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We investigate the approximation of functions ÿ on a bounded domain Ω ⊂ℝ
ý by the outputs of 

single-hidden-layer ReLU neural networks of width ÿ. This form of nonlinear ÿ-term dictionary 
approximation has been intensely studied since it is the simplest case of neural network 
approximation (NNA). There are several celebrated approximation results for this form of NNA 
that introduce novel model classes of functions on Ω whose approximation rates do not grow 
unbounded with the input dimension. These novel classes include Barron classes, and classes based 
on sparsity or variation such as the Radon-domain BV classes. The present paper is concerned with 
the deûnition of these novel model classes on domains Ω. The current deûnition of these model 
classes does not depend on the domain Ω. A new and more proper deûnition of model classes 
on domains is given by introducing the concept of weighted variation spaces. These new model 
classes are intrinsic to the domain itself. The importance of these new model classes is that they are 
strictly larger than the classical (domain-independent) classes. Yet, it is shown that they maintain 
the same NNA rates.

1. Introduction

Neural networks (NNs) are now the numerical method of choice for the development of learning algorithms in regression and 
classiûcation, especially when dealing with functions of ý variables with ý large. It is therefore important to understand, through 
mathematical theory, the reasons for this success. In learning, we are tasked with approximating an unknown function ÿ on a domain 
Ω ⊂ ℝ

ý from some ûnite set of data observations of ÿ . Thus, at least part of the success in using NNs for such learning problems, 
must lie in their ability to effectively approximate the functions of interest. While there is no widespread agreement on exactly what 
are these functions of interest, i.e., which functions are encountered in applications, one can ask to describe exactly which functions 
are well approximated by NNs.
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In approximation theory, questions of this second type are answered by precisely describing the set of functions which have 
a prescribed rate of approximation using the proposed method of approximation. In our case of NN approximation, we could for 
example ask for a precise characterization of the approximation classes

ÿ((Σÿ)ÿ≥0),ÿ) ∶= {ÿ ∶ dist(ÿ,Σÿ)ÿ =ÿ(ÿ−ÿ), ÿ ≥ 1}, ÿ > 0, (1.1)

where ÿ is some Banach space of functions in which we measure the error of approximation (e.g. ÿ = ÿý(Ω), 1 ≤ ý ≤∞) and Σÿ is 
the set of functions realized by neural networks with ÿ neurons and a prescribed activation function.

For certain methods of approximation such as polynomial or spline approximation precise characterizations of the corresponding 
approximation classes are known (see, e.g., [12,13]) and are described by a smoothness condition on ÿ or equivalently a statement 
that a function ÿ is in ÿ if and only if it can be represented as a sum of certain fundamental building blocks called atoms with a 
speciûed condition on the coefficients in such a representation.

In the case of NN approximation the characterization of ÿ appears to be a difficult problem, which we are not close to solving. In 
order to chip away at the problem of characterizing the approximation classes ÿ , we can, as we do in this paper, look at the simplest 
case of NN approximation which corresponds to approximation by shallow neural networks (one hidden layer) with ReLU activation. 
Even in this simplest case, there are no characterizations of the classes ÿ save for the case ý = 1 where the desired characterization 
is known and given by certain smoothness conditions known as Besov regularity (see, e.g., [12]).

The existing literature on NN approximation, brieüy described below, gives sufficient conditions to be placed on ÿ which guarantee 
membership in ÿ . We are not aware of nontrivial necessary conditions being known. The present paper will shed some new light on 
the quest to characterize the approximation classes ÿ when ý ≥ 2 by showing certain deûciencies in the present theory of sufficient 
conditions. We treat only the case where approximation takes place in ÿ =ÿ2(Ω).

We prove two important new results on shallow NN ReLU approximation in this paper. First, we show that the characterization of 
ÿ will depend signiûcantly on the geometry of the domain Ω. For example, the characterization of ÿ in the case Ω = [0, 1]ý will be 
different from that of the case when Ω is the Euclidean ball ýý of ℝý . This means that domain independent results are insufficient. 
Secondly, we show that if there is any hope of characterizing ÿ by requiring that ÿ has a certain expansion in terms of the elements 
from the ReLU dictionary, then this will require conditions on the coefficients in such expansions which reüect the distance of the 
atom in the dictionary to the boundary of Ω. We believe these two new ingredients will prove to be important.

Our main result gives a sufficient condition for membership in ÿ that is much weaker than those previously known. These new 
sufficient conditions take the form of ÿ having a NN dictionary expansion with conditions on the coefficients in such an expansions 
being weaker for atoms close to the boundary of Ω. While these new results still are not proven to characterize the approximation 
classes ÿ they give much weaker sufficient conditions to guarantee membership in ÿ .

We turn now to a brief description of some (but not all) of the recent results on shallow NN approximation using ReLU activation 
functions. This brief accounting will serve to frame the new results given in the present paper.

A large number of papers have been written in recent years that give quantitative bounds on the approximation rates of various 
model classes of functions when using neural networks. General accountings of such results can be found in [5,11,17,34]. Two 
types of results have emerged. The ûrst is to show that deep NNs with ReLU activation functions (see, e.g., [23,37,39,43]) are 
surprisingly effective in approximating functions from classical model classes such as ûnite balls in a Sobolev or Besov space when 
the approximation error is measured in an ÿý(Ω) norm with 1 ≤ ý ≤ ∞. While such results are deep and interesting, they do not 
match the most common setting of learning in high dimensions (ý large) because these model classes necessarily suffer the curse of 
dimensionality. Indeed, the approximation rates for such smoothness classes is of the form ÿ(ÿ−ý∕ý ) with ý related to the smoothness 
assumption on ÿ . Here and later ÿ always refers to the number of neurons used in the approximation. Thus, for large values of ý, 
membership in such a model class is not a realistic assumption to make on the target function ÿ to be learned. This negativity for 
classical smoothness as a model class assumption for ÿ can be ameliorated by assuming that the input variable to ÿ (and hence the 
data as well) is restricted by a probability measure ÿ on Ω supported on a low-dimensional submanifold.

The second type of approximation result introduces novel high-dimensional model classes for which neural network approximation 
(NNA) rates do not grow unbounded with the input dimension ý. Thus, membership in these new model classes can be a realistic 
model class assumption for learning a function of many variables. The most celebrated examples of such new model classes are the 
Barron class ý, ý > 0, introduced in [2]. The set ý = ý(ℝý ) consists of all functions ÿ deûned on ℝý whose Fourier transform ÿ̂
satisûes

‖ÿ‖ý ∶= ∫
ℝý

(1 + |ÿ|)ý|ÿ̂ (ÿ)|ýÿ < +∞. (1.2)

The original result of Barron showed that on a bounded domain Ω ⊂ ℝ
ý , any function ÿ on Ω which is the restriction of a function 

from 1(ℝý ) can be approximated in the ÿ2(Ω) norm by single-hidden-layer sigmoidal networks with ÿ neurons to an accuracy of 
ÿΩ‖ÿ‖1ÿ−1∕2, ÿ ≥ 1, where the constant ÿΩ only depends upon the measure of Ω. Notice that this approximation rate does not 
deteriorate with increasing ý in contrast with classical smoothness model classes. However, one must note that the above deûnition 
of Barron spaces depend on ý and indeed get more demanding as ý increases.

Barron’s result spurred a lot of study and generalizations over the last decades. In particular, new model classes of functions which 
have sparse representation of as linear combinations of neural atoms were introduced. In the case of ReLU neurons, the sparsity class 
is larger than the (second-order) Barron class and yet preserves the rate of approximation of ÿ-term approximation [15]. These spaces 
based on sparsity are called variation spaces [1,22,26,40,41]. We summarize these activities for ReLU neurons in the following two 



Applied and Computational Harmonic Analysis 74 (2025) 101713

3

R. DeVore, R.D. Nowak, R. Parhi et al.

sections. For the moment, we only wish to focus on the existing theory for these model classes and their approximation rates on 
domains Ω ⊂ ℝ

ý . This is the typical setting in applications. The existing theory deûnes the corresponding model classes on ℝý and 
then extends the deûnition to domains as the restriction of functions deûned on ℝý . As such, the theory and corresponding results 
are in a strong sense independent of the domain Ω. While this leads to a simple approximation theory on domains, these results never 
take into consideration the nature of Ω, e.g., its geometry.

The purpose of the present paper is to show there is a more satisfactory deûnition of these novel model classes on domains Ω
that leads to domain-dependent results that are stronger than that provided by the existing theory. We call these new model classes 
weighted variation spaces since they generalize the classical variation space for ReLU neurons by introducing a domain-dependent 
weighting of the ReLU atoms. These new model classes are strictly larger than the existing variation spaces while still maintaining 
the same rate of approximation of ÿ-term approximation. We develop this domain-dependent theory primarily in the case when 
Ω = ýý is the Euclidean unit ball in ℝý . To indicate how the theory would depend on the domain Ω, we also consider the domain 
ýý ∶= [−1, 1]ý and contrast the difference in this case with that of ýý .

While we develop our results only for the case of ReLU neurons, we believe that the techniques developed in this paper can be 
applied to the case of ReLUý neurons, ý > 1. We leave the details to future work. So, for the remainder of this paper the activation 
function is

ÿ(ý) = ý+ =max{0, ý}. (1.3)

This paper is organized as follows. In the next two sections, we review some of the existing results on ReLU neural network 
approximation. This will serve to frame the new results proved in this paper. In §4 we introduce our new (domain-dependent) model 
classes. In §5, we prove our new approximation results for Ω = ý2 the unit Euclidean ball in ℝ2. We separate out this case since it 
is the simplest setting to understand. The remaining sections of this paper formulate and prove our results for Ω = ýý which is the 
Euclidean unit ball in ℝý . We also contrast how the results change when Ω = ýý . Finally, we discuss the possible signiûcance of 
these new model classes for the problem of learning from data.

2. Approximation by shallow ReLU networks

In this paper, we concentrate on a very speciûc case of NNA, namely approximation by single-hidden-layer ReLU NNs, i.e., the 
activation function ÿ is given by (1.3). We study neural network approximation on a given bounded domain (the closure of an open 
connected set) Ω of ℝý . The most natural choices for Ω are the unit Euclidean ball ýý of ℝý or the ý-dimensional cube ýý ∶= [−1, 1]ý . 
The case Ω = ýý will be the primary example considered in this paper. In going further, we let ‖ ⋅ ‖ denote the Euclidean norm on 
ℝ
ý .
We deûne the ReLU atoms

ÿ(ý; ÿ, ý) ∶= ÿ(ÿ ⋅ ý− ý) = (ÿ ⋅ ý− ý)+, ÿ *ℝ
ý , ‖ÿ‖ = 1, ý *ℝ. (2.1)

Given the atom ÿ, we let

ÿÿ ∶= {ý *Ω ∶ ÿ ⋅ ý = ý} (2.2)

be its hyperplane cut. ÿÿ divides Ω into two regions ÿ±
ÿ
. The function ÿ is identically zero on the region ÿ−

ÿ
∶= {ý *Ω ∶ ÿ ⋅ ý ≤ ý}

and the linear function = ÿ ⋅ ý − ý on the second region ÿ+
ÿ
∶= {ý * Ω ∶ ÿ ⋅ ý > ý}. Notice that for some values of ý, the atom ÿ is 

identically zero on Ω so that ÿ−
ÿ
=Ω.

For each Ω, there is a smallest interval ÿ = ÿ (Ω) such that for ý + ÿ , the dictionary element ÿ(⋅; ÿ, ý) is either identically zero on 
Ω or a linear function on Ω. Let  =(Ω) ∶= {ÿ(⋅; ÿ, ý)} be the dictionary of all atoms ÿ for which ý * ÿ = ÿ (Ω). We are interested 
in ÿ-term approximation from the dictionary . For ÿ = 1, 2, … , let Σÿ ∶= Σÿ() be the set of functions of the form

ÿ(ý) =

ÿ∑

ÿ=1

ÿÿÿÿ (ý), ý *Ω, (2.3)

where the ÿÿ are chosen arbitrarily from  and ÿ1, … , ÿÿ are real numbers. When ÿ = 0, we deûne Σ0 ∶= {0}. The functions ÿ * Σÿ
are precisely the functions on Ω produced by a single-hidden-layer ReLU network with ÿ neurons, i.e., width ÿ. The set Σÿ is thus 
a (ý + 2)ÿ dimensional parametric nonlinear manifold parameterized by the ÿÿ * ýý , ÿ = 1, … , ÿ, the ýÿ * ℝ, ÿ = 1, … , ÿ, and the 
coefficients ÿ1, … , ÿÿ * ℝ. Note that a given ÿ * Σÿ has in general many representations of the form (2.3). In other words, the 
dictionary (Ω) is redundant.

The above paragraph tells us that there are two ways to view shallow network approximation with ReLU activation. One view is 
that it is a special case of ÿ-term approximation from a dictionary of functions. Another view is that it is a special case of manifold 
approximation. Therefore, a proper assessment of this form of NN approximation would be to compare it with other approximation 
methods of either one of these forms.

Approximation by Σÿ is one of the simplest examples of neural network approximation (NNA). It is therefore a fundamental 
problem to completely understand the approximation properties of Σÿ, ÿ ≥ 1, i.e., what are the properties of a function ÿ that 
determine how well ÿ is approximated by the elements of Σÿ. In the case ý = 1 and Ω is an interval, the set Σÿ is the space of 
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piecewise linear function with ÿ breakpoints. In this special case, approximation by Σÿ is well understood (see, e.g., [11,12]). So, we 
restrict ourselves to the case ý ≥ 2 in going further in this paper.

For a function ÿ in ÿý(Ω), 1 ≤ ý ≤∞, we deûne

ýÿ(ÿ )ý ∶=ýÿ(ÿ )ÿý(Ω) ∶= inf
ÿ*Σÿ

‖ÿ − ÿ‖ÿý(Ω). (2.4)

This is a form of nonlinear approximation since the set Σÿ is not a linear space but rather a nonlinear manifold. Rightfully, we often 
put this form of approximation in competition with other examples of manifold approximation (see, e.g., [10,11]).

From the viewpoint of approximation theory, an understanding of the approximation properties of Σÿ would seek to precisely 
characterize the approximation classes for Σÿ approximation. An approximation class is the collection of all functions whose approx-
imation error decays at a prescribed decay rate. For example, for a given ÿ > 0, we seek a characterization of the set

ÿ ∶=ÿ((Σÿ)ÿ≥0,ÿý(Ω)) (2.5)

of functions ÿ *ÿý(Ω) for which

ýÿ(ÿ )ý ≤ý(ÿ+ 1)−ÿ , ÿ = 0,1,2,… . (2.6)

Note that by deûnition, Σ0 = {0} and hence ý0(ÿ )ý = ‖ÿ‖ÿý(Ω) The smallest value of ý for which (2.6) holds is deûned as ‖ÿ‖ÿ . 
Notice that ÿ is a quasi-normed linear space. While for most classical methods of linear and nonlinear approximation, e.g. poly-
nomials, splines, ÿ-term wavelets, there is a characterization of the spaces ÿ (at least for a certain range of ÿ), the case for neural 
network approximation is much different. There is at present no known characterization of ÿ for any value of ÿ > 0. There are 
however many sufficient conditions that guarantee membership in ÿ (see [11]).

Another (less ambitious) viewpoint of approximation by Σÿ is to propose model classes ÿ , i.e., compact subsets ÿ ⊂ ÿý(Ω), and 
study how well the elements of ÿ can be approximated by the elements of Σÿ. This leads to the study of

ýÿ(ÿ)ý ∶= sup
ÿ*ÿ

ýÿ(ÿ )ý, ÿ ≥ 0. (2.7)

If one comes up with a set ÿ for which ýÿ(ÿ) ≤ ÿÿ−ÿ , ÿ ≥ 1, then clearly ÿ ⊂ÿ and we gain some information about ÿ . Many 
interesting approximation results have been proven for various classical model classes ÿ such as Sobolev and Besov balls, however, 
the best approximation rates are not known in all cases [11]. These results show no gain in approximation efficiency when compared 
with more classical methods of approximation such as those that use splines or wavelets. Moreover, these classical model classes all 
suffer the curse of dimensionality: smoothness of order ý gives rate decay ýÿ(ÿ)ý ≥ ÿÿ−ý∕ý , ÿ ≥ 0.

One of the celebrated accomplishments in the study of NNA was the introduction of new model classes ÿ whose NNA rates do not 
grow unbounded with the input dimension ý. They also give us information on ÿ . We discuss these model classes in the next two 
sections. In going further in this paper we only treat the case of approximation in ÿ2(Ω). However, the case of ÿý(Ω) approximation 
has also been well studied (see [40]).

3. Novel (non-classical) model classes

While the classical model classes based on smoothness all suffer the curse of dimensionality, certain novel model classes ÿ have 
been introduced whose rates do not grow unbounded with the input dimension. The discovery of these novel model classes begin 
with the celebrated work of Barron [2]. We have already deûned the Barron spaces ý(ℝý ) in the introduction.

Barron’s original results on NNA were for sigmoidal activation and the Barron class 1(ℝý ) where he showed that functions in 
this class, when restricted to a domain Ω ⊂ℝ

ý , had an ÿ2(Ω) approximation rate ÿ
−1∕2, ÿ ≥ 1. It was rather straightforward to extend 

his approach to proving that functions in 2 had the same approximation rate when using ReLU activation. Several follow up papers 
signiûcantly improved on these original results as we now describe.

Notice that the Barron classes are formulated for functions which are deûned on all of ℝý . Given a bounded domain Ω, it is not 
obvious how these classes should be deûned on Ω. The deûnition employed in the literature is that the space ý(Ω) is the set of 
function ÿ deûned on Ω which are the restriction of a function ý *ý(ℝý ) with norm given by

‖ÿ‖ý(Ω) ∶= inf
ý |Ω=ÿ

‖ý‖ý(ℝý ), ý > 0. (3.1)

With this deûnition, we have

ýÿ(ý (2(Ω))ÿ2(Ω)
≤ ÿÿ−1∕2, ÿ ≥ 1, (3.2)

where ÿ depends only on the diameter and measure of Ω. Here and later we use the notation ý (ý ) to denote the unit ball of a normed 
space ý . This approximation rate was improved over the years starting with Makovoz [24] and continuing on with the results of 
[1,19,40]. The current best known approximation rate for ÿ-term ReLU NNA is

ýÿ(ý (2(Ω))ÿ2(Ω)
≤ ÿÿ− 1

2
−

3
2ý , ÿ ≥ 1, (3.3)
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where again ÿ depends only on ý. We refer the reader to [40] for a more detailed discussion of these approximation results. It is still 
not known if this rate can be improved for the Barron class 2.

We turn next to a second family of novel model classes for NNA referred to as variation spaces. Let  = (Ω) be the dictionary of 
ReLU atoms whose hyperplane cut intersects Ω. Consider any function ÿ =

∑ÿ
ÿ=1 ÿÿÿÿ , i.e., ÿ * Σÿ. Recall that this representation is 

not unique. We deûne

ý (ÿ) ∶= inf

{
ÿ∑

ÿ=1

|ÿÿ | ∶ ÿ =

ÿ∑

ÿ=1

ÿÿÿÿ

}
, (3.4)

which is called the variation of ÿ with respect to the dictionary .
With this notation in hand, we can deûne a new space  ∶= (Ω) = (Ω, ) as the set of all ÿ in ÿ2(Ω) for which there is a 

sequence ÿÿ * Σÿ, ÿ ≥ 1, such that ‖ÿ − ÿÿ‖ÿ2(Ω)
→ 0, ÿ →∞, and ý (ÿÿ) ≤ý , ÿ ≥ 1. Throughout the paper, we will use  when 

the domain Ω and dictionary  are clear from the context, and use (Ω), (), or (Ω, ) when we want to call attention to the 
domain and/or dictionary. The smallest ý for which this is true is deûned as ‖ÿ‖(Ω) . This space is called the variation space of the 
dictionary . The space (Ω) is a Banach space with respect to this norm (see [41] for properties of variation spaces). A fundamental 
relation between the Barron and variation space is the embedding

‖ÿ‖(Ω) ≤ ÿΩ‖ÿ‖2(Ω), ÿ *2(Ω), (3.5)

with ÿΩ the embedding constant (which depends only on the diameter of Ω). The space (Ω) is strictly larger than 2(Ω). We remark 
that the variation space (Ω) has also been introduced under other names such as the 1 space [1] and the Barron space [15].

The variation space (Ω) has been carefully studied and in particular it has been proven that (see [40])
ýÿ(ý ((Ω)))ÿ2(Ω)

≤ ÿÿ− 1
2
−

3
2ý , ÿ ≥ 1, (3.6)

where ÿ depends only on Ω and ý. This approximation rate also matches the decay rate of the metric entropy of ý ((Ω)) [40]. 
Notice that this gives the bound (3.3) and is in fact how approximation rates for the Barron class are proved. The important thing to 
note here is that  is a larger space than 2 but the current best known approximation rates (with shallow ReLU NNs) for both of 

these classes is the same, namely ÿ(ÿ−
1
2
−

3
2ý ), ÿ ≥ 1.

We remark that the rate (3.6) has also been obtained in the ÿ∞-norm (on the sphere) in [1] using deep results from geometric 
discrepancy theory [6,7,25], although a gap exists in dimensions ý = 2, 3, which was apparently overlooked by the author of [1]. 
Recently, this gap has been completely closed and these results have been generalized to ReLUý networks for all ý ≥ 0 in [38]. 
Similar uniform approximation rates have also been obtained using an entirely different method for a smaller class of functions in 
[27]. Similar results have also been investigated for ReLU networks whose inputs and outputs take values in Banach spaces [20]. In 

that work, it is shown that the ÿ-term approximation rate is bounded by ÿ(ÿ−
1
2 ).

A major breakthrough in the understanding of (Ω) was made by characterizing membership of a function ÿ in (Ω) through 
the smoothness of its Radon transform. Namely, it was originally proved in [29] that a function ÿ is in (Ω) if and only if ÿ has an 
extension ý to all of ℝý such that the Radon transform (ý ; ÿ, ý) is in a certain smoothness space. Properties and generalizations of 
this notion of smoothness were extensively studied in [30,31,33], giving rise to a new family of Banach spaces, now referred to as 
the Radon-domain BV spaces. These spaces are denoted by BVý, ý * ℕ.

The key result of [30] is the following representer theorem for these spaces. Let ýÿ *ℝ
ý , ÿ = 1, … , ÿ, and ÿÿ *ℝ, ÿ = 1, … , ÿ. Then, 

there always exists a solution to the data-ûtting problem

min
ÿ*BVý

ÿ∑

ÿ=1

(ÿÿ, ÿ (ýÿ)) + ÿ|ÿ |BVý (3.7)

that takes the form of a function ÿ which is the output of a single-hidden-layer neural network with ≤ ÿ neurons and ReLUý−1

activation functions. Here,  is any loss function which is lower-semi-continuous in its second argument and |ÿ |BVý is the semi-
norm which deûnes the BVý spaces, which measures smoothness in the Radon domain. The Radon BV spaces are deûned on domains 
Ω ⊂ ℝ

ý via restrictions. For the case ý = 2 (which corresponds to shallow ReLU NNs) it has been shown in [33, Theorem 6] (see 
also [41, Theorem 2 and Corollary 1]) that

BV2(Ω) = (Ω), (3.8)

with equivalent norms. It has also been shown that there exists a solution ÿ to (3.7) which is in Σÿ() on any bounded domain 
Ω ⊂ℝ

ý [33, Theorem 5].

4. Weighted variation model classes

One of the main points of the present paper is that one can derive improved results on approximation by shallow ReLU networks 
if one considers new model classes that generalize the standard variation space by including weights on the atoms. In this section, 
we introduce these new model classes for the case when we want the error of approximation to be taken in the ÿ2(Ω) norm with Ω
a bounded domain in ℝý . We begin with the general principle of weighted variation spaces.
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Let  be the dictionary of ReLU atoms. Let ÿý−1 be the boundary of the unit Euclidean ball ýý of ℝý . That is, ÿý−1 ∶= {ÿ *ℝ
ý ∶

‖ÿ‖ = 1}. Any atom ÿ in  is of the form ÿ(ý) = (ÿ ⋅ ý − ý)+ where ý * ℝ. We are interested in the atoms ÿ whose hyperplane cut 
intersects Ω (since otherwise the atom is identically an affine function). Accordingly, we deûne

ý(Ω) ∶= {(ÿ, ý) ∶ ÿ * ÿý−1, ý *ℝ such that ÿÿ(⋅;ÿ,ý) ∩Ω ≠∅} (4.1)

and ý̄(Ω) its closure in the Euclidean norm. Note that whenever ÿ(ý) = ÿ(ý; ÿ, ý), (ÿ, ý) *ý(Ω), is positive for some ý *Ω, it is positive 
in a neighborhood of ý and hence ‖ÿ‖ÿ2(Ω)

> 0. Given the domain Ω we deûne the dictionary

(Ω) ∶= {ÿ(⋅, ÿ, ý) ∶ (ÿ, ý) * ý̄(Ω)}. (4.2)

The set ý̄(Ω) is a compact subset of ÿý−1 ×ℝ. If we equip ý̄(Ω) with the Euclidean norm topology then the mapping (ÿ, ý) ↦ ÿ(⋅; ÿ, ý)
is a continuous mapping from ý̄(Ω) into ÿ2(Ω).

Here is an important observation about the atoms in this dictionary which underlies the improved approximation results of this 
paper. While each atom ÿ *(Ω) is in ÿ2(Ω) whenever Ω is a bounded domain, the ÿ2(Ω) norm of ÿ will depend heavily on ÿ and 
Ω. Namely, if the support of ÿ lies near the boundary of Ω then this norm will be small and we expect that ÿ has a less important 
role in approximating a given target function ÿ *ÿ2(Ω).

As an example, consider the case when Ω = ýý is the ý-dimensional Euclidean ball. It is easy to see that the atom ÿ(ý) = (ÿ ⋅ý − ý)+, 
has ÿ2(Ω)-norm satisfying

‖ÿ‖ÿ2(Ω)
≈ (1 − ý)

3
2
+
ý−1
4 , −1 ≤ ý ≤ 1, (4.3)

with constants of equivalence depending only on ý. Indeed, the ÿ∞(Ω) norm of ÿ is 1 − ý and the measure of its support ≈ (1 −
ý)[
√
1 − ý]ý−1. It follows that the norms of atoms get smaller as ý approaches one.
The compactness of ý̄(Ω) implies that the dictionary (Ω) is a compact subset of ÿ2(Ω). Thus, there is another useful character-

ization of the functions in (Ω). Consider the space  ∶=(ý̄(Ω)) of all ûnite (signed) Radon measures on ý̄(Ω), equipped with 
the variation norm ‖ÿ‖ ∶= ∫

ý̄(Ω)

ý|ÿ|. For ÿ *, we introduce the function

ÿÿ ∶= ∫
ý̄(Ω)

ÿ(⋅; ÿ, ý)ýÿ(ÿ, ý), (4.4)

where the integral in (4.4) can be understood as a Bochner integral (see [41, Lemma 3] for more details). Then, any ÿ * (Ω) has a 
representation

ÿ = ÿÿ , for some ÿ *. (4.5)

This representation is not unique in the sense that different measures ÿ can give rise to the same ÿ . It then follows (see [41]) that 
the  -norm can be alternatively speciûed by

‖ÿ‖ = inf{‖ÿ‖ ∶ ÿ = ÿÿ , ÿ *}. (4.6)

In order to simplify the geometry, in going further in this section, we assume that Ω is a convex subset of ℝý and  ∶=(Ω). We 
say that

ý(ÿ, ý), (ÿ, ý) * ý̄(Ω), (4.7)

is a weight function if ý is a non-negative continuous function on ý̄(Ω). Given an atom ÿ(⋅; ÿ, ý) we will abuse notation and also 
write ý(ÿ) or ý(ÿ(⋅; ÿ, ý)) for ý(ÿ, ý).

Admissible Weights: Given a weight function ý defined on ý̄(Ω), we define

ÿ̃(⋅; ÿ, ý) ∶=
ÿ(⋅; ÿ, ý)

ý(ÿ, ý)
, (ÿ, ý) * ý̄(Ω), (4.8)

where ÿ̃(⋅; ÿ, ý) is defined to be the zero function whenever ý(ÿ, ý) = 0. We say that the weight function ý is admissible for Ω, if the mapping 
(ÿ, ý) → ÿ̃(⋅; ÿ, ý) is continuous as a mapping from ý̄(Ω) into ÿ2(Ω). It follows that

‖ÿ̃(⋅; ÿ, ý)‖ÿ2(Ω)
≤ ÿý, (4.9)

with ÿý an absolute constant. Notice that if a weight function ý is admissible, then any larger weight function ý̃ is also admissible.

When given an admissible weight ý, the set of functions

ý ∶=ý(Ω) = {ÿ̃(⋅; ÿ, ý) ∶ (ÿ, ý) * ý̄(Ω)}, (4.10)

is a new dictionary contained in ÿ2(Ω). Furthermore, this dictionary is compact in ÿ2(Ω). We deûne the weighted variation space ý ∶= ý(Ω) to be variation space of this new dictionary ý . Since the admissibility conditions ensure that the dictionary ý is 
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compact in ÿ2(Ω), we have, from the discussion above, that, for every ÿ * ý(Ω), there exists a signed Radon measure ÿ = ÿÿ on 
ý̄(Ω) such that

ÿ = ÿ̃ÿ ∶= ∫
ý̄(Ω)

ÿ̃(⋅; ÿ, ý)ýÿ(ÿ, ý) with ‖ÿ‖ý(Ω) = ‖ÿ̃ÿ‖ý(Ω) = ‖ÿÿ‖. (4.11)

We also clearly have

‖ÿ‖ÿ2(Ω)
≤ ÿý‖ÿ‖ý(Ω), ÿ * ý(Ω), (4.12)

where ÿý is the constant in (4.9). We also have that, if ý̃ ≥ý, then ý̃(Ω) ⊂ ý(Ω) and ‖ÿ‖ý̃ ≤ ‖ÿ‖ý(Ω) which implies that

ýÿ(ý (ý̃(Ω))) ≤ýÿ(ý (ý(Ω))), ÿ ≥ 0, (4.13)

where we note that Σÿ() = Σÿ(ý) for any admissible ý.
While ý(Ω) is deûned for any nonnegative weight ý which is admissible, there is a particular choice of ý which we will consider 

in this paper. Speciûcally, we show that the approximation rates derived for shallow ReLU neural networks on the unweighted space 
(Ω) actually hold on the larger space ý(Ω) for a certain collection of admissible weights ý. As we will later see, the smallest 
admissible weight with this property will depend upon the domain Ω. This domain-dependent smallest weight is related to the 
measure of the intersection of the hyperplane of ÿ restricted to Ω. To describe this particular weight ý and our new approximation 
results, we start with the case ý = 2 where the proofs of approximation rates are simplest to understand. We consider the two domains 
Ω = ý2 and Ω =ý2. Later, we treat the general cases Ω = ýý , ý ≥ 2. We then explain how the same theory carries over to Ω = ýý

(see Remark (6.8)).
Variation spaces (0) are deûned as above for any dictionary 0 in any Hilbert space ÿ provided that the dictionary elements 

ÿ *0 satisfy ‖ÿ‖ÿ ≤ ÿ for a ûxed value of ÿ > 0. Given such a dictionary 0, we deûne Σÿ ∶= Σÿ(0) as the set of all functions 
ÿ *ÿ that are a linear combination of at most ÿ terms of 0. For any ÿ *ÿ , we deûne the error of ÿ term approximation to be

ý(ÿ,Σÿ)ÿ ∶= inf
ÿ*Σÿ

‖ÿ −ÿ‖ÿ . (4.14)

This ÿ-term approximation error from a dictionary is well studied. A fundamental result for such ÿ-term approximation is the theorem 
of Maurey [35] (see also [2,18]). Maurey’s theorem says that for each ÿ ≥ 0 and ÿ * (0) we have

inf
ÿÿ*Σÿ

‖ÿ −ÿÿ‖ÿ ≤ ‖ÿ‖(0)
ÿÿ−1∕2, ÿ ≥ 1. (4.15)

In fact, Maurey’s theorem can be generalized beyond the setting of a Hilbert space to the class of type-2 Banach spaces (see [40]
for the application to non-linear dictionary approximation). This introduces an extra constant factor which depends upon the type-2
constant of the space. We shall use this theorem going forward, but restrict ourselves to the Hilbert space setting.

5. Approximation in ÿ =ý
ÿ

In this section, we develop our results in the case Ω = ý2 where ý2 is the unit Euclidean ball in ℝ2. Here, ý̄(Ω) = ÿ1 × [−1, 1]. 
This will illustrate, in their simplest form, all of the principles needed to treat the more general case Ω = ýý , ý ≥ 2. The treatment of 
ýý is given in §6 but with a signiûcant increase in the level of technicality.

In this section, we let  =(Ω) be the ReLU dictionary of atoms ÿ = ÿ(⋅; ÿ, ý), ÿ * ÿ1 and ý * [−1, 1]. Note that since ý = 2, the 
hyperplane ÿÿ associated to the atom ÿ is a line and ÿÿ ∶=ÿÿ ∩Ω is a line segment whose length is |ÿÿ| = (1 − ý2)1∕2. We deûne 
the weight of this atom by

ý(ÿ) =ý(ÿ(⋅; ÿ, ý)) ∶= 1 − ý, ý * [−1,1]. (5.1)

It is easy to check that this weight is admissible since ‖ÿ(⋅; ÿ, ý)‖ÿ2 (Ω)
≈ (1 − ý)7∕4 (see (4.3)). We discuss where this weight comes 

from in §6 in the sequel.
We ûrst want to prove results on the linear approximation of the atoms ÿ. Namely, for each ÿ = 1, 2, … , we want to construct an 

ÿ dimensional linear space ÿÿ which is good at approximating all of the atoms ÿ * (Ω). The linear space ÿÿ will be the span of 
ÿ well chosen atoms ÿÿ , ÿ = 1, … , ÿ, from (Ω). The construction we give for ÿÿ is a modiûcation of ideas from [40]. Our analysis 
of the approximation error in approximating ÿ by the elements of ÿÿ is new in that it gives an improved error estimate when the 
support of ÿ is near the boundary of Ω.

To deûne the space ÿÿ ∶= span{ÿ1, … , ÿÿ}, we want to choose the atoms ÿÿ , ÿ = 1, … , ÿ, to have as a special discrete distribution 
from . In the case ý = 2, these atoms are rather easy to describe geometrically as is given in the next paragraph. When ý > 2, we 
will need more sophisticated arguments (see §6).

We ûx ÿ ≥ 4 and let ÿ = ÿÿ be the set of points

ÿÿ = ÿÿ (ÿ) ∶= (cosÿÿ , sinÿÿ ), ÿÿ = ÿÿ,ÿ ∶=
2ÿÿ

ÿ
, ÿ *ℤ. (5.2)
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There are ÿ distinct points and ÿÿ = ÿÿ′ if ÿ and ÿ
′ are congruent modulo ÿ, i.e., if ÿ ≡ ÿ′. These points are equally spaced on the 

circle.
Let ÿÿ be the linear space spanned by the dictionary elements ÿ whose line segment ÿÿ has end points ÿÿ and ÿÿ , 1 ≤ ÿ < ÿ ≤ÿ. 

Notice that for each pair ÿ, ÿ there are two such atoms. Hence, the dimension of ÿÿ is ÿ ∶= ÿ(ÿ − 1). We also note that ÿÿ contains 
all linear functions on Ω.

Given ÿ, ÿ *ℤ, we deûne the distance between ÿ and ÿ by

ý(ÿ, ÿ) ∶= min{|ÿ′ − ÿ′| ∶ ÿ ≡ ÿ′, ÿ ≡ ÿ′},
i.e. to be the periodic distance between the indices ÿ and ÿ.

Let ÿ,ÿ =ÿ,ÿ (ÿ) be the set of all line segments ÿ whose end points ÿ, ÿ are the points (cosÿ, sinÿ) where ÿ * [ÿÿ, ÿÿ+1] in the case 
of ÿ and ÿ * [ÿÿ , ÿÿ+1] in the case of ÿ. We denote by ÿÿ,ÿ = ÿÿ,ÿ (ÿ) the union of all the line segments ÿÿ in ÿ,ÿ .

Note that the length ÿÿ,ÿ and width ÿÿ,ÿ of ÿÿ,ÿ satisfy

|ÿÿÿ | ≈
ý(ÿ, ÿ) + 1

ÿ
, |ÿÿÿ | ≈

ý(ÿ, ÿ) + 1

ÿ2
, 1 ≤ ÿ ≤ ÿ ≤ÿ. (5.3)

Here and later in this section, all constants of equivalence are absolute. It follows that the measure of ÿÿ,ÿ satisûes

|ÿÿ,ÿ | ≲
(ý(ÿ, ÿ) + 1)2

ÿ3
, 1 ≤ ÿ ≤ ÿ ≤ÿ. (5.4)

Lemma 5.1. Suppose that ÿ ≥ 4 is an even integer, ÿ = ÿ(ÿ − 1), and ÿ = ÿ(⋅; ÿ, ý) is any dictionary element whose line segment ÿÿ is in ÿ,ÿ = ÿ,ÿ (ÿ) with ÿÿ ≠ ÿÿ . Then there is a function ý *ÿÿ such that
(i) ÿ(ý) = ý(ý), ý + ÿÿ,ÿ ,

(ii) ‖ÿ − ý‖ÿ∞(Ω) ≤ ÿ ý(ÿ,ÿ)

ÿ2 , with ÿ an absolute constant.

(iii) ‖ÿ − ý‖ÿ2(Ω)
≤ ÿý(ÿ)ÿ−3∕4, with ÿ an absolute constant.

If ÿ * ÿ,ÿ for some ÿ, then there is a ý *ÿÿ such that statement (iii) holds.

Proof. We ûrst assume that 0 ≤ ÿ < ÿ ≤ ÿ. Also, by reversing the roles of ÿ and ÿ if necessary, we can also assume that ÿ < ÿ∕2. 
Because of rotational symmetry we can assume that ÿ = 0, ÿ + 1 = 1, 0 < ÿ < ÿ∕2. Consider the linear function ý(ý) ∶= ÿ ⋅ ý − ý. Let 
the line segment ÿÿ =ÿÿ ∩Ω associated with ÿ be in ÿ,ÿ . Let ÿÿ = ÿÿ(ÿ), ÿ *ℤ. We use the following three functions ÿ1, ÿ2, ÿ3 in 
ÿÿ each of whose line segments ÿÿÿ are contained in ÿ,ÿ . Here, ÿÿ1 has endpoints ÿÿ, ÿÿ+1, the second segment ÿÿ2 has end points 
ÿÿ, ÿÿ , and the third function ÿ3 has line segment ÿÿ3 with endpoints ÿÿ+1, ÿÿ+1. The orientation of these three atoms matches that 
of ÿ. By this we mean that whenever ý *Ω is strictly outside ÿÿ,ÿ and ÿ(ý) > 0 then each of the functions ÿÿ, ÿ = 1, 2, 3, will likewise 
be positive. Similarly, if ý is strictly outside this strip and ÿ(ý) = 0 the three functions ÿÿ, ÿ = 1, 2, 3, will likewise vanish.

Consider the three linear functions ýÿ , ÿ = 1, 2, 3, corresponding to these line segments. That is, we have ýÿ(ý) = ÿ′
ÿ
⋅ ý − ý′

ÿ
and 

ÿÿ(ý) = ýÿ(ý)+ with ÿ
′
ÿ
* ÿ1 and ý′

ÿ
* [−1, 1]. Since these three linear functions are linearly independent, we can write

ý = ý1ý1 + ý2ý2 + ý3ý3. (5.5)

Speciûcally, let ÿ be the point where ý2(ÿ) = ý3(ÿ) = 0. Then,

ý1 =
ý(ÿ)

ý1(ÿ)
, ý2 =

ý(ÿÿ+1)

ý2(ÿÿ+1)
, ý3 =

ý(ÿÿ)

ý3(ÿÿ)
. (5.6)

This follows by noting that with this choice (5.5) holds at the affinely independent set of points ÿ , ÿÿ+1 and ÿÿ.
We claim that

|ýÿ| ≤ 1, ÿ = 1,2,3. (5.7)

Indeed, since the ÿ, ÿÿ lie on the sphere it is clear that |ýÿ(ý)| = ý(ý, ÿÿÿ ) and |ý(ý)| = ý(ý, ÿÿ) for any ý *ℝ
2 (here ý(ý, ÿ) denotes 

the distance from the point ý to the line ÿ). We will show that

ý(ÿÿ,ÿÿ) ≤ ý(ÿÿ,ÿÿ3 ), (5.8)

which implies |ý3| ≤ 1. A completely analogous argument shows that |ý2| ≤ 1.
For the proof of (5.8), we assume that ÿ > ÿ + 1. If ÿ = ÿ + 1, a similar argument applies (which we leave to the reader). Consider 

the trapezoid whose vertices are ÿÿ, ÿÿ+1, ÿÿ , ÿÿ+1 and let ÿ denote its interior. Let ÿ̄ÿ denote the orthogonal projection of ÿÿ onto the 
line ÿÿ3 . The angle formed by the vertices ÿÿ+1, ÿÿ+1, ÿÿ is larger than or equal to ÿ∕2. This means that ÿ̄ÿ lies either on or outside of 
the circle. By the deûning property of ÿÿ this line must intersect the segment [ÿÿ, ÿ̄ÿ]. Therefore, ý(ÿÿ, ÿÿ) ≤ ý(ÿÿ, ÿÿ3 ) which proves
(5.8) as desired.

Next, we consider bounding |ý1|. The line segments [ÿÿ, ÿÿ+1] and [ÿÿ+1, ÿÿ ] are parallel, and the intersection point ÿ lies on 
the perpendicular line ÿý connecting the midpoints of these two line segments. Moreover, the lengths of these segments satisfy 
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ý([ÿÿ, ÿÿ+1]) > ý([ÿÿ+1, ÿÿ ]). This means that the distance from ÿ to ÿÿ1 is greater than the distance to the parallel line segment 
[ÿÿ+1, ÿÿ ]. Finally, since ÿÿ *ÿ,ÿ , ÿÿ must intersect ÿý, which implies that ý(ÿ, ÿÿ) ≤ ý(ÿ, ÿÿ1 ). This means that |ý1| ≤ 1 as claimed.

Now, consider the function

ý ∶= ý1ÿ1 + ý2ÿ2 + ý3ÿ3, (5.9)

which is in the linear space ÿÿ. This function agrees with ÿ outside ÿÿ,ÿ so that (i) is satisûed. Each of the functions ÿ and ý have 

ÿ∞(ÿÿ,ÿ ) norm not exceeding the width ÿÿÿ ≤ ÿ
ý(ÿ,ÿ)

ÿ2 (they are 1-Lipschitz and vanish on one edge) and so the upper bound in (ii) 
follows. The function ÿ − ý is supported on ÿÿ,ÿ and we have

‖ÿ− ý‖ÿ2(Ω)
≤ ‖ÿ− ý‖ÿ∞(Ω)|ÿÿ,ÿ |1∕2 ≤ ÿý(ÿ, ÿ)2ÿ−2−3∕2 ≤ ÿ|ÿÿÿ |2ÿ−1−1∕2. (5.10)

Note that in this calculation we have use that ý(ÿ, ÿ) ≈ (ý(ÿ, ÿ) + 1). Since ý(ÿ, ÿ) > 1, we easily see that |ÿÿÿ | ≈ |ÿÿ| = ý(ÿ), which 
veriûes (iii).

Finally, if ÿÿ is in ÿ,ÿ with ý(ÿ, ÿ) ≤ 1 then the conclusion follows in the same way we proved (5.10) by taking either ÿ = 0 or 
ÿ =ý ⋅ ý + ÿ to be linear function which matches the linear part of ÿ. □

5.1. The approximation theorem

Throughout this section ýÿ(ÿ ) ∶= ýÿ(ÿ )ÿ2(Ω)
, ÿ ≥ 1 for any ÿ * ÿ2(Ω). We can now state the main theorem to be proved in this 

section.

Theorem 5.2. Let Ω =ý2 and ý(ÿ), ÿ *(Ω), be defined by (5.1). Then for any ÿ * ý, we have
ýÿ(ÿ ) ≤ ÿ‖ÿ‖ý(Ω)ÿ−

5
4 , ÿ ≥ 1, (5.11)

where ÿ is an absolute constant.

Proof. Since Σÿ ⊂ Σÿ+1, ÿ ≥ 0, it is enough to prove the theorem for any ÿ = ÿ(ÿ − 1) with ÿ ≥ 4 an even integer. This means that 
we can apply Lemma 5.1. It is enough to prove the theorem for any function ÿ from ý (ý(Ω)). According to the deûnition of ý(Ω), 
for ý sufficiently large, there is an ÿ * Σý with ÿ =

∑ý
ÿ=1 ÿÿÿÿ such that

‖ÿ −ÿ‖ÿ2(Ω)
≤ ÿ−5∕4 and

ý∑

ÿ=1

ý(ÿÿ )|ÿÿ | ≤ 1. (5.12)

For each ÿ, let ýÿ *ÿÿ approximate the function ÿÿ appearing in the representation of ÿ according to (iii) of Lemma 5.1. That is, we 
have

‖ÿÿ − ýÿ‖ÿ2(Ω)
≤ ÿ0ý(ÿÿ )ÿ

−3∕4, (5.13)

with ÿ0 an absolute constant. The function ý ∶=
∑ý
ÿ=1 ÿÿýÿ is in ÿÿ and hence in Σÿ. We write

ÿ = ÿ − ÿ + ℎ+ ý, ℎ ∶= ÿ − ý. (5.14)

Therefore,

ý3ÿ(ÿ ) ≤ ÿ−5∕4 +ý2ÿ(ℎ). (5.15)

We want to bound ý2ÿ(ℎ). We have ℎ =
∑ý
ÿ=1

ÿÿ [ÿÿ − ÿÿ ]. We consider the dictionary ′ = {ÿÿ}
ý
ÿ=1

with ÿÿ ∶= ý(ÿÿ )
−1(ÿÿ − ýÿ ). 

According to (5.12) and (5.13), each ÿÿ has ÿ2(Ω) norm at most ÿ0ÿ
−3∕4 and ℎ =

∑ý
ÿ=1 ý

′
ÿ
ÿÿ with 

∑ý
ÿ=1 |ý′ÿ | ≤ 1. It follows from 

Maurey’s theorem (see (4.15)) that ℎ can be approximated by a sum ÿ of ÿ terms from the dictionary ′ with error

‖ℎ− ÿ ‖ÿ2(Ω)
≤ ÿÿ−3∕4ÿ−1∕2 = ÿÿ−5∕4, (5.16)

with ÿ an absolute constant. The function ÿ is a sum of at most 2ÿ terms from the original dictionary . Hence,
ý2ÿ(ℎ) ≤ ÿÿ−5∕4. (5.17)

If we place this inequality back into (5.15), we obtain

ý3ÿ(ÿ ) ≤ [1 +ÿ]ÿ−5∕4 (5.18)

and the theorem follows. □

We close this section with two remarks that clarify Theorem 5.2.
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Remark 5.3. We emphasize that Theorem 5.2 is an improvement on the known theorem that any ÿ * () satisûes ýÿ(ÿ ) ≤ ÿÿ−5∕4
because the weighted variation space ý is strictly larger than the standard variation space  .
Remark 5.4. While Theorem 5.2 only applies to the approximation rate ÿ(ÿ−ÿ), when ÿ = 5∕4, there is a standard technique to 
obtain results for more general rates ÿ(ÿ−ÿ ), for any ÿ ≤ 5∕4, by considering the interpolation spaces between ÿ2(Ω) and ý(Ω) as 
is explained in [14] and [3]. This approach gives new sufficient conditions for membership in ÿ . This remark also applies to later 
results in this paper. We do not elaborate further on this point.

5.2. Weighted variation spaces for Ω =ý2

Although we do not formulate a general result, it will be clear that the techniques of this paper can be generalized to any convex 
domain Ω. In this section, we want to point out what such a result is for ý2 ∶= [−1, 1]2 since this will allow us to see the effect of 
the geometry of Ω. So, in going further in this section, we take Ω =ý2.

If ÿ is a ReLU atom, then the line segment ÿÿ relative to Ω is ÿÿ ∩Ω. The length |ÿÿ| can now be large even if ÿÿ is close to the 
boundary of Ω, for example when ÿÿ is parallel to one of the sides of Ω. In other words, many fewer atoms ÿ will have small |ÿÿ|.

Let us sketch how the results and analysis for approximating general atoms ÿ given in §5.1 for ý2, changes in this case. We now 
take a set of ÿ ∼

√
ÿ equally spaced points on the boundary of ý2. We can associate each ÿ to a ÿ,ÿ similar to the case of ý2 and 

create a linear space ÿÿ of dimension ÿ
2 ∼ ÿ as before. Now the analogue of Lemma 5.1 says that any dictionary element ÿ can be 

approximated by an element of ý *ÿÿ to an accuracy (corresponding to (iii) in that lemma)

‖ÿ− ý‖ÿ2(Ω)
≤ ÿ0ÿ

−1[|ÿÿ|ÿ−1]1∕2 = ÿ0ÿ
−3∕2|ÿÿ|1∕2. (5.19)

Here the factor ÿ−1 reüects the ÿ∞ error and the bracketed factor is the measure of the support where ÿ and ý differ.
Given the above calculations, we deûne ý(ÿ) ∶= |ÿÿ|1∕2 as the weight of the atom ÿ and use this weight to deûne ý(ý2). The 

proof of Theorem 5.2 now gives

Theorem 5.5. Let ý = 2 and Ω =ý2 and define ý(ÿ) ∶= |ÿÿ|1∕2. Then for any ÿ * ý, we have
ýÿ(ÿ ) ≤ ÿ‖ÿ‖ý(ý2)ÿ

−
5
4 , ÿ ≥ 1, (5.20)

where ÿ is an absolute constant.

6. Approximation in ÿÿ(ý
ý)

We turn now to the case of approximation on the domain Ω =ýý , ý > 2, i.e., Ω is the unit Euclidean ball of ℝý . Recall that each 
atom ÿ = ÿ(⋅; ÿ, ý), satisûes (ÿ, ý) * ý̄(Ω) = ÿý−1 × [−1, 1]. To each atom, we assign the special weight

ý(ÿ, ý) ∶=ý∗(ÿ, ý) ∶= (1 − ý)
1
2
+
ý
4 . (6.1)

From (4.3), we see that this weight is admissible for Ω. Thus, ý is taken to be given by (6.1) throughout this section. One can 
ask where the particular form of the weight comes from. It arises due to the norm of the atoms in ÿ2 and the smoothness of the 
parameterization of the atoms. The effects of these two ingredients will become clear in the details of the proof.

We recall the variation space ý introduced and studied in §4. The main result of this paper is the following theorem

Theorem 6.1. If ÿ * ý = ý(Ω) then
ýÿ(ÿ ) ∶=ýÿ(ÿ )ÿ2(Ω)

≤ ÿ‖ÿ‖ýÿ−
1
2
−

3
2ý , ÿ ≥ 1, (6.2)

where ÿ depends only on ý.

Notice that this theorem gives a stronger result than the previously known results on approximation by shallow neural networks 

with ReLU activation. Indeed, although the approximation rate ÿ(ÿ−
1
2
−

3
2ý ) is the same as known whenever ÿ *  , the assumption of 

membership in ý is a strictly weaker assumption than the membership in the traditional variation space  .
The remainder of this section is devoted to proving Theorem 6.1. The proof is similar, in spirit, to the case ý = 2 which was given 

in Theorem 5.2, but it is quite a bit more technical. Our ûrst goal is to construct certain linear spaces ÿÿ of dimension at most ÿ, 
which can be used to effectively approximate general ReLU atoms. The space ÿÿ will be the span of at most ÿ well chosen atoms from 
(Ω). The choice of the atoms used to deûne ÿÿ would intuitively be gotten by discretizing the unit Euclidean sphere ÿ

ý−1 with 
ÿý−1 uniformly spaced vectors and then and to discretize the offsets in ÿ = [−1, 1] with ÿ points. Here ÿ is chosen so that ÿ ≈ ÿý . 
The discretization of ÿ will not be uniform but instead will be done in such a way that atoms whose support is small, i.e., atoms 
whose associated hyperplane lies near the boundary ÿý−1 of ýý will be very well approximated.

Since there is no natural discretization of ÿý−1 , when ý > 2, we proceed as follows. Let ý ∶=ýý ∶= [−1, 1]ý and ý be a face of 
ý. Each face ý is gotten by setting one of the coordinates, say, coordinate ÿ, equal to either +1 or −1. Given one of these faces ý , 
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we shall use dyadic partitions of ý into ý − 1 dimensional cubes of side length 2−ý . We let ýý(ý ) be the set of all vertices of this 
partition. Thus, the cardinality of ýý(ý ) is (2

ý + 1)ý−1. We deûne ýý to be the union of all of the sets ýý(ý ) as ý runs through the 
2ý faces of ý. This gives a discrete set of points on the boundary of ý with ý∞ spacing 2−ý. To obtain our discrete set of points on 
ÿý−1, we simply renormalize. Namely,

ÿý ∶=

{
ÿ =

ÿ̄

‖ÿ̄‖
∶ ÿ̄ * ýý

}
(6.3)

gives a set of points on the boundary of ýý that are quasi-uniformly spaced in the sense that

ý02
−ý ≤ dist(ÿÿ,ÿý ⧵ {ÿÿ}) ≤ ÿ02

−ý, (6.4)

where the constants1 depend only on ý. After adjusting for redundancy, we see that the cardinality of ÿý is 2ý(2
ý)ý−1. It is important 

to note that

ýý ⊂ ýý+1 and ÿý ⊂ÿý+1, ý ≥ 1. (6.5)

We also want to discretize the offsets ý. For this, we take

ÿÿ ∶= {−1 < ý1 <⋯ < ý2ÿ = 1}. (6.6)

We take the ûrst ÿ of these to be equally spaced in [−1, 0], i.e., ýÿ ∶= −1 + ÿ∕ÿ, ÿ = 1, … , ÿ. For the remainder of these points, we 
take

ýÿ+ÿ ∶= cos
ÿ(ÿ− ÿ)

2ÿ
=∶ cosÿÿ,ÿ, ÿ = 1,… ,ÿ. (6.7)

Notice that the points in ÿÿ have a ûner spacing near one. Concerning this spacing, in going further we will use the fact that for each 
ÿ < ÿ < 2ÿ − 1 and ý * [ýÿ , ýÿ+1] we have

ÿ
√

1 − ý2
ÿ+1

2ÿ
≤ |ýÿ+1 − ýÿ | ≤

ÿ
√

1 − ý2
ÿ

2ÿ
and

√
1 − ý2

ÿ
≤ 2

√
1 − ý2

ÿ+1
≤ 2

√
1 − ý2. (6.8)

To prove this, we note that for ûxed ÿ = ÿ +ÿ, 1 ≤ ÿ <ÿ, we have
|ýÿ+1 − ýÿ | =

ÿ

2ÿ
sin ÿ =

ÿ

2ÿ

√
1 − cos2 ÿ

where ÿ * [ÿÿ+1,ÿ, ÿÿ,ÿ]. This gives the ûrst inequalities in (6.8). The second inequalities are proved similarly. The inequalities in (6.8)

show that for any given ý * [ýÿ , ýÿ+1], ÿ ≤ 2ÿ −2, we have |ýÿ+1− ýÿ | ≈
√
1 − ý2∕ÿ with absolute constants in this comparison. We shall 

use this fact repeatedly.
We now want to deûne the linear space ÿÿ. Consider the set of atoms given by

Φý,ÿ ∶= {ÿ(⋅; ÿ, ý), ÿ *ÿý, ý * ÿÿ}. (6.9)

This is a set of at most 4ýÿ(2ý)ý−1 ReLU atoms. We choose ý as the largest integer such that 4ý2ý(2ý)ý−1 ≤ ÿ and then take ÿ = 2ý. 
Then, Φÿ ∶= Φý,ÿ is a set of at most ÿ atoms. We deûne ÿÿ as the linear space

ÿÿ ∶= span(Φÿ). (6.10)

Then, ÿÿ is a linear space of dimension at most ÿ.
We caution the reader that for the remainder of this paper, the integer ÿ is always taken of the form ÿ = 4ýÿý , where ÿ = 2ý. It 

is enough to prove our approximation results for these ÿ.
We now proceed to show that any atom ÿ ∶= ÿ(⋅; ÿ, ý) from (Ω) can be well approximated by an element of the linear space ÿÿ . 

We ûx ÿ, ý and ÿ. The approximation result we prove is given in the following theorem.

Theorem 6.2. For any (ÿ, ý) * ý̄(Ω) = ÿý−1 × [−1, 1], there is an element ý = ýÿ *ÿÿ such that

‖ÿ− ý‖ÿ2(Ω)
≤ ÿý(ÿ)ÿ− 3

2ý , (6.11)

with the constant ÿ depending only on ý.

The proof of this theorem is a bit technical and given in the next subsection. After proving this theorem we prove Theorem 6.1. 
In the constructions given below there are two important constants ý and ÿ which depend only on ý. It will be useful to the reader 

1 In this paper, all constants depend only on ý and may change from line to line. We use ý for small constants and ÿ for large constants, sometimes with subscripts.
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if we explain their role and their deûnition. To prove Theorem 6.2, we are presented with an atom ÿ(ý) = (ÿ ⋅ ý − ý)+ and need to 
construct an element ý *ÿÿ that approximates ÿ to the given accuracy. From the deûnition of ÿÿ, the function ý will take the form

ý =

ÿ∑

ÿ=1

ÿÿÿÿ , (6.12)

where the ÿÿ are the atoms ÿÿ (ý) = (ÿÿ ⋅ ý − ÿÿ )+ used to deûne ÿÿ, where ÿÿ = ýÿ(ÿ). The function ý that we construct to provide the 
approximation will agree with ÿ except on a certain set of small measure. The only atoms active in the deûnition of ý, i.e., which have 
nonzero coefficients, will satisfy ‖ÿ − ÿÿ‖ ≤ ý

ÿ
, with ý ≥ 2 a ûxed integer constant depending only on ý. The size of ý is determined 

by the proof of Lemma 6.6 which is formulated later in this section and then proved in the Appendix. Hence, in going forward, we 
can consider ý arbitrary but ûxed and ý depending only on ý to be ûxed as well.

The constant ÿ is an integer which is chosen in the proof of Lemma 6.5. We will only have to consider values of ý such that 
ý ≤ ý2ÿ−ÿ. This restriction can be applied on ý because of the following remark.
Remark 6.3. Let us note and record the following:
(i) If ý ≥ ý2ÿ or even ý ≥ ýÿ′ with ÿ′ = 2ÿ −ÿ with ÿ a ûxed integer, then for any atom ÿ(⋅; ÿ, ý) the statement (6.11) holds by simply 
taking ý = 0 and using the estimate (4.3) for the norm of the atom.
(ii) If ý ≤ ÿ < 1 with ÿ ûxed then the weight ý(ÿ, ý) ≥ ý. In this case, the existence of a space ÿÿ spanned by ÿ atoms that provides 
the estimate (6.11) was given in [40]. While our space ÿÿ is deûned differently (we use a different discretization of the offsets ý), the 
proof in this case is simpler and we exclude this case going forward.
(iii) If ÿ is one of the discrete vectors from ÿý , then the proof of the existence of a ý for which (6.11) is quite simple. Indeed, one 
can take ý = ÿÿ(⋅; ÿ, ýÿ) + (1 − ÿ)ÿ(⋅; ÿ, ýÿ+1) where ýÿ is the closest discrete offset to ý and ÿ is chosen so that ÿýÿ + (1 − ÿ)ýÿ+1 = ý.

In the proof of (6.11) we only need to provide a proof in the case that none of the special cases (i-iii) holds.

6.1. The proof of Theorem 6.2

Obviously, we only need to prove the theorem for ÿ sufficiently large, say ÿ ≥ ÿ∗ where ÿ∗ depends on ý. The integer ÿ∗ will 
be speciûed as we go along. Because of Remark 6.3 we only need to prove the theorem in the case 1∕2 < ý ≤ ýÿ−ÿ, where ÿ is a ûxed 
integer depending only on ý. Again, we shall specify ÿ as we proceed in the proof. Similarly, we can assume ÿ is not in ÿý. We ûx 
such an ÿ * ÿý−1 and such a ý throughout this subsection.

We deûne

ÿ+ ∶= {ý ∶ ÿ ⋅ ý ≥ ý} and ÿ− ∶= {ý ∶ ÿ ⋅ ý < ý}. (6.13)

So ÿ is identically zero on ÿ− and the linear function ÿ ⋅ ý − ý on ÿ+. For any one of the vectors ÿÿ appearing in the set ÿý and any 
given a ýÿ * ÿÿ, we similarly deûne

ÿ+
ÿ
∶=ÿÿ (ÿÿ) ∶= {ý *Ω ∶ ÿÿ ⋅ ý ≥ ýÿ}, ÿ−

ÿ ∶=ÿ−
ÿ (ÿÿ) ∶= {ý *Ω ∶ ÿÿ ⋅ ý < ýÿ}. (6.14)

Given ÿÿ, we want to choose a ýÿ with ÿ ≤ 2ÿ − 1 (depending on ÿ) that is close to ý and so that ÿ+
ÿ
is a subset of ÿ+. This is 

always possible whenever ‖ÿ − ÿÿ‖ ≤ý∕ÿ and ý ≤ ýÿ−ÿ and ÿ is sufficiently large (depending only on ý). One such choice for ýÿ is to 
take

ý+
ÿ
∶= ý+(ÿÿ) ∶= min{ýÿ * ÿÿ ∶ÿ+

ÿ
⊂ÿ+}. (6.15)

If ý+
ÿ
= ýÿ , we let

ý̃ÿ ∶= ýÿ+1. (6.16)

Then, we will also have ÿ+
ÿ+1

⊂ÿ+.

We now proceed to proving Theorem 6.2. We begin by recalling the following fact.

Lemma 6.4. If ÿ, ÿ′ * ÿý−1 with ‖ÿ − ÿ′‖ = ÿ, then we have

ÿ ⋅ ÿ′ = 1 − ÿ2∕2. (6.17)

Proof. By rotation, we can assume ÿ = ÿ1 = (1, 0, … , 0) and ÿ′ = ÿÿ1 + ÿ where ÿ is orthogonal to ÿ1 and ‖ÿ‖2 = 1 − ÿ2. Therefore,

ÿ2 = (1 − ÿ)2 + ‖ÿ‖2 = 2 − 2ÿ = 2 − 2ÿ ⋅ ÿ′

and so (6.17) follows. □

The last lemma allows us to compare ý+
ÿ
with ý.
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Lemma 6.5. Given the integer ý, we define

ÿ ∶= (ý+ 1)2 =ý2 + 2ý+ 1. (6.18)

If ÿ∗ is sufficiently large, depending only on ý and ÿ ≥ÿ∗, then whenever ý * [1∕2, ý2ÿ−ÿ] and ‖ÿ− ÿÿ‖ ≤ ý

ÿ
, then ý+

ÿ
and ý̃ÿ are well defined, 

and we have

ý ≤ ý+
ÿ
≤ ý̃ÿ ≤ ý+ ÿ1

ÿ

√
1 − ý2, (6.19)

where ÿ1 depends only on ý.

Proof. Consider ûrst the existence of ý+
ÿ
, ̃ýÿ. It is enough to show that if ý ≤ ý2ÿ−ÿ, and ÿÿ satisûes ‖ÿ−ÿÿ‖ ≤ ý

ÿ
, then there is a ÿ ≤ 2ÿ −2

such that ÿ+
ÿ
⊂ÿ+. Suppose that ÿ is such that ýÿ ≥ ý but ÿ+

ÿ
is not contained in ÿ+. Then, there is an ý = ýÿÿÿ + ÿ with ÿ orthogonal 

to ÿÿ and ‖ÿ‖ ≤
√

1 − ý2
ÿ
and

ý ⋅ ÿ = ýÿÿ ⋅ ÿÿ + ÿ ⋅ (ÿ − ÿÿ) < ý.

From Lemma 6.4, we know that ÿ ⋅ ÿÿ ≥ 1 − ý2

ÿ2 and so we must have

(
1 −

ý2

ÿ2

)
ýÿ ≤ ý+ ‖ÿ − ÿÿ‖

√
1 − ý2

ÿ
≤ ý+ ý

ÿ

√
1 − ý2

ÿ
. (6.20)

That is, we must have

ýÿ ≤ ý+ ý

ÿ

√
1 − ý2

ÿ
+
ý2

ÿ2
≤ ý2ÿ−ÿ +

ý

ÿ

√
1 − ý2

ÿ
+
ý2

ÿ2
. (6.21)

If we write ÿ = 2ÿ − ý, and use the deûnition of the ýÿ (see (6.7)) we can rewrite (6.21) as

cos
ÿý

2ÿ
− cos

ÿÿ

2ÿ
≤ ý

ÿ
sin

ÿý

2ÿ
+
ý2

ÿ2
≤ ÿýý

2ÿ2
+
ý2

ÿ2
≤ ý2 + 2ýý

ÿ2
. (6.22)

The left side of (6.22) is larger than ý(ÿ−ý)
ÿ2 and so we see with the above deûnition of ÿ, (6.22) is violated when ý = 2. This proves 

that ý+
ÿ
and ý̃ÿ are well deûned.

We turn now to proving (6.19). First note that if there is ÿ * {ÿ + 1, … , 2ÿ} such that ÿ+
ÿ
⊂ÿ+, then we must have ýÿÿÿ ⋅ ÿ ≥ ý

which gives the left inequality in (6.19). To prove the right inequality in (6.19), we let ý+
ÿ
= ýÿ , ý̃ÿ = ýÿ+1. It follows from the minimality 

in the deûnition of ý+
ÿ
that we must have ÿ+

ÿ−1
is not contained in ÿ+. Thus, the inequality (6.20) holds with ÿ replaced by ÿ − 1. 

This gives
(
1 −

ý2

ÿ2

)
ýÿ−1 ≤ ý+ ‖ÿ − ÿÿ‖

√
1 − ý2

ÿ−1
≤ ý+ 2ý

ÿ

√
1 − ý+

ÿ

2
, (6.23)

where the last inequality uses (6.8). From (6.8), we also have

ýÿ ≤ ýÿ−1 + (ýÿ − ýÿ−1) ≤ ýÿ−1 + ÿ

ÿ

√
1 − ý2

ÿ
.

If we multiply both sides of this last inequality by (1 − ý2

ÿ2 ) and use (6.23) we obtain

(
1 −

ý2

ÿ2

)
ý+
ÿ
≤ ý+ 2(ý+ 2)

ÿ

√
1 − ý2,

where we used that ý+
ÿ
≥ ý. We also have ý̃ÿ ≤ ý+

ÿ
+

ÿ

2ÿ

√
1 − ý2 because of (6.8). When these facts are used in the last inequality we 

obtain the right inequality in (6.19). □

Now consider any ÿ * ÿý−1 and deûne

ÿý(ÿ) ∶=
{
ÿÿ *ÿý ∶ ‖ÿ − ÿÿ‖ ≤ ý

ÿ

}
and ý+ ∶= ý+(ÿ) ∶= max

ÿÿ*ÿý(ÿ)
ý+
ÿ
. (6.24)

We can write ý+
ÿ
= ýÿ for some ÿ ≤ 2ÿ − 1 and deûne ý̃ ∶= ý̃(ÿ) ∶= ýÿ+1. From the previous lemma, we know that

ý ≤ ý+ ≤ ý̃ ≤ ý+ ÿ1

ÿ

√
1 − ý2, (6.25)

where ÿ1 depends only on ý.
For the construction of ý, we use the following lemma.
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Lemma 6.6. There is a constant ÿ∗ depending only on ý such that the following holds. Given any ÿ ≥ ÿ∗ and any ÿ * ÿý−1 and any 
1∕2 ≤ ý ≤ ý2ÿ−ÿ, there exists (ÿ+ÿ ), (ÿ̃ÿ) such that
(i) ÿ =

∑
ÿÿ*ÿý(ÿ)

ÿ+
ÿ
ÿÿ +

∑
ÿÿ*ÿý(ÿ)

ÿ̃ÿÿÿ,

(ii) ý+
∑
ÿÿ*ÿý(ÿ)

ÿ+
ÿ
+ ý̃

∑
ÿÿ*ÿý(ÿ)

ÿ̃ÿ = ý,

(iii) 
∑
ÿÿ*ÿý(ÿ)

|ÿ+
ÿ
| +∑

ÿÿ*ÿý(ÿ)
|ÿ̃ÿ| ≤ ÿ1, where ÿ1 depends only on ý.

The proof of this lemma is technical and so we place it in the Appendix so as not to interrupt the üow of the proof of Theorem 6.2.
We deûne the following function ý which will be used to approximate ÿ = ÿ(⋅; ÿ, ý) in the case 1∕2 ≤ ý ≤ ý2ÿ−ÿ

ý(ý) ∶=
∑

ÿÿ*ÿý(ÿ)

[ÿ+
ÿ
(ÿÿ ⋅ ý− ý

+)+ + ÿ̃ÿ(ÿÿ ⋅ ý− ý̃)+] (6.26)

where the coefficients come from Lemma 6.6. The functions appearing in the representation of ý are all in ÿÿ and therefore ý is also 
in ÿÿ. From Lemma 6.6, we obtain

ÿ(ý) − ý(ý) =

[
∑

ÿÿ*ÿý(ÿ)

ÿ+
ÿ
(ÿÿ ⋅ ý− ý

+) + ÿ̃ÿ(ÿÿ ⋅ ý− ý̃)

]

+

−
∑

ÿÿ*ÿý(ÿ)

[ÿ+
ÿ
(ÿÿ ⋅ ý− ý

+)+ + ÿ̃ÿ(ÿÿ ⋅ ý− ý̃)+] (6.27)

Before bounding the error in approximating ÿ by ý, let us make some remarks to motivate the idea of how to estimate this error. 
Notice that if ý * Ω is such that ÿÿ ⋅ ý ≥ ý̃ for all ÿÿ *ÿý(ÿ), then ý is also in ÿ

+ and so ý(ý) = ÿ(ý). Similarly, if ý * ÿ− then 
ÿ(ý) = ý(ý) = 0. This means that the only points ý *Ω where ÿ(ý) ≠ ý(ý) must be in one of the sets

Ω̃ÿ ∶= {ý *Ω ∶ ÿ ⋅ ý > ý, ÿÿ ⋅ ý ≤ ý̃}. (6.28)

We will now proceed to bound the measure of each of these sets and also bound the error |ÿ(ý) − ý(ý)| on each of these sets.

Lemma 6.7. There are constants ÿ and ÿ∗ depending only on ý such that the following holds for ÿ ≥ÿ∗ and any 1∕2 ≤ ý ≤ ý2ÿ−ÿ:
(i) If ý * Ω̃ ∶=

⋃
ÿÿ*ÿý(ÿ)

Ω̃ÿ, then

|ÿ(ý) − ý(ý)| ≤ ÿ√1 − ý2∕ÿ. (6.29)

(ii) The measure of Ω̃ is bounded by

|Ω̃|ý ≤ ÿ(1 − ý2)ý∕2∕ÿ. (6.30)

Proof. From Lemma 6.5 we have that

ý ≤ ý+ ≤ ý̃ ≤ ý+ÿ1

√
1 − ý2

ÿ
, ÿ = 1,… ,ý (6.31)

where ÿ1 depends only on ý. Now, for any ûxed ÿ consider any ý * Ω̃ÿ. Our goal is to estimate the distance from ý to the hyperplane 
ÿ ∶= {ÿ ∶ ÿ ⋅ ÿ = ý}. From the deûnition of ÿý(ÿ), we have ‖ÿ − ÿÿ‖ ≤ý∕ÿ. Since ÿ ∶= ý ⋅ ÿ > ý, we can write

ý = ÿÿ + ÿ, (6.32)

where ÿ is orthogonal to ÿ and

‖ÿ‖ ≤√
1 − ÿ2 ≤√

1 − ý2. (6.33)

We want to show that ÿ cannot be too large. Since ý * Ω̃ÿ, we know that

(ý ⋅ ÿÿ) = ÿÿ ⋅ ÿÿ + ÿ ⋅ ÿÿ ≤ ý̃, (6.34)

and

|ÿ ⋅ ÿÿ| = |ÿ ⋅ (ÿÿ − ÿ)| ≤ý
√
1 − ý2

ÿ
. (6.35)

Using the inequality ÿ ⋅ ÿÿ ≥ 1 −ý2∕ÿ2 (see Lemma 6.4) and (6.35) back in (6.34), we obtain

(1 −ý2ÿ−2)ÿ ≤ ý̃+ý
√
1 − ý2

ÿ
≤ ý+ÿ1

√
1 − ý2

ÿ
+ý

√
1 − ý2

ÿ
, (6.36)

where the last inequality used (6.31). Going further, we note that since by assumption ý ≤ ý2ÿ−ÿ, we have

(1 −ý2ÿ−2)−1 ≤ 1 + 2ýÿ−2 ≤ 1 + 2ý

√
1 − ý2

ÿ
.
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Using this estimate back in (6.36), we arrive at

ÿ ≤ ý+ÿ2

√
1 − ý2

ÿ
, (6.37)

with ÿ2 depending only on ý. It is important to note that this bound is independent of ÿ. Therefore any point ý in Ω̃ can be written as 

ý = ÿÿ + ÿ where ÿ satisûes (6.37) and ‖ÿ‖ ≤√
1 − ý2. The measure of the set of such ÿ is ≤ ÿ3[

√
1 − ý2]ý−1. Hence, we have proven 

(ii).
The inequality (6.37) also shows that

ÿ(ý) ≤ ÿ2

√
1 − ý2

ÿ
, ý * Ω̃. (6.38)

Since the functions appearing in the sum for ý are all smaller than ÿ from (iii) of Lemma 6.6 we conclude that

|ý(ý)| ≤ ÿ3

√
1 − ý2

ÿ
, ý * Ω̃. (6.39)

This proves (i) and concludes the proof of the lemma. □

Proof of Theorem 6.2. According to Remark 6.3, we only need to consider the case ÿ = ÿ(⋅; ÿ, ý) when 1∕2 ≤ ý < ý2ÿ−ÿ. We return 
to our representation (6.27). As already mentioned ÿ(ý) = ý(ý) outside the set Ω̃. From Lemma 6.7 it follows that

‖ÿ− ý‖ÿ2(Ω)
≤ ÿ|Ω̃|1∕2

ý

√
1 − ý2

ÿ
≤ ÿý(ÿ)ÿ−3∕2. (6.40)

Since ÿý ≥ ýýÿ, we have completed the proof of Theorem 6.2. □

6.2. Proof of Theorem 6.1

We can now prove Theorem 6.1 in the same way we proved the case ý = 2. Let ÿ be any ûxed function from ý(Ω). According 
to the deûnition of ý(Ω), for ý sufficiently large, there is an ÿ * Σý with ÿ =

∑ý
ÿ=1 ÿÿÿÿ such that

‖ÿ −ÿ‖ÿ2(Ω)
≤ýÿ

−
1
2
−

3
2ý and

ý∑

ÿ=1

ý(ÿÿ )|ÿÿ | ≤ ‖ÿ‖ý =∶ý. (6.41)

For each ÿ, let ýÿ *ÿÿ approximate the function ÿÿ appearing in the representation of ÿ according to Theorem 6.2. That is, we have

‖ÿÿ − ýÿ‖ÿ2(Ω)
≤ ÿý(ÿÿ )ÿ− 3

2ý , (6.42)

with ÿ depending only on ý. The function ý ∶=
∑ý
ÿ=1 ÿÿýÿ is in ÿÿ and hence in Σÿ. We write

ÿ = ÿ − ÿ + ℎ+ ý, ℎ ∶= ÿ − ý =

ý∑

ÿ=1

ÿÿ [ÿÿ − ýÿ ]. (6.43)

Therefore,

ý3ÿ(ÿ ) ≤ýÿ
−

1
2
−

3
2ý +ý2ÿ(ℎ). (6.44)

To bound ý2ÿ(ℎ), we consider the dictionary ′ = {ÿÿ}
ý
ÿ=1

with ÿÿ ∶=ý(ÿÿ )
−1(ÿÿ − ýÿ ). According to Theorem 6.2 each ÿÿ has 

ÿ2(Ω) norm at most ÿÿ−
3
3ý and ℎ =

∑ý
ÿ=1 ýÿÿÿ with 

∑ý
ÿ=1 |ýÿ | ≤ý . It follows from Maurey’s Theorem (see (4.15)) that ℎ can be 

approximated by a sum ÿ of ÿ terms from the dictionary ′ with error

‖ℎ− ÿ ‖ÿ2(Ω)
≤ ÿýÿ

−
3
2ý ÿ−1∕2 = ÿýÿ

1
2
−

3
2ý . (6.45)

The function ÿ is a sum of at most 2ÿ terms from the original dictionary . Hence,
ý2ÿ(ℎ) ≤ ÿýÿ

−
1
2
−

3
2ý . (6.46)

If we place this inequality back into (6.44), we obtain

ý3ÿ(ÿ ) ≤ ÿýÿ
−

1
2
−

3
2ý , (6.47)

and the theorem follows. □
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Remark 6.8. If we consider Ω =ýý in place of ýý then for the weight ý(ÿ(⋅; ÿ, ý)) = |ÿÿ|1∕2 where |ÿÿ| is the (ý − 1)-dimensional 
measure of the intersection ýý ∩ÿÿ, we obtain

ýÿ(ÿ )ÿ2(ý
ý ) ≤ ÿÿ− 1

2
−

3
2ý ‖ÿ‖ý , ÿ * ý. (6.48)

We do not give the proof which follows along the lines of the case ý = 2 given in §5.2.

7. Concluding remarks

The main theme of this paper was to introduce, for a bounded domain Ω ⊂ℝ
ý , new model classes ý ∶= ý((Ω)), called weighted 

variation spaces, and to prove bounds on how well functions in these classes can be approximated by a linear combination of ÿ terms 
of the ReLU dictionary (Ω). That is, we provided bounds on the error ýÿ(ÿ )ÿ2(Ω)

in approximating ÿ * ý(Ω) in the ÿ2(Ω) norm 
by the elements of Σÿ ∶= Σÿ((Ω)) where Σÿ is the nonlinear manifold of functions ý that are a linear combination of ÿ elements 
of the ReLU dictionary. We showed that for certain choices of the weight ý (dependent on Ω) the functions in these new model 
classes have the same approximation rate as those in the classical variation spaces (Ω). Since ý is strictly larger than the classical 
variation spaces  ∶= (Ω), this gives stronger results on ÿ-term ReLU approximation than those in the literature. Thus, these new 
model classes ý are important in trying to understand which functions are well approximated by Σÿ .

A natural follow-up question would be to then consider the problem of learning from data generated from the samples of a 
function from ý, in both the noiseless and noisy settings. In the literature, the former is referred to as optimal recovery and the latter 
is referred to as minimax estimation. For the classical variation spaces, the minimax estimation rates have been determined [33]. On 
the other hand, the optimal recovery rates are currently unknown. Once the data sites are ûxed, it is well-known that the procedure 
for optimal recovery takes the form of solving a regularized least-squares problem over the model class [4]. Theorem 7.1 below 
motivates a numerical method (posed as a neural network training problem) to investigate the problem of optimal recovery (as well 
as for minimax estimation for ý).

Assume that ý ≥ 2 and Ω =ýý in the sequel. Then, ý̄(Ω) = ÿý−1 × [−1, 1]. Let ý be any admissible weight function in the sense of 
(4.9) and let ý be the weighted dictionary deûned in (4.10). We use the results and notation of §4 in going forward. In particular, 
the functions in ý ∶= ý(Ω) all take the form (see (4.11))

ÿ̃ÿ ∶= ∫
ý̄(Ω)

ÿ̃(⋅; ÿ, ý)ýÿ and ‖ÿ̃ÿ‖ý(Ω) = ‖ÿ‖. (7.1)

Consider the following data-ûtting problem. Suppose that ýÿ , ÿ = 1, … , ÿ, are points from the interior of Ω and ÿÿ, ÿ = 1, … , ÿ, are 
real numbers. The data-ûtting problem

inf
ÿ*ý(Ω)

ÿ∑

ÿ=1

|ÿÿ − ÿ (ýÿ)|2 + ÿ‖ÿ‖ý , (7.2)

with ÿ > 0 is equivalent to the data-ûtting problem

inf
ÿ*(ý̄(Ω))

ÿ∑

ÿ=1

|ÿÿ − ÿÿ(ýÿ)|2 + ÿ‖ÿ‖ , (7.3)

in the sense that their inûmal values are the same and if ÿ⋆ is a minimizer of (7.3), then ÿÿ∗ is a minimizer of (7.2). Note that 
the minimization problem (7.2) does not depend on the ambient space ÿ2(Ω) in which we measure error of performance for the 
approximation problem. An important property of the weighted variation spaces is that solutions to data-ûtting problems over this 
model class admit ûnite-parameter representations as neural networks. This is summarized in the next theorem.

Theorem 7.1. Suppose that ý is an admissible weight function and the {ýÿ}
ÿ
ÿ=1

lie in the interior of Ω. Then, there exists a solution ÿ∗ to 
(7.2) that takes the form of a shallow ReLU network

ÿ⋆(ý) =

ÿ∑

ÿ=1

ÿÿÿ(ý; ÿÿ , ýÿ ) =

ÿ∑

ÿ=1

ÿÿ (ÿÿ ⋅ ý− ýÿ )+, (7.4)

where the number of atoms satisfies ÿ ≤ ÿ, {ÿÿ}
ÿ
ÿ=1

⊂ ℝ ⧵ {0}, and {(ÿÿ , ýÿ )}
ÿ
ÿ=1

⊂ ý̄(Ω) are data-dependent and not known a priori. 

Furthermore, the regularization cost is ‖‖ÿ⋆‖‖ý =
∑ÿ
ÿ=1ý(ÿÿ , ýÿ )|ÿÿ |.

Proof. Let ÿ(ý̄(Ω)) denote the space of real valued functions on ý̄(Ω). This is a Banach space when equipped with the ÿ∞-norm. By 
the Riesz–Markov–Kakutani representation theorem [16, Chapter 7], the dual of ÿ(ý̄(Ω)) can be identiûed with the space of signed 
Radon measures  ∶=(ý̄(Ω)). It is well-known that the extreme points of the unit ball

{ÿ * ∶ ‖ÿ‖ ≤ 1} (7.5)

are the Dirac measures ±ÿ(ÿ,ý), (ÿ, ý) * ý̄(Ω) (see, e.g., [9, Proposition 4.1]).
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Next, for ÿ = 1, … , ÿ, we introduce the functions

ℎÿ(ÿ, ý) ∶= ÿ̃(ýÿ; ÿ, ý) =
ÿ(ýÿ; ÿ, ý)

ý(ÿ, ý)
, (ÿ, ý) * ý̄(Ω). (7.6)

We can rewrite (7.3) as

inf
ÿ*

ÿ∑

ÿ=1

|ÿÿ − ïÿ,ℎÿð|2 + ÿ‖ÿ‖ , (7.7)

where ï⋅, ⋅ð denotes the duality pairing between ÿ(ý̄(Ω)) and . Since the functions ℎÿ, ÿ = 1, … , ÿ, are in ÿ(ý̄(Ω)), the mappings 
ÿ↦ ïÿ, ℎÿð are weak∗ continuous [36, Theorem IV.20, p. 114]. This shows that the hypothesis of the abstract representer theorem [8,
9,42] are satisûed. That theorem shows that there exists a solution to (7.7) that takes the form of a linear combination of the extreme 
points of the unit regularization ball. Thus, there exists a solution that takes the form

ÿ⋆ =

ÿ∑

ÿ=1

ýÿÿ(ÿÿ ,ýÿ ), (7.8)

where the number of atoms satisûes ÿ ≤ ÿ, {ýÿ}
ÿ
ÿ=1

⊂ℝ ⧵ {0}, and {(ÿÿ , ýÿ )}
ÿ
ÿ=1

⊂ ý̄(Ω) are distinct, data dependent, and not known 

a priori. Clearly ‖ÿ⋆‖ =
∑ÿ
ÿ=1 |ýÿ |.

From the equivalence between (7.2) and (7.7), we see that the function

ÿÿ⋆ = ∫
ý̄(Ω)

ÿ̃(⋅; ÿ, ý)ýÿ⋆(ÿ, ý) =

ÿ∑

ÿ=1

ýÿ

ý(ÿÿ , ýÿ )
ÿ(ý; ÿÿ , ýÿ ) (7.9)

is a minimizer of (7.2). The theorem follows by the substitution ÿÿ ∶= ýÿ∕ý(ÿÿ , ýÿ ). □

We have not indicated the fact that the solution (7.9) to the data-ûtting problem depends on ÿ. If we let ÿ tend to zero then the 
solutions converge to a minimum-norm interpolant ÿ # of the data

ÿ # * argmin{‖ÿ‖ý ∶ ÿ (ýÿ) = ÿÿ, ÿ = 1,… ,ÿ}. (7.10)

In which case, there always exists an ÿ # that has a representation

ÿ # =

ÿ∑

ÿ=1

ÿ#ÿÿ(ý; ÿ
#
ÿ , ý

#
ÿ ), (7.11)

with ÿ ≤ÿ.
The theorem statement also holds when the ûrst term in the objective in (7.2) is replaced by any loss function (⋅, ⋅) which is 

lower semi-continuous (see [31, Proof of Theorem 3.2]). In neural network parlance, the ÿÿ are referred to as the input weights, the ÿÿ
are referred to as the output weights and the ýÿ are referred to as the biases. Observe that the norm of a single neuron ÿ(⋅; ÿ, ý), where 
ÿ *ℝ

ý and ý *ℝ, takes the form

‖ÿ(⋅; ÿ, ý)‖ý = ‖ÿ‖ý
(

ÿ

‖ÿ‖ ,
ý

‖ÿ‖

)
, (7.12)

where we took advantage of the fact that the ReLU is positively homogeneous of degree 1. In this form, the input weights are not 
restricted to be unit norm. Theorem 7.1 then implies that a solution to the variational problem in (7.2) can be found by training a 
sufficiently wide (ûxed width ÿ ≥ ÿ) neural network to a global minimizer with an appropriate regularization term. This follows, in 
particular, by ûnding a solution to the neural network training problem

min
ÿ

ÿ∑

ÿ=1

|ÿÿ − ÿÿ(ýÿ)|2 + ÿ
ÿ∑

ÿ=1

|ÿÿ |‖ÿÿ‖ý
(

ÿÿ

‖ÿÿ‖
,
ýÿ

‖ÿÿ‖

)
, (7.13)

where

ÿÿ(ý) =

ÿ∑

ÿ=1

ÿÿÿ(ý; ÿÿ , ýÿ ) =

ÿ∑

ÿ=1

ÿÿ (ÿÿ ⋅ ý− ýÿ )+ (7.14)

is a shallow ReLU neural network and ÿ = (ÿÿ , ÿÿ , ýÿ )
ÿ
ÿ=1

denotes the neural network parameters and ÿ ≥ ÿ. When ÿ is chosen to be 

sufficiently small, the estimator ÿ
ÿ̃
achieves the optimal recovery rate for the model class ý , where ÿ̃ is any minimizer of (7.13) [4].

When ý is the weight speciûed in (6.1) (which satisûes the hypotheses of Theorem 7.1), the resulting regularizer takes the form

ÿ∑

ÿ=1

|ÿÿ |‖ÿÿ‖
(
1 −

ýÿ

‖ÿÿ‖

) 1
2
+
ý
4

(7.15)
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This is a new regularizer for training neural networks which directly penalizes the biases. If we assume the data sites {ýÿ}
ÿ
ÿ=1

are 
drawn i.i.d. uniformly on ýý , then this penalization reüects the volume of the subset of ýý where the neuron is <active= (nonzero 
output). This suggests a new, data-adaptive regularization scheme in which the penalty on a given neuron is proportional to the 
number of data in its support. This regularizer should be contrasted with the unweighted case in which the regularizer takes the form

ÿ∑

ÿ=1

|ÿÿ |‖ÿÿ‖, (7.16)

which is sometimes referred to as the path-norm [28] of the neural network. Remarkably, path-norm regularization is equivalent to 
the common procedure of training a neural network with weight decay [21] which corresponds to a regularizer of the form

1

2

ÿ∑

ÿ=1

|ÿÿ |2 + ‖ÿÿ‖2. (7.17)

We refer the reader to [32] for more details about this equivalence. The new regularizer in (7.15) requires further study in both 
theory and practice.

7.1. Open problems

The results presented in this paper open the door to several new research directions.

(i) We have shown that the classical variation space (Ω) is not the approximation space ÿ =ÿ(ÿ2(Ω)), ÿ =
1

2
+

3

2ý
, since the 

(strictly larger) weighted variation space ý(Ω) admits the same ÿ-term approximation rate with shallow ReLU networks. Thus, 
the results of this paper bring us one step closer to characterizing the approximation space ÿ , ÿ = 1

2
+

3

2ý
. Future work will be 

devoted to ûnding a characterization of this approximation space.
(ii) The results of this paper only consider ÿ2-approximation. We conjecture that the same rates hold for weighted variation spaces 

for all ÿý, 1 ≤ ý ≤∞, where now the admissibility condition on the weights will depend on ý. That is to say, for each 1 ≤ ý ≤∞, 

there exists a weight function ý∗
ý such that the optimal rate ÿ

−
1
2
−

3
2ý is achieved.

(iii) The determination of the optimal recovery rates and minimax estimation rates for ý is a natural follow-up research direction. 
Theorem 7.1 and (7.13) provide a numerical method (posed as a neural network training problem) whose solutions are known 
to achieve the optimal recovery rate. A characterization of this rate is has not been determined, even in the unweighted scenario.

(iv) The weighted variation spaces motivates a new form of data-adaptive regularization for neural networks. Theoretical and experi-
mental comparisons of this new form of regularization compared with more conventional regularization techniques is a direction 
of future work. Furthermore, extensions of this regularizer to deep neural networks is also a direction of future work.

Appendix A

In this appendix, we prove Lemma 6.6. We let ÿ be arbitrary but ûxed throughout this section. We begin by recalling some well 
known results on the representation of points ý in a cube ý ⊂ℝ

ý in terms of the vertices of ý. Given any cube ý ⊂ℝ
ý , we let ý (ý)

denote its set of vertices. Let us ûrst consider the case ý = ý where ý ∶=ýý ∶= [0, 1]ý . We denote the vertices in ý (ý ) by ÿ. So ÿ is 
a vector with ý components ÿ = (ÿ1, … , ÿý ) with each ÿÿ * {0, 1}. There are 2ý such ÿ.

Let

ý0(ý) ∶= (1 − ý) ý1(ý) = ý, ý *ℝ. (A.1)

For each ÿ * ý , we deûne

ýÿ(ý) ∶=

ý∏

ÿ=1

ýÿÿ
(ýÿ ), ý = (ý1,… , ýý ) *ý. (A.2)

Then, ýÿ(ÿ
′) = 0, ÿ′ ≠ ÿ and ýÿ(ÿ) = 1. Any ý *ý is represented as

ý =
∑

ÿ*ý

ýÿ(ý)ÿ. (A.3)

This is a convex representation in that the coefficients ýÿ(ý) * [0, 1], ÿ * ý (ý ), and they sum to one.
Now consider an arbitrary cube ý ⊂ℝ

ý . We can write ý = ÿ + ÿ[0, 1]ý = ÿ + ÿý with ÿ > 0. This cube has vertices ÿ + ÿÿ, ÿ * ý . 
Any point ý = ÿ + ÿÿ, ÿ *ý , from this cube, has the representation

ý = ÿ+ ÿ
∑

ÿ*ý

ýÿ(ÿ)ÿ =
∑

ÿ*ý

ýÿ(ÿ)[ÿ+ ÿÿ], (A.4)

because 
∑
ÿ*ý ýÿ(ÿ) = 1. Again this is the representation of ý as a convex combination of the vertices ý (ý) of ý. Let us note that here 

we are taking ÿ as the smallest vertex of ý. We can derive a similar decomposition by starting with any other vertex of ý.
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We use the above to ûnd a variety of representations of any ý on the boundary of the cube ýý ∶= [−1, 1]ý . Later, we shall apply 
these representations to ý = ÿ̄ and subsequently to ÿ * ÿý−1. Let ý be in the face ý of ýý . We assume that the ý − 1 dimensional 
face ý of ýý corresponds to ý1 = 1. We will derive representations for points ý * ý . Similar representations hold for any of the other 
faces of ýý .

Any ý * ý takes the form ý = (1, ý̃) with ý̃ * [−1, 1]ý−1. Suppose now that ý is any ý − 1 dimensional cube on ý , i.e., ý consist 
of points (1, ý̃) where ý̃ is in a ý −1 dimensional cube ý̃. From the above, we can write ý̃ = ÿ̃+ ÿÿ, ÿ *ýý−1, where ÿ̃ is the smallest 
vertex of ý. Therefore, we have

ý̃ = ÿ̃+ ÿÿ = ÿ̃+ ÿ
∑

ÿ*ý (ýý−1)

ýÿ(ÿ)ÿ =
∑

ÿ*ý (ýý−1)

ýÿ(ÿ)[ÿ̃+ ÿÿ] =
∑

ÿ*ý (ý̃)

ÿÿÿ, (A.5)

where the ÿ are the vertices of ý̃ and

ÿÿ = ýÿ(ÿ), when ÿ = ÿ̃+ ÿÿ. (A.6)

This is a representation of ý̃ as a convex combination of the vertices ý (ý̃).

We turn now to representations of ÿ * ÿý−1. We write ÿ = ÿ̄

‖ÿ̄‖ where ÿ̄ lies on the boundary of ý
ý = [−1, 1]ý . We assume ÿ̄ lies on 

the face ý corresponding to ûrst coordinate equal to one. All other cases are handled similarly. We write ÿ̄ = (1, ý̃) with ý̃ * [−1, 1]ý−1

and use the representations of ý̃ given above. Recall the discrete set of points ýý , with ÿ = 2ý. If ý′ < ý then ýý′ ⊂ ýý. We ûx such a 
ý′ to be chosen in a moment.

We let ý ≥ 1 be an integer whose value will be chosen below. We place ourselves in the following situation where ý̃ * ÿ̃+ÿýý−1 =∶

ý̃ ⊂ ý̃′ ∶= ÿ̃+ ÿ′ýý−1 where ÿ̃ * ýý, ÿ = 2−ý = 1∕ÿ and ÿ′ = 2−ý
′
=ýÿ with ý = 2ý−ý

′
. The assumption that ý̃ * ý̃ for which there is 

such a ý̃ and ý̃′ is a restriction on the position of ý̃ in [−1, 1]ý−1. When this is not the case, the argument below needs to be adjusted 
by changing the choice of the initial vertex and the direction for the representation. Since the adjustment is purely notational, we 
leave it to the reader.

We will give two representations of ý̃, respectively ÿ̄; the one in terms of the vertices of ý̃ and the second in terms of the vertices 
of ý̃′. For the ûrst representation, we use (A.5) with ÿ = ÿ to write

ÿ̄ =
∑

ÿ*ý (ý̃)

ÿÿ(1, ÿ) =
∑

ÿ*ý (ý̃)

ÿÿ

√
(1 + ‖ÿ‖2)ÿÿ , ÿÿ =

(1, ÿ)
√
1 + ‖ÿ‖2

, (A.7)

with the coefficients ÿÿ given by (A.6). Notice that the ÿÿ are all in ÿý. This gives the representation

ÿ =
∑

ÿ*ý (ý̃)

ÿÿÿÿ , ÿÿ ∶=
ÿÿ

√
(1 + ‖ÿ‖2)
‖ÿ̄‖

. (A.8)

We obtain a second representation as follows. We again write ý̃ = ÿ̃+ ÿÿ with ÿ *ýý−1. Then,

ý̃ = ÿ̃+ ÿ
∑

ÿ*ý (ýý−1)

ýÿ(ÿ)ÿ = ÿ̃+
∑

ÿ*ý (ýý−1)

ýÿ(ÿ)

ý
ýÿÿ =

(
1 −

1

ý

)
ÿ̃+

∑

ÿ*ý (ýý−1)

ýÿ(ÿ)

ý
[ÿ̃+ýÿÿ]. (A.9)

This gives the representation

ý̃ =
∑

ÿ*ý (ý̃′)

ÿ ′ÿÿ, (A.10)

where

ÿ ′ÿ =
ýÿ(ÿ)

ý
, when ÿ = ÿ̃+ýÿÿ with ÿ ≠ 0 and ÿ ′

0
= 1 −

1

ý
+

ý0(ÿ)

ý
. (A.11)

Notice that this representation of ý̃ is again a convex combination of the vertices of ý̃′ . It follows that

ÿ =
∑

ÿ*ý (ý̃′)

ÿ′ÿÿ
′
ÿ , ÿ′ÿ ∶=

ÿ ′
ÿ

√
(1 + ‖ÿ‖2)
‖ÿ̄‖

. ÿ′ÿ =
(1, ÿ)

√
1 + ‖ÿ‖2

(A.12)

We now want to estimate the sums

ÿ ∶=
∑

ÿ*ý (ý̃)

ÿÿ , ÿ′ =
∑

ÿ*ý (ý̃′)

ÿ′ÿ , (A.13)

Lemma A.1. There is an ÿ∗ = ÿ∗(ý), depending only on ý, such that whenever ÿ ≥ÿ∗ and ý is sufficiently large (depending only on ý), 
the following hold. Whenever ÿ is not a vertex in ÿý, i.e., ÿ̄ = (1, ý̃) where ý̃ = ÿ̃+ ÿ where ÿ ≠ 0, we have

ÿ = 1 + ÿ and ÿ′ = 1 + ÿ′, where 0 < 2|ÿ| < |ÿ′| ≤ ÿÿ2, (A.14)
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and

ÿ ∶= ÿ(ÿ) =
∑

ÿ≠0
ýÿ(ÿ) > 0, (A.15)

where the strict inequality holds because ÿ ≠ 0.

Proof. Let ý2 ∶= 1 + ‖ÿ̃‖2 and recall that ÿ ∶= 1∕ÿ. Observe that when ÿ = ÿ̃+ ÿÿÿ, ÿ * ý (ýý−1), we have

1 + ‖ÿ‖2 =ý2 + 2ÿÿïÿ̃, ÿð+ ÿ2ÿ2‖ÿ‖2 =ý2 + ýÿ(ÿ), (A.16)

where

ýÿ(ÿ) ∶= 2ÿÿïÿ̃, ÿð+ ÿ2ÿ2‖ÿ‖2. (A.17)

We are interested in the cases, ÿ = 1, ý. Notice that ýÿ(ÿ) = 0 when ÿ = 0, i.e., ÿ = ÿ̃, and also |ýÿ(ÿ)| ≤ 1∕2 for these two values of ÿ
provided ÿ∗ is large enough. These facts will be used without further mention in what follows.

We will use the Taylor expansion of the function ý (ý) ∶=
√
ý2 + ý. We have

ý (ý) = ý +
1

2
ý−1ý−

1

4
ý−3ý2 +ÿ(ý3), |ý| < 1. (A.18)

This gives that
√
1 + ‖ÿ‖2 = ý (ýÿ(ÿ)) =ý +

1

2
ý−1ýÿ(ÿ) −

1

4
ý−3ýÿ(ÿ)

2 +ÿ(ýÿ(ÿ)
3) (A.19)

From the above observations, we can write

‖ÿ̄‖ÿ′ =
∑

ÿ*ý (ý̃′)

ÿ ′ÿý (ýÿ(ý))

= (1 − 1∕ý)ý +
∑

ÿ*ý (ýý−1)

ýÿ(ÿ)

ý

(
ý +

1

2
ý−1ýÿ(ý) −

1

4
ý−3ýÿ(ý)

2 +ÿ(ýÿ(ý)
3)
)

=ý +
ý−1

2

∑

ÿ*ý (ýý−1)

ýÿ(ÿ)ýÿ(ý)

ý
−
ý−3

4

∑

ÿ*ý (ýý−1)

ýÿ(ÿ)ýÿ(ý)
2

ý
+ÿ(ý2ÿÿ3). (A.20)

Let us analyze the ûrst sum Σ1 in (A.20). Using the deûnition of the ýÿ , we see that this sum equals

Σ1 = ÿ1ÿ +ÿ2ýÿ
2, where ÿ1 =ý

−1
∑

ÿ≠0
ýÿ(ÿ)ïÿ̃, ÿð and ÿ2 =

ý−1

2

∑

ÿ≠0
ýÿ(ÿ)‖ÿ‖2. (A.21)

A similar analysis of the second sum Σ2 gives

Σ2 = ÿ3ýÿ
2 +ÿ4ý

2ÿ3 +ÿ5ý
3ÿ4, where ÿ3 =ý

−3
∑

ÿ≠0
ýÿ(ÿ)ïÿ̃, ÿð2, and |ÿ4|, |ÿ5| ≤ ÿ0ÿ, (A.22)

where ÿ0 depends at most on ý. In total, this gives

‖ÿ̄‖ÿ′ =ý +ÿ1ÿ + ÿ̃ÿýÿ
2 +ÿ(ÿý2ÿ3), (A.23)

where

ÿÿ̃ = ÿ2 +ÿ3, (A.24)

and where the constants in the <ÿ= term depend only on ý. It is important to notice that

ÿ̃ ≥ ÿ−1ÿ2 ≥ 1∕4. (A.25)

Replacing ý by one, we get

‖ÿ̄‖ÿ =ý +ÿ1ÿ + ÿ̃ÿÿ
2 +ÿ(ÿÿ3). (A.26)

Notice that these constants are the same as those in (A.23) and again the constants in the <ÿ= term depend only on ý.
Next, we want to compute ‖ÿ̄‖ and compare this number with ý +ÿ1ÿ. We have ÿ̄ = (1, ý̃) where

ý̃ = ÿ̃+ ÿÿ = ÿ̃+ ÿ
∑

ÿ*ý (ýý−1)

ýÿ(ÿ)ÿ.

Therefore,
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‖ÿ̃‖2 = 1 + ‖ÿ̃‖2 + 2ÿ
∑

ÿ*ý (ýý−1)

ýÿ(ÿ)ïÿ̃, ÿð+ ÿ2‖ÿ‖2 = ý2 + ý. (A.27)

If we now use (A.18), we obtain

‖ÿ̄‖ = ý (ý) =ý +
ý−1

2
ý−

ý−3

4
ý2 +ÿ(ý3) = ý +ÿ1ÿ + ÿ̃

′ÿÿ2 +ÿ(ÿÿ3),

where

ÿÿ̃ ′ =
ý−1

2
ÿ2‖ÿ‖2 +ý−3

[
∑

ÿ≠0
ýÿ(ÿ)ïÿ̃, ÿð

]2

ÿ2. (A.28)

Here, we have also used the fact that ‖ÿ‖ ≤ ÿ. If we use this expression for ‖ÿ̄‖ in (A.26), we obtain

ÿ = 1 +ÿ∗ÿÿ2 +ÿ(ÿÿ3) =∶ 1 + ÿ, ÿ∗ = ÿ̃ − ÿ̃ ′. (A.29)

Similarly

ÿ′ = 1 +ÿ∗∗ÿÿ2 +ÿ(ÿý2ÿ3) =∶ 1 + ÿ′, ÿ∗∗ = ÿ̃ý2 − ÿ̃ ′. (A.30)

If we choose ÿ sufficiently large (ÿ ≥ ÿ∗ with ÿ∗ depending only on ý and ý as a sufficiently large integer depending only on ý we 
will have 0 < 2ÿ < ÿ′ (see (A.25)). This completes the proof of the Lemma. □

Note that the constant ý of this lemma serves to deûne ý for this paper and then ÿ = (ý + 1)2 is deûned as in Lemma 6.5.

Proof of Lemma 6.6. Case ÿ *ÿý: Let ÿ = ÿÿ *ÿý. Given ý * [1∕2, ý2ÿ−ÿ], we have ý
+
ÿ
= ýÿ and we take ý̃ÿ ∶= ýÿ+1. We deûne ÿ by 

the requirement

ÿý+
ÿ
+ (1 − ÿ)ý̃ÿ = ý, i.e. ÿ =

ý− ý̃ÿ

ý+
ÿ
− ý̃ÿ

. (A.31)

Then, ÿ = ÿÿ+(1 −ÿ)ÿ, which is the decomposition for ÿ required in Lemma 6.6. Indeed, |ÿ| ≤ ÿ with ÿ depending only on ý because 
of Lemma 6.5 and (6.8).

Case ÿ is not in ÿý: We will use the constructions given above. We take ý to be an integer as given in Lemma A.1. We have given 
two ways of representing ÿ as given in (A.8) and (A.12). The ÿÿ and ÿ

′
ÿ
appearing in these representations are all from ÿý . We take 

ÿý(ÿ) as the collection of all these points. Property (ii) of Lemma 6.6 is satisûed since ‖ÿ − ÿÿ‖ ≤ý∕ÿ for each ÿ. We deûne ÿ by the 
requirement

ÿÿ + (1 − ÿ)ÿ′ = 0, i.e. ÿ =
ÿ′

ÿ′ − ÿ
. (A.32)

It follows that

ÿ = ÿ
∑

ÿ*ý (ý)

ÿÿÿÿ + (1 − ÿ)
∑

ÿ*ý (ý′)

ÿ′
ÿ
ÿ′
ÿ
,=

ý∑

ÿ=1

ÿÿÿÿ ,

ý∑

ÿ=1

ÿÿ = 1, (A.33)

where all of the ÿÿ are in ÿ (ÿ). The key here is that the coefficients in this representation sum to one.
Now, given ý * [1∕2, ýÿ−ÿ], we deûne

ý+ ∶= max{ý+
ÿ
∶ ÿÿ *ÿý(ÿ)} = ýÿ , ý̃ ∶= ýÿ+1. (A.34)

Similar to the above, we deûne ÿ by requiring that

ÿý+ + (1 − ÿ)ý̃ = ý, i.e. ÿ =
ý− ý+

ý+ − ý̃
. (A.35)

It follows that

ÿ ⋅ ý− ý =

ý∑

ÿ=1

ÿÿÿ (ÿÿ ⋅ ý− ý
+) +

ý∑

ÿ=1

(1 − ÿ)ÿÿ (ÿÿ ⋅ ý− ý̃). (A.36)

This is the decomposition promised in Lemma 6.6 and thereby completes the proof of the lemma. □

Data availability

No data was used for the research described in the article.



Applied and Computational Harmonic Analysis 74 (2025) 101713

22

R. DeVore, R.D. Nowak, R. Parhi et al.

References

[1] Francis Bach, Breaking the curse of dimensionality with convex neural networks, J. Mach. Learn. Res. 18 (1) (2017) 629–681.
[2] Andrew R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inf. Theory 39 (3) (1993) 930–945.
[3] Andrew R. Barron, Albert Cohen, Wolfgang Dahmen, Ronald A. DeVore, Approximation and learning by greedy algorithms, Ann. Stat. 36 (1) (2008) 64–94.
[4] Peter Binev, Andrea Bonito, Ronald DeVore, Guergana Petrova, Optimal learning, Calcolo 61 (1) (2024) 15.
[5] Helmut Bolcskei, Philipp Grohs, Gitta Kutyniok, Philipp Petersen, Optimal approximation with sparsely connected deep neural networks, SIAM J. Math. Data 

Sci. 1 (1) (2019) 8–45.
[6] Jean Bourgain, Joram Lindenstrauss, Distribution of points on spheres and approximation by zonotopes, Isr. J. Math. 64 (1988) 25–31.
[7] Jean Bourgain, Joram Lindenstrauss, Vitali Milman, Approximation of zonoids by zonotopes, Acta Math. 162 (1) (1989) 73–141.
[8] Claire Boyer, Antonin Chambolle, Yohann De Castro, Vincent Duval, Frédéric de Gournay, Pierre Weiss, On representer theorems and convex regularization, 

SIAM J. Optim. 29 (2) (2019) 1260–1281.
[9] Kristian Bredies, Marcello Carioni, Sparsity of solutions for variational inverse problems with ûnite-dimensional data, Calc. Var. Partial Differ. Equ. 59 (1) (2020) 

14.
[10] Albert Cohen, Ronald DeVore, Guergana Petrova, Przemyslaw Wojtaszczyk, Optimal stable nonlinear approximation, Found. Comput. Math. 22 (3) (2022) 

607–648.
[11] Ronald DeVore, Boris Hanin, Guergana Petrova, Neural network approximation, Acta Numer. 30 (2021) 327–444.
[12] Ronald A. DeVore, Nonlinear approximation, Acta Numer. 7 (1998) 51–150.
[13] Ronald A. DeVore, George G. Lorentz, Constructive Approximation, Grundlehren der Mathematischen Wissenschaften, Springer Berlin Heidelberg, 1993.
[14] Ronald A. DeVore, Vasil A. Popov, Interpolation spaces and non-linear approximation, in: Function Spaces and Applications: Proceedings of the US-Swedish 

Seminar Held in Lund, Sweden, June 15–21, 1986, Springer, 2006, pp. 191–205.
[15] Weinan E, Chao Ma, Lei Wu, The Barron space and the üow-induced function spaces for neural network models, Constr. Approx. 55 (1) (2022) 369–406.
[16] Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, Pure and Applied Mathematics (New York), John Wiley & Sons, 

Inc., New York, 1999.
[17] Rémi Gribonval, Gitta Kutyniok, Morten Nielsen, Felix Voigtlaender, Approximation spaces of deep neural networks, Constr. Approx. 55 (1) (2022) 259–367.
[18] Lee K. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training, 

Ann. Stat. (1992) 608–613.
[19] Jason M. Klusowski, Andrew R. Barron, Approximation by combinations of ReLU and squared ReLU ridge functions with ý1 and ý0 controls, IEEE Trans. Inf. 

Theory 64 (12) (2018) 7649–7656.
[20] Yury Korolev, Two-layer neural networks with values in a Banach space, SIAM J. Math. Anal. 54 (6) (2022) 6358–6389.
[21] Anders Krogh, John Hertz, A simple weight decay can improve generalization, Adv. Neural Inf. Process. Syst. 4 (1991).
[22] Věra Kůrková, Marcello Sanguineti, Bounds on rates of variable-basis and neural-network approximation, IEEE Trans. Inf. Theory 47 (6) (2001) 2659–2665.
[23] Jianfeng Lu, Zuowei Shen, Haizhao Yang, Shijun Zhang, Deep network approximation for smooth functions, SIAM J. Math. Anal. 53 (5) (2021) 5465–5506.
[24] Yuly Makovoz, Uniform approximation by neural networks, J. Approx. Theory 95 (2) (1998) 215–228.
[25] Jiří Matoušek, Improved upper bounds for approximation by zonotopes, Acta Math. 177 (1) (1996) 55–73.
[26] Hrushikesh N. Mhaskar, On the tractability of multivariate integration and approximation by neural networks, J. Complex. 20 (4) (2004) 561–590.
[27] Hrushikesh N. Mhaskar, Dimension independent bounds for general shallow networks, Neural Netw. 123 (2020) 142–152.
[28] Behnam Neyshabur, Russ R. Salakhutdinov, Nati Srebro, Path-SGD: path-normalized optimization in deep neural networks, Adv. Neural Inf. Process. Syst. 28 

(2015).
[29] Greg Ongie, Rebecca Willett, Daniel Soudry, Nathan Srebro, A function space view of bounded norm inûnite width ReLU nets: the multivariate case, in: Interna-

tional Conference on Learning Representations, 2020.
[30] Rahul Parhi, Robert D. Nowak, Banach space representer theorems for neural networks and ridge splines, J. Mach. Learn. Res. 22 (43) (2021) 1–40.
[31] Rahul Parhi, Robert D. Nowak, What kinds of functions do deep neural networks learn? Insights from variational spline theory, SIAM J. Math. Data Sci. 4 (2) 

(2022) 464–489.
[32] Rahul Parhi, Robert D. Nowak, Deep learning meets sparse regularization: a signal processing perspective, IEEE Signal Process. Mag. 40 (6) (2023) 63–74.
[33] Rahul Parhi, Robert D. Nowak, Near-minimax optimal estimation with shallow ReLU neural networks, IEEE Trans. Inf. Theory 69 (2) (2023) 1125–1140.
[34] Allan Pinkus, Approximation theory of the MLP model in neural networks, Acta Numer. 8 (1999) 143–195.
[35] Gilles Pisier, Remarques sur un résultat non publié de B. Maurey, in: Séminaire d’Analyse Fonctionnelle (Dit <Maurey-Schwartz=), April 1981, pp. 1–12.
[36] Michael Reed, Barry Simon, Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, 1972.
[37] Zuowei Shen, Haizhao Yang, Shijun Zhang, Optimal approximation rate of ReLU networks in terms of width and depth, J. Math. Pures Appl. 157 (2022) 101–135.
[38] Jonathan W. Siegel, Optimal approximation of zonoids and uniform approximation by shallow neural networks, arXiv preprint, arXiv :2307 .15285, 2023.
[39] Jonathan W. Siegel, Optimal approximation rates for deep ReLU neural networks on Sobolev and Besov spaces, J. Mach. Learn. Res. 24 (357) (2023) 1–52.
[40] Jonathan W. Siegel, Jinchao Xu, Sharp bounds on the approximation rates, metric entropy, and ÿ-widths of shallow neural networks, Found. Comput. Math. 

(2022) 1–57.
[41] Jonathan W. Siegel, Jinchao Xu, Characterization of the variation spaces corresponding to shallow neural networks, Constr. Approx. (2023) 1–24.
[42] Michael Unser, A unifying representer theorem for inverse problems and machine learning, Found. Comput. Math. 21 (4) (2021) 941–960.
[43] Dmitry Yarotsky, Error bounds for approximations with deep ReLU networks, Neural Netw. 94 (2017) 103–114.


	Weighted variation spaces and approximation by shallow ReLU networks
	1 Introduction
	2 Approximation by shallow ReLU networks
	3 Novel (non-classical) model classes
	4 Weighted variation model classes
	5 Approximation in Ω=B2
	5.1 The approximation theorem
	5.2 Weighted variation spaces for Ω=Q2

	6 Approximation in L2(Bd)
	6.1 The proof of Theorem 6.2
	6.2 Proof of Theorem 6.1

	7 Concluding remarks
	7.1 Open problems

	Data availability
	References


