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Abstract— Unmanned Aerial Vehicles (UAV) are prone to cyber
threats, including Global Positioning System (GPS) spoofing
attacks. Several studies have been performed to detect and classify
these attacks using machine learning and deep learning
techniques. Although these studies provide satisfactory results,
they deal with several limitations, including limited data samples,
high costs of data annotations, and investigation of data patterns.
Unsupervised learning models can address these limitations.
Therefore, this paper compares the performance of four
unsupervised deep learning models, namely Convolutional Auto-
Encoder, Convolutional Restricted Boltzmann Machine, Deep
Belief Neural Network, and Adversarial Neural Network in
detecting GPS spoofing attacks on UAVs. The performance
evaluation_of these models was done in terms of Gap static,
Calinski harabasz score, Silhouette Score, homogeneity,
completeness, and V-measure. The results show that the
Convolutional Auto-Encoder has the best performance results
among the other unsupervised deep learning models.

Keywords— Artificial neural network, deep learning, Global
positioning system, machine learning, unsupervised learning,
unmanned aerial systems.

L. INTRODUCTION

The Global Navigation Satellite System (GNSS) plays a
crucial role in the positioning and navigation of Unmanned
Aerial Vehicles (UAVs). Despite significant advancements in
automation and control of UAVs, their security has been
overlooked. UAVs are vulnerable to various cyber threats,
including GPS Spoofing attacks, which can have a significant
impact on the safety of people and infrastructure q [1, 2]
These attacks have been observed during the last decade,
especially during conflicts in Ukraine, Russia, China, and Iraq,
where malicious actors transmitted false Global Positioning
Signals (GPS) signals to falsify the position, time, and velocity
information. These signals are designed to mimic genuine
satellite signals and can be difficult to detect depending on the
attack sophistication [3].

In the realm of securing GPS signals, certain studies have
centered around cryptography techniques that aim to encrypt
GPS signals; while this approach may present a good security
solution, it is not practical for civilian applications that require
unencrypted GPS signals. Other studies were based on the
assumption that signals arriving at a different angle from the
GPS constellation are due to spoofing attempts; thus, several
angle-of-arrival determination-based techniques have been
proposed. These techniques require additional hardware at
the

antenna architecture level (antenna array, circular antenna
design. etc.) [5]. As a result of these constraints, Artificial
Intelligence-based approaches have been proposed to detect and
classify these attacks on UAVs. Traditional and ensemble
machine learning (ML) [reference] and Deep Learning (DL) []
models, such as support vector machine, decision tree, gradient
boosting, random forest, bagging, and Naive Bayes, were used
for the detection. Despite the fact that these models provide high
performance, several issues need to be addressed. To begin, the
field of study is still in its early stages, and studies in the
literature indicate that detection and misdetection rates need to
be improved. Moreover, various research in the literature
address overfitting/underfitting difficulties, which result in
erroncous predictions. Furthermore, current studies in the
literature have largely concentrated on supervised models;
nevertheless, these models need large, labeled datasets which is
tedious and time consuming [6, 7].

Annotating datasets and performing data pre-processing
steps are costly, resulting in increasing the computational
complexity of the training process. In addition, supervised
models do not discover hidden patterns of the given data.
Furthermore, there are very limited datasets related to GPS
spoofing. Therefore, to address these challenges, unsupervised
models, are proposed in this paper. These models can detect
patterns and relationships in data without the need for labels or
classifications. This allows algorithms to learn from the data and
make predictions based on the patterns they detect, resulting in
low complexity and faster processes.

Thus, in this paper, we provide a comprehensive assessment
of unsupervised deep learning models to detect GPS spoofing
attacks. The advantage of using DL models over ML models is
their ability to do feature engineering on their own, which leads
to higher scalability, self-learning capability, and cost-
effectiveness. Four unsupervised models, Convolutional Auto-
Encoder (CAE), Convolutional Restricted Boltzmann Machine
(CRBM), Deep Belief Neural Network (DBNN), and
Generative adversarial neural network (GAN) are chosen for
this study. These models are evaluated in terms of Gap static,
Calinski harabasz score, Silhouette Score, homogeneity,
completeness, and V-measure.

The remainder of this paper is organized as follows: Section
IT discusses the methodology used in this study. Section III
indicates the results of this study. The conclusion and future
work are outlined in Section I'V.
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II.  RELATED WORKS

Several studies have been performed on the detection,
classification, and mitigation of GPS spoofing attacks on UAVs,
as illustrated on Table I. In general, the proposed methods can
be classified into three categories, namely UAV- characteristics,
signal processing, and Al-based techniques. For example, the
authors of [8] proposed IMU measurements, such as angle,
velocity, and acceleration along with GPS data, longitude and
latitude, to detect attacks on UAVs. In [9], the authors developed
another UAV-characteristic based approach to detect GPS
spoofing attacks on UAVs. In this approach, the authors mainly
used Gyroscope Measurement and GPS data to detect attacks
and avoid hijacking scenarios. In [10], the authors proposed
another UAV-characteristic based approach that is highly
dependent on the error calculated from IMU and GPS receiver.

Several other studies have focused on vision-based
approaches to detect, classify, and mitigate GPS spoofing
attacks on UAVs. In [11], the authors proposed a vision-based
approach based on the vision sensor, UAV's sensor, IMU, and
monocular camera. In another study [12], the authors used
Visual Odometry by employing UAV’s camera to obtain fake
GPS signals in image format. The UAV trajectory can be
obtained from these images using Visual Odometry. Then, the
extracted trajectory can be compressively compared with the
existing flight trajectory data from GPS positions to detect GPS
spoofing attacks. Other studies focused on using Al-based
approaches to detect, classify, and mitigate these attacks on
UAVs. In these studies, malicious attackers can still coordinate
complex spoofing assaults using some cutting-edge
technologies. These technologies can be used by ML and DL
models to bypass standard detection techniques, as summarized
in table I.

It is now widely recognized that machine learning is a
powerful tool to detect anomalies and attacks, particularly in
heterogeneous and uncertain environments. For instance, the
authors of [13] used a supervised ML model, support vector
machine (SVM), to detect GPS spoofing attacks. In this study,
the authors used temporal drift of the receiver clock and the time
derivative of the clock offset. In [14], the authors used several
supervised ML models, namely Naive Bayes, linear regression,
decision tree, random forest, and SVM, and proposed a learning
approach. They used Jitter and shimmer and their subcategories
as input features. The extracted features consist of the GPS
signal fundamental frequency and amplitude variations. K-
learning was applied as a voting technique for the developed ML
models. In [15, 16], the authors compared the performance of
four tree-based supervised ML models, namely Random Forest,
Gradient Boost, Extreme Gradient Boosting, and Light Gradient
Boosting, along with several instance-based supervised ML
models, namely Support Vector Machine (SVM), Linear-SVM,
Nu-SVM, K-nearest neighbor (KNN), and Radius Neighbors in
detecting and classifying GPS spoofing attacks on UAVs.

In [17], the authors compared the performance of ensemble
supervised ML models, namely bagging, boosting, and stacking
for detecting these attacks on UAVs. In [18], the authors
proposed two dynamic selection algorithms, namely Metric-
Optimized Dynamic and Weighted Metric-Optimized Dynamic

to select the best performance model among a group of
supervised models. All these approaches only perform well on
structured data; however, real-world data are mostly not pre-
processed and structured; therefore, pre-processing the data and
transferring it to the proper format is time-consuming and costly.
To solve this problem, DL models have been proposed to
address the limitations of traditional and convolutional ML
models.

One of the critical key factors of using DL models is to
automatically learn complex and abstract representations from
large amounts of data, which can be useful for identifying
patterns or anomalies in network traffic or other types of data
associated with cyber-attacks. Additionally, other used ML
approaches in literature may deal with some shortcomings, such
as a high rate of error and bias, low detection, and high
misdetection rate.  For this purpose, several studies have
focused on DL models to detect and classify these attacks on
UAVs. For instance, the authors of [19] proposed a GPS replay
attack detection method based on a supervised DL model,
namely ANN. In this study, the authors showed the effect of
several extracted features from the received signal on detection
performance. The best results were obtained by combining five
parameters, namely satellite vehicle number, pseudo-range,
carrier phase, Doppler shift, and signal-to-noise ratio.

In [20], the authors used three signal properties as input
features of a supervised DL model, a multi-layer neural network.
These three input features are early-late phase, delta, and signal
level. The proposed method has been evaluated using software-
based GPS simulators. In [21], the authors proposed Long Short-
Term Memory which monitored the derived PVT information
from the GPS signal using this DL model. In [22], the authors
used a supervised DL model, namely a Convolutional Neural
Network-based model, Residual Neural Network. As discussed
previously, the current studies in literature are widely focused
on supervised ML and DL models. Despite these proposed
studies indicating satisfactory results, there are still several
limitations that need to be addressed.

III. MATERIALS AND METHODS

The proposed GPS spoofing detection framework is
depicted in Figure 1. The framework contains three main steps,
data acquisition and preprocessing, implementation DL
models, and GPS spoofing classification. In the data acquisition
and pre-processing step, real-time experiments were conducted
to gather GPS signals, and several simulations were performed
to develop GPS spoofing attacks, namely simplistic,
intermediate, and sophisticated attacks. The features were
extracted, and the class labels of the given data were discarded.
To perform the data preprocessing, the non-stationary data was
transformed to stationary, and several pre-processing
techniques, such as data correlation, data imputation, and
transformation, were used to improve the quality of the data.
The second step, implementation of DL models, mainly focuses
on using selected unsupervised models and optimizing the
results.
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TABLE I. CURRENT STUDIES ON DETECTING AND CLASSIFYING GPS SPOOFING ATTACKS ON UAVS USING MACHINE LEARNING AND DEEP LEARNING.

Category Method(s) Study highlights Limitations
IMU [8] Providing high detection rate, using GPS data Detected attacks with the same behavior during the
features and IMU characteristics. training process.
UAV Gyroscope Using Gyroscope Measurement along GPS data to Requiring motion sensors, which are power hungry.
Characteris Measurement [9] detect spoofed signals.
tic-based Acceleration error Providing better performance using acceleration Providing constant false alarm rate.
[10] magnitude.
Vision Detecting attacks using vision sensors with the IMU Applicable only when the attacker is visible.
Signal [11] data.
Processing- Vision Detecting attacks using Visual Odometry technique. Applicable only when the attacker is visible.
based [12]
Supervised ML Using SVM to detect time drift in GPS spoofing No comparison with other techniques.
[13] signal.
Supervised ML Reconstructing the path using embedded sensors Used Shimmer and Jitter as only features in the
[14] and comparing it to the GPS path. benchmark.
Supervised ML Extracting of multiple features from GPS signal, Needed to lower misdetection and false alarm rates.
[15] Evaluating different Tree-based ML models to
detect GPS spoofing attacks.
Supervised ML Evaluating different instance-based ML models to Needed to lower misdetection and false alarm rates.
Artificial [16] detect GPS spoofing attacks.
Intelligence Supervised ML Comparing the ensemble models to detect and Used limited samples.
-based [17] classify GPS spoofing attacks on UAVs.
Supervised ML Proposing two dynamic selector approaches to High computational complexity.
[18] select the highest performance model among a
group of models.
Supervised DL Applying simple ANN to detect abnormalities in Used a benchmark with 5 features and limited
[19] correlator output. samples.
Supervised DL Using multi-layer neural network to detect attacks Used a dataset with 3 input features.
[20] on the network.
Supervised DL Detecting path deviation caused by the attack using Provided low detection rate,
[21] LSTM model. Indicates high detection rate only when the flight
trajectory is not complex.
Supervised DL Proposing a detection technique, using DeepSIM, a Used the pictures to detect GPS spoofing attacks on
[22] satellite imagery matching approach, to detect GPS UAVs, while there is no guarantee the pictures were
spoofing attacks on UAVs. reliable and valid.

Four unsupervised DL models, namely CAE, CRBM,
DBNN, and GAN, were applied, and the Adaptive Moment
Estimation was used to maximize the performance of these
models. These models were evaluated in terms of Gap static,
Calinski harabasz score, Silhouette Score, homogeneity,
completeness, and V-measure. The last step, output, is to
interpret the results and extract useful insights and knowledge
from them.

A. Data Acquisition and Feature Descriptions

The corresponding dataset in this study was initially
developed and simulated in a previous work [8]. The given
dataset consists of 13 features, as shown in Table II. In brief,
this dataset contains legitimated and spoofed GPS samples from
three types of spoofing attacks, namely simplistic, intermediate,
and sophisticated. These GPS spoofing attacks can have a
strong impact on features, including Carrier to Noise or Carrier
Doppler. The dataset consists of 14,000 samples, 50% spoofed
and 50% normal signals. More details about this dataset and the
acquisition, tracking, and data preprocessing of such data can
be found in [8].

B. Data Pre-processing

In this study, several data preprocessing techniques were
performed to improve the quality of data for the training,
testing, and validating the unsupervised DL models. The

corresponding dataset is balanced; hence, no technique is
required to balance the different classes. As previously
discussed, unsupervised models can only train and test the data

with no labels. Thus, before performing any techniques, the
class labels had to be discarded from the given data. After that,
the initial step in data preprocessing was to detect correlated and
low importance features from the given dataset. Redundant
features can have a significant impact on the performance of the
models [1]. As a result, two features, TCD and RX, were
discarded [8]. Thus, 11 features, namely PRN, DO, PD, TOW,
CP, EC, LC, PC, PIP, PQP, and C/NO were used for training
purposes.

The second step, data imputation, and the third step, data
transformation, are necessary to guarantee accurate predictions
of the results. In data imputation, mode imputation was used to
replace the missing value with the value that has the highest
frequency for the feature. In data transformation, Min-Max
Scaler was applied to subtract the minimum value in the feature
and divide it by its range.
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Figure 1. Proposed Unsupervised-based Framework for detecting and classifying GPS spoofing Attacks on UAVs.

TABLE II. LIST OF FEATURES WITH THEIR USED ABBREVIATIONS.

Feature Abbreviation
s

Satellite Vehicle Number PRN
The Carrier Doppler DO
Pseudo-Range PD
Receiver Time RX

Time of the week TOW
Carrier Phase Cycles Cp
Early Correlator EC
Late Correlator LC
Prompt Correlator PC
Prompt in phase correlator PIP
Prompt Quadrature PQP

Carrier Doppler TCD

Carrier to noise Ratio C/NO

C. Deep Learning Models

In this work, four distinct deep learning approaches were
used to detect and classify GPS spoofing attacks. Figure 2
shows an overview of the different categories of unsupervised
DL models, namely Auto-Encoder (AE), Restricted Boltzmann
Machine (RBM), Belief Neural Network (BNN), and
Adversarial Neural Network-(AdNN) based models. From each
of these categories we selected one model for this study.
Detailed explanations of these categories along with the selected
models are provided in the following subsections.

C.1. Convolutional Auto-Encoder

Auto-Encoder (AE)-based models represent one type of
unsupervised DL models that indicates a compressed
representation of the knowledge of an input. These models
decrease the noise level in the corresponding data. This process
can be performed via compression of the input data, encoding,
and reconstructing the outputs. In addition, AE-based models
can decrease the dimensionality of the data. In this work, we
focused on convolutional auto encoder (CAE), which is trained
to reproduce its input data in the output layer. The data is passed
through the encoder, resulting in a low-dimensional
representation of the data. The encoder process can be
performed with several pooling and convolutional layers, as
shown in Figure 3. The next layer, bottleneck layer, is a
dimensional hidden layer that produces the encoding process. It
consists of a lower number of nodes, and these nodes show
dimensional encoding inputs. The purpose of this layer is to
decrease the number of model parameters, resulting in a more
efficient model [23].

Furthermore, a decoder takes the output of the encoder to
generate the input. The encoder is responsible for interpreting
and compressing the input to an internal representation that is
defined by the bottleneck layer, while the decoder attempts to
create an input data from the encoder. The decoder process is
performed via de-convolutional and up-sampling layers. CAE
preserves valuable information while minimizing the noise for
an inefficient dimensionality reduction.
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Furthermore, a decoder takes the output of the encoder to
generate the input. The encoder is responsible for interpreting
and compressing the input to an internal representation that is
defined by the bottleneck layer, while the decoder attempts to
create an input data from the encoder. The decoder process is
performed via de-convolutional and up-sampling layers. CAE
preserves valuable information while minimizing the noise for
an inefficient dimensionality reduction.
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Figure 3. Architecture of CAE.
C.2 Convolutional Restricted Boltzmann Machine

Convolutional Restricted Boltzmann Machine (RBM)
models are probabilistic DL models that learn from the
probability distribution of their inputs and a hidden
representation. These models are energy-based models since
they are an integral part of statistical mechanics. They consist of
an input layer and a hidden layer without an output layer which
gives them a non- deterministic feature. The Convolutional
Restricted Boltzmann Machine (CRBM) model is an example of
RBM models and is considered as a combination of CNN and
RBM model, as shown in Figure 4. The CRBM model uses the
weight-sharing method from CNN models. In CRBM models,
the connections share the weights in a convolutional pattern with
a convolutional filter, which connects filter nodes in feature
maps [24].

As clear, the weights of the convolutional filter can mostly
be applied to the visible and hidden nodes in visible and hidden
layers (refer to Figure 4). It means that each hidden node is
connected to the visible nodes. In contrast, the visible nodes
share only one bias, and the hidden nodes can share the bias. In
addition, the hidden nodes are connected to the pooling layer to
detect and predict the output class labels. CRBM models can
usually create unwanted border effects when the visible layer is

re-generated; hence, the visible nodes are only connected to the
few hidden nodes.

‘ Pooling Layer
Number of the pooling units ‘ .

Number of the hidden units Hidden Layer

Number of the visible units — .,
Visible Layer

Figure 4. Architecture of CRBM.

C.3 Deep Belief Neural Network

BNN models are one of the types of unsupervised DL
models that uses a deep architecture of several stacks of RBM-
based models. In these models, RBM models can perform a non-
linear transformation on their input vectors and generate the
output vectors, which serve as input for the next RBM model in
the sequence. One of the mainly used BNN models is deep belief
neural network (DBNN), which can learn feature representation
effectively from huge amounts of given data and complicated
functions [25]. Figure 5 provides an illustration of DBNN
architecture with A hidden layers and V' visible layers. In DBNN
model, the state of the network along with its matrix weight is
initialized. Then, the random sample into the model is fed, and
the states of the nodes in the first hidden layer are updated. In
this model, the state of the visible node is updated with a mean
of 0 and variance of 1, while the states of the nodes in the hidden
layer are updated after taking the state of the nodes in the visible
layers. After that, the random sample is restricted and fed into
the model. If the selected sample is already used, a new round
of training is performed until a preset number of iterations is
achieved or the change in the weight matrix is small.

After that, the output of the first RBM is considered as the
input of the second RBM and the next RBM is trained until all
of them are trained. As a result, the class labels output can be
predicted using the logistic regression function of these RBM
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models. In addition, the unique feature of DBN is the use of an
unsupervised layer-wise pre-training function, which makes the
network highly efficient and accurate. Unlike traditional neural
networks, the DBN uses a layer-wise approach to train its
weight. Each layer is trained using an RBM to learn the lower-
level features of the input data. Once these layers are trained, the
weights are then used as the initial values for the next layer,
which is trained using backpropagation. This process can lead to
faster convergence and higher accuracy than traditional neural
networks [26].

@ _@  Toplayer Class Labels

Logistic
Regression
Classifier Layer

o 0000000000000 000200

Restricted
Boltzmann
Machine Layers

©® © @ @ Botom Layer : Inputs
Figure 5. Architecture of DBNN.

C.4 Adversarial Neural Network

Generative adversarial neural network (GAN) is an
unsupervised DL model performed based on the architecture of
AdNN models. The main idea of GAN is based on the Nash
equilibrium in game theory. This model consists of two parts,
generator, and discriminator. The generator can learn the
distribution of the authentic data, whereas the discriminator can
determine correctly if the given data is authentic, or it is taken
from the generator. To complete the process, the generator and
discriminator are required to continuously optimize themselves
to improve the generation capacity and the discrimination
capacity. The aim of this optimization procedure is to find a
Nash equilibrium between the generator and the discriminator
[27].

The architecture of GAN is presented in Figure 6. As one
can observe, the generator and discriminator functions, D and G,
are mainly used as modules. Given the authentic data X and
random variable Z, G(Z) is considered as the samples created by
generator G, and D(Z) as the samples generated by discriminator
D. In generator G, the plausible data is generated, while these
generated instances change to fake training samples for the
discriminator D.

The discriminator D learns to differentiate the generator’s
fake data from the real data. It actually penalizes generator G for
creating implausible results. Hence, such a process can improve
the performance of D and G gradually. In this context, when the
discriminator capacity is increased to the highest level and
cannot discriminate the data source properly, generator G has
achieved the distribution of authentic (real) data.

Real-world Differentiable Modules

m) Sample
Data

4 Discriminator

Loss

=) Generator ) Sample

Classes

Latent Random Variable

Figure 6. Architecture of GAN.

3.4. Evaluation Metrics

To evaluate the performance of unsupervised DL models,
several metrics were used, namely Gap static, Calinski harabasz
score, Silhouette Score, homogeneity, completeness, and V-
measure. These metrics are briefly defined below:

Gap Statistic: It is a statistical metric used for evaluating the
optimal number of clusters in a dataset during the clustering
analysis or clustering algorithms like k-means. Clustering
involves grouping similar data points together, and determining
the right number of clusters which is crucial for the effectiveness
of the clustering algorithm. This metric can be computed as
follows:

Gap(K) = - XE,[logwy) - log(Wy)] 5)

Where K denotes as the number of the clusters being
evaluated, Wy is the within cluster variation for the actual
clustering results with K clusters, wg is the within cluster
variation for the reference or simulated dataset with K clusters,
and B is the number of Monte Carlo Simulations.

Calinski harabasz score: This score, also known as the
Variance Ratio Criterion, is a metric used to evaluate the quality
of clusters in an unsupervised analysis. It measures the ratio of
the between-cluster variance to the within-cluster variance. In
other words, it assesses how well-separated the clusters are from
each other compared to how compact the data points are within
each cluster. This score can be calculated as:
tr (Bk)  ME-K
o We) - K-1 (6)

Where a set of data E of size ng clustered into the K
clusters, r (Bg) is the trace of the between group dispersion
matrix, and tr (W) is the trace of within-cluster dispersion
matrix. These traces can be defined as following:

Calinski harabasz score =

Wg= 25:1 ercq(x - Cq)(x - Cq)T 7
By = 25:1 ng (Cq - CE)(Cq - CE)T (3

Where ¢, is the set of points in a cluster g, cg is the center
of a cluster E, ng is the number of the points in the cluster g,
and T is the transpose function. A higher Calinski-Harabasz
score indicates better separation between clusters, suggesting
that the clustering is more effective. This score can be used to
help determine the optimal number of clusters for the given data
by comparing the scores for different numbers of clusters and
selecting the one that maximizes the score.
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e  Silhouette Score: This score is used to evaluate the
quality of clusters in a clustering analysis, such as k-
means clustering. It provides a measure of how well-
separated and distinct the clusters are in the data. The
Silhouette Score is based on the idea of how similar a
data point is to its own cluster (cohesion) compared to
other clusters (separation). This score can be
computed, as follows:

b—a
max (a, b) (9)

In this equation, a denotes the mean distance between a
sample and other sample in the similar class, and b is the mean
distance between a sample and other sample in the next nearest
cluster. The Silhouette score ranges from -1 to 1; a score close
to 1 indicates that the data point is well-clustered and is far from
neighboring clusters. In contrast, a score close to 0 suggests that
the data point is on or very close to the decision boundary
between two neighboring clusters. A score close to -1 indicates
that the data point may have been assigned to the wrong cluster.

As a result, higher Silhouette scores generally indicate better

unsupervised solutions, as they represent better separation and

cohesion of clusters.
e Homogeneity: It measures the extent to which all
elements within a cluster belong to the same class.
Mathematically, it is calculated as:

Silhouette Score =

H(C|K
H@y,0)=1- 550 (10)

Where H(C|K) is the conditional entropy of the class labels
given the cluster assignments and H(C) is the entropy of the
class labels. y is the true class labels and c is cluster assignments
generated by clustering algorithms.

e Completeness: It assesses the degree to which all
elements that belong to the same class are assigned to the
same cluster. It is expressed by:

H(y,c) =1- 200 (11)

Where H(K|C) is the conditional entropy of the cluster
assignments given the class labels and H(K) is the entropy of
the cluster assignments.

® V-measure: It combines homogeneity and completeness
into a single metric by taking their harmonic mean. V-
measure is given by:

2H(y,c).C(y,c)
Voo = H((,0))+ C(.0) (12)
Where H(.) is the entropy, and C(.) is the conditional entropy.
They are used to quantify the uncertainty associated with class
labels and cluster assignments.

IV. RESULTS AND DISCUSSIONS

In this study, four unsupervised neural networks were
implemented, CAE, CRBM, DBNN, and GAN. These models
were tested using Adaptive Moment Estimation (ADAM) as a
loss optimizer, with a learning rate of 0.01. The models were
evaluated in terms of Gap static, Calinski harabasz score,
Silhouette Score, homogeneity, completeness, and V-measure.

Simulations were conducted on an Intel® Xeon® CPU E5-1620
v4 @ 3.50 GHz CPU with 16 GB of memory, TensorFlow 2.0,
Python 3.9, and a batch size of 100. Figures 7 through 8 and
Table III depict the results of these models.

Figure 7 provides the results of the unsupervised DL models
in terms of Gap Static with respect to the number of clusters. As
previously mentioned, to obtain the optimal number of the
clusters, it is recommended to select the highest Gap Statistic.
As one can observe, the highest Gap Statistic belongs to the
CAE model with the six clusters with a Gap Statistic of 0.37.
Additionally, it is shown that the other models, excluding
DBNN, achieve the optimal six clusters with a Gap Statistic rate,
ranging between 0.25 and 0.33. For example, the GAN model
has an optimal six clusters with a Gap Statistic of 0.33. In
contrast, the DBNN model has an optimal four clusters with a
Gap Statistic rate of 0.25.

The results corresponding to the Calinski harabasz and
Silhouette scores are shown in Figure 8. This figure highlights
these scores for the selected DL models with respect to the
number of clusters. As previously discussed, a Calinski harabasz
score indicates a model with high cluster quality.

As one can observe, the optimal number of the clusters’
using CAE is 6 based on Calinski harabasz and Silhouette
scores. This model achieves a Calinski harabasz score of 369
and a Silhouette score of 0.96 in cluster 6, which is the highest
compared to other models. The other models, GAN and CRBM,
have optimal scores in cluster 6; while the worst performance
based on these scores belong to DBNN with a Calinski harabasz
score of 100 and a Silhouette score of 0.31.

Table III shows the results of the unsupervised models in
terms of homogeneity, completeness, and V-measure. As can
been seen, the CAE model has the best performance in six
clusters in terms of Homogeneity, Completeness, and V-
measure among other models, followed by GAN, CRBM, and
DBNN. This model has a Homogeneity of 0.13456, a
Completeness of 0.0956, and a V-measure of 0.09245. In
contrast, the lowest performance belongs to the DBNN model.

For example, this model for four clusters has the better
performance compared to the other number of the optimal
clusters with a Homogeneity of 0.08732, a Completeness of 0.
06543, and a V-measure of 0.06012. It is worth mentioning that
the optimal number of clusters for the unsupervised models,
excluding the DBNN is six. For instance, the GAN model has
an acceptable result for six clusters with a Homogeneity of
0.1123, a Completeness of 0. 0876, and a V-measure of 0.0812.
Same observations can be seen for the CRBM model.

As a result, the key factors of this study can be summarized
as follows:

e These unsupervised models, excluding the DBNN,
have an optimal six clusters, which can be used as a
number of the clusters in process of detecting GPS
spoofing attacks on UAVs.

e The CAE model has the best performance among the
other unsupervised models.
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Figure 7. Results of the Unsupervised Models in Terms of Gap Statistic with respect to the Number of the Clusters.
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Figure 8. Results of the Calinski harabasz and Silhouette scores with respect to the Number of Clusters.

e The scores of Calinski and Silhouette demonstrated Adversarial Neural Network. The evaluation was performed
that the better clustering quality and performance in using seven metrics: Gap static, Calinski harabasz score,
CAE, compared to other models, followed by GAN,  Silhouette ~Score, homogeneity, completeness, and V-
CRBM, and DBNN, respectively. measure.The result showed thgt Convolutional Autq-Encoder

e The DBNN model has the worst performance among outperforms the other models in terms of these metrics, while,

these unsupervised models, excluding the DBNN, has an
optimal six clusters, which can be used as several of the clusters
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TABLE III. RESULTS OF THE MODELS IN TERMS OF HOMOGENEITY,

V. CONCLUSION COMPLETENESS, AND V-MEASURE.

This paper investigates the performance of unsupervised Model | Number | Homogeneity | Completeness V-
models in detecting, classifying, and predicting GPS spoofing of the measure
attacks on UAVs. The unsupervised models used in this study Clusters
are Convolutional Auto-Encoder, Convolutional Restricted (k)

Boltzmann Machine, Deep Belief Neural Network, and 0 0.1043 0.0812 0.0654
2 0.1099 0.08345 0.0876

Authorized licensed use limited to: UNIVERSITY OF NORTH DAKOTA LIBRARIES. Downloaded on October 04,2024 at 18:41:39 UTC from IEEE Xplore. Restrictions apply.



4 0.1254 0.0916 0.09023
CAE 6 0.13456 0.0956 0.09245
8 0.1287 0.08690 0.08832

10 0.1185 0.7765 0.08976

0 0.0854 0.06510 0.0654

2 0.0921 0.06532 0.0432

CRBM 4 0.0934 0.6439 0.0590
6 0.1098 0.0762 0.07990

8 0.1002 0.7089 0.0632

10 0.0932 0.6990 0.05912

0 0.07776 0.05567 0.0465

2 0.08324 0.05345 0.0598

DBNN 4 0.08732 0.06543 0.06012
6 0.07654 0.05932 0.05562

8 0.07521 0.05034 0.05123

10 0.06543 0.04567 0.0432

0 0.1037 0.04987 0.07912

2 0.1098 0.06590 0.07512

4 0.1102 0.0790 0.0762

GAN 6 0.1123 0.0876 0.0812
8 0.1056 0.07231 0.0791

10 0.0976 0.0682 0.07821
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