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ABSTRACT

The tomographic inversion of shear wave splitting data for upper mantle anisotropy has been a longstanding
challenge. This is due to the ray-based approximation of classical approaches and the near-vertical incidence of
the core-mantle converted phases such as SKS that are often used. Recent developments include the calculation of
finite-frequency sensitivity kernels for SKS splitting intensity observations, which allows us to accurately take
into account the sensitivity to anisotropic structure with depth. A requirement of this tomographic technique is a
dense station spacing, which results in overlapping sensitivity kernels at depth and allows for the localization of
anisotropic structure. This is satisfied by a growing number of temporary seismic deployments, which motivates
the desire to image anisotropic complexities with depth. Here, we introduce and make available a toolbox for the
MATLAB environment that facilitates the application of finite-frequency splitting intensity tomography to dense
seismic arrays. Our implementation includes several key features, including: 1) A forward calculation of splitting
intensities and sensitivity kernels for a complex anisotropic model space. 2) Consideration of the dominant
period of the wave, allowing for multiple-frequency analysis, as well as the incoming wave’s non-vertical inci-
dence. 3) The inversion can be based on a classical gradient descent, on a form of the conjugate gradient method
known as the BFGS algorithm, or on a gradient-informed stochastic reversible jump algorithm, allowing for a
data-driven parametrization of the model space. 4) Importing splitting intensity measurements from waveforms
processed in SplitRacer allows for fast pre-processing of large data sets due to its fully automatic design. To
illustrate our method, we present both synthetic tests and an application to real data. We apply our inversion
procedure to data from the Swath-D network, which densely covers the transition of the Central to the Eastern
Alps. Previous studies showed evidence for an abrupt lateral change of layered seismic anisotropy that had been
attributed to an opening for channeled asthenospheric flow. Using an SKS splitting intensity tomography
approach, we can confirm previous inferences while providing additional constraints on the distribution of
anisotropy laterally and with depth.

1. Introduction

shallow levels, structures such as aligned cracks, isotropic layers, or fluid
filled pockets can result in anisotropy (Christensen, 1966; Nur and

The operation of plate tectonics at the Earth’s surface and the cor-
responding deformation at plate boundaries are closely related to the
deformation and flow in the lithospheric and asthenospheric upper
mantle (e.g., Long and Becker, 2010). Due to the causative link between
deformation and seismic anisotropy, observations of anisotropy provide
unique insights into such deformation processes at depth (Savage,
1999). In the upper mantle, intrinsically anisotropic minerals like
olivine align due to shear, resulting in a lattice preferred orientation
(LPO); the resulting anisotropy can be directly linked to flow in the
mantle (e.g., Karato et al. 2008; Skemer and Hansen, 2016). At more
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Simmons, 1969; Nur, 1971; Crampin, 1987; Yousef and Angus, 2016;
Backus, 1962; Savage, 1999). Such apparent anisotropy is often referred
to as shape preferred orientation (SPO). Anisotropy has several effects
on the seismic wavefield. It is characterized by a directional dependence
of the seismic P- and S-wave velocities (Silver, 1996; Savage, 1999). In
particular, S-waves propagate with different velocities depending on
their polarization direction. This results in shear wave splitting, in which
two quasi-S-phases polarized roughly perpendicular to each other travel
with different wave speeds. The polarization of the fast propagating
phase corresponds to the fast splitting direction, and the slow phase
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characterizes the corresponding slow direction (Silver and Chan, 1991).
The delay time between the fast and slow phase is related to the strength
of the anisotropic medium and the distance the phases travelled through
it.

Shear wave splitting can be measured with the rotation correlation
(Bowman and Ando, 1987) or the energy minimization (Silver and Chan,
1991) techniques, which describe the splitting using the fast direction,
¢, and the delay time, St. These splitting parameters allow for a general
interpretation of the anisotropy that causes the splitting, often assuming
a single homogeneous anisotropic layer. The measured fast polarization
typically corresponds to the fast axis orientation of the anisotropy and
the delay time scales with the strength and thickness of the anisotropic
layer. The trade-off between strength and thickness is complete and
cannot be resolved with classical techniques. If splitting is measured
over a range of backazimuths, the backazimuthal variations in apparent
splitting parameters (Silver and Savage, 1994) can be used to resolve
multiple anisotropic layers (typically two). The depth and thickness of
anisotropic layers can only be estimated qualitatively from Fresnel-zone
calculations (Alsina and Snieder, 1995; Riimpker and Ryberg, 2000) or
through a spatial coherency approach (Gao and Liu, 2012).

Other strategies allow for the inversion for a tomographic image of
the anisotropic structure of the subsurface. The most advanced tech-
nique developed in the last decade is full-waveform inversion, which
uses the adjoint character of the wave equation to calculate sensitivities
of the waveform shape to model parameters in a 2D or 3D model volume
(e.g., Tarantola, 1987; Tromp et al., 2005; Fichtner and Trampert, 2011;
Zhu et al.,, 2021). Sensitivity kernels calculated from the adjoint
methods can be used iteratively to invert for isotropic as well as aniso-
tropic parameters. However, this technique requires large computa-
tional resources, which can limit the number of events and the frequency
range used in the inversion.

Another approach involves finite-frequency modelling of splitting
intensity measurements, allowing for an analytic solution of the sensi-
tivity kernels (e.g., Favier and Chevrot, 2003; Chevrot, 2006; Long et al.
2008; Mondal and Long, 2019). The splitting intensity (SI) is a single
value that expresses the strength of the splitting effect on an individual
waveform (Chevrot, 2000). While a single splitting intensity measure-
ment does not allow a direct inference of the anisotropic geometry,
multiple measurements can be used to characterize anisotropy in a
manner similar to the more classical rotation correlation or energy
minimization methods. The calculation of finite-frequency sensitivity
kernels for SI observations allows us to take into account the laterally
broadened sensitivity for the anisotropic structure with depth (Favier
and Chevrot, 2003; Long et al., 2008; Sieminski et al., 2009). Due to the
near-vertical incidence of core-mantle converted phases, one require-
ment of their use in tomographic techniques is a dense station spacing,
which results in overlapping sensitivity kernels at depth. This is satisfied
by a growing number of temporary deployments of seismic broadband
sensors (e.g., Monteiller and Chevrot, 2011; Lin et al., 2014; Mondal and
Long, 2020; Huang and Chevrot, 2021).

Here, we introduce a toolbox for the MATLAB environment which
facilitates the application of finite-frequency splitting intensity tomog-
raphy to dense seismic arrays, building on the framework developed by
Mondal and Long (2019). We carry out the forward calculation of
splitting intensities and sensitivity kernels for a complex anisotropic
model space. This is based on the Born approximation for an isotropic
background model disturbed by arbitrarily oriented anisotropy with
hexagonal symmetry. The code takes the dominant period into consid-
eration, allowing for multiple-frequency analysis, and allows for
non-vertical incidence of the incoming wave. Depending on the
complexity of the problem, the user can choose to apply the inversion
based on a classical gradient descent approach, a gradient descent taking
into account an approximation of the Hessian matrix, or a
gradient-informed stochastic inversion which includes a reversible jump
algorithm, allowing for a data-driven parametrization of the model
space. The code also includes the option to import splitting intensities
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from waveforms processed in SplitRacer, allowing for the fast download
and pre-processing of large data sets due to its fully automatic design
(Link et al. 2022).

We illustrate the strengths and weaknesses of the different tech-
niques on synthetic data sets, considering models that include the
variation of anisotropic parameters laterally and with depth. To show-
case the applicability of the technique, we apply the gradient descent
method including the Hessian approximation to the Swath-D dense
seismic network (Heit et al. 2017), a temporary broadband seismic in-
stallment in the transition from the Central to the Eastern Alps. Previous
studies have shown that this area is affected by complex lateral and
vertical variation of anisotropy (Link and Riimpker 2021; Qorbani et al.
2015), providing an excellent test data set for our tomographic
approach.

2. Method
2.1. Forward problem and sensitivity kernels

Here, we describe the theoretical and practical underpinnings of our
approach, which follows closely upon previous work (Chevrot, 2006;
Long et al. 2008), particularly the framework proposed by Mondal and
Long (2019). In particular, we extend the framework of Mondal and
Long (2019) by including the near- and mid-field terms of the Green’s
functions, considering more realistic depth dependent contributions of
the anisotropic structure to the calculated splitting intensities (Favier
et al. 2004). While considering the previous formulation for the upper
mantle anisotropy using an arbitrarily oriented effective hexagonal
representation of upper mantle olivine LPO, we additionally consider
the formulation defining the hexagonal anisotropic tensor based on the
anisotropic perturbation of isotropic velocities (Farra et al. 1991). Due
to the lack of frequency-dependent splitting intensity measurements, a
variation of the dominant frequency of the incident wavelet has not been
considered previously. Here, we explicitly point out the significance of
the change in shape of the sensitivity kernels with frequency and
introduce it as important event parameter in our formulation.

For any tomographic inversion, a forward problem must be formu-
lated first, describing the relationship of the spatially distributed model
parameters and the data. Here, we focus on shear wave splitting
resulting from an interaction of an incident shear wave with an aniso-
tropic medium. The radial and transverse components of an initially
radially polarized split shear wave can be described as

u(t) =w (t + %) cos’p +w (t — %) sin’¢h,

() = —%[W(l‘-l—%) —w(t—%)]sin(lq’)), )
where w(t) is the initial waveform of the incoming shear wave before
entering the anisotropic medium, §t is the delay time between the fast
and slow phases after the propagation through an anisotropic medium
and ¢ is the fast axis direction (Silver and Chan, 1991). For small delay
times compared to the dominant period (T/At > 5, see Riimpker and
Silver, 1998), the radial waveform resembles the initial waveform, while
the transverse component is proportional to the time derivative of the
initial waveform (and with that to the time derivative of the radial
component),

ur (1) 2 wit),

14

1. .
u, (1) — Ew(z)sm(Zq&), (2)
where w(t) describes the time derivative of the initial waveform, which
can be approximated as the time derivative of the radial component (see
also Chevrot, 2000). As introduced by Chevrot (2006), the splitting in-
tensity can be constructed by projecting the transverse component on
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the derivative of the radial component, which leads to

g 2Refim u, (@) wz(a)) dw. 3)
J@? |w(w)|" dw

where we introduce u-(w) and u;(w) in frequency domain using the
Fourier transform with @ as frequency. For the forward calculation of
the splitting intensity it is therefore necessary to formulate the trans-
verse component waveform as a result from an interaction of the inci-
dent shear wave with an anisotropic structure. The contribution of an
anisotropic perturbation of the elastic tensor to the particle motion can
be described as (Chevrot, 2006; Mondal and Long, 2019)

514,' = 7/ (5cijkl 6kw,) (),G,j dav s (4)
Q

where 8¢ are the anisotropic perturbations of the elastic tensor and G
is the Green’s function solving the inhomogeneous partial differential
equations (Aki and Richards, 2002),

p0; Gy = Ok (cyu 0,Gu) 85 8(ri — rs,;) 8(t — t5).- ®

For a homogeneous isotropic medium the perturbed wave field in Eq.
(4) can be written as (Aki and Richards, 2002; Chevrot, 2006)
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where p, is the unit slowness vector of the outgoing wave, 6,4 is the
Kronecker delta, f is the isotropic reference shear velocity and M), is the
moment tensor. This can be constructed from the perturbed elasticity
and strain tensor (Chevrot, 2006)
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where s, is the orientation of the symmetry axis of the anisotropic tensor
and p;,, & are the slowness unit vector and the polarization vector of the
incoming wave, respectively. This assumes a transverse isotropic me-
dium formulated using the dimensionless Thomsen parameters (Mensch
and Rasolofosaon, 1997)
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where we use the Voigt notation for the elastic tensor. This allows the
definition of the elastic constants independent of the orientation relative
to the coordinate system. This formulation can be used for any trans-
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verse isotropic material. However, minerals considered to produce
anisotropy in the mantle, such as olivine, have mostly orthorhombic
symmetry, and require a form of angular averaging (Mondal and Long,
2019) to be approximated with hexagonal symmetry. The Thomsen
parameters can then be replaced by the averaged single crystal or
aggregate parameters, while the strength of anisotropy can be expressed
as the fraction parameter y of crystal alignment (Mondal and Long,
2019)

Cij = Zcij.singla + (1 7X>Cij.lsotropicx (10)
which uses the separation of the elastic tensor into isotropic and hex-
agonal parts (Browaeys and Chevrot, 2004). There is also the possibility
to describe the elastic constants in terms of anisotropic velocity per-
turbations to the isotropic velocities (Farra et al. 1991)

(R R (R

b (15 = pu(1-9)"
F=pu(A—2L),u =103, an

where p denotes the density, vp is the P-wave velocity, and vs is the S-
wave velocity in the medium. For simplification, the anisotropy for the
P-wave and the S-wave propagation is assumed to be equal and
described by the variable a, which is the ratio of the difference between
the maximum and minimum anisotropic velocities divided by its
average,

Vi — V2

12
v

We make this simplification because shear wave splitting is not
sensitive to differences in P- and S-wave anisotropic fractions. The
constants (A, C,L, N, F) fully describe the elastic tensor for hexagonal
symmetry as described by Love (1920). To avoid the simplifications
involved in this approximation, more realistic elastic tensors based on
laboratory experiments and/or field observations may be used, as
mentioned previously. Instead of inverting for the Thomsen parameters
in addition to the orientation of the elastic tensor, which would require
the inversion for 5 parameters, we define a single crystal estimate for the
elastic tensor and invert for the fraction paramter y to describe the
strength of the anisotropic medium, following Mondal and Long (2019).
Together with the angles (¢,0) describing the azimuth and dip, respec-
tively, of the symmetry axis, this reduces the inversion to only 3
parameters.

Using the Egs. (3), (6)—(9) the splitting intensity can be formulated
as

S— / K, (0.0) 1 dr, (13)
Q

where K, (6, ¢) is equivalent to the sensitivity kernel with respect to the
fraction parameter y. The kernel can be simply expressed by the deriv-
ative of the observable for the model parameter of interest

s
6m,» o

K, 14

with the parameter vectorm = (y, ¢, 6). Fig. 1 shows example sensitivity
kernels in a homogeneous anisotropic model calculated with this
formulation. We use the first derivative of a Gaussian as an incident
wave with periods of 8 and 16 s. The broadening of the kernels with an
increase of the dominant period of the incident wave is evident, as well
as asymmetry due to non-vertical incidence, which can be considered in
the forward calculation. The kernels of strength of anisotropy and fast
axis orientation are nearly symmetric, while the dip of the symmetry
axis shows strong asymmetric behavior, which is a result of the non-
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Fig. 1. 2D cut through the y plane at y = 0 km of sensitivity kernels for an incident plane wave of period 8 s, incidence angle 15° and backazimuth of 90° for the (a)
strength parameter y, (b) fast axis orientation with respect to north ¢, and (c) plunge of the symmetry axis from horizontal 6. The model is chosen to be homogenously
anisotropic with y = 0.1, 45° plunge and 40° fast axis. (d-f) Same as (a-c) but for an incident plane wave of period 16 s.

vertical incidence in a medium with a dipping symmetry axis.

2.2. Inversion procedures

In the inversion for the anisotropic parameters m = (y, ¢,6), we wish
to minimize the difference between the forward calculated S,, and the
observed splitting intensities, Syp. This can be formulated as minimizing
their Ly-norm, resulting in the cost function (e.g., Tarantola, 1987)

1
X(m) = §||Sm(m) — Sobs ”; (15)

In practice, the inverse problem is usually ill-posed and under-
determined. Usually, a smooth result is preferred in tomographic im-
aging, which can be achieved by a Tikhonov regularization (e.g.,
Fernandez-Martinez et al., 2014) in the form of

1 1
X(m) = 2|18, (m) = Sons |13 + 5[ Tm]3, (16)
2 2

where we use the second order finite difference operator Ly (m) = aijglx,- as
a smoothness constraint (Chevrot, 2006) in combination with the reg-
ularization factor « for the Tikhonov-matrix, T,
1 2, 1 2
X(m) = 51ISm(m) = Sops [I; +SlloLa(om) - an
As we use angular model parameters, it is necessary to reformulate
our model for the smoothing constraint to avoid penalizing neighboring
model parameters at the start and end of an angular cycle (e.g., ¢,_;; =
359° and ¢id =1°) as

xsin(¢)cos(6)
ycos(¢)sin(6)
ysin(6)

m —

(18)

The inversion of the cost function for the model parameters can be
performed using different strategies. Here, we choose to implement and

compare three algorithms:

1) The gradient descent (GD) is the simplest algorithm, following the
direction of the gradient of the cost function, %™,

2) The BFGS-algorithm is a form of the conjugate gradient method,
which adds information based on approximations of the Hessian
matrix in each iteration to introduce additional information on the
sensitivity of the model parameters to changes in the cost function.

3) A gradient-based stochastic inversion using a reversible jump Monte
Carlo Markov chain (rj-McMC) is a fast-converging stochastic algo-
rithm that allows for a data adaptive parametrization of the model
space, which becomes significantly more efficient for large models
compared to standard stochastic inversion methods.

2.2.1. The gradient descent method

In the gradient descent method, we aim to optimize the cost function
iteratively, beginning the search from a starting model my. As direction
for the improvement of the data fit, we take the negative gradient of the
cost function Am = —% m, (see also Boyd and Vandenberghe, 2004). We
perform a line-search for the step-size, which avoids an over-shooting of
the step over the improvement of the cost function. A new model at
iteration n 41 is therefore constructed as m,; =m, —k %‘Jmn, where k is
the current step-size found in the line-search.

The model variables are not fully independent; therefore, we intro-
duce two additional strategies in the inversion. We alternate the search
for model improvement in fast axis direction, strength of anisotropy and
dip of the symmetry axis (if the latter is considered in the inversion; in
some applications, the symmetry axis is assumed to be horizontal). The
inversion depends on the starting model. While we generally start with
an effectively isotropic model (homogeneous anisotropy of 0.001), we
choose an arbitrary fast axis direction, producing several starting models
with a homogeneous orientation for the entire model area. To
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investigate the influence of the starting model to the inversion and to
identify consistent models required by the data, we perform the analysis
for a range of different starting models, each with an arbitrary choice of
the fast axis direction. The second strategy that we introduce in the
inversion is to update the model only in areas with high sensitivity. This
is implemented by identifying the area of the gradient with at least 50%
of the maximum absolute sensitivity at each iteration and setting the
remaining gradient to zero. This confines the changes of the model in
space and reduces leakage of the anisotropic areas.

The distribution and quality of the data also potentially affect the
inversion procedure. To ameliorate this effect, we use a subset of
randomly selected events in each inversion. This procedure limits the
influence of outlier traces with high noise levels, which otherwise might
dominate the inversion procedure. The final model is estimated from the
average of the model parameters for the inversion runs with the best
data fit (we choose the best two third of the runs in this study). This
allows us to also estimate the uncertainty of the model parameters based
on their standard deviation after the model runs. At the same time,
assuming that the inversion converges to the real model, the residuals of
the observed data and the forward modelled splitting intensities based
on the recovered model represent the uncertainty or error of the data.

2.2.2. The BFGS algorithm

A more frequently used and sophisticated approach is the BFGS al-
gorithm (named after Broyden, 1967, Fletcher and Watson, 1980,
Goldfarb, 1976, and Shanno, 1978). Here, an approximation of the
Hessian matrix is introduced to allow a faster convergence while
maintaining computational efficiency (see also Bonnans et al. 2006).

The direction of the model step is determined considering the gradient
and an approximation of the Hessian, By, resulting in Am = - m Bt
The actual step size is found in a line search similar to the gradient
descent method, which results in the model update mp,; =
m, —%| B.' k. While for the first iteration an initial guess for the
Hessian matrix is used (for example, the identity matrix), the estimate is

improved in each iteration according to the formula

sy"B, + B,ys"
y's

y'Byy

r
Bn+l =B, — + |:1 + :| & (19)

yis |y

withs = s, = M1 —myandy =y, = &, — %&| (Bonnans et al. 2006).
This new estimate for the Hessian matrix is then used in the next iter-
ation for updating the step in the model towards improvement of the
data fit. As for the gradient descent method, we introduce different
starting models with an effective isotropic background and an arbitrarily
chosen fast axis direction. As for the GD-algorithm, we choose to run
each inversion with a different randomly selected subset of the data. The
final model and the uncertainty of the model parameters are estimated
from the mean and standard deviation of the model runs with the best fit
to the data (from the best two thirds of the model runs in this study).

2.2.3. Formulation of the gradient-informed rj-McMC algorithm

For the reversible jump Markov chain Monte Carlo algorithm, we
mostly follow the formulation by Bodin and Sambridge (2009), who
describe this approach in mathematical detail. The algorithm estimates
the posterior of an open set of model parameters using a random walk
through the model space, where the number of cells in space is usually
fixed. The model space itself is divided in Voronoi cells. During the
random walk, one of these cells is selected and its model parameters are
altered. The model fit of the new step is determined by calculating the
likelihood and is then compared to the previous model fit (previous
likelihood). Similar to the Metropolis-Hastings algorithm, an acceptance
level is introduced with some random variability, which leads to the
acceptance of the new model or its rejection. If the model is accepted,
the model is taken as starting model for the next step; if it is rejected, the
previous model is kept as starting model. In addition to the random
walk, in which model parameters are altered in the current set of locally
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fixed Voronoi cells, a three-step strategy is introduced in the reversible
jump algorithm: an additional cell is added to the set of Voronoi cells, a
cell is eliminated, or a cell is shifted in space. To allow faster conver-
gence, we additionally use the gradient during the random walk to
determine the direction in which the model parameters of the randomly
chosen Voronoi cell can be improved. This greatly diminishes the
number of rejected steps and improves convergence. We follow the
strategy of a Metropolis-adjusted Langevin algorithm (MALA; Roberts
and Tweedie, 1996), in which the samples of the Markov chain, M;, are
constructed based on Langevin diffusion as

My =M, — ngog(ﬂ(Mn) )+ Vhe,, (20)

with a step size h > 0 a random draw from a multivariate normal dis-
tribution with zero mean, ¢,, and a probability density function, z(M;),
that is equivalent, here, to the maximum likelihood using Eq. (17):

<1:/Z] (SrﬂJ(Mi) - Subsj )2 + %E,‘ (LZAi(Mn) )2 )

202 ’

log(7(M;) ) 21)
where N is the number of measurements, K is the number of model
parameters, and o is an estimate for the average data uncertainty. This
formulation allows us to include a regularization in the rj-McMC pro-
cedure (Vidal et al. 2020). While this regularization is optional for the
user of the toolbox, we emphasize that the use of regularization ensures
the smoothness of the likelihood function, which is a fundamental
requirement for the convergence of this algorithm. Each iteration in
MALA is checked against a Metropolis-Hastings acceptance criterion,
which is equivalent to the acceptance criterion of the rj-McMC step used
by Bodin and Sambridge (2009).

We perform multiple Markov chain calculations with different
starting models by randomly selecting different geometries of the initial
Voronoi cells. The priors in the MALA formulation are characterized by
the gradient. However, to ensure that the model parameters remain
within realistic range, we alter the prior distribution by defining
boundaries for the model parameters. This is usually introduced by a
uniform distribution with a value of 1 within and 0 outside of the given
boundaries (0 to 1 for the anisotropic fraction, 0 to 180° for the fast axis,
and —60° to 60° for the dip of the symmetry axis). As with the previously
introduced algorithms, we start with an effectively isotropic medium
with randomly selected initial fast axis orientation (with homogeneous
orientation over the model space) for the different Markov chains. As for
the other algorithms, we choose to run each inversion with a different
randomly selected subset of the data. Finally, we construct a common
posterior distribution by randomly selecting subsets (the number of
Voronoi cells is chosen by the user of the toolbox) of the individual
posterior distributions of the individual chains and interpolating them
using a distance weighted algorithm (Shepard, 1968). Here we draw
only from one third of the samples with the highest likelihood (corre-
sponding to the best data fit). That leaves a variable amount of burn-in
steps of the Markov chains, which are usually low in likelihood, and
discards non-convergent chains. The interpolation produces a relatively
smooth model, which is less affected by the appearance and sharp dis-
continuities of the Voronoi cells. However, the distance-weighted al-
gorithm allows us to resolve sharp boundaries where it is required by the
data, expressed by areas of high density of Voronoi cells. The final model
is estimated from the mean of the different subsets and the uncertainty is
estimated from the standard deviation.

2.3. Frequency dependent splitting intensity measurements

The lateral and vertical sensitivity of the observables depends
strongly on the frequency of the incident wave (see Fig. 1 and Riimpker
and Ryberg, 2000 for shear wave splitting more generally). However,
the splitting intensity is mostly estimated as a characteristic value for a
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measured waveform over a broad frequency band, as

s_ 2Ref9ia) V() v,z(m) da)7 22)
Jo@? [vi(@) | deo

where v, and v; denote the measured radial and transverse component of
an observed shear-phase and both the numerator and the denominator
are integrated over the entire frequency band. However, in practice the
waveforms v, and v, are initially filtered to suppress noise and (ideally)
increase the clarity of the signal. Here, we suggest reformulating the
definition of the splitting intensity to explicitly incorporate this idea,
while allowing a determination of the dominant frequency and a stable
estimate of splitting intensity at the same time, with

o
® —do

) +d 2
St @ |vr(w) | do

Re iov,(0) v, () dw

S(w) =2

(23)

where o is the center frequency, and do defines the width of the fre-
quency band. In our test, we use a frequency dependent band defined by
a constant number of Fourier coefficients. We select the number of co-
efficients from a reference band corresponding to the periods of 6 s and
10 s. This allows us to calculate a frequency dependent splitting in-
tensity equivalent to a moving band pass filter of the signal.

The window used to extract the phase of interest from the data
stream potentially affects the estimated frequency content of the phase
(e.g., Teanby et al., 2004; Savage et al., 2010; Wiistefeld et al., 2010; Liu
and Gao, 2013). We therefore randomly vary the start and end time of
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the window, estimating the dominant frequency of the radial component
in this window corresponding to its maximum energy in frequency
domain and estimating the corresponding splitting intensity using the
dominant frequency as the center frequency. From the different win-
dows, we construct a probability density function for the
frequency-dependent splitting intensity. The maximum of the proba-
bility density function (PDF) is considered to provide the most robust
estimate of the splitting intensity Sy, and its corresponding dominant
frequency of the wave. In Fig. 2, we illustrate the difference between
splitting intensity measurements derived by the classical formulation
(Eq. (20), see Fig. 2b) and those derived from the dominant frequency
band using our new formulation (Eq. (21), see Fig. 2d). We applied the
analysis to a synthetically split waveform, starting from the first deriv-
ative of a Gaussian using splitting parameters of At =1 s and ¢ = 45°
(Fig. 2a) and adding low pass filtered Gaussian noise with a corner
period of 2 s (Fig. 2b). We varied the window for phase selection 500
times (semi-transparent red lines in Fig. 2a) and applied both the clas-
sical and frequency dependent analyses. For both methods, we calcu-
lated a probability density function for splitting intensity and dominant
period (shown with a color-scaled 2D distribution in Fig. 2b, c¢). We find
that the classical method systematically under-estimates the splitting
intensity (Fig. 2b), which has also been suggested in earlier studies
(Monteiller and Chevrot, 2010; Hein et al., 2021). However, focusing the
formulation of the splitting intensity on the dominant frequency band
reduces the influence of the noise and better recovers the expected
splitting intensity for the input waveform.

We test the applicability of this method to a real data example (Fig. 3;
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Fig. 2. (a) Synthetically split waveform with a nominal splitting intensity of 1.0 for an initial waveform defined by the first derivative of a gaussian with a dominant
frequency of 10 s. Blue indicates the radial component, red the transverse component and yellow the time derivative of the radial component multiplied by the
splitting intensity. (b) Same waveform as in (a) but with added Gaussian noise of relative amplitude 0.4 to the radial component. The red lines indicate start and end
times of the time windows for which the calculation of the splitting intensity has been performed. (c; d) Probability density function of the frequency dependent
splitting intensity for the classical formulation of the splitting intensity (c) and the frequency dependent splitting intensity (d). The mean of the distribution for the
frequency dependent splitting intensity is marked by a white star, providing the estimate of the robust splitting intensity and corresponding dominant period for the
waveform shown in (b). The splitting intensity and period of the noise free waveform are shown as a red circle and the mean of the distribution for the classical

formulation of the splitting intensity is marked by a green triangle.
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Fig. 3. (a) SKS-waveform measured at station D142 of the network ZS (Heit et al. 2017). Blue indicates the radial component, red the transverse component, and the
yellow dashed line shows the time derivative of the radial component with a pre-factor of — 0.5. The red lines indicate start and end times of the time windows for
which the calculation of the splitting intensity has been performed. (b) Red indicates the Transverse component waveform as in (a). The dashed yellow line and the
dashed purple line indicate the time derivative of the radial component scaled by the splitting intensity for the frequency dependent and the classical analysis
method, respectively. (c; d) Probability density function of the frequency dependent splitting intensity for the classical formulation of the splitting intensity (c) and
the frequency dependent splitting intensity (d). The mean of the distribution for the frequency dependent splitting intensity is marked by a white star providing the
estimate of the robust splitting intensity and corresponding dominant period for the recovered waveform shown in (b). The result for the classical formulation of the
splitting intensity is marked by a green triangle corresponding to the maximum of the probability density function in (b).

station D142 of the Swath-D network; Heit et al. 2017). We find a
splitting intensity of 0.89 for the classical method and 1.43 for the fre-
quency dependent measurement and identify the same dominant fre-
quency of 19 s. Equivalent to the synthetic example, this example from
real data indicates that the classical method for a broad frequency band
underestimates the splitting intensity. We note that selective band-pass
filtering with a narrow frequency band prior to the classical estimate of
the splitting intensity leads to the same result as the method we propose
here. However, the new method allows a data-adaptive approach that
identifies the dominant frequency and estimates the corresponding
robust splitting intensity automatically, without the need of extensive
data evaluation, as one key element of our approach is the re-evaluation
over multiple windows of different length and position.

3. Test of the inversion procedures
3.1. Synthetic test setup

We present synthetic tests that are designed to illustrate the strengths
and weaknesses of the different inversion procedures. We calculate
synthetic splitting intensities for two different input models (model I, II),
described further below. For model I, we introduce one version with a
variation in the dip of the symmetry axis and one without (models Ib and
Ia, respectively). All models vary in two dimensions, while the third
dimension simply extends the anisotropic properties from the 2D plane,
representing a 2.5D model. This reflects the basic assumptions for an
analysis of a seismic profile, which is currently the most common set-up

for a possible application of the presented algorithms, considering the
required density of station spacing (e.g., Mondal and Long, 2019, 2020).
All models consider a hypothetical upper mantle between 40 and
410 km depth and extend laterally from — 250 to 250 km in x-direction
as the variable model dimension and — 250 to 250 km in y-direction, in
which the parameters are kept constant. We calculate splitting in-
tensities for 2000 station-event pairs with randomly chosen period
varying between 4 and 20s, randomly selected backazimuth, and
randomly chosen ray parameter corresponding to SKS phases at a dis-
tance range between 89° and 140°. We assume an incident plane wave,
w(t), with a waveform based on the first derivative of a Gaussian, which
allows to define a dominant frequency. We assume a simplified (linearly
approximated) 1D shear wave velocity model based on ak135 for the
calculations (Kennett et al. 1995). We estimate wave propagation based
on Snell’s law within the model space based on the incidence defined by
the ray parameter and azimuth of an event for the radial wave without
any effect on its absolute amplitude. The transverse component is esti-
mated from the scattering introduced by the anisotropic medium as
described in Section 2.1. The hypothetical stations are located at the
surface (z = 0 km) along the x-direction with 5 km spacing. The model
dimension is extended in the x-dimension by 250 km in both directions,
to allow the calculation of all relevant parts of the sensitivity kernels
contributing to the start and end of the hypothetical profile. This area is
denoted as a border area, while the remaining area is denoted as the
model space. The background isotropic velocity is taken from PREM; we
note, however, that the isotropic velocities have no considerable impact
on the splitting intensities.
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Fig. 4. Strength of anisotropy (a, d), fast axis direction (b, e) and plunge of the symmetry axis (c, f) from top to bottom for input models defined by a checkerboard
model with (a, b) 4 cells (model I) and (d-e) 16 cells (model II). The plunging axis for model Ia and II has been set to O (f), while model Ib is defined by a variation in

the plunging axis (c).

The first model is characterized by 4 equally spaced volumes within
the model space (Fig. 4a-c), with an anisotropic strength that varies
between 4% to 2%, while the fast axis orientation varies in a checker-
board pattern between 0° and 45°. While for model Ia the dip of the
symmetry axis is kept at 0°, for model Ib the dip of the symmetry axis
varies laterally from 45° to — 45°. Model II is chosen to be more com-
plex, with 16 volumes within the model space (Fig. 4d-f). The strength of
anisotropy varies laterally, alternating between 6% and 4%. Vertically,
the anisotropic pattern varies in 4 layers. The first and third layers are
anisotropic, while the second and fourth layers are isotropic. Within the
anisotropic layer, the fast axis varies in a checkerboard pattern between
0° and 45°. For all models, we use a grid of 64 by 32 cells in the
calculations.

For the gradient-based inversion procedures, we invert from 50

different starting models using a subset of 1000 observations in each run
to test the statistical stability of the results. We expect no direct effect of
the reduction of the observations to a subset of the synthetic data; our
aim here is to limit the influence of noise in the data on the inversion in
real data applications. However, we chose this procedure for consistency
with the real data application in the following section. The GD-method
was run without a convergence criterion for 50 iterations. In the BFGS-
method, we use the infinity norm of the gradient, max|%|, | =1e7%,asa
convergence criterion and stop the inversion either when convergence is
achieved or when the number of iterations reach 50 steps. For the 1j-
McMC inversion, we run 10 chains with different starting models for
1500 iterations, also using a subset of 1000 observations in each run. We
assume an average data uncertainty of ¢ = 0.2 for the synthetic splitting
intensities. The final model is constructed by drawing random subsets of
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1024 Voronoi cells from the best third of Markov chains with highest
likelihood. For all methods, a small smoothness parameter of 0.075 is
chosen with the aim of avoiding models with extreme changes of sym-
metry axis direction. This choice is made because neighboring cells with
close to 90° offset in symmetry axis orientation would have the effect of
destructive interference for the splitting intensity; the method has no
direct sensitivity to this configuration. With our choice of small
smoothing, we try to avoid these extreme offsets between neighboring
cells, while still allowing to resolve relatively sharp changes in the
anisotropic parameters.

3.2. Synthetic test results

Results of our synthetic test runs are shown in Figs. 5-7. In our first
application (Fig. 5), we only search for the strength of anisotropy and
fast axis direction, assuming the fast axis to be horizontal. The appli-
cation of all three techniques to model Ia shows that the model is well
recovered independent of the technique. In particular, the sharp change
of model parameters at O km is identified by the gradient based
methods. The rj-McMC method provides less strong constraints on this
lateral transition, which might be result of the interpolation method

Journal of Geodynamics 159 (2024) 102018

used for the model reconstruction from the posteriors and might get
better resolved for a longer sampling or a different choice of data un-
certainty. However, no methods are capable of resolving the sharp
transition in the vertical direction of the fast axis orientation between
the top and bottom layers (Fig. 5b, e, f). While the inversion results do
approximately match the synthetic models within the model un-
certainties (see Fig. S1), this vertical transition appears smooth. This
smoothness is strongest for the GD-method, slightly less smooth in the
BFGS-method and closest to the synthetic model in the rj-McMC-
approach. We identify small but distinct performances in model fit
among the three algorithms for this example. The BFGS-method shows
the best fit to the data for our choice of convergence criteria, while the
GD-method and rj-McMC-method show broader width of the residual
distribution and larger RMS. However, the initial model parameters are
all resolved within the uncertainty of the model parameters (Fig. S1).
When applying the techniques to model II (Fig. 6), the challenges
with vertical resolution become even more apparent. While the fast axis
direction is recovered well by all techniques, the strength of anisotropy
is significantly obscured. The first layer is well recovered, indicating the
strong sensitivity of the splitting tomography at shallower depth (in this
case, <100 km). However, while all techniques find a decrease of
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Fig. 5. Strength of anisotropy (a, d, g), fast axis direction (b, e, h) and data fit (c, f, i) from top to bottom for an inversion of model Ia based on: (a, b, ¢) gradient
descent; (d, e, f) BFGS algorithm; (g, h, i) stochastic gradient descent with rj-McMC algorithm. (c, f, i) The orange bars show the distribution of the synthetically
calculated splitting intensities. The blue bars show the distribution of the residuals after subtracting the forward calculated splitting intensities based on the resulting

model parameters shown in the column above (a, b, d, e, g, h).
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Fig. 7. Strength of anisotropy (a), fast axis direction (b) and plunge of the symmetry axis (c) from left to right for an inversion of model Ib based on the BFGS

algorithm considering a dip of the symmetry axis in the inversion.

anisotropy below the strong anisotropic layer, no technique resolves
well the first isotropic layer. In particular, the solution derived from the
rj-McMC algorithm does not reflect the isotropic features in the model.
In contrast to model Ia, where the synthetic model was within one
standard deviation of the inversion results of the rj-McMC, the isotropic
property of the second layer remains unresolved, when considering the
data uncertainty for model II (see Fig. S2). Qualitatively, in all models

10

the alternating nature of stronger and weaker anisotropy is found for the
third layer, while the strength is strongly underestimated and the
anisotropy smears to greater depth. The deepest isotropic layer is not
identified by any of the techniques. The data fit for all models is good,
although the BFGS-algorithm shows the best performance with the
inversion parameters that we used in this particular example.

In the final test of the inversion procedure (Fig. 7), we focus on the
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BFGS-algorithm in the application to a more complex model, as it rep-
resents the best performing approach in the previous tests for our choice
of the convergence and cut-off criteria. Here, we apply the search for the
full orientation of the elastic tensor, by considering a dipping symmetry
axis. This analysis is performed on the synthetic data set of model Ib.
Fig. 7 shows the result of the BFGS-algorithm for the mean of 50
inversion runs with different starting models. Unlike the analysis for
model Ia, the strength of anisotropy and fast axis direction are not as
well resolved. However, the model volumes showing positive and
negative dip are identified well. The magnitude is under-estimated at
shallow levels, but more precisely estimated with growing depth. The
decrease in resolution of strength and fast axis orientation at shallow
levels indicate a strong trade-off between the parameters.

In our synthetic tests, we compared a simple gradient descent (GD), a
BFGS-approach, and a gradient-informed reversible jump Markov chain
Monte Carlo approach (rj-McMC) in application to synthetic data. For
simple models (represented by model I), all three inversion methods
recover the model well within their uncertainty. The GD and the rj-
McMC algorithms tend to produce lower data fit with the convergence
and cut-off criteria we selected for the synthetic tests. While all methods
resolve the model well in the lateral direction, the depth resolution is
considerably poorer, as expected in XKS splitting tomography due to the
nearly vertical incidence of the waves. This results in vertical smearing
and in a gradual change between different model volumes, although the
input model has a discontinuous jump (seen particularly well in the
inversion for model II). Considering the full orientation of the aniso-
tropic tensor, including the plunge of the symmetry axis, adds
complexity that introduces ambiguities in the inversion. While the
plunge can be well identified, the strength and horizontal orientation are
less well resolved by the tomography. We note that the magnitude of the
splitting intensities is significantly lower than for the horizontally ori-
ented case, which might explain the poor recovery of the anisotropic
strength.

4. Application to the dense Swath-D data set
The Swath-D-network provides an ideal real data test case for the
application of splitting intensity tomography. This temporary seismic

network covers the transition of the Central to the Eastern Alps with 154
densely spaced broadband stations (Heit et al. 2017; AlpArray Seismic

a) 10°E 12°E 14°E
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Network, 2015; Fig. 8). Previous studies have inferred complex aniso-
tropic characteristics for this area, expressed not only by a sharp lateral
change of splitting parameters at ~13°E, but also by strong azimuthal
variation of the parameters in the Eastern Alps, indicating anisotropic
layering (Qorbani et al. 2015; Link and Riimpker 2021). The classical
ray-based technique did not allow for a direct resolution of the depth
which produced the anisotropic pattern. This motivates the application
of splitting intensity tomography, with the aim of getting at least a
first-order idea of the depth distribution of the anisotropy in this area
and possibly insights into its origin.

We base our analysis here on the same data set as the previous SKS
splitting study by Link and Riimpker (2021) using the Swath-D network,
which provides two years of continuous seismic data at 154 stations
between 2017 and 2019. This data set is accessible from the GEOFON
archive. We also include data from permanent stations with longitudes
between 10°— 14.5° and latitudes between 45.5°— 47.5°, following Link
and Riimpker (2021). The data is assembled from the networks BW, CH,
IV, NI, OE, OX, SI and SL (Fig. 8 and Table S1). Teleseismic events with
magnitudes above 5.8 and within the distance range from 89 to 140
degrees were selected. A signal to noise ratio is calculated based on the
normalized signal energy in a 25-sec window after the expected arrival
time of the phase and the normalized noise energy in a 20-sec window
preceding this arrival time. Phases with a signal to noise ratio below 2.5
are discarded. Splitting intensities are calculated for SKS, SKKS, SKIKS,
PKS and PKIKS phases with high-quality waveforms based on the
method described in Section 2.3; this procedure also provides an esti-
mate of the dominant period of each core-mantle converted phase. The
splitting patterns show strong two-dimensional characteristics (Link and
Riimpker 2021), suggesting that a 2.5D model is appropriate. We
therefore project the station locations on a profile intersecting the
network from WSW to ENE (Fig. 8a). We exclude stations at a distance
larger than 0.5° from the profile, which results in a total of 2771 ob-
servations used in the analysis.

Our synthetic tests showed the superior performance of the BFGS-
algorithm in the comparison to the other two algorithms shown in this
study. We therefore choose the BFGS-algorithm as basis for our appli-
cation of the splitting intensity tomography to a real data set. The model
is divided in 64 by 32 cells, which corresponds to ~10 km steps in z and
~5km in x direction. In general, densifying the grid allows a higher
accuracy in the calculation of the contributions to the splitting
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Fig. 8. a) Station distribution of the dense Swath-D seismic network (ZS) and permanent stations of national networks in the same region. The background shows the
geological map compiled by M.R. Handy with units and major lineaments simplified from Schmid et al. (2013, 2008); Handy et al. (2010, 2015, 2019), Bigi et al.
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the event-station pairs used the analysis. Most events arrive from two opposite directions aligned with the strike of the profile, which results in a good overlap of the

corresponding sensitivity kernels for a successful depth resolution.
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intensities and sensitivity kernels. However, at the same time larger
computational resources become necessary. We find that a lateral
spacing of about 5 km allows sufficient accuracy, while such a low grid
spacing in depth has less impact on the forward calculation. We there-
fore use a less dense spacing of 10 km at depth. We apply the inversion in
two steps. First, we only consider a horizontal symmetry axis, solving for
strength of anisotropy and fast axis direction (relative to north). In a
second step, we use the model found in the first step as initial model and
re-run the analysis, searching additionally for the dip of the symmetry
axis. Similar to the previous applications, we use 50 different starting
models in the first step using an arbitrary orientation of the horizontal
fast axis, and use for both steps different subsets of the data in the
inversion for the 50 different runs. This procedure allows us to investi-
gate the uncertainties of the data and its impact on the inferred model
parameters. At the same time, we avoid dominating effects of outliers in
the data.

Fig. 9a-d shows the mean result of the 50 inversion runs (based on
different initial models and event selections as described above) without
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consideration of a dipping symmetry axis. From these inversion results,
we identify a sharp change of fast axis orientation from around 60° in the
west to about 110° in the east (see also Fig. 10 in the discussion). This
change is found at around 250 km, which coincides with 13° longitude.
A shallow volume with increased anisotropic strength is found in the
east at depth between 70 and 190 km (see structure A in Fig. 10). West of
13° a fast axis of 60° dominates, corresponding to an anisotropic volume
beneath 100 km depth. An increased level of anisotropic strength ap-
pears to dip downwards from the west to larger depth closer to the
transition in the east, where it reaches the lower boundary of the model
space (see structure B in Fig. 10). The second step of the inversion
procedure allows the dip of the symmetry axis to vary as well (see
Fig. 9e-h). In this second inversion result, the strength of anisotropy and
fast axis direction remain stable, and we identify a slight dip of the
symmetry axis, between — 8° and + 6° from horizontal. The axis dipping
downward to the east is found in the area west of 13° longitude, while an
axis dipping upward to the southeast is found for the shallow anisotropy
in the east. Fig. 9(g; h) shows the data fit of the two inversions, which
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Fig. 9. Strength of anisotropy (a, e), fast axis direction (b, ), plunge of the symmetry axis (c, g) and data fit (d, h) from top to bottom for an inversion of the Swath-D
data set based on the BFGS algorithm. We only consider a horizontal orientation of the symmetry axis in a first inversion procedure (a, b, ¢, d) and allow for the full
orientation of the tensor (e, f, g, h) in a second inversion step that is based on the initial findings shown in (a, b, ). The yellow lines in (a, b, ¢, e, f, g) represent the

profile line in Fig. 8 with yellow/gray dots at 50 km spacing.
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Fig. 10. Schematic figure of the findings for the anisotropic tomography in the Eastern Alps. The diagram on the left shows suggested slab break-off in the Eastern
Alps, which allows an opening for asthenospheric flow through the corresponding gap (red arrow). We identify an increase of anisotropy corresponding to a distinct
change of fast axis at 13° Longitude at a depth between 80 and 190 km (compare red dashed line, structure A). The increased level of anisotropy west of 13° longitude
tends to decline to larger depth to the bottom of the model space from west to east (structure B).

reflects the uncertainty based on the measurement error. The standard
deviation of the first inversion is 0.39 s while it is 0.38 s for the second
inversion. Allowing the symmetry axis dip to vary results in only a minor
improvement, which is statistically not significant.

5. Discussion and summary

We present a new toolbox for the MATLAB environment that enables
the tomographic inversion of splitting intensity measurements for
anisotropy beneath dense seismic networks. The method aims to over-
come the limited depth resolution of classical shear-wave splitting
techniques that results from the ray-based approximation of the nearly
vertically incident core-mantle converted phases. With the formulation
of finite-frequency sensitivity kernels, we obtain increased sensitivity at
depth by accounting for the three-dimensional volume contributing to
the shear wave splitting observations. The toolbox provides a new
frequency-dependent estimate of splitting intensities for core-mantle
converted phases that can be imported from a dataset previously pro-
cessed with the SplitRacer software (Reiss and Riimpker 2017; Link et al.
2022). This estimate of the splitting intensity identifies the dominant
frequency band of a waveform and allows a more stable measurement
estimate. The inversion approach is based on the forward calculation of
splitting intensities and gradients of the cost function. Our sensitivity
kernel computations allow an analytic formulation (Chevrot, 2006;
Mondal and Long, 2019), which increases its computational efficiency
compared to adjoint methods often used for estimating sensitivity ker-
nels (e.g., Tarantola, 1987; Tromp et al. 2005; Sieminski et al., 2009).
The formalism allows us to introduce any effective hexagonal elasticity
tensor; however, we focus on olivine LPO with the model parameterized
by the strength of the anisotropic contribution relative to its isotropic
approximation (Mondal and Long, 2019) and the orientation of the fast
anisotropic symmetry axis in space. Extending the previous work by
Mondal & Long (2019), we also allow for the formulation of the aniso-
tropic tensor from an anisotropic perturbation of isotropic velocities
(Farra et al. 1991), which provides directly an expression for strength of
anisotropy. While Mondal and Long (2019) only considered the far-field
term and focused on vertically incident plane waves, we allow here for
non-vertical incidence and include the near- and mid-field terms (similar
to Chevrot, 2006), resulting in higher precision of the forward calcula-
tion. To stabilize the inversion, we introduce the Laplacian operator as
regularization in the cost function to reduce the roughness of the model
(Chevrot, 2006). A new feature in this study compared to previous work
on splitting intensity tomography is the implementation of three
inversion strategies; previously, Mondal and Long (2019) implemented
a stochastic Gibbs sampler and Chevrot (2006) implemented a deter-
ministic solver based on LSQR algorithm): Here we introduce a simple
gradient descent (GD), a BFGS-approach, which approximates the Hes-
sian and stabilizes the inversion, and a gradient-informed reversible
jump Markov chain Monte Carlo approach (rj-McMC). The new algo-
rithms allow fast convergence, due to the consideration of the gradient
in all techniques, which allows to explore a larger model space with
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similar computational resources as the technique presented by Mondal
and Long (2019). Furthermore, the toolbox is flexible, such that users
can choose the algorithm and parameter choices that are best suited to
the needs of the problem under study.

We compare the three techniques in application to synthetic data,
illustrating the strengths and weaknesses of SKS-splitting intensity to-
mography and of the three different inversion strategies. For simple
models, all three inversion methods recover the model well, but the
BFGS-algorithm leads to the best fit to the data. The GD and the rj-McMC
algorithms result in a lower data fit in our tests. We emphasize that this
might be related to our choice of convergence and cut-off criteria for the
inversion procedures; and a different choice of convergence criteria or
extended inversion steps might lead to a similar data fit as the BFGS-
algorithm. However, trends of the RMS-error of the splitting in-
tensities indicate fast convergence for all Markov chains (Fig. S3). Only
the larger scatter of the number of Voronoi cells might indicate that
extended iterations might be required. In any case, users of the toolbox
may select the convergence and cut-off criteria that make the most sense
for their individual applications.

While all methods resolve the model well in the lateral direction, the
depth resolution is considerably poorer. This results in vertical smearing
and in a gradual change between different model volumes, even though
the input model has a discontinuous jump. This is not surprising; while
depth sensitivity is introduced by the consideration of overlapping
sensitivity kernels at depth, we still rely on core-mantle converted
phases with almost vertical incidence. While this leads to the excellent
lateral resolution of structure, the similar shape and large overlap of the
sensitivity kernels at depth has an averaging effect. As a result, the
vertical resolution decreases with depth. While the fast axis orientation
in the horizontal plane is generally very well resolved, the dip of the
symmetry axis has a complex trade-off with the strength of anisotropy.
The poor recovery of these parameters can be explained by the fact that
a considerable dip leads to a decrease of the magnitude of the splitting
intensities and therefore a decrease of the overall sensitivity for the
anisotropic structure. We expect a similarly good resolution of those
parameters, comparable to models without a dipping symmetry axis, for
cases with stronger anisotropy, leading to splitting intensities at similar
magnitude even for a dipping anisotropy case.

The computational costs of the various algorithms are determined by
their inherent characteristics. While the BFGS- and the GD-methods are
comparably highly efficient, due to a rapid convergence based on the
purely gradient driven model improvement, the rj-McMC algorithm re-
quires many more iterations. The additional iterations (and slower
convergence) of this algorithm are required by its stochastic element,
which allows us to estimate uncertainties. At the same time, the rj-McMC
is not based on a fixed dense model grid, as are the purely gradient based
methods, but aims to estimate the actual number of model parameters
required to fit the data.

Despite the challenges, the application of SKS-splitting intensity to-
mography to the dense Swath-D network (Heit et al. 2017) shows the
potential of the method for real data sets. Previous studies found
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complex anisotropy beneath the Eastern Alps (Qorbani et al. 2015; Link
and Riimpker 2021). For the Swath-D data set, two significant aniso-
tropic layers were previously identified: one layer with constant fast axis
direction of about 60° over the whole area, with a possible east-dipping
symmetry axis and a shallower layer east of 13° longitude with a fast axis
direction of about 115°. This general observation agrees well with our
inversion results (Figs. 9 and 10). Two possible geodynamic scenarios
had been previously suggested for this region, both of which invoked a
slab break-off in the eastern part of the study area, allowing astheno-
spheric flow through its gap (Link and Riimpker, 2021). The anisotropic
structure west of 13° longitude was interpreted in the past as either
frozen-in anisotropy with lithospheric origin or an asthenospheric flow
evading the retreat of the European slab that would precede the
break-off event.

Our models (Fig. 10) show that the shallower anisotropic structure
beneath Swath-D extends from about 70 km to around 190 km depth
(labeled as structure A in Fig. 10). The fast axis orientation of this
shallow structure indicates likely asthenospheric flow, as it cross-cuts
geologic structures visible at the surface and it likely dominates over
this entire depth range. The finding that this anisotropic volume extends
to the very shallowest mantle (~70 km) indicates an almost complete
delamination of the lithospheric mantle during the slab-break off. While
our synthetic tests highlight the fact that the depth resolution of XKS
splitting intensity tomography is limited, and vertical smearing of
anisotropic structures occur, the resolution of the upper 150 km appears
acceptable for this model (compare Fig. 6a, b). We therefore assume that
the estimated depth and anisotropic parameters for the shallow struc-
ture east of 13° longitude is robust. The distribution of the anisotropic
structure with ~60° fast orientation starts at a deeper level of 100 km
(structure B in Fig. 10), which is still at a depth with considerable res-
olution. This would be consistent with either an isotropic lithosphere in
the overriding Adriatic plate and lithospheric anisotropy in the down-
going Eurasian slab, or with the predictions of an asthenospheric evasive
flow model. We suggest that there are two aspects of our model that
might indicate a lithospheric origin for this structure. First, the increased
anisotropic strength west of 13° longitude tends to decline to larger
depth from west to east, reaching the bottom of the model space at 13°
longitude. However, we caution that the resolution at this depth is very
limited, as shown in the synthetic tests. Second, there is a slight indi-
cation of a downward dip of the symmetry axis in this volume (see
Fig. 9), which would tend to support the idea of lithospheric anisotropy
that is altered by the down- and eastward-directed tear in the slab break-
off event. We caution, however, that the dip of the anisotropy does not
result in a statistically significant improvement of the data fit; an over-
interpretation of this feature should therefore be avoided. We also note
the relatively large width of the residuals in the real data application
compared to the synthetics (Fig. 9), which suggests that the splitting
intensity estimates are strongly contaminated by noise, leading to a
large data uncertainty. In addition, errors may be introduced by 3D
heterogeneities in anisotropic structure, which are not considered in our
2D projection of the measurements to a profile. A more detailed inter-
pretation for the anisotropy west of 13° longitude is therefore not
possible, and an evasive asthenospheric flow model, as previously sug-
gested (Barruol et al. 2011; Petrescu et al. 2020; Hein et al. 2021; Link
and Riimpker 2021; Link and Riimpker 2023), cannot be excluded. A
more conclusive answer about the geologic interpretation might
potentially be found in the further analysis of the anisotropic distribu-
tion beneath the crosscutting seismic profiles of the TRANSALP (Liischen
et al. 2004) and EASI (Hetényi et al. 2018) experiments in future ap-
plications of this method.

There are several potential strategies to overcome some of the
shortcomings of the SKS splitting intensity tomography method,
particularly its lack of depth resolution. One possible future improve-
ment is to approximate the full radial and transverse wavefield by
allowing a change of the incident radial waveform due to the anisotropic
structure as well. This requires the estimation of the sensitivity kernels
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in an adjoint approach and would allow for the use of waveforms instead
of splitting intensities. Previous studies have shown that waveforms
contain additional information about vertical structure not contained in
splitting intensities, which allow vertical resolution only by the overlap
of the sensitivity kernels (Riimpker et al. 2023). Another potential
strategy is to incorporate additional, complementary data sources such
as splitting of S-phases from local earthquakes (e.g., Abt et al. 2010),
anisotropy of surface waves (e.g., Yuan and Romanowicz, 2010; Wagner
and Long, 2013), or anisotropy-aware receiver function constraints (e.
g., Yuan and Levin, 2014; Luo et al., 2023). Each of these analysis
strategies provides additional information about the vertical distribu-
tion of anisotropy and improves the resolution of the orientation of the
elastic tensor as a function of depth. On another note, while we only
allow for one estimate of robust splitting intensity from our new fre-
quency dependent approach, real waveforms potentially exhibit multi-
ple sets of dominant frequencies. In future applications of this method,
these multiple frequencies can be considered and exploited, making
multiple, frequency-dependent estimates of splitting intensities for each
waveform. This might provide additional information about the sampled
anisotropic structure and enhance the capabilities of the inversion pro-
cedures. More generally, future applications of joint inversions of SKS
splitting data with other types of complementary seismic and geologic
information might allow a more detailed insight into the 3D-distribution
and orientation of seismic anisotropy and the corresponding geo-
dynamic and tectonic implications.
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