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Flow and Deformation in Earth's Deepest Mantle: Insights
From Geodynamic Modeling and Comparisons With Seismic
Observations
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Abstract The dynamics of Earth's D” layer at the base of the mantle plays an essential role in Earth's
thermal and chemical evolution. Mantle convection in D” is thought to result in seismic anisotropy; therefore,
observations of anisotropy may be used to infer lowermost mantle flow. However, the connections between
mantle flow and seismic anisotropy in D” remain ambiguous. Here, we calculate the present-day mantle flow
field in D” using 3D global geodynamic models. We then compute strain, a measure of deformation, outside the
two large-low velocity provinces (LLVPs) and compare the distribution of strain with previous observations of
anisotropy. We find that, on a global scale, D” materials are advected toward the LLVPs. The strains of D”
materials generally increase with time along their paths toward the LLVPs and toward deeper depths, but
regions far from LLVPs may develop relative high strain as well. Materials in D” outside the LLVPs mostly
undergo lateral stretching, with the stretching direction often aligning with mantle flow direction, especially in
fast flow regions. In most models, the depth-averaged strain in D” is >0.5 outside the LLVPs, consistent with
widespread observations of seismic anisotropy. Flow directions inferred from anisotropy observations often
(but not always) align with predictions from geodynamic modeling calculations.

Plain Language Summary The Earth's deep mantle deforms and moves at a geological timescale.
This movement is called mantle convection which controls plate tectonics. Of particular importance is the flow
in the lowermost few hundred kilometers of the mantle, which is called the D” layer. The dynamics of D” plays
an essential role in Earth's thermal and chemical evolution. Direct observation of D” flow is not possible, but D”
flow causes deformation of minerals that can align in preferential directions, leading to variable seismic
velocities along different directions. This feature is called seismic anisotropy. In this study, we use numerical
simulations to investigate D” flow and its connection to rock deformation and seismic anisotropy. We find that
D” materials are strongly deformed, consistent with observations of seismic anisotropy in this layer. The
strength of rock deformation in D” generally increases with depth and increases toward regions beneath the
Central Pacific and Africa, where two continental-sized seismic anomalies exist. Flow directions inferred from
anisotropy observations often align with our numerical simulations. This study thus improves our understanding
on the dynamics of the D" layer.

1. Introduction

A grand challenge in solid Earth science is to understand the Earth's mantle flow field, which controls deep mantle
structures, the generation and mechanism of plate tectonics, and the Earth's long-term thermal and chemical
evolution. The lowermost mantle flow is of particular interest because it regulates the heat flux at the core-mantle
boundary (CMB) (e.g., Li & McNamara, 2018; Li et al., 2018; Nakagawa & Tackley, 2008) which is critical for
generating the magnetic field (e.g., Larson & Olson, 1991; Olson et al., 2014; Zhang & Zhong, 2011) and is
essential for Earth's thermal evolution (e.g., Christensen, 1985; Korenaga, 2008). It dictates the formation of
mantle plumes (Gonnermann et al., 2004; Heyn et al., 2020; Li, 2023a; Li & Zhong, 2017) that cause surface
volcanism (Morgan, 1971). Furthermore, the lowermost mantle greatly influences the morphology and internal
structure of seismic anomalies such as the large low velocity provinces (LLVPs) and ultra-low velocity zones
(e.g.,Lietal., 2017; McNamara et al., 2010; Pachhai et al., 2021; Yuan & Li, 2022b). It causes topography on the
CMB (e.g., Deschamps et al., 2018; Lassak et al., 2010; Yoshida, 2008) and also affects the process of core-
mantle reactions (e.g., Kanda & Stevenson, 2006; Ko et al., 2022; Manga & Jeanloz, 1996). Moreover, it
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controls the advection, distribution, mixing, and accumulation of compositional reservoirs in the Earth's deep
interior (e.g., Hansen et al., 2023; Li, 2021, 2023b; Li & McNamara, 2022; McNamara & Zhong, 2005; Tack-
ley, 2011; Zhang et al., 2010) and thus plays an essential role in Earth's chemical evolution.

The large-scale structure of Earth's lowermost mantle is dominated by two LLVPs (e.g., Garnero et al., 2016;
Grand, 2002; Li & Romanowicz, 1996; Ritsema et al., 2004). Surrounding the LLVPs are regions with generally
higher-than-average seismic velocities, which are often interpreted as former, relatively cold, subducted slabs
(e.g., Lithgow-Bertelloni & Richards, 1998). Geodynamic modeling results have shown that flow in the
lowermost mantle, on a global scale, moves away from subduction zones toward the LLVPs (Dziewonski
et al., 2010; Steinberger & Holme, 2008; Walker et al., 2011; Yoshida, 2008). This flow pattern can explain the
preferential formation of mantle plumes at LLVP's edges (e.g., Torsvik et al., 2010, 2016), since the basal thermal
boundary layer thickens in flow directions and becomes most unstable at LLVP's edges (Li & Zhong, 2017).
However, understanding lowermost mantle flow at a scale smaller than a few hundred kilometers is more
challenging because the regional density and viscosity variations are not yet well understood (e.g., Li, 2023a).

When deformation is accommodated in the dislocation creep regime, mantle flow causes the alignment of in-
dividual crystals in an aggregate, leading to a variation of seismic velocity with propagation and polarization
direction. Therefore, observations of seismic anisotropy at the base of the mantle can offer crucial insights into the
deep mantle flow field (e.g., Romanowicz & Wenk, 2017; Wolf, Li, Long, & Garnero, 2024). Global seismic
tomography has shown that the bulk of the lower mantle is (almost) isotropic, while strong seismic anisotropy can
be found in D” (Auer et al., 2014; Chang et al., 2015; French & Romanowicz, 2014; Moulik & Ekstrom, 2014;
Nowacki & Cottaar, 2021; Romanowicz & Wenk, 2017). These global results are supported by regional in-
vestigations, which identify seismic anisotropy in many regions of D” (e.g., Asplet et al., 2020, 2023; Garnero &
Lay, 1997; Long, 2009; Nowacki et al., 2010, 2011; Wolf & Long, 2022; Wolf et al., 2023). In some regions,
strong seismic anisotropy is observed outside and near the edges of the LLVPs, with weaker or absent anisotropy
within the LLVPs (Cottaar & Romanowicz, 2013; Reiss et al., 2019; To et al., 2005). Observations of anisotropy
in the D” layer are often interpreted as being caused by the strong deformation and thus crystal-preferred
orientation (CPO) of anisotropic minerals such as post-Perovskite (pPv), Bridgmanite (Bdg), and/or ferroper-
iclase (e.g., Cottaar et al., 2014; Merkel et al., 2002; McNamara et al., 2003; Merkel et al., 2007; Yamazaki &
Karato, 2007; Wenk et al., 2011), or by shape-preferred orientation (SPO) (e.g., Dobson et al., 2019). However,
inferring mantle flow direction from measurements of seismic anisotropy remains challenging, because the
connections among flow, deformation, and anisotropy are not well understood.

In this study, we perform global geodynamic models to calculate the present-day mantle flow field and. We
introduce passive tracers into the model domain to track deformation history in D” outside the LLVPs. We aim to
gain a better understanding of the mantle flow field in D” and its connection to observations of seismic anisotropy.

2. Methods
2.1. Setup of Convection Models

We solve the following non-dimensional conservation equations of mass and momentum and calculate the
instantaneous mantle flow under the Boussinesq approximation:

V-i=0, )

—VP+V-(4é) + [Ra(T — B,C — B,,, )] =0, )

ppv
where U, P, 1, é, Ra, and T are, respectively, the velocity, dynamic pressure, viscosity, strain rate, Rayleigh
number, and temperature. B, and C are respectively the buoyancy number and the fraction of an intrinsically dense
compositional component. B,,,, is the buoyancy number that represents the density increase due to the Bdg to pPv
phase transition and the I is the phase function. 7 is a unit vector in the radial direction. Equations 1 and 2 are
solved using the CitcomS code (Zhong et al., 2008). The model domain ranges from the CMB to Earth's surface
and is divided into 12 equal-volume caps with each cap containing 128 X 128 X 80 elements. This leads to a lateral
resolution at the CMB of ~28 km. The radial resolution in the lowermost 300 km of the mantle is refined to 15 km.
The CMB is free slip. The top surface is free slip in most cases except in Case 6, where the present-day plate
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motion is applied. Both the CMB and the top surface are isothermal with non-dimensional temperatures of 1.0 and
0.0, respectively.

The Rayleigh number Ra is defined as:

3
Ra = pgaATR ’ 3)
Ko

where p is density, g is gravitational acceleration, a is thermal expansivity, AT is the reference temperature (e.g.,
the non-adiabatic temperature difference between surface and the CMB), R is Earth's radius, « is thermal
diffusivity, and 7, is reference viscosity.

The buoyancy numbers B, and B, are defined as:

ppv
Ap,
= S 4
= aAT “4)
Ap
By = —2 5
YT AT )

where Ap, the intrinsic density anomaly with respect to the background mantle and Ap,,,,, is the density increase
due to the pPv phase transition.

The phase function for the pPv phase transition is defined as:
g3
() = 0.5 + 0.5 tanh (5), 6)

where § is the width of the phase transition, and the excess pressure x is defined as:
T=d— dppv - Y(T - Tppv)v (7)

where d is the depth, d,,, and T,,, are the reference depth and temperature for the pPv phase transition,
respectively, and y is the Clapeyron slope. The phase function I varies from 0.0 for purely Bdg phase to 1.0 for

purely pPv phase.

The viscosity depends on temperature, depth, and the presence of pPv phase, expressed as:
n=n,exp [E(O.S -T)+T ln(ﬂppv)]’ ®)

where E is the activation coefficient for the temperature-dependent viscosity, and 1, is the viscosity change due
to the pPv phase transition. The variable 7, is a prefactor that controls the depth dependence of viscosity. It is 1.0
in the upper mantle and 70.0 in the lower mantle for most cases. The variables E, 7,,,, and 7, are free parameters
tested in this study.

We assume a linear relationship between the density anomaly caused by thermal expansion (Ap;) and the
anomaly of seismic shear-wave velocity (6V), given by:

oV,

Arr_ o Vs
AT

=C ©

where C, __, is the conversion factor. The change of temperature is related to thermal density anomaly via thermal

expansivity by:

A
§T = —2P1. (10)
pa
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The non-dimensional form of the temperature anomaly is given by:

oT
oT' = —. 11
AT (1)
Finally, the non-dimensional temperature field in our models is calculated by:
T =Ty + 0T, (12)

where the 7. is the 1D laterally averaged profile of the non-dimensional temperature taken from present-day
temperature field of a previous 3D global geodynamic model in (Li & Zhong, 2019) and is given in Figure
Slain Supporting Information S1. In many cases, the LLVPs are treated as compositionally distinct materials. For
this condition, the buoyancy field also includes the effect of intrinsic density anomalies in LLVPs in most models.
Table S1 in Supporting Information S1 summarizes physical parameters used in this study.

2.2. Strain Calculation

Mantle flow causes deformation and, under certain conditions, orientation of minerals which can develop seismic
anisotropy. Specifically, CPO develops when deformation of anisotropic minerals is accommodated via dislo-
cation creep, which is generally favored by lower temperatures, higher stresses, and larger grain sizes (e.g., Frost
& Ashby, 1982; Yamazaki & Karato, 2007). In this work, we assume that the base of the mantle is deforming in
the dislocation creep regime (e.g., Karato, 1998). This assumption is consistent with (a) geodynamic modeling
studies (McNamara et al., 2003) showing concentration of deformation in D”, (b) mineral physics experiments
showing the D” minerals are anisotropic (e.g., Dobson et al., 2019; Wu et al., 2017; Yamazaki et al., 2006), as well
as (c) the observations that seismic anisotropy in the deep mantle is constrained to the lowermost few hundred
kilometers of the mantle (e.g., Auer et al., 2014; French & Romanowicz, 2014). The nature of seismic anisotropy
caused by CPO is controlled by geometry and amount of deformation.

Passive tracers are introduced into the model domain and are advected by the instantaneous mantle flow field. The
tracers track the strain along their paths. We use the method of McNamara et al. (2003) to calculate strain on
tracers. More detailed descriptions of this method are also given in (Mckenzie, 1979; Spencer, 1980). The
maximum stretch 4, is calculated as the positive square root of the maximum eigenvalue of the left Cauchy-
Green deformation tensor G which is defined as:

G=F FT, (13)

where F is the deformation tensor and F” is its transpose. According to this definition, an undeformed particle has

j’max
(McNamara et al., 2003), we quantify strain using A,,,,—1. The deformation tensor F is initially a unit tensor. It

changes along the trajectories of tracers and is determined by integrating the velocity gradient tensor L via:

= 1.0. However, the strain for an undeformed particle is traditionally defined as 0.0. Therefore, following

oF;
=Ly F. 14
ot ik Lkj ( )

The trajectory of tracers is controlled by the initial location of tracers. In this study, we assume that tracers start to
accumulate strain at the time when they first sink across the top of the D” layer, which we define as 300 km above
the CMB. We initially introduce tracers at the top of the D” layer. We aim to obtain such an initial distribution of
tracers that after they are advected to their final locations within D”, they evenly sample all regions in D”. We take
the following steps to achieve this goal. First, we evenly distribute tracers at their final positions in the D” layer.
Then, these tracers are advected backward-in-time until they reach their initial locations at the top of D”. We
denote the time duration that a tracer takes to travel from its final to initial location as 1", After we obtain the initial
location of all tracers, they are advected forward-in-time with a time of ¢ to their final positions in D”. Each tracer
takes a different path and thus has a different #". As a result, each tracer is introduced to the model domain at a time
of 1" before the present-day. Strain of tracers is calculated during the forward-in-time process starting from the
initial locations of tracers where they have zero strains (or unity A,,,,).

LIET AL.

4 of 27

0d ‘T “¥T0T ‘95€6691T

“sdyy woxy papeoy

D) PUE SWID T, 3y 238 “[$70T/T1/20] u0 Areaqry autjuQ Aoqip “Ansioatun dfex Aq 80620EIETOT/6TO1 01/10p/wod Ko[im”

isdng) suonsp

SULIO)/WO00" K1 KIeIqroul]i

P!

QSULDI'T SUOUIUO)) dANED1Y) 9[qedrjdde oY) Aq PauIdA0S 1B SI[OIIE V() ‘aSN JO SO[NI 10§ AIRIQIT dUIUQ) AS[IA UO (SUOTIP



NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Solid Earth 10.1029/20247B029058

3. Results
3.1. Flow and Deformation for the Reference Model

We first present the results for our reference model, Case 1. In this case, the density and temperature structures are
converted from tomography model S40RTS (Ritsema et al., 2011) using a conversion factor C, _, = 0.4 between
thermal density anomaly and S-wave velocity anomaly (Equation 9). Similar to previous studies (e.g., Hager &
Richards, 1989; Liu & Zhong, 2016), the density anomaly in the topmost 300 km of the mantle is removed
because its relationship with V, anomaly may not be well captured by a linear scaling law, due to the presence of
strong compositional variations. The LLVPs have been suggested to be made of compositionally distinct material
that is intrinsically denser than the surrounding mantle (e.g., Jones et al., 2020; Li & McNamara, 2022;
McNamara & Zhong, 2005; Mulyukova et al., 2015; Yuan & Li, 2022a; Yuan et al., 2023). We define LLVP
regions where the V; is less than —0.26%. With this definition, 30% of the area at 2,800 km depth in S40RTS
model is occupied by LLVPs. To account for the intrinsic density anomaly of LLVPs, we assign a buoyancy
number of B, = 0.4 in the lowermost 600 km of the LLVP regions. The Rayleigh number is Ra = 2 x 10%. The
viscosity of Case 1 follows Equation 8. The non-dimensional activation energy is £ = 9.21, equivalent to a
dimensional activation energy of 191 kJ/mol. Due to numerical challenges, we use a relatively low activation
energy compared to that constrained by experiments, which is in the range of ~240-530 kJ/mol (e.g., Karato &
Wu, 1993); we explore the effects of temperature-dependence of viscosity in another case. The depth-dependent
viscosity prefactor 7,.is 1.0 in the upper mantle and 70.0 in the lower mantle. Parameters related to the pPv phase
transition are B,,, = 0.13, y = 0.1456, d,,,, = 0.42386, T,,, = 0.5, and 7,,,, = 0.01. The laterally averaged
viscosity profile is shown in Figure S1b in Supporting Information S1.

Because temperature scales linearly with V,, the LLVP regions with lower V, are generally hotter than their
surroundings (Figure 1a). However, the majority of regions within the LLVPs remain negatively buoyant
(Figure 1b). This is because the LLVPs in this model are assumed to be made of materials that are intrinsically
denser than the background mantle. The temperature field controls the Bdg-pPv phase transition. At 2,800 km
depth, regions outside the LLVPs are dominated by pPv phase, whereas no pPv phase exists within the hot LLVPs
(Figure 1c). The fraction of pPv phase, as represented by the phase function I', varies with depth. For example,
compared to at a depth of 2,800 km, the fraction of pPv phase is smaller at 45 km above the CMB and at depths
near the top of D” (Figure S2 in Supporting Information S1).

Results from our reference model (Case 1) show that flow in D” generally converges toward the LLVPs
(Figure 2a). Downwelling flows with negative radial velocity mostly occur far from LLVPs (e.g., beneath the
circum-Pacific and Indian Ocean), whereas upwelling flows mainly occur within and just outboard of the LLVPs
(Figure 2b). Flow in the lowermost mantle outside LLVPs is mostly in lateral directions. For example, the
magnitude of radial velocity is ~10 times lower than the lateral velocity at 2,800 km depth outside the LLVPs
(Figure 2). In this study, we focus on flow and deformation outside LLVPs because the nature of internal con-
vection within LLVPs is controlled by small-scale structures within LLVPs that may not be well resolved in
global tomography models.

We calculate the second invariant of the strain rate tensors. The strain rate within D” varies with depth (Figure 3).
It is the lowest near the top of D”, reaches maximum values at intermediate depths of D”, and then decreases with
depth toward the CMB (Figure 3). Specifically, strain rate is lower than 1073 s™" in all areas at 270 km above the
CMB (Figure 3a). At 225 km above the CMB, strain rate becomes slightly higher than 10™'° s™" in a few in-
dividual regions (Figure 3b). At about 180-90 km above the CMB, most regions outside the LLVPs have a strain
rate larger than 10™'% s™' (Figures 3c—3e). Regions with the highest strain rates include those beneath the central
America, northwest of the Pacific LLVP, northeast of the African LLVP, and beneath the southeast of the African
LLVP (Figures 3c—3e). At depths of 45 km above the CMB, the distribution of strain rate remains similar, except
that its magnitude is reduced in most regions (Figures 3f-3h), compared to that at intermediate D" depths.
Noticeably, the regions with a strain rate around 3 - 4 x 107> s~ at southeast of the African LLVP at mid-depth
of D” becomes less than 107'% s™" after 45 km above the CMB (Figures 3f-3h).

Next, we study strain in D” (again, defined as the lowermost 300 km of the mantle). The computational domain
contains 20 spherical shells in D”, so each shell has a thickness of 15 km. Each shell is further divided into
196,608 elements that are nearly equal surface area. First, we place one tracer at the center of each element, which
gives 196,608 tracers within each shell that are evenly distributed. Then, we advect these tracers backward-in-
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Figure 1. The distribution of (a) non-dimensional temperature anomaly after the horizontal average is removed, (b) residual
buoyancy, and (c) the fraction of pPv phase as represented by the phase function I" defined in Equation 6 (e.g., 1.0 indicates
100% pPv phase), at 2,800 km depth for Case 1. The cyan-contoured lines show large-low velocity province region
boundaries at 2,800 km depth in the S40RTS tomography model.
time until they reach the top of D”. After that, these tracers are advected forward-in-time from the top of D” to
their final locations within D” and we track the strain along tracer paths.
We first examine the strain of tracers at a depth of 97.5 km above the CMB, which is the central depth of the 7th
shell when counting shells from the bottom. We find that most tracers, after they are advected backward to the top
of D”, are located in regions with downwelling flows (Figure 2b) around the Pacific Ocean and the ancient Tethys
Ocean (green colors in Figure 4a). Then, for tracers at the top of D”, we set their stretch (strain) to be unity (zero),
advect them forward-in-time, and track their strains along their paths until present-day.
Again, we define the time it takes for a tracer to be advected from the top of D” to their final locations (or 97.5 km
above the CMB in this case) as 7. We find that some tracers travel through the LLVPs, such as those near the
LIET AL. 6 of 27
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S
Lateral velocity (cm/yr)

o
o
Radial velocity (cm/yr)

Figure 2. The distribution of (a) lateral flow velocity (arrows) and its magnitude (background) and (b) radial flow velocity at
90 km above core-mantle boundary for Case 1. The cyan contours show large-low velocity province regions at 2,800 km
depth in the S40RTS tomography model.

northern portion of the African LLVP (Figure 4a). Because flow within LLVPs is uncertain (as we mentioned
before), we do not show the deformation history of tracers that have traveled through LLVPs. The distribution of
{" is shown in Figure 4b. Generally, " increases toward the LLVPs. 7~ in most regions outside the LLVPs is
<100 Myr, with £* < 50 Myr in downwelling centers. Most regions at the edges of LLVPs have ¢ >100 Myr,
except those that are close to downwelling centers such as the southeastern and western edges of Pacific LLVP
and the northeastern edge of the African LLVP where the ¢ can be <100 Myr. Except at the LLVP edges, some
regions far from LLVPs also have ¢ >100 Myr or even >150 Myr, including beneath the central U.S., south of the
Pacific LLVP, and beneath northern Antarctica.

Figure 4c shows the strain distribution at 97.5 km above the CMB. Comparing Figures 4b and 4c, we find a clear
spatial correlation between ¢ and strain. For example, strains larger than 5.0 (e.g., white-brown colors in
Figure 4c) often occur around the edges of the LLVPs where the ¢~ is typically >150 Myr. Some regions at the
LLVP edges (such as the southeastern and western edges of Pacific LLVP and the northeastern edge of the
African LLVP) show low strain, and these regions also have low ¢~ (Figure 4b). High strains are also found in
regions far from LLVPs and these regions also show high 7", although most regions far from LLVPs have both
relatively low strain (e.g., <4.0) and relatively low 7 (e.g., <100 Myr). We calculate the average strain within
each bin of #*. We find that the average strain generally increases with 1~ (Figure 4d), which again demonstrates
that the strain is greatly controlled by ¢". The clear spatial correlation between ¢* and strain indicates that the strain
of tracer generally increases with time. This is not surprising because strain is a time-integration of the defor-
mation history as shown in Equation 14.

Interestingly, regions with large ¢ (e.g., >150 Myr, Figure 4b) and large strains (e.g., >5.0, Figure 4c) often
exhibit linear shapes. Many of these linear-shaped regions such as around the Pacific LLVP or outside the two
LLVPs, extend in directions that are parallel or sub-parallel to the surrounding flows. However, some of these
regions such as along the western edges of the African LLVP are sub-perpendicular to the surrounding flows
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Figure 3. The second invariant of the strain rate tensor at depths of 270 km (a), 180 km (b), 135 km (c), 90 km (d), 45 km (e), and 15 km (f) above the core-mantle
boundary (CMB) and at the CMB (h) for Case 1. The cyan patches show large-low velocity province regions at 2,800 km depth in the S40RTS tomography model.

(Figure 4b). Recall that tracers are advected, and their deformations accumulate, along streamlines. To better
understand the spatial distribution of #* and strain, we examine the trajectories and strain of tracers in two different
regions, one beneath North America (Region 1) and the other beneath South America extending to the western
edges of the African LLVP (Region 2).

Region 1 exhibits negative radial velocity (v,,q < 0.0 cm/yr) in most places, as indicated by the white contours in
Figure 5a. Within this area, two sub-regions show significant negativity with v, < —0.15 cm/yr (blue contours in
Figure 5a), separated by regions with less negative v,,4. We analyze the trajectories of four tracers in region 1.
Tracers 1, 2 and 3 originate in areas with relatively slow downwelling speed and are advected westward along the
flow. They spend all their time in areas with slow downwelling speed. Their final positions, although varying,
remain aligned with the flow direction. Tracer 1 takes the longest path, tracer 3 the shortest, and tracer 2 an
intermediate path. All three tracers sink consistently from 300 to 97.0 km above the CMB, except tracer 1, which
goes upward during the last 10 Myr of its journey (Figure 5b) and ends in a region with positive v,,4 (Figure 5a).
Tracer 1 has the longest ¢~ of 144 Myr and the largest strain of 6.6, tracer 3 has the shortest 7* of 129 Myr and the
smallest strain of 5.6, and tracer 2 has the intermediate /" and strain (Figures 5b and 5c). We observe a slight
decrease in strain for tracer 1 during its final trajectory (Figure 5c). In contrast, tracer 4 starts and spends more
than 1/3 of its time in areas with significant negative v,,,, (< —0.15 cm/yr) and reaches a final position similar to
those of tracer 1 and 2 in just 80 Myr. Its present-day strain is 2.1-much smaller than tracer 1-3. These findings
reinforce the notion that strain generally increases with time. They further imply that the linear-shaped high strain
in Region 1 is likely due to the relatively weak downwelling flow along the paths of tracer 1-3, which prolonged
their advection to their final position, leading to significant strain accumulation along their trajectories.
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Figure 4. (a) The trajectories of tracers from the top of D” to 97.5 km above the core-mantle boundary (CMB) for Case 1 with colors showing the heights of these tracers
above the CMB. This panel shows the locations of the tracers over the time duration of these tracers. (b) The time duration 7" for these tracers to be advected from the top
of D” to 97.5 km above the CMB. White arrows show lateral flow velocity at this depth. (c) Strain at 97.5 km above the CMB. The dashed yellow lines are contours of
" = 120 Myr. The zoomed-in view of the strains in the red boxes are shown in Figure 5. Lighter gray patches in panels (a—c) represent large-low velocity province
(LLVP) regions at 2,800 km depth in the S40RTS tomography model, and darker gray patches are final locations of tracers that have traveled through LLVPs. (d) The
average strain as a function of time duration ¢ .

Region 2 exhibits a divergent flow field from a center near 5°S, 65°W, extending generally westward toward a
linear, north-south high-strain zone (Figure 5d). We analyze the trajectories of four tracers in this region. All four
tracers start at a close position with significant negative v,,4 (< —0.15 cm/yr) and move westward with flow. They
first traverse areas of negative v, 4 before transitioning to areas of positive v,,4 as they reach their final positions
(Figure 5d). The distance-above-CMB profiles versus time for tracers 5, 6, and 7 nearly overlap (Figure Se),
indicating similar flow speed along their trajectories. However, although tracer 5 moves westward along its entire
path, tracers 6 and 7 initially move westward before turning northward as they approach their final positions.
Consequently, tracers 5, 6, and 7 end up aligned along a north-south line, perpendicular to the predominantly
westward flow direction. These tracers share similar 1 of about 170 Myr and exhibit high strain at the present-day.
The lower present-day strain of tracer 5 (at ~5.9) than tracers 6 and 7 (at ~8.2-8.8) may be due to the difference of
strain rate along their trajectories. For comparison, tracer 8 starts near tracers 5—7 and reaches a final position near
tracer 6. However, it is only advected for ~117 Myr and accumulates a much smaller strain of ~3.5 (Figure 5%),
supporting the trend of strain increasing with time.

To summarize, tracers generally accumulate strain along flow directions. In regions where flow direction remains
relatively stable, tracers that reach high strain values (>5.0) before their final positions continue accumulating
strain, creating a high-strain track along streamlines parallel to the overall flow (Figures 5a—5c). However, when
tracers initially exhibit low strain and only reach high strain after a 90-degree change in flow direction, high-strain
regions will instead appear as linear zones perpendicular to the tracers' overall trajectories (Figures 5d-5f). Large
strain gradients in some areas may result from materials requiring significantly different times to reach nearby
final positions (e.g., tracer 4 and tracer 1 in Figure 5a and tracer 8 and tracer 6 in Figure 5d).
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Figure 5. (a) Strain at 97.5 km above the core-mantle boundary (CMB) for Case 1 in Region 1 shown by the red box in Figure 4c at North America. The curves show the
trajectories of tracers 1 (red), 2 (green), 3 (orange), and 4 (cyan). (b) The distance above the CMB for tracers 1—4 as a function of time. (c) The strain for tracers 1-4 as a
function of time. (d) Strain at 97.5 km above the CMB for Case 1 in Region 2 shown by the red box in Figure 4c at South America. The curves show the trajectories of
tracers 5 (red), 6 (green), 7 (orange), and 8 (cyan). The white circles and colored circles, respectively, show the final and initial locations of these tracers. (¢) The distance
above the CMB for tracers 5-8 as a function of time. (f) The strain for tracers 5-8 as a function of time. In panel (a) and panel (d), the white circles and colored circles,
respectively, show the final and initial locations of these tracers. The numbers in white circles show tracer id. The cyan arrows are lateral flow velocities, and the white
and blue curves are contours of radial velocity at 0.0 cm/yr and —0.15 cm/yr, respectively.

Returning to our global map of strain distribution, we find that about half of the tracers have strains larger than 1.8
at the present-day. Similarly, the magnitude of mantle flow velocity at present-day tracers' locations is larger than
1.5 cm/yr for about 50% of tracers. In order to gain intuition for the distribution of strain directions, we projected
the maximum stretch direction in both lateral and radial directions. The directions of lateral strains are shown in
Figure 6a together with mantle flow velocity. The ratio of radial strain to lateral strain is shown in Figure 6b. We
find that this ratio is much less than 1.0 in most regions outside of LLVPs, except in a few regions at the LLVP's
edges where it is higher than 1.0. This result indicates that materials outside of LLVPs are mostly laterally
stretched except at the LLVP's margins where they are sometimes radially stretched. We quantify the angle
between the direction of strains and the local flow velocity at each tracer's final location. We find that for tracers
with strains larger than 1.8, approximately 75% of them exhibit an angle less than 30° (gray histograms in
Figure 6¢); this decreases slightly to ~57% for tracers with strains smaller than 1.8 (red histograms in Figure 6c).
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Figure 6. (a) The lateral flow velocities (black arrows) and the projections of the strains in the lateral directions (red bars) at 97.5 km above the core-mantle boundary for
Case 1 outside the large-low velocity provinces (LLVPs). (b) The ratio of the magnitudes of radial to lateral strains, with blueish (reddish) colors indicate regions where
lateral (radial) strains dominate. (c) The statistical distribution of the angles between the flow directions and the maximum stretch directions for strains larger than 1.8
(gray) and for strain smaller than 1.8 (red). (d) The statistical distribution of the angles between the flow directions and the maximum stretch directions for flow velocity
larger than 1.5 cm/yr (gray) and for flow velocity smaller than 1.5 cm/yr (red). Lighter gray patches in panels (a, b) represent LLVP regions at 2,800 km depth in the
tomography model S40RTS, and darker gray patches in panels (a, b) are final locations of tracers that have traveled through LLVPs.

For tracers with a present-day flow velocity larger than 1.5 cm/yr, approximately 86% of them exhibit angular
differences between flow and strain direction less than 30° (gray histograms in Figure 6d). However, for tracers
with a present-day flow velocity less than 1.5 cm/yr, only ~43% of them exhibit an angle less than 30°, and there
is no preference of low angles for these tracers (red histograms in Figure 6d). Therefore, although the stretching
directions of tracers generally agree with the mantle flow directions when tracers are strongly stretched in fast
flow regions, this agreement does not generally hold for tracers that are not significantly stretched and/or are in
slow flow regions at the present-day.

In Figures $3-S10 in Supporting Information S1, we present the tracer trajectories, ¢~ values, and strain values for
Case 1 at depths of 277.5 km (Figure S3 in Supporting Information S1), 232.5 km (Figure S4 in Supporting
Information S1), 187.5 km (Figure S5 in Supporting Information S1), 142.5 km (Figure S6 in Supporting In-
formation S1), 97.5 km (Figure S7 in Supporting Information S1), 52.5 km (Figure S8 in Supporting Informa-
tion S1), 22.5 km (Figure S9 in Supporting Information S1), and 7.5 km (Figure S10 in Supporting
Information S1) above the CMB. All tracers are advected from top of D” in downwelling centers to their final
depths and locations. At 277.5 km above the CMB, the time duration ¢” is less than 50 Myr in most regions outside
the LLVPs, except regions near the LLVP's margins where 7* could be larger than 100 Myr. Regions with high
strains (e.g., >5.0) only occur near the edges of LLVPs, whereas most regions far from LLVPs have strain <1.0
(Figure S3 in Supporting Information S1). As the depth of tracers increases toward the CMB, it takes more time
for tracers to reach their final locations as represented by the increasing #* with depth, and strain generally be-
comes larger. At all depths, regions with higher strain typically show larger ¢".

Motivated by the fact that shear wave splitting measurements typically represent a path-integrated measure of
anisotropy throughout the D’’ layer, we calculate the depth-averaged strain, €, for the 20 shells within D”. € shows
a similar distribution to the strain at 97.5 km above the CMB (Figure 7a). Specifically, € is >1.0 in ~98% of the
region outside of LLVPs (gray curve Figure 7b). About 25% of the region outside the LLVPs has € > 4.5 (gray
curve in Figure 7b); these high-strain regions often have a linear shape, extending from outside the LLVPs to the

LI ET AL.

11 of 27

od ‘T “$T0T 95€6691T

“sdyy woxy papeoy

NIPUOD) PUE SULD L, 9y 938 *[$70T/T1/20] uo Arerqry sunuo Koy ‘Ansioatun d[eA £q 850670EPTOT/6TO1 01/10p/wo> Kapim:

ssdg) s

SULIO)/WO00" KM A.

9SUSOIT SUoWWo)) 2ANEdI)) dqeorjdde ayy Aq pau1oA0S ore sa[o1IE V() (9N JO SO[NI 10§ AIeIqIT duI[uQ) AJ[IAN UO (SUODIP!



Y ad
AG

|
v

ADVANCING EARTH

AND SPACE SCIENCES

Journal of Geophysical Research: Solid Earth 10.1029/20247B029058

30 ®) 1%
o
0 25 - 80
>
— 20 - 60 X
2 3
8™ wi 0 2
S
@ 10 - 20
[a)

5 T T T 0

T T T T T T
7 8 9 10111213 14 15
Strain

o
-
N 4
w 4
~
o 4
o 4

Figure 7. (a) The depth-averaged strain within D” for Case 1. Cyan arrows show lateral flow velocity at 2,800 km depth. Lighter gray patches represent large-low
velocity province (LLVP) regions at 2,800 km depth in the tomography model S40RTS, and darker gray patches are final locations of tracers that have traveled through
LLVPs. (b) The average closest distance (black) to boundaries of LLVPs across regions with varying depth-averaged strains for the model without considering
recrystallization and the areal percentage (gray) of these regions relative to the total map area excluding the LLVP regions and the regions affected by LLVPs. (c, d)
Vertical cross-section of strain and flow velocity in the lowermost 300 km of the mantle in 4 locations as shown in panel (a).

margins of the LLVPs and along the edges of the African LLVP (Figure 7a). As shown by the black curve in
Figure 7b, the average closest distance to the boundaries of LLVPs from regions with € between 0.5 and 1.5 is
~20-22°. This distance decreases to ~15° for higher stains and becomes relatively stable across regions
with e > 3.5.

Figures 7c and 7d show 4 vertical cross-sections of strain (Figure 7c) and velocity field (Figure 7d) along the
lateral mantle flow directions as depicted in Figure 7a. Again, strain generally increases with depth and is highest
at the base of the mantle (Figure 7c). The mantle flow is mostly lateral. The radial velocity is generally negative in
regions away from LLVPs and positive near the edges of LLVPs. We find strain tends to increase in the lateral
flow direction. However, the correlation between the vertical cross-sections of strain and flow velocity is not very
clear, which may be because strains are computed from the time-integrated deformation along the trajectories of
tracers, whereas the flow velocity only represents an instantaneous snapshot of the present-day. A better un-
derstanding of strain distribution requires analyzing the deformation history of materials such as shown in
Figure 5.

In the real Earth, D” may contain a mixture of the Bdg and pPv phases. Materials in D” can be advected from a
Bdg stability region to a pPv stability region, and vice versa. Materials experience recrystallization during phase
changes, although the degree to which aggregates may retain fabrics inherited across a phase transition, known as
topotaxy, remains imperfectly known (but may be important) (e.g., Chandler et al., 2021; Dobson et al., 2013;
Walker et al., 2018). Recrystallization may also occur when materials are highly strained (e.g., Wenk et al., 1997).
Importantly, recrystallization may cause the strength of preferred orientation, and thus the anisotropy of materials,
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Figure 8. The distribution of the depth-averaged strain in the D” layer for Case 1 under conditions: (a) when recrystallization occurs after reaching a strain of 9.0;
(b) when recrystallization occurs after reaching a strain of 4.0; (c) when recrystallization occurs after reaching a strain of 1.0; and (d) when recrystallization occurs after
reaching a stretch of 4.0 with additional recrystallization when materials are advected from the Bdg stability region (defined with I'<0.5) to the pPv stability region
(defined with I" > 0.5) or vice versa. We approximate the effects of recrystallization on anisotropy strength by resetting the strain to zero when recrystallization occurs.
Lighter gray patches represent large-low velocity province (LLVP) regions at 2,800 km depth in the tomography model S40RTS, and darker gray patches are final
locations of tracers that have traveled through LLVPs. (e, f) The areal percentage of regions with respect to the global map regions excluding LLVP regions and regions
affected by LLVPs (e) and the average closest distance to boundaries of LLVPs for cases under different conditions of recrystallization.

to decrease. However, the amount of anisotropy reduction due to recrystallization in lowermost mantle aggregates
remains unclear. To approximate the process recrystallization and its effects on anisotropy, we assume a
simplified, endmember scenario in which we consider the amount of strain as a proxy for anisotropy strength and
parameterize the effects of recrystallization (including due to phase transitions) by resetting the strain to zero for
each tracer after recrystallization.

We find that strain (i.e., our proxy for anisotropy strength) is reduced in D” when the effect of recrystallization is
considered (Figure S11 in Supporting Information S1). In addition, regions at deeper depths experience strain
reduction in wider areas than those at shallower depths (Figure S11 in Supporting Information S1). This is
because strain increases with depth and thus reaches the critical value for recrystallization more easily at deeper
depths. The depth-averaged strain is also significantly reduced (Figures 8a—8d), and it is often much lower than
the maximum strain set for recrystallization, as strain generally decreases with depth, and the strain at shallower
depths is typically well below the maximum in most regions. If no recrystallization is considered, >98% of the
area outside the LLVPs has € > 1.0. However, if we set the critical value of strain for recrystallization at values of
9.0, 4.0, and 1.0, we find that more than 98% of the area outside the LLVPs has € larger than 0.75, 060, and 0.30,
respectively (Figure 8¢). When the maximum strain is set at 1.0, we observe a more dramatic spatial variation of
strain values (Figure 8c) which is likely because of more frequent recrystallization. Interestingly, if recrystalli-
zation is considered only when a maximum is reached, the high strains observed far from LLVPs in the model
without considering recrystallization become much smaller and no longer significant, and the high strains mostly
occur around the edges of the LLVPs (Figures 8a—8c). Regions with higher strains are generally closer to the
boundaries of LLVPs (Figure 8f). For the model with a critical maximum strain of 9.0, areas with the highest
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Table 1

Parameters of Cases 1-7

Case Nature of LLVPs 7, in lower mantle E B Plate velocity at surface Tomography model

1 Thermochemical 70.0 9.21 0.01 No S40RTS

2 Purely thermal 70.0 9.21 0.01 No S40RTS

3 Thermochemical 10.0 9.21 0.01 No S40RTS

4 Thermochemical 70.0 0.00 0.01 No S40RTS

5 Thermochemical 70.0 9.21 1.00 No S40RTS

6 Thermochemical 70.0 9.21 0.01 Yes S40RTS

7 Thermochemical 70.0 9.21 0.01 No SEMUCB-WM1

Note. Parameters different from Case 1 are bolded.

strain (the top 10%) reach a minimum distance of approximately 6—10° from the LLVP's boundaries. However, if
we set the maximum strain to be 4.0 and also consider recrystallization due to phase transitions, we find that
regions with the lowest strains tend to be closest to the LLVPs, although the distance still decreases with
increasing strain for regions with strain >0.5 (orange curve in Figure 8f). The lowest strains (in this exercise, a
proxy for anisotropy strength) at the LLVP's edges may be due to the pPv-to- Bdg phase transition in these
relatively hot regions, causing recrystallization and strain reduction.

3.2. Investigating the Role of Model Parameter Variations

Deep mantle flow is controlled by the mantle density and viscosity structures, both of which involve significant
uncertainties (e.g., Li, 2023a). Therefore, we carry out models with different mantle density and viscosity
structures to study how the lowermost mantle flow and strain change. Table 1 lists parameters for cases 2-7. In
Case 2, the LLVPs are treated as purely thermal structures; that is, with a buoyancy number of B = 0.0. In Case 3,
we reduce the viscosity prefactor , in the lower mantle to 10; in other words, Case 3 has 7 times lower viscosity in
the lower mantle than Case 1. In Case 4, we use E = 0, removing the temperature dependence of viscosity. In Case
5, we use 17, = 1.0, which effectively removes the change of viscosity due to the pPv phase transition. In Case 6,
we apply present-day plate motions as the velocity boundary condition at the top surface. In Case 7, the thermal
density anomaly is derived from a different tomography model, SEMUCB-WMI1 (French & Romanowicz, 2014),
and the LLVP regions are defined at regions where the V, anomaly is less than - 0.41. Except for these changes, all
other parameters for cases 2—7 are the same as that of Case 1.

Figure 9 shows the mantle velocities at 2,800 km depth for cases 2—7. We observe that the removal of the intrinsic
density anomaly of the LLVPs in Case 2 does not induce significant changes to the lowermost mantle flow field
(Figure 9a). By reducing the lower mantle viscosity by a factor of 7 in Case 3, the magnitude of the lateral flow
velocities is increased by ~4-5 times (Figure 9b; notice the different color-bar used in panel ¢). The removal of
the temperature dependence of viscosity in Case 4 results in a minor reduction in velocity magnitudes and a
smoother patten of the mantle flow velocities compared to Case 1 (Figure 9¢). By removing the viscosity change
in regions with pPv phase in Case 5, the magnitudes of mantle flow velocities are also reduced (Figure 9d). The
use of present-day plate motion as the surface velocity boundary condition in Case 6 does not significantly alter
the mantle flow field in the lowermost mantle (Figure 9e). By deriving the density field from a different to-
mography model of SEMUCB-WM1 in Case 7, the mantle flow field changes in localized regions, but the overall
magnitudes of the flow velocities in the D” layer remain similar (Figure 9f). Despite these variations of modeling
results, the overarching convection pattern remains similar to Case 1. In each case, we observe mantle flow
velocities moving from downwelling regions toward the two LLVPs, and regions around the edges of the LLVPs
frequently exhibit positive upwelling flows (Figure 9).

Figure 10 shows the strain rate distribution at 90 km above CMB for cases 2—7. The spatial distribution of strain
rate varies case by case. In general, for cases with increased (reduced) lowermost mantle flow velocity, they also
have higher (lower) magnitude of strain rate. For example, the strain rate in Case 3 (Figure 10b), which uses
reduced lower mantle viscosity that results in higher lowermost mantle flow velocities, is about 5 times higher
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Figure 9. Mantle flow velocities for (a) Case 2, (b) Case 3, (c) Case 4, (d) Case 5, (e) Case 6, and (f) Case 7, at 2,800 km depth. The arrows show lateral flow velocity, and
the background colors show radial flow velocity with reddish colors showing upward and blueish colors showing downward flow. The gray regions in panels (a—¢) have
V, anomalies lower than —0.26% at 2,800 km depth in tomography model S40RTS and have V, anomalies lower than —0.41% in tomography model SEMUCB-WMI1 in
panel (f), indicating the large-low velocity provinces.

than Case 1 (Figure 3e) although the two have similar spatial distribution of strain rate. However, the strain rate
for Case 5 (Figure 10d) with reduced mantle flow velocity is ~5 times lower than Case 1 (Figure 3e).

Figure 11 shows the distribution of depth-averaged strain in D” for cases 2—7 when recrystallization is considered
after the strain reaches a value of 4.0. Note that although the maximum strain is set at 4.0, the strains in most
regions, especially those at shallow depths of D”, are much lower than 4.0. As a result, the depth-averaged strain
shown in Figure 11 is within a range of 0.0-3.0 in nearly all regions. We find that all cases show similar strain
distribution to Case 1, showing high strains mostly around the edges of the LLVPs. If we do not consider the
effects of recrystallization in these cases, the depth-averaged strain in D” increases significantly, but the results
remain generally similar to those for Case 1 (Figure S12 in Supporting Information S1). We also emphasize that
although the strain rate for Case 3 (Figure 9b) is several times larger than Case 1, the strain distribution and
magnitude are similar between the two cases. This may be because the mantle flow velocities in Case 3 are also
faster than Case 1, such that tracers travel through the D” layer more quickly. As a result, the accumulated amount
of strain for each tracer, which is calculated by the product of the velocity gradient and the time, remains largely
unchanged. We also perform a simulation that mimics Case 1 while doubling the lateral resolution and find that
the strain is nearly the same (Figure S13 in Supporting Information S1).
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Figure 10. Strain rate at 90 km above the core-mantle boundary for Case 2 (a), Case 3 (b), Case 4 (c), Case 5 (d), Case 6 (e), and Case (7). The cyan regions in panels (a—e)
have V, anomalies lower than —0.26% at 2,800 km depth in tomography model S40RTS and have V, anomalies lower than -0.41% in tomography model SEMUCB-
WML in panel (f), indicating the large-low velocity provinces.

4. Discussion
4.1. Summary of Mantle Flow Field and Strain in D” and Uncertainties

In this study, we calculate the present-day instantaneous mantle flow field in the mantle with a focus on regions
outside the LLVPs in D”. We test different lower mantle viscosity and density structures. We find that the
lowermost mantle flow velocities vary somewhat from model to model in localized regions; however, in all
models examined in this study, materials in D” move toward the two LLVPs (Figure 9), consistent with the D”
flow field reported in previous studies (e.g., Bull et al., 2010; Steinberger & Holme, 2008; Yoshida, 2008; Walker
et al., 2011). In particular, the D” mantle flow field outside the LLVPs is nearly the same when the LLVPs are
treated as intrinsically dense materials or purely thermal structure (Figures 2a and 9a), suggesting that it is the
downwelling flow (such as that associated with plate subduction) that controls mantle dynamics in these regions,
not the LLVPs.

We find that strain generally increases along the trajectories of the tracers in D”. Generally speaking, the more
time it takes for a tracer to be advected from the top of D” to its final location within D”, the larger is strain at its
final location (e.g., Figure 4d). Because mantle flow velocities generally move toward the LLVPs, strains also
generally increase toward the edges of LLVPs (e.g., Figure 4c). However, some other regions, including beneath
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Figure 11. The distribution of the depth-averaged strain in the D” layer when recrystallization occurs after reaching a stretch of 5.0 for (a) Case 2, (b) Case 3, (c) Case 4,
(d) Case 5, (e) Case 6, and (f) Case 7. We approximate the effects of recrystallization on anisotropy strength by resetting the strain to zero when recrystallization occurs.
Lighter gray patches represent large-low velocity province (LLVP) regions at 2,800 km depth in S40RTS model (a—e) and in the SEMUCB-WM1 model (f), and darker
gray patches are final locations of tracers that have traveled through LLVPs. See Table 1 for model parameters for cases 1-7.

the central portions of North and South America, and near Antarctica, also exhibit relatively high strain
(Figure 4c), consistent with the fact that it takes a relatively long time (e.g., high ¢") for tracers to reach these
regions (Figure 4b). The large ¢* in these regions may be related to their small and/or positive radial flow ve-
locities (Figure 2b). Compared to the time that a tracer travels in D”, the instantaneous strain rate at the present-
day plays a less important role in affecting the present-day strain. This is supported by the lack of clear spatial
correlation between strain and strain rate distributions.

The magnitude of strain in D” increases toward the CMB (Figures S3-S10 in Supporting Information S1). The
depth-averaged strain in D” exhibits a similar distribution as that at single depths in the mid-D”, showing high
strains near LLVP edges and in a few regions far from the LLVPs (Figure 7a). The magnitude of anisotropy that
results from CPO generated by strain can be greatly reduced if we consider the effects of recrystallization, which
we approximate by resetting the strain to zero after it reaches a series of maximum threshold values of 9.0, 4.0 and
1.0 (Figures 8a—8c). In such cases, high strains still preferentially occur at the edges of LLVPs, but the high strains
far from LLVPs, which are observed in the model without considering recrystallization, become much smaller
and no longer significant. However, the strain at the LLVP edges can be significantly reduced as well (Figure 8d)
if we consider recrystallization associated with the pPv to Bdg phase changes in these regions due to increased
temperature.
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We also find that materials in D” outside the LLVPs are mainly stretched in the lateral direction, except near
regions at the edges of LLVPs where they can be radially stretched (Figure 6b). The strains of some tracers can
decrease with time along their paths, especially as the tracers go from downwelling to upwelling regions (e.g.,
tracer 1 in Figures 5a—5c). This may be because the increase of radial flow velocity increases stretching in radial
directions but reduces stretching in the lateral directions. Furthermore, the maximum stretching directions often
agree with mantle flow directions, especially for high strains in regions with fast mantle flow velocities
(Figures 6a and 6c¢, 6d). However, this agreement often breaks down in regions with relatively slow flow ve-
locities (Figure 6d). This may be because strains are computed from the time-integrated deformation along the
trajectories of tracers, whereas the mantle flow velocities represent an instantaneous snapshot of the present-day
mantle dynamics. The discrepancy between the two directions in some areas therefore indicates that the mantle
flow field in these regions is not representative of the flow velocities throughout the trajectories of the tracers.

For simplicity, we use a constant scaling factor C, _, of 0.4 between V, anomalies and density anomalies.
Increasing or decreasing the value of C, _, will respectively increase or decrease the magnitude of density
anomaly and thus the magnitude of mantle flow velocity, but the flow direction would remain the same. The
comparison of modeling results between Case 3 and Case 1 suggests that the strain may also be insignificantly
affected (Figures 7a and 11b). In reality, C, _,
Steinberger & Calderwood, 2006). Steinberger and Holme (2008) considered these complexities and derived

can vary with pressure, temperature, and composition (e.g.,

density anomalies from seismic velocities using mineral physical models. They showed that D” flow generally
moves toward the LLVP regions on a global scale, which is consistent with our models. This feature of D” flow
has been reported by other studies as well (Walker et al., 2011; Yoshida, 2008).

4.2. Comparison Between Geodynamic Modeling Results and Seismic Anisotropy Observations

Observations of seismic anisotropy can be used to infer flow present-day directions (e.g., Ford et al., 2015;
Nowacki et al., 2010; Wolf & Long, 2023), although these inferences rely on (incomplete) knowledge of the
relationships between strain and anisotropy for D” minerals at realistic pressure and temperatures conditions (see
Creasy et al., 2020; Wolf, Li, Long, & Garnero, 2024). In Figure 12, we show the direction of mantle flow in the D
" layer inferred from seismic anisotropy observations and that calculated from the geodynamic calculation in
Case 1.

In theory, the deformation and flow inferred from our geodynamic modeling can be compared with the directions
of mantle flow based on investigations of shear wave splitting in the lowermost mantle. However, such an ex-
ercise is challenging to perform in practice because inferring flow in the mantle from measurements of shear-
wave splitting often relies on several assumptions, although substantial progress has been made recently (e.g.,
Romanowicz & Wenk, 2017; Wolf, Li, Long, & Garnero, 2024). For example, it is sometimes only possible to test
whether the inferred seismic anisotropy is consistent with different geodynamic flow scenarios without uniquely
constraining the flow geometry (e.g., Cottaar & Romanowicz, 2013; Reiss et al., 2019; Vanacore & Niu, 2011;
Wolf et al., 2019), often due to the limitations intrinsic to the observational method (e.g., Reiss et al., 2019;
Vanacore & Niu, 2011), limitations in ray coverage (e.g., Wolf et al., 2019) or both. In other cases, only a
restricted range of flow directions is tested, for example, only horizontal flow (e.g., Wolf & Long, 2022; Wolf,
Long, & Frost, 2024), arguing that other scenarios would be less geodynamically plausible. Some studies have
related radial anisotropy to lowermost mantle flow without explicitly modeling flow (e.g., Kawai & Geller, 2010).
This approach, however, also has its limitations because the commonly made assumption that larger velocities of
horizontal than vertical particle motions indicate dominantly horizontal flow (and vice versa) is not always ac-
curate (e.g., Yamazaki & Karato, 2007). To date, all studies known to us that have not made any restrictive
assumptions about plausible flow scenarios have neglected full-wave effects, which have been shown to be
important (e.g., Nowacki & Wookey, 2016; Wolf & Long, 2022). Many of these studies rely on the S-ScS dif-
ferential splitting technique (Wookey et al., 2005), which can produce apparent D” shear wave splitting in many
cases, unless perfectly SH-polarized waves are used (Wolf & Long, 2024).

Due to these limitations, our comparison between flow directions predicted from our geodynamic modeling and
those inferred from seismic anisotropy studies (Figure 12), distinguishes between studies whose interpretation of
flow directions may be influenced by previous geodynamic modeling results (yellow circles in Figure 12) and
studies that consider more degrees of freedom in their interpretations of flow from seismic anisotropy obser-
vations (yellow rectangles in Figure 12). As will be discussed later, however, there are still multiple assumptions
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Figure 12. Comparison between mantle flow directions in the D” layer based on previous seismic anisotropy studies (with red
arrows showing lateral flow and red circles showing upwelling flows) and the flow velocities for Case 1 at 2,800 km depth
(with black arrows showing lateral velocities and the background showing regions with positive radial velocities). Note that
the red arrows indicate flow direction only at their midpoint; they do not represent magnitude. Numbers in yellow rectangle
and circle boxes refer to the following citations: 1 = (Suzuki et al., 2021), 2 = (Asplet et al., 2023), 3 = (Wolf & Long, 2022),
4 = (Kawai & Geller, 2010; Wolf & Long, 2023), 5 = (Creasy et al., 2017), 6 = (Vanacore & Niu, 2011), 7 = (Wolf
etal., 2019), 8 = (Pisconti et al., 2019), 9 = (Pisconti et al., 2023), 10 = (Creasy et al., 2021), 11 = (Pisconti et al., 2023), 12,
13, 14 = (Reiss et al., 2019), 15 = (Cottaar & Romanowicz, 2013), 16, 17 = (Ford et al., 2015; Reiss et al., 2019), 18 = (Wolf,
Long, & Frost, 2024). Numbers in circles indicate studies in which the inference of mantle flow from observed anisotropy
may be influenced by geodynamic modeling results. The cyan contours show large-low velocity province regions at
2,800 km depth in tomography model S40RTS.

that underlie these studies, which is an inevitable limitation when comparing geodynamic modeling results to
seismic anisotropy.

Despite these challenges, we can see (e.g., through visual inspection) that the directions predicted from the two
different approaches generally agree on a global scale, with both types of observations involving flow that is
predominantly directed toward the two LLVPs (Figure 12). Specifically, the horizontal flow directions suggested
by seismic studies in regions of #3, #8, #9, #11 and #17 generally agree with the geodynamic modeling results.
The upwelling flows suggested by #4, #7, #15, and #16 are consistent with the positive radial velocity (darker
shading in the figure) in the geodynamic model. Wolf et al. (2019) predicted converging and upwelling flows
beneath Iceland in region #7, which also agrees with that from geodynamic calculation. Despite overall agree-
ment, there are some significant disagreements between seismologically and geodynamically inferred flow di-
rections, such as in regions #2, #10, and #18. A more quantitative and statistical comparison can be made when
more and better estimates of flow directions based on seismic anisotropic observations become available.

Because it is technically deformation (strain) of anisotropic minerals in the D” layer that causes seismic
anisotropy, rather than flow itself, we next carry out a comparison between our predicted strain distributions and
previous observations of lowermost mantle anisotropy. In Figure 13a, the red polygons show regions where D”
anisotropy has been reported in previous studies, as compiled by (Wolf et al., 2023), whereas the background map
shows the depth-averaged strain in D” after considering recrystallization at maximum strain of 4.0. Note that
regions outside the red polygons generally represent portions of D” that have not yet been surveyed by seismic
studies; we do not intend to imply that they correspond to either isotropic or anisotropic D” regions, as discussed
in detail by (Wolf et al., 2023). Seismic anisotropy has been found in regions outside, at the edges, and within the
LLVPs (Figure 13a). We compare these anisotropic locations to the distributions of the depth-averaged D” strain
for Case 1.
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Figure 13. (a) Previous observations of seismic anisotropy (red polygons, Wolf et al., 2023) and the distribution of the depth-averaged strain in the D” layer for Case 1
when recrystallization occurs after reaching a strain of 4.0. Strain is reset to be zero when recrystallization occurs. Lighter gray patches are regions where the V, anomaly
is less than —0.26% in the S40RTS tomography model at 2,800 km depth, showing the two large-low velocity provinces (LLVPs), and darker gray patches are the final
locations of tracers that have traveled through LLVPs. (b, ¢) The percentage of the area exhibiting observed seismic anisotropy relative to the total area outside the
LLVPs across a variety of strains. In panel (b), the strain is calculated without considering recrystallization effects. In panel (c), strain is calculated when
recrystallization occurs at maximum strain of 9.0 (black), 4.0 (red), and 1.0 (blue), and when recrystallization occurs at maximum strain of 4.0 and also the tracer
undergoes Bdg-pPv or pPv-Bdg phase transition (orange).

Mineral physics experiments have suggested that strains of 50% or less are sufficient to explain S-wave seismic
anisotropy in D” beneath the circum-Pacific rim (Wu et al., 2017). Here we find that, if recrystallization effects are
ignored or included at a maximum strain of 4.0-9.0, all regions outside the LLVPs exhibit a strain greater than 0.5
(Figures 8a, 8b and 8d, 8e), which is consistent with widespread observations of seismic anisotropy in regions
near the edges of the LLVPs (e.g., Deng et al., 2017; Lynner & Long, 2014; Reiss et al., 2019; Wang &
Wen, 2007; Wolf & Long, 2023) or far away from the LLVPs (Figure 13) (e.g., Asplet et al., 2020; Garnero &
Lay, 1997; Grund & Ritter, 2018; Long, 2009; Wookey et al., 2005; Wolf, Li, & Long, 2024). However, if
recrystallization occurs at a maximum strain of 1.0, only ~18% of the area outside the LLVPs exhibits strain >0.5
(Figures 8c and 8d). Therefore, recrystallization occurring at a maximum strain of 1.0 seems not to be realistic for
Earth's D”; alternatively, our approximation of strain effectively resetting to zero after recrystallization is not
realistic, which would imply that some frozen-in anisotropy remains after recrystallization.

One important question is whether regions with observed seismic anisotropy preferentially sample high strains, as
predicted by our models. To address this question, we divide the range of strain outside the LLVPs into equal-
sized strain bins. For each bin, we calculated the percentage of the area exhibiting observed seismic anisot-
ropy relative to the total area outside the LLVPs and denote this percentage as A,;,. For reference, we also
calculate the percentage of total area with observed seismic anisotropy outside the LLVPs to the total area outside
the LLVPs, which is 14%. Therefore, for each strain bin, the result of A,;, > 14% indicates that the regions with
observed seismic anisotropy preferentially sample strains within this strain. We find that when recrystallization is
not considered, the anisotropic regions (as determined by seismic observations) preferentially correspond to
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regions with strains of 0.5 and 2.5-7.0 (Figure 13b); that is, these regions have A,;, larger than 14%. When
recrystallization is considered after maximum strain thresholds of 9.0, 4.0, and 1.0, the anisotropic regions
preferentially correspond to regions with strains of 1.5-2.5 (black curve in Figure 13c), 0.5 and 1.0-1.7 (red curve
in Figure 13c), and 0.4-0.6 (blue curve in Figure 13c), respectively. When recrystallization is considered, either
after a maximum strain of 4.0 is reached or when minerals undergo a phase transition, the anisotropic regions
preferentially correspond to regions with strains of 0.4-0.8 and 1.3-1.4 (orange curve in Figure 13c). We find that
it is only for the case with recrystallization at maximum strain of 1.0 that the anisotropic regions slightly pref-
erentially correspond to regions with the highest strains (blue curve in Figure 13c). However, it is worth
emphasizing that seismic anisotropy may be present in many more regions than previously identified in regional
studies, given the incomplete coverage of D” in regional body wave studies to date (e.g., Wolf & Long, 2023).

4.3. Caveats and Uncertainties

In this section, we discuss the uncertainties in the calculations of mantle flow and strain in D” and the considerable
caveats involved in their comparison with flow and/or strain directions interpreted from seismic observations of
anisotropy.

First, the geodynamically calculated D” flow field and the resulting estimates of the strain field suffer from
uncertainties in the present-day mantle density and viscosity structures, especially at relatively small scales
(Li, 2023a). In particular, the temperature anomalies in our models are converted from seismic tomography
models. Due to the limited spatial resolution of tomography models, our geodynamic models do not account for
the influence of small thermal instabilities that remain unresolved in tomography models. As a result, the larger
scale features of mantle flow velocity and strain in our models may be more robust than smaller-scale features.

Second, there are a number of uncertainties regarding our simplified treatment of recrystallization, which occurs
when materials experience a phase transition or reach a critical amount of strain. We have implemented a
simplified parameterization of recrystallization processes and find that the effective strain (our proxy for
anisotropy strength) can be significantly reduced due to recrystallization. However, the magnitude of this
reduction depends on the values of critical strain at which recrystallization starts, which are poorly known.
Despite this uncertainty, we find that when recrystallization occurs at a maximum strain of 9.0 to 1.0, the highest
strain tends to occur near the edges of the LLVPs, although the strain right at LLVP's edges can also be reduced
when phase transition related recrystallization occurs at these regions.

Third, we assume that strain (as a proxy for anisotropy strength) effectively begins with value of zero at the top of
D”. It is likely, however, that materials may have already been deformed before descending into D”, and it is
possible that in the real Earth they may accumulate some fabric above the top of the D” layer. As suggested by
McNamara et al. (2003), the strength of anisotropy, as expressed via the proxy of (effective) strain, increases in
regions where deformation is controlled by dislocation creep but decreases in regions of diffusion creep. Here, we
assume that the deformation regime of materials sinking to D” from above changes across the D” boundary,
diffusion creep in the bulk of the lower mantle to dislocation creep in the D” layer. With this assumption, setting
strain (as a proxy for anisotropy strength) to be zero at the top of D” is reasonable to the first order. We note, as
well, that mantle material passing through the Bdg-pPv phase transition at the top of D” may experience a
resetting of its texture, although some degree of crystallographic alignment may be inherited via topotaxy (e.g.,
Walker et al., 2018). We also note that the strain information carried by tracers that are advected to relatively
deeper depths in D” is strongly controlled by the trajectories of the tracers in D”, making the initial strain of these
tracers less important. However, some studies have suggested that diffusion creep may play a significant role in
deformation at the base of the mantle for pPv (Dobson et al., 2019) and Bdg (Reali et al., 2019), although this
remains under debate (e.g., Karato, 1998; McNamara et al., 2002).

Fourth, our calculation of the deformation history is based on the instantaneous mantle flow field at the present
day, because mantle flow in Earth's past history is not well constrained (e.g., Li, 2023a). In our calculations, each
tracer takes a different amount of time to migrate from its initial location at the top of the D” layer to its final
location within D”. We find that for Case 1, this duration is typically less than 100 Myr in regions outside the
LLVPs and is less than 50 Myr is downwelling regions (e.g., Figure 4b). It is longer at the edges of the LLVPs but
still less than 200 Myr in most places (e.g., Figure 4b). The LLVPs have been suggested to be relatively stable in
their locations at least during the past 200 Ma (e.g., Conrad et al., 2013; Torsvik et al., 2010). Thus, the first-order
aspects of the lowermost mantle flow field over the past 200 Ma may be similar to the present day, at least at large
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scales over the globe. Recently, Ward et al. (2024) compared the trajectories of tracers in D” from models with
constant flow and from models with time-dependent flow. They found that the path lengths of tracers in majority
of D” regions are similar between the two models (which indicates tracers in these regions take similar trajec-
tories), but time-varying flow field can lead to significant deviation of tracer trajectories in some regions,
especially for tracers that take long paths. This may be because the less we go back in time from present-day, the
more closely the lowermost mantle flow field likely resembles that at the present-day (e.g., Li, 2023a). These
findings and inference suggest that the calculated strain in our models may be more robust in regions beneath
downwellings where tracers are advected for shorter durations and paths.

Fifth, there are some caveats when comparing geodynamic modeling results for the mantle flow field and strain
distribution with seismic observations of anisotropy and their interpretation of flow directions. They include the
following: (a) Seismic anisotropy has been observed within LLVPs interiors in some regions (e.g., Reiss
etal.,2019; Wang & Wen, 2007), but we do not calculate strain in these regions. This is because the nature of small-
scale internal convections within the LLVPs remains not well constrained, so predicting mantle flow within the
LLVPs would be far less certain with our approach and thus requires future exploration. (b) For many regions with
high strains in our models, no D" anisotropy has been reported in previous studies. For many of these regions, this
can be explained by a lack of seismic ray coverage, especially in the southern hemisphere (Wolf et al., 2023). In
other cases where sampling is good, regions in which strain is high may be dominated by less anisotropic minerals,
potentially Bdg (Romanowicz & Wenk, 2017). (c) In this study, we assume that seismic in D” is caused by CPO,
but seismic anisotropy could be caused by SPO of elastically distinct materials (such as partial melt) as well. (d)
Seismic anisotropy contains information about the time-integrated deformation history of minerals and is affected
by mantle flow history; therefore, the mantle flow directions interpreted from seismic anisotropy observations may
not always agree with the present-day mantle flow direction (Figure 6). This may explain the disagreement of
mantle flow directions in some regions of Figure 12. (¢) Our models demonstrate that the strains in D” often vary
with depth, which agrees with the finding of (Ritsema et al., 1998), who showed that anisotropy may vary with
depth. However, most D” anisotropy observations reflect shear wave splitting due to anisotropy integrated along
the D” portion of the raypath. Depending on the specific seismic phases used in anisotropy measurements, seismic
waves in D” may sample anisotropy along a horizontal or oblique path, whereas the strains shown in Figures 8
and 11 are averaged along the radial (vertical) direction. (f) It remains unclear how large the strain of a lowermost
mantle rock must be for it to develop anisotropy that is strong enough to be seismically detectable.

The comparison of flow directions between geodynamic models and flow directions inferred from global to-
mography models of radial seismic anisotropy is also challenging. On reason is that, the traditionally made
assumption that Vgy > Vg indicates mainly vertical flow and vice versa does not always hold for seismic
anisotropy caused by CPO (Yamazaki & Karato, 2007). A number of different minerals may contribute to
lowermost mantle anisotropy (e.g., Creasy et al., 2020), including post-perovskite (e.g., Hirose et al., 2010;
Miyagi et al., 2008; Yamazaki et al., 2006), bridgmanite (e.g., Miyagi & Wenk, 2016), and ferropericlase (e.g.,
Karki et al., 1999; Merkel et al., 2002), but the degree to which they contribute to seismic observations is not well
constrained. For example, Yamazaki and Karato (2007) suggested that for a horizontal flow in D”, the Bdg phase
will produce fast seismic velocity in radial direction (e.g., Vgy > Vgp), ferropericlase will produce fast seismic
velocity in horizontal direction (e.g., Vg > Vgv), and the fast direction of pPv phase depends on its elastic
properties and dominant glide plane which remains under debate (Chandler et al., 2021; Cottaar et al., 2014;
Merkel et al., 2007; Walker et al., 2011; Wenk et al., 2011; Wu et al., 2017). In other words, while radial
anisotropy may give insights about the direction of flow in the upper mantle, simple blanket assumptions about
the relationships between strain and anisotropy do not hold for D” anisotropy due to these uncertainties.

If one was to take the position that most seismic anisotropy in D” was caused by SPO, the assumption that
Vsv > Vgy indicates mainly vertical flow may hold better (Kendall & Silver, 1998). However, for global to-
mography models that show radial anisotropy, these models differ substantially (e.g., Auer et al., 2014; Chang
et al., 2015; French & Romanowicz, 2014; Kustowski et al., 2008; Moulik & Ekstrom, 2014), except for the
global-scale pattern that generally shows Vgy > Vgpy in and around LLVP regions and Vg > Vgy elsewhere. The
large differences among the anisotropic tomography models may be partially caused by known tradeoffs between
anisotropic structures and (sometimes shallower) isotropic structures for deep radial anisotropy inversions (e.g.,
Chang et al., 2015; Kustowski et al., 2008). Therefore, comparisons of flow with radial anisotropy patterns remain
premature at this point. When comparing global radial anisotropy observations on a global scale, our geodynamic
modeling results show strong upwelling flow within the LLVPs and at their edges and mainly lateral flow outside
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LLVPs (e.g., Figures 2a and 2b), which is generally consistent with Vgy > Vg in and around LLVP regions and
Vs > Vv outside LLVPs under the assumption that seismic anisotropy is due to SPO. However, quantitative
comparisons at smaller scales remain premature due to uncertainties in anisotropic tomography models.

Because of the caveats and uncertainties discussed above, it remains challenging to make specific and quantitative
comparisons between geodynamic modeling of the D” mantle flow field and flow inferred from seismic
anisotropy studies. Reducing these uncertainties requires better constraints on the deep mantle viscosity and
density structure, improvement in the spatial coverage in forward modeling studies of D” anisotropy, and a more
comprehensive understanding of the distribution of minerals in D” as well as their elastic properties and defor-
mation behavior. From an observational point of view, seismic characterization of regions with weak or absent
seismic anisotropy, in addition to those that exhibit strong anisotropy, is essential. Future improvements in all
these areas will lead to a greatly increased understanding of the patterns and drivers of flow at the base of Earth's
mantle.

5. Conclusions

In this study, we explore the character of instantaneous mantle flow at the present day, with a focus on flow within
the D” layer. We show that for a range of geodynamic models with different density and viscosity structures, the
flow typically moves away from regions beneath downwelling centers and toward the two LLVPs on a global
scale, though the details of the D” flow field vary across models in local regions. Relatively high strain rates are
frequently found in regions surrounding the two LLVPs. Neither the mantle flow velocities nor the strain rates in
the lowermost mantle outside the LLVPs are very sensitive to the density of the LLVPs, suggesting that the
LLVPs themselves do not have a large influence on the mantle flow fields in D” outside the LLVP's volumes.

We find that strain generally increases along the path of tracer in D” toward the LLVPs. As a result, high-strain
regions often occur near LLVP edges. However, it can take a long time for tracers to be advected to some regions
far from LLVPs, and these tracers may develop high strains as well. Because it takes a long path and a long time
for tracers to advected to deeper depths, strain is also highest at the CMB and decreases with the distance above
the CMB. We approximate the effects of recrystallization by resetting the effective strain to be zero in our models
when materials undergo phase transitions or reach a critical strain associated with recrystallization. When this
recrystallization-induced strain reduction is considered, regions near LLVP margins often show higher strain than
regions far from LLVPs. However, the post-perovskite to bridgmanite phase transition at LLVP edges may cause
a significant reduction of anisotropy strength. When the recrystallization strain threshold is set at 4.0 or larger,
almost all regions outside the LLVPs show effective strain >0.5, consistent with globally widespread observa-
tions of D” anisotropy, but both relatively high and low strains are observed in regions with observations of
seismic anisotropy. We also find that D” materials outside LLVPs are mainly laterally stretched. The maximum
stretch directions are often, though not always, similar to the mantle flow directions. These results suggest that
some caution is warranted when interpreting seismically inferred anisotropy geometry at the base of the mantle as
indicating present-day flow directions.

Flow directions have been inferred from seismic anisotropy observations in a few different locations in D”. It is
encouraging to find that the flow direction in many of these locations agrees with that predicted from geodynamic
modeling calculation. However, significant uncertainties remain in the predictions of strain and its connection to
mantle flow field and the interpretations of seismic observations of anisotropy in terms of lowermost mantle flow;
therefore, disagreement regarding the D” flow direction from the two completely different approaches is to be
expected. These uncertainties will be lessened as we improve our understanding of deep mantle density and
viscosity structures, the distribution of mineral phases in the D” layer, their elastic properties, and as we obtain
more observations of lowermost mantle anisotropy.

Data Availability Statement

Supporting Information includes Figures S1-S13 and Table S1 in Supporting Information S1. The CitcomS code
is open source and is available at CIG (Computational Infrastructure for Geodynamics) website https://geo-
dynamics.org/resources/citcoms/supportingdocs. The authors' modified version of the CitcomS code, the input
files, the data for initial conditions, and the data files used in each figure of this paper are available at (Li
et al., 2024).
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