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A B S T R A C T   

The tomographic inversion of shear wave splitting data for upper mantle anisotropy has been a longstanding 
challenge. This is due to the ray-based approximation of classical approaches and the near-vertical incidence of 
the core-mantle converted phases such as SKS that are often used. Recent developments include the calculation of 
finite-frequency sensitivity kernels for SKS splitting intensity observations, which allows us to accurately take 
into account the sensitivity to anisotropic structure with depth. A requirement of this tomographic technique is a 
dense station spacing, which results in overlapping sensitivity kernels at depth and allows for the localization of 
anisotropic structure. This is satisfied by a growing number of temporary seismic deployments, which motivates 
the desire to image anisotropic complexities with depth. Here, we introduce and make available a toolbox for the 
MATLAB environment that facilitates the application of finite-frequency splitting intensity tomography to dense 
seismic arrays. Our implementation includes several key features, including: 1) A forward calculation of splitting 
intensities and sensitivity kernels for a complex anisotropic model space. 2) Consideration of the dominant 
period of the wave, allowing for multiple-frequency analysis, as well as the incoming wave’s non-vertical inci
dence. 3) The inversion can be based on a classical gradient descent, on a form of the conjugate gradient method 
known as the BFGS algorithm, or on a gradient-informed stochastic reversible jump algorithm, allowing for a 
data-driven parametrization of the model space. 4) Importing splitting intensity measurements from waveforms 
processed in SplitRacer allows for fast pre-processing of large data sets due to its fully automatic design. To 
illustrate our method, we present both synthetic tests and an application to real data. We apply our inversion 
procedure to data from the Swath-D network, which densely covers the transition of the Central to the Eastern 
Alps. Previous studies showed evidence for an abrupt lateral change of layered seismic anisotropy that had been 
attributed to an opening for channeled asthenospheric flow. Using an SKS splitting intensity tomography 
approach, we can confirm previous inferences while providing additional constraints on the distribution of 
anisotropy laterally and with depth.   

1. Introduction 

The operation of plate tectonics at the Earth’s surface and the cor
responding deformation at plate boundaries are closely related to the 
deformation and flow in the lithospheric and asthenospheric upper 
mantle (e.g., Long and Becker, 2010). Due to the causative link between 
deformation and seismic anisotropy, observations of anisotropy provide 
unique insights into such deformation processes at depth (Savage, 
1999). In the upper mantle, intrinsically anisotropic minerals like 
olivine align due to shear, resulting in a lattice preferred orientation 
(LPO); the resulting anisotropy can be directly linked to flow in the 
mantle (e.g., Karato et al. 2008; Skemer and Hansen, 2016). At more 

shallow levels, structures such as aligned cracks, isotropic layers, or fluid 
filled pockets can result in anisotropy (Christensen, 1966; Nur and 
Simmons, 1969; Nur, 1971; Crampin, 1987; Yousef and Angus, 2016; 
Backus, 1962; Savage, 1999). Such apparent anisotropy is often referred 
to as shape preferred orientation (SPO). Anisotropy has several effects 
on the seismic wavefield. It is characterized by a directional dependence 
of the seismic P- and S-wave velocities (Silver, 1996; Savage, 1999). In 
particular, S-waves propagate with different velocities depending on 
their polarization direction. This results in shear wave splitting, in which 
two quasi-S-phases polarized roughly perpendicular to each other travel 
with different wave speeds. The polarization of the fast propagating 
phase corresponds to the fast splitting direction, and the slow phase 
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characterizes the corresponding slow direction (Silver and Chan, 1991). 
The delay time between the fast and slow phase is related to the strength 
of the anisotropic medium and the distance the phases travelled through 
it. 

Shear wave splitting can be measured with the rotation correlation 
(Bowman and Ando, 1987) or the energy minimization (Silver and Chan, 
1991) techniques, which describe the splitting using the fast direction, 
ϕ, and the delay time, δt. These splitting parameters allow for a general 
interpretation of the anisotropy that causes the splitting, often assuming 
a single homogeneous anisotropic layer. The measured fast polarization 
typically corresponds to the fast axis orientation of the anisotropy and 
the delay time scales with the strength and thickness of the anisotropic 
layer. The trade-off between strength and thickness is complete and 
cannot be resolved with classical techniques. If splitting is measured 
over a range of backazimuths, the backazimuthal variations in apparent 
splitting parameters (Silver and Savage, 1994) can be used to resolve 
multiple anisotropic layers (typically two). The depth and thickness of 
anisotropic layers can only be estimated qualitatively from Fresnel-zone 
calculations (Alsina and Snieder, 1995; Rümpker and Ryberg, 2000) or 
through a spatial coherency approach (Gao and Liu, 2012). 

Other strategies allow for the inversion for a tomographic image of 
the anisotropic structure of the subsurface. The most advanced tech
nique developed in the last decade is full-waveform inversion, which 
uses the adjoint character of the wave equation to calculate sensitivities 
of the waveform shape to model parameters in a 2D or 3D model volume 
(e.g., Tarantola, 1987; Tromp et al., 2005; Fichtner and Trampert, 2011; 
Zhu et al., 2021). Sensitivity kernels calculated from the adjoint 
methods can be used iteratively to invert for isotropic as well as aniso
tropic parameters. However, this technique requires large computa
tional resources, which can limit the number of events and the frequency 
range used in the inversion. 

Another approach involves finite-frequency modelling of splitting 
intensity measurements, allowing for an analytic solution of the sensi
tivity kernels (e.g., Favier and Chevrot, 2003; Chevrot, 2006; Long et al. 
2008; Mondal and Long, 2019). The splitting intensity (SI) is a single 
value that expresses the strength of the splitting effect on an individual 
waveform (Chevrot, 2000). While a single splitting intensity measure
ment does not allow a direct inference of the anisotropic geometry, 
multiple measurements can be used to characterize anisotropy in a 
manner similar to the more classical rotation correlation or energy 
minimization methods. The calculation of finite-frequency sensitivity 
kernels for SI observations allows us to take into account the laterally 
broadened sensitivity for the anisotropic structure with depth (Favier 
and Chevrot, 2003; Long et al., 2008; Sieminski et al., 2009). Due to the 
near-vertical incidence of core-mantle converted phases, one require
ment of their use in tomographic techniques is a dense station spacing, 
which results in overlapping sensitivity kernels at depth. This is satisfied 
by a growing number of temporary deployments of seismic broadband 
sensors (e.g., Monteiller and Chevrot, 2011; Lin et al., 2014; Mondal and 
Long, 2020; Huang and Chevrot, 2021). 

Here, we introduce a toolbox for the MATLAB environment which 
facilitates the application of finite-frequency splitting intensity tomog
raphy to dense seismic arrays, building on the framework developed by 
Mondal and Long (2019). We carry out the forward calculation of 
splitting intensities and sensitivity kernels for a complex anisotropic 
model space. This is based on the Born approximation for an isotropic 
background model disturbed by arbitrarily oriented anisotropy with 
hexagonal symmetry. The code takes the dominant period into consid
eration, allowing for multiple-frequency analysis, and allows for 
non-vertical incidence of the incoming wave. Depending on the 
complexity of the problem, the user can choose to apply the inversion 
based on a classical gradient descent approach, a gradient descent taking 
into account an approximation of the Hessian matrix, or a 
gradient-informed stochastic inversion which includes a reversible jump 
algorithm, allowing for a data-driven parametrization of the model 
space. The code also includes the option to import splitting intensities 

from waveforms processed in SplitRacer, allowing for the fast download 
and pre-processing of large data sets due to its fully automatic design 
(Link et al. 2022). 

We illustrate the strengths and weaknesses of the different tech
niques on synthetic data sets, considering models that include the 
variation of anisotropic parameters laterally and with depth. To show
case the applicability of the technique, we apply the gradient descent 
method including the Hessian approximation to the Swath-D dense 
seismic network (Heit et al. 2017), a temporary broadband seismic in
stallment in the transition from the Central to the Eastern Alps. Previous 
studies have shown that this area is affected by complex lateral and 
vertical variation of anisotropy (Link and Rümpker 2021; Qorbani et al. 
2015), providing an excellent test data set for our tomographic 
approach. 

2. Method 

2.1. Forward problem and sensitivity kernels 

Here, we describe the theoretical and practical underpinnings of our 
approach, which follows closely upon previous work (Chevrot, 2006; 
Long et al. 2008), particularly the framework proposed by Mondal and 
Long (2019). In particular, we extend the framework of Mondal and 
Long (2019) by including the near- and mid-field terms of the Green’s 
functions, considering more realistic depth dependent contributions of 
the anisotropic structure to the calculated splitting intensities (Favier 
et al. 2004). While considering the previous formulation for the upper 
mantle anisotropy using an arbitrarily oriented effective hexagonal 
representation of upper mantle olivine LPO, we additionally consider 
the formulation defining the hexagonal anisotropic tensor based on the 
anisotropic perturbation of isotropic velocities (Farra et al. 1991). Due 
to the lack of frequency-dependent splitting intensity measurements, a 
variation of the dominant frequency of the incident wavelet has not been 
considered previously. Here, we explicitly point out the significance of 
the change in shape of the sensitivity kernels with frequency and 
introduce it as important event parameter in our formulation. 

For any tomographic inversion, a forward problem must be formu
lated first, describing the relationship of the spatially distributed model 
parameters and the data. Here, we focus on shear wave splitting 
resulting from an interaction of an incident shear wave with an aniso
tropic medium. The radial and transverse components of an initially 
radially polarized split shear wave can be described as 

ur(t) = w
(

t +
δt
2

)
cos2ϕ + w

(
t −

δt
2

)
sin2ϕ,

ut(t) = −
1
2

[
w

(
t +

δt
2

)
− w

(
t −

δt
2

) ]
sin(2ϕ), (1)  

where w(t) is the initial waveform of the incoming shear wave before 
entering the anisotropic medium, δt is the delay time between the fast 
and slow phases after the propagation through an anisotropic medium 
and ϕ is the fast axis direction (Silver and Chan, 1991). For small delay 
times compared to the dominant period (T/Δt ≥ 5, see Rümpker and 
Silver, 1998), the radial waveform resembles the initial waveform, while 
the transverse component is proportional to the time derivative of the 
initial waveform (and with that to the time derivative of the radial 
component), 

ur(t) ≅ w(t),

ut(t) ≅ −
1
2
ẇ(t)sin(2ϕ), (2)  

where ẇ(t) describes the time derivative of the initial waveform, which 
can be approximated as the time derivative of the radial component (see 
also Chevrot, 2000). As introduced by Chevrot (2006), the splitting in
tensity can be constructed by projecting the transverse component on 
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the derivative of the radial component, which leads to 

S = 2
Re

∫
iω ut(ω) w(ω) dω

∫
ω2 |w(ω) |

2 dω
. (3)  

where we introduce ur(ω) and ut(ω) in frequency domain using the 
Fourier transform with ω as frequency. For the forward calculation of 
the splitting intensity it is therefore necessary to formulate the trans
verse component waveform as a result from an interaction of the inci
dent shear wave with an anisotropic structure. The contribution of an 
anisotropic perturbation of the elastic tensor to the particle motion can 
be described as (Chevrot, 2006; Mondal and Long, 2019) 

δui = −

∫

Ω

(
δcijkl ∂kwl

)
∂iGij dV , (4)  

where δcijkl are the anisotropic perturbations of the elastic tensor and Gij 

is the Green’s function solving the inhomogeneous partial differential 
equations (Aki and Richards, 2002), 

ρ∂2
t Gij = ∂k

(
cijkl ∂lGkl

)
δij δ

(
ri − rS,i

)
δ(t − tS). (5) 

For a homogeneous isotropic medium the perturbed wave field in Eq. 
(4) can be written as (Aki and Richards, 2002; Chevrot, 2006) 

δun =

∫

Ω

[
1

ω2

15pnpppq − 3pn δpq − 3ppδnq − 3pqδnp

4πρr4 Mpqe−iωr
β

−
1
iω

15pnpppq − 3pn δpq − 3ppδnq − 3pqδnp

4πρβr3 Mpqe−iωr
β

−
6pnpppq − pn δpq − ppδnq − 2pqδnp

4πρβ2r2
Mpqe−iωr

β

− iω pnpp − δnp

4πρβ3r
Mpqe−iωr

β

]

dV,

(6)  

where pn is the unit slowness vector of the outgoing wave, δpq is the 
Kronecker delta, β is the isotropic reference shear velocity and Mpq is the 
moment tensor. This can be constructed from the perturbed elasticity 
and strain tensor (Chevrot, 2006) 

Mpq =
iω
β

M̃pqw0eiωT , (7)  

with 

M̃pq = 2ρα2ϵ
(
p′

ksk
)
(glsl)

(
spsq − δpq

)

+ ρα2δ
(
p′

ksk
)
(glsl)

(
δpq − 2spsq

)

+ 2ρβ2γ
[
2

(
p′

ksk
)
(glsl)δpq − (gksk)

(
p′

psq + spp′
q

)
−

(
p′

ksk
)(

gpsq + spgq
) ]

,

(8)  

where sp is the orientation of the symmetry axis of the anisotropic tensor 
and p′

p, gp are the slowness unit vector and the polarization vector of the 
incoming wave, respectively. This assumes a transverse isotropic me
dium formulated using the dimensionless Thomsen parameters (Mensch 
and Rasolofosaon, 1997) 

ϵ =
(C11 − C33)

2ρα2 ,

γ =
C66 − C44

2ρβ2 ,

δ =
C13 − C33 + 2C44

ρα2 , (9)  

where we use the Voigt notation for the elastic tensor. This allows the 
definition of the elastic constants independent of the orientation relative 
to the coordinate system. This formulation can be used for any trans

verse isotropic material. However, minerals considered to produce 
anisotropy in the mantle, such as olivine, have mostly orthorhombic 
symmetry, and require a form of angular averaging (Mondal and Long, 
2019) to be approximated with hexagonal symmetry. The Thomsen 
parameters can then be replaced by the averaged single crystal or 
aggregate parameters, while the strength of anisotropy can be expressed 
as the fraction parameter χ of crystal alignment (Mondal and Long, 
2019) 

Cij = χCij,single + (1 − χ)Cij,Isotropic, (10)  

which uses the separation of the elastic tensor into isotropic and hex
agonal parts (Browaeys and Chevrot, 2004). There is also the possibility 
to describe the elastic constants in terms of anisotropic velocity per
turbations to the isotropic velocities (Farra et al. 1991) 

A = ρvP

(
1 −

a
2

)2
, C = ρvP

(
1 +

a
2

)2
,

L = ρvS

(
1 +

a
2

)2
, N = ρvS

(
1 −

a
2

)2
,

F = μ(A − 2L), μ = 1.03, (11)  

where ρ denotes the density, vP is the P-wave velocity, and vS is the S- 
wave velocity in the medium. For simplification, the anisotropy for the 
P-wave and the S-wave propagation is assumed to be equal and 
described by the variable a, which is the ratio of the difference between 
the maximum and minimum anisotropic velocities divided by its 
average, 

a =
v1 − v2

v
. (12) 

We make this simplification because shear wave splitting is not 
sensitive to differences in P- and S-wave anisotropic fractions. The 
constants (A, C, L, N, F) fully describe the elastic tensor for hexagonal 
symmetry as described by Love (1920). To avoid the simplifications 
involved in this approximation, more realistic elastic tensors based on 
laboratory experiments and/or field observations may be used, as 
mentioned previously. Instead of inverting for the Thomsen parameters 
in addition to the orientation of the elastic tensor, which would require 
the inversion for 5 parameters, we define a single crystal estimate for the 
elastic tensor and invert for the fraction paramter χ to describe the 
strength of the anisotropic medium, following Mondal and Long (2019). 
Together with the angles (ϕ, θ) describing the azimuth and dip, respec
tively, of the symmetry axis, this reduces the inversion to only 3 
parameters. 

Using the Eqs. (3), (6)−(9) the splitting intensity can be formulated 
as 

S =

∫

Ω
Kχ(θ, ϕ) χ d3r, (13)  

where Kχ(θ, ϕ) is equivalent to the sensitivity kernel with respect to the 
fraction parameter χ. The kernel can be simply expressed by the deriv
ative of the observable for the model parameter of interest 

∂S
∂mi

= Kmi , (14)  

with the parameter vector m = (χ, ϕ, θ). Fig. 1 shows example sensitivity 
kernels in a homogeneous anisotropic model calculated with this 
formulation. We use the first derivative of a Gaussian as an incident 
wave with periods of 8 and 16 s. The broadening of the kernels with an 
increase of the dominant period of the incident wave is evident, as well 
as asymmetry due to non-vertical incidence, which can be considered in 
the forward calculation. The kernels of strength of anisotropy and fast 
axis orientation are nearly symmetric, while the dip of the symmetry 
axis shows strong asymmetric behavior, which is a result of the non- 
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vertical incidence in a medium with a dipping symmetry axis. 

2.2. Inversion procedures 

In the inversion for the anisotropic parameters m = (χ, ϕ, θ), we wish 
to minimize the difference between the forward calculated Sm and the 
observed splitting intensities, Sobs. This can be formulated as minimizing 
their L2-norm, resulting in the cost function (e.g., Tarantola, 1987) 

Х(m) =
1
2
‖Sm(m) − Sobs ‖

2
2. (15) 

In practice, the inverse problem is usually ill-posed and under
determined. Usually, a smooth result is preferred in tomographic im
aging, which can be achieved by a Tikhonov regularization (e.g., 
Fernández-Martínez et al., 2014) in the form of 

Х(m) =
1
2
‖Sm(m) − Sobs ‖

2
2 +

1
2
‖Γm‖

2
2, (16)  

where we use the second order finite difference operator L2(m) = ∂2m
∂xi∂xj 

as 
a smoothness constraint (Chevrot, 2006) in combination with the reg
ularization factor α for the Tikhonov-matrix, Γ, 

Х(m) =
1
2
‖Sm(m) − Sobs ‖

2
2 +

1
2
‖αL2(m) ‖

2
2. (17) 

As we use angular model parameters, it is necessary to reformulate 
our model for the smoothing constraint to avoid penalizing neighboring 
model parameters at the start and end of an angular cycle (e.g., ϕi−1,j =

359◦ and ϕi,j = 1◦) as 

m′ =

⎛

⎝
χsin(ϕ)cos(θ)

χcos(ϕ)sin(θ)

χsin(θ)

⎞

⎠. (18) 

The inversion of the cost function for the model parameters can be 
performed using different strategies. Here, we choose to implement and 

compare three algorithms:  

1) The gradient descent (GD) is the simplest algorithm, following the 
direction of the gradient of the cost function, ∂χ(m)

∂m .  
2) The BFGS-algorithm is a form of the conjugate gradient method, 

which adds information based on approximations of the Hessian 
matrix in each iteration to introduce additional information on the 
sensitivity of the model parameters to changes in the cost function.  

3) A gradient-based stochastic inversion using a reversible jump Monte 
Carlo Markov chain (rj-McMC) is a fast-converging stochastic algo
rithm that allows for a data adaptive parametrization of the model 
space, which becomes significantly more efficient for large models 
compared to standard stochastic inversion methods. 

2.2.1. The gradient descent method 
In the gradient descent method, we aim to optimize the cost function 

iteratively, beginning the search from a starting model m0. As direction 
for the improvement of the data fit, we take the negative gradient of the 
cost function Δm′ = −∂X

∂m|mo 
(see also Boyd and Vandenberghe, 2004). We 

perform a line-search for the step-size, which avoids an over-shooting of 
the step over the improvement of the cost function. A new model at 
iteration n +1 is therefore constructed as mn+1 = mn − k ∂X

∂m|mn
, where k is 

the current step-size found in the line-search. 
The model variables are not fully independent; therefore, we intro

duce two additional strategies in the inversion. We alternate the search 
for model improvement in fast axis direction, strength of anisotropy and 
dip of the symmetry axis (if the latter is considered in the inversion; in 
some applications, the symmetry axis is assumed to be horizontal). The 
inversion depends on the starting model. While we generally start with 
an effectively isotropic model (homogeneous anisotropy of 0.001), we 
choose an arbitrary fast axis direction, producing several starting models 
with a homogeneous orientation for the entire model area. To 

Fig. 1. 2D cut through the y plane at y = 0 km of sensitivity kernels for an incident plane wave of period 8 s, incidence angle 15◦ and backazimuth of 90◦ for the (a) 
strength parameter χ, (b) fast axis orientation with respect to north ϕ, and (c) plunge of the symmetry axis from horizontal θ. The model is chosen to be homogenously 
anisotropic with χ = 0.1, 45◦ plunge and 40◦ fast axis. (d-f) Same as (a-c) but for an incident plane wave of period 16 s. 
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investigate the influence of the starting model to the inversion and to 
identify consistent models required by the data, we perform the analysis 
for a range of different starting models, each with an arbitrary choice of 
the fast axis direction. The second strategy that we introduce in the 
inversion is to update the model only in areas with high sensitivity. This 
is implemented by identifying the area of the gradient with at least 50% 
of the maximum absolute sensitivity at each iteration and setting the 
remaining gradient to zero. This confines the changes of the model in 
space and reduces leakage of the anisotropic areas. 

The distribution and quality of the data also potentially affect the 
inversion procedure. To ameliorate this effect, we use a subset of 
randomly selected events in each inversion. This procedure limits the 
influence of outlier traces with high noise levels, which otherwise might 
dominate the inversion procedure. The final model is estimated from the 
average of the model parameters for the inversion runs with the best 
data fit (we choose the best two third of the runs in this study). This 
allows us to also estimate the uncertainty of the model parameters based 
on their standard deviation after the model runs. At the same time, 
assuming that the inversion converges to the real model, the residuals of 
the observed data and the forward modelled splitting intensities based 
on the recovered model represent the uncertainty or error of the data. 

2.2.2. The BFGS algorithm 
A more frequently used and sophisticated approach is the BFGS al

gorithm (named after Broyden, 1967, Fletcher and Watson, 1980, 
Goldfarb, 1976, and Shanno, 1978). Here, an approximation of the 
Hessian matrix is introduced to allow a faster convergence while 
maintaining computational efficiency (see also Bonnans et al. 2006). 
The direction of the model step is determined considering the gradient 
and an approximation of the Hessian, Bn, resulting in Δm′ = −∂X

∂m|mn
B−1

n . 
The actual step size is found in a line search similar to the gradient 
descent method, which results in the model update mn+1 =

mn − ∂X
∂m|mn

B−1
n k. While for the first iteration an initial guess for the 

Hessian matrix is used (for example, the identity matrix), the estimate is 
improved in each iteration according to the formula 

Bn+1 = Bn −
syT Bn + BnysT

yT s
+

[

1 +
yT Bny

yT s

]
ssT

yT s
. (19)  

with s = sn = mn+1 −mn and y = yn = ∂X
∂m|n+1 − ∂X

∂m|n (Bonnans et al. 2006). 
This new estimate for the Hessian matrix is then used in the next iter
ation for updating the step in the model towards improvement of the 
data fit. As for the gradient descent method, we introduce different 
starting models with an effective isotropic background and an arbitrarily 
chosen fast axis direction. As for the GD-algorithm, we choose to run 
each inversion with a different randomly selected subset of the data. The 
final model and the uncertainty of the model parameters are estimated 
from the mean and standard deviation of the model runs with the best fit 
to the data (from the best two thirds of the model runs in this study). 

2.2.3. Formulation of the gradient-informed rj-McMC algorithm 
For the reversible jump Markov chain Monte Carlo algorithm, we 

mostly follow the formulation by Bodin and Sambridge (2009), who 
describe this approach in mathematical detail. The algorithm estimates 
the posterior of an open set of model parameters using a random walk 
through the model space, where the number of cells in space is usually 
fixed. The model space itself is divided in Voronoi cells. During the 
random walk, one of these cells is selected and its model parameters are 
altered. The model fit of the new step is determined by calculating the 
likelihood and is then compared to the previous model fit (previous 
likelihood). Similar to the Metropolis-Hastings algorithm, an acceptance 
level is introduced with some random variability, which leads to the 
acceptance of the new model or its rejection. If the model is accepted, 
the model is taken as starting model for the next step; if it is rejected, the 
previous model is kept as starting model. In addition to the random 
walk, in which model parameters are altered in the current set of locally 

fixed Voronoi cells, a three-step strategy is introduced in the reversible 
jump algorithm: an additional cell is added to the set of Voronoi cells, a 
cell is eliminated, or a cell is shifted in space. To allow faster conver
gence, we additionally use the gradient during the random walk to 
determine the direction in which the model parameters of the randomly 
chosen Voronoi cell can be improved. This greatly diminishes the 
number of rejected steps and improves convergence. We follow the 
strategy of a Metropolis-adjusted Langevin algorithm (MALA; Roberts 
and Tweedie, 1996), in which the samples of the Markov chain, Mi, are 
constructed based on Langevin diffusion as 

Mn+1 = Mn −
h
2

∇log(π(Mn) ) +
̅̅̅
h

√
ϵn, (20)  

with a step size h > 0 a random draw from a multivariate normal dis
tribution with zero mean, ϵn, and a probability density function, π(Mi), 
that is equivalent, here, to the maximum likelihood using Eq. (17): 

log(π(Mi) )∝

(

1
N

∑
j

(
Sm,j(Mi) − Sobs,j

)2
+ α

K

∑
i

(
L2,i(Mn)

)2

)

2σ2 , (21)  

where N is the number of measurements, K is the number of model 
parameters, and σ is an estimate for the average data uncertainty. This 
formulation allows us to include a regularization in the rj-McMC pro
cedure (Vidal et al. 2020). While this regularization is optional for the 
user of the toolbox, we emphasize that the use of regularization ensures 
the smoothness of the likelihood function, which is a fundamental 
requirement for the convergence of this algorithm. Each iteration in 
MALA is checked against a Metropolis-Hastings acceptance criterion, 
which is equivalent to the acceptance criterion of the rj-McMC step used 
by Bodin and Sambridge (2009). 

We perform multiple Markov chain calculations with different 
starting models by randomly selecting different geometries of the initial 
Voronoi cells. The priors in the MALA formulation are characterized by 
the gradient. However, to ensure that the model parameters remain 
within realistic range, we alter the prior distribution by defining 
boundaries for the model parameters. This is usually introduced by a 
uniform distribution with a value of 1 within and 0 outside of the given 
boundaries (0 to 1 for the anisotropic fraction, 0 to 180◦ for the fast axis, 
and −60◦ to 60◦ for the dip of the symmetry axis). As with the previously 
introduced algorithms, we start with an effectively isotropic medium 
with randomly selected initial fast axis orientation (with homogeneous 
orientation over the model space) for the different Markov chains. As for 
the other algorithms, we choose to run each inversion with a different 
randomly selected subset of the data. Finally, we construct a common 
posterior distribution by randomly selecting subsets (the number of 
Voronoi cells is chosen by the user of the toolbox) of the individual 
posterior distributions of the individual chains and interpolating them 
using a distance weighted algorithm (Shepard, 1968). Here we draw 
only from one third of the samples with the highest likelihood (corre
sponding to the best data fit). That leaves a variable amount of burn-in 
steps of the Markov chains, which are usually low in likelihood, and 
discards non-convergent chains. The interpolation produces a relatively 
smooth model, which is less affected by the appearance and sharp dis
continuities of the Voronoi cells. However, the distance-weighted al
gorithm allows us to resolve sharp boundaries where it is required by the 
data, expressed by areas of high density of Voronoi cells. The final model 
is estimated from the mean of the different subsets and the uncertainty is 
estimated from the standard deviation. 

2.3. Frequency dependent splitting intensity measurements 

The lateral and vertical sensitivity of the observables depends 
strongly on the frequency of the incident wave (see Fig. 1 and Rümpker 
and Ryberg, 2000 for shear wave splitting more generally). However, 
the splitting intensity is mostly estimated as a characteristic value for a 
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measured waveform over a broad frequency band, as 

S = 2
Re

∫

Ωiω vt(ω) vr(ω) dω
∫

Ωω2 |vr(ω) |
2 dω

, (22)  

where vr and vt denote the measured radial and transverse component of 
an observed shear-phase and both the numerator and the denominator 
are integrated over the entire frequency band. However, in practice the 
waveforms vr and vt are initially filtered to suppress noise and (ideally) 
increase the clarity of the signal. Here, we suggest reformulating the 
definition of the splitting intensity to explicitly incorporate this idea, 
while allowing a determination of the dominant frequency and a stable 
estimate of splitting intensity at the same time, with 

S(ω′) = 2
Re

∫ ω′+dω
ω′−dω iω vt(ω) vr(ω) dω

∫ ω′+dω
ω′−dω ω2 |vr(ω) |

2 dω
, (23)  

where ω′ is the center frequency, and dω defines the width of the fre
quency band. In our test, we use a frequency dependent band defined by 
a constant number of Fourier coefficients. We select the number of co
efficients from a reference band corresponding to the periods of 6 s and 
10 s. This allows us to calculate a frequency dependent splitting in
tensity equivalent to a moving band pass filter of the signal. 

The window used to extract the phase of interest from the data 
stream potentially affects the estimated frequency content of the phase 
(e.g., Teanby et al., 2004; Savage et al., 2010; Wüstefeld et al., 2010; Liu 
and Gao, 2013). We therefore randomly vary the start and end time of 

the window, estimating the dominant frequency of the radial component 
in this window corresponding to its maximum energy in frequency 
domain and estimating the corresponding splitting intensity using the 
dominant frequency as the center frequency. From the different win
dows, we construct a probability density function for the 
frequency-dependent splitting intensity. The maximum of the proba
bility density function (PDF) is considered to provide the most robust 
estimate of the splitting intensity S0, and its corresponding dominant 
frequency of the wave. In Fig. 2, we illustrate the difference between 
splitting intensity measurements derived by the classical formulation 
(Eq. (20), see Fig. 2b) and those derived from the dominant frequency 
band using our new formulation (Eq. (21), see Fig. 2d). We applied the 
analysis to a synthetically split waveform, starting from the first deriv
ative of a Gaussian using splitting parameters of Δt = 1 s and φ = 45◦

(Fig. 2a) and adding low pass filtered Gaussian noise with a corner 
period of 2 s (Fig. 2b). We varied the window for phase selection 500 
times (semi-transparent red lines in Fig. 2a) and applied both the clas
sical and frequency dependent analyses. For both methods, we calcu
lated a probability density function for splitting intensity and dominant 
period (shown with a color-scaled 2D distribution in Fig. 2b, c). We find 
that the classical method systematically under-estimates the splitting 
intensity (Fig. 2b), which has also been suggested in earlier studies 
(Monteiller and Chevrot, 2010; Hein et al., 2021). However, focusing the 
formulation of the splitting intensity on the dominant frequency band 
reduces the influence of the noise and better recovers the expected 
splitting intensity for the input waveform. 

We test the applicability of this method to a real data example (Fig. 3; 

Fig. 2. (a) Synthetically split waveform with a nominal splitting intensity of 1.0 for an initial waveform defined by the first derivative of a gaussian with a dominant 
frequency of 10 s. Blue indicates the radial component, red the transverse component and yellow the time derivative of the radial component multiplied by the 
splitting intensity. (b) Same waveform as in (a) but with added Gaussian noise of relative amplitude 0.4 to the radial component. The red lines indicate start and end 
times of the time windows for which the calculation of the splitting intensity has been performed. (c; d) Probability density function of the frequency dependent 
splitting intensity for the classical formulation of the splitting intensity (c) and the frequency dependent splitting intensity (d). The mean of the distribution for the 
frequency dependent splitting intensity is marked by a white star, providing the estimate of the robust splitting intensity and corresponding dominant period for the 
waveform shown in (b). The splitting intensity and period of the noise free waveform are shown as a red circle and the mean of the distribution for the classical 
formulation of the splitting intensity is marked by a green triangle. 
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station D142 of the Swath-D network; Heit et al. 2017). We find a 
splitting intensity of 0.89 for the classical method and 1.43 for the fre
quency dependent measurement and identify the same dominant fre
quency of 19 s. Equivalent to the synthetic example, this example from 
real data indicates that the classical method for a broad frequency band 
underestimates the splitting intensity. We note that selective band-pass 
filtering with a narrow frequency band prior to the classical estimate of 
the splitting intensity leads to the same result as the method we propose 
here. However, the new method allows a data-adaptive approach that 
identifies the dominant frequency and estimates the corresponding 
robust splitting intensity automatically, without the need of extensive 
data evaluation, as one key element of our approach is the re-evaluation 
over multiple windows of different length and position. 

3. Test of the inversion procedures 

3.1. Synthetic test setup 

We present synthetic tests that are designed to illustrate the strengths 
and weaknesses of the different inversion procedures. We calculate 
synthetic splitting intensities for two different input models (model I, II), 
described further below. For model I, we introduce one version with a 
variation in the dip of the symmetry axis and one without (models Ib and 
Ia, respectively). All models vary in two dimensions, while the third 
dimension simply extends the anisotropic properties from the 2D plane, 
representing a 2.5D model. This reflects the basic assumptions for an 
analysis of a seismic profile, which is currently the most common set-up 

for a possible application of the presented algorithms, considering the 
required density of station spacing (e.g., Mondal and Long, 2019, 2020). 
All models consider a hypothetical upper mantle between 40 and 
410 km depth and extend laterally from − 250 to 250 km in x-direction 
as the variable model dimension and − 250 to 250 km in y-direction, in 
which the parameters are kept constant. We calculate splitting in
tensities for 2000 station-event pairs with randomly chosen period 
varying between 4 and 20 s, randomly selected backazimuth, and 
randomly chosen ray parameter corresponding to SKS phases at a dis
tance range between 89◦ and 140◦. We assume an incident plane wave, 
w(t), with a waveform based on the first derivative of a Gaussian, which 
allows to define a dominant frequency. We assume a simplified (linearly 
approximated) 1D shear wave velocity model based on ak135 for the 
calculations (Kennett et al. 1995). We estimate wave propagation based 
on Snell’s law within the model space based on the incidence defined by 
the ray parameter and azimuth of an event for the radial wave without 
any effect on its absolute amplitude. The transverse component is esti
mated from the scattering introduced by the anisotropic medium as 
described in Section 2.1. The hypothetical stations are located at the 
surface (z = 0 km) along the x-direction with 5 km spacing. The model 
dimension is extended in the x-dimension by 250 km in both directions, 
to allow the calculation of all relevant parts of the sensitivity kernels 
contributing to the start and end of the hypothetical profile. This area is 
denoted as a border area, while the remaining area is denoted as the 
model space. The background isotropic velocity is taken from PREM; we 
note, however, that the isotropic velocities have no considerable impact 
on the splitting intensities. 

Fig. 3. (a) SKS-waveform measured at station D142 of the network ZS (Heit et al. 2017). Blue indicates the radial component, red the transverse component, and the 
yellow dashed line shows the time derivative of the radial component with a pre-factor of − 0.5. The red lines indicate start and end times of the time windows for 
which the calculation of the splitting intensity has been performed. (b) Red indicates the Transverse component waveform as in (a). The dashed yellow line and the 
dashed purple line indicate the time derivative of the radial component scaled by the splitting intensity for the frequency dependent and the classical analysis 
method, respectively. (c; d) Probability density function of the frequency dependent splitting intensity for the classical formulation of the splitting intensity (c) and 
the frequency dependent splitting intensity (d). The mean of the distribution for the frequency dependent splitting intensity is marked by a white star providing the 
estimate of the robust splitting intensity and corresponding dominant period for the recovered waveform shown in (b). The result for the classical formulation of the 
splitting intensity is marked by a green triangle corresponding to the maximum of the probability density function in (b). 
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The first model is characterized by 4 equally spaced volumes within 
the model space (Fig. 4a-c), with an anisotropic strength that varies 
between 4% to 2%, while the fast axis orientation varies in a checker
board pattern between 0◦ and 45◦. While for model Ia the dip of the 
symmetry axis is kept at 0◦, for model Ib the dip of the symmetry axis 
varies laterally from 45◦ to − 45◦. Model II is chosen to be more com
plex, with 16 volumes within the model space (Fig. 4d-f). The strength of 
anisotropy varies laterally, alternating between 6% and 4%. Vertically, 
the anisotropic pattern varies in 4 layers. The first and third layers are 
anisotropic, while the second and fourth layers are isotropic. Within the 
anisotropic layer, the fast axis varies in a checkerboard pattern between 
0◦ and 45◦. For all models, we use a grid of 64 by 32 cells in the 
calculations. 

For the gradient-based inversion procedures, we invert from 50 

different starting models using a subset of 1000 observations in each run 
to test the statistical stability of the results. We expect no direct effect of 
the reduction of the observations to a subset of the synthetic data; our 
aim here is to limit the influence of noise in the data on the inversion in 
real data applications. However, we chose this procedure for consistency 
with the real data application in the following section. The GD-method 
was run without a convergence criterion for 50 iterations. In the BFGS- 
method, we use the infinity norm of the gradient, max

⃒
⃒∂X
∂m|mo

⃒
⃒ = 1e−6, as a 

convergence criterion and stop the inversion either when convergence is 
achieved or when the number of iterations reach 50 steps. For the rj- 
McMC inversion, we run 10 chains with different starting models for 
1500 iterations, also using a subset of 1000 observations in each run. We 
assume an average data uncertainty of σ = 0.2 for the synthetic splitting 
intensities. The final model is constructed by drawing random subsets of 

Fig. 4. Strength of anisotropy (a, d), fast axis direction (b, e) and plunge of the symmetry axis (c, f) from top to bottom for input models defined by a checkerboard 
model with (a, b) 4 cells (model I) and (d-e) 16 cells (model II). The plunging axis for model Ia and II has been set to 0 (f), while model Ib is defined by a variation in 
the plunging axis (c). 
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1024 Voronoi cells from the best third of Markov chains with highest 
likelihood. For all methods, a small smoothness parameter of 0.075 is 
chosen with the aim of avoiding models with extreme changes of sym
metry axis direction. This choice is made because neighboring cells with 
close to 90◦ offset in symmetry axis orientation would have the effect of 
destructive interference for the splitting intensity; the method has no 
direct sensitivity to this configuration. With our choice of small 
smoothing, we try to avoid these extreme offsets between neighboring 
cells, while still allowing to resolve relatively sharp changes in the 
anisotropic parameters. 

3.2. Synthetic test results 

Results of our synthetic test runs are shown in Figs. 5–7. In our first 
application (Fig. 5), we only search for the strength of anisotropy and 
fast axis direction, assuming the fast axis to be horizontal. The appli
cation of all three techniques to model Ia shows that the model is well 
recovered independent of the technique. In particular, the sharp change 
of model parameters at 0 km is identified by the gradient based 
methods. The rj-McMC method provides less strong constraints on this 
lateral transition, which might be result of the interpolation method 

used for the model reconstruction from the posteriors and might get 
better resolved for a longer sampling or a different choice of data un
certainty. However, no methods are capable of resolving the sharp 
transition in the vertical direction of the fast axis orientation between 
the top and bottom layers (Fig. 5b, e, f). While the inversion results do 
approximately match the synthetic models within the model un
certainties (see Fig. S1), this vertical transition appears smooth. This 
smoothness is strongest for the GD-method, slightly less smooth in the 
BFGS-method and closest to the synthetic model in the rj-McMC- 
approach. We identify small but distinct performances in model fit 
among the three algorithms for this example. The BFGS-method shows 
the best fit to the data for our choice of convergence criteria, while the 
GD-method and rj-McMC-method show broader width of the residual 
distribution and larger RMS. However, the initial model parameters are 
all resolved within the uncertainty of the model parameters (Fig. S1). 

When applying the techniques to model II (Fig. 6), the challenges 
with vertical resolution become even more apparent. While the fast axis 
direction is recovered well by all techniques, the strength of anisotropy 
is significantly obscured. The first layer is well recovered, indicating the 
strong sensitivity of the splitting tomography at shallower depth (in this 
case, <100 km). However, while all techniques find a decrease of 

Fig. 5. Strength of anisotropy (a, d, g), fast axis direction (b, e, h) and data fit (c, f, i) from top to bottom for an inversion of model Ia based on: (a, b, c) gradient 
descent; (d, e, f) BFGS algorithm; (g, h, i) stochastic gradient descent with rj-McMC algorithm. (c, f, i) The orange bars show the distribution of the synthetically 
calculated splitting intensities. The blue bars show the distribution of the residuals after subtracting the forward calculated splitting intensities based on the resulting 
model parameters shown in the column above (a, b, d, e, g, h). 
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anisotropy below the strong anisotropic layer, no technique resolves 
well the first isotropic layer. In particular, the solution derived from the 
rj-McMC algorithm does not reflect the isotropic features in the model. 
In contrast to model Ia, where the synthetic model was within one 
standard deviation of the inversion results of the rj-McMC, the isotropic 
property of the second layer remains unresolved, when considering the 
data uncertainty for model II (see Fig. S2). Qualitatively, in all models 

the alternating nature of stronger and weaker anisotropy is found for the 
third layer, while the strength is strongly underestimated and the 
anisotropy smears to greater depth. The deepest isotropic layer is not 
identified by any of the techniques. The data fit for all models is good, 
although the BFGS-algorithm shows the best performance with the 
inversion parameters that we used in this particular example. 

In the final test of the inversion procedure (Fig. 7), we focus on the 

Fig. 6. Same as Fig. 5, but for an inversion of model II.  

Fig. 7. Strength of anisotropy (a), fast axis direction (b) and plunge of the symmetry axis (c) from left to right for an inversion of model Ib based on the BFGS 
algorithm considering a dip of the symmetry axis in the inversion. 
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BFGS-algorithm in the application to a more complex model, as it rep
resents the best performing approach in the previous tests for our choice 
of the convergence and cut-off criteria. Here, we apply the search for the 
full orientation of the elastic tensor, by considering a dipping symmetry 
axis. This analysis is performed on the synthetic data set of model Ib. 
Fig. 7 shows the result of the BFGS-algorithm for the mean of 50 
inversion runs with different starting models. Unlike the analysis for 
model Ia, the strength of anisotropy and fast axis direction are not as 
well resolved. However, the model volumes showing positive and 
negative dip are identified well. The magnitude is under-estimated at 
shallow levels, but more precisely estimated with growing depth. The 
decrease in resolution of strength and fast axis orientation at shallow 
levels indicate a strong trade-off between the parameters. 

In our synthetic tests, we compared a simple gradient descent (GD), a 
BFGS-approach, and a gradient-informed reversible jump Markov chain 
Monte Carlo approach (rj-McMC) in application to synthetic data. For 
simple models (represented by model I), all three inversion methods 
recover the model well within their uncertainty. The GD and the rj- 
McMC algorithms tend to produce lower data fit with the convergence 
and cut-off criteria we selected for the synthetic tests. While all methods 
resolve the model well in the lateral direction, the depth resolution is 
considerably poorer, as expected in XKS splitting tomography due to the 
nearly vertical incidence of the waves. This results in vertical smearing 
and in a gradual change between different model volumes, although the 
input model has a discontinuous jump (seen particularly well in the 
inversion for model II). Considering the full orientation of the aniso
tropic tensor, including the plunge of the symmetry axis, adds 
complexity that introduces ambiguities in the inversion. While the 
plunge can be well identified, the strength and horizontal orientation are 
less well resolved by the tomography. We note that the magnitude of the 
splitting intensities is significantly lower than for the horizontally ori
ented case, which might explain the poor recovery of the anisotropic 
strength. 

4. Application to the dense Swath-D data set 

The Swath-D-network provides an ideal real data test case for the 
application of splitting intensity tomography. This temporary seismic 
network covers the transition of the Central to the Eastern Alps with 154 
densely spaced broadband stations (Heit et al. 2017; AlpArray Seismic 

Network, 2015; Fig. 8). Previous studies have inferred complex aniso
tropic characteristics for this area, expressed not only by a sharp lateral 
change of splitting parameters at ~13◦E, but also by strong azimuthal 
variation of the parameters in the Eastern Alps, indicating anisotropic 
layering (Qorbani et al. 2015; Link and Rümpker 2021). The classical 
ray-based technique did not allow for a direct resolution of the depth 
which produced the anisotropic pattern. This motivates the application 
of splitting intensity tomography, with the aim of getting at least a 
first-order idea of the depth distribution of the anisotropy in this area 
and possibly insights into its origin. 

We base our analysis here on the same data set as the previous SKS 
splitting study by Link and Rümpker (2021) using the Swath-D network, 
which provides two years of continuous seismic data at 154 stations 
between 2017 and 2019. This data set is accessible from the GEOFON 
archive. We also include data from permanent stations with longitudes 
between 10◦− 14.5◦ and latitudes between 45.5◦− 47.5◦, following Link 
and Rümpker (2021). The data is assembled from the networks BW, CH, 
IV, NI, OE, OX, SI and SL (Fig. 8 and Table S1). Teleseismic events with 
magnitudes above 5.8 and within the distance range from 89 to 140 
degrees were selected. A signal to noise ratio is calculated based on the 
normalized signal energy in a 25-sec window after the expected arrival 
time of the phase and the normalized noise energy in a 20-sec window 
preceding this arrival time. Phases with a signal to noise ratio below 2.5 
are discarded. Splitting intensities are calculated for SKS, SKKS, SKIKS, 
PKS and PKIKS phases with high-quality waveforms based on the 
method described in Section 2.3; this procedure also provides an esti
mate of the dominant period of each core-mantle converted phase. The 
splitting patterns show strong two-dimensional characteristics (Link and 
Rümpker 2021), suggesting that a 2.5D model is appropriate. We 
therefore project the station locations on a profile intersecting the 
network from WSW to ENE (Fig. 8a). We exclude stations at a distance 
larger than 0.5◦ from the profile, which results in a total of 2771 ob
servations used in the analysis. 

Our synthetic tests showed the superior performance of the BFGS- 
algorithm in the comparison to the other two algorithms shown in this 
study. We therefore choose the BFGS-algorithm as basis for our appli
cation of the splitting intensity tomography to a real data set. The model 
is divided in 64 by 32 cells, which corresponds to ~10 km steps in z and 
~5 km in x direction. In general, densifying the grid allows a higher 
accuracy in the calculation of the contributions to the splitting 

Fig. 8. a) Station distribution of the dense Swath-D seismic network (ZS) and permanent stations of national networks in the same region. The background shows the 
geological map compiled by M.R. Handy with units and major lineaments simplified from Schmid et al. (2013, 2008); Handy et al. (2010, 2015, 2019), Bigi et al. 
(1992), Froitzheim et al. (1996) and Bousquet et al. (2012). Selected profile (yellow line) with 50 km markings (gray circles with yellow outlines). This line with 
markers is also shown in Fig. 9 as reference. Stations located within 0.5◦ distance from the profile (black circles) are used in this analysis. b) Azimuthal distribution of 
the event-station pairs used the analysis. Most events arrive from two opposite directions aligned with the strike of the profile, which results in a good overlap of the 
corresponding sensitivity kernels for a successful depth resolution. 
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intensities and sensitivity kernels. However, at the same time larger 
computational resources become necessary. We find that a lateral 
spacing of about 5 km allows sufficient accuracy, while such a low grid 
spacing in depth has less impact on the forward calculation. We there
fore use a less dense spacing of 10 km at depth. We apply the inversion in 
two steps. First, we only consider a horizontal symmetry axis, solving for 
strength of anisotropy and fast axis direction (relative to north). In a 
second step, we use the model found in the first step as initial model and 
re-run the analysis, searching additionally for the dip of the symmetry 
axis. Similar to the previous applications, we use 50 different starting 
models in the first step using an arbitrary orientation of the horizontal 
fast axis, and use for both steps different subsets of the data in the 
inversion for the 50 different runs. This procedure allows us to investi
gate the uncertainties of the data and its impact on the inferred model 
parameters. At the same time, we avoid dominating effects of outliers in 
the data. 

Fig. 9a-d shows the mean result of the 50 inversion runs (based on 
different initial models and event selections as described above) without 

consideration of a dipping symmetry axis. From these inversion results, 
we identify a sharp change of fast axis orientation from around 60◦ in the 
west to about 110◦ in the east (see also Fig. 10 in the discussion). This 
change is found at around 250 km, which coincides with 13◦ longitude. 
A shallow volume with increased anisotropic strength is found in the 
east at depth between 70 and 190 km (see structure A in Fig. 10). West of 
13◦ a fast axis of 60◦ dominates, corresponding to an anisotropic volume 
beneath 100 km depth. An increased level of anisotropic strength ap
pears to dip downwards from the west to larger depth closer to the 
transition in the east, where it reaches the lower boundary of the model 
space (see structure B in Fig. 10). The second step of the inversion 
procedure allows the dip of the symmetry axis to vary as well (see 
Fig. 9e-h). In this second inversion result, the strength of anisotropy and 
fast axis direction remain stable, and we identify a slight dip of the 
symmetry axis, between − 8◦ and + 6◦ from horizontal. The axis dipping 
downward to the east is found in the area west of 13◦ longitude, while an 
axis dipping upward to the southeast is found for the shallow anisotropy 
in the east. Fig. 9(g; h) shows the data fit of the two inversions, which 

Fig. 9. Strength of anisotropy (a, e), fast axis direction (b, f), plunge of the symmetry axis (c, g) and data fit (d, h) from top to bottom for an inversion of the Swath-D 
data set based on the BFGS algorithm. We only consider a horizontal orientation of the symmetry axis in a first inversion procedure (a, b, c, d) and allow for the full 
orientation of the tensor (e, f, g, h) in a second inversion step that is based on the initial findings shown in (a, b, c). The yellow lines in (a, b, c, e, f, g) represent the 
profile line in Fig. 8 with yellow/gray dots at 50 km spacing. 
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reflects the uncertainty based on the measurement error. The standard 
deviation of the first inversion is 0.39 s while it is 0.38 s for the second 
inversion. Allowing the symmetry axis dip to vary results in only a minor 
improvement, which is statistically not significant. 

5. Discussion and summary 

We present a new toolbox for the MATLAB environment that enables 
the tomographic inversion of splitting intensity measurements for 
anisotropy beneath dense seismic networks. The method aims to over
come the limited depth resolution of classical shear-wave splitting 
techniques that results from the ray-based approximation of the nearly 
vertically incident core-mantle converted phases. With the formulation 
of finite-frequency sensitivity kernels, we obtain increased sensitivity at 
depth by accounting for the three-dimensional volume contributing to 
the shear wave splitting observations. The toolbox provides a new 
frequency-dependent estimate of splitting intensities for core-mantle 
converted phases that can be imported from a dataset previously pro
cessed with the SplitRacer software (Reiss and Rümpker 2017; Link et al. 
2022). This estimate of the splitting intensity identifies the dominant 
frequency band of a waveform and allows a more stable measurement 
estimate. The inversion approach is based on the forward calculation of 
splitting intensities and gradients of the cost function. Our sensitivity 
kernel computations allow an analytic formulation (Chevrot, 2006; 
Mondal and Long, 2019), which increases its computational efficiency 
compared to adjoint methods often used for estimating sensitivity ker
nels (e.g., Tarantola, 1987; Tromp et al. 2005; Sieminski et al., 2009). 
The formalism allows us to introduce any effective hexagonal elasticity 
tensor; however, we focus on olivine LPO with the model parameterized 
by the strength of the anisotropic contribution relative to its isotropic 
approximation (Mondal and Long, 2019) and the orientation of the fast 
anisotropic symmetry axis in space. Extending the previous work by 
Mondal & Long (2019), we also allow for the formulation of the aniso
tropic tensor from an anisotropic perturbation of isotropic velocities 
(Farra et al. 1991), which provides directly an expression for strength of 
anisotropy. While Mondal and Long (2019) only considered the far-field 
term and focused on vertically incident plane waves, we allow here for 
non-vertical incidence and include the near- and mid-field terms (similar 
to Chevrot, 2006), resulting in higher precision of the forward calcula
tion. To stabilize the inversion, we introduce the Laplacian operator as 
regularization in the cost function to reduce the roughness of the model 
(Chevrot, 2006). A new feature in this study compared to previous work 
on splitting intensity tomography is the implementation of three 
inversion strategies; previously, Mondal and Long (2019) implemented 
a stochastic Gibbs sampler and Chevrot (2006) implemented a deter
ministic solver based on LSQR algorithm): Here we introduce a simple 
gradient descent (GD), a BFGS-approach, which approximates the Hes
sian and stabilizes the inversion, and a gradient-informed reversible 
jump Markov chain Monte Carlo approach (rj-McMC). The new algo
rithms allow fast convergence, due to the consideration of the gradient 
in all techniques, which allows to explore a larger model space with 

similar computational resources as the technique presented by Mondal 
and Long (2019). Furthermore, the toolbox is flexible, such that users 
can choose the algorithm and parameter choices that are best suited to 
the needs of the problem under study. 

We compare the three techniques in application to synthetic data, 
illustrating the strengths and weaknesses of SKS-splitting intensity to
mography and of the three different inversion strategies. For simple 
models, all three inversion methods recover the model well, but the 
BFGS-algorithm leads to the best fit to the data. The GD and the rj-McMC 
algorithms result in a lower data fit in our tests. We emphasize that this 
might be related to our choice of convergence and cut-off criteria for the 
inversion procedures; and a different choice of convergence criteria or 
extended inversion steps might lead to a similar data fit as the BFGS- 
algorithm. However, trends of the RMS-error of the splitting in
tensities indicate fast convergence for all Markov chains (Fig. S3). Only 
the larger scatter of the number of Voronoi cells might indicate that 
extended iterations might be required. In any case, users of the toolbox 
may select the convergence and cut-off criteria that make the most sense 
for their individual applications. 

While all methods resolve the model well in the lateral direction, the 
depth resolution is considerably poorer. This results in vertical smearing 
and in a gradual change between different model volumes, even though 
the input model has a discontinuous jump. This is not surprising; while 
depth sensitivity is introduced by the consideration of overlapping 
sensitivity kernels at depth, we still rely on core-mantle converted 
phases with almost vertical incidence. While this leads to the excellent 
lateral resolution of structure, the similar shape and large overlap of the 
sensitivity kernels at depth has an averaging effect. As a result, the 
vertical resolution decreases with depth. While the fast axis orientation 
in the horizontal plane is generally very well resolved, the dip of the 
symmetry axis has a complex trade-off with the strength of anisotropy. 
The poor recovery of these parameters can be explained by the fact that 
a considerable dip leads to a decrease of the magnitude of the splitting 
intensities and therefore a decrease of the overall sensitivity for the 
anisotropic structure. We expect a similarly good resolution of those 
parameters, comparable to models without a dipping symmetry axis, for 
cases with stronger anisotropy, leading to splitting intensities at similar 
magnitude even for a dipping anisotropy case. 

The computational costs of the various algorithms are determined by 
their inherent characteristics. While the BFGS- and the GD-methods are 
comparably highly efficient, due to a rapid convergence based on the 
purely gradient driven model improvement, the rj-McMC algorithm re
quires many more iterations. The additional iterations (and slower 
convergence) of this algorithm are required by its stochastic element, 
which allows us to estimate uncertainties. At the same time, the rj-McMC 
is not based on a fixed dense model grid, as are the purely gradient based 
methods, but aims to estimate the actual number of model parameters 
required to fit the data. 

Despite the challenges, the application of SKS-splitting intensity to
mography to the dense Swath-D network (Heit et al. 2017) shows the 
potential of the method for real data sets. Previous studies found 

Fig. 10. Schematic figure of the findings for the anisotropic tomography in the Eastern Alps. The diagram on the left shows suggested slab break-off in the Eastern 
Alps, which allows an opening for asthenospheric flow through the corresponding gap (red arrow). We identify an increase of anisotropy corresponding to a distinct 
change of fast axis at 13◦ Longitude at a depth between 80 and 190 km (compare red dashed line, structure A). The increased level of anisotropy west of 13◦ longitude 
tends to decline to larger depth to the bottom of the model space from west to east (structure B). 
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complex anisotropy beneath the Eastern Alps (Qorbani et al. 2015; Link 
and Rümpker 2021). For the Swath-D data set, two significant aniso
tropic layers were previously identified: one layer with constant fast axis 
direction of about 60◦ over the whole area, with a possible east-dipping 
symmetry axis and a shallower layer east of 13◦ longitude with a fast axis 
direction of about 115◦. This general observation agrees well with our 
inversion results (Figs. 9 and 10). Two possible geodynamic scenarios 
had been previously suggested for this region, both of which invoked a 
slab break-off in the eastern part of the study area, allowing astheno
spheric flow through its gap (Link and Rümpker, 2021). The anisotropic 
structure west of 13◦ longitude was interpreted in the past as either 
frozen-in anisotropy with lithospheric origin or an asthenospheric flow 
evading the retreat of the European slab that would precede the 
break-off event. 

Our models (Fig. 10) show that the shallower anisotropic structure 
beneath Swath-D extends from about 70 km to around 190 km depth 
(labeled as structure A in Fig. 10). The fast axis orientation of this 
shallow structure indicates likely asthenospheric flow, as it cross-cuts 
geologic structures visible at the surface and it likely dominates over 
this entire depth range. The finding that this anisotropic volume extends 
to the very shallowest mantle (~70 km) indicates an almost complete 
delamination of the lithospheric mantle during the slab-break off. While 
our synthetic tests highlight the fact that the depth resolution of XKS 
splitting intensity tomography is limited, and vertical smearing of 
anisotropic structures occur, the resolution of the upper 150 km appears 
acceptable for this model (compare Fig. 6a, b). We therefore assume that 
the estimated depth and anisotropic parameters for the shallow struc
ture east of 13◦ longitude is robust. The distribution of the anisotropic 
structure with ~60◦ fast orientation starts at a deeper level of 100 km 
(structure B in Fig. 10), which is still at a depth with considerable res
olution. This would be consistent with either an isotropic lithosphere in 
the overriding Adriatic plate and lithospheric anisotropy in the down
going Eurasian slab, or with the predictions of an asthenospheric evasive 
flow model. We suggest that there are two aspects of our model that 
might indicate a lithospheric origin for this structure. First, the increased 
anisotropic strength west of 13◦ longitude tends to decline to larger 
depth from west to east, reaching the bottom of the model space at 13◦

longitude. However, we caution that the resolution at this depth is very 
limited, as shown in the synthetic tests. Second, there is a slight indi
cation of a downward dip of the symmetry axis in this volume (see 
Fig. 9), which would tend to support the idea of lithospheric anisotropy 
that is altered by the down- and eastward-directed tear in the slab break- 
off event. We caution, however, that the dip of the anisotropy does not 
result in a statistically significant improvement of the data fit; an over- 
interpretation of this feature should therefore be avoided. We also note 
the relatively large width of the residuals in the real data application 
compared to the synthetics (Fig. 9), which suggests that the splitting 
intensity estimates are strongly contaminated by noise, leading to a 
large data uncertainty. In addition, errors may be introduced by 3D 
heterogeneities in anisotropic structure, which are not considered in our 
2D projection of the measurements to a profile. A more detailed inter
pretation for the anisotropy west of 13◦ longitude is therefore not 
possible, and an evasive asthenospheric flow model, as previously sug
gested (Barruol et al. 2011; Petrescu et al. 2020; Hein et al. 2021; Link 
and Rümpker 2021; Link and Rümpker 2023), cannot be excluded. A 
more conclusive answer about the geologic interpretation might 
potentially be found in the further analysis of the anisotropic distribu
tion beneath the crosscutting seismic profiles of the TRANSALP (Lüschen 
et al. 2004) and EASI (Hetényi et al. 2018) experiments in future ap
plications of this method. 

There are several potential strategies to overcome some of the 
shortcomings of the SKS splitting intensity tomography method, 
particularly its lack of depth resolution. One possible future improve
ment is to approximate the full radial and transverse wavefield by 
allowing a change of the incident radial waveform due to the anisotropic 
structure as well. This requires the estimation of the sensitivity kernels 

in an adjoint approach and would allow for the use of waveforms instead 
of splitting intensities. Previous studies have shown that waveforms 
contain additional information about vertical structure not contained in 
splitting intensities, which allow vertical resolution only by the overlap 
of the sensitivity kernels (Rümpker et al. 2023). Another potential 
strategy is to incorporate additional, complementary data sources such 
as splitting of S-phases from local earthquakes (e.g., Abt et al. 2010), 
anisotropy of surface waves (e.g., Yuan and Romanowicz, 2010; Wagner 
and Long, 2013), or anisotropy-aware receiver function constraints (e. 
g., Yuan and Levin, 2014; Luo et al., 2023). Each of these analysis 
strategies provides additional information about the vertical distribu
tion of anisotropy and improves the resolution of the orientation of the 
elastic tensor as a function of depth. On another note, while we only 
allow for one estimate of robust splitting intensity from our new fre
quency dependent approach, real waveforms potentially exhibit multi
ple sets of dominant frequencies. In future applications of this method, 
these multiple frequencies can be considered and exploited, making 
multiple, frequency-dependent estimates of splitting intensities for each 
waveform. This might provide additional information about the sampled 
anisotropic structure and enhance the capabilities of the inversion pro
cedures. More generally, future applications of joint inversions of SKS 
splitting data with other types of complementary seismic and geologic 
information might allow a more detailed insight into the 3D-distribution 
and orientation of seismic anisotropy and the corresponding geo
dynamic and tectonic implications. 
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