
Signal Temporal Logic-Guided Apprenticeship Learning

Aniruddh G. Puranic, Jyotirmoy V. Deshmukh and Stefanos Nikolaidis

Abstract— Apprenticeship learning crucially depends on ef-
fectively learning rewards, and hence control policies from user
demonstrations. Of particular difficulty is the setting where the
desired task consists of a number of sub-goals with temporal
dependencies. The quality of inferred rewards and hence
policies are typically limited by the quality of demonstrations,
and poor inference of these can lead to undesirable outcomes.
In this paper, we show how temporal logic specifications that
describe high level task objectives, are encoded in a graph to
define a temporal-based metric that reasons about behaviors
of demonstrators and the learner agent to improve the quality
of inferred rewards and policies. Through experiments on a
diverse set of robot manipulator simulations, we show how
our framework overcomes the drawbacks of prior literature by
drastically improving the number of demonstrations required
to learn a control policy.

I. INTRODUCTION

Recent advances in robotics have led to the development

of algorithms that extract control policies for autonomous

agents from human demonstrations via the paradigm of

learning-from-demonstrations (LfD). An interesting sub-area

of LfD is the use of demonstrations alongside reinforcement

learning (RL) to either (i) initialize policies for the RL agent

[1] via behavior cloning (BC) [2] or (ii) infer rewards using

inverse RL (IRL) [3] for tasks from which policies can be

extracted - apprenticeship learning via IRL [4]. However,

designing rewards for Markov Decision Processes (MDPs)

[5] is non-trivial and typically requires expert knowledge

in designing reward functions that can ensure safety and

efficiency in the extracted RL policies. More importantly, for

robots to be robust to perturbations in the environment, it is

crucial to capture the overall goals/intentions of demonstra-

tors, i.e., via IRL, rather than merely mimicking them [4].

Our work draws inspiration from Apprenticeship Learning

(AL) [4] to learn both rewards and policies.

A drawback of AL is that it relies on demonstrations

being optimal, which is seldom the case in real-world sce-

narios. More recent IRL and BC-based methods that learn

from suboptimal demonstrations [6]–[10] measure optimality

or performance based on statistical noise deviation from

the true/optimal demonstrations. However, such noise-to-

performance measures are extracted empirically and hence

The authors are with the Department of Computer Science, Univer-
sity of Southern California, USA. Email: {puranic, jdeshmuk,
nikolaid}@usc.edu.

The authors gratefully acknowledge the support from the National
Science Foundation (NSF) under the following grants: CCF-2048094, CNS-
2039087, CNS-1932620, and CCF-1837131, support from Toyota R&D and
Siemens R&D through the USC Center for Autonomy and AI, support from
the USC Airbus Institute for Engineering Research and partial support from
the Agilent Early Career Professor Award.

lack formal reasoning that can explain the quality of be-

haviors. Furthermore, as the core reward-inference algorithm

in AL uses IRL, the rewards are inherently Markovian,

and they do not account for temporal dependencies among

subgoals in demonstrations. Research in reward design [11],

[12] discusses the need for non-Markovian reward represen-

tations, especially in time-dependent multi-goal RL settings.

Such non-Markovian rewards are typically designed using

spilt-MDPs [13] and reward machines [14], [15], which

require increasing the state and/or action spaces of the MDPs

significantly thereby increasing the space and computational

complexities for the underlying RL algorithms.

To address these limitations, our prior work [16], [17] has

proposed to use Signal Temporal Logic (STL) to define high-

level tasks, and evaluate and rank demonstrations to infer

rewards. The semantics of STL measure the quality/fitness,

which is the degree of task satisfaction by demonstrations.

This facilitates holistic temporal-based ranking of demon-

strations and agent behaviors to formulate non-Markovian

rewards. Our LfD-STL framework can learn from only a

handful of even imperfect/suboptimal demonstrations, with-

out the need to augment the MDP spaces. It has shown

to significantly outperform state-of-the-art IRL methods in

terms of reward quality, number of demonstrations required

and safety of the learned policy. It can also be applied

to stochastic and continuous spaces to extract rewards and

behaviors consistent with the task specifications. Our recent

work proposed PeGLearn [18] to automatically infer non-

Markovian rewards for tasks comprising multiple STL objec-

tives, addressing the representation issues discussed in [12].

PeGLearn uses directed graphs to create a partial ordering of

specifications to produce a single graph - performance graph

- that holistically captures the demonstrated behaviors.

While the LfD-STL framework with PeGLearn can offer

assurances in safety of the learned rewards and policy, it does

not explicitly reason about optimality of inferred rewards

and performance of the learned RL policy. The reason being

that LfD-STL is an open-loop framework where the inferred

rewards are fixed and are not guaranteed to be optimal

without any exploration. Without feedback from agent ex-

ploration, it may be impossible to discover better behaviors.

We aim to address this issue by using the performance graph

as a metric, which we refer to as the performance-graph

advantage (PGA) to guide the RL process. We propose the

AL-STL framework that addresses this issue with LfD-STL,

by integrating closed-loop learning wherein, both the reward

function and policy are updated iteratively. PGA can be

interpreted as the quantification of the areas for improvement

of the policy, and is optimized alongside appropriate existing

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from IEEE Xplore. Restrictions apply.

RL algorithms. This enables reasoning about possibly new

behaviors that were not demonstrated before, but still satisfy

the task specifications. The key insight of our work is that a

cumulative/collective measure of (multiple) task objectives

along with exploration in the neighborhood of observed

behaviors guides the refinement of rewards and policies

that can extrapolate beyond demonstrated behaviors. Our

contributions are summarized as follows:

1) We propose AL-STL, a novel successor to the LfD-STL

framework, introducing closed-loop learning by improving

both the reward function and policy significantly.

2) We quantify STL-based performance graphs learned via

PeGLearn in terms of an advantage function to guide the

RL training process, and formally reason about policy

improvements when demonstrations are suboptimal.

3) We evaluate our approach on a variety of robotic manip-

ulation tasks and discuss how our framework outperforms

state-of-the-art literature.

II. RELATED WORKS

Learning-from-demonstrations (LfD) to extract control

policies can be broadly classified into two main categories

based on the underlying intentions: (i) imitation learning

(IL), such as behavior cloning (BC) via supervised learning

[2], where the objective is to directly mimic the actions of the

demonstrators, and (ii) inverse reinforcement learning (IRL)

[3], [4], [6], where the objective is to characterize the overall

goal or intent of the demonstrators via cost/reward functions.

Learning rewards via entropy-enabled IRL [6], [7], [19],

[20] regard suboptimal demonstrations as noisy deviations

from the optimal statistical model, and hence require ac-

cess to many demonstrations. Learning better policies from

suboptimal demonstrations has been explored in [10]. This

method injects noise into trajectories to infer a ranking, how-

ever it synthetically generates trajectories via BC which has

issues with covariate shift and induces undesirable bias. This

is addressed in [9] by defining a relation between injected

noise and performance. However, this noise-performance re-

lationship is empirically derived and lacks formal reasoning.

Score-based IRL [8] uses expert-scored trajectories to learn

a reward function, relying on a large set of nearly-optimal

demonstrations and hence generating scores for each of them.

Additionally, rewards learned via IRL-based methods are

Markovian by nature and typically suited to single-goal tasks,

as discussed in prior work [16], [17].

In the area of LfD with temporal logics, the closest to

our work is a counterexample-guided approach using proba-

bilistic computation tree logics (PCTL) for safety-aware AL

[21]. Our work differs from it in two significant ways: (i)

we use STL which is applicable to continuous spaces and

offers timed-interval semantics, which are lacking in PCTL,

and (ii) the reward inference algorithm in [21] relies on

IRL, while ours is based on LfD-STL [18], which greatly

improves sample complexity, accuracy and inference speed.

Trade-offs for multi-objective RL have been explored in [22]

by explicitly defining specification priorities beforehand. Al-

ternate approaches convert specifications to their equivalent

automaton and augment it to the MDP states [23]–[25].

In our work, we do not alter the MDP structure, thereby

avoiding the drawbacks of increased space and computational

complexities of augmented MDPs.

III. PRELIMINARIES

A. Mathematical Notations

The interactions between the agent (robot) and the envi-

ronment are modeled with a Markov Decision Process.

Definition 3.1 (Markov Decision Process (MDP)): An

MDP is given by a tuple M = ïS,A, T, Rð where

S ¢ R
k is the state space and A ¢ R

l is the action

space of the system; T is the transition function, where

T (s, a, s′) = Pr(s′ | s, a); R is a reward function that

typically maps either some s ∈ S , state-action pair S × A
or some transition S ×A× S to R.

The goal of RL is to find a policy π : S × A → [0, 1]
that maximizes the total (discounted) reward from perform-

ing actions on an MDP, i.e., the objective is to compute

max
∑∞

t=0 γ
trt, where rt is the output of the reward function

R at time t and γ is the discount factor. In this paper, we

assume full observation of the state space for MDPs.

Definition 3.2 (Trajectory or Episode Rollout): A trajec-

tory τ in an MDP is a sequence of state-action pairs of finite

length L ∈ N by following some policy π from an initial state

s0, i.e., τ = ïs0, a0, · · · , sLð, si ∈ S and ai ∈ A.

In our LfD setting, the demonstrations are collected on the

robot itself (e.g., via teleoperation or kinesthetic teaching), so

the observations are elements of the MDP state and action

spaces. Hence, we interchangeably refer to trajectories or

rollouts as demonstrations. For intuition, we use demonstra-

tions to refer to rollouts provided to the RL agent as inputs,

and represent a demonstration by ξ.

Prior work in LfD [16]–[18] uses Signal Temporal Logic

(STL) [26], [27] to define high-level tasks.

Signal Temporal Logic (STL): STL is a real-time logic,

generally interpreted over a dense-time domain for signals

whose values are from a continuous metric space (such as

R
n). The basic primitive in STL is a signal predicate µ that

is a formula of the form f(x(t)) > 0, where x(t) is the tuple

(s, a) of the trajectory x at time t, and f maps the signal

domain D = (S × A) to R. STL formulas are then defined

recursively using Boolean combinations of sub-formulas, or

by applying an interval-restricted temporal operator to a sub-

formula. The syntax of STL is formally defined as follows:

ϕ ::= µ | ¬ϕ | ϕ ' ϕ | GIϕ | FIϕ | ϕUIϕ. Here, I = [a, b]
denotes an arbitrary time-interval, where a, b ∈ R

g0. The

semantics of STL are defined over a discrete-time signal x

defined over some time-domain T. The Boolean satisfaction

of a signal predicate is simply True (¦) if the predicate is

satisfied and False (§) if it is not, the semantics for the

propositional logic operators ¬,' (and thus (,→) follow the

obvious semantics. The following behaviors are represented

by the temporal operators:

• At any time t, GI(ϕ) says that ϕ must hold for all

samples in t+ I .

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from IEEE Xplore. Restrictions apply.

• At any time t, FI(ϕ) says that ϕ must hold at least

once for samples in t+ I .

• At any time t, ϕUIψ says that ψ must hold at some

time t′ in t+ I , and in [t, t′), ϕ must hold at all times.

The quantitative (robustness) semantics of STL, defined

in [27], [28], capture the performance of trajectories. Di-

rected acyclic graphs are used to encode the preferences or

performance of the demonstrators. Such graphs provide a

convenient way to interpret reward functions for RL tasks.

Definition 3.3 (Directed Acyclic Graph (DAG)): A

directed graph is an ordered pair G = (V,E) where V is a

set of elements called nodes and E is a set of ordered pairs

of nodes called edges, which are directed from one node to

another. An edge e = (u, v) is directed from node u to node

v. A DAG is a directed graph that has no directed cycles,

i.e., it can be topologically ordered.

A path x ; y in G is a set of nodes starting from x
and ending at y by following the directed edges from x. The

ancestors of a node v is the set of all nodes in G that have a

path to v. Formally, ancestor(v) = {u | u; v, u ∈ V }. In

our setting, we use a weighted DAG, where each node v ∈ V
is associated with a pair of real numbers - value and weight

of the node, represented by ν(v) and w(v) respectively. Each

edge (u, v) ∈ E is associated with a real number - weight

of the edge, represented by w(u, v). Note the difference in

number of arguments in these notations.

B. Reward Inference from Demonstrations and STL

In LfD-STL, the reward function R of the MDP is

unknown, instead, it is presented with a finite set of high-

level task descriptions in STL Φ = {ϕ1, ϕ2, · · · , ϕn} and

a finite set of demonstrations Ξ = {ξ1, ξ2, · · · , ξm}, from

which the reward function and policy must be inferred.

LfD-STL Framework: For a specification ϕ ∈ Φ and

a demonstration ξ ∈ Ξ defined as in Def. 3.2, the value

ρ(ϕ, ξ, t) represents how well the demonstration satisfied the

given specification from time t, which is the quality of the

demonstration. To evaluate the entire trajectory, the robust-

ness is defined at t = 0, i.e. ρ(ϕ, ξ, 0) and is implicitly de-

noted by ρ(ϕ, ξ). For a demonstration ξ, we have an array of

evaluations over Φ, given by ρ̂ξ = [ρ(ϕ1, ξ), · · · , ρ(ϕn, ξ)]
T .

Then, for each ξ ∈ Ξ, a local DAG Gξ is initially

constructed via the PeGLearn algorithm [18], wherein, (i)

each task specification ϕ ∈ Φ is represented by a node,

with the value of the node indicating the fitness of ξ for

ϕ, i.e., ν(ϕ) = ρ(ϕ, ξ), and (ii) the edges, along with their

corresponding weights encode information about the prefer-

ences or performance between every pair of specifications

as exhibited by the behavior. For any edge e(ϕi, ϕj), its

weight, defined by ν(ϕi) − ν(ϕj), indicates a measure by

which the value of ϕj must be increased to match the value

of ϕi. As an edge in Gξ is always directed from a higher-

valued node to a lower-valued node, the edge weight is

always positive. Absence of an edge between a pair of nodes

indicates a zero-weighted edge. Note that this local DAG

is applicable to all trajectories that conform to Def. 3.2.

Thus, PeGLearn maps a trajectory τ and Φ to a DAG Gτ .

In our work, since specifications can be of different scales

(e.g., a specification that monitors acceleration, while another

monitors distance), we assume that the robustness bounds

are known apriori and we normalize/scale the robustness

values to be bounded to some [−∆,∆]. Scaling of robustness

can be achieved with piece-wise linear functions or smooth

semantics [29]. In addition to extracting a DAG for each

trajectory, PeGLearn also captures the holistic behavior of a

set of trajectories by aggregating their corresponding local

DAGs into a global DAG G. The nodes in G are weighted

to capture the relative pair-wise priorities of specifications

based on the node ancestors or dependencies via w(ϕ) =
|Φ| − ancestor(ϕ), illustrated with an example in Fig. 1.

ϕ1w(ϕ1) = 5− 0 = 5 ϕ2

w(ϕ2) = 5− 1 = 4

ϕ3w(ϕ3) = 5− 1 = 4 ϕ4 w(ϕ4) = 5− 0 = 5

ϕ5

w(ϕ5) = 5− 2 = 3

δ12

δ
1
3

δ25

Fig. 1. Weights on nodes (specifications) in a DAG.

The node weights are used to induce bias towards speci-

fications during inference of the reward function and hence

the RL policy. Prior literature in behavior modeling with

reward functions [6], [7], [9] has shown that the performance

variations in trajectories obey an exponential form. So, the

weights of the specifications from the DAG are normal-

ized with softmax to ensure
∑n

i=1 w(ϕi) = 1. We now

have a weight vector wΦ = [w(ϕ1), w(ϕ2), · · · , w(ϕn)]
T .

Each demonstration is then assigned a cumulative robust-

ness/fitness value based on these weights, given by rξ =
ρ̂ξ

T · wΦ. To generalize, all trajectories are associated with

a corresponding performance DAG and cumulative fitness.

Once the cumulative fitness is assigned to each demonstra-

tion, the demonstrations are ranked based on their rξ and

the rank-scaled rewards are propagated to the observations

via the reward inference method described in [17]. In short,

the method assigns monotonically increasing rewards (i.e.,

partial cumulative fitness) to the observed states and/or

actions in demonstrations that satisfy the specification, while

negative rewards are assigned to states in demonstrations that

violate the task specifications.

IV. METHODOLOGY

A. Problem Formulation

For an MDP\R, we are given: (i) a finite dataset of demon-

strations Ξ = {ξ1, ξ2, ..., ξm} and (ii) a set of specifications

Φ = {ϕ1, ϕ2, ..., ϕn} unambiguously expressing the tasks to

be performed. The objective is to infer rewards and extract a

behavior or control policy for an agent such that its behavior

is at least as good or better than the demonstrations, and

maximizes the satisfaction of the task specifications. The

satisfaction of task specifications is conveyed through the

learned reward function that the RL agent seeks to maximize.

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from IEEE Xplore. Restrictions apply.

More formally, consider a policy π under the reward

function R that captures the degree of satisfaction of Φ. Let

τ indicate a trajectory obtained by a rollout of π in an RL

episode. Then, our objective is to find

π∗, R∗ = argmax
π,R

Eτ∼π

n∑

i=1

ρ(ϕi, τ)

Since every trajectory τ is characterized by its associated

performance DAG Gτ , where the value of a node indicates

the robustness for the specification it represents (Sec. III-B),

the summation term is the sum of all nodes. We thus define

VSτ
.
=

∑n

i=1 ν(ϕi) =
∑n

i=1 ρ(ϕi, τ). Then the objective is:

π∗, R∗ = argmax
π,R

Eτ∼π[VSτ]

An issue with this formulation occurs when there are

multiple task specifications (n > 1). This results in multi-

objective learning, which can introduce conflicting specifi-

cations and hence requires optimal trade-offs. For example,

in autonomous driving or robot manipulation, consider the

task of reaching a goal location as quickly as possible while

avoiding obstacles. Depending on the obstacle locations,

performing highly safe behaviors (i.e., staying as far away

from obstacles as possible) might affect the time to reach

the goal. Similarly, a behavior that aims to reach the goal in

the least time will likely need to compromise on its safety

robustness. We thus need to find the behaviors that not only

maximize the total robustness, but are also maximally robust

to each task specification. We illustrate this with Example 1.

Example 1: Consider a task with three specifications Φ =
{ϕ1, ϕ2, ϕ3}, and consider two trajectories τ1 and τ2 with

robustness vectors [3, 0, 1] and [2, 1, 1], respectively. The

reward function inferred with τ1 will have the weight for ϕ1

dominate ϕ2 due to the exponential softmax component

(Sec. III-B), while the reward function for τ2 will have more

uniform weights over all specifications, albeit with a little

bias towards ϕ1 versus others. Thus, while both have the

same VS (= 4), τ2 is holistically more robust w.r.t. all the

task specifications due to better trade-offs.

By this reasoning, it is more desirable to not only max-

imize the overall sum, but also maximally satisfy the indi-

vidual specifications with trade-offs. So, how do we ensure

that optimal trade-offs are achieved while maximizing the

main objective? By observation, it is straight-forward to

deduce that the sum of absolute pair-wise differences in

robustness of specifications must be minimized. This sum

is indeed exactly encoded by the edges of our trajectory

DAG (performance graph) formulation, which is a unique

characteristic. Recall that the edges between two nodes

(specifications) indicate the difference in their robustness

values (performance). We thus capture the optimal trade-

offs for a trajectory τ with the sum of all edges in its

corresponding DAG Gτ , which is given by ESτ =
∑

e∈Gτ

e;
each edge is created as in Sec. III-B. Both VS and ES can

be computed in linear time using the same DAG, without

additional computational overhead. One might wonder if

merely minimizing ES is sufficient for finding the optimal

trade-offs. We provide a counterargument in Example 2.

Example 2: Consider the same task from Example 1, but

with two different trajectories τ3 and τ4 with robustness

vectors [1, 1, 1] and [−1,−1,−1], respectively. Since all

the specifications are equally weighted, the ES for both

trajectories are the same (= 0). But clearly, τ3 is more robust

than τ4 due to the higher VS. Furthermore, consider another

trajectory τ5 with vectors [−1, 2,−1], whose ES is 6 (i.e., an

edge weight is the absolute pair-wise difference). Between

τ4 and τ5, the RL agent will prefer τ4 due to the lower ES,

which is undesirable.

From both examples, we conclude that the objective is to

maximize VS while minimizing ES. Our new formulation is,

π∗, R∗ = argmax
π,R

Eτ∼π(VSτ − ESτ)

As both VS and ES are dependent on each other, this

optimization trade-off can be written as:

π∗, R∗ = argmax
π,R

Eτ∼π(VSτ − λ · ESτ) (1)

The constant λ ∈ [0, 1) acts as a regularizer to penalize

behaviors with dominant specifications as in Example 1, and

is a tunable hyperparameter. The formulation is very intuitive

because we want to extract the optimal DAG which has no

edges. Recall that edges are added only if there is a difference

between the node values (i.e., robustness). Ideally, if the

policy is optimal, then every rollout has the same maximum

robustness for all Φ and so no edges are created. This rep-

resentation offers the unique ability of providing an intuitive

graphical representation of behaviors for interpretability [18],

and formulating an optimization problem. As the robustness

of each specification is bounded in [−∆,∆], the VS for any

trajectory is bounded to [−n∆, n∆]. At either limit, the ES

is 0, indicating that all nodes in the resulting global DAG

G have equal weights (= 1/n) at the extrema. We will

refer to the term (VSτ − λ · ESτ) as performance graph

advantage (PGA). PGA indicates the scope for improvement

(extra possible rewards) under the current reward function

and policy. During RL, this PGA can be either used as a

bonus term alongside the episode returns or augmented in

the gradient ascent formulation.

B. AL-STL Framework

We now describe our proposed framework, shown in

Fig. 2, that closes the RL training loop to extract both the

reward function and policy that optimally satisfy Φ, resem-

bling apprenticeship learning. The corresponding pseudocode

is given in Alg. 1. Analogous to the replay buffer in RL, we

introduce storage buffers for the reward model: (i) frontier F
containing the best episode rollouts of the agent so far and (ii)

candidate C containing the rollouts under the current reward

and policy with PGAs. Initially, the frontier is populated

with demonstrations (line 2) from which the global DAG

G and hence the reward function are extracted via PeGLearn

[18] (line 5). RL is performed with the learned rewards and

each rollout is associated with its PGA, that is optimized

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from IEEE Xplore. Restrictions apply.

Task
APPRENTICESHIP LEARNING WITH STL MONITORING

STL Specifications

Φ

Demonstrations

Ξ

Frontier F

ϕ1 ϕ2

ϕ3 ϕ4

ϕ5

δ12

δ
1
3

δ
25

PeGLearn Global Graph G

RL with PGA

Update Candidate C

Final Reward R∗

+ Policy π∗

collect

rollouts

Fig. 2. AL-STL Framework with Performance-Graph Advantage.

either in the episode returns or in the gradient ascent. Upon

updating the policy, multiple rollouts are collected in the

candidate buffer (loop on line 8), and the frontier is updated

by comparing the overall PGAs of both the frontier and

candidate based on a strategy (line 11) that we describe in

Sec. IV-B.1. This loop, shown by the yellow background

in Fig. 2, continues for a finite number of cycles or until

the frontier can no longer be updated. At this stage, the

reward and policy representing the frontier optimally satisfy

Φ, which we discuss in Sec. IV-B.2.

Algorithm 1: STL-Guided Apprenticeship Learning

Input: Ξ := demonstrations; Φ := specifications
Result: R∗ := reward function; π∗ := a policy

1 begin
2 F ← Ξ // Initialize frontier

3 converged = §
4 while ¬converged do
5 R← PeGLearn(F ,Φ) // reward

function from rollouts in F
6 C ← ∅ // Initialize candidate

7 π ← perform RL with PGA

// Rollout k trajectories from π
and add them to C

8 for i← 1 to k do

9 τi ← ï(st, at ∼ π(st))ð
T

t=0

10 C ← C ∪ τi

11 converged← Update(C,F)

12 return R∗ = R, π∗ = π

1) Frontier Update Strategies: F and C contain rollouts

that are associated with their PGAs. We define an operator

» ∈ {min,max,mean}, and therefore, the metrics F̂
.
=

»{PGA(τ)|τ ∈ F} and Ĉ
.
= »{PGA(τ)|τ ∈ C}. To update

the frontier, we propose the strategic merge operation as:

(a) We first compare whether Ĉ > F̂ , i.e., the trajectories with

the newly-explored PGA are better than the current best

trajectories in F . The operator » acts as the criterion for

filtering bad-performing trajectories.

(b) If so, we retain the trajectories in F ∪ C whose PGAs

are greater than F̂ and discard the others; resulting tra-

jectories form the new F . Formally, this is given by

F ← {τ |PGA(τ) > F̂ , τ ∈ F ∪ C}. That is, quality of

the worst » criteria-based rollouts in F is improved.

(c) Otherwise, F already has the best trajectories so far and

is left unaltered. If the statistic » for F and C are

similar (i.e., their difference is below some threshold) upon

sufficient exploration, then convergence is achieved.

In theory, with unbounded memory, the frontier would be

able to keep all the best-performing trajectories. For practical

implementations, both buffers are bounded (say p), so we

keep the top-p trajectories in the frontier in our experiments.

The strategic merge is not the only way to maintain the

buffer, however, it offers some performance guarantees as we

show in Sec. IV-B.2. One could consider a naı̈ve approach

of simply merging all the trajectories in both buffers without

any filtering criteria. Alternately, one could also replace all

the trajectories in F with those in C, which also exhibits

monotonic improvement in the RL policy.

2) Policy Improvement Analysis: In order to analyze

Alg. 1 and show policy improvement, we make certain

assumptions about the task and RL models:

(a) The specifications accurately represent the task.

(b) The task can be completed, regardless of optimal behavior,

with the given MDP configurations and task specifications.

Our algorithm requires at least one demonstration that can

satisfy all specifications, but is not required to be optimal.

(c) The RL agent always has an active exploration component

(stochastic policy or an exploration rate) to cover the

MDP spaces. This not only helps in discovering new

policies, but also helps learn more accurate reward models.

Theoretically, with infinite timesteps, the RL agent will

have fully explored the environment spaces to find the

optimal policy [5]. In practice, the timesteps are set to a

large finite value for majority coverage of the spaces.

Here, we describe how the strategic merge functionality

exhibits policy improvement. From Sec. IV-B.1, the new F
contains the set of trajectories given by F = {τ |PGA(τ) >
F̂ , τ ∈ F ∪ C}. For the purpose of this proof, we will

consider » to be the mean. Then, F̂ =
∑

τ∈F
PGA(τ)

|F| and

Ĉ =
∑

τ∈C
PGA(τ)

|C| . We know that the F is updated in the

Update function when Ĉ > F̂ . Let F̂ ′ be the mean of the

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from IEEE Xplore. Restrictions apply.

intermediate set F ′ = F ∪ C. Then,

F̂ ′ =

∑
τ∈F ′ PGA(τ)

|F ′|
=

∑
τ∈F PGA(τ) +

∑
τ∈C PGA(τ)

|F|+ |C|

=
|F| F̂ + |C| Ĉ

|F|+ |C|
= F̂ +

|C| k

|F|+ |C|
(2)

since Ĉ > F̂ , we can write this as Ĉ = F̂ + k, where k > 0.

Now, let F̂ ′′ be the new mean after filtering l < (|F|+ |C|)
rollouts whose PGA f F̂ in the merged set F ′.

F̂ ′′ =
|F ′| F̂ ′ − Σ{PGA(τ)|τ ∈ F ′,PGA(τ) f F̂}

|F ′| − l

In the worst case, all l trajectories have PGAs at most F̂ .

F̂ ′′ g
|F ′| F̂ ′ − lF̂

|F ′| − l
=

(|F|+ |C|)F̂ ′ − lF̂

|F|+ |C| − l

F̂ ′′ g F̂ +
|C| k

|F|+ |C| − l
(substituting from (2)) (3)

As the cardinalities of both buffers F and C are non-zero,

the denominator (|F|+ |C|− l) > 0. Thus, in (3), the second

term is always positive, which proves that our algorithm

improves the policy and reward in each cycle, under the

exploration assumption. A special case of (3) is when F is

completely replaced by C, i.e., when all l trajectories belong

to F , then l = |F| and so, F inherits the higher mean

from C. The frontier remains unchanged when either the

demonstrations or the rollouts in F at the end of each training

cycle are optimal. We can apply similar reasoning to the other

operators for ». In the case of max, the frontier’s maximum

value will always inherit the maximum (i.e., the best rollouts)

from the candidate. For min, only the least-performance

trajectories are discarded and the second-to-least ones are

updated to be the new minimum in F . Since the upper-

bound of F is n∆, our method keeps improving the policy

towards this maximum. However, this does not guarantee

that the maximum value can always be achieved due to

several factors: conflicting specifications causing trade-offs,

environment configuration, solvability of the MDP under the

given specifications, etc.

3) Effect of Affine Transformations to Rewards: In prac-

tice RL is sensitive to hyperparameter settings, environment

stochasticity, scales of rewards and observations, and other

algorithmic variances [30]. Hence, in our experiments, we

normalize observations and rewards using affine transforms.

However, applying affine transformations to the reward func-

tion does not alter the optimal policy [31]. We also prove this

for basic scaling and shifting of the rewards by a constant

amount in the supplemental document [32].

V. EXPERIMENTS

Our proposed framework is evaluated on a diverse set of

robotic simulation tasks (Fig. 3): (i) placing an object at a

desired location, (ii) opening doors, (iii) safety-aware mobile

navigation and (iv) closing cabinets with a mobile manipu-

lator. In all experiments, the task specifications only monitor

the observed states and so, the rewards are a function of just

the states. The STL specifications are evaluated using RTAMT

[33]. The reward function is modeled by regression with

either fully connected neural networks or Gaussian processes.

All experiments are performed on an Ubuntu desktop with

an Intel®Xeon 8-core CPU and Nvidia Quadro RTX 5000

GPU. For each environment, m = 5 demonstrations are gen-

erated by training an appropriate RL agent under an expert

dense reward function. In these domains, every RL episode

features a unique/randomized target and hence the collected

demonstrations are unique (i.e., the states do not overlap.)

Additionally, these simulations implicitly model noise in the

environment which make it challenging to provide optimal

trajectories. Due to space restrictions, we provide details of

all hyperparameters in the supplemental document [32]. In

all tasks, unless explicitly stated, the frontier is updated by

completely replacing its contents with the candidate (i.e.,

special case of (3)) and we set |F| = |C| = 5. Furthermore,

in all tasks, the trained policy is evaluated on 5 random seeds,

drawn from the baselines for comparisons. For each seed,

20 trials are performed, thus totalling 100 test scenarios; the

mean success rates are then reported.

(a) Pick-and-Place (b) Door Opening

(c) Reach-Avoid (d) Cabinet Closing

Fig. 3. Overview of the robot simulation environments. The task in (d)
uses the Nvidia Isaac simulator.

a) Task - Placing Cube: A Franka Panda robot is

required to pick up a cube on a table (Fig. 3a) and place it

at the desired location [34]. Only 4 of the 5 demonstrations

were successful. The specifications are: ϕg := F(d < δ) and

ϕt := G(t < T), where d is the distance between the cube

and target poses, δ is a small threshold to determine success,

and T is the task-specific time in which the target must

be achieved. The specifications indicate that the distance

between the cube and desired pose is below a threshold

and the robot must do so as quickly as possible. The RL

agent used TQC [35] with HER [36] and achieved a training

success rate of 98% (Fig. 4a), and converges to a high

success rate after just 3 cycles. The resulting policy achieved

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from IEEE Xplore. Restrictions apply.

a success rate of 96% in the test trials. The task specification,

although minimalistic, is significantly challenging because it

only describes that the cube be placed at the desired pose.

In other words, the RL agent must learn the sequence of

elementary behaviors: reach, grasp and move to the desired

location while holding the cube, just from the 5 demonstra-

tions. Another remarkable finding in our work (shown in the

supplemental video), is that the policy learns to (i) correctly

pick the cube and place it at the target whenever the target

height is above the table and (ii) push/drag the cube when

the target is on the same table surface. This shows that our

algorithm combines RL exploration and graph advantage to

possibly learn specification-satisfying behaviors that were not

observed before. Under identical training conditions, with

the exclusion of reward model-specific hyperparameters, the

number of demonstrations used for this task in the baselines

that achieved comparable success rates, are: 100 for MCAC

[37], between 4 and 16 for OPRIL [38], 20 for goalGAIL

[39] and 50 for ROT [40].

b) Task - Opening Door: A Panda robot, mounted on a

pedestal (Fig. 3b), is required to open a door [41]. Only 3 of

the 5 demonstrations were successful. The task is successful

if the door hinge is rotated beyond θ = 0.3rad. The task

specifications consist of (i) reaching the door handle, (ii)

rotating the hinge beyond θ and (iii) completing the task

within T steps. The elementary behaviors to be learned are:

reaching the door handle, turning the handle to unlock the

door and pulling to open the door. This is a non-trivial

task for expert reward design as it must capture all these

elementary behaviors and compose them sequentially. Since

this is a more challenging task, the frontier was updated with

strategic merge, and the size of reward buffers were set to

20 to collect more rollouts. The RL agent used TQC and

was trained for 25 cycles to achieve a success rate of 98%
(Fig. 4b). In the evaluations, the resulting policy achieved a

success rate of 100%.

(a) Cube-Placing (b) Door Opening

Fig. 4. Summary of RL training for the object manipulation tasks.

We compare our work with two state-of-the-art baselines

MCAC [37] and OPIRL [38], which has shown to outper-

form maximum entropy and adversarial IRL-based meth-

ods. Under identical training conditions, while both these

methods successfully complete this task, MCAC used 100

demonstrations, while OPIRL used between 4 and 16. OPIRL

had significantly more variance (i.e., unstable learning) with

4 demonstrations compared to using 16. Furthermore, in

OPRIL, the method uses a substantially large reward buffer

size of 2 · 106 to compensate for the limited demonstrations,

while ours uses 2 · 104 (i.e., |F| = |C| = 20, each trajectory

of length 500), using 100x less memory. This indeed shows

our method is more efficient compared to IL and IRL.

c) Task - Safe Mobile Navigation: In this task (Fig. 3c)

[42], a mobile robot navigates to the goal while avoiding haz-

ards (red markers) as much as possible. A cost is incurred for

traversing a hazard, and the objective is to minimize this cost.

The distance to the goal and hazards are provided by Lidar

measurements and the observation space had 56 dimensions.

The task specifications are: (i) ϕg := F(
∨16

i=1(d
i
g < 0.1)),

where dig is the Lidar’s i-th distance measurement to the

goal, (ii) ϕs := G(cost < 1), where cost is the value

incurred when the risk-area Lidar detects that the robot is

too close to a hazard, and (iii) ϕt := G(t < T), where T is

the maximum episode time. The RL agent was trained using

PPO [43] for 5 · 106 steps over 25 cycles and the training

time was about 20 hours. The evaluations (Fig. 5a) showed

98% task success rate with 28% mean cost. Compared to

expert reward functions [42] and state-of-the-art IL method

SIM [44], our method was able to achieve identical task

success and cost rates, with 5x fewer demonstrations and

50% fewer training steps. Furthermore, both specifications

ϕg and ϕs have a length of 16, indicating that our method

is able to effectively accommodate lengthy specifications.

(a) Safety-Car (b) Isaac Drawer

Fig. 5. Evaluation results for safety-aware tasks.

d) Task - Cabinet Closing with Mobile-Manipulator:

In this task (Fig. 3d), a mobile-manipulator consisting of a

Panda arm mounted on a Fetch Robotics Freight mobile robot

platform, must close the cabinet drawer while minimizing

traversing an unsafe (red) zone. The observation space con-

sists of 57 dimensions, posing a challenge for reward models.

This simulation is built on the RL adaptation of Nvidia

Isaac Sim [45], which enables parallel (vectorized) training

environments. The specifications are similar to the safe-

navigation task, but with ϕg := F(drawery < 0.2), i.e., the

drawer must be closed (y-axis) within a 0.2 unit tolerance.

Only 4 of the 5 demonstrations succeeded the task. The

RL agent was trained using PPO on 400 parallel instances

for 107 steps over 10 cycles. Due to the highly vectorized

implementation, the training was completed within 1.5 hours.

It had a 100% success rate and 19% mean cost on the test

trials (Fig. 5b), similar to the policies from expert-designed

complex dense reward functions.

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSIONS

We developed AL-STL, a novel LfD framework, that uti-

lizes apprenticeship learning and STL task objectives to infer

rewards and policies simultaneously. AL-STL is a significant

advancement over prior LfD-STL by introducing closed-loop

learning that iteratively improves the quality of rewards and

policies. We proposed a graph-based optimization formalism,

performance graph advantage, which (i) provides a succinct

representation of multiple non-Markovian (temporal) task

specifications for quantitative and interpretable assessments

of agent behaviors, and (ii) guides the agent’s learning

process to maximally satisfy the task specifications and

perform optimal trade-offs. Through realistic simulation ex-

periments on mobile and manipulation robotic tasks, we have

discussed how our approach outperforms several state-of-the-

art methods in terms of sample and space efficiency. For

future, we propose to investigate diversity in demonstrations,

vision-based observations, prioritization of specifications in

trade-offs and, task and sim2real transfer-learning.

REFERENCES

[1] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in ICRA, 2018, pp. 6292–6299.

[2] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from obser-
vation,” in IJCAI, 2018, pp. 4950–4957.

[3] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement
learning,” in ICML, 2000, pp. 663–670.

[4] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in ICML, vol. 69. ACM, 2004.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion, 2nd ed. The MIT Press, 2018.

[6] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in AAAI, 2008.

[7] B. D. Ziebart, “Modeling purposeful adaptive behavior with the
principle of maximum causal entropy,” Ph.D. dissertation, Carnegie
Mellon University, USA, 2010.

[8] L. E. Asri, B. Piot, M. Geist, R. Laroche, and O. Pietquin, “Score-
based inverse reinforcement learning,” in AAMAS. ACM, 2016, pp.
457–465.

[9] L. Chen, R. R. Paleja, and M. C. Gombolay, “Learning from subop-
timal demonstration via self-supervised reward regression,” in CoRL,
2020.

[10] D. S. Brown, W. Goo, and S. Niekum, “Better-than-demonstrator
imitation learning via automatically-ranked demonstrations,” in CoRL.
PMLR, 2020.

[11] D. Abel, W. Dabney, A. Harutyunyan, M. K. Ho, M. Littman,
D. Precup, and S. Singh, “On the expressivity of markov reward,”
in NeurIPS, 2021.

[12] S. Pitis, D. Bailey, and J. Ba, “Rational multi-objective agents must
admit non-markov reward representations,” in NeurIPS ML Safety

Workshop, 2022.

[13] D. Abe, A. Barreto, M. Bowling, W. Dabney, S. Hansen, A. Harutyun-
yan, M. K. Ho, R. Kumar, M. L. Littman, D. Precup, and S. Singh,
“Expressing non-markov reward to a markov agent,” in RLDM, 2022.

[14] A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A.
McIlraith, “Ltl and beyond: Formal languages for reward function
specification in reinforcement learning,” in IJCAI, 2019.

[15] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith, “Re-
ward machines: Exploiting reward function structure in reinforcement
learning,” J. Artif. Int. Res., vol. 73, 2022.

[16] A. Puranic, J. Deshmukh, and S. Nikolaidis, “Learning from demon-
strations using signal temporal logic,” in CoRL, 2021.

[17] A. G. Puranic, J. V. Deshmukh, and S. Nikolaidis, “Learning from
demonstrations using signal temporal logic in stochastic and continu-
ous domains,” RA-L, 2021.

[18] ——, “Learning performance graphs from demonstrations via task-
based evaluations,” RA-L, 2023.

[19] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adversarial
inverse reinforcement learning,” in ICLR, 2018.

[20] F. Torabi, G. Warnell, and P. Stone, “Generative adversarial imitation
from observation,” 2019.

[21] W. Zhou and W. Li, “Safety-aware apprenticeship learning,” in CAV.
Springer, 2018.

[22] K. Cho and S. Oh, “Learning-based model predictive control under
signal temporal logic specifications,” in ICRA, 2018.

[23] X. Li, Y. Ma, and C. Belta, “Automata guided reinforcement learning
with demonstrations,” CoRR, vol. abs/1809.06305, 2018.

[24] F. Memarian, Z. Xu, B. Wu, M. Wen, and U. Topcu, “Active task-
inference-guided deep inverse reinforcement learning,” in CDC, 2020.

[25] M. Wen, I. Papusha, and U. Topcu, “Learning from demonstrations
with high-level side information,” in IJCAI, 2017.

[26] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in FORMATS. Springer, 2004.

[27] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in FORMATS, 2010.

[28] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
2009.

[29] I. Haghighi, N. Mehdipour, E. Bartocci, and C. Belta, “Control
from signal temporal logic specifications with smooth cumulative
quantitative semantics,” in CDC, 2019.

[30] R. Islam, P. Henderson, M. Gomrokchi, and D. Precup, “Reproducibil-
ity of benchmarked deep reinforcement learning tasks for continuous
control,” in Reproducibility in Machine Learning Workshop (ICML),
2017.

[31] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in ICML.
Morgan Kaufmann, 1999, pp. 278–287.

[32] A. G. Puranic, J. V. Deshmukh, and S. Nikolaidis, “Signal temporal
logic-guided apprenticeship learning - supplemental document,” https:
//aniruddh-puranic.info/assets/pdf/alstl supp.pdf, 2024.

[33] D. Nickovic and T. Yamaguchi, “RTAMT: online robustness monitors
from STL,” in ATVA, 2020.

[34] Q. Gallouédec, N. Cazin, E. Dellandréa, and L. Chen, “panda-gym:
Open-Source Goal-Conditioned Environments for Robotic Learning,”
NeurIPS Workshop, 2021.

[35] A. Kuznetsov, P. Shvechikov, A. Grishin, and D. Vetrov, “Controlling
overestimation bias with truncated mixture of continuous distributional
quantile critics,” in ICML, 2020.

[36] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba,
“Hindsight experience replay,” in NeurIPS, vol. 30, 2017.

[37] A. Wilcox, A. Balakrishna, J. Dedieu, W. Benslimane, D. Brown,
and K. Goldberg, “Monte carlo augmented actor-critic for sparse
reward deep reinforcement learning from suboptimal demonstrations,”
NeurIPS, 2022.

[38] H. Hoshino, K. Ota, A. Kanezaki, and R. Yokota, “Opirl: Sample
efficient off-policy inverse reinforcement learning via distribution
matching,” in ICRA, 2022.

[39] Y. Ding, C. Florensa, P. Abbeel, and M. Phielipp, “Goal-conditioned
imitation learning,” in NeurIPS, 2019.

[40] S. Haldar, V. Mathur, D. Yarats, and L. Pinto, “Watch and match:
Supercharging imitation with regularized optimal transport,” CoRL,
2022.

[41] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, A. Joshi, S. Nasiri-
any, and Y. Zhu, “robosuite: A modular simulation framework and
benchmark for robot learning,” in arXiv preprint arXiv:2009.12293,
2020.

[42] J. Ji, B. Zhang, J. Zhou, X. Pan, W. Huang, R. Sun, Y. Geng, Y. Zhong,
J. Dai, and Y. Yang, “Safety gymnasium: A unified safe reinforcement
learning benchmark,” in NeurIPS Datasets and Benchmarks Track,
2023.

[43] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017.

[44] H. Hoang, T. Mai, and P. Varakantham, “Imitate the good and avoid
the bad: An incremental approach to safe reinforcement learning,” in
AAAI, 2024.

[45] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu-based physics simulation for robot
learning,” 2021.

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from IEEE Xplore. Restrictions apply.

