results were obtained by combining five 
parameters, namely satellite vehicle number, pseudo-range, 
carrier phase, Doppler shift, and signal-to-noise ratio.  

In [20], the authors used three signal properties as input 
features of a supervised DL model, a multi-layer neural network. 
These three input features are early-late phase, delta, and signal 
level. The proposed method has been evaluated using software-
based GPS simulators. In [21], the authors proposed Long Short-
Term Memory which monitored the derived PVT information 
from the GPS signal using this DL model. In [22], the authors 
used a supervised DL model, namely a Convolutional Neural 
Network-based model, Residual Neural Network. As discussed 
previously, the current studies in literature are widely focused 
on supervised ML and DL models. Despite these proposed 
studies indicating satisfactory results, there are still several 
limitations that need to be addressed.  

III. MATERIALS AND METHODS 

The proposed GPS spoofing detection framework is 
depicted in Figure 1. The framework contains three main steps, 
data acquisition and preprocessing, implementation DL 
models, and GPS spoofing classification. In the data acquisition 
and pre-processing step, real-time experiments were conducted 
to gather GPS signals, and several simulations were performed 
to develop GPS spoofing attacks, namely simplistic, 
intermediate, and sophisticated attacks. The features were 
extracted, and the class labels of the given data were discarded. 
To perform the data preprocessing, the non-stationary data was 
transformed to stationary, and several pre-processing 
techniques, such as data correlation, data imputation, and 
transformation, were used to improve the quality of the data. 
The second step, implementation of DL models, mainly focuses 
on using selected unsupervised models and optimizing the 
results.  
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TABLE I. CURRENT STUDIES ON DETECTING AND CLASSIFYING GPS SPOOFING ATTACKS ON UAVS USING MACHINE LEARNING AND DEEP LEARNING. 

Category Method(s) Study highlights Limitations 

 
 

UAV 
Characteris
tic-based 

IMU [8]  Providing high detection rate, using GPS data 
features and IMU characteristics. 

Detected attacks with the same behavior during the 
training process. 

Gyroscope 
Measurement [9] 

Using Gyroscope Measurement along GPS data to 
detect spoofed signals. 

Requiring motion sensors, which are power hungry. 

Acceleration error 
[10] 

Providing better performance using acceleration 
magnitude.  

Providing constant false alarm rate. 

 
Signal 

Processing-
based 

Vision 
[11] 

Detecting attacks using vision sensors with the IMU 
data. 

Applicable only when the attacker is visible. 

Vision 
[12] 

Detecting attacks using Visual Odometry technique.  Applicable only when the attacker is visible. 

 
 
 
 
 
 
 
 

Artificial 
Intelligence

-based 

Supervised ML 
[13] 

Using SVM to detect time drift in GPS spoofing 
signal. 

No comparison with other techniques. 

Supervised ML 
[14] 

Reconstructing the path using embedded sensors 
and comparing it to the GPS path. 

Used Shimmer and Jitter as only features in the 
benchmark. 

Supervised ML 
[15] 

Extracting of multiple features from GPS signal, 
Evaluating different Tree-based ML models to 

detect GPS spoofing attacks.  

Needed to lower misdetection and false alarm rates. 

Supervised ML 
[16] 

Evaluating different instance-based ML models to 
detect GPS spoofing attacks. 

Needed to lower misdetection and false alarm rates. 

Supervised ML 
[17] 

Comparing the ensemble models to detect and 
classify GPS spoofing attacks on UAVs. 

Used limited samples. 

Supervised ML 
[18] 

Proposing two dynamic selector approaches to 
select the highest performance model among a 

group of models. 

High computational complexity. 

Supervised DL 
[19] 

Applying simple ANN to detect abnormalities in 
correlator output. 

Used a benchmark with 5 features and limited 
samples. 

Supervised DL 
[20] 

Using multi-layer neural network to detect attacks 
on the network. 

Used a dataset with 3 input features. 

Supervised DL 
[21] 

Detecting path deviation caused by the attack using 
LSTM model.  

Provided low detection rate,  
Indicates high detection rate only when the flight 

trajectory is not complex. 

Supervised DL 
[22] 

Proposing a detection technique, using DeepSIM, a 
satellite imagery matching approach, to detect GPS 

spoofing attacks on UAVs. 

Used the pictures to detect GPS spoofing attacks on 
UAVs, while there is no guarantee the pictures were 

reliable and valid. 

Four unsupervised DL models, namely CAE, CRBM, 
DBNN, and GAN, were applied, and the Adaptive Moment 
Estimation was used to maximize the performance of these 
models. These models were evaluated in terms of Gap static, 
Calinski harabasz score, Silhouette Score, homogeneity, 
completeness, and V-measure. The last step, output, is to 
interpret the results and extract useful insights and knowledge 
from them. 

A. Data Acquisition and Feature Descriptions 

The corresponding dataset in this study was initially 
developed and simulated in a previous work [8].  The given 
dataset consists of 13 features, as shown in Table II. In brief, 
this dataset contains legitimated and spoofed GPS samples from 
three types of spoofing attacks, namely simplistic, intermediate, 
and sophisticated. These GPS spoofing attacks can have a 
strong impact on features, including Carrier to Noise or Carrier 
Doppler. The dataset consists of 14,000 samples, 50% spoofed 
and 50% normal signals. More details about this dataset and the 
acquisition, tracking, and data preprocessing of such data can 
be found in [8]. 

B.  Data Pre-processing 

In this study, several data preprocessing techniques were 
performed to improve the quality of data for the training, 
testing, and validating the unsupervised DL models. The 

corresponding dataset is balanced; hence, no technique is 
required to balance the different classes. As previously 
discussed, unsupervised models can only train and test the data 

with no labels. Thus, before performing any techniques, the 
class labels had to be discarded from the given data. After that, 
the initial step in data preprocessing was to detect correlated and 
low importance features from the given dataset. Redundant 
features can have a significant impact on the performance of the 
models [1]. As a result, two features, TCD and RX, were 
discarded [8]. Thus, 11 features, namely PRN, DO, PD, TOW, 
CP, EC, LC, PC, PIP, PQP, and C/N0 were used for training 
purposes.  

The second step, data imputation, and the third step, data 
transformation, are necessary to guarantee accurate predictions 
of the results. In data imputation, mode imputation was used to 
replace the missing value with the value that has the highest 
frequency for the feature. In data transformation, Min-Max 
Scaler was applied to subtract the minimum value in the feature 
and divide it by its range.  
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TABLE II. LIST OF FEATURES WITH THEIR USED ABBREVIATIONS.     

Feature Abbreviation

s 

Satellite Vehicle Number  PRN 

The Carrier Doppler DO 

Pseudo-Range  PD 

Receiver Time  RX 

Time of the week  TOW 

Carrier Phase Cycles CP 

Early Correlator  EC 

 Late Correlator  LC 

 Prompt Correlator PC 

Prompt in phase correlator  PIP 

Prompt Quadrature  PQP 

Carrier Doppler TCD 

Carrier to noise Ratio   C/N0 

 
C. Deep Learning Models 

In this work, four distinct deep learning approaches were 
used to detect and classify GPS spoofing attacks.  Figure 2 
shows an overview of the different categories of unsupervised 
DL models, namely Auto-Encoder (AE), Restricted Boltzmann 
Machine (RBM), Belief Neural Network (BNN), and 
Adversarial Neural Network-(AdNN) based models. From each 
of these categories we selected one model for this study. 
Detailed explanations of these categories along with the selected 
models are provided in the following subsections. 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

C.1. Convolutional Auto-Encoder 
Auto-Encoder (AE)-based models represent one type of 

unsupervised DL models that indicates a compressed 
representation of the knowledge of an input. These models 
decrease the noise level in the corresponding data. This process 
can be performed via compression of the input data, encoding, 
and reconstructing the outputs. In addition, AE-based models 
can decrease the dimensionality of the data. In this work, we 
focused on convolutional auto encoder (CAE), which is trained 
to reproduce its input data in the output layer. The data is passed 
through the encoder, resulting in a low-dimensional 
representation of the data. The encoder process can be 
performed with several pooling and convolutional layers, as 
shown in Figure 3. The next layer, bottleneck layer, is a 
dimensional hidden layer that produces the encoding process. It 
consists of a lower number of nodes, and these nodes show 
dimensional encoding inputs. The purpose of this layer is to 
decrease the number of model parameters, resulting in a more 
efficient model [23].   

Furthermore, a decoder takes the output of the encoder to 
generate the input. The encoder is responsible for interpreting 
and compressing the input to an internal representation that is 
defined by the bottleneck layer, while the decoder attempts to 
create an input data from the encoder. The decoder process is 
performed via de-convolutional and up-sampling layers. CAE 
preserves valuable information while minimizing the noise for 
an inefficient dimensionality reduction.  

 

 

 

Figure 1. Proposed Unsupervised-based Framework for detecting and classifying GPS spoofing Attacks on UAVs. 
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Furthermore, a decoder takes the output of the encoder to 
generate the input. The encoder is responsible for interpreting 
and compressing the input to an internal representation that is 
defined by the bottleneck layer, while the decoder attempts to 
create an input data from the encoder. The decoder process is 
performed via de-convolutional and up-sampling layers. CAE 
preserves valuable information while minimizing the noise for 
an inefficient dimensionality reduction.  
 

 
 

Figure 3. Architecture of CAE. 

 
C.2 Convolutional Restricted Boltzmann Machine 

 
Convolutional Restricted Boltzmann Machine (RBM) 

models are probabilistic DL models that learn from the 
probability distribution of their inputs and a hidden 
representation. These models are energy-based models since 
they are an integral part of statistical mechanics. They consist of 
an input layer and a hidden layer without an output layer which 
gives them a non- deterministic feature. The Convolutional 
Restricted Boltzmann Machine (CRBM) model is an example of 
RBM models and is considered as a combination of CNN and 
RBM model, as shown in Figure 4. The CRBM model uses the 
weight-sharing method from CNN models. In CRBM models, 
the connections share the weights in a convolutional pattern with 
a convolutional filter, which connects filter nodes in feature 
maps [24].  

As clear, the weights of the convolutional filter can mostly 
be applied to the visible and hidden nodes in visible and hidden 
layers (refer to Figure 4). It means that each hidden node is 
connected to the visible nodes. In contrast, the visible nodes 
share only one bias, and the hidden nodes can share the bias. In 
addition, the hidden nodes are connected to the pooling layer to 
detect and predict the output class labels. CRBM models can 
usually create unwanted border effects when the visible layer is  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
re-generated; hence, the visible nodes are only connected to the 
few hidden nodes. 

 

 

Figure 4. Architecture of CRBM. 
 

C.3 Deep Belief Neural Network 

 
BNN models are one of the types of unsupervised DL 

models that uses a deep architecture of several stacks of RBM-
based models. In these models, RBM models can perform a non-
linear transformation on their input vectors and generate the 
output vectors, which serve as input for the next RBM model in 
the sequence. One of the mainly used BNN models is deep belief 
neural network (DBNN), which can learn feature representation 
effectively from huge amounts of given data and complicated 
functions [25]. Figure 5 provides an illustration of DBNN 
architecture with H hidden layers and V visible layers.  In DBNN 
model, the state of the network along with its matrix weight is 
initialized. Then, the random sample into the model is fed, and 
the states of the nodes in the first hidden layer are updated. In 
this model, the state of the visible node is updated with a mean 
of 0 and variance of 1, while the states of the nodes in the hidden 
layer are updated after taking the state of the nodes in the visible 
layers. After that, the random sample is restricted and fed into 
the model. If the selected sample is already used, a new round 
of training is performed until a preset number of iterations is 
achieved or the change in the weight matrix is small.  

After that, the output of the first RBM is considered as the 
input of the second RBM and the next RBM is trained until all 
of them are trained. As a result, the class labels output can be 
predicted using the logistic regression function of these RBM 

 
Figure 2. Classification of Unsupervised Deep Learning Models. 
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models. In addition, the unique feature of DBN is the use of an 
unsupervised layer-wise pre-training function, which makes the 
network highly efficient and accurate. Unlike traditional neural 
networks, the DBN uses a layer-wise approach to train its 
weight. Each layer is trained using an RBM to learn the lower-
level features of the input data. Once these layers are trained, the 
weights are then used as the initial values for the next layer, 
which is trained using backpropagation. This process can lead to 
faster convergence and higher accuracy than traditional neural 
networks [26]. 

 

 

Figure 5. Architecture of DBNN. 
 

C.4 Adversarial Neural Network 

 
Generative adversarial neural network (GAN) is an 

unsupervised DL model performed based on the architecture of 
AdNN models. The main idea of GAN is based on the Nash 
equilibrium in game theory. This model consists of two parts, 
generator, and discriminator. The generator can learn the 
distribution of the authentic data, whereas the discriminator can 
determine correctly if the given data is authentic, or it is taken 
from the generator. To complete the process, the generator and 
discriminator are required to continuously optimize themselves 
to improve the generation capacity and the discrimination 
capacity. The aim of this optimization procedure is to find a 
Nash equilibrium between the generator and the discriminator 
[27].  

The architecture of GAN is presented in Figure 6. As one 
can observe, the generator and discriminator functions, D and G, 
are mainly used as modules. Given the authentic data X and 
random variable Z, G(Z) is considered as the samples created by 
generator G, and D(Z) as the samples generated by discriminator 
D. In generator G, the plausible data is generated, while these 
generated instances change to fake training samples for the 
discriminator D.  

The discriminator D learns to differentiate the generator’s 
fake data from the real data. It actually penalizes generator G for 
creating implausible results. Hence, such a process can improve 
the performance of D and G gradually. In this context, when the 
discriminator capacity is increased to the highest level and 
cannot discriminate the data source properly, generator G has 
achieved the distribution of authentic (real) data. 

 

 

Figure 6.  Architecture of GAN. 

 

3.4. Evaluation Metrics 

To evaluate the performance of unsupervised DL models, 
several metrics were used, namely Gap static, Calinski harabasz 
score, Silhouette Score, homogeneity, completeness, and V-
measure. These metrics are briefly defined below: 

Gap Statistic: It is a statistical metric used for evaluating the 
optimal number of clusters in a dataset during the clustering 
analysis or clustering algorithms like k-means. Clustering 
involves grouping similar data points together, and determining 
the right number of clusters which is crucial for the effectiveness 
of the clustering algorithm. This metric can be computed as 
follows: 

   


 ∑ log 

∗
 ) - log)]                     (5)                                

Where K denotes as the number of the clusters being 
evaluated,   is the within cluster variation for the actual 
clustering results with K clusters, 

∗  is the within cluster 
variation for the reference or simulated dataset with K clusters, 
and B is the number of Monte Carlo Simulations. 

Calinski harabasz score: This score, also known as the 
Variance Ratio Criterion, is a metric used to evaluate the quality 
of clusters in an unsupervised analysis.  It measures the ratio of 
the between-cluster variance to the within-cluster variance. In 
other words, it assesses how well-separated the clusters are from 
each other compared to how compact the data points are within 
each cluster. This score can be calculated as: 

             ℎ     

 
∗  


              (6)                                                                                                    

Where a set of data E of size   clustered into the K 

clusters,   is the trace of the between group dispersion 

matrix, and   is the trace of within-cluster dispersion 
matrix. These traces can be defined as following: 

 

= ∑ ∑  ∈

                           (7)                                                                                          

  = ∑ 

                              (8)     

                                                                                                         

Where  is the set of points in a cluster q,  is the center 

of a cluster E,  is the number of the points in the cluster q, 

and T is the transpose function.  A higher Calinski-Harabasz 
score indicates better separation between clusters, suggesting 
that the clustering is more effective. This score can be used to 
help determine the optimal number of clusters for the given data 
by comparing the scores for different numbers of clusters and 
selecting the one that maximizes the score. 
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• Silhouette Score: This score is used to evaluate the 

quality of clusters in a clustering analysis, such as k-

means clustering. It provides a measure of how well-

separated and distinct the clusters are in the data. The 

Silhouette Score is based on the idea of how similar a 

data point is to its own cluster (cohesion) compared to 

other clusters (separation). This score can be 

computed, as follows: 

            ℎ    

   ,   
                                  (9)                                                                                                                        

In this equation, a denotes the mean distance between a 
sample and other sample in the similar class, and b is the mean 
distance between a sample and other sample in the next nearest 
cluster. The Silhouette score ranges from -1 to 1; a score close 
to 1 indicates that the data point is well-clustered and is far from 
neighboring clusters. In contrast, a score close to 0 suggests that 
the data point is on or very close to the decision boundary 
between two neighboring clusters. A score close to -1 indicates 
that the data point may have been assigned to the wrong cluster. 
As a result, higher Silhouette scores generally indicate better 
unsupervised solutions, as they represent better separation and 
cohesion of clusters. 

• Homogeneity: It measures the extent to which all 

elements within a cluster belong to the same class. 

Mathematically, it is calculated as: 

,   1  |


                                                  (10)                                                                                           

Where | is the conditional entropy of the class labels 

given the cluster assignments and  is the entropy of the 
class labels. y is the true class labels and c is cluster assignments 
generated by clustering algorithms.  

• Completeness: It assesses the degree to which all 

elements that belong to the same class are assigned to the 

same cluster. It is expressed by:  

,   1  |


                                                       (11)                                                                                           

Where |  is the conditional entropy of the cluster 

assignments given the class labels and  is the entropy of 
the cluster assignments.  

• V-measure: It combines homogeneity and completeness 

into a single metric by taking their harmonic mean. V-

measure is given by: 

,    ,.,

, ,
                                               (12)                                                                                                           

Where H(.) is the entropy, and C(.) is the conditional entropy. 
They are used to quantify the uncertainty associated with class 
labels and cluster assignments. 

IV. RESULTS AND DISCUSSIONS 

In this study, four unsupervised neural networks were 
implemented, CAE, CRBM, DBNN, and GAN. These models 
were tested using Adaptive Moment Estimation (ADAM) as a 
loss optimizer, with a learning rate of 0.01. The models were 
evaluated in terms of Gap static, Calinski harabasz score, 
Silhouette Score, homogeneity, completeness, and V-measure. 

Simulations were conducted on an Intel® Xeon® CPU E5-1620 
v4 @ 3.50 GHz CPU with 16 GB of memory, TensorFlow 2.0, 
Python 3.9, and a batch size of 100. Figures 7 through 8 and 
Table III depict the results of these models.  

Figure 7 provides the results of the unsupervised DL models 
in terms of Gap Static with respect to the number of clusters. As 
previously mentioned, to obtain the optimal number of the 
clusters, it is recommended to select the highest Gap Statistic. 
As one can observe, the highest Gap Statistic belongs to the 
CAE model with the six clusters with a Gap Statistic of 0.37. 
Additionally, it is shown that the other models, excluding 
DBNN, achieve the optimal six clusters with a Gap Statistic rate, 
ranging between 0.25 and 0.33. For example, the GAN model 
has an optimal six clusters with a Gap Statistic of 0.33. In 
contrast, the DBNN model has an optimal four clusters with a 
Gap Statistic rate of 0.25. 

The results corresponding to the Calinski harabasz and 
Silhouette scores are shown in Figure 8. This figure highlights 
these scores for the selected DL models with respect to the 
number of clusters. As previously discussed, a Calinski harabasz 
score indicates a model with high cluster quality.  

As one can observe, the optimal number of the clusters’ 
using CAE is 6 based on Calinski harabasz and Silhouette 
scores. This model achieves a Calinski harabasz score of 369 
and a Silhouette score of 0.96 in cluster 6, which is the highest 
compared to other models. The other models, GAN and CRBM, 
have optimal scores in cluster 6; while the worst performance 
based on these scores belong to DBNN with a Calinski harabasz 
score of 100 and a Silhouette score of 0.31.   

Table III shows the results of the unsupervised models in 
terms of homogeneity, completeness, and V-measure. As can 
been seen, the CAE model has the best performance in six 
clusters in terms of Homogeneity, Completeness, and V-
measure among other models, followed by GAN, CRBM, and 
DBNN. This model has a Homogeneity of 0.13456, a 
Completeness of 0.0956, and a V-measure of 0.09245. In 
contrast, the lowest performance belongs to the DBNN model.  

For example, this model for four clusters has the better 
performance compared to the other number of the optimal 
clusters with a Homogeneity of 0.08732, a Completeness of 0. 
06543, and a V-measure of 0.06012. It is worth mentioning that 
the optimal number of clusters for the unsupervised models, 
excluding the DBNN is six. For instance, the GAN model has 
an acceptable result for six clusters with a Homogeneity of 
0.1123, a Completeness of 0. 0876, and a V-measure of 0.0812. 
Same observations can be seen for the CRBM model.  

As a result, the key factors of this study can be summarized 
as follows: 

• These unsupervised models, excluding the DBNN, 

have an optimal six clusters, which can be used as a 

number of the clusters in process of detecting GPS 

spoofing attacks on UAVs.  

• The CAE model has the best performance among the 

other unsupervised models. 
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• The scores of Calinski and Silhouette demonstrated 

that the better clustering quality and performance in 

CAE, compared to other models, followed by GAN, 

CRBM, and DBNN, respectively.  

• The DBNN model has the worst performance among 

the other models. 
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V. CONCLUSION 

This paper investigates the performance of unsupervised 
models in detecting, classifying, and predicting GPS spoofing 
attacks on UAVs. The unsupervised models used in this study 
are Convolutional Auto-Encoder, Convolutional Restricted 
Boltzmann Machine, Deep Belief Neural Network, and  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Adversarial Neural Network. The evaluation was performed 
using seven metrics: Gap static, Calinski harabasz score, 
Silhouette Score, homogeneity, completeness, and V-
measure.The result showed that Convolutional Auto-Encoder 
outperforms the other models in terms of these metrics, while, 
these unsupervised models, excluding the DBNN, has an 
optimal six clusters, which can be used as several of the clusters 
in process of detecting GPS spoofing attacks on UAVs. In 
contrast, the DBNN model has the worst performance among 
other models with an optimal number of four clusters. 

TABLE III. RESULTS OF THE MODELS IN TERMS OF HOMOGENEITY, 
COMPLETENESS, AND V-MEASURE. 

Model  Number 

of the 

Clusters 

(k) 

Homogeneity Completeness V-

measure 

 
 

0 0.1043 0.0812 0.0654 

2 0.1099 0.08345 0.0876 

 
Figure 7. Results of the Unsupervised Models in Terms of Gap Statistic with respect to the Number of the Clusters. 

 

 
Figure 8.  Results of the Calinski harabasz and Silhouette scores with respect to the Number of Clusters. 
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CAE 

4 0.1254 0.0916 0.09023 

6 0.13456 0.0956 0.09245 

8 0.1287 0.08690 0.08832 

10 0.1185 0.7765 0.08976 

 
 

CRBM 

0 0.0854 0.06510 0.0654 

2 0.0921 0.06532 0.0432 

4 0.0934 0.6439 0.0590 

6 0.1098 0.0762 0.07990 

8 0.1002 0.7089 0.0632 

10 0.0932 0.6990 0.05912 

 
 

DBNN 

0 0.07776 0.05567 0.0465 

2 0.08324 0.05345 0.0598 

4 0.08732 0.06543 0.06012 

6 0.07654 0.05932 0.05562 

8 0.07521 0.05034 0.05123 

10 0.06543 0.04567 0.0432 

 
 
 

GAN 

0 0.1037 0.04987 0.07912 

2 0.1098 0.06590 0.07512 

4 0.1102 0.0790 0.0762 

6 0.1123 0.0876 0.0812 

8 0.1056 0.07231 0.0791 

10 0.0976 0.0682 0.07821 
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