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Phase separation in aqueous solutions of macromolecules underlies the generation of
biomolecular condensates in cells. Condensates are membraneless bodies, representing
dense,macromolecule-rich phases that coexist with the dilute, macromolecule-deficient
phases. In cells, condensates comprise hundreds of different macromolecular and
small molecule solutes. How do different solutes contribute to the driving forces
for phase separation? To answer this question, we introduce a formalism we term
energy dominance analysis. This approach rests on analysis of shapes of the dilute
phase boundaries, slopes of tie lines, and changes to dilute phase concentrations in
response to perturbations of concentrations of different solutes. The framework is
based solely on conditions for phase equilibria in systems with arbitrary numbers of
macromolecules and solution components. Its practical application relies on being able
to measure dilute phase concentrations of the components of interest. The dominance
framework is both theoretically facile and experimentally applicable. We present the
formalism that underlies dominance analysis and establish its accuracy and flexibility
by deploying it to analyze phase diagrams probed in simulations and in experiments.

biomolecular condensates | phase separation | multicomponent systems | dominance analysis |
tie lines

Phase separation in aqueous solutions of proteins and nucleic acids is thought to be a
major driver of spatial organization in cells that gives rise to mesoscale membraneless
bodies known as biomolecular condensates (1, 2). In the simplest picture, a binarymixture
comprising a protein or nucleic acid in a complex aqueous solvent separates into two
coexisting phases above a threshold macromolecular concentration, thereby minimizing
the overall free energy of the system (3). The concentrations of macromolecules and all
components of the complex solvent in the coexisting phases are prescribed by conditions
of phase equilibrium, viz., the equalization of species-specific chemical potentials and
osmotic pressure across phases (3, 4).

In most theories of phase separation and approaches used to analyze experimental data,
the contributions of solvent components, including salt, pH, buffer, and crowders, are
folded into effective two- and three-body interaction parameters (5–10). Such analysis
ignores the possibility of differential interphase partitioning of solvent components,
which has recently been documented (11–13). We illustrate this point using the work
of Bremer et al. (14, 15). They mapped temperature-dependent phase diagrams for
over thirty different variants of A1-LCD, a prion-like low-complexity domain from
the protein hnRNPA1 (14). We shall consider two sequences they studied, which they
designated as WT (for wild-type) and −12F+12Y. In the latter, all Phe residues (F)
were replaced with Tyr (Y). Everything else about the two sequences is identical. At
a given temperature and for identical solution conditions, Bremer et al. quantified the
threshold concentrations, designated as csat, above which each of the protein solutions
undergoes phase separation. They found that the csat value of −12F+12Y is lower than
that of the WT sequence. Clearly, the driving forces for phase separation are stronger
for −12F+12Y when compared to WT. However, what remains unresolved is whether
the differences in driving forces are due exclusively to differences in effective protein–
protein interactions, with the contributions of solvent components being equivalent, or
if the replacement of Phe by Tyr alters the interplay of protein–protein, protein–solvent,
and solvent–solvent interactions. For example, the lowering of csat for −12F+12Y,
which would be implicitly attributed to enhanced protein–protein interactions, may
be the result of solvent contributions that alter the nature and strengths of three-body
interactions without influencing protein–protein associations (16). Likewise, weakened
protein–solvent interactions and enhanced solvent–solvent interactions, without any
substantive changes to protein–protein interactions, could also account for changes in csat.

Significance

Conventional assessment of

driving forces for biomolecular

phase separation requires the

mapping of phase boundaries

and tie lines, through

concentration titrations and

measurements of solution

components, either one at a time

or a small number at a time.

However, the total number of

components in solution is

significantly greater than the

number of titratable and

measurable components, leaving

us blind to energetic

contributions made by hidden

species. Here, we establish a

framework to quantify the

relative energetic contribution, or

dominance, of a component to

phase separation with an

experimentally accessible

approach. In turn, this approach

enables us to uncover

contributions of hidden

components to the driving forces

for condensate formation.

Author contributions: D.Q., H.A., R.V.P., and T.P.J.K.
designed research; D.Q., H.A., T.S., and M.F. performed
research; D.Q., H.A., T.S., and M.F. contributed new
reagents/analytic tools; D.Q., R.V.P., and T.P.J.K. analyzed
data; R.V.P. and T.P.J.K. secured funding; D.Q., H.A., T.S.,
M.F., R.V.P., and T.P.J.K. reviewed and edited the paper;
and D.Q. and R.V.P. wrote the paper.

Competing interest statement: R.V.P. is a member of the
scientific advisory board and shareholder in Dewpoint
Therapeutics Inc. T.P.J.K. is a cofounder and member of
the advisory board of Transition Bio Inc. All other authors
have no competing interests.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution-NonCommercial-NoDerivatives
License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email:
pappu@wustl.edu or tpjk2@cam.ac.uk.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2407453121/-/DCSupplemental.

Published August 5, 2024.

PNAS 2024 Vol. 121 No. 33 e2407453121 https://doi.org/10.1073/pnas.2407453121 1 of 10

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 "

W
A

S
H

IN
G

T
O

N
 U

N
IV

E
R

S
IT

Y
 S

C
H

O
O

L
 O

F
 M

E
D

IC
IN

E
, 
B

E
R

N
A

R
D

 B
E

C
K

E
R

 M
E

D
IC

A
L

 L
IB

R
A

R
Y

" 
o
n
 A

u
g
u
st

 5
, 
2
0
2
4
 f

ro
m

 I
P

 a
d
d
re

ss
 1

2
8
.2

5
2
.7

5
.1

3
7
.



A B

C

Fig. 1. Illustration of the dominance framework. (A) The dominance frame-
work is developed around the free energy changeΔf from the homogeneous,
well-mixed state (Left) to the phase-separated state (Right), which quantifies
the thermodynamic driving force of phase separation. (B) The output of a
specific computational model is the full coexistence curve, comprising the
dilute and dense phase branches of the binodal and tie lines in concentration
space. A vector normal to the phase boundary characterizes its slope in a
general dimension. (C) Experimentally accessible measurements are dilute
phase responses of a component (index 1) as its total concentration or
that of another component (index 2) is varied, yielding a homotypic (Left)
or heterotypic (Right) response, respectively.

Being able to resolve the origins of changes to driving forces
for phase separation requires knowledge of the extent to which
different components contribute toward the total free energy
change from a well-mixed state to the phase-separated state. We
denote this stabilization free energy as Δf (Fig. 1A), and our
goal is to dissect the contributions of different components in a
multicomponent mixture to Δf .

The problem of dissecting driving forces for phase separation
becomes even more important in the context of living cells. Here,
condensates comprise hundreds of different proteins and nucleic
acids (1, 17, 18). Further, the cellular milieu is a highly complex,
nonideal, osmotic solution, made up of an assortment of ions,
osmolytes, and metabolites (19, 20). Additional complexities
arise from the effects of macromolecular crowding and active
processes within cells (21). How does one deduce which compo-
nents are important for phase separation? Riback et al. probed the
effects of titrating the concentration of nucleophosmin (NPM1)
on the biogenesis of nucleoli in live cells (22). They estimated
the apparent saturation concentration csat,app for NPM1, above
which phase separation occurs. However, as the total NPM1
level increases beyond csat,app, the concentration of NPM1 in
the nucleoplasm, which is the dilute phase that coexists with
nucleoli and other nuclear condensates, does not stay fixed at
csat,app but increases monotonically as the total concentration
of NPM1 increases. The absence of saturating or plateauing
behavior suggests that components other than and in addition to

NPM1 contribute to the assembly of the granular components of
nucleoli. Riback et al. analyzed this feature to show how a blend
of homotypic (NPM1–NPM1) and heterotypic interactions
(NPM1 interacting with other molecules) contribute to the
assembly of facsimiles of granular components of nucleoli.
Indeed, a recent study emphasized the importance of heterotypic
interactions in nucleolar organization by uncovering the contri-
butions of asymmetrical complex coacervation (11).
To arrive at a mechanistic understanding of the interactions

among different components, the typical route is to first propose
a specific composition-dependent free energy functional for the
macromolecular solution. Examples include the Flory–Huggins
free energy (5, 6) and the sticker-spacer model (23, 24). A
constrained free energy minimization is then performed to
compute the dilute and dense phase branches of the phase
boundary as well as tie lines that connect distinct pairs of
dilute and dense phase points (25, 26) (Fig. 1B). One can then
compare the computationally generated phase boundary and tie
lines to those that are measured experimentally. This approach
has been successfully employed to model valency-dependent
phase separation for an artificial protein system in cells (27).
However, the complexity of the model increases as the number of
solution components increases. To map out the phase boundary
of a system, one has to perform concentration titrations of all
relevant solution components. The number of samples one has to
prepare increases exponentially with the number of components
in the system. Furthermore, determination of tie lines requires
concentration measurements of solution components in dilute
and dense phases, which is challenging due to the small dense
phase volume in experiments as well as the large number of
species such as ions and other buffer components that would
need to be quantified in each phase. The type of measurement
accessible in most laboratories is the quantification of the dilute
phase concentration of just one or a small number of solutes.
These solutes are usually proteins tagged with fluorescent dyes,
and this dilute phase concentration can be determined as the
total concentration of either the solute in question or another
component is varied. When the titrated component is the same
as the measured component, the response is a diagonal line in the
absence of phase separation and it deviates from the diagonal once
phase separation sets in; we term this a “homotypic response”
(Fig. 1 C, Left). Conversely, if the titrated component is different
from the one that is measured, the response is “heterotypic” and
is a horizontal line in the one-phase regime (Fig. 1 C, Right).

What is currently lacking is a generally applicable approach
for assessing dominant energetic contributions in multicom-
ponent phase separation, one that leverages the principles of
phase equilibria without other assumptions and relies only on
experimentally accessiblemeasurements outlined above.Here, we
introduce such a framework.We consider a system comprising an
arbitrary number N of solute components, where two coexisting
macrophases viz., a macromolecule-rich and macromolecule-
poor phase, result from phase separation. We do not assume any
specific form of the free energy. Instead, we assess the information
that can be gained by analyzing experimental data obtained by
titrations of one or a few macromolecules. We find that near the
dilute phase boundary, the stabilization free energy associated
with one solute relative to the whole system is closely linked
to the shape of the phase boundary, slopes of tie lines, and
dilute phase solute concentrations. Accordingly, we define the
dominance of a solute as the fractional contribution, quantified
in terms of a dominance parameter, that the solute of interest
makes to the stabilization free energy. We first demonstrate the
flexibility and utility of the dominance parameter by analyzing
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data from published simulations of two-component systems. By
comparing the dominance trend with those generated from a
Flory–Huggins model we deduce the hierarchy of interaction
strengths that are consistent with the simulation results. In the
second half of the work, we show that a simple dominance
measurement approach exists for multicomponent systems, and
this can be adapted to any system of interest. We conclude by
outlining practical interpretations of dominance values in the
context of interactions that modulate the driving forces for phase
separation.

Defining Dominance as a Measure of
Energetics

In a closed system, we denote the total concentrations of solutes
in a sample as �� , where � = 1, 2, . . . , N . The dilute and
dense phase boundaries can be represented by two (N − 1)-
dimensional surfaces in the N -dimensional concentration space,
and we use  �− and  �+ to denote solute concentrations on the
dilute and dense surfaces, respectively. Mass balance requires
that for each sample �� , the line connecting  �− and  �+ at
equilibrium passes through �� . We define the tie line vector
k� ≡  �+ −  �− and use v to denote the volume of the dense
phase relative to the whole system. The mass balance equation
can then be written as �� =  �− + vk� . Furthermore, we use n�
to denote the vector normal to the dilute phase boundary, defined

by
∑N

�=1 n�� 
�
− = 0, where � �− is a vector lying on the dilute

branch of the phase boundary. This construction of the phase
space is entirely geometrical and the only assumption is that two
phases coexist at equilibrium (Fig. 2A). Typically in differential

geometry, we need to assign a metric g�� that connects the units
of different solute concentrations to fully define the space. It
however does not play a role in the practical application of the
analysis framework so we do not specify a g�� here.

In a multicomponent mixture comprising incompatible com-
ponents, phase separation helps minimize the total free energy of
the system.We write the free energy density f (�) of a system as a
function of volume fractions of solutes �� , and since the volume
is constrained in defining�� , f (�) corresponds to theHelmholtz
free energy. Under the assumption that the volume occupied by
a molecule is fixed, it can be shown that f (�) also plays the role
of the Gibbs free energy density, so the results we obtain here can
be applied to the practical situation where the pressure, instead of
volume, is held constant (SI Appendix, section 1). We compute

A B

Fig. 2. Geometry and thermodynamics of a general phase-separating
system. (A) The full N-dimensional phase space consists of dilute (light blue)
and dense (dark blue) phase binodal boundaries, tie lines k� connecting
them, and dilute boundary surface normal n� . (B) The free energy before and
after phase separation is f (�) and (1− v)f ( −)+ vf ( +), respectively, and a
one-dimensional representation is used here but this is generalizable to any
number of dimensions.

Δf in the limit of small v, as the free energy difference between
a homogeneous state and a phase-separated state (Fig. 2B). Δf is
given by (SI Appendix, section 2)

Δf = −
1

2

N
∑

�=1

N
∑

�=1

vk�vk�∂���( −) +O(v3), [1]

where the chemical potential is ��(�) ≡ (∂� f )|�. vk
� = �� −

 �− represents the displacement of the total composition from
the dilute composition, so the sum over � can be viewed as
computing the change in chemical potential of solute � upon
phase separation. Accordingly, we define the individual term

Δf � ≡ −
1

2
vk�

N
∑

�=1

vk�∂���( −), [2]

and it quantifies the free energy change associated with the

partitioning of solute �. We are interested in limv→0
Δf �

Δf , which

quantifies the relative energetic contribution of solute � at the
onset of phase separation. This leads to a natural definition of
the dominance of � as

D� ≡ lim
v→0

Δf �

Δf
=

∑N
�=1 k

�k�(∂�∂� f )| −

∑N

=1

∑N
�=1 k


k�(∂
∂� f )| −

, [3]

such that for each point  �− on the dilute phase boundary,
one can calculate a specific value of D� . Notice that D� is
dimensionless and that the sum over all solutes is constrained
such that

∑N
� D� = 1. We are now in a position to deduce

the energetic importance, from a thermodynamic viewpoint, of
a solute compared to others. Hence, the name dominance. If D�

for a solute � is found to be close to 1, this implies that D� ≈ 0
for � 6= � and the phase behavior is dominated by interactions
involving the component � even though other components are
present in the system. In general, for a multicomponent system,
we expect D� to be nonzero for more than one solute. If we
consider two components, � and �, then the relative importance
of the two components as drivers of phase separation will be given

by the ratio D�

D�
. The values ofD� , which typically lie in the inter-

val (0,1), thus serve as a way to identify and quantify the number
of components that contribute to the dominant interactions that
drive phase separation in multicomponent systems.

Computing Dominance from Phase Diagrams

Having formulated the dominance D� , we next explore how
it can be computed from experimental observables. We start
by analyzing simulation results for an exact two-dimensional
system consisting of low-complexity domains of the pair of
proteins fused in sarcoma (FUS-LCD) and hnRNPA1 (A1-LCD)
(28), where the full coexistence curve is available. There are no
“hidden” components in the computations since the solvent is
implicit in the lattice simulations, and the only components
in the system are coarse-grained representations of the two
proteins. Both FUS-LCDandA1-LCDundergo phase separation
on their own, and by mixing them at different ratios while
keeping their total concentration fixed, a two-dimensional phase
diagram with tie lines was produced previously (28), and this
is reproduced here (Fig. 3A). The simulations were performed
with a constant total concentration of A1-LCD and FUS-LCD,
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A B

Fig. 3. Dominance can be computed from a full phase diagram. (A) Simula-
tion data from ref. 28. A1-LCD and FUS-LCD concentrations are measured in
terms of volume fractions, and the dilute phase binodal boundary (solid line)
as well as tie lines (dashed lines) are computed at five different A1-to-FUS
volume ratios. (B) The dilute phase boundary normal and tie line slope at
each simulation point are used to compute dominance values.

and five samples were simulated with varying percentages of
each protein. The simulation results revealed strong heterotypic
attraction between the two proteins, and this was validated by
in vitro experiments (28). Ratios between the n� ’s and k� ’s
are computed using the slope of the phase boundary and tie
lines. To obtain estimates for the dominance values for the
polymers, we note that the tie line vector k� already appears
in Eq. 1. Accordingly, we focus on the phase boundary normal
n� . By perturbing the equilibrium compositions, we arrive

at n� ∝
∑N

�=1 k
�(∂�∂� f )| −

(SI Appendix, section 3) and
direct substitution and comparison with Eq. 3 establishes the
relationship between D� and the geometrical quantities

D� =
n�k

�

∑N

=1 n
k



. [4]

In the case of the two-dimensional system (28), we have
� = 1, 2, and we use index 1 to denote A1-LCD and 2
for FUS-LCD. The tie line slope k1/k2 and the slope of the
phase boundary −n2/n1 can be combined to give the ratio
D1/D2 = (n1/n2)(k

1/k2). Using D1 + D2 = 1, we obtain
individual estimates of D1 and D2 = 1−D1 (Fig. 3B). Plotting
the dominance of A1-LCD as a function of the fraction of FUS-
LCD shows that when both proteins are present in the system,
the dominance of A1-LCD is consistently larger than that of
FUS-LCD, and the dominance values are by definition 0 or 1
when either protein is absent from the system. A large D1 at
intermediate amounts of FUS-LCD indicates that A1-LCD is,
consistently, the dominant contributor to the minimization of
the overall free energy Δf , suggesting that A1-LCD interactions
are in general stronger than FUS-LCD interactions. This is
corroborated by the fact that when A1-LCD and FUS-LCD
are simulated on their own, A1-LCD has a lower saturation
concentration than FUS-LCD (28). Can similar insights be
gleaned by analyzing a two-component system described using
a Flory–Huggins (5, 6) free energy? Answering this question is
useful because it provides a general road-map for interpreting
dominance in specific systems.
We generate a complete coexistence curve for the two-

dimensional Flory–Huggins model using the convex hull algo-
rithm (26, 29, 30) (SI Appendix, section 4). In our computations,
we assume that the two solutes are of unit length, and we fix
�1 + �2 = 0.5. Practically, we first compute the dominance
value at each point on the dilute branch of the binodal.
Next, we calculate the intersection of the tie line and the line

�1 + �2 = 0.5. Finally, we plot the dominance as a function

of �2

�1+�2
. Both solutes interact favorably with each other. We

first fix the homotypic interactions �11 and �22 to be the
same and vary the heterotypic interaction �12 to be weaker
than, the same as, or stronger than homotypic interactions
(Fig. 4 A–C ). The dominance values for the former two cases
vary rapidly as the percentage of �2 increases. This trend is
different from that in the data, so we deduce that the heterotypic
interaction is stronger than homotypic interactions, which is
in accord with published results (28). To further estimate the
relative strengths of homotypic interactions, we set �11 to be
stronger or weaker than �22 (Fig. 4 D and E). The dominance
trend produced in the former case is qualitatively similar to
the simulation results. We conclude that not only are the
heterotypic attractions the strongest, the homotypic attraction
among A1-LCD molecules is stronger than the homotypic
interactions among FUS-LCD molecules. It is worth noting
that the dilute phase boundary from simulations is orders of
magnitude smaller than in the Flory–Huggins computation. The
dimensionless nature of D� means that this difference can be
ignored and only important features of the phase space, including
the shape of the phase boundary, and the slopes of tie lines, are
relevant.
The A1-LCD and FUS-LCD polymers studied above both

exhibit strong homotypic attractions. It is also known that phase
separation in a two-dimensional system can occur with strong
heterotypic interactions that are attractive or repulsive, in the
absence of homotypic interactions (31). What are qualitative
features of dominance values in such cases? We again use the
Flory–Huggins free energy as a convenient basis to generate
phase diagrams and compute dominance values. We set �11 =
�22 = 0, and map coexistence for curves two-phase systems
driven by associative interactions (Fig. 5A) or segregative effects
(Fig. 5B). In presenting dominance values, we use a different
parameterization: For each point on the dilute branch of the
phase boundary, we compute the angle � made between the
vector connecting the origin to that point and the �1 axis, and
plot D� as a function of �. This is qualitatively the same as
plotting D� as a function of the percentage of �2 except in the
case of repulsive interactions, where the negative tie line slope
meansD� stays constant if the total solute concentration is fixed.
With strong heterotypic attraction (Fig. 5A), the computed D1

starts off at a small value and increases as �2 is increased. This
effect is of entropic origin: at low �2, the entropy of mixing of
component 2 opposes phase separation. As �2 increases, this
opposition diminishes due to the logarithmic scaling of the
entropic contribution to the Flory–Huggins free energy. As a
result, the interaction free energy, previously counterbalanced by
the entropic contribution, is released. The free energy release by
�2 is more significant compared to that by �1 and thus D2 is
greater thanD1. Conceptually, the dominance also reflects which
solute is “limiting” in the phase separation process. For a two-
component system driven by heterotypic repulsion (Fig. 5B), the
two phases are enriched in either components. Here, we focus
on the region of phase space where � > �/4 so that the dense
phase is higher in �1. In this region, D1 > 1 throughout and
this implies that D2 = 1−D1 < 0. This is explained by the fact
that by phase-separating, the change in chemical potential of �1

due to partitioning of �2 releases free energy to balance out the
unfavorable contribution from �2 itself, and thus �2 becomes a
depletent. This behavior is expected of real crowders (32, 33), and
it has been reported recently by Chauhan et al. (34) for the phase
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A

B

C

D

E

Fig. 4. Characterizing interaction hierarchy by combining dominance with the Flory–Huggins model. We compute two-dimensional phase diagrams from the
Flory–Huggins model (Left panels) and dominance values of the two solutes (Right panels). Dominance values calculated from simulations in ref. 28 are scatter
points connected by dashed lines. In (A), (B), and (C), the homotypic interactions are the same, and the heterotypic interaction is weaker than, the same as,
or stronger than the homotypic interactions, respectively. Comparing the dominance trend to the A1/FUS system suggests the heterotypic interaction is likely
stronger than homotypic attractions, and by further varying one of the homotypic interactions in (D) and (E), we deduce the homotypic interaction among �1

is stronger than that among �2.

behavior of transcription factors in the presence of polyethylene
glycol (PEG). It is also worth noting that in both cases, as the
systemmoves toward a critical point,D1 approaches a singularity
becauseΔf = 0 at the critical point, and the dominance becomes
ill defined.

The computational models highlight the insights that can
be gained if the dilute phase concentrations regarding multiple
solutes can be measured. If D� and ratios of n� and k� can
be measured, then entries in the Hessian ∂�∂� f ( −) can be
obtained as well, and these correspond to interaction energies
of solutes in the dilute phase. This is based on the observation

that n� ∝
∑N

�=1 k
�∂�∂� f ( −). To illustrate this point, we note

that ∂�∂� f ( −) consists of two terms: a constant, symmetric
interaction energy matrix ��� and a diagonal entropic term

diag

(

1
L1 1

−

, 1
L2 2

−

, . . . , 1
LN N

−

)

, where L� are sizes of the solute

molecules. Here, the contributions from the entropy of the solute

� to the free energy of the mixture is assumed to be
 �−
L� ln �−.

Treating the interaction matrix and sizes L� as unknowns, we

haveN (N +1)/2+N = 1
2N

2+ 3
2N fitting parameters. On the

other hand, at each point �−, we haveN−1 linearly independent
equations using ratios of n� ’s. For an N -component system,

by sampling ∼ 1
2N points, the interaction constants ��� and

molecular sizes L� can be deduced. Measurements of both k�

and n� are needed, since the Hessian is contained in n� through
k� . Practical implementation of this procedure can however be
difficult, given the large number of relevant solutes. Nonetheless,
the prospect of obtaining��� in the dilute solution not only helps
with identifying the role of different solutes to phase separation
but also quantifies protein interactions in general (35).

Dilute Phase Response Functions and Tie Lines

The two-dimensional systems investigated so far serve as illus-
trative examples of the dominance formulation. We now turn
to the realistic scenario where the number of solute species can
be more than two. In addition, concentrations of many of these
species can be difficult to quantify, so full phase diagrams and
tie lines are rarely accessible. We observe, however, that in a
typical experiment, there will be at least one macromolecular
solute, say �, whose dilute phase concentration is quantifiable
(14, 31). Furthermore, one can also change the total starting
concentrations of any solute �, so an accessible quantity of interest

is the response R�� ≡
∂ �−
∂��

. Via mass conservation, one can show

that changes in  �−, in response to changes in �� , evaluated at
the phase boundary, can be expressed as (SI Appendix, section 5)

lim
v→0

R�� = ��� −
n�

n�
D�. [5]

��� is the Kronecker delta. The appearance of D� indicates that

only the dominance of � is accessible when the dilute phase
concentration of � is measured, regardless of which solute � is
varied tomeasure the response. This expression clearly shows that
in order to measure the extent to which a solute � contributes
to the phase behavior of the mixture, one must measure the
dilute phase concentration of the solute in question. These
measurements must be performed as the concentration of other
solutes is perturbed. Interestingly, by combining two response
functions, we can further deduce information regarding the tie

line components k� and k� .
Previously (31), we established a tie line measurement

approach between a solute with index 1 (without loss of
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A B

Fig. 5. Dominance trends in heterotypic interaction-driven Flory–Huggins model. When phase separation is driven purely by heterotypic interactions, both
attraction (A) and repulsion (B) can lead to demixing. Left panels show the two-dimensional phase diagramswith hollowmarkers as critical points, and computed
D� values are plotted in the Right panels. Left Inset: � is defined as the angle formed between the dilute phase point where the dominance is evaluated, and the
�1 axis. As the point of evaluation approaches the critical points, the D� values encounter a singularity as Δf goes to 0. An interesting observation in (B) is that
here, D1 takes on values not in the range of (0,1), reflecting the abnormal behavior of a repulsion-driven phase-separating system.

generality), and another solute with index 2 through measure-
ment of  1

− alone. Using the response function formulation we
can formalize this concept into the following question: How
should �1 and �2 be changed so that  1

− stays constant?

Mathematically, this requires � 1
− = 0. Recall that

∂ �−
∂��

≡ R�� ,

and � 1
− = R1

1��
1 + R1

2��
2 since all other components are

fixed ��3 = ��4 = · · · = ��N = 0. The space defined
by � 1

− = 0 on the 1−2 plane is a line, and its slope is

K 1
2 ≡

(

∂�1

∂�2

)

 1
−

= −
R12
R11
. Close to the dilute phase boundary

we can use Eqs. 4 and 5 to rewrite K 1
2 as

lim
v→0

K 1
2 =

n2

n1

D1

1 − D1
=

k1

k2

[

1

1 +
∑N

� 6=1,2D
�/D2

]

, [6]

such that, to leading order, K 1
2 provides an approximation of the

ratio of tie line components k1/k2 close to the phase boundary.
Terms in the square bracket of Eq. 6 represent the relative
deviation ofK 1

2 from k1/k2, and in a true two-component system

we have limv→0 K
1
2 = k1/k2. On the 1−2 plane, this dilute

phase contour defined by � 1
− = 0 can be thought of as an

N -dimensional tie line reduced to the two-dimensional plane.
Measuring K 1

2 allows an estimation of the relative solute
partitioning to be made. Notably, if the dominance of all solutes
falls within the range (0, 1), the sign of K 1

2 is entirely determined

by the sign of n2/n1, and thus the sign of k1/k2 can be deduced
by observing the effect of the solute 2 on condensates. To put this
in practical terms, if solute 2 dissolves condensates (n2/n1 < 0)
it partitions out of condensates (k1/k2 < 0) and vice versa.
This makes intuitive sense since it suggests that condensate-
favoringmodulators partition into condensates while condensate-
disfavoring modulators are excluded from condensates. It is
important however to point out here that some D1 can fall
outside the 0 and 1 range, and this can happen when a solute is
able to change the chemical potentials of other solutes to make
phase separation especially favorable, even though its intrinsic
energetic contribution opposes phase separation. This is the case
of true crowders, as explained in the previous section.

Response Measurement Using Line-Scans

We now investigate practical applications of dominance analysis
and interpretations in a range of systems. The response function
expression Eq. 5 suggests that measurements of concentrations
in the dilute phase are necessary to obtain the dominance of

a solute. In the following, we use the index 1 to denote the
solute that is measured. Experimentally, a series of samples can
be prepared with varying�1 (homotypic line-scan) or some other
�2 (heterotypic line-scan) while keeping all other �’s constant
and measuring  1

− (Fig. 6). This corresponds to traversing the

phase space along a line parallel to �1 or �2 axis and measuring
the response functions R1

1 or R
1
2 . By performing the measurement

close to the dilute phase boundary we can rewrite response
expressions as

R1
1 =1 − D1,

R1
2 = −

n2

n1
D1.

[7]

In the following, we analyzed multicomponent experimental
data using the response formulae to obtain dominance values and
partitioning information where applicable.
Phase separation of the optoG3BP1 protein in cells was

studied in ref. 22, where the dilute phase [optoG3BP1] was
measured as a function of total [optoG3BP1]. We use the
index 1 to denote optoG3BP1. We have R1

1 = 1 outside the
two-phase regime, and the response is modulated beyond some
threshold value �1

c (Fig. 7A). This is in essence the apparent
threshold or saturation concentration csat,app. In a pseudo one-
component system featuring a solution in a mean-field solvent,
for �1 > �1

c we expect R1
1 = 0. Instead, we find R1

1 > 0
for optoG3BP1 because of the multicomponent nature of the
system (22). Using a two-segment linear fit for optoG3BP1 data
we obtain D1 = 0.55 ± 0.14. In contrast, in another system
involving the protein optoFUS (36), the dominance of optoFUS
is D1 = 0.98 ± 0.07 (Fig. 7B). This is consistent with the
observation that FUS phase separates on its own (37, 38) and
is less reliant on other components. This contrasts with G3BP1,
where other macromolecules such as RNA are typically added to
G3BP1 solution to trigger phase separation (39, 40). A simple
dominance measurement thus allows a quick assessment of the
multicomponent character, similar to what Guillen-Boixet et al.,
demonstrated (39).
Next, we explored how the dominance of a component

responds to the addition of modulators. For this, we investigated
the phase behavior of poly(rA)-RNA upon addition of salt, which
phase separates in the presence of PEG and at high [KCl] (41).
We perform what we refer to as homotypic line-scans [dilute
phase concentrations of poly(rA) are measured as total poly(rA)
is increased] with 4% PEG (molecular weight 10 kDa), and 800
or 850 mM of KCl (Materials and Methods). We use index 1 to
denote poly(rA) and index 2 for KCl. The difference in total KCl
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A

B

Fig. 6. Experimentalmeasurement of response functions. (A) Formeasuring the homotypic response of component 1, one first prepares a series of samples by
varying total [component 1] while keeping all other component concentrations fixed (Left). Dilute phase concentration of component 1 needs to be determined
next, and this can be done by spinning down the samples to remove the dense phase, followed by fluorescent intensity measurement. Finally, plotting the dilute
[component 1] against total [component 1] produces the homotypic response curve (Right), and the slope of the response at the onset of phase separation is

the R1
1
of interest. (B) The heterotypic response of component 1 against another component 2 can be determined in a similar fashion.

concentrations in the two scans isΔ�2 = 50mM. Line-scan data
show a smaller R1

1 after phase separation at higher KCl, so D1

increases from 0.49±0.05 to 0.66±0.04 (Fig. 7C ). The increase

in poly(rA) dominance at higher KCl can be explained by the
increased screening of negative charges on poly(rA), facilitating
inter-poly(rA) interactions and rendering other interactions, for

A B

D

FE

C

Fig. 7. Extracting dominance and partitioning information from line-scan data. In (A–E), Right panels illustrate cross-sections of phase spaces, Left panels
present the corresponding data. Arrows in illustrations represent how line-scans are traversing the phase spaces. In data panels, scatter points are data and
solid lines are phenomenological fits. Dotted lines indicate trivial responses in the absence of phase separation. (A) The dilute phase response of optoG3BP1
(22) exhibits multicomponent character, so phase separation is likely to depend on other components, emphasized with a phase boundary that depends on
other components. (B) In the optoFUS system (36) however the protein has much stronger single-component character. (C) Poly(rA)-RNA phase-separates in
the presence of PEG and KCl. At higher [KCl] the increased charge screening allows inter-RNA interaction to be more favorable, leading to an increase in D1 and

decrease in �1c when [KCl] is increased. (D) Heterotypic line-scan of FUS against PEG (31). At low [PEG] no phase separation is observed, so the dilute phase [FUS]
is simply a constant. When the line-scan trajectory enters the phase-separated region the dilute phase [FUS] starts decreasing, and this initial slope is taken

as R1
2
. (E) Heterotypic line-scan of FUS against KCl (12). Here, the plateau appears at high [KCl] because KCl dissolves condensates. (F ) Overview of dominance

values collected. − and + labels for (C) correspond to low and high [KCl], respectively.

PNAS 2024 Vol. 121 No. 33 e2407453121 https://doi.org/10.1073/pnas.2407453121 7 of 10

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
w

w
w

.p
n
as

.o
rg

 b
y
 "

W
A

S
H

IN
G

T
O

N
 U

N
IV

E
R

S
IT

Y
 S

C
H

O
O

L
 O

F
 M

E
D

IC
IN

E
, 
B

E
R

N
A

R
D

 B
E

C
K

E
R

 M
E

D
IC

A
L

 L
IB

R
A

R
Y

" 
o
n
 A

u
g
u
st

 5
, 
2
0
2
4
 f

ro
m

 I
P

 a
d
d
re

ss
 1

2
8
.2

5
2
.7

5
.1

3
7
.



instance poly(rA)/PEG, less significant. The onset of phase
separation shifts to a lower poly(rA) concentration when salt
concentration is increased, with Δ�1

c = −0.54 ± 0.12g/L.
This can be interpreted as an increase in the overall drive for
phase separation, and it is consistent with the picture that inter-
poly(rA) repulsion weakens with increased screening at higher
salt concentrations. By combining Δ�2 with Δ�1

c we can infer
the ratio of surface normals n2

n1
in the poly(rA)-KCl plane. By

definition, n1Δ�
1
c + n2Δ�

2 + n3Δ�
3 + · · · + nNΔ�

N = 0,
and since the line-scans are performed while fixingΔ�3 = · · · =
Δ�N = 0 we have

n2

n1
= −

Δ�1
c

Δ�2
, [8]

and this gives n2
n1

= −
Δ�1c
Δ�2

= 10.8 ± 2.4
g/l
M . By combining this

with the average D1, we can further calculate K 1
2 = 9.4 ± 1.8

g/l
M . The simple inference is that KCl partitions preferentially
into poly(rA) condensates. In reality, we expect the interphase
partitioning of K+ and Cl− to be different and dependent
on the total concentration of KCl, and this information can
only be gained by measurements of individual ionic species.
Mathematically, treating KCl as a single solute is equivalent to
performing an axis rotation, where the K+ and Cl− axes are

mixed into a new axis. This does not affectD1 = n1k
1

∑N

=1 n
k



since

the denominator is coordinate-independent and the numerator
is not affected. Furthermore, since k� and �� transform in the
same way, the measured K 1

2 represents the summed partitioning

of K+ and Cl−, but it is blind to the partitioning of individual
ionic species.

Although a homotypic line-scan is a natural path toward
quantifying D1, in experiments the heterotypic line-scan can
also be performed (12, 31). To illustrate the approach, we
take two sets of data: FUS/PEG from ref. 31 and FUS/KCl
from ref. 12. In both cases dilute phase FUS protein (index 1)
concentration is measured, while the total concentrations of
PEG or KCl (index 2) are varied. In the FUS/PEG line-scan
data from ref. 31, two line-scans were performed at 2 and 3
μM [FUS] while adding PEG up to 8% weight fraction. The
dilute phase [FUS] measurements showed a plateau at low [PEG]
and an exponential decrease as some threshold [PEG] is reached
(Fig. 7D). The two points at the onset of the decrease are where
the lines cross the phase boundary, and from these, we estimate
n2
n1

= 2.4 ± 0.4 μM
%

. The response function R1
2 can be evaluated

at the drop-off points as well, and averaging over the two scans

gives R1
2 = −1.58 ± 0.07 μM

%
. Combining n2

n1
and R1

2 gives

D1 = 0.65 ± 0.12. This dominance value indicates there are
other solutes actively participating in phase separation and a
likely candidate is PEG. This is also reflected in the fact that
the FUS/PEG phase boundary measured using PhaseScan has a
strong dependence on [PEG] (42). Furthermore, substituting n1

n2

and the average D1 into Eq. 6, we get K 1
2 = 4.5 ± 1.8 μM

%
,

providing an estimate of the relative partitioning between FUS
and PEG.

In the FUS/KCl system (12), KCl has the opposite effect
compared to PEG as condensates are dissolved when more
KCl is added to the system (12). Line-scan data show a steady
increase of dilute phase [FUS] with increasing [KCl] (Fig. 7E).
We fit the dilute phase [FUS] after phase separation using
a linear function. Repeating the same calculations we obtain

n2
n1

= −0.033 ± 0.009 μM
mM and R1

2 = 0.020 ± 0.003 μM
mM to

give D1 = 0.61 ± 0.24. This again suggests a FUS-dominated,
multicomponent system. The K 1

2 value obtained is−0.05±0.04
μM
mM . The implication is that overall, KCl partitions outside
condensates, exerting a destabilizing effect. All dominance values
obtained are summarized in a bar plot (Fig. 7F ). Heterotypic
line-scans are thus an alternative to homotypic line-scans.

Discussion

Assessing Energetic Contributions of Proteins inMore Complex

Condensates.Cellular condensates such as stress granules are
mesoscale, multicomponent entities. Yang et al., used systematic
knockdown experiments to identify G3BP1/2 as the central node
in the network of proteins that make up stress granules (40).
Sanders et al., showed that different nodes in the network con-
tribute differently to the G3BP1/2-mediated assembly of stress
granules (43), which is potentiated by stress-induced polysomal
runoff that generates protein-free, unfolded RNAmolecules (39).
As proteome-scale investigations become more widely used (44–
46), it becomes increasingly feasible to identify nodes in protein–
protein and protein-nucleic acid interaction networks that are key
contributors to condensate assembly. Assessing the contributions
of different condensate components will likely involve genetic
manipulations of expression levels that enable homotypic and/or
heterotypic scanning (22, 43, 44, 47–49). However, the number
of components within the condensatewill always vastly exceed the
number of independent axes along which solute concentrations
can be titrated within cells (50). Deployment of dominance
analysis introduced in this work, and generalization of this
analysis will help quantify the contributions of titratable versus
nontitratable and hence hidden components to the driving forces
for condensation.

Relationship of Energy DominancewithOther Thermodynamic

Measures? The dominance value formulated in this work pro-
vides a practical way to rank the importance of the contributions
of different components in a system. However, there are
many other measures that can also be used to compare the
relative contributions of different components. For instance, the
difference  �+ −  �−, in units of volume fraction, is a possible
candidate, as is the ratio  �+/ �− or a combination of the two.
Such measures quantify different aspects of phase separation:
The difference  �+ −  �− quantifies interphase concentration
gradients that derive from equalizing species-specific chemical
potentials, while the ratio  �+/ �− encodes the difference in the
entropy of �. Ultimately, however, they all contribute to the free
energy decrease Δf , so basing the dominance measure on Δf
ensures that we can view it as a combination of all possible
measures, weighted based on thermodynamic considerations.
The dimensionless nature of dominance also means that physical
characteristics such asmolecular size, charge, and hydrophobicity,
are all encompassed in this measure, allowing molecules of vastly
different properties to be compared on an equal footing.

Combining the Assumption-Free Dominance Formulation with

Other Theoretical Models. In the first half of this work, we
used the Flory–Huggins model to generate phase diagrams and
interpret dominance values in terms of interaction energies, and
this approach can be extended to othermodels too. Recent studies
have adapted the polyphasic linkage formalism of Wyman and
Gill (51) to understand how ligands that bind site-specifically
can exert an influence on the driving forces for phase separation
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via linkage between binding and phase equilibria (52–54). The
formalism of binding polynomials, which underlies linkage
relationships, is also free of any assumptions regarding the
models used to describe either phase separation or binding.
Combining the formalism of polyphasic linkage, which rests on
quantifying how ligands modulate the driving forces for phase
separation, and dominance analysis, which dissects the energetic
contributions of different solutes, is likely to be a useful route
for uncovering differences in binding modes across the phase
boundary. Moreover, in multicomponent systems, the interplay
between homotypic and heterotypic interactions determines the
shapes of phase boundaries and the slopes of tie lines. Lin et al.,
recently showed that the shapes of phase boundaries, mapped
in terms of concentrations of interaction motifs rather than
molecules, can be used to dissect the relative contributions of
homotypic versus heterotypic interactions (55). A comparative
assessment of the shape analysis introduced by Lin et al. and
the dominance analysis introduced here would be valuable,
especially for analyzing low-dimensional representations of phase
boundaries of multicomponent systems, which are inherently
multidimensional in nature. Other contributions including the
concept of solubility products, which was recently introduced
by Chattaraj et al. (56), and the work of Deviri and Safran
(57), both of which focused on buffering in the presence of
heterotypic interactions, can be augmented by the dominance
analysis introduced here.

Generalizing the Formulation to Multiphase Coexistence. The
dominance formulation presented here is built on the assumption
of two coexisting phases. Extending the algebra to multiphase
scenarios is straightforward. An interesting result that follows
for an M -phase, N -component system is that the trace of the

response is
∑N

�=1 R
�
� = N − M + 1. However, a discussion

of this slightly more complex scenario requires additional
considerations. First, a multiphase system comprising M phases
with one dilute phase such as the nucleoplasm or cytosol can be
viewed as the concatenation of (M − 1) two-phase systems, with
each dense phase in equilibrium with a common dilute phase.
Understanding dominance within each of the two-phase systems
is thus equivalent to understanding dominance in the multiphase
system. Second, the relationship between the response R�� and the

energetics of condensate formation is exact in the v → 0 limit,
practically taken by varying the concentration of a component in
line-scan toward condensate dissolution. A natural consequence
of this protocol is that in an experiment, even if the system
has a multiphase regime, close to compositions where almost
all condensates have dissolved, all condensates will be of the
same type, rendering a multiphase model irrelevant for practical
purposes. This is because in the phase space, an M -phase region
is completely surrounded by (M − 1)-phase regions, which are
in turn surrounded by (M − 2)-phase regions, and so on. This
is experimentally observed (41) and computationally illustrated
(26). As such, if a line-scan is performed where the system
can potentially form more than 1 dense phase, the response
R�� immediately outside the homogeneous region almost surely

(with probability 1) still corresponds to a case of two-phase
coexistence, before multiphase effects set in. Mathematically, out
of all compositions on the (N − 1)-dimensional phase boundary
separating the homogeneous region and phase-separated region
in concentration space, compositions that correspond to 3-and-
more phase equilibrium reside on manifolds of lower dimensions
than the two-phase equilibrium manifold. As a result, if we

consider the (N − 1)-dimensional Lebesgue measure defined
on the phase boundary, manifolds comprising 3-and-more phase
equilibrium compositions have Lebesgue measure 0, and thus
the experimentally measured responses near the phase boundary
are almost surely (with probability 1) those that originate from
two-phase coexistence. As a result, as one moves toward the
homogeneous region, the number of phases steadily decreases to
2, before the last remaining type of condensate dissolves.

Conclusions.We have derived and applied an energy dominance
analysis to elucidate the relative importance of the interactions
of specific components in a multicomponent mixture that
undergoes phase separation. We demonstrated the accuracy
and flexibility of the framework by deploying it to analyze
simulation results for mixtures of low-complexity domains as
well as experimentally measured dilute phase response functions.
Formally, the dimensionless nature of the dominance parameter
allows direct comparison between solutes that are distinct from
one another. This makes it possible to compare the dominance
of a macromolecular solute with that of a small molecule
species, if the dilute phase concentration of the latter can
be measured. Dominance analysis takes on special relevance
given the likely contributions of metabolites, osmolytes, other
naturally occurring and drug-like molecules (20, 58). Combining
the dominance framework with detailed theoretical models can
further facilitate understanding of phase-separating systems. As
such, the dominance formalism presents a conceptual as well as
practical advancement in the condensate field.

Materials and Methods

Poly(rA)-RNA with a molecular weight of 700 to 3,500 kilodaltons is purchased
from Sigma, and a stock solution of 4 g/L prepared by dissolving lyophilized
powder inMilli-Qwater.PEGwithmolecularweightof10kilodaltonsispurchased
fromSigma and dissolved in 1MKCl, 50mMHEPES at pH7.3 at 20%byweight.
The working solutions are at 8% PEG, 1.6 M or 1.7 M KCl, 50 mM HEPES, and
pH 7.3. These are prepared by mixing the 20% PEG solution with solutions of
4 M KCl, 50 mM HEPES, and 0 M KCl, 50 mM HEPES.

Experimental samples are prepared bymixing the 8% PEGworking solution,
Poly(rA) stock solution, and Milli-Q water in PCR tubes, with a total volume of
20 μL. After mixing and vortexing, the samples are spun down at 13,400 rpm
for 2min and 2 μL of the supernatant is taken from each sample to measure the
dilute phase [Poly(rA)] in a NanoDrop machine (ThermoFisher).

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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