2024 IEEE/RS]J International Conference on Intelligent Robots and Systems (IROS) | 979-8-3503-7770-5/24/$31.00 ©2024 IEEE | DOI: 10.1109/IROS58592.2024.10801924

2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 14-18, 2024. Abu Dhabi, UAE

Signal Temporal Logic-Guided Apprenticeship Learning

Aniruddh G. Puranic, Jyotirmoy V. Deshmukh and Stefanos Nikolaidis

Abstract— Apprenticeship learning crucially depends on ef-
fectively learning rewards, and hence control policies from user
demonstrations. Of particular difficulty is the setting where the
desired task consists of a number of sub-goals with temporal
dependencies. The quality of inferred rewards and hence
policies are typically limited by the quality of demonstrations,
and poor inference of these can lead to undesirable outcomes.
In this paper, we show how temporal logic specifications that
describe high level task objectives, are encoded in a graph to
define a temporal-based metric that reasons about behaviors
of demonstrators and the learner agent to improve the quality
of inferred rewards and policies. Through experiments on a
diverse set of robot manipulator simulations, we show how
our framework overcomes the drawbacks of prior literature by
drastically improving the number of demonstrations required
to learn a control policy.

I. INTRODUCTION

Recent advances in robotics have led to the development
of algorithms that extract control policies for autonomous
agents from human demonstrations via the paradigm of
learning-from-demonstrations (LfD). An interesting sub-area
of LfD is the use of demonstrations alongside reinforcement
learning (RL) to either (i) initialize policies for the RL agent
[1] via behavior cloning (BC) [2] or (ii) infer rewards using
inverse RL (IRL) [3] for tasks from which policies can be
extracted - apprenticeship learning via IRL [4]. However,
designing rewards for Markov Decision Processes (MDPs)
[5] is non-trivial and typically requires expert knowledge
in designing reward functions that can ensure safety and
efficiency in the extracted RL policies. More importantly, for
robots to be robust to perturbations in the environment, it is
crucial to capture the overall goals/intentions of demonstra-
tors, i.e., via IRL, rather than merely mimicking them [4].
Our work draws inspiration from Apprenticeship Learning
(AL) [4] to learn both rewards and policies.

A drawback of AL is that it relies on demonstrations
being optimal, which is seldom the case in real-world sce-
narios. More recent IRL and BC-based methods that learn
from suboptimal demonstrations [6]-[10] measure optimality
or performance based on statistical noise deviation from
the true/optimal demonstrations. However, such noise-to-
performance measures are extracted empirically and hence

The authors are with the Department of Computer Science, Univer-
sity of Southern California, USA. Email: {puranic, jdeshmuk,
nikolaid}@usc.edu.

The authors gratefully acknowledge the support from the National
Science Foundation (NSF) under the following grants: CCF-2048094, CNS-
2039087, CNS-1932620, and CCF-1837131, support from Toyota R&D and
Siemens R&D through the USC Center for Autonomy and Al, support from
the USC Airbus Institute for Engineering Research and partial support from
the Agilent Early Career Professor Award.

lack formal reasoning that can explain the quality of be-
haviors. Furthermore, as the core reward-inference algorithm
in AL uses IRL, the rewards are inherently Markovian,
and they do not account for temporal dependencies among
subgoals in demonstrations. Research in reward design [11],
[12] discusses the need for non-Markovian reward represen-
tations, especially in time-dependent multi-goal RL settings.
Such non-Markovian rewards are typically designed using
spilt-MDPs [13] and reward machines [14], [15], which
require increasing the state and/or action spaces of the MDPs
significantly thereby increasing the space and computational
complexities for the underlying RL algorithms.

To address these limitations, our prior work [16], [17] has
proposed to use Signal Temporal Logic (STL) to define high-
level tasks, and evaluate and rank demonstrations to infer
rewards. The semantics of STL measure the quality/fitness,
which is the degree of task satisfaction by demonstrations.
This facilitates holistic temporal-based ranking of demon-
strations and agent behaviors to formulate non-Markovian
rewards. Our LfD-STL framework can learn from only a
handful of even imperfect/suboptimal demonstrations, with-
out the need to augment the MDP spaces. It has shown
to significantly outperform state-of-the-art IRL methods in
terms of reward quality, number of demonstrations required
and safety of the learned policy. It can also be applied
to stochastic and continuous spaces to extract rewards and
behaviors consistent with the task specifications. Our recent
work proposed PeGLearn [18] to automatically infer non-
Markovian rewards for tasks comprising multiple STL objec-
tives, addressing the representation issues discussed in [12].
PeGLearn uses directed graphs to create a partial ordering of
specifications to produce a single graph - performance graph
- that holistically captures the demonstrated behaviors.

While the LfD-STL framework with PeGLearn can offer
assurances in safety of the learned rewards and policy, it does
not explicitly reason about optimality of inferred rewards
and performance of the learned RL policy. The reason being
that LfD-STL is an open-loop framework where the inferred
rewards are fixed and are not guaranteed to be optimal
without any exploration. Without feedback from agent ex-
ploration, it may be impossible to discover better behaviors.
We aim to address this issue by using the performance graph
as a metric, which we refer to as the performance-graph
advantage (PGA) to guide the RL process. We propose the
AL-STL framework that addresses this issue with LfD-STL,
by integrating closed-loop learning wherein, both the reward
function and policy are updated iteratively. PGA can be
interpreted as the quantification of the areas for improvement
of the policy, and is optimized alongside appropriate existing

979-8-3503-7770-5/24/$31.00 ©2024 IEEE 11147

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from |IEEE Xplore. Restrictions apply.



RL algorithms. This enables reasoning about possibly new
behaviors that were not demonstrated before, but still satisfy
the task specifications. The key insight of our work is that a
cumulative/collective measure of (multiple) task objectives
along with exploration in the neighborhood of observed
behaviors guides the refinement of rewards and policies
that can extrapolate beyond demonstrated behaviors. Our
contributions are summarized as follows:

1) We propose AL-STL, a novel successor to the LfD-STL
framework, introducing closed-loop learning by improving
both the reward function and policy significantly.

2) We quantify STL-based performance graphs learned via
PeGLearn in terms of an advantage function to guide the
RL training process, and formally reason about policy
improvements when demonstrations are suboptimal.

3) We evaluate our approach on a variety of robotic manip-
ulation tasks and discuss how our framework outperforms
state-of-the-art literature.

II. RELATED WORKS

Learning-from-demonstrations (LfD) to extract control
policies can be broadly classified into two main categories
based on the underlying intentions: (i) imitation learning
(IL), such as behavior cloning (BC) via supervised learning
[2], where the objective is to directly mimic the actions of the
demonstrators, and (ii) inverse reinforcement learning (IRL)
[31, [4], [6], where the objective is to characterize the overall
goal or intent of the demonstrators via cost/reward functions.

Learning rewards via entropy-enabled IRL [6], [7], [19],
[20] regard suboptimal demonstrations as noisy deviations
from the optimal statistical model, and hence require ac-
cess to many demonstrations. Learning better policies from
suboptimal demonstrations has been explored in [10]. This
method injects noise into trajectories to infer a ranking, how-
ever it synthetically generates trajectories via BC which has
issues with covariate shift and induces undesirable bias. This
is addressed in [9] by defining a relation between injected
noise and performance. However, this noise-performance re-
lationship is empirically derived and lacks formal reasoning.
Score-based IRL [8] uses expert-scored trajectories to learn
a reward function, relying on a large set of nearly-optimal
demonstrations and hence generating scores for each of them.
Additionally, rewards learned via IRL-based methods are
Markovian by nature and typically suited to single-goal tasks,
as discussed in prior work [16], [17].

In the area of LfD with temporal logics, the closest to
our work is a counterexample-guided approach using proba-
bilistic computation tree logics (PCTL) for safety-aware AL
[21]. Our work differs from it in two significant ways: (i)
we use STL which is applicable to continuous spaces and
offers timed-interval semantics, which are lacking in PCTL,
and (ii) the reward inference algorithm in [21] relies on
IRL, while ours is based on LfD-STL [18], which greatly
improves sample complexity, accuracy and inference speed.
Trade-offs for multi-objective RL have been explored in [22]
by explicitly defining specification priorities beforehand. Al-
ternate approaches convert specifications to their equivalent

automaton and augment it to the MDP states [23]-[25].
In our work, we do not alter the MDP structure, thereby
avoiding the drawbacks of increased space and computational
complexities of augmented MDPs.

III. PRELIMINARIES
A. Mathematical Notations

The interactions between the agent (robot) and the envi-
ronment are modeled with a Markov Decision Process.

Definition 3.1 (Markov Decision Process (MDP)): An

MDP is given by a tuple M = (S, A,T,R) where
S C RF is the state space and A C R! is the action
space of the system; 7' is the transition function, where
T(s,a,s") = Pr(s’" | s,a); R is a reward function that
typically maps either some s € S, state-action pair S x A
or some transition S X A x S to R.
The goal of RL is to find a policy 7 : S x A — [0,1]
that maximizes the total (discounted) reward from perform-
ing actions on an MDP, i.e., the objective is to compute
max y .o, v'rs, where ¢ is the output of the reward function
R at time ¢t and +y is the discount factor. In this paper, we
assume full observation of the state space for MDPs.

Definition 3.2 (Trajectory or Episode Rollout): A trajec-
tory 7 in an MDP is a sequence of state-action pairs of finite
length L € N by following some policy 7 from an initial state
Sg, 1.6., T = <So,a0,-'- ,8L>, s; € Sand a; € A.

In our LfD setting, the demonstrations are collected on the
robot itself (e.g., via teleoperation or kinesthetic teaching), so
the observations are elements of the MDP state and action
spaces. Hence, we interchangeably refer to trajectories or
rollouts as demonstrations. For intuition, we use demonstra-
tions to refer to rollouts provided to the RL agent as inputs,
and represent a demonstration by &.

Prior work in LfD [16]-[18] uses Signal Temporal Logic
(STL) [26], [27] to define high-level tasks.

Signal Temporal Logic (STL): STL is a real-time logic,
generally interpreted over a dense-time domain for signals
whose values are from a continuous metric space (such as
R™). The basic primitive in STL is a signal predicate 1 that
is a formula of the form f(x(¢)) > 0, where x(¢) is the tuple
(s,a) of the trajectory x at time ¢, and f maps the signal
domain D = (S x A) to R. STL formulas are then defined
recursively using Boolean combinations of sub-formulas, or
by applying an interval-restricted temporal operator to a sub-
formula. The syntax of STL is formally defined as follows:
pu=pl-plene| Gre | Frp | oUrp. Here, I = [a,b]
denotes an arbitrary time-interval, where a,b € R=°. The
semantics of STL are defined over a discrete-time signal x
defined over some time-domain T. The Boolean satisfaction
of a signal predicate is simply True (T) if the predicate is
satisfied and False (L) if it is not, the semantics for the
propositional logic operators —, A (and thus Vv, —) follow the
obvious semantics. The following behaviors are represented
by the temporal operators:

o At any time ¢, G(p) says that ¢ must hold for all
samples in ¢ + 1.

11148

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from IEEE Xplore. Restrictions apply.



o At any time ¢, F;(p) says that ¢ must hold ar least
once for samples in ¢ + I.

o At any time ¢, ¢Uj¢ says that ) must hold at some
time ¢’ in ¢ + I, and in [t, "), ¢ must hold at all times.

The quantitative (robustness) semantics of STL, defined
in [27], [28], capture the performance of trajectories. Di-
rected acyclic graphs are used to encode the preferences or
performance of the demonstrators. Such graphs provide a
convenient way to interpret reward functions for RL tasks.

Definition 3.3 (Directed Acyclic Graph (DAG)): A
directed graph is an ordered pair G = (V, E) where V is a
set of elements called nodes and F is a set of ordered pairs
of nodes called edges, which are directed from one node to
another. An edge e = (u,v) is directed from node u to node
v. A DAG is a directed graph that has no directed cycles,
i.e., it can be topologically ordered.

A path x ~ y in G is a set of nodes starting from x
and ending at y by following the directed edges from x. The
ancestors of a node v is the set of all nodes in G that have a
path to v. Formally, ancestor(v) = {u | u~ v,u € V}. In
our setting, we use a weighted DAG, where each node v € V'
is associated with a pair of real numbers - value and weight
of the node, represented by v(v) and w(v) respectively. Each
edge (u,v) € E is associated with a real number - weight
of the edge, represented by w(u,v). Note the difference in
number of arguments in these notations.

B. Reward Inference from Demonstrations and STL

In LfD-STL, the reward function R of the MDP is
unknown, instead, it is presented with a finite set of high-
level task descriptions in STL ® = {¢1,p2, - ,¢,} and
a finite set of demonstrations = = {&1,&,,--+ ,&n ), from
which the reward function and policy must be inferred.

LfD-STL Framework: For a specification ¢ € & and
a demonstration £ € = defined as in Def. 3.2, the value
p(p, &, t) represents how well the demonstration satisfied the
given specification from time ¢, which is the quality of the
demonstration. To evaluate the entire trajectory, the robust-
ness is defined at ¢t = 0, i.e. p(¢,&,0) and is implicitly de-
noted by p(p, ). For a demonstration £, we have an array of
evaluations over @, given by ¢ = [p(¢1,£), -+, p(n, )T

Then, for each & € E, a local DAG G¢ is initially
constructed via the PeGLearn algorithm [18], wherein, (i)
each task specification ¢ € @ is represented by a node,
with the value of the node indicating the fitness of & for
p, i.e., v(p) = p(p, &), and (ii) the edges, along with their
corresponding weights encode information about the prefer-
ences or performance between every pair of specifications
as exhibited by the behavior. For any edge e(y;,p;), its
weight, defined by v(¢;) — v(yp;), indicates a measure by
which the value of ¢; must be increased to match the value
of ¢;. As an edge in G¢ is always directed from a higher-
valued node to a lower-valued node, the edge weight is
always positive. Absence of an edge between a pair of nodes
indicates a zero-weighted edge. Note that this local DAG
is applicable to all trajectories that conform to Def. 3.2.
Thus, PeGLearn maps a trajectory 7 and ¢ to a DAG G.,.

In our work, since specifications can be of different scales
(e.g., a specification that monitors acceleration, while another
monitors distance), we assume that the robustness bounds
are known apriori and we normalize/scale the robustness
values to be bounded to some [—A, A]. Scaling of robustness
can be achieved with piece-wise linear functions or smooth
semantics [29]. In addition to extracting a DAG for each
trajectory, PeGLearn also captures the holistic behavior of a
set of trajectories by aggregating their corresponding local
DAGs into a global DAG G. The nodes in G are weighted
to capture the relative pair-wise priorities of specifications
based on the node ancestors or dependencies via w(yp) =
|®| — ancestor(yp), illustrated with an example in Fig. 1.

w(p:)=5—-1=4

s
w(e) =5-0=5(01 —"2 3 &
L (25

>,
=

w(ps) =5—-2=3

w(ps)=5—1=4(¢3 Pa)w(ps) =5-0=5

Fig. 1. Weights on nodes (specifications) in a DAG.

The node weights are used to induce bias towards speci-
fications during inference of the reward function and hence
the RL policy. Prior literature in behavior modeling with
reward functions [6], [7], [9] has shown that the performance
variations in trajectories obey an exponential form. So, the
weights of the specifications from the DAG are normal-
ized with softmax to ensure Y ., w(p;) = 1. We now
have a weight vector we = [w(p1), w(p2), - ,w(pn)]T.
Each demonstration is then assigned a cumulative robust-
ness/fitness value based on these weights, given by 7. =
p}T -wg. To generalize, all trajectories are associated with
a corresponding performance DAG and cumulative fitness.
Once the cumulative fitness is assigned to each demonstra-
tion, the demonstrations are ranked based on their 7¢ and
the rank-scaled rewards are propagated to the observations
via the reward inference method described in [17]. In short,
the method assigns monotonically increasing rewards (i.e.,
partial cumulative fitness) to the observed states and/or
actions in demonstrations that satisfy the specification, while
negative rewards are assigned to states in demonstrations that
violate the task specifications.

IV. METHODOLOGY
A. Problem Formulation

For an MDP\R, we are given: (i) a finite dataset of demon-
strations = = {1, &2, ...,&mn + and (ii) a set of specifications
® = {1, 2, ..., pn} unambiguously expressing the tasks to
be performed. The objective is to infer rewards and extract a
behavior or control policy for an agent such that its behavior
is at least as good or better than the demonstrations, and
maximizes the satisfaction of the task specifications. The
satisfaction of task specifications is conveyed through the
learned reward function that the RL agent seeks to maximize.

11149

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from |IEEE Xplore. Restrictions apply.



More formally, consider a policy 7w under the reward
function R that captures the degree of satisfaction of ®. Let
7 indicate a trajectory obtained by a rollout of 7 in an RL
episode. Then, our objective is to find

n

7, R* = argmax E Z (i, T)
™R i=1

Since every trajectory 7 is characterized by its associated
performance DAG G, where the value of a node indicates
the robustness for the specification it represents (Sec. I1I-B),
the summation term is the sum of all nodes. We thus define
VS, =Y v(pi) = > p(pi, 7). Then the objective is:

*

7, R* = argmaxE. ., [VS,]
T, R

An issue with this formulation occurs when there are
multiple task specifications (n > 1). This results in multi-
objective learning, which can introduce conflicting specifi-
cations and hence requires optimal trade-offs. For example,
in autonomous driving or robot manipulation, consider the
task of reaching a goal location as quickly as possible while
avoiding obstacles. Depending on the obstacle locations,
performing highly safe behaviors (i.e., staying as far away
from obstacles as possible) might affect the time to reach
the goal. Similarly, a behavior that aims to reach the goal in
the least time will likely need to compromise on its safety
robustness. We thus need to find the behaviors that not only
maximize the total robustness, but are also maximally robust
to each task specification. We illustrate this with Example 1.

Example 1: Consider a task with three specifications ¢ =
{¥1, 92, p3}, and consider two trajectories 7; and 7o with
robustness vectors [3,0,1] and [2,1,1], respectively. The
reward function inferred with 7; will have the weight for ¢4
dominate o due to the exponential softmax component
(Sec. III-B), while the reward function for 75 will have more
uniform weights over all specifications, albeit with a little
bias towards ¢; versus others. Thus, while both have the
same VS (= 4), 7o is holistically more robust w.r.t. all the
task specifications due to better trade-offs.

By this reasoning, it is more desirable to not only max-
imize the overall sum, but also maximally satisfy the indi-
vidual specifications with trade-offs. So, how do we ensure
that optimal trade-offs are achieved while maximizing the
main objective? By observation, it is straight-forward to
deduce that the sum of absolute pair-wise differences in
robustness of specifications must be minimized. This sum
is indeed exactly encoded by the edges of our trajectory
DAG (performance graph) formulation, which is a unique
characteristic. Recall that the edges between two nodes
(specifications) indicate the difference in their robustness
values (performance). We thus capture the optimal trade-
offs for a trajectory 7 with the sum of all edges in its
corresponding DAG G, which is given by ES; =} . G, &
each edge is created as in Sec. III-B. Both VS and ES can
be computed in linear time using the same DAG, without
additional computational overhead. One might wonder if

merely minimizing ES is sufficient for finding the optimal
trade-offs. We provide a counterargument in Example 2.

Example 2: Consider the same task from Example 1, but
with two different trajectories 73 and 7, with robustness
vectors [1,1,1] and [—1,—1,—1], respectively. Since all
the specifications are equally weighted, the ES for both
trajectories are the same (= 0). But clearly, 73 is more robust
than 74 due to the higher VS. Furthermore, consider another
trajectory 75 with vectors [—1, 2, —1], whose ES is 6 (i.e., an
edge weight is the absolute pair-wise difference). Between
74 and 75, the RL agent will prefer 74 due to the lower ES,
which is undesirable.

From both examples, we conclude that the objective is to
maximize VS while minimizing ES. Our new formulation is,

*

7, R* = argmax E, . (VS; — ES,)
TR
As both VS and ES are dependent on each other, this
optimization trade-off can be written as:

7 R* = argmaxE, (VS — A\ ES;) (1)
T, R

The constant A € [0,1) acts as a regularizer to penalize
behaviors with dominant specifications as in Example 1, and
is a tunable hyperparameter. The formulation is very intuitive
because we want to extract the optimal DAG which has no
edges. Recall that edges are added only if there is a difference
between the node values (i.e., robustness). Ideally, if the
policy is optimal, then every rollout has the same maximum
robustness for all & and so no edges are created. This rep-
resentation offers the unique ability of providing an intuitive
graphical representation of behaviors for interpretability [18],
and formulating an optimization problem. As the robustness
of each specification is bounded in [-A, A], the VS for any
trajectory is bounded to [—nA,nA]. At either limit, the ES
is 0, indicating that all nodes in the resulting global DAG
G have equal weights (= 1/n) at the extrema. We will
refer to the term (VS, — \ - ES;) as performance graph
advantage (PGA). PGA indicates the scope for improvement
(extra possible rewards) under the current reward function
and policy. During RL, this PGA can be either used as a
bonus term alongside the episode returns or augmented in

the gradient ascent formulation.

B. AL-STL Framework

We now describe our proposed framework, shown in
Fig. 2, that closes the RL training loop to extract both the
reward function and policy that optimally satisfy ®, resem-
bling apprenticeship learning. The corresponding pseudocode
is given in Alg. 1. Analogous to the replay buffer in RL, we
introduce storage buffers for the reward model: (i) frontier F
containing the best episode rollouts of the agent so far and (ii)
candidate C containing the rollouts under the current reward
and policy with PGAs. Initially, the frontier is populated
with demonstrations (line 2) from which the global DAG
G and hence the reward function are extracted via PeGLearn
[18] (line 5). RL is performed with the learned rewards and
each rollout is associated with its PGA, that is optimized

11150

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from |IEEE Xplore. Restrictions apply.



Frontier F /L——> l:"”‘

Demonstrations

= PeGLearn Global Graph G

APPRENTICESHIP LEARNING WITH STL MONITORING

STL Specifications
P 12

I
o1 J— 2 N %

s RL with PGA Final ngard*R
+ Policy m
collect
rollouts

Candidate C

Update

Fig. 2.

either in the episode returns or in the gradient ascent. Upon
updating the policy, multiple rollouts are collected in the
candidate buffer (loop on line 8), and the frontier is updated
by comparing the overall PGAs of both the frontier and
candidate based on a strategy (line 11) that we describe in
Sec. IV-B.1. This loop, shown by the yellow background
in Fig. 2, continues for a finite number of cycles or until
the frontier can no longer be updated. At this stage, the
reward and policy representing the frontier optimally satisfy
$, which we discuss in Sec. IV-B.2.

Algorithm 1: STL-Guided Apprenticeship Learning

Input: = := demonstrations; ¢ := specifications
Result: R* := reward function; 7™ := a policy
1 begin
F <+ E // Initialize frontier

converged = L

while —converged do

R + PeGLearn(F,®) // reward
function from rollouts in F

C«+ 0 // Initialize candidate

7 7 < perform RL with PGA

// Rollout k trajectories from w

and add them to C

L I R

a

8 for i < 1 to k do

9 L Ti <= (st a1 ~ m(s1)))i=o
10 C+—CuUm

1 | converged + Update(C, F)
12 | return R* = R, 7" =7

1) Frontier Update Strategies: F and C contain rollouts
that are associated with their PGAs. We define an operator
© € {min,max,mean}k and therefore, the metrics F =
O{PGA(7)|T € F} and C = ©{PGA(7)|r € C}. To update
the frontier, we propose the strategic merge operation as:

(a) We first compare whether C > .7? , i.e., the trajectories with
the newly-explored PGA are better than the current best
trajectories in F. The operator ® acts as the criterion for
filtering bad-performing trajectories.

(b) If so, we retain the trajectories in F U C whose PGAs
are greater than F and discard the others; resulting tra-
Jectories form the new . Formally, this is given by
F « {r|pca(r) > F,7 € F UC}. That is, quality of

AL-STL Framework with Performance-Graph Advantage.

the worst ® criteria-based rollouts in F is improved.

(c) Otherwise, F already has the best trajectories so far and
is left unaltered. If the statistic ® for F and C are
similar (i.e., their difference is below some threshold) upon
sufficient exploration, then convergence is achieved.

In theory, with unbounded memory, the frontier would be
able to keep all the best-performing trajectories. For practical
implementations, both buffers are bounded (say p), so we
keep the top-p trajectories in the frontier in our experiments.
The strategic merge is not the only way to maintain the
buffer, however, it offers some performance guarantees as we
show in Sec. IV-B.2. One could consider a naive approach
of simply merging all the trajectories in both buffers without
any filtering criteria. Alternately, one could also replace all
the trajectories in F with those in C, which also exhibits
monotonic improvement in the RL policy.

2) Policy Improvement Analysis: In order to analyze
Alg. 1 and show policy improvement, we make certain
assumptions about the task and RL models:

(a) The specifications accurately represent the task.

(b) The task can be completed, regardless of optimal behavior,
with the given MDP configurations and task specifications.
Our algorithm requires at least one demonstration that can
satisfy all specifications, but is not required to be optimal.
The RL agent always has an active exploration component
(stochastic policy or an exploration rate) to cover the
MDP spaces. This not only helps in discovering new
policies, but also helps learn more accurate reward models.
Theoretically, with infinite timesteps, the RL agent will
have fully explored the environment spaces to find the
optimal policy [5]. In practice, the timesteps are set to a
large finite value for majority coverage of the spaces.

(©)

Here, we describe how the strategic merge functionality
exhibits policy improvement. From Sec. IV-B.1, the new F
contains the set of trajectories given by F = {7|PGA(T) >
F ,7 € F UC}. For the purpose of this proof, we will
consider ® to be the mean. Then, F = Zerer BT ang

[
C = w. We know that the F is updated in the

Update function when C > F. Let 7' be the mean of the

11151

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from |IEEE Xplore. Restrictions apply.



intermediate set 7' = F UC. Then,
Y rcr PGA(T) + > o PGA(T)

P _ > rcr PGA(T) _
F FT+icl
|FIF+|CIC = IC| k
= =F 4+ = 2)
| +[C| | +[C]

since C > ]?, we can write this as C = ]?4— k, where k > 0.

Now, let 7 be the new mean after filtering [ < (|F| +[C|)
rollouts whose PGA < F in the merged set F’.

|F'| F' — S{PGA(7)|r € F/,PGA(T) < F}

j_\—// _
FT—1

In the worst case, all [ trajectories have PGAs at most .7? .

Zu o |FIF —1F _ (FI+IC)F —1F
- P [Fl+1Cl =1
F > F+ % (substituting from (2)) (3)

As the cardinalities of both buffers F and C are non-zero,
the denominator (|F|+ |C|—1) > 0. Thus, in (3), the second
term is always positive, which proves that our algorithm
improves the policy and reward in each cycle, under the
exploration assumption. A special case of (3) is when F is
completely replaced by C, i.e., when all [ trajectories belong
to F, then | = |F| and so, F inherits the higher mean
from C. The frontier remains unchanged when either the
demonstrations or the rollouts in F at the end of each training
cycle are optimal. We can apply similar reasoning to the other
operators for ®. In the case of max, the frontier’s maximum
value will always inherit the maximum (i.e., the best rollouts)
from the candidate. For min, only the least-performance
trajectories are discarded and the second-to-least ones are
updated to be the new minimum in F. Since the upper-
bound of F is nA, our method keeps improving the policy
towards this maximum. However, this does not guarantee
that the maximum value can always be achieved due to
several factors: conflicting specifications causing trade-offs,
environment configuration, solvability of the MDP under the
given specifications, etc.

3) Effect of Affine Transformations to Rewards: In prac-
tice RL is sensitive to hyperparameter settings, environment
stochasticity, scales of rewards and observations, and other
algorithmic variances [30]. Hence, in our experiments, we
normalize observations and rewards using affine transforms.
However, applying affine transformations to the reward func-
tion does not alter the optimal policy [31]. We also prove this
for basic scaling and shifting of the rewards by a constant
amount in the supplemental document [32].

V. EXPERIMENTS

Our proposed framework is evaluated on a diverse set of
robotic simulation tasks (Fig. 3): (i) placing an object at a
desired location, (ii) opening doors, (iii) safety-aware mobile

navigation and (iv) closing cabinets with a mobile manipu-
lator. In all experiments, the task specifications only monitor
the observed states and so, the rewards are a function of just
the states. The STL specifications are evaluated using RTAMT
[33]. The reward function is modeled by regression with
either fully connected neural networks or Gaussian processes.
All experiments are performed on an Ubuntu desktop with
an Intel®Xeon 8-core CPU and Nvidia Quadro RTX 5000
GPU. For each environment, m = 5 demonstrations are gen-
erated by training an appropriate RL agent under an expert
dense reward function. In these domains, every RL episode
features a unique/randomized target and hence the collected
demonstrations are unique (i.e., the states do not overlap.)
Additionally, these simulations implicitly model noise in the
environment which make it challenging to provide optimal
trajectories. Due to space restrictions, we provide details of
all hyperparameters in the supplemental document [32]. In
all tasks, unless explicitly stated, the frontier is updated by
completely replacing its contents with the candidate (i.e.,
special case of (3)) and we set |F| = |C| = 5. Furthermore,
in all tasks, the trained policy is evaluated on 5 random seeds,
drawn from the baselines for comparisons. For each seed,
20 trials are performed, thus totalling 100 test scenarios; the
mean success rates are then reported.

(b) Door Opening

(a) Pick-and-Place

(c) Reach-Avoid (d) Cabinet Closing

Fig. 3. Overview of the robot simulation environments. The task in (d)
uses the Nvidia Isaac simulator.

a) Task - Placing Cube: A Franka Panda robot is
required to pick up a cube on a table (Fig. 3a) and place it
at the desired location [34]. Only 4 of the 5 demonstrations
were successful. The specifications are: ¢, := F(d < §) and
¢ := G(t < T), where d is the distance between the cube
and target poses, J is a small threshold to determine success,
and T is the task-specific time in which the target must
be achieved. The specifications indicate that the distance
between the cube and desired pose is below a threshold
and the robot must do so as quickly as possible. The RL
agent used TQC [35] with HER [36] and achieved a training
success rate of 98% (Fig. 4a), and converges to a high
success rate after just 3 cycles. The resulting policy achieved

11152

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from IEEE Xplore. Restrictions apply.



a success rate of 96% in the test trials. The task specification,
although minimalistic, is significantly challenging because it
only describes that the cube be placed at the desired pose.
In other words, the RL agent must learn the sequence of
elementary behaviors: reach, grasp and move to the desired
location while holding the cube, just from the 5 demonstra-
tions. Another remarkable finding in our work (shown in the
supplemental video), is that the policy learns to (i) correctly
pick the cube and place it at the target whenever the target
height is above the table and (ii) push/drag the cube when
the target is on the same table surface. This shows that our
algorithm combines RL exploration and graph advantage to
possibly learn specification-satisfying behaviors that were not
observed before. Under identical training conditions, with
the exclusion of reward model-specific hyperparameters, the
number of demonstrations used for this task in the baselines
that achieved comparable success rates, are: 100 for MCAC
[37], between 4 and 16 for OPRIL [38], 20 for goalGAIL
[39] and 50 for ROT [40].

b) Task - Opening Door: A Panda robot, mounted on a
pedestal (Fig. 3b), is required to open a door [41]. Only 3 of
the 5 demonstrations were successful. The task is successful
if the door hinge is rotated beyond 6 = 0.3rad. The task
specifications consist of (i) reaching the door handle, (ii)
rotating the hinge beyond 6 and (iii) completing the task
within 7" steps. The elementary behaviors to be learned are:
reaching the door handle, turning the handle to unlock the
door and pulling to open the door. This is a non-trivial
task for expert reward design as it must capture all these
elementary behaviors and compose them sequentially. Since
this is a more challenging task, the frontier was updated with
strategic merge, and the size of reward buffers were set to
20 to collect more rollouts. The RL agent used TQC and
was trained for 25 cycles to achieve a success rate of 98%
(Fig. 4b). In the evaluations, the resulting policy achieved a
success rate of 100%.

PandaPickAndPlace: TQC training success rate PandaDoor: TQC training success rate

(el
.

0.0 02 04 0.6 08 L0 0 1 2 3 4 5
Timesteps le7 Timesteps le6

(a) Cube-Placing

1.00 1.00

Success Rate
=
8
Success Rate
o o o
I o 5
bg 3 a

(b) Door Opening

Fig. 4. Summary of RL training for the object manipulation tasks.

We compare our work with two state-of-the-art baselines
MCAC [37] and OPIRL [38], which has shown to outper-
form maximum entropy and adversarial IRL-based meth-
ods. Under identical training conditions, while both these
methods successfully complete this task, MCAC used 100
demonstrations, while OPIRL used between 4 and 16. OPIRL
had significantly more variance (i.e., unstable learning) with
4 demonstrations compared to using 16. Furthermore, in

OPRIL, the method uses a substantially large reward buffer
size of 2-10° to compensate for the limited demonstrations,
while ours uses 2-10* (i.e., | F| = |C| = 20, each trajectory
of length 500), using 100x less memory. This indeed shows
our method is more efficient compared to IL and IRL.

c) Task - Safe Mobile Navigation: In this task (Fig. 3¢c)
[42], a mobile robot navigates to the goal while avoiding haz-
ards (red markers) as much as possible. A cost is incurred for
traversing a hazard, and the objective is to minimize this cost.
The distance to the goal and hazards are provided by Lidar
measurements and the observation space had 56 dimensions.
The task specifications are: (i) ¢, := F(\/Zlil(d; < 0.1)),
where dé is the Lidar’s i-th distance measurement to the
goal, (ii) ¢s = G(cost < 1), where cost is the value
incurred when the risk-area Lidar detects that the robot is
too close to a hazard, and (iii) ¢ := G(t < T'), where T is
the maximum episode time. The RL agent was trained using
PPO [43] for 5 - 10% steps over 25 cycles and the training
time was about 20 hours. The evaluations (Fig. 5a) showed
98% task success rate with 28% mean cost. Compared to
expert reward functions [42] and state-of-the-art IL method
SIM [44], our method was able to achieve identical task
success and cost rates, with 5x fewer demonstrations and
50% fewer training steps. Furthermore, both specifications
g and ¢, have a length of 16, indicating that our method
is able to effectively accommodate lengthy specifications.

SafetyCar BuildingGoall: PPO Evaluation Isaac Franka Cabinet: PPO Evaluation

00 - . Co 200 - . G
75 175
50 150
25 15

2100 | \ | | | 2100
50 I I I 50 I
N I I I B I I
000 5 10 15 20 25 00 s 10 15 20 25

Seed Seed

(a) Safety-Car
Fig. 5.

unt

C
Count

(b) Isaac Drawer

Evaluation results for safety-aware tasks.

d) Task - Cabinet Closing with Mobile-Manipulator:

In this task (Fig. 3d), a mobile-manipulator consisting of a
Panda arm mounted on a Fetch Robotics Freight mobile robot
platform, must close the cabinet drawer while minimizing
traversing an unsafe (red) zone. The observation space con-
sists of 57 dimensions, posing a challenge for reward models.
This simulation is built on the RL adaptation of Nvidia
Isaac Sim [45], which enables parallel (vectorized) training
environments. The specifications are similar to the safe-
navigation task, but with ¢, := F(drawer, < 0.2), i.e., the
drawer must be closed (y-axis) within a 0.2 unit tolerance.
Only 4 of the 5 demonstrations succeeded the task. The
RL agent was trained using PPO on 400 parallel instances
for 107 steps over 10 cycles. Due to the highly vectorized
implementation, the training was completed within 1.5 hours.
It had a 100% success rate and 19% mean cost on the test
trials (Fig. 5b), similar to the policies from expert-designed
complex dense reward functions.

11153

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from |IEEE Xplore. Restrictions apply.



VI. CONCLUSIONS [19]
We developed AL-STL, a novel LfD framework, that uti- 20
lizes apprenticeship learning and STL task objectives to infer

rewards and policies simultaneously. AL-STL is a significant ~ [2!]

advancement over prior LfD-STL by introducing closed-loop 22

learning that iteratively improves the quality of rewards and

policies. We proposed a graph-based optimization formalism, (231

performance graph advantage, which (i) provides a succinct  [24)

representation of multiple non-Markovian (temporal) task

specifications for quantitative and interpretable assessments 2]

of agent behaviors, and (ii) guides the agent’s learning |26

process to maximally satisfy the task specifications and

perform optimal trade-offs. Through realistic simulation ex- (271

periments on mobile and manipulation robotic tasks, we have  [2g)

discussed how our approach outperforms several state-of-the-

art methods in terms of sample and space efficiency. For [29]

future, we propose to investigate diversity in demonstrations,

vision-based observations, prioritization of specifications in

trade-offs and, task and sim2real transfer-learning. (301

REFERENCES

[1] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel, (31)
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in /CRA, 2018, pp. 6292-6299. (32]

[2] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from obser-
vation,” in IJCAI, 2018, pp. 4950-4957.

[31 A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement [33]
learning,” in /ICML, 2000, pp. 663-670.

[4] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein- [34]
forcement learning,” in ICML, vol. 69. ACM, 2004. :

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, 2nd ed. The MIT Press, 2018. 35]

[6] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in AAAI, 2008.

[71 B. D. Ziebart, “Modeling purposeful adaptive behavior with the 136]
principle of maximum causal entropy,” Ph.D. dissertation, Carnegie
Mellon University, USA, 2010.

[8] L. E. Asri, B. Piot, M. Geist, R. Laroche, and O. Pietquin, “Score- 137]
based inverse reinforcement learning,” in AAMAS. ACM, 2016, pp.
457-465.

[9] L. Chen, R. R. Paleja, and M. C. Gombolay, “Learning from subop-
timal demonstration via self-supervised reward regression,” in CoRL, [38]
2020.

[10] D. S. Brown, W. Goo, and S. Niekum, “Better-than-demonstrator
imitation learning via automatically-ranked demonstrations,” in CoRL. [39]
PMLR, 2020.

[11] D. Abel, W. Dabney, A. Harutyunyan, M. K. Ho, M. Littman, [40]
D. Precup, and S. Singh, “On the expressivity of markov reward,”
in NeurIPS, 2021.

[12] S. Pitis, D. Bailey, and J. Ba, “Rational multi-objective agents must [41]
admit non-markov reward representations,” in NeurlPS ML Safety
Workshop, 2022.

[13] D. Abe, A. Barreto, M. Bowling, W. Dabney, S. Hansen, A. Harutyun-
yan, M. K. Ho, R. Kumar, M. L. Littman, D. Precup, and S. Singh, [42]
“Expressing non-markov reward to a markov agent,” in RLDM, 2022.

[14] A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A.
Mcllraith, “Ltl and beyond: Formal languages for reward function
specification in reinforcement learning,” in IJCAI, 2019. [43]

[15] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. Mcllraith, “Re-
ward machines: Exploiting reward function structure in reinforcement
learning,” J. Artif. Int. Res., vol. 73, 2022. [44]

[16] A. Puranic, J. Deshmukh, and S. Nikolaidis, “Learning from demon-
strations using signal temporal logic,” in CoRL, 2021.

[17] A. G. Puranic, J. V. Deshmukh, and S. Nikolaidis, “Learning from [45]
demonstrations using signal temporal logic in stochastic and continu-
ous domains,” RA-L, 2021.

[18] ——, “Learning performance graphs from demonstrations via task-
based evaluations,” RA-L, 2023.

11154

J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adversarial
inverse reinforcement learning,” in /CLR, 2018.

F. Torabi, G. Warnell, and P. Stone, “Generative adversarial imitation
from observation,” 2019.

W. Zhou and W. Li, “Safety-aware apprenticeship learning,” in CAV.
Springer, 2018.

K. Cho and S. Oh, “Learning-based model predictive control under
signal temporal logic specifications,” in /CRA, 2018.

X. Li, Y. Ma, and C. Belta, “Automata guided reinforcement learning
with demonstrations,” CoRR, vol. abs/1809.06305, 2018.

F. Memarian, Z. Xu, B. Wu, M. Wen, and U. Topcu, “Active task-
inference-guided deep inverse reinforcement learning,” in CDC, 2020.
M. Wen, I. Papusha, and U. Topcu, “Learning from demonstrations
with high-level side information,” in IJCAI, 2017.

O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in FORMATS. Springer, 2004.

A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in FORMATS, 2010.

G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
2009.

1. Haghighi, N. Mehdipour, E. Bartocci, and C. Belta, “Control
from signal temporal logic specifications with smooth cumulative
quantitative semantics,” in CDC, 2019.

R. Islam, P. Henderson, M. Gomrokchi, and D. Precup, “Reproducibil-
ity of benchmarked deep reinforcement learning tasks for continuous
control,” in Reproducibility in Machine Learning Workshop (ICML),
2017.

A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in /CML.
Morgan Kaufmann, 1999, pp. 278-287.

A. G. Puranic, J. V. Deshmukh, and S. Nikolaidis, “Signal temporal
logic-guided apprenticeship learning - supplemental document,” https:
/laniruddh-puranic.info/assets/pdf/alstl_supp.pdf, 2024.

D. Nickovic and T. Yamaguchi, “RTAMT: online robustness monitors
from STL,” in ATVA, 2020.

Q. Gallouédec, N. Cazin, E. Dellandréa, and L. Chen, “panda-gym:
Open-Source Goal-Conditioned Environments for Robotic Learning,”
NeurIPS Workshop, 2021.

A. Kuznetsov, P. Shvechikov, A. Grishin, and D. Vetrov, “Controlling
overestimation bias with truncated mixture of continuous distributional
quantile critics,” in /CML, 2020.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba,
“Hindsight experience replay,” in NeurIPS, vol. 30, 2017.

A. Wilcox, A. Balakrishna, J. Dedieu, W. Benslimane, D. Brown,
and K. Goldberg, “Monte carlo augmented actor-critic for sparse
reward deep reinforcement learning from suboptimal demonstrations,”
NeurlPS, 2022.

H. Hoshino, K. Ota, A. Kanezaki, and R. Yokota, “Opirl: Sample
efficient off-policy inverse reinforcement learning via distribution
matching,” in ICRA, 2022.

Y. Ding, C. Florensa, P. Abbeel, and M. Phielipp, “Goal-conditioned
imitation learning,” in NeurIPS, 2019.

S. Haldar, V. Mathur, D. Yarats, and L. Pinto, “Watch and match:
Supercharging imitation with regularized optimal transport,” CoRL,
2022.

Y. Zhu, J. Wong, A. Mandlekar, R. Martin-Martin, A. Joshi, S. Nasiri-
any, and Y. Zhu, “robosuite: A modular simulation framework and
benchmark for robot learning,” in arXiv preprint arXiv:2009.12293,
2020.

J.Ji, B. Zhang, J. Zhou, X. Pan, W. Huang, R. Sun, Y. Geng, Y. Zhong,
J. Dai, and Y. Yang, “Safety gymnasium: A unified safe reinforcement
learning benchmark,” in NeurIPS Datasets and Benchmarks Track,
2023.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford,
O. Klimov, “Proximal policy optimization algorithms,”
vol. abs/1707.06347, 2017.

H. Hoang, T. Mai, and P. Varakantham, “Imitate the good and avoid
the bad: An incremental approach to safe reinforcement learning,” in
AAAI 2024.

V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu-based physics simulation for robot
learning,” 2021.

and
CoRR,

Authorized licensed use limited to: University of Southern California. Downloaded on January 04,2025 at 16:00:42 UTC from |IEEE Xplore. Restrictions apply.



