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Summary

� This study investigated the generalizability of Arabidopsis thaliana immune responses

across diverse pathogens, including Botrytis cinerea, Sclerotinia sclerotiorum, and Pseudomo-

nas syringae, using a data-driven, machine learning approach.
� Machine learning models were trained to predict disease development from early transcrip-

tional responses. Feature selection techniques based on network science and topology were

used to train models employing only a fraction of the transcriptome. Machine learning models

trained on one pathosystem where then validated by predicting disease development in new

pathosystems.
� The identified feature selection gene sets were enriched for pathways related to biotic, abio-

tic, and stress responses, though the specific genes involved differed between feature sets. This

suggests common immune responses to diverse pathogens that operate via different gene sets.
� The study demonstrates that machine learning can uncover both established and novel

components of the plant’s immune response, offering insights into disease resistance mechan-

isms. These predictive models highlight the potential to advance our understanding of multi-

genic outcomes in plant immunity and can be further refined for applications in disease

prediction.

Introduction

Plants rely on an innate immune system to counter infection. A
hallmark of the plant innate immune system is the detection of
invasion through diverse receptor catalogues that survey both the
apoplastic and cytoplasmic compartments (Cook et al., 2015;
Bentham et al., 2020). At the cell surface, membrane anchored
pattern recognition receptors (PRRs), in the form of receptor-like
kinases and receptor-like proteins, have been well described for
their ability to detect a wide variety of ligands to initiate immune
responses (Zipfel et al., 2004; Liebrand et al., 2013; Liu
et al., 2022). Perception of invasion at the cell surface can trigger
a number of cellular responses, including ion flux, reactive oxy-
gen species production, posttranslational modifications, and tran-
scriptional reprogramming collectively contributing to plant
defense (Couto & Zipfel, 2016; Wan et al., 2019). Intracellular
receptors, referred to as nucleotide-binding and leucine-rich
repeat receptor (NLR) domain-containing proteins, detect non-
self and modified-self ligands to initiate a plant defense response
(Jones & Dangl, 2006; Jubic et al., 2019). Structural data shows
that different types of activated NLRs form multimer protein

complexes that likely aid immunity through calcium signaling
and small molecule generation (Wang et al., 2019; Ma et al.,
2020; Martin et al., 2020). Following defense activation, phyto-
hormones play a substantial role in mediating plant immunity
(Pieterse et al., 2012; Aerts et al., 2021). While many phytohor-
mones participate in plant immunity, the salicylic acid (SA) and
jasmonic acid (JA) pathways are central to diverse biotic interac-
tions (Kazan & Lyons, 2014). The SA and JA response pathways
are generally seen to be antagonistic and differentially effective
against microbes that display different host interaction strategies,
from those that interact with living cells, termed biotrophs, to
those that promote host cell-death, termed necrotrophs (Glazeb-
rook, 2005). Cross talk between phytohormone pathways and
their network structure likely serve an important role in plants
ability to respond to diverse and changing biotic and abiotic chal-
lenges. Collectively, the extracellular and intracellular immune
receptors, downstream transcriptional responses, and the func-
tion of phytohormone pathways form a coordinated immune
response (Tsuda et al., 2009; Tintor et al., 2013; Ngou
et al., 2021; Yuan et al., 2021).

Plant immune receptors detect specific immunogenic ligands
of diverse origins, but it is less clear how plants integrate diverse
signals to achieve immune responses (Tsuda & Somssich, 2015).
An open question concerns the extent to which the immune
responses are fine-tuned to specific ligands that enact a tailored
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defense response to the invader (Tsuda et al., 2009; Bjornson
et al., 2021). Analysis of plant transcriptional responses to diverse
pathogens and ligands suggests there is both overlap and diver-
gence to differing immunogenic signals. For instance, Arabidopsis
thaliana seedlings responding to either a plant cell wall-derived
oligogalacturonides or bacterial-derived flagellin peptide, elicit
similar early transcriptional responses that diverged with time
(Denoux et al., 2008). Also in A. thaliana, early transcriptional
responses were largely overlapping in response to seven diverse
immunogenic ligands, but also, the FLS2–flg22 interaction had a
substantial number of unique transcriptional responses (Bjornson
et al., 2021). Early transcriptional response of A. thaliana to
genetically diverse Botrytis cinerea isolates showed that wild-type
(WT) Col-0 ecotype displayed significant transcriptional varia-
tion for a number of transcripts involved in hormone related sig-
naling and PRR responses (Zhang et al., 2017). Despite the
diverse transcriptional responses to the genetically diverse patho-
gen isolates, final disease development outcomes are rather lim-
ited (Zhang et al., 2017), which can be conceptualized as many
roads leading to the same place. Such a buffered immune
response to diverse inputs may be mediated by interconnected
immune subnetworks, providing robustness to the diversity of
microbial interactors (Tsuda et al., 2009; Kim et al., 2014; Hill-
mer et al., 2017). It is clear that activation of different PRRs do
not provide identical transcriptional outputs (Li et al., 2016), but
immune signaling can channel responses from diverse inputs into
largely overlapping outputs (Tsuda et al., 2009; Zhang
et al., 2017; Bjornson et al., 2021). The systems view of plant
immunity suggests a highly interconnected network involving
receptor-mediated detection, intracellular signaling, hormone
cross talk, and cellular output leading to an immune response
(Tsuda & Somssich, 2015; Katagiri, 2018; Mishra et al., 2019;
Aerts et al., 2021; Delplace et al., 2022).

Machine learning (ML) represents a broad class of algorithms
designed to optimize a function that relates input to output data.
Highly predictive ML algorithms, such as random forests (Chen
& Ishwaran, 2012) and support vector machines (Ben-Hur
et al., 2008) are well developed, and require less data abstraction
through hidden states, making their output and learning human
discernable. This contrasts deep learning techniques of the last dec-
ade that rely on highly abstracted feature selection techniques, able
to predict the most complex interactions, but obfuscate human
interpretation (Choo & Liu, 2018). Depending on the applica-
tion, ML for biology may tend toward traditional ML approaches
that have fewer variables and greater interpretability to aid
mechanistic understanding or hypothesis generation (Xu & Jack-
son, 2019). There are also significant challenges in the application
of ML to biological datasets because of their relatively limited size
compared to other data domains (Greener et al., 2021). In general,
if there are not orders of magnitude more observations than pre-
dictors, complex deep learning models can underperform com-
pared to more traditional ML algorithms (Wang et al., 2021).

We sought to further explore the connection between transcrip-
tional immune responses and disease output in order to identify
general patterns that predict final disease outcome using
publicly available data. The initial research focused on the

A. thaliana–B. cinerea pathosystem because the system is character-
ized by multigenic, small effect interactions, not dominated by
effector–NLR interactions (Finkers et al., 2007; Soltis
et al., 2019). This is an important consideration in looking for
convergent immune responses across diverse pathosystems. Addi-
tionally, B. cinerea is a broad host-range necrotrophic pathogen
that employs host-agnostic cell wall degrading enzymes, toxins,
cell-death-inducing proteins and small RNA to manipulate host
defense, while plants rely on PRRs, phytochemicals, and JA
defense pathways to limit disease (AbuQamar et al., 2017; Bi
et al., 2023). Additionally, previous research has resulted in data-
sets large enough to employ ML (Zhang et al., 2017). Using a
data-driven ML analysis pipeline, we tested if an ensemble of post-
infection transcriptional responses could inform final disease out-
come across a set of diverse pathosystems. For this case, ML is a
powerful approach that does not require preselecting candidate
genes or pathways, and it can capture complex, nonlinear patterns
across the whole transcriptome that collectively contribute to dis-
ease development, a complex multigenic trait. This approach can
capture far more diverse, and likely biologically relevant, transcrip-
tional patterns compared to traditional co-expression or differential
expression analysis. Additionally, we employed a range of feature
selection techniques, including those built from network theory
and network geometry, to identify specific sets of genes providing
accurate disease prediction across pathosystems. Thus, our
approach is a novel application of ML and network science to
plant-immunology, resulting in the discovery of genes not pre-
viously associated with plant immunity or pathogen response that
may capture a general plant immune response.

Materials and Methods

Machine learning tasks

To understand the relationships between transcriptional response
and disease outcome, we used the state-of-the-art supervised ML
algorithms to train models that can accurately predict plant disease
severity from gene expression data. The classification task is to pre-
dict the disease severity (classes) based on the gene expression pro-
file of dual or sole species. We used plant disease phenotypic data,
fungal colonized lesion area in plant-fungal pathosystems or bac-
teria growth in plant-bacteria pathosystems, as labeled multiclass
data. The transcriptomic data derived from dual species or solely
from plant host or pathogen serve as input data. To identify the
crucial gene set that control disease development, we performed
different feature selection methods on the training plant gene
expression datasets and applied the selected genes on different
trained models to evaluate performance improvement. The
multi-step workflow starts from plant disease phenotypic data and
RNA-Seq read counts data, followed by ML and feature selection
methods, and outputs disease predictions (Fig. 1a).

Disease phenotypic and transcriptomic data acquisition

We used the previously published plant disease phenome and
transcriptome data involving 1164 A. thaliana (L.) and B. cinerea
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(Pers.) interaction pathosystems (Zhang et al., 2017, 2019). In
brief, the Arabidopsis–Botrytis dataset include four replicates of 97
Botrytis isolates infecting three Arabidopsis (Col-0) genotypes WT
with complete immunity, and two immune compromised lines,
npr1 and coi1, compromised in SA and JA mediated defense
response, respectively. The plant disease phenotypic data, fungal
colonized leaf area, were measured at 72 h postinoculation. The
transcriptomic data were collected at 16 h postinoculation and
raw RNA-Seq data are available from the National Center for
Biotechnology Information (NCBI) under BioProject no.
PRJNA473829 and accession no. SRP149815.

The validation set of plant–fungal pathogen interaction was
derived from Arabidopsis and Sclerotinia sclerotiorum (Lib.) interac-
tome (Badet et al., 2017). The disease phenotypic data were col-
lected at 24 h postinoculation, and tissues at the edge of developed
necrotic lesions were collected for RNA extraction. Data were
accessed through NCBI Gene Expression Omnibus (GEO) acces-
sion GSE106811. The validation set of plant–bacteria pathogen
interaction was derived from Arabidopsis and Pseudomonas syringae
(Van Hall) interactome (Nobori et al., 2018). The disease phenoty-
pic data were measured as the bacteria growth at 48 h postinocula-
tion. The transcriptomic data were collected at 6 h postinoculation
and are available through NCBI GEO GSE103442. We note that
there was a problem with miss-labeled metadata samples for the
pretreatment samples. Only samples pretreated with flg22 were

retained for initial analysis, the rest of the samples receiving pre-
treatment with chitin or SA were dropped due to ambiguous label-
ing in the metadata file on SRA.

Data processing

To perform the multi classification-learning task, we divided the
Botrytis infecting Arabidopsis training disease phenotypic data
into 10 classes based on the disease severity to generate multiclass
labels. We consider the largest lesion from the training dataset
corresponding to the highest disease class (Class 9). A lesion size
of 0 is mapped to the lowest disease class (Class 0). Then, we
divided the lesion data into 10 equal lesion bin sizes and labeled
each training sample accordingly. To obtain comparable disease
class label for the plant-fungal pathogen test data, the labels for
healthy samples and infected samples were transformed as disease
class 1 and 6 based on the distribution patterns of lesion area
measured from Arabidopsis–Sclerotinia pathosystems and
Arabidopsis–Botrytis pathosystems (Supporting Information
Fig. S1). Similarly, disease class labels were assigned based on the
comparison of distributions of lesion area from Arabidopsis–
Botrytis pathosystems and bacteria growth measured from
Arabidopsis–Pseudomonas pathosystems (Figs S1, S2).

To avoid the bias caused by the multiple mapped reads to both
plant host and pathogen reference genomes, we used dual-species

(a)

(b) (c) (d)

V

Fig. 1 Machine learning (ML) can accurately predict later plant disease outcomes from earlier dual-species transcriptome. (a) Schematic overview of
interpretable ML strategies on plant immune elements in plant–pathogen pathosystems. (b) Heatmap of the observed and predicted disease classes based
on the dual-species whole transcriptome data. (c) Class errors calculated by predicted and measured plant disease classes on Arabidopsis-Botrytis cinerea
transcriptome data (Ngou et al., 2021). (d) The host genotypes coi1 and npr1 refer to the gene deletion mutant lines and col0 refers to the wild-type line
[20]. (d) The 1-class error accuracy of predicted plant disease prediction is shown as box plots. The box plots depict the interquartile range (IQR) of data,
representing the 25th to 75th percentile of data, and the median is depicted as a dark line inside of each box. The box whiskers depict the range of data
defined by 1.5 times the IQR, and any outlier data points outside this range are shown as black circles. Individual results for all five ML models are shown as
colored circles indicated in the key. The five ML models are support vector machine (SVM, teal dot), linear SVM (linSVM, orange dot), Random Forest (RF,
purple dot), XG Boost (XGB, pink dot), and deep neural network (DNN, green dot). The data are grouped by results using both the host and pathogen
transcriptome (dual), or solely the plant transcriptome (host), or the fungal transcriptome (pathogen). The letters above box blots indicate similarity
groupings based on statistical significance (one-way ANOVA, P< 0.05).
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reference genome to map the RNA-Seq reads derived from the
pathosystems (Aprianto et al., 2016; O’Keeffe & Jones, 2019).
Briefly, we first generated a dual-species reference genome by
concatenating the Arabidopsis TAIR10 reference genome (Berar-
dini et al., 2015) with either of the three pathogen reference gen-
omes, B. cinerea (strain B05.10, build ASM83294v.1) (Van Kan
et al., 2017), S. sclerotiorum (strain 1980 UF-70, build
ASM185786v.1), or P. syringae (strain P. syringae pv tomato
DC3000, build GCF_000007805.1) (Winsor et al., 2016),
respectively. Raw RNA-Seq reads were mapped to the corre-
sponding combined dual-species reference genome by STAR
(Dobin et al., 2013). Raw gene counts were normalized as tran-
scripts per million (TPM) (Wagner et al., 2012). For the
Arabidopsis–Botrytis dataset, individual sequencing libraries were
removed if they had < 30% uniquely mapped reads. Annotated
genes in from Arabidopsis were removed from the count table if
the gene had read counts < 200 from across all sample libraries.
After quality control, there were 1102 samples and 20 340
expressed Arabidopsis genes, and 8761 expressed Botrytis genes
included in the Arabidopsis–Botrytis training dataset. The same
criteria were used to assess the two validation datasets
(A. thaliana–S. sclerotiorum and A. thaliana–P. syringae), and both
sets passed quality control. To be consistent, only count data for
the 20 340 Arabidopsis genes used in training were retrieved from
the validation data.

The individual ML models were trained on the gene expres-
sion values of the Arabidopsis–Botrytis dataset. Data were split
into 70% training and 30% test sets. Since the range of gene
expression values vary significantly per gene, feature scaling is
needed to ensure that the contribution of each feature is not
biased toward larger numerical values. In addition, scaling the
features ensure faster gradient descent convergence for some of
the ML models. Here, we scaled the features by removing the
mean and scaling to a unit variance (Han et al., 2012). Addition-
ally, the Arabidopsis–Botrytis dataset is highly imbalanced with
respect to the lesion size/disease class (Fig. S1). Lower disease
classes (class 0–3) are more represented in the data than higher
disease classes (class 6–9). To mitigate this data imbalance, we
utilized SMOTE (synthetic minority oversampling technique) to
oversample the minority data classes to have an even representa-
tion of the classes during training (Chawla et al., 2002). This
technique increases the minority class examples by synthesizing
new data stochastically from the existing training class sample
space. Note that it is important that the training/validation/test
splits should be done before any preprocessing steps (e.g. data
standardization) to avoid ‘data peeking’, which can over-inflate
test prediction performance. For example, data standardization
of the validation data should be done based on the aggregate sta-
tistics of the training data only. If the average or data statistics is
based on the entire dataset (including validation and test sets), in
effect we have considered information from the test data.

Supervised model training

According to the multiclassification task and the data characteris-
tics in this study, we selected supervised ML strategy to build the

learning models that can learn from the transcriptome input
derived from dual species or sole species and can accurately pre-
dict the correct phenotypic disease class outcome in a plant host
and pathogen interaction pathosystems. A total of five popular
ML algorithms for supervised learning were tested, including two
support vector machine (SVM)-based algorithms, two decision
tree-based algorithms, and a deep neural network algorithm. All
the models are trained on the Arabidopsis–Botrytis pathosystems
dataset. Hyper-parameters tuning was performed for each model
using scikit-learn’s GridSearchCV. The following parameters are
tuned for the following models: learning rate for DNN, learning
rate and max_depth for XGBoost, number of trees and max_-
depth for RF, and gamma for the SVM. Support vector machine
is a supervised learning algorithm that can efficiently perform
both linear and nonlinear classifications on data for robust pre-
diction. It can construct a hyperplane or set of hyperplanes in a
high-dimensional feature space to achieve the largest distance to
the nearest training data point of any class. Although SVMs are
naturally used for binary class tasks, the algorithms can be devel-
oped to apply on multiclassification tasks by reducing the multi-
class task to several binary problems (Noble, 2006). Linear SVM
is a linear classifier that is used for linearly separable data into
classes by using several straight lines. We used support vector
machine (Radial Basis Function (RBF) Kernel), SVC(), and lin-
ear SVM, SVC(kernel= ‘linear’), from SCIKIT-LEARN package
(Noble, 2006; Pedregosa et al., 2011). The parameters for SVM
and linear SVM are based on the default setting.

Decision tree-based algorithms generally have high performance
on small-to-medium structured data, and are a popular and robust
approach for various ML tasks because they are invariant to feature
scaling and transformation, and independence of irrelevant features
ensure constructing inspectable models (Breiman et al., 2017).
Decision trees make decisions using a graph to represent all possi-
ble solutions queried by certain conditions. Random forests, also
called random decision forests, are decision tree-based ensemble
algorithms that perform classification tasks using a bagging strategy
to build a multitude of decision trees (forest) where only a subset
of features is randomly selected to build a forest or decisions are
collected from some trees (Ho, 1995). Therefore, the accuracy of
such ensembled decisions by random forests is generally higher
than models built on single random decision tree. However, ran-
dom forests show biases in data including categorical variables with
high-variation levels and/or correlated variables, which are com-
mon cases in transcriptomic data (Strobl et al., 2007). We used
random forests (RandomForestClassifier) for learning modeling
training from SKLEARN PYTHON package with parameters
n_estimators= 100, max_depth= 30, random_state= 0. The
choice of 100 trees for the RF was based on our results running
tests using the Arabidopsis only dataset. The 1-class error accuracy
for n= 100 was 0.70; n= 1000 was 0.72; and n= 10 000 was
0.71. Therefore, increasing the number of trees two orders of mag-
nitude did not substantially improve model performance, but it
did significantly increase computational run time. The n= 100
estimators was used to balance performance and time. The random
forest was also used for ranking the feature importance for feature
extraction.
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Extreme gradient boosting (XGBoost) is another decision
tree-based ensemble-learning algorithm that uses an optimized
gradient boosting algorithm for classification, regression, and
ranking tasks. Gradient boosting builds sequential models by
using gradient descent algorithm to minimize the errors from
previous models while increase the influences of
high-performance models (Chen & Guestrin, 2016). Such strat-
egy can solve the drawbacks of random forest-based models learn-
ing from data with high-varied level of categorical variables
and/or correlated variables. Based on gradient boosting frame-
work, XGBoost is further optimized to avoid overfitting and/or
bias through several ways, including parallel processing, tree-
pruning, handing missing values and regularization (Ma
et al., 2020). Furthermore, it dramatically improves the comput-
ing power for boosted tree algorithms. We used XGBoost
(XGBClassifier) for modeling training from XGBoost python
package with default parameters. The ranked features generated
from the XGBoost model are used for feature selection.

We also included an artificial neural network-based model
among our supervised learning algorithms for comparison. We
used KERAS package to build the modular neural network available
from TENSORFLOW package (Abadi et al., 2016) to build a deep
neural network (DNN) model with a substantial credit assign-
ment path of depth 2 (with batch normalization, 512 dense hid-
den layer with ReLU activation function, dropout= 0.5, dense
10-class output layer with softmax activation function). The
cross-entropy loss and the Adam optimizer were used with a
learning rate of 0.001. The trained neural network model could
directly transform the raw whole transcriptome input into a more
abstract and composite intermediate feature representation and
extract such higher-level intermediate features to predict disease
severity.

Feature selection

To better understand genes contributing to plant disease develop-
ment, we performed feature selection on expressed genes from
the whole A. thaliana transcriptome. Feature selection methods
were assessed by using the feature selection gene sets in each
trained model to observe performance improvement or decay.
The full set of feature-selected genes by the different methods can
be found in Table S1. The plant whole transcriptome data served
as a baseline control using the random forest model with a pre-
diction 1-class error accuracy of 70.4%. We randomly selected
100 plant transcripts as negative control with the highest 1-class
error accuracy of 65.7% by SVM model. We explored domain
knowledge-based methods to obtain the plant genes associated
with pathogen defense. The list of 130 defense genes is based on
previously published literature characterized as having defense
function in the Arabidopsis–Botrytis pathosystem. The term
‘response to biotic stimulus’ from Gene Ontology was used to
identified 1182 Arabidopsis genes (The Arabidopsis Information
Resource (TAIR), 2023), of which, 912 had detectable expression
in the Arabidopsis–Botrytis transcriptome. Previously published
Arabidopsis genes that were either positively or negatively corre-
lated with plant disease lesion areas were selected as feature

selection sets PosCorr_786 and NegCorr_762 (Zhang
et al., 2017, 2019). The RF_100 and XGB_500 feature selection
sets were generated from the plant gene set based on the ranked
importance during model training.

To obtain the gene set based on the gene co-expression net-
work topology, we first constructed the plant gene co-expression
network using the Arabidopsis transcriptome data. We then calcu-
lated the network structure parameters, including node degree
(Degree_500) measuring the number of connections between a
node (gene) and its neighbors, betweenness centrality
(Btwns_500) measuring the number of shortest paths between all
pairs of nodes in the network which pass through the focal node.
Apart from the classical network metrics, we used for node rank-
ing and feature selection the fractal dimension centrality
(FDC_3000) and node fractal dimension (NFD)
centrality (NFD_3000), which captures the topological features
and the degree of complexity and heterogeneity in generating
rules of complex networks (Xiao et al., 2021). Additionally, we
also used the bipartite graph-based feature selection method to
extract the Arabidopsis genes based on their co-expression rela-
tionships during B. cinerea infection. First, the bipartite network
is created from the plant–pathogen co-expression dataset. Then,
a unipartite network projection on the Arabidopsis genes is
extracted from the bipartite network based on the frequency of
shared connection to the Botrytis gene set (Pavlopoulos
et al., 2018). We assessed feature selection membership using an
UpSet plot from package UPSET (Conway et al., 2017). Chi-
square test of independence were used to evaluate dependence
between the feature selection sets and two gene sets previously
implicated in GWAS host response, or general response to
immunogenic peptides (Bjornson et al., 2021). We further char-
acterized the potential biological significance of seven feature
selection sets, namely NFD, Bipartite, Betweenness, Degree,
XGB, RF, and FDC. Each feature selection set was analyzed for
GO enrichment of Biological Process pathways, using the SHI-

NYGO web application (v.0.80) (Ge et al., 2020), with
A. thaliana as species, FDR cutoff 0.05, 20 pathways shown, and
min and max pathway size of 2 and 5000, respectively. Pathways
were selected based on FDR and sorted by Fold Enrichment for
Chart and Tree figures. Pathways in Trees were colored based on
higher GO groupings as determined by QUICKGO web applica-
tion (v.2024-04-29) (Binns et al., 2009). Two feature selection
sets, XGB and Bipartite, did not have significant GO Biological
Process enrichment. To analyze across all seven sets, we analyzed
the proportional gene membership for high-level GP terms as
identified by SHINYGO. For each gene set, the proportional rank
of the high-level GO categories was determined as the proportion
of the number of genes identified in the category over the number
of total genes in the category as determined from AMIGO2 web
application (v.2.5.17) filtering for A. thaliana (Binns et al., 2009;
Carbon et al., 2009; The Gene Ontology Consortium
et al., 2023). The rank of each of the 20 high-level GO categories
was determined for each feature selection, and the Rank distribu-
tion within each high-level GO categories across feature selection
sets was determined and plotted using pandas and matplotlib of
PYTHON3 (Hunter, 2007; Team T Pandas Development, 2024).
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Evaluation

We measure the model performance based on the classification
errors. Since a+ 1/�1 classification error is within the tolerable
error range, we used the 1-class error True Positive (TP1) to
define the accuracy of the predicted disease classes. We used a
confusion matrix approach to evaluate the performance of the
multiclassification task of ML models and feature selection meth-
ods. Each prediction falls into one of the four cases: true positive
(TP1), false positive (FP), true negative (TN), and false negative
(FN). To describe the distribution of predictions across each of
these categories, we calculated a variety of performance matrices,
including Accuracy, Precision, Recall, F1_Score, and mean
squared error (MSE).

Classification Error CEð Þ= Predicted disease classð

�Observed disease classÞ

Adjusted Classification Error ACEð Þ

=

0 if CE∈ �1, 01f g

CE otherwise

(

TP1 (1-class error TP)

TP1=
1 if CE∈ �1, 0, 1f g

0 otherwise

�

Accuracy=
TP1 þ TN

TP1 þ FPþ TNþ FN

Precision=
TP1

TP1 þ FP

Recall=
TP1

TP1 þ TN

F1 Score=
precision� recallð Þ

precisionþ recall
=

TP1
TP1 þ 0:5� FNþ FPð Þ

Mean squared error=
1

n
�∑nACE

2

Results

Machine learning can predict disease outcomes from
transcriptomics of host–pathogen interactions

We sought to test the hypothesis that transcriptional patterns
during the early stages of plant infection are predictive for final
disease outcomes. To gain understanding from the modeling,
and to account for data size, we mainly focused on ML algo-
rithms with fewer variables and interpretable components. To
identify gene sets that are robust predictors of plant disease, we
utilized feature selection and cross validation on multiple

pathosystems (Fig. 1a). A total of five ML algorithms were
trained on B. cinerea infecting A. thaliana (Zhang et al., 2017,
2019; Fig. 1a). The data included 96 diverse B. cinerea isolates
infecting A. thaliana ecotype Col-0, along with a salicylic acid
(SA) receptor mutant, npr1 that is defective in SA-induced
defense (Mou et al., 2003; Spoel et al., 2003; Wu et al., 2012),
and a bioactive jasmonic acid (JA) receptor mutant, coi1 that nor-
mally participates in E3 ubiquitin ligase mediated activation of
JA defense responses (Xu et al., 2002; Thines et al., 2007). Tran-
scriptional responses during host infection were measured by
RNA-Seq at 16 h postinoculation and lesion size for each interac-
tion was measured at 72 h postinoculation (Fig. 1a; Zhang
et al., 2017). Transcriptional responses (i.e. processed RNA-Seq
per gene) were used as predictors and final lesion size as the
response to SVM with linear and RBF kernels (Noble, 2006),
two decision tree-based algorithms, random forest (RF)
(Ho, 1995) and extreme gradient boost (XGB) (Chen & Guest-
rin, 2016), and a DNN (LeCun et al., 2015) (see the Materials
and Methods section for details). Our goal was to develop models
that can predict disease outcomes across pathosystems, which for
our training data was lesion size, but in many other systems dis-
ease results in wilting, curling, stunting, discoloration or other
phenotypes unrelated to a lesion development. To address this,
we reasoned that converting lesion size values to 10 disease classes
would provide a framework to convert any disease outcome data-
set into disease classes to apply the model across pathosystems.
To assess how converting disease lesion size to disease classes
impacted the results, we performed a comparison. Transcrip-
tional data from both host and pathogen were used to train two
regression models on disease lesion size as a function of transcrip-
tion using the XGB algorithm and a DNN architecture. Plotting
the residual error for the DNN and XGB showed acceptable pre-
diction performance, with a mean square error (MSE) of 111.60
and root mean square error (RMSE) of 10.77 for the DNN, and
MSE of 88.83 and RMSE of 9.42 for XBG (Fig. S3A,B). Given
that we wanted to compare the regression results to classification,
we considered the regression predictions that were (+/�) the dis-
cretization bin size to be correct, resulting in an accuracy of 63%
for the DNN and 77% for XGB (Fig. S3A,B). To assess the fit of
the linear regression, the measured vs predicted lesion sizes were
plotted and R2 calculated, which indicated that the XBG model
provided a better fit, explaining 48% of the variance in the data
compared to 37% explained by the DNN model (Fig. S3C).

To convert the continuous lesion size into classes, we used a
data-driven approach to create balanced disease (i.e. lesion)
classes and to normalize the distribution of observations (Fig. S1;
see the Materials and Methods section for details). Disease class
predictions using both the host and pathogen transcriptomes
showed a clear association between the observed and predicted
values for the holdout test data (Figs 1b, S4). To quantify the
results, we calculated the difference between the observed disease
class and the predicted disease class, which we termed class error.
For example, a class error of zero means the observed and pre-
dicted classes were the same, while a class error of 3 means the
observed disease class was three classes higher than predicted (i.e.
the prediction underestimated disease outcome). Host genotype
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significantly influenced disease class prediction, and infected npr1
plants produced more similar predictions compared to infected
WT A. thaliana than did infected coi1 plants (Fig. 1c; Table S2).
This result likely reflects the substantial shift in disease outcomes
seen for coi1 infection (Fig. S5), and is consistent with the pre-
viously reported importance of jasmonic acid defense pathway
against B. cinerea infection (Zhang et al., 2017). The difference
in prediction accuracy between host genotypes was consistent
when both the plant and fungal transcriptomes were modeled
together (i.e. dual), or if only one organism’s transcriptome data
were used (Fig. 1c; Table S3). This suggests ML algorithms are
sensitive to genetic perturbation, and the impact of the coi1
mutation on transcriptional response and disease development
were more difficult to predict. To quantify model performance,
we considered predictions within one disease class of the observed
to be correct and refer to this throughout the research as 1-class
error accuracy. Interestingly, across all host genotypes and ML
approaches, the 1-class error accuracy was significantly higher
when models were trained using transcriptional data from both
the host and the pathogen compared to either alone (72% com-
pared to < 68%, respectively) (Fig. 1d). Comparing these results
to those obtained from regression (Fig. S3), the proxy estimates
for accuracy were similarly c. 70% averaged across models for
either regression or classification.

We further tested if ML models are useful for the task of pre-
dicting disease from transcriptional data. Given that the dataset
had a high occurrence of disease class two observations (Figs S1,
S4), we tested if this class imbalance could account for model
performance, in which the models labeled samples with the most
common class. To test this, we calculated the 1-class error predic-
tion metrics for a naı̈ve model in which all test data were assigned
a predicted disease class of two (Table S4). This naı̈ve model had
an accuracy of 58%, while the five ML models had an average
accuracy of 68%, ranging from a low of 66% to a high of 70%
(Table S4). To further demonstrate that the developed models
were performing well and identifying useful patterns in the data,
disease classes for the test data were randomly drawn from the
distribution of disease classes, assigned to a test sample, and then
performance metrics were computed. This random assignment
and assessment was repeated for 100 iterations and allowed us to
build a distribution of possible outcomes given the data. The per-
formance metrics of this iterative shuffling experiment showed an
average accuracy of 43% (�2%) (Table S4; Fig. S6), which is
again substantially lower than that observed for the five developed
ML models. In one final test on the utility of ML for predicting
disease outcomes, we tested perturbed data in which the disease
class was intentionally changed to an incorrect label. For this, we
altered an increasing percentage of the training data disease
classes, from 25% up to 75% of samples, to contain an incorrect
label by more than one disease class (Fig. S7). The test data for
prediction remained unchanged, only the training data for model
building where altered. The resulting confusion matrices showed
a decrease in performance as the percentage of mislabeled train-
ing data increased, especially above 50% mislabeled data
(Fig. S7). This trend was also apparent for one-class error assess-
ment, where having 50% or 75% mislabeled training data

substantially degraded model performance. It was interesting that
while model performance decreased at 25% mislabeled training
data, the impact was modest and overall prediction performance
was similar to the model trained on correctly labeled data
(Fig. S7). Overall, these results show that ML is a useful class of
algorithms for modeling disease outcomes from transcriptional
data. The models are performing better than chance and are not
reliant on class imbalance, and the models are also sensitive to
data manipulation, all of which supports the view that the models
are able to identify salient data patterns for predicting disease
outcomes.

Looking more deeply into the classification results using the
real unaltered data, all measures of model performance were
either statistically similar or better using the combined host–
pathogen transcriptome data compared to using only one organ-
ism’s transcriptome (Figs 1d, S8). For analysis using host–
pathogen transcriptomes, the XGBoost model performed the
highest with a prediction 1-class error accuracy of 72.3%
(Fig. 1d). The RF model provided the highest 1-class error accu-
racy (70.4%) when only considering the host transcriptome,
while the results from the linear SVM provided the highest 1-
class error accuracy (70.5%) for pathogen alone analysis
(Fig. 1d). Collectively, these results show that modeling the
response of both species together provides the most accurate pre-
diction of plant disease outcome. This reflects the importance of
both actors in determining disease development and highlights
the dynamic and complex nature of dual-species interactions. For
subsequent model testing across different pathosystems, we pro-
ceeded with only using the host plant genes as predictors as these
transcripts are common between diverse datasets, while pathogen
gene sets change. Also, we continued with converting disease out-
puts data into disease classes, as the results suggest that we
obtained similar prediction results, and this framework allows us
to use the model in systems with diverse disease outcomes.

Feature selection to identify general predictors of plant
disease

We seek to identify a subset of transcripts that were both predic-
tive of disease outcome, and that might also reflect meaningful
biological mechanisms contributing to plant disease. Feature
selection is a common practice in ML to help reduce the large
predictors (p), small observation (n) problem associated with
high-dimensional data (Clarke et al., 2009; Altman & Krzy-
winski, 2018) common in genotype-to-phenotype studies. A total
of 12 feature selection approaches were employed using a range
of techniques and feature set sizes to specify sets of transcripts
used to train the ML algorithms and evaluate disease prediction.
The feature selection approaches fall under the following six tech-
niques – expert domain knowledge, statistical correlation, ML
feature importance, co-expression network measures,
co-expression network geometry, and a technique termed bipar-
tite graph analysis (see the Materials and Methods section for
details). For most feature selection techniques, the size of the fea-
ture set (e.g. how many genes to select) is not known. To experi-
mentally determine this, we evaluated the impact of feature set
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size on model performance across seven feature set sizes ranging
from 10 elements to the whole A. thaliana transcriptome
(Fig. S9). The results indicate that both feature set size and model

type impacted prediction accuracy (ANOVA, P< 2e-16;
Table S5), and increasing the number of genes from 10 to 500
dramatically improved model performance (Fig. S9). We
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considered a number of set sizes for each feature selection method
(Fig. S10), and the best feature set size for each feature selection
approach as the inflection point for model performance across
the tested feature set sizes (Fig. S11). For further evaluation, only
a single set size for each feature selection technique was used,
indicated as the number associated with the feature selection
name (Table S1). Evaluating disease prediction based on class
error showed substantial variation in the agreement between
observed and predicted disease classes, with both feature selection
and ML model choice contributing to prediction performance
(Figs 2a, S10; Table S6). Predictions using the entire A. thaliana
transcriptome resulted in the most zero class error predictions
(i.e. no difference between predicted and observed), followed by
the co-expression network degree set and the XGBoost feature
importance set (Fig. 2a). Assessing the models for 1-class error
accuracy, eight of the feature selection sets performed statistically
similar compared to predictions made using the entire A. thaliana
transcriptome (Fig. 2b). This included an expert knowledge set,
Defense, based on previous characterization of A. thaliana–
B. cinerea interaction (Corwin et al., 2016; Zhang et al., 2017),
the two feature importance sets from RF and XGBoost, the two
sets based on co-expression network measures, the two sets based
on co-expression geometry, and the bipartite graph analysis
(Fig. 2b). The goal to identify causal associations underlying fea-
ture sets must be assessed against random statistical associations
in the data. To address this, we created random feature sets of
100 genes sampled from the A. thaliana genome, trained and
evaluated model performance for the 5 ML algorithms,
and repeated this process 100 times selecting new sets of random
genes. Interestingly, we see that for four of the ML models, ran-
dom gene feature sets can predict disease outcomes with
c. 60–68% 1-class error accuracy (Fig. 2c). The SVM and RF had
the highest average accuracies for the random gene feature sets at
65.7% and 65.4%, respectively (Fig. 2c). We interpret this result
to show the power of ML models at identifying patterns in data,
and in this case, biological meaning is not a prerequisite for pre-
dictive power, as has been noted previously (Koo &
Ploenzke, 2021). Comparing the 1-class error accuracy of the fea-
ture selection sets vs the results from many random sets of genes,

many of the feature selection sets had a higher average 1-class
error accuracy than the random gene set, including Defense
(67.0%), random forest (RF) (67.4%), XGBoost (67.1%),
Degree (66.2%), Betweenness (64.3%), node fractal dimension
(NFD) (67.9%), fractal dimension (FDC) (68.4%), and Bipar-
tite (64.8%) (Fig. 2b). Assessing the ML models across all feature
selections sets showed that the linear SVM and DNN consis-
tently had lower prediction performance (Fig. 2d,e).

Pretrained models can predict disease outcomes for a new
plant–fungal interaction

To further assess if specific feature selected genes can generally
predict disease outcomes, we tested the models on new data not
used for training. An independent dataset of RNA-Seq collected
from Arabidopsis infected with S. sclerotiorum and noninoculated
control plants (Badet et al., 2017) was used to predict disease out-
comes. The original disease classification was measured on a 1–6
scale, which we transformed to a 0–9 scale to be compatible with
our pretrained models (see the Materials and Methods section for
details). The full analysis used the 65 trained models from the
A. thaliana–B. cinerea interaction dataset, consisting of each of
our five ML algorithms trained for each of the 12 feature selec-
tion sets plus the model trained on the entire A. thaliana tran-
scriptome. As the transcriptomes for B. cinerea and S. sclerotiorum
are different, we only used models trained on host transcripts.
Measuring class error across the models for each feature selection
list showed that the bipartite feature selection list had the most
zero class error predictions, followed by the GO Biotic response
feature selection list (Fig. 3a). While many of the feature selection
sets had a wide range of class errors, 10 feature selection sets had
the majority of predictions within one disease outcome class (i.e.
between 1 and �1 class error; GOBiotic (63.3%), TopCorr
(70.0%), PossCorr (63.3%), NegCorr (90.0%), XGB (73.3%),
Degree (70.0%), Betweenness (56.7%), NDF (53.3%), FDC
(56.6%), Bipartite (70.0%)) (Fig. 3a,b). Model assessment
showed a wide variation of performance, driven by both the ML
model and feature selection (Table S7). For example, the average
1-class error accuracy across feature selection sets ranging from

Fig. 2 Evaluation of feature selection methods and machine learning (ML) models on Arabidopsis infected by Botrytis. (a) Class error of predicted and
observed plant disease class. The resulting class error for each sample was counted and shown as a bubble plot, where the bubble size and color indicate
the number of samples in that class. The x-axis labels correspond to those shown in (b). (b) The 1-class error accuracy of plant disease predictions by
feature selection method is shown as box plots. The box plots depict the interquartile range (IQR) of data, representing the 25th to 75th percentile of data,
and the median is depicted as a dark line inside of each box. The box whiskers depict the range of data defined by 1.5 times the IQR. Individual results for
the five ML models are shown as colored circles indicated by the key above the plot. The five ML models are support vector machine (SVM, teal dot), linear
SVM (linSVM, orange dot), Random Forest (RF, purple dot), XG Boost (XGB, pink dot), and deep neural network (DNN, green dot). The x-axis samples are
the Arabidopsis thaliana transcriptome (Host_20340), Gene Ontology (GO) defense-related genes (Defence_130), Gene Ontology biotic interaction-
related genes (GOBiotic_912), the top correlated genes (TopCorr_1548), positively correlated genes (PosCorr_786), negatively correlated genes
(NegCorr_762), genes from Random Forest feature importance (RF_100), genes from XG Boost feature importance (XGB_500), genes from the calculated
network node degree (Degree_500), genes from the calculated network node betweenness (Btwns_500), genes from the network calculated node fractal
dimension centrality (NFD_3000), genes from the network calculated fractal dimension centrality (FDC_3000), and genes from the bipartite graph
selection (Bipartite_2226). (c) The 1-class error accuracy of the five ML models based on 100 randomly selected features over 100 iterations represented as
box plots as described in (b). Each dot indicates the 1-class error accuracy from one set of 100 randomly selected genes for training and testing. The dashed
line at 0.632 in (b) represents the average accuracy from random feature selection across all five ML models, provided for comparison. (d) Class error of
predicted and observed plant disease class as shown in (a). Results are shown for all feature selection sets grouped by the five ML models. (e) The 1-class
error accuracy of predicted plant disease class of data shown in (d). The letters above box blots indicate similarity groupings based on statistical significance
(one-way ANOVA, P< 0.05). The box plots represent data as described in (b).
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c. 30% to 100% (Figs 3b, S12). These results are also reflected in
the 100 rounds of random feature selection assessment, showing
a wide range of possible results across models, with the RF and
SVM having the highest average 1-class error accuracy (Fig. 3c).

The two treatments, mock vs inoculated, had a significant impact
on model performance, where uninoculated plants tended to
have a positive class error while inoculated plants tended to have
a negative class error, indicating an over and under prediction of
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disease development, respectively (Fig. 3d). The RF model had
the highest 1-class error accuracy across all feature selection sets,
followed by predictions from the SVM algorithm (Fig. 3e). These
results showed that ML models pretrained on reduced feature
selection gene sets from the A. thaliana–B. cinerea dataset, could
correctly predict disease outcomes for an independent dataset of
the same host infected with a different fungal pathogen,
S. sclerotiorum. However, we note that the RF model had 100%
prediction 1-class error accuracy for 7 of 12 feature selection sets,
and 5 of those 8 feature selection sets provided the highest 1-class
error accuracy disease predictions on the original

A. thaliana–B. cinerea dataset (Figs 2b, 3b). This suggests the
ability to deliver highly accurate disease outcome predictions for
independent pathosystems using ML, and that feature selection
may allow a significant reduction in the number of predictor
terms while maintaining model performance.

ML models can predict disease outcome for cross-kingdom
pathogen attack

To rigorously investigate the modeling results, we extended our
predictions to another independent dataset, Arabidopsis infected

Fig. 3 Trained machine learning (ML) models coupled with feature selection methods can accurately predict plant disease class on Arabidopsis infected by
Sclerotinia sclerotiorum. (a) Class error of predicted and observed plant disease class. The resulting class error for each sample was counted and shown as a
bubble plot, where the bubble size and color indicate the number of samples in that class. The x-axis labels correspond to those shown in (b). (b) The 1-
class error accuracy of plant disease predictions by feature selection method is shown as box plots. The box plots depict the interquartile range (IQR) of
data, representing the 25th to 75th percentile of data, and the median is depicted as a dark line inside of each box. The box whiskers depict the range of
data defined by 1.5 times the IQR. Individual results for the five ML models are shown as colored circles indicated by the key above the plot. The five ML
models are support vector machine (SVM, teal dot), linear SVM (linSVM, orange dot), Random Forest (RF, purple dot), XG Boost (XGB, pink dot), and
deep neural network (DNN, green dot). (c) The 1-class error accuracy of the five ML models based on 100 randomly selected features over 100 iterations
represented as box plots as described in (b). Each dot indicates the 1-class error accuracy from one set of 100 randomly selected genes for training and
testing. The dashed line at 0.638 in (b) represents the average accuracy from random feature selection across all five ML models, provided for comparison.
(d) Class errors calculated by predicted and measured plant disease classes on Arabidopsis transcriptome of control (Ctrl) uninoculated plants or infected
(Infection) by S. sclerotiorum by five ML models. Results are shown for all feature selection sets grouped by the five ML models. (e) The letters above box
blots indicate similarity groupings based on statistical significance (one-way ANOVA, P< 0.05). The box plots represent data as described in (b).
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Fig. 4 Genetic perturbations for immunity and
virulence hamper generalization for bacteria
disease prediction. (a) Class error of predicted
and observed plant disease shown as a bubble
plot. Individual host treatments were grouped by
immune priming (flg22), wild-type Col-0 (WT),
or single, double, or quadruple mutation in Col-
0. Interactions with Pto Pseudomonas syringae

shown in left plot, and infection with Pto
P. syringae expressing the avirulence gene
AvtRpt2 shown on right. Infection by Pto-
AvtRpt2 did not use immune priming as a
treatment. The results were combined from
predictions using all five machine learning (ML)
models and feature selection sets previously
described. (b) The 1-class error accuracy of
predicted plant disease class grouped by host
treatment. The data are represented as a violin
plot showing the range and distribution of the
data, along with a box plot that depicts the
interquartile range (IQR) of data, representing
the 25th to 75th percentile of data, the median is
depicted as a dark line inside of each box, and
the whiskers depict the range of data defined by
1.5 times the IQR. (c) The 1-class error accuracy
of predicted plant disease class grouped by
pathogen treatment shown as a violin and box
plot as described in (b).
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with the bacterium P. syringae (Nobori et al., 2018). The purpose
of this analysis was twofold. First, changing host infection from
an eukaryotic to prokaryotic pathogen broadly tests the

robustness of the trained models and therefore their learned pat-
terns. This addresses the issue of statistical pattern matching com-
mon in big data (i.e. overfitting), in which predictions are good
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for their original data, but poor for new datasets. If our models
were overfit to the original dataset, then model performance for
bacterial infection would be poor. Alternatively, if our trained
models learned general host predictors of disease outcome, the
models should perform well on the new system, related to the
hypothesis that plants contain general transcriptional responses
to diverse microbes. Second, this approach addresses an area of
ML termed transfer learning, which leverages the knowledge
gained from one task to complete a different but related task. In
this case, instead of building a new predictive model from scratch
for P. syringae infection, we transfer our pretrained models to this
new dataset. The limits and demonstration of transfer learning in
biological systems is not well developed, and this offered a good
test case. The A. thaliana–P. syringae dataset comprised 27 differ-
ent treatments made up of combinations of genetic differences in
the host and pathogen, as well as immune priming (Fig. S2;
Nobori et al., 2018). The specific responses, such as immune
priming and combinatorial immune mutants, would not be
expected to produce transcriptional responses similar to the origi-
nal training dataset, and therefore, prediction results would likely
not be accurate for such interactions. To test this, disease predic-
tions were compared to the observed predictions and both host
genotype and pathogen genotype impacted predictions
(Table S8). The dataset was split for P. syringae expressing or not
expressing AvrRpt2, and into A. thaliana WT Col-0, immune
primed Col-0, and single, double or quadruple Col-0 immune
mutants, and include all 5 ML models trained on the 12 different
feature selection sets (Fig. 4a). The interaction between WT host
and pathogen produced substantially more zero class error pre-
dictions (32.8%), and predictions within one error class
(46.11%), consistent with our expectations for better predictive
performance (Fig. 4a). Compared to WT Col-0 infection with
virulent P. syringae, disease severity was overestimated for the
immune primed infection (i.e. flg22 pre-exposure), and underes-
timated on hosts with compromised immunity (Fig. 4a). Clearly,
immune priming and genetic perturbation of host immunity
negatively impacted predictive performance. The impact of
immune priming and combinatorial genetic perturbations was
also seen using 1-class error accuracy assessment, showing that
non-WT interactions negatively impacted model performance
(Fig. 4b). The 1-class error accuracy was also lower when
A. thaliana was infected by an avirulent P. syringae strain expres-
sing AvrRpt2 (Fig. 4c). Collectively, these results show that

disease predictions for WT compatible host–pathogen interac-
tions were more accurate than predicting incompatible or host
immune compromised outcomes. This suggests that genetic per-
turbations and NLR based immunity caused a transcriptional
profile that was too dissimilar from the original training data for
accurate prediction. Therefore, only data for virulent P. syringae
infecting WT Col-0 (13 observations) were used for further ana-
lysis.

To understand how our A. thaliana–B. cinerea trained models
with feature selection perform on A. thaliana–P. syringae WT
interaction data, disease predictions were generated. Assessment
through class error showed variable results across feature selection
set trained models (Fig. 5a). The feature set based on network
analysis node betweenness gave the most zero class errors predic-
tions (Fig. 5a). Predictions using feature selection sets Defence
(53.3%), RF (68.1%), and Betweenness (74.8%), provided at
least half of their respective predicted disease classes within one-
class error of the observed value. Quantifying 1-class error accu-
racy also indicated variable performance across the ML models
(Fig. 5b). These results reflect the complexity of the prediction
problem, which uses host transcriptome responses of only a small
subset of genes from early infection of a fungal pathogen to pre-
dict disease outcomes for bacterial infection. Nonetheless, 6 of
the 12 feature selection sets produced an average 1-class error
accuracy greater than the average random feature set (36.6%)
(Fig. 5b,c): Defence (48.9%), PosCorr (42.2%), NegCorr
(40.0%), RF (74.4%), Betweenness (72.2%), and Bipartite
(46.7%). Also, 4 of the 8 feature selection sets that performed
above the random feature sets for A. thaliana–P. syringae were the
same that provided the highest 1-class error accuracy predictions
from the original A. thaliana–B. cinerea training (Figs 2b, 4b).
This is an indicator of robust performance for these feature selec-
tion sets. Looking at individual model performance, the distribu-
tion of predicted class errors and 1-class error accuracy shows
differences between ML algorithms (Fig. 5d,e). When analyzed
across all feature selection sets, the RF model had the highest pre-
diction performance, average 1-class error accuracy of
65.4� 28.0% (mean� SD), followed by XGBoost,
58.5� 34.4% (mean� SD) (Fig. 5d,e). Overall, the change
from a eukaryotic to prokaryotic pathogen did not preclude accu-
rate disease prediction, suggesting that a common transcriptional
response could be modeled that predicted disease outcomes
across a range of interactions.

Fig. 5 Trained machine learning (ML) models can predict disease outcomes for new pathosystems. (a) Class error of predicted and observed plant disease
class for A. thaliana infected by the bacterial pathogen P. syringae. The resulting class error for each sample was counted and shown as a bubble plot,
where the bubble size and color indicate the number of samples in that class. The x-axis labels correspond to those shown in (b). (b) The 1-class error
accuracy of plant disease predictions by feature selection method are shown as box plots. The box plots depict the interquartile range (IQR) of data,
representing the 25th to 75th percentile of data, and the median is depicted as a dark line inside of each box. The box whiskers depict the range of data
defined by 1.5 times the IQR. Individual results for the five ML models are shown as colored circles indicated by the key above the plot. The five ML
models are support vector machine (SVM, teal dot), linear SVM (linSVM, orange dot), Random Forest (RF, purple dot), XG Boost (XGB, pink dot), and
deep neural network (DNN, green dot). (c) The 1-class error accuracy of the five ML models based on 100 randomly selected features over 100 iterations
represented as box plots as described in (b). Each dot indicates the 1-class error accuracy from one set of 100 randomly selected genes for training and
testing. The dashed line at 0.366 in (b) represents the average accuracy from random feature selection across all five ML models, provided for comparison.
(d) Class errors calculated by predicted vs observed disease classes for all observations by the five ML models. Results are shown for all feature selection
sets grouped by the five ML models. (e) The 1-class error accuracy of predicted plant disease class for data shown in (d). The letters above box blots
indicate similarity groupings based on statistical significance (one-way ANOVA, P< 0.05). The box plots represent data as described in (b).
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Feature selection identified known and underexplored
genes involved in plant defense

We aimed to understand the biological significance of underlying
genes of the feature selection sets. To integrate the analysis across

all three pathosystems, we re-focused our analysis on results from
only the RF and XGBoost algorithms that proved most accurate
for P. syringae predictions (Fig. 5e). Disease predictions across
the three pathosystems were reassessed for the RF and XGB
trained models for each feature selection sets (Fig. 6a). The
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average 1-class error accuracy for all feature selection sets is higher
than the random feature selection set (Fig. 6a) (random feature
selection accuracies for RF (32.4%) and XGB (38.4%)). Remark-
ably, three feature selection sets, XGB (79.1%), Degree (80.7%),
and Betweenness (77.4%), have an average 1-class error accuracy
of over 75% across all three pathosystems (Fig. 6a). The tran-
scriptional response of each gene set per host infection indicated
that these genes are not necessarily the most highly expressed
genes during infection (Fig. S13A), nor are they significantly
more induced as a group during infection compared to nonin-
fected (Fig. S13B,C). These results are interesting because most
transcriptional analysis of the host immune response involves
identification of highly expressed genes or genes differentially
expressed between healthy and infected plants. Comparing the
individual gene composition for each feature selection set showed
they were largely nonoverlapping sets, indicating that the differ-
ent methods identified different genes (Fig. 6b). Two gene sets
from previously published literature were used as controls to
understand and validate the results. One control gene set con-
tained 2524 genes previously identified through genome-wide
association study (GWAS) of A. thaliana genotypes infected by
B. cinerea (Corwin et al., 2016). The UpSet plot showed that the
GWAS had the largest overlap with the NFD and FDC gene sets,
as well as the Bipartite set (Fig. 6b). A chi-square test of indepen-
dence showed that the GWAS gene set significantly overlapped
the XGBoost (χ2= 4.33, P= 0.037), bipartite graph (χ2= 8.47,
P= 0.004), and positive correlation (χ2= 3.98, P= 0.045) fea-
ture sets (Fig. 6c; Table S9). We also compared the feature selec-
tion sets to 970 genes identified as common early
transcriptionally responsive genes in A. thaliana to diverse immu-
nogenic elicitors (Bjornson et al., 2021), referred to, here, as the
Bjornson set. The Bjornson set also had the largest overlap with
the NFD and FDC gene sets, as well as the Top and Positive cor-
relation sets (Fig. 6b). A chi-square test of independence showed
that the Bjornson set had statistically significant overlap with
nearly all the identified feature selection sets (10 of 12 sets,
P< 0.001, see Table S10 for numbers), except for the XGBoost
and the bipartite feature selection sets (Fig. 6b).

To understand the functional relevance of the feature selection
gene sets, gene ontology (GO) enrichment analysis for Biological
Function was performed for the seven feature selection sets
derived from ML and geometric graph analysis (Fig. 6d). There
was significant GO pathway enrichment for five of the feature
selection sets (FDR cutoff 0.05, Tables S11–S15), but not for the
XGB or bipartite gene sets. For the two feature selection sets
based on network metrics of the gene co-expression graphs,
Betweenness and Degree, we found that the roughly top 20 over-
represented pathways had some overlap, but also many differ-
ences (Figs S14, S15). For instance, the Betweenness set is the
most overrepresented for two pathways related to indole-
containing compound biosynthesis/metabolism, followed by two
pathways related to photosynthesis (Fig. S14). The top seven
enriched GO biological function pathways for the Degree gene
set are predominately related to photosynthesis and ATP synth-
esis, followed by indole-containing compound biosynthesis/
metabolism (Fig. S15). The remaining significantly enriched
pathways for the Betweenness feature selection set were all related
to response to stress/chemical/biotic/external stimulus (Fig. S14).
The two feature selection sets based on fractal geometric analysis
of the gene co-expression graphs, NFD and FDC, identified a
very similar top 20 significantly enriched pathways (Figs S16,
S17). Pathways related to photosynthesis were again the most sig-
nificantly enriched, followed by pathways related to response to
oxygen levels. The NFD and FDC sets were also significantly
enriched for pathways related to response to stress/-
chemical/biotic/external stimulus, as well as organic substance
metabolism/biosynthesis (Figs S16, S17). The relatively smaller
RF feature selection gene set of 100 genes was significantly
enriched for 11 GO biological function pathways (Fig. S18). The
GO biological function pathways with the highest fold enrich-
ment were related to response to organic cyclic compounds,
defense response to bacterium, and response to biotic/external sti-
mulus (Fig. S18). These results show that while there was rather
limited overlap between the individual genes across the feature
selection sets (Fig. 6b), there were many overlapping significantly
enriched GO-term Biological Process pathways, including related

Fig. 6 Uncovering general predictors of the plant immune response. (a) The 1-class error accuracy of plant disease predictions by feature selection method
are shown as box plots. The box plots depict the interquartile range (IQR) of data, representing the 25th to 75th percentile of data, and the median is
depicted as a dark line inside of each box. The box whiskers depict the range of data defined by 1.5 times the IQR. Individual results from the two machine
learning (ML) models are shown, Random Forest (RF, circle) and extreme gradient boost (XGB, triangle), from the three datasets, Botrytis cinerea (Bc,
green), Pseudomonas syringae (Psy, orange), and Sclerotinia sclerotiorum (Scl, purple). The letters above the box plots indicate no significant difference
(One-way ANOVA, P < 0.05). (b) UpSet plot of Arabidopsis thaliana gene features based on different feature selection lists. This shows the top 15 set
intersections between the different feature selection lists and the Bjornson (Bjornson et al., 2021) and GWAS (Corwin et al., 2016) gene lists. (c) Results of
chi-squared test of independence at 0.95 confidence for the different feature selection lists vs the Bjornson and GWAS gene lists. Chi-squared results that
were statistically significant at P-value of 0.05 are highlighted in green. Gene sets tested for independence were XG Boost (XGB), RF, network node degree
(Degree), network node betweenness (Betweenness), node fractal dimension (NFD), fractal dimension centrality (FDC), bipartite graph (Bipartite), Gene
Ontology (GO) defense-related genes (Defense), Gene Ontology biotic-interaction related genes (GOBiotic), positively correlated genes (PosCorr),
negatively correlated genes (NegCorr), and the top correlated genes (TopCorr). (d) Left, Line plot showing the proportional rank of the top 20 common
high-level GO terms identified across the seven feature selection gene sets. The gene sets are identified on the x-axis, while the individual GO terms are
shown to the right. Middle, the distribution of proportional ranks for each of the GO term groups. The box plots depict the IQR of data, representing the
25th to 75th percentile of data, and the median is depicted as a gray line inside of each box. The box whiskers depict the range of data defined by 1.5 times
the IQR and each individual rank is shown as a black point. Not all feature selection sets had the same top 20 GO terms, resulting in missing ranks from
being displayed in the Left line plot. The top-ranked GO term for three feature selection sets, regulation of biological quality, was added to the plot as black
points in their corresponding rank position and labeled above the plot.
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to process such as photosynthesis, organic metabolism, and
response to stimulus. We further used the high-level GO terms
in each of the seven feature selection sets to rank the top 20
terms based on the proportion to the entire category (Table S16).
This allowed incorporation of the XGB and Bipartite feature
selection sets that did not have statistical enrichment but could
be used for rank assessment of GO terms across gene sets. The
summary rank plots showed that high-level GO categories related
to response to external and biotic stimulus were on average the
most highly ranked categories based on the feature selection gene
sets (Fig. 6d). The rank plots also identified where there were
substantial differences between feature selection sets. For exam-
ple, the fifth ranked GO term for the Bipartite gene set was
related to developmental process involved in reproduction, which
was ranked much lower in the other sets (Fig. 6d). The XGB fea-
ture selection set showed many rank order changes, such as
macromolecular organization was rank 2, response to abiotic sti-
mulus was rank 3, and response to biotic stimulus was rank 11,
which were all different ranks than the average ranking for the
respective term across the other feature selection sets.

There was no concordance for the top proportionally ranked
terms across feature selection sets. For instance, the top propor-
tionally ranked term for the XGB, Betweenness, and Degree fea-
ture selection sets was regulation of biological quality (Fig. 6d;
Table S16), but the term was not in the top 20 for any of the
other feature selection sets. Interestingly, while this term was pro-
portionally ranked one for each of the three feature selection sets,
the XGB feature selection genes that overlap this GO term are
unique compared to the Betweenness or Degree, while the
Betweenness and Degree feature selection genes that overlap this
GO term had a more substantial overlap (Fig. S19). Looking
more deeply into the 22 genes uniquely identified in the XGB
feature selection set that overlap the regulation of biological qual-
ity GO term, a number of known or potentially underexplored
genes and pathways related to plant defense were identified. For
instance, one identified gene, A. thaliana HopM interactor 7
(AtMIN7, At3g43300), is an effector target and required for
A. thaliana immunity to the bacterial pathogen P. syringae
(Nomura et al., 2006, 2011). Molecularly, AtMIN7 is an adeno-
sine diphosphate ribosylation factor (ARF) guanine nucleotide
exchange factor (GEF), which functions in early endosomal vesi-
cle trafficking (Tanaka et al., 2009). Importantly, while AtMIN7
was identified for its role in plant immunity to bacteria, the
homolog in wheat is functionally required for resistance to Fusar-
ium graminearum, the causal agent of Fusarium head blight
(Machado Wood et al., 2021). Another gene implicated in plant
defense that was part of this unique subset of 22 genes from the
XGB feature selections related to the regulation of biological
quality was callose synthase 7 (CalS7, At1g06490), which is a
phloem-specific callose synthase required for normal plant
growth and development, but also provides callose deposition
during wound response (Xie et al., 2011). Another two of the 22
genes have been implicated in plant response to phosphate starva-
tion. This includes alfin-like 6 (AL6, At2g0270) a plant homeo-
domain (PHD) containing protein that can function as a histone
chemical modification reader and contributes to transcriptional

regulation in response to phosphate levels (Chandrika
et al., 2013), but also in response to the plant hormone jasmonic
acid (Vélez-Bermúdez & Schmidt, 2021). The other gene, phos-
phate deficiency response 2 (PDR2, At5g23630), encodes a P5-type
ATPase localized to the endoplasmic reticulum and is required
for normal root patterning and growth under low-phosphate con-
ditions (Ticconi et al., 2009). Lastly, two other genes in this list
are involved with mRNA maturation mediated by the spliceo-
some complex. This includes the small nuclear ribonucleoprotein
SM-like4 (LSM4, At5g27720) involved in pre-mRNA alternative
splicing (Zhang et al., 2011), and At2g42330, which has not
been extensively characterized but is annotated to be involved in
spliceosomal complex disassembly. The regulation of LSM4
through protein methylation has recently been shown to impact
alternative splicing and is required for normal Arabidopsis
response to abiotic stress and infection by Pseudomonas (Agrofo-
glio et al., 2024). Additionally, the interaction of LSM4 with a
metacaspase (AtMC3), was previously reported as required for
normal mRNA processing and resistance to P. syringae (Wang
et al., 2021). This indicates that our analytic approach identified
the splicesome and alternative splicing as an underexplored
mechanism contributing to plant stress and defense responses,
likely as a general, not specific, response pathway. Collectively,
these results indicate that our ML approach and feature selection
techniques identified highly relevant genes involved in plant
defense response using a novel method not previously applied to
plant-microbe biology. These results support the hypothesis that
the feature selection gene sets represent collections of genes
broadly predictive of Arabidopsis disease development, and likely
contain genes or represents pathways that can be more fully
explored for their role in plant disease development.

Discussion

Plants possess two distinct classes of immune receptors, mem-
brane receptors surveying the extracellular space, and cytosolic
receptors sensing microbial activity (Ngou et al., 2022). Evidence
indicates that the plant immune system can be conceptually
thought of as an integrated functional unit, with cross talk
between immune receptor classes and disease outputs providing
synergy, redundancy, and specificity (Tsuda et al., 2009; Dong
et al., 2015; Yuan et al., 2021). Despite our growing knowledge
of the plant immune system, there are few tools or approaches
that can predict a plant’s general immune performance. Current
research and improvement approaches rely heavily on specific
single-gene interactions, which have proved effective, but are
hampered by their intensive time requirements and lack of gener-
alization. Additionally, such genetic resistance has proven rela-
tively short lived when deployed at scale (Kiyosawa, 1982),
although considerable effort is being put into stacking immune
receptors to increase efficacy in the field (Pradhan et al., 2015;
Ghislain et al., 2019; Luo et al., 2021). As plant sciences and crop
improvement move to engineered systems approaches (Shigenaga
et al., 2017; Marchal et al., 2022; Vuong et al., 2023), greater
understanding and predictive power for processes such as plant
immunity, abiotic stress tolerance, growth, and nutrient
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utilization are needed. Systems approaches leveraging increasingly
common big datasets, analyzed by interdisciplinary teams, can
help provide the knowledge and framework to achieve these
goals.

Here, we addressed general plant immunity by looking for
early transcriptional patterns that are predictive of disease out-
comes across a range of pathogen attack. Our hypothesis was that
plants have a common early signaling response to a range of
immunogenic signals that lead to different degrees of defense out-
put. We tested this hypothesis by training models on RNA-Seq
data from one pathosystem, and independently testing the
trained models on new input data from different pathosystems.
Such a model should only be predictive of disease outcome in the
new system if the model learned general patterns of early RNA-
Seq response indicative of final disease outcome. We further
refined our approach, and addressed the underlying biology, by
identifying 10 subsets of host genes using feature selection techni-
ques in order to train the ML models with fewer parameters. A
significant finding from this research is that ML models trained
using only a fraction of the total host transcriptome, from 0.5%
to 15% of total genes, were able to accurately predict disease out-
comes across fungal and bacterial pathosystems, including both
necrotrophic and biotrophic pathogens. This is important
because many ML models do not perform well on new datasets,
showing a lack of generalization. We interpret this predictive per-
formance across diverse datasets to reflect a general disease-related
transcriptional response that was captured by the models. The
results indicate that different feature selection gene sets, that have
largely nonoverlapping membership, can independently provide
high-predictive power across diverse pathosystems. This result is
consistent with the idea of immune response canalization, and
that immune signaling is a robust network with many paths to a
similar response (Tsuda et al., 2009; Zhang et al., 2017). Another
interpretation is that given a high number of predictors (genes)
there are many combinatorial sets that can be used for predicting
the outcome. This does warrant caution from overinterpreting
the significance of a specific gene in a given gene set, as the result
may more broadly reflect important pathways, but the individual
gene may not be a major determinant of the outcome. The appli-
cations of ML to large biological datasets remains an active area
of investigation and much work is needed to understand the lim-
its of interpretation.

There are many novel aspects to our ML interrogation of the
plant immune response. Our approach overcomes general limita-
tions for the most common analysis pipelines, such as differential
gene expression (DGE), cluster or module analysis, and network
construction utilizing simple co-expression (i.e. correlation). Such
approaches fail to capture nonlinear relationships, have limited
predictive power, and have limited generalizability. For instance,
commonly used DGE simply reports transcript levels that are
higher or lower between conditions, but the approach fails to inte-
grate patterns or relationships between transcripts, which collec-
tively account for a response of interest. Gene co-expression
networks integrate relationships between transcripts, but networks
constructed using linear correlations will miss nonlinear relation-
ships and the approach assumes that transcripts with similar

patterns are functional related. By contrast, ML models can iden-
tify more diverse transcriptional patterns that collectively corre-
spond to phenotype development. The ML models employed here
capture nonlinear dynamics, are not limited to identifying tran-
scriptional outliers, and inherently integrate multigenic patterns.
Our approach utilized disease classes instead of continuous scale
disease measurements so that models could be applied across
pathosystems with diverse disease phenotypes. The use of classifica-
tion can also aid interpretability over a continuous scale that may
require expert knowledge of the pathosystem. Classification sys-
tems are also more robust to outliers in training data as the predic-
tion is not influenced by the magnitude of the data. A drawback of
classification is the loss of information through discretization, in
which different measurements are combined into a single class.
Our approach to use 10 disease classes helped to balance informa-
tion loss with generalization across systems, and our use of a 1-class
error assessment reflects the likely small overall difference between
adjacent disease classes. We acknowledge that using a 1-class error
estimate over estimates model performance. If a research project
intends to distinguish or predict small differences in disease out-
comes, our models would not be appropriate. This is also largely a
reflection of the dataset used for model development. The dataset
was skewed to having a high number of observations in a disease
class in the range of one to three. We showed through analysis that
the models performed much better than randomly assigning a dis-
ease outcome, demonstrating the utility of ML for this application,
but the issue of data balance is a challenge for biological data. Our
approach was limited to using only host transcriptional data for
cross-pathosystem predictions. Future efforts to use more diverse
training data organized in such a manner that allows more biologi-
cal diversity and microbial data to be included in the prediction
could further aid in generalization and understanding. Our results
clearly show that ML is a valuable modeling approach that can
identify salient patterns in large data to make predictions. An inter-
esting finding is how robust the ML models were, as evidenced by
high-prediction accuracy even with 25% mislabeled data, using
only a fraction of the transcriptome, and across diverse pathosys-
tems. The underlying basis for this robustness is not clear, but
could be related to both the biology of plant–microbe interactions
and the use of ML on large datasets. The polygenic nature of plant
disease manifestation means that a substantial number of tran-
scripts collectively contribute to the outcome, and therefore, a large
combinatorial set of transcriptional patterns can each be used for
prediction. Feature selection may help identify key genes or path-
ways, but it may also remove key hubs important for a particular
disease outcome. We also note that while our models performed
better than null control models, average performance across diverse
trials often showed average accuracy measurements in the mid to
upper seventies. To increase accuracy, training models on smaller
gene sets with known direct impact for a specific system, higher
resolution disease phenotyping, and deeper sampling may produce
higher accuracy models. However, this may be at the cost of model
generalization across pathosystems. The development of a very
large pretrained model using diverse data, followed by specific
pathosystem fine-tuning may provide a solution that balances these
considerations. The transfer of trained models across biological
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systems or questions is underdeveloped, but is important in order
to leverage large datasets, especially from model systems. Future
efforts and more sophisticated methods of transfer learning will
aid in ML for small datasets and may provide a novel means to
compare and contrast systems. Along with advancements in com-
puter science, further developing experimental approaches will be
important, such as using a pan-genome approach or the develop-
ment of a meta-pathosystem design, in which multiple species are
used in data collection for model development. A further consid-
eration for future research is the use of transcriptional data from
nonbiotic interactions to create a ‘noninfected’ class, or other
approaches to create null-models to aid in interpretation or gene
identification.

Another contribution of this research is demonstrating how to
link biological questions to the deployment of ML to enhance
our understanding and interpretation. A concern for ML in biol-
ogy is the identification of biologically irrelevant patterns. This
can occur during model training, where patterns particular to a
given dataset are learned (i.e. overfit). We reasoned that if our
ML models were overfit to A. thaliana–B. cinerea interactions,
they would have limited predictive power for the new pathosys-
tem data. Since this was not the case, our conclusions is that
models that performed well across pathosystems, trained on fea-
ture selection gene sets, reflect biologically meaningful patterns
for general plant response to infection. These results provide
insights into the biology of plant–microbe interactions. For
instance, while the best feature selection approaches did not iden-
tify the same genes, they did identify similar GO biological pro-
cesses. This again highlights the robust nature of the immune
systems, that many genes making up a pathway response play an
important role in disease development. It was also quite striking
how many of the most significantly overrepresented GO-term
biological pathways were related to response to stress, biotic,
abiotic, and external stimulus. This indicates that the feature
selection techniques were not identifying statistical noise in the
data, but accurately identifying biologically relevant genes. This
likely contributes to the models being able to predict disease
across the various pathosystems. This point is highlighted by the
XGB ML feature selection set identifying AtMIN7 as an impor-
tant gene from the A. thaliana–B. cinerea training data. This gene
was originally identified as a target of a P. syringae type three
secreted effector (Nomura et al., 2011), but has been shown to
more broadly impact plant disease development to fungal patho-
gens as well (Machado Wood et al., 2021), possibly through its
role in leaf cuticle or stomatal development (Zhao et al., 2020).
The identification of AtMIN7 from a fungal infection datasets
highlights that the plant immune system evolved to defend
against all classes of pathogens, and while there are specific
responses, there is also substantial molecular overlap between
host responses to diverse pathogens. This represents a conceptual
shift that can help identify pathways and networks for improve-
ment to develop more general and robust plant immune
responses. Another example is the identification of genes involved
in phosphate response. The phosphate starvation pathway is a
key network regulating plant response and interaction with
mycorrhizal symbionts (Shi et al., 2021), and has more recently

been implicated as a key hub coordinating nutrition and defense
responses and community membership of the root microbiota
(Castrillo et al., 2017). The interaction between phosphate
response and defense appears to be molecularly integrated by two
key proteins, Phosphate Transporer1 (PHT1) and the
receptor-like cytoplasmic kinase Botrytis-Induced Kinase 1
(BIK1) (Dindas et al., 2022). Plant phosphate response has even
been identified as contributing to resistance to insect herbivory
through induction of the jasmonate pathway (Khan et al., 2016).
Further understanding and exploiting key pathways that can
broadly impact plant growth and development are critical to
future crop improvement. This research highlights that ML and
big data are important tools to provide insights and generate
hypotheses. Future research to understand how identified, but
uncharacterized genes, are related to plant immunity is important
to broaden our understanding of general plant immunity and
provide additional breeding targets for crop improvement.

There is increasing interest in predictive biology and engi-
neered systems to benefit society. We provide here an example of
mining publicly available data to understand general components
of plant disease development. This approach is general and scal-
able, allowing for the interrogation of other datasets and integra-
tion of new data as it becomes available. It will be of great
interest to go from predicting disease outcomes from RNA-Seq
to predicting general disease outcome from DNA sequence.
Results presented here further our understanding of complex
plant–microbe interactions and offer a framework for future
research.
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Catalá R, Salinas J, Yanovsky MJ, Staiger D, Mateos JL. 2024. Arginine

methylation of SM-LIKE PROTEIN 4 antagonistically affects alternative

splicing during Arabidopsis stress responses. Plant Cell 36: 2219–2237.
Altman N, Krzywinski M. 2018. The curse(s) of dimensionality. Nature Methods
15: 399–400.

Aprianto R, Slager J, Holsappel S, Veening J-W. 2016. Time-resolved dual

RNA-seq reveals extensive rewiring of lung epithelial and pneumococcal

transcriptomes during early infection. Genome Biology 17: 198.
Badet T, Voisin D, Mbengue M, Barascud M, Sucher J, Sadon P, Balagué C,
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