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β-strand and this prevents the N-terminal region (T1-P3) from making close contact with the

β-strand. While most of the NOEs were satisfied in both structure calculations, long range

experimental NOEs between the N-terminal region of NCR13_PFV1 (T1-P3) and the β-strand

were only satisfied with the C4-C23/C10-C28 disulfide pattern used in the structure deposited

to the PDB (8UTM), suggesting this pattern was correct. Furthermore, as shown in S4B Fig,

the predicted AlphaFold structure for NCR13_PFV1 was like the experimental structure

(8UTM). In both structures, the β-sheet is almost identical with the major difference a slightly

shorter α-helix displaced two residues (D7-K11 versus Q5-C10 experimentally) that packs

against the β-strand a bit differently in the AlphaFold structure (green). Most relatively, the N-

Fig 3. Three-Dimensional NMR solution structures of NCR13_PFV1 and NCR13_PFV2. Cartoon representation

of the backbone superposition of the ordered regions in the ensemble of 20 structures calculated for oxidized

NCR13_PFV1 (8ULM) and NCR13_PFV2 (7TH8). β-strands are colored blue and labeled sequentially starting from

the N-terminal and the lone α-helix is colored wheat. Next to each ensemble is a backbone stick representation of a

single structure with the six oxidized cysteine side chains highlighted in yellow, red, or cyan. Above the structures is a

schematic summary of the elements of secondary structure observed for the two NMR structures, color-coded

similarly. Also shown in the schematic are the disulfide bond connections in both isomers. One disulfide bond,

between C15 and C30 (red), is identical in both isomers with C10 and C28 swapping disulfide bond partners.

https://doi.org/10.1371/journal.ppat.1012745.g003
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S3 Table. Summary of the structural statistics for the solution structures of NCR13_PFV1

and NCR13_PFV2.
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