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Abstract
We address an AND/OR search for solving influence diagrams
with heuristics derived from graphical model decomposition
bounds. Then, we present how the heuristics guide AND/OR
branch and bound search and show its potential for solving
influence diagrams on a preliminary experiment.

Introduction
An influence diagram (ID) (Howard and Matheson 1981)
is a graphical model for the MEU task, where a directed
acyclic graph represents probability, utility, and policy func-
tions capturing their local structure. Our focus is on solv-
ing influence diagrams using the framework of AND/OR
search with decomposition-based heuristics. This framework
(Dechter and Mateescu 2007) proved effective for Maximum
A Posteriori (MAP) queries (Marinescu and Dechter 2009),
for summation queries (Dechter and Mateescu 2007), and
for marginal MAP (Marinescu et al. 2018). We summarize
AND/OR branch and bound algorithms for influence dia-
grams (AOBB-ID), described in (Marinescu and Dechter
2009), and our more recent decomposition bounds (Lee, Ih-
ler, and Dechter 2018), (Lee et al. 2019). Preliminary empiri-
cal results show the potential of augmenting AOBB-ID with
heuristics derived from our recent decomposition bounds.

Graphical Models for Solving IDs
An ID is a tuple M := 〈C,D,P,U,O,

⊗
〉 consisting of

a set of discrete random variables C, a set of discrete deci-
sion variables D, a set of conditional probability functions
P, a set of utility functions U, and a constrained variable
ordering O on chance and decision variables. The valuation
algebra for IDs (Mauá, de Campos, and Zaffalon 2012) eval-
uates the conditional expected utility by single combination
operator

⊗
over a semi-ring on a pair of probability and

value functions called potential (Jensen, Jensen, and Dittmer
1994). A potential Ψ(Y) defined over Y is a pair of func-
tions Ψ(Y) = (P (Y), V (Y)) and (P1, V1)

⊗
(P2, V2) :=

(P1P2, P1V2 + P2V1). The marginalization operators apply
component-wise maximization or summation, denoted by
⇓ X . The MEU task can be written as

∑

I0

max
D0

. . .
∑

I|D|−1

max
D|D|−1

∑

I|D|

⊗

Ψα∈P∪U

Ψα(Xα). (1)
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The reformulation of MEU task by valuation algebra not
only compacts the notation but also allows a relative smooth
extension of the AND/OR search framework.

Heuristic AND/OR Search for IDs
Primal graph and its Pseudo-tree. A primal graph Gp of
an ID is an undirected graph over nodes associated with
variables, and its edges connect nodes appearing together in
some function. The decomposition structure of an ID relative
to a variable ordering is captured by a pseudo tree TGp

. A
pseudo tree of an ID TGp is a spanning tree of Gp satisfying
the following properties: (1) all edges appear in Gp are back-
arcs in TGp , and (2) any total order from root to a leaf of the
TGp

conforms to the ordering O inherent in the given ID. A
pseudo-tree is also called a bucket-tree where each variable
X is associated with a bucket BX which is subset of the
ID’s functions. ΨBX

is the combined function in BX (see
(Marinescu 2010)).

An AND/OR search tree ST (M) has alternating levels
of nodes, organized along the pseudo-tree TGp , where one
level corresponds to a variable and the next to its value as-
signments. There are 4 types of nodes: chance variable nodes,
decision variable nodes, chance assignment nodes, and deci-
sion assignment nodes. Only the decision variable nodes are
OR nodes in the ID’s AND/OR search tree.

Let π be an assignment along the path from the root to a
node n, asgnπ(Ψ) assign the values to potential Ψ. The arc
weight from a variable node to its assignment node can be ex-
pressed by the valuation algebra as w(n,m):= asgnπ(ΨBX

)
and the weight from an assignment node to a variable child
node is w(n,m):= (1, 0). We define the value Ψn of a node
n ∈ ST (M) to be the MEU below the node (i.e., restricted
to the path values leading to it) and, having K child nodes
{m1, . . . ,mK}, it can be computed recursively from leaves
to root by Ψn := (1, 0) for a terminal assignment node
n, Ψn :=⊗K

i=1Ψmi
for a non-terminal assignment node n,

Ψn:=
∑K

i=1 w(n,mi)⊗Ψmi
for a chance variable node n, and

Ψn:=maxKi=1 w(n,mi) ⊗Ψmi for a decision variable node n.
Any subtree PST of an AND/OR search tree ST defines

a policy function if it contains the root of ST , all the child
nodes of AND nodes in the subtree, and only one child node
from each OR node in the subtree. Its terminal nodes are
leaves of ST . A partial policy tree P ′

ST
is a subtree of a
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policy tree containing the root of ST . The value of a policy
tree PST is the value of its root node. An AND/OR search
algorithm search for an optimal full policy tree. Often, differ-
ent nodes in the AND/OR search tree root identical subtrees.
Those can be merged, converting the search tree into a search
graph thus allowing more efficient search via caching. Such
Identical subproblems can be identified by contexts (Dechter
and Mateescu 2007).

Heuristics derived from Decomposition Bounds. As
noted, a pseudo tree TGp

has a corresponding bucket tree
BT . Mini-bucket elimination (MBE) scheme (Dechter and
Rish 2003) provides a decomposition bound that has a com-
patible structure with a pseudo tree so it can generate heuris-
tic functions for AND/OR search. The quality of the upper
bounds can be improved by optimizing the bounds using
additional parameters yielding the weighted mini-buckets
(WMB) scheme (Liu and Ihler 2011).

The WMB bound for ID (WMBE-ID) specializes the
WMB scheme to produce upper bounds for the MEU. Follow-
ing a total constrained order Ô consistent with the constrained
orderings O imposed by the ID, the pseudo-tree defines a
bucket tree. We partition each bucket BX along the pseudo
tree TGp

to mini-buckets IBX
:= {BX1 , . . . , BXp} by intro-

ducing auxiliary variables X1, . . . , Xp for each mini-bucket
and constraints X = X1 = . . . = Xp ensuring that the total
number of variables does not exceed i+1, for a given i-bound
i. Then, we generate messages by eliminating the labeling
variable from the combined potential and send the result to
a mini-bucket in a lower layer. The mini-bucket partitioning
stage yields an upper bound since it amounts to exchanging
combination and marginalization operator:

⇓X ⊗i∈IBX
ΨB

Xi ≤
⊗

i∈IBX

⇓XΨB
Xi , (2)

where ⇓X is either max or
∑

depending on the type of
the variable X . The RHS of Eq. (2) can be tightened by
introducing additional optimization parameters yielding

⇓X ⊗i∈IBX
ΨB

Xi ≤
⊗

i∈IBX

wi
X∑

X

[ΨB
Xi ⊗Ψδi(X

i)], (3)

where the auxiliary optimization parameters are non-
negative weights wi

X for a chance variable X satisfying∑
i∈IBX

wi
X = 1, and cost shifting potentials Ψδi(X

i) satis-
fying ⊗i∈IBX

Ψδi(X
i) = (1, 0). The powered-sum marginal-

ization operator
∑w

X f(X) is defined by [
∑

x |f(X)| 1
w ]w.

We denote by de(X) the set of descendants of a node
associated with a variable X in TP , by IBY

the set of
mini-buckets for BY , by asgnπ the values assigned to vari-
ables from the root to the current node in TGp , and by
Mp

Y the message generated by the mini-bucket BY p . Then,
the heuristic function h(n) from a mini-bucket tree opti-
mized by WMBE-ID algorithm can be computed as follows.
h(n)= asgnπ

⊗
Y ∈de(X),p∈IBY

Mp
Y (X =x) if n is a node

assigning value x to X , and h(n) =⇓m Ψ(n,m) ⊗ h(m) if n
is a variable node.

Instances n, f, w, i WMBE OPT AO AOBB+MBE AOBB+WMBE

SA1-T5 130,180,20,10 98.4 96.6 81 60 13

SA1-T10 250,350,20,10 197.2 183.5 180 164 31

SA2-T5 190,265,30,15 147.5 139.7 998(m) 2218(m) 2062

SA2-T10 365,515,30,15 295.7 NA 1037(m) 2518(m) 3597(m)

Table 1: Experiment Results. n is the number of variables,
f is the number of functions, w is the constrained induced
width, i is the i-bound, WMBE is the upper bound of the
MEU from WMBE-ID, and OPT is the optimal MEU. AO,
AOBB+MBE, and AOBB+WMBE show the time in seconds,
and (m) indicates the failure by 24 GB memory limit.

Experiment Results
Table 1 summarizes the preliminary experiment over 4 in-
stances of the SysAdminMdp domain, where SA1 and SA2
instances model the problems with 10 and 15 servers up to 5
and 10 time horizons.

We see that WMBE-ID heuristic improved the running
time of AOBB-ID compared with AO (Marinescu 2010)
(no heuristic) and AOBB+MBE. In particular one SA2-T5,
AOBB+WMBE is the only terminating algorithm while oth-
ers failed due to the 24 GB memory limit.
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