

strategy under worst-case scenarios while guaranteeing the

satisfaction of constraints for all possible uncertainties [3].

This method is known for generating the safest solutions

among MPC categories due to its incorporation of worst-

case scenarios into the optimization process. Nevertheless, its

emphasis on minimizing worst-case objective functions often

results in complex, intractable optimization problems, leading

to overly conservative control actions and reduced system

efficiency [4], [5].

On the other hand, despite the superior ability of SMPC

to leverage the probabilistic nature of uncertainties, many

SMPC approaches have performance limitations, including

being tailored to specific forms of stochastic noise, requiring

dynamics linearization to ensure a real-time performance and

implementation of the control strategy, and employing chance

constraints that may not accurately reflect the severity of

constraint violations or potential accidents and can be com-

putationally demanding to evaluate, particularly for complex

or high-dimensional probability distributions [6]–[8]. Addi-

tionally, SMPC has a further limitation in that it relies on a

risk-neutral expectation to predict future uncertain outcomes,

which may not be reliable in the case of a tail-end probability

event (i.e., a rare event with a low probability of occurring)

actually happening [9]. To address the challenges posed by

uncertainties, Risk-Sensitive MPC (RSMPC) approaches have

gained traction in recent years, thanks to their ability to bal-

ance the benefits and drawbacks of robust and stochastic MPC

methods. By integrating the concept of risk measures or risk

metrics into the optimization problem, RSMPC can evaluate

the impact of uncertainty and adjust responses accordingly to

different levels of uncertainty [10]–[12].

The Model Predictive Path Integral (MPPI) framework, a

type of SMPC method, has emerged as a promising control

strategy for complex robotics systems with stochastic dynam-

ics and uncertainties [13]–[17]. Such a method solves the

stochastic optimal control problem in a receding-horizon con-

trol setting by: (i) leveraging Monte Carlo simulation to rollout

real-time simulated trajectories propagated from the system

dynamics, (ii) evaluating these trajectories, (iii) computing the

optimal control sequence by taking the weighted average of

the costs of the sampled trajectories, and (iv) applying the first

control input to the system while using the remaining control

sequence to warm-start the optimization in the next time-

step, enabling the method to solve the optimization problem

effectively [13], [18]. MPPI stands out among alternative

MPC methods due to its attractive features, such as being

a sampling-based and derivative-free optimization method,

not relying on assumptions or approximations of objective

functions and system dynamics, being effective for highly

dynamic systems, and benefiting from parallel sampling and

the computational capabilities of Graphics Processing Units

(GPUs) to achieve optimized and real-time performance [19].1

Due to these attractive features, even the simplified Predictive

Sampling method introduced in [20], which can variously

1It is worth noting that a CPU-based MPPI, optimized using vectorization
and tensor operations, is now available. See the link for further information:
https://github.com/artofnothingness/mppic

be described as MPPI with infinite temperature, can achieve

competitive performance with more established gradient-based

algorithms.

While MPPI has appealing characteristics, it may also

pose challenges in practice. One particular concern is that,

much like any sampling-based optimization algorithm, it could

generate an infeasible control sequence if all the resulting

MPPI sampled trajectories are concentrated in a high-cost

region, which may lead to violations of system constraints or a

higher likelihood of being trapped in local minima [21], [22].

In [23], Tube-MPPI was proposed as a solution to alleviate

the situation by incorporating an iterative Linear Quadratic

Gaussian (iLQG) controller (which, unfortunately, requires the

linearization of dynamics) as an ancillary controller to track

the MPPI-generated nominal trajectory. Similarly, in [16], an

augmented version of MPPI is employed, which includes a

nonlinear L1 adaptive controller to address model uncertainty.

In [24], the authors propose the GP-MPPI control strategy

to ensure efficient and safe navigation in unknown and com-

plex environments while avoiding local minima. This strategy

combines MPPI with a Sparse Gaussian Process (SGP)-based

local perception model, incorporating online learning to effec-

tively explore the surrounding navigable space. Meanwhile,

in [25], the authors introduce Projection Guided Sampling

Based Optimization (PRIEST), a new optimizer designed to

push the infeasible sampled trajectories of MPPI towards

feasible regions, thereby reducing the risk of local minima

and infeasible control sequences.

Recently, various sampling techniques have been introduced

to enhance the performance of MPPI [21], [22], [26]–[31].

To name a few examples, [21] enhances the MPPI algorithm

by incorporating the covariance steering (CS) principle, while

[22] proposes sampling trajectories from a product of nor-

mal and log-normal distributions (NLN mixture), instead of

solely using a Gaussian distribution. In [26], a novel method

embeds safety filters during forward sampling to ensure the

safe operation of robotic systems within multiple constraints.

Additionally, [27] improves MPPI performance by integrating

adaptive importance sampling into the original importance

sampling method, while [30] proposes a new importance

sampling scheme that combines classical and learning-based

ancillary controllers to improve efficiency. These methods

result in more efficient trajectories than the vanilla MPPI,

leading to better exploration of the system’s state-space and

reducing the risk of encountering local minima. [31] presents

an algorithm, called Shield-MPPI, that enhances the robustness

and computational efficiency of MPPI using Control Barrier

Functions (CBFs) to ensure safety and reduce the need for

extensive computational resources, making it suitable for real-

time planning and deployment on hardware without GPUs.

Another constraint of MPPI is its inability to explicitly

incorporate risk levels during planning due to its risk-neutral

technique in evaluating sampled trajectories during the opti-

mization process, making it challenging to achieve the desired

balance between risk and robustness. Additionally, the MPPI

optimization problem concentrates solely on minimizing the

objective function, which is influenced by a minor perturbation

injected into the control input, without explicitly considering

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3526078

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indiana University. Downloaded on January 05,2025 at 03:09:15 UTC from IEEE Xplore. Restrictions apply.

any uncertainties or risks associated with the system dynamics

or the environment. This can eventually lead to sub-optimal

or overly aggressive control actions, as MPPI may select

trajectories that appear to have a low expected cost but may

actually be riskier or less robust in practice. Consequently,

MPPI cannot guarantee safety when environmental condi-

tions change, which limits its applicability for safety-critical

applications such as autonomous driving. [32] introduces a

general framework for optimizing Conditional Value-at-Risk

(CVaR) under uncertain dynamics, parameters, and initial

conditions by incorporating additional samples from sources of

uncertainty. The Risk-aware MPPI (RA-MPPI) algorithm [33]

is a more recent approach that addresses this issue by utilizing

CVaR to generate risk-averse controls that evaluate real-time

risks and account for systematic uncertainties. However, such a

method employs Monte-Carlo sampling to estimate the CVaR,

which can be computationally intensive and time-consuming

since generating a large number of random samples is required

for accurate estimation using Monte Carlo methods.

In contrast to existing solutions aimed at mitigating the

shortcomings of MPPI, the aim of our proposed solution is to

effectively consider the uncertainties of system states, sensing,

and control actions, in addition to integrating a novel and

more efficient trajectory sampling strategy. To this end, we

introduce the U-MPPI control strategy, a novel methodology

that enhances the classical MPPI algorithm by combining

the Unscented Transform (UT) with standard optimal control

theory (also known as unscented guidance [34]) to effectively

manage system uncertainties and improve trajectory sampling

efficiency. Such a control strategy leverages the UT for two

purposes: regulating the propagation of the dynamical system

and proposing a new state-dependent cost function formulation

that incorporates uncertainty information. To the best of the

authors’ knowledge, the proposed control strategy has not

been previously explored in the literature, presenting a unique

integration of the UT with the MPPI control framework. In

summary, the contributions of this work can be summarized

as follows:

1) While vanilla MPPI variants propagate only the mean

value of the system dynamics, we propose a novel tra-

jectory sampling technique utilizing the UT to propagate

both the mean and covariance of the system dynamics,

significantly enhancing state-space exploration and reduc-

ing the risk of local minima.

2) Then, by utilizing the propagated uncertainty informa-

tion (i.e., state covariance matrix), we introduce a risk-

sensitive cost function that explicitly considers risk or un-

certainty during the trajectory evaluation process, leading

to a safer and more robust control system, especially for

safety-critical applications.

3) We provide a detailed analysis of the risk-sensitive func-

tion and its derivation, offering an in-depth understanding

of the U-MPPI control strategy’s behavior under dif-

ferent risk conditions, which elucidates how it adapts

and performs in various scenarios, thereby enhancing its

robustness and safety in uncertain environments.

Through extensive simulations and real-world experiments, we

demonstrate the effectiveness of our U-MPPI control strategy

for aggressive collision-free navigation in both known and

unknown cluttered environments, highlighting its superiority

over the baseline MPPI control framework by producing more

efficient trajectories, achieving higher success and task com-

pletion rates, reducing the risk of local minima, and ultimately

enabling the robot to find feasible collision-free trajectories.

The rest of the paper is organized as follows. Section II

addresses the problem statement of stochastic optimal control

and provides an overview of the vanilla MPPI control strategy.

Section III introduces the unscented transform and its appli-

cation in generating robust control strategies by combining

it with standard optimal control theory to manage system

uncertainties. Section IV details the proposed U-MPPI control

strategy, including the unscented-based sampling strategy, the

risk-sensitive cost function, and its impact on the controller’s

behavior, and explains the real-time control algorithm. Fol-

lowing this, Section V presents simulation results comparing

the performance of the U-MPPI control strategy with the

baseline MPPI in various scenarios, highlighting improve-

ments in trajectory generation and robustness. Subsequently,

Section VI demonstrates the practicality of the U-MPPI control

strategy through real-world experiments in unknown cluttered

environments, showcasing its effectiveness and adaptability.

Finally, Section VII concludes the study and proposes potential

future research directions.

II. STOCHASTIC OPTIMAL CONTROL

This section aims to establish the problem statement of

stochastic optimal control and present a concise overview of

MPPI as a potential solution to address this problem.

A. Problem Formulation

Within the context of discrete-time stochastic systems, let

us consider the system state xk ∈ R
nx , the control input uk ∈

R
nu , and the underlying non-linear dynamics

xk+1 = f (xk,wk) . (1)

The actual (i.e., disturbed) control input, wk, is represented

as wk = uk + δuk ∼ N (uk,Σu), where δuk ∼ N (0,Σu) is

a zero-mean Gaussian noise with covariance Σu which repre-

sents the injected disturbance into the control input. Within a

finite time-horizon N , we denote the control sequence U =
[u0,u1, . . . ,uN−1]

⊤ ∈ R
nuN and the corresponding state

trajectory x = [x0,x1, . . . ,xN]
⊤ ∈ R

nx(N+1). Moreover, let

X d denote the d dimensional space with Xrob (xk) ⊂ X d

and Xobs ⊂ X d represent the area occupied by the robot

and obstacles, respectively. In this scenario, the objective of

the stochastic optimal control problem is to find the optimal

control sequence, U, that generates a collision-free trajectory,

guiding the robot from its initial state, xs, to the desired state,

xf , under the minimization of the cost function, J , subject to

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3526078

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indiana University. Downloaded on January 05,2025 at 03:09:15 UTC from IEEE Xplore. Restrictions apply.

specified constraints. The optimization problem at hand can

be formulated using the vanilla MPPI control strategy as

min
U

J(x,u) = E

[

φ (xN) +

N−1∑

k=0

(

q(xk) +
1

2
u⊤
k Ruk

)]

, (2a)

s.t. xk+1 = f (xk,wk) , δuk ∼ N (0,Σu), (2b)

Xrob (xk) ∩ Xobs = ∅, h(xk,uk) ≤ 0, (2c)

x0 = xs, uk ∈ U, xk ∈ X, (2d)

where R ∈ R
nu×nu is a positive-definite control weighting

matrix, U denotes the set of admissible control inputs, and

X denotes the set of all possible states xk; the state terminal

cost function, φ (xN), and the running cost function, q (xk),
can be defined as arbitrary functions, offering a more flexible

and dynamic approach to cost modeling that can be adapted to

meet the specific requirements of the system being controlled.

The function h(xk,uk) represents the state and control con-

straints that need to be satisfied at each time step. For instance,

h(xk,uk) can specify speed limits, actuator constraints, or

state constraints such as position or orientation bounds. These

constraints are met when h(xk,uk) ≤ 0, ensuring that the sys-

tem operates within safe and feasible regions. Additionally, to

handle collision avoidance, the constraint Xrob(xk)∩Xobs = ∅
ensures that the robot does not collide with any obstacles.

B. Overview of MPPI Control Strategy

MPPI solves the optimization problem defined in (2) by

minimizing the objective function J (2a), taking into account

the system dynamics (2b) and constraints, including collision

avoidance and control constraints, detailed in (2c). To this end,

at each control loop interval ∆t, MPPI employs the Monte

Carlo simulation to sample thousands of real-time simulated

trajectories, represented by M , propagated from the underlying

system dynamics, as illustrated in Fig. 2. Subsequently, within

the time-horizon N , the cost-to-go of each trajectory τm can

be evaluated as

S̃ (τm) = φ (xN) +

N−1∑

k=0

q̃ (xk,uk, δuk,m) , ∀m ∈{1, · · ·,M},

(3)

where φ(xN) refer to the terminal state cost, while the in-

stantaneous running cost q̃ (xk,uk, δuk) encompasses both the

state-dependent running cost q (xk) and the quadratic control

cost qu (uk, δuk) and is formulated as

q̃= q (xk)
︸ ︷︷ ︸

State-dep.

+ γuδu
⊤
k,mRδuk,m+ u⊤

k Rδuk,m+
1

2
u⊤
k Ruk

︸ ︷︷ ︸

qu (uk, δuk): Quadratic Control Cost

,

(4)

where γu = ν−1
2ν ∈ R≥0, and ν ≥ 1 determines the level of

aggressiveness in exploring the state-space.

As stated in [13], the vanilla MPPI algorithm updates the

optimal control sequence {uk}N−1
k=0 by considering a weighted

average cost from all of the simulated trajectories; mathemat-

ically, this control sequence can be expressed as

uk ← uk +

∑M
m=1 exp

(
−1
λ

[

S̃ (τm)− S̃min

])

δuk,m

∑M
m=1 exp

(
−1
λ

[

S̃ (τm)− S̃min

]) , (5)

which incorporates the cost-to-go of the mth trajectory S̃ (τm),
the minimum cost trajectory among all simulated rollouts S̃min

that prevents numerical overflow or underflow, without affect-

ing the optimality of the algorithm, and the inverse temperature

λ that governs the selectiveness of the weighted average of

trajectories. The resulting sequence is then smoothed with

a Savitzky-Galoy filter [35], followed by applying the first

control u0 to the system, while the remaining sequence is

utilized for warm-starting the next optimization step.

III. UNSCENTED OPTIMAL CONTROL

In this section, we present a comprehensive overview of the

unscented transform, followed by the unscented guidance tech-

nique, which combines the unscented transform with standard

stochastic optimal control theory to generate a robust open-

loop method for managing system uncertainties.

A. Unscented Transform

The Unscented Transform (UT), proposed by Julier and

Uhlmann [36], aims to create nonlinear filters without the

need for linearization. It approximates a probability distri-

bution function (PDF) after it passes through a non-linear

transformation using a set of sampled points, known as sigma

points [7], [37].

Formally, given the mean x̄k and covariance Σk of

a Gaussian-distributed system state xk, with xk ∼
N (x̄k,Σk) ∈ R

nx , UT approximates the distribution over the

next state, xk+1, by first introducing a set of sigma points
{
X (i)

k

}2nx

i=0
∈ R

nσ around the mean x̄k and the corresponding

weights
{
w(i)

}2nx

i=0
∈ R

nσ , where the number of sigma points

is given by nσ = 2nx + 1 and nx is the dimension of the

state space. These sigma points are designed to capture the

covariance of the distribution at time-step k as follows

X (0)
k = x̄k,

X (i)
k = x̄k +

(√

(nx + λσ)Σk

)

i
, ∀i = {1, . . . , nx},

X (i)
k = x̄k −

(√

(nx+λσ)Σk

)

i
, ∀i={nx+1, . . . , 2nx},

(6)

where
(√

(nx + λσ)Σk

)

i
represents the ith row or column

of the square root of the weighted covariance matrix (nx +
λσ)Σk, and λσ = α2(nx+kσ)−nx is influenced by the scaling

parameters kσ ≥ 0 and α ∈ (0, 1] that determine how far the

sigma points are spread from the mean [38], as demonstrated

in Fig. 4. Each X (i)
k is associated with two weights, w

(i)
m for

computing the mean and w
(i)
c for determining the covariance

of the transformed distribution, computed as

w(0)
m =

λσ

nx + λσ

,

w(0)
c = w(0)

m + (1− α2 + β),

w(i)
m = w(i)

c =
1

2(nx + λσ)
, ∀i = {1, . . . , 2nx},

(7)

where β is a hyper-parameter controlling the relative im-

portance of the mean and covariance information. In other

words, β is employed to incorporate prior knowledge about

the distribution of state x. For Gaussian distributions, the

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3526078

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indiana University. Downloaded on January 05,2025 at 03:09:15 UTC from IEEE Xplore. Restrictions apply.

0 2 4 6 8
−2
−1
0

1

2

MPPI

x [m]

y
[m

]

(a) δuk ∼ N (0, 0.025I2)

0 2 4 6 8

−2
−1
0

1

2

U-MPPI

x [m]

y
[m

]

(b) α = 1, kσ = 0,Σ0 = 0.01I3

0 2 4 6 8

−2

0

2

U-MPPI

x [m]

y
[m

]

(c)α = 1, kσ = 3,Σ0 = 0.012I3

0 2 4 6 8
−2
−1
0

1

2

U-MPPI

x [m]

y
[m

]

(d)α= 0.1, kσ= 0,Σ0= 0.01I3

Fig. 4: Distribution of 210 sampled trajectories generated by (a)
MPPI with δuk ∼ N (0, 0.025I2) and (b) U-MPPI with the same
perturbation in the control input δuk but with different UT parame-
ters; in both methods, the robot is assumed to be initially located at
x = [x, y, θ]⊤ = [0, 0, 0]⊤ in ([m], [m], [deg]), with a commanded

control input u = [v, ω]⊤ = [1, 0]⊤ in ([m/s], [rad/s]).

the classical MPPI sampling strategy, as it generates more

spread-out trajectories that cover a larger state space. This

enables the robot to explore the environment more extensively

and find better solutions, thereby reducing the likelihood of

getting trapped in local minima, as revealed in Section V-A4.

Nevertheless, as depicted in Fig. 4(c), employing higher values

of UT parameters (specifically, α, kσ,Σ0) may result in a loss

of precision and continuity in the distribution of trajectories

across the state-space, as the sigma points become more spread

out from the mean X (0)
k . This can impact the resulting control

actions of the system and, in the context of autonomous

navigation, potentially lead to collisions with obstacles. In

contrast, Fig. 4(d) demonstrates that using lower values of α
and kσ results in a sampling strategy that closely resembles

MPPI. Similarly, if trajectories are sampled only from X (0)
k

(as depicted by the blue trajectories in Fig. 1), while excluding

other sigma-point trajectories, the same sampling strategy can

be achieved. We refer to this approach as sampling mode 0

(SM0), while the default strategy that includes all sigma points

is referred to as SM1.

B. Risk-Sensitive Cost

One of the main limitations of the vanilla MPPI is that it

typically assumes a risk-neutral approach when assessing the

sampled trajectories during the optimization process, without

explicitly considering risk or uncertainty in the trajectory

evaluation process, as outlined in Section II-B, particularly in

(4). The commonly employed method in sampling-based MPC

algorithms involves using a quadratic cost function to guide

the current state xk towards its desired state xf , denoted as

qstate(xk), and expressed mathematically as follows

qstate(xk) = (xk − xf)
⊤
Q(xk − xf) = ‖xk − xf‖2Q , (12)

where Q is a positive definite weighting matrix. Hence, our

key objective in this work is to integrate a risk measure into

the U-MPPI optimization problem, enabling the adjustment

of responses to varying uncertainty levels and improving

adaptability over the conventional MPPI algorithm.

Whittle introduced in [42] an interesting risk measure

method for incorporating risk in decision-making by replacing

the expected quadratic cost with a risk-sensitive benchmark

in the form of an exponential-quadratic function. Such a

formulation maps uncertainties to a numerical value to assess

the potential threat from extreme events. In the context of

risk-sensitive control, this involves assessing the impact of

uncertainty on system performance and adjusting responses

to manage risks effectively. Mathematically, the risk-sensitive

(RS) cost qrs (xk) can be obtained by evaluating the log-

expectation of the exponentiated quadratic cost as follows

qrs(xk) = −
2

γ
logE

[

exp

(

−1

2
γqstate(xk)

)]

= − 2

γ
logE

[

exp

(

−1

2
γ ‖xk − xf‖2Q

)]

.

(13)

Notably, as γ approaches zero, the RS cost qrs(xk) converges

to the standard quadratic cost qstate(xk), i.e.,2

lim
γ→0

qrs(xk) = ‖xk − xf‖2Q = qstate(xk),

thus avoiding the singularity issue when γ = 0. Here,

γ is a real scalar denoted as the risk-sensitivity parameter,

dictating how the controller reacts to risk or uncertainty. For

example, when γ > 0, the controller exhibits risk-seeking or

risk-preferring behavior, favoring trajectories that may offer

higher rewards, even if they come with higher uncertainties

or risks. As a result, a controller minimizing the risk-seeking

cost qrs will actively steer the system state xk towards areas of

uncertainty (i.e., uncertain regions) where the cost qrs imposes

lower penalties. Such behavior encourages the exploration

of unknown or uncertain areas, which can lead to a more

comprehensive understanding of the system dynamics. Con-

versely, when γ < 0, the controller demonstrates risk-averse

or risk-avoiding behavior, prioritizing safer trajectories and

leading to more conservative control actions. In this scenario,

the controller minimizes risk-averse cost qrs by driving the

system state towards areas with minimal uncertainty and lower

penalties. This approach prioritizes stability and safety by

avoiding risky or uncertain areas, making it suitable for appli-

cations where minimizing risk is crucial. Examples include

autonomous medical robots performing delicate surgeries,

where precision and safety are crucial to prevent patient harm.

It is noteworthy that a control strategy aimed at minimizing the

maximum possible loss (i.e., solving a minimax optimization

problem) aligns with the risk-averse behavior inherent in the

risk-sensitive function, thereby representing a specific instance

of risk-sensitive control designed to ensure robust and reliable

performance. As discussed in [3] (see Chapter 8), the author

examines the relationship between risk-sensitive and minimax

2This is because, as γ becomes very small, the exponential function can be
approximated using a Taylor series expansion, and the logarithmic term can
be simplified accordingly.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3526078

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indiana University. Downloaded on January 05,2025 at 03:09:15 UTC from IEEE Xplore. Restrictions apply.

can obtain the modified cost-to-go for each trajectory τ
(i)
m in

batch m as

S̃
(

τ (i)m

)

=φ
(

X (i)
N

)

+

N−1∑

k=0

q̃
(

X (i)
k ,Σk,uk, δuk,m

)

,

∀m ∈ {1, · · · ,Mσ}, ∀i ∈ {0, · · · , 2nx},
(16)

where the instantaneous running cost q̃ is a combination of

the state-dependent running cost q
(

X (i)
k ,Σk

)

, which relies

on the RS cost defined in (15) (as shown in (19) as an

example), as well as the quadratic control cost qu (uk, δuk)
from (4). Note that the cost-to-go for all sigma-point trajec-

tories in the mth batch can be expressed in vector form as

S̃ (τm) =
[

S̃
(

τ
(0)
m

)

, . . . , S̃
(

τ
(2nx)
m

)]⊤
∈ R

nσ . Similarly,

q̃ (Xk,Σk,uk, δuk,m) =
[

q̃
(

X (0)
k , ·

)

, . . . , q̃
(

X (2nx)
k , ·

)]⊤
.

Algorithm 1 Real-Time U-MPPI Control Algorithm

Given:

M,Mσ, N : # of trajectories, batches, time-horizon,

f , nx,∆t: Dynamics, state dimension, time-step size,

φ, q,Q, γ, λ, ν,Σu, R: Cost/Control parameters,

λσ, kσ, nσ, α, β,Σ0: UT parameters,

SGF: Savitzky-Galoy (SG) convolutional filter,

Input:

U = ControlSequenceInitializer(xinit),

SM: Set U-MPPI sampling mode (SM0 OR SM1),

1: while task not completed do

2: x̄0 ← StateEstimator(), ⊲ x̄0 ∈ R
nx

3: δu← RandomNoiseGenerator(0,Σu), ⊲ δu∈RN×Mσ

4: for m← 1 to Mσ in parallel do

5: (x̄,Σ)←(x̄0,Σ0), ⊲ Actual state x0∼N(̄x0,Σ0)
6: S̃ (τm)← [0, . . . , 0]⊤, ⊲ S̃ (τm) ∈ R

nσ

7: for k ← 0 to N − 1 do

8: Xk ← Moments2SigmaPoints(x̄k,Σk),
9: Xk+1 ← Xk + f (Xk, g (uk + δuk,m))∆t,

10: S̃ (τm)← S̃ (τm) + q̃ (Xk,Σk,uk, δuk,m),
11: (̄xk+1,Σk+1)← SigmaPoints2Moments(Xk+1),
12: end for

13: S̃ (τm)← S̃ (τm) +Φ (XN),
14: end for

15: S̃min ← minm[S̃ (τm)], ∀m = {1, . . . ,Mσ}
16: for k ← 0 to N − 1 do

17: uk←SGF

(

uk+
∑Mσ

m=1
exp
(
−1

λ [S̃(τm)−S̃min]
)
δuk,m

∑Mσ
m=1

exp
(

−1

λ [S̃(τm)−S̃min]
)

)

,

18: end for

19: u0 ← SendToActuators(U),

20: for k ← 1 to N − 1 do

21: uk−1 ← uk,

22: end for

23: uN−1 ← ControlSequenceInitializer(xinit),

24: Check for task completion

25: end while

C. Real-Time U-MPPI Control Algorithm

We are now prepared to describe the real-time control-

loop of our U-MPPI algorithm, as depicted in Algorithm 1,

employing the default sampling strategy that considers all

sigma points (referred to as SM1). We assume that the system

dynamics, control parameters (including UT parameters), cost

function for the given task, and control policy for initial-

izing the control sequence for a given initial system state

xinit are provided.4 First, at every control loop interval ∆t,
the algorithm estimates the current system state x̄0 with an

external state estimator, generates N × Mσ random control

perturbations δu on the GPU using CUDA’s random number

generation library, and then produces Mσ sets of batches

in parallel on the GPU (lines 2 : 4). Subsequently, for

each batch and starting from the actual (i.e., initial) state

x0 ∼ N (x̄0,Σ0), the algorithm samples and propagates nσ

sigma-point trajectories by applying the non-linear dynamics

in (10) to the sigma points computed via (6) (lines 5 : 9).

These trajectories are then evaluated using (16), and the first

and second moments of the propagated state are estimated

by applying (8) (lines 10 : 15). Then, the algorithm updates

the optimal control sequence {uk}N−1
k=0 , applies a Savitzky-

Galoy filter for smoothing, and applies the first control u0 to

the system (lines 16 : 19). It then slides down the remaining

sequence of length N−1 to be utilized in the next control loop

interval (lines 20 : 22). Lastly, the final control input uN−1 is

assigned the value determined by the predefined initialization

control policy (line 23). It is noteworthy that when executing

the algorithm in sampling mode 0 (SM0), where only the mean

X (0)
k is used for trajectory sampling, it is essential to set Mσ to

M instead of int(M
nσ

). Additionally, it is necessary to evaluate

solely the cost-to-go of the nominal trajectory S̃
(

τ
(0)
m

)

.

D. Constraint Handling and Scalability in U-MPPI

Herein, we explore two critical aspects of the U-MPPI

control strategy: the effective handling of constraints within

MPPI-based control frameworks, including our proposed con-

trol strategy, and the scalability and adaptability of the U-MPPI

algorithm to higher-dimensional robotic systems, highlighting

the advantages and disadvantages of the algorithmic structure

given in Algorithm 1.

1) Constraint Handling for MPPI Variants: One of the

primary advantages of MPPI variants, including our proposed

control strategy, is their ability to include costs in the form

of large-weighted indicator terms, as they do not require

explicit gradient computations. These terms provide impulse-

like penalties when constraints are violated, effectively han-

dling task-related state constraints and collision avoidance con-

straints as soft constraints. By incorporating appropriate terms,

such as indicator functions, into the running cost function q̃
in (3) and (16), trajectories that violate these constraints can

be effectively penalized. Control constraints, such as actuator

limits, which are considered hard constraints that must not

be violated, can similarly be integrated into the running cost.

However, a common issue with this approach is that control

constraints are treated as soft constraints, making it chal-

lenging to ensure that the control input consistently remains

4In this study, the default initialization policy is applied, producing a control
sequence of zeros.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3526078

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indiana University. Downloaded on January 05,2025 at 03:09:15 UTC from IEEE Xplore. Restrictions apply.

within its allowed bounds, even after rejecting trajectories that

exceed the control input limits. Instead, in this study, control

constraints are integrated directly into the underlying non-

linear dynamics described in (1) and (10). Consequently, the

system dynamics are represented as xk+1 = f
(
xk, g(wk)

)

and Xk+1 = f (Xk, g(wk)), where g(wk) is an element-

wise clamping function that confines the control input, wk =
uk + δuk, within specified bounds for all samples drawn

from the dynamic system. Specifically, g(w) is defined as

g(w) = max
(
wmin,min(w,wmax)

)
, with wmin and wmax

denoting the lower and upper control input limits, respectively.

This method effectively converts the optimization problem

with control constraints into an unconstrained problem, en-

suring that constraints are not violated and the convergence of

the MPPI-based algorithm is not compromised, as g(w) only

influences the dynamics. Further details on system constraints,

including other practical concerns, can be found in [14], [19].

2) Scalability and Adaptability of U-MPPI: Our investiga-

tion centers on the question: How effectively can the U-MPPI

algorithm scale to accommodate robotic systems with higher-

dimensional state spaces, such as those in unmanned aerial

vehicles (UAVs) and mobile manipulators? We assert that the

proposed U-MPPI algorithm effectively scales and adapts to

systems with higher degrees of freedom (DoFs) beyond the 3-

DoF mobile robot used in our current experiments for the fol-

lowing reasons. First, the core principles of U-MPPI, including

the use of the UT for trajectory sampling and the incorporation

of risk-sensitive cost functions, are inherently scalable and

adaptable to systems with higher DoFs. The UT, a non-

linear transformation method, is designed to efficiently handle

higher-dimensional state spaces, making it a superior choice

over methods like Gaussian Processes (GP), which require

substantially more computational resources. For systems such

as UAVs and mobile manipulators, the state space includes

additional dimensions such as altitude, pitch, roll, joint angles,

and velocities. Our UT-based sampling strategy can extend

to these dimensions without significant modifications to the

algorithmic structure.

Second, in prior work [15], we demonstrated the appli-

cability of the MPPI algorithm in achieving real-time au-

tonomous navigation of a UAV with a higher-dimensional

state space comprising 12 dimensions, and we anticipate that

U-MPPI will achieve a comparable level of performance.

However, the increased configuration space might impose a

greater computational burden due to the need for additional

sigma points. This increased burden highlights the importance

of several factors to ensure real-time performance, such as

the computational capabilities of the GPU, the number of

threads utilized, and the efficiency of the implementation.

Our GPU-based implementation is designed to exploit parallel

processing, allowing for efficient handling of increased state

dimensionality. Additionally, the number of sampled trajec-

tories, the chosen prediction time horizon, the optimization

of the computational pipeline, and the use of CUDA built-

in functions and libraries all play crucial roles in achieving

real-time performance. Memory management, data transfer

rates between CPU and GPU, and the optimization of kernel

functions are also critical factors impacting the algorithm’s

efficiency.

Additionally, we have investigated the comparative advan-

tages and disadvantages of parallelizing sigma-point trajec-

tories using a reduced number of threads relative to the

traditional MPPI approach, where each thread computes the

dynamics and costs for an entire trajectory [13]. As delineated

in Algorithm 1, our approach involves each thread processing

a batch of sigma-point trajectories, thereby reducing com-

putational overhead as fewer threads result in less context-

switching and more efficient utilization of GPU resources. This

efficiency accounts for U-MPPI’s execution times being nearly

equivalent to those of the MPPI algorithm, as evidenced in

the results section. However, a notable disadvantage of our

algorithmic structure is the increased latency in generating

each trajectory, attributed to the elevated workload per thread.

This issue is worsened in higher-dimensional state spaces

or mathematical functions with exponential computational

complexity, which can significantly amplify the computational

load per thread. To mitigate this issue, a potential solution is

to adopt a per-sigma-point trajectory threading model, akin

to the MPPI algorithm, which would distribute the workload

more evenly across the available threads, potentially reducing

latency and enhancing overall performance. In conclusion,

while our current work provides a foundational evaluation

using a 3-DoF mobile robot, we are confident in the U-MPPI

algorithm’s potential to scale to higher-dimensional robotic

systems.

V. SIMULATION-BASED EVALUATION

In this section, we evaluate the effectiveness of our pro-

posed control strategy by comparing it to the standard MPPI

control framework. Herein, we focus on two goal-oriented

autonomous ground vehicle (AGV) navigation tasks in 2D

cluttered environments. The first task, presented in Sec-

tion V-A, involves maneuvering the AGV within a given

map. This experiment allows us to understand the algorithmic

advantages of the proposed U-MPPI control scheme without

adding real-world complexity. Section V-B introduces a more

complex and realistic scenario where the map is unknown

a priori. It examines the adaptability and robustness of our

proposed control strategy, providing a thorough evaluation of

its potential in real-world applications.

A. Aggressive Navigation in Known Cluttered Environments

1) Simulation Setup: In this study, we employ the kine-

matics model of a differential drive robot, as specified in

(17), for sampling trajectories in the conventional MPPI and

propagating sigma points in the proposed U-MPPI method,

as outlined in (9). The state of the model encompasses the

robot’s position and orientation in the world frame Fo, given by

x = [x, y, θ]⊤ ∈ R
3. The control input consists of the robot’s

linear and angular velocities, denoted by u = [v, ω]⊤ ∈ R
2.





ẋ
ẏ

θ̇



 =





cos θ 0
sin θ 0
0 1





[
v
ω

]

. (17)

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3526078

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indiana University. Downloaded on January 05,2025 at 03:09:15 UTC from IEEE Xplore. Restrictions apply.

To ensure a fair comparison, both MPPI and U-MPPI sim-

ulations were conducted under consistent parameters. A time

prediction of 8 s and a control rate of 30Hz were employed,

resulting in 240 control time-steps (i.e., N = 240). At each

time-step ∆t, a total of 2499 rollouts were sampled, accom-

panied by an exploration noise of ν = 1200. To account for

control weighting, a control weighting matrix R was utilized,

which was formulated as λΣ
− 1

2

u . Additionally, the inverse

temperature parameter was set to λ = 0.572, while the control

noise variance matrix Σu = Diag
(
σ2
v , σ

2
w

)
was defined as

Σu = Diag (0.023, 0.028). To smooth the control sequence,

we utilized the Savitzky-Galoy (SG) convolutional filter with

a quintic polynomial function, i.e., nsg = 5, and a window

length lsg of 61. As described in Section IV-A, U-MPPI has

additional parameters in the unscented transform to regulate

the spread of the sigma points. These parameters are set to

α = 1, kσ = 0.5, and, β = 2. Additionally, the initial state

covariance matrix Σ0 is set to 0.001I3. It is worth mentioning

that λ and Σu, which play crucial roles in determining the

behavior of sampling-based MPC schemes, are set based on

the intensive simulations conducted in [22]. These simulations

considered various values of λ and Σu with the objective of

selecting the optimal set of hyperparameters that adhere to the

control constraints. Other parameters were fine-tuned using a

trial-and-error method, guided by an understanding of the role

and impact of each parameter on the algorithm’s performance

[14], [15], [38]. The baseline and U-MPPI are implemented

using Python and incorporated within the Robot Operating

System (ROS) framework. They are executed in real-time on

an NVIDIA GeForce GTX 1660 Ti laptop GPU.

In the context of the 2D navigation task, MPPI employs

a commonly-used instantaneous state-dependent cost function

described in (18). This cost function consists of two terms.

The first term, denoted as qstate(xk), encourages the robot

to reach the desired state; its formulation, which employs a

quadratic expression, is provided in (12). The second term,

qcrash(xk) = wcrashIcrash, serves as an indicator function that

imposes a high penalty when the robot collides with obstacles,

with Icrash being a Boolean variable and wcrash representing

the collision weighting coefficient. While implementing the

proposed U-MPPI approach, we replace the quadratic cost

qstate(xk), as depicted in (19), with our newly introduced RS

cost denoted as qrs

(

X (i)
k ,Σk

)

and defined in (15). Within

the scope of this work, we set the values of Q and wcrash as

follows: Q = Diag(2.5, 2.5, 2) and wcrash = 103. It is worth

noting that in this particular task, assigning positive values to

γ (i.e., γ > 0) ensures a trade-off between compelling the

robot to reach its desired state and minimizing the risk of

collisions with obstacles. This trade-off arises from the fact

that the penalty coefficients matrix Qrs, utilized for tracking

the desired state, decreases as the system uncertainty Σk

increases over the time-horizon N . Therefore, we have chosen

γ = 1 to maintain this trade-off and strike a balance between

task completion and collision avoidance. On the other hand,

we believe that assigning negative values to γ in applications

such as autonomous racing [14] and visual servoing [19] could

enhance the performance of U-MPPI. In such tasks, it is

crucial to prioritize forcing the current state to reach its desired

state, which can be achieved by assigning a higher penalty

coefficients matrix Qrs.

q(xk) = qstate(xk) + qcrash(xk). (18)

q
(

X (i)
k ,Σk

)

= qrs

(

X (i)
k ,Σk

)

+ qcrash

(

X (i)
k

)

. (19)

2) Simulation Scenario: In order to assess the effectiveness

of the proposed control framework within cluttered environ-

ments, three distinct scenarios with different difficulty levels

were examined. In each scenario, we randomly generate one

unique forest type consisting of 25 individual forests, resulting

in a total of NT = 25 tasks. Each forest represents a cluttered

environment with dimensions of 50m × 50m. In the first

scenario (referred to as Scenario #1), the average distance

between obstacles was 1.5m, indicated as dobs
min = 1.5m;

while in the second and third scenarios (i.e., Scenario #2 and

Scenario #3), they were placed at average distances of 2m and

3m, respectively. Additionally, we set the maximum desired

velocity vmax of the robot based on the degree of clutter in

each scenario. Specifically, vmax is set to 2m/s, 3m/s, and

4m/s in Scenario #1, #2, and #3, respectively.

3) Performance Metrics: To achieve a fair comparison

between the two control strategies, we use the following

criteria: (i) firstly, in all simulation instances, the robot is

required to reach the designated desired pose, denoted as xf =
[50, 50, 0]⊤, from a predetermined initial pose x0 = [0, 0, 0]⊤,

measured in ([m], [m], [deg]); (ii) secondly, a comprehensive

set of metrics is defined to evaluate the overall performance

[22], including the task completion percentage Tc, which is

computed as the average distance the robot travels towards the

desired state to the total planned distance5; the success rate

SR, which is quantified as the ratio of successfully completed

tasks to the total tasks undertaken; the average number of

collisions Nc encountered by the robot during the tasks; the

average number of local minima occurrences Rlm, indicating

how often the robot gets trapped in local minima; the average

distance traversed by the robot dav to reach the desired state

xf from its initial state x0; the average linear velocity vav

of the robot during the execution of its task in the cluttered

environment; and the average execution time per iteration texec.

of the control algorithm.

These metrics are essential for evaluating the efficacy of

a control strategy in autonomous vehicle navigation, high-

lighting its proficiency in generating safe, efficient, and re-

silient trajectories under varying conditions. In detail, the task

completion percentage Tc and success rate SR measure the

effectiveness of the approach, with higher values indicating

the control strategy’s ability to successfully complete tasks

and achieve goals under various conditions. Metrics such as

the number of collisions Nc and local minima occurrencesRlm

provide insights into the safety and robustness of the control

strategy, with fewer crashes and reduced occurrences of local

minima indicating more reliable navigation. A shorter aver-

age distance dav indicates more efficient trajectory planning,

5In this research, the Euclidean distance between x0 and xf is used to
calculate the planned distance.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3526078

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indiana University. Downloaded on January 05,2025 at 03:09:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Performance comparisons of the two control schemes, with
gray cells indicating better performance and values for dav, vav, and
texec. representing the mean values for only the successful tasks.

Scheme Rlm(Nc) SR [%] Tc [%] dav [m] vav [m/s] texec. [ms]

Scenario #1: vmax = 2m/s & dobs
min = 1.5m, γ = 1, wcrash = 103

MPPI 9 (2) 78 92.86 75.18 1.84± 0.18 9.68

U-MPPI 2 (0) 96 98.78 75.34 1.85± 0.17 9.12

Scenario #2: vmax = 3m/s & dobs
min = 2m, γ = 1, wcrash = 103

MPPI 2 (1) 94 98 75.31 2.49± 0.73 10.03

U-MPPI 0 (0) 100 100 75.78 2.53± 0.49 8.87

Scenario #3: vmax = 4m/s & dobs
min = 3m, γ = 1, wcrash = 103

MPPI 0 (0) 100 100 72.19 3.51± 0.74 8.55

U-MPPI 0 (0) 100 100 71.98 3.54± 0.59 7.7

showcasing optimized path generation. Higher average robot

speed vav reflects the ability to maintain a faster pace without

compromising safety, crucial for timely task completion in

real-world applications. Lower average execution time texec.

highlights efficiency and responsiveness, ensuring real-time

performance in practical scenarios. In this work, successful

task completion is defined as the robot reaching the desired

pose without colliding with obstacles within a predefined finite

time, represented by Tc = 100%, Nc = 0, and Rlm = 0. Fur-

thermore, in all scenarios, if the robot fails to reach the desired

pose within 70 s while successfully avoiding collisions, we

classify the simulation episode as reaching a local minimum,

indicated by Rlm = 1.

4) Simulation Results: Table I presents the performance

analysis of the proposed U-MPPI and the baseline MPPI con-

trol strategies, considering the three predefined scenarios. For

each scenario, two trials were conducted over the 25 individual

forests, resulting in a total of 50 tasks (NT = 50). In Scenario

#1, where dobs
min = 1.5m, it is noteworthy that U-MPPI

outperforms MPPI. Specifically, U-MPPI achieves a notably

higher task completion percentage (Tc = 98.78%) compared to

MPPI (Tc = 92.86%), effectively avoids collisions (Nc = 0),

mitigates local minimum occurrences (Rlm = 2), and achieves

a significantly higher success rate (SR = 96% vs. SR = 78%
when MPPI is utilized). Furthermore, it successfully navigates

the cluttered environment with a slightly improved average

linear velocity vav, which exhibits a very low standard de-

viation and approaches the maximum desired speed vmax

of 2m/s (likewise observed in the other two scenarios).

Similarly, in Scenario #2, with a minimum obstacle distance

of dobs
min = 2m, U-MPPI achieves a perfect task completion

rate of 100%, outperforming MPPI’s 98%, as it successfully

avoids collisions and local minima, surpassing the baseline

MPPI that experienced one collision with obstacles (Nc = 1)

and encountered two instances of local minima (Rlm = 2).

In the least cluttered scenario, Scenario #3, both con-

trol strategies effectively complete all assigned tasks while

successfully avoiding obstacles in the cluttered environment.

However, U-MPPI stands out by offering a slightly more direct

route towards the desired pose, with the robot traveling an

average distance dav of approximately 71.98m, compared to

72.19m when utilizing MPPI. On the contrary, in Scenarios

#1 and #2, MPPI demonstrates an enhanced performance

in terms of the average distance traveled dav by the robot

when compared to our proposed U-MPPI. Nevertheless, it

should be emphasized that the average distance is computed

solely on successful task completions, and MPPI has a lower

number of successful tasks compared to U-MPPI, which

affects the comparison of average distances. This indicates

that U-MPPI outperforms MPPI in terms of overall route

completion and reliability, as it is more effective in achieving

collision-free navigation. In the last column of Table I, despite

both control methods ensuring real-time performance (since

texec. < 33.33ms), it is worth emphasizing that the average

execution time texec. of our proposed U-MPPI control strategy

is slightly shorter than that of MPPI. This can be attributed to

the parallel implementation of the U-MPPI algorithm on GPU,

where each thread is responsible for computing the dynamics

and costs of the entire batch when sampling from all sigma

points (SM1). On the other hand, the parallel implementation

of MPPI, as well as U-MPPI with sampling mode 0 (SM0),

employs a single thread to compute each sampled trajectory,

resulting in a relatively longer execution time, as evidenced by

the intensive simulations in Table I, as well as Tasks #3 and

#4 in Table II, where only the mean X (0)
k is used for trajectory

sampling (i.e., SM0).

To summarize, the intensive simulations clearly demonstrate

that our U-MPPI method consistently outperforms the baseline

MPPI control framework in all tested scenarios, particularly in

environments with higher levels of clutter. These remarkable

results can be credited to two key factors: the effective

utilization of an unscented-based sampling strategy, which

provides more flexible and efficient trajectories, and the incor-

poration of a risk-sensitive (RS) cost function that explicitly

takes into account risk and uncertainty during the trajectory

evaluation process; thanks to the incorporation of these crucial

components, our approach ensures a significantly enhanced

exploration of the state-space of the controlled system, even

while leveraging the same injected Gaussian noise δuk into

the mean control sequence, effectively reducing the likelihood

of being trapped in local minima and yielding a safer and

more resilient control system that is suitable for aggressive

navigation in highly complex cluttered environments.

To achieve a comprehensive understanding of how the

behavior of the U-MPPI control strategy is affected by inte-

grating the proposed sampling strategy and RS cost function,

we expanded our intensive simulations in Table II to include

varying operating conditions and hyper-parameters, differing

from those utilized in Section V-A1. More precisely, in the

first four intensive simulations (namely, Test #1 to Test #4),

we investigate the potential benefits of integrating the RS

cost function into the U-MPPI control strategy through two

approaches: (i) reducing the collision weighting coefficient

wcrash (specifically, Tests #1 and #2), and (ii) adopting sam-

pling mode 0 (SM0) as an alternative to the default mode

SM1 (i.e., Tests #3 and #4). Additionally, in the subsequent

four tests, we extensively analyze the influence of the UT

parameters on the performance of U-MPPI. For Tests #1 and

#2, we replicated the U-MPPI simulations presented in Table I,

specifically for Scenarios #1 and #2, by assuming a reduced

collision weighting coefficient wcrash of 500, representing half

of its nominal value. We can clearly observe that lowering the

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3526078

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indiana University. Downloaded on January 05,2025 at 03:09:15 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Influence of collision weighting coefficient wcrash, sam-
pling modes (i.e., SM0 and SM1), and UT parameters (namely,
Σ0, kσ, α) on U-MPPI performance.

Test No. Rlm(Nc) SR [%] Tc [%] dav [m] vav [m/s] texec. [ms]

Scenarios #1 and #2: wcrash = 500 instead of wcrash = 103

Test #1 2 (0) 96 99.4 74.43 1.86± 0.15 8.69

Test #2 0 (0) 100 100 74.55 2.56± 0.56 8.9

Scenarios #1 and #2: SM0 instead of SM1

Test #3 3 (0) 94 98.24 75.88 1.84± 0.22 12.87

Test #4 1 (0) 98 99.8 76.87 2.47± 0.67 12.59

Scenario #1: Impact of UT parameters (Σ0, kσ, α)

Test #5 0 (0) 100 100 77.19 1.79± 0.23 8.80

Test #6 1 (0) 98 98.7 74.65 1.80± 0.24 8.88

Test #7 4 (0) 92 96.88 75.75 1.81± 0.25 9.46

Test #8 9 (0) 82 92.91 75.25 1.83± 0.22 9.02

value of wcrash has no significant impact on the success rate

SR (as also depicted in Fig. 6(a)) and task completion rate

Tc. Nevertheless, it demonstrates improved performance in the

robot’s average travel distance dav for completing the assigned

tasks in both scenarios, outperforming both U-MPPI and MPPI

as indicated in Table I. As an example, in Scenario #2 shown

in Fig. 6(b), we can observe that dav is approximately 1.23m
shorter than that of U-MPPI when wcrash is set to 103. On

the contrary, we empirically observed that reducing wcrash in

the case of MPPI, which utilizes a risk-neutral technique for

evaluating sampled trajectories (as expressed in (18)), does not

lead to a performance improvement, as depicted in Fig. 6(c).

For instance, in Scenario #1, it can be noted from Fig. 6(c) that

the success rate SR experiences a decline from 78% to 72%

with the reduction of wcrash. It is also noteworthy that, although

U-MPPI already demonstrated higher average speeds vav in

Scenarios #1 and #2 in Table I, adjusting wcrash can further

enhance the average speed. In contrast, adopting sampling

mode 0 (SM0) and modifying the UT scaling parameters lead

to a slight reduction in average speed, as shown in Tests #3

to #8.

By employing sampling mode 0 (SM0) in Tests #3 and #4

as an alternative to the default sampling SM1 in U-MPPI,

a slight decrease in performance is observed. However, U-

MPPI continues to demonstrate impressive capabilities in suc-

cessfully accomplishing assigned tasks and navigating around

obstacles, outperforming the classical MPPI, particularly in

Scenario #1 (refer to Fig. 6(d)), owing to the integration

of our efficient RS cost function for trajectory assessment.

Furthermore, the comprehensive simulations performed in

Tests #3 and #4 highlight the importance of employing the

default sampling strategy SM1, which takes into account all

sigma points, in extremely challenging scenarios. This strat-

egy leads to enhancements in both the success rate and the

trajectory quality of the robot, as depicted in the illustrative

example presented in Fig. 7(a). It is also important to note

that the average execution time texec. of our proposed U-MPPI

algorithm operating in SM0 is quite longer than in SM1. This

stems from the fact that the algorithm samples M batches in

parallel, rather than Mσ batches, while using only the nominal

trajectory X (0)
k for trajectory sampling and evaluating the cost-

#1 #2
0

50

100 96 10096 100

Scenario

S R
[%

]

wcrash = 103

wcrash = 500

(a) U-MPPI: Success rate SR

#1 #2
70

72

74

76 75.34
75.78

74.43 74.55

Scenario

d
av

[m
]

wcrash = 103

wcrash = 500

(b) U-MPPI: Average distance dav

#1 #2
0

50

100

78

94

72

88

Scenario

S R
[%

]

wcrash = 103

wcrash = 500

(c) MPPI: Success rate SR

#1 #2
0

50

100 94 98

78

94

Scenario

S R
[%

]

U-MPPI, SM0

MPPI

(d) U-MPPI vs. MPPI: Success rate SR

Fig. 6: Impact of decreasing collision weighting coefficient wcrash on
(a) U-MPPI success rate SR, (b) average distance traveled by the
robot dav in U-MPPI, and (c) MPPI success rate SR, as well as (d)
the effect of utilizing sampling mode 0 (SM0) on U-MPPI success
rate SR compared to MPPI success rate.

to-go S̃
(

τ
(0)
m

)

, as explained in Section IV-C. By sampling M

batches, the U-MPPI algorithm ensures that the total number

of M trajectories remains similar to that in MPPI, thereby

allowing for a fair comparison. Additionally, to accurately

calculate the risk-sensitive cost function over the time horizon

N , it is necessary to propagate all sigma points, even if only

the nominal trajectory X (0)
k is evaluated at each time-step

k. This propagation is required to obtain the covariance Σk,

which is then utilized by the risk-sensitive cost function as

illustrated in (15).

Now, it is time to delve into investigating how the key

UT parameters (namely, Σ0, kσ, α) affect the distribution

of sampled rollouts and their subsequent influence on the

performance of the U-MPPI algorithm; to achieve this, we

will explore their effects in highly cluttered environments, with

a specific focus on Scenario #1. In Test #5, the initial state

covariance matrix Σ0 is increased from 0.001I3 to 0.005I3.

It is observed that this increase in Σ0 results in a more con-

servative yet safer trajectory, with a success rate SR of 100%

and an average traveled distance dav of 77.19m, compared to

a success rate of 96% and an average distance of 75.34m
when Σ0 is set to 0.001I3, as shown in Table I. During

Tests #6 and #7, we adjust the UT scaling parameters (kσ
and α), which control the spread of sigma points; specifically,

we increase kσ from 0.5 to 3 in Test #6 and decrease α
from 1 to 0.1 in Test #7, while keeping all other parameters

constant. It is noteworthy to observe in Test #6 that assigning

a higher value to kσ , along with α = 1, generates more widely

spread trajectories that cover a larger state space. This enables

the robot to explore the environment more extensively and

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3526078

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indiana University. Downloaded on January 05,2025 at 03:09:15 UTC from IEEE Xplore. Restrictions apply.

(see Fig. 9(a)), resulting in G2 = [−18, 2, 40]⊤ instead

of G2 = [−18, 2, 0]⊤, which in turn requires the robot

to perform additional rotational maneuvers. Throughout five

simulation runs, our proposed approach effectively completes

all trials while penalizing trajectories with wmax values ex-

ceeding 3 rad/s. Figures 9(e) to 9(h) depict snapshots of

collision-free and predicted optimal trajectories generated by

U-MPPI at three successive time points as the robot advances

towards its target pose, G3. On the other hand, when MPPI is

employed, the robot experiences collisions with the same tree

on three separate occasions out of the five trials, as depicted

in Fig. 9(d). It is noteworthy that a lower value of wmax is

associated with improved MPPI performance. For instance,

setting wmax to 1 rad/s results in the successful completion

of all trials without any collisions. These outcomes emphasize

the enhanced safety delivered by our U-MPPI method without

imposing excessive constraints on control inputs.

VI. REAL-WORLD DEMONSTRATION

In this section, we conduct experiments to demonstrate the

effectiveness and practicality of the proposed control strategies

in achieving real-time, collision-free 2D navigation within an

unknown and cluttered indoor environment.

A. Navigation in Unknown Corridor Environment

1) Experimental Setup and Validation Environment: In

our experimental configuration, we utilize an autonomous

Clearpath Jackal robot equipped with a 16-beam Velodyne

LiDAR sensor, which serves the purposes of generating

the local costmap and estimating the robot’s pose through

the Lidar Odometry and Mapping (LOAM) algorithm [44].

Fig. 10: Snapshot of our Jackal
robot equipped with a Velo-
dyne VLP-16 LiDAR and lo-
cated in an indoor unknown clut-
tered corridor environment.

Additionally, we employ the

simulation setup previously

outlined in Sections V-A1

and V-B1, with two specific

modifications: (i) we adjust

the maximum speed vmax to

1.3m/s to mitigate the robot

localization error associated

with using the Velodyne as a

source of localization, and (ii)

we extend the time prediction

to 8 s, an increase from the 6 s
duration specified in Section

V-B1. We conduct experimen-

tal validation in an indoor cor-

ridor cluttered environment,

measuring 26m × 2.4m and

containing randomly placed,

varying-sized box-like obsta-

cles, as depicted in Fig. 10.

In this setting, the robot’s as-

signed control mission is to navigate from the following

desired poses (in [m], [m], [deg]): G1 = [0, 0, 0]T , G2 =
[26, 0.3, 170]T , and then return to G1.

2) Performance Metrics: We adhere to the predefined set

of performance metrics detailed in Section V-A3. Furthermore,

TABLE IV: Performance statistics of the two control strategies over
six trials in an indoor corridor environment.

Indicator MPPI U-MPPI

Rlm (Nc) 0 (1) 0 (0)
dav [m] 56.58± 0.33 56.01± 0.46
vav [m/s] 1.01± 0.32 1.02± 0.28
texec. [ms] 9.07± 0.40 10.78± 0.42

Jacc [m2/s3] 257.75± 62.99 228.15± 22.01
ζacc [rad2/s3] 306.91± 15.74 263.02± 25.10

Ex [m] w.r.t. Fo 0.38± 0.67 0.10± 0.28
Ey [m] w.r.t. Fo 0.30± 0.34 −0.04± 0.04
Eθ [deg] w.r.t. Fo 7.20± 11.65 0.80± 3.71

given the significant uncertainties and noise inherent in real-

world conditions (e.g., caused by LOAM) and the presence

of unknown environmental factors, the robot’s motion tends

to be less smooth than in simulations. To facilitate a more

thorough performance evaluation between the two proposed

control methods, we opt to calculate the cumulative linear

and angular jerks (Jacc, ζacc). Jerk, which represents the time

derivative of acceleration, is linked to sudden changes in the

forces exerted by the vehicle’s actuators. Consequently, we can

quantify the smoothness of the robot’s velocity and steering

by examining jerk as a metric [45]:

Jacc =
1

Ttot

∫ Ttot

0

[v̈(t)]2dt, (20)

ζacc =
1

Ttot

∫ Ttot

0

[ẅ(t)]2dt, (21)

where Ttot represents the complete duration required for the

robot to execute its control mission. Additionally, we introduce

the variable Eloc. = [Ex, Ey, Eθ]⊤, which signifies the average

drift or localization error in the robot’s pose relative to the

world frame Fo, as displayed in Fig. 11.

3) Experimental Results: The performance statistics com-

parison between the two control strategies, MPPI and U-

MPPI, across six trials in our indoor corridor environment

is summarized in Table IV. Throughout all trials, U-MPPI

consistently outperforms MPPI in collision avoidance, en-

suring collision-free navigation with zero collisions, whereas

MPPI averages one collision. While both control strategies

exhibit similar performance in terms of the average distance

traveled dav by the robot, average linear velocities vav, and

real-time performance guarantee (with texec. < 33.33ms), U-

MPPI demonstrates a slightly longer average execution time

per iteration texec. when compared to MPPI, due to its incorpo-

ration of both the local costmap and the unscented transform

into the U-MPPI optimization problem. It is noteworthy to

observe that U-MPPI showcases smoother motion, as indicated

by lower cumulative linear jerk Jacc at 228.15m2/s3 and

angular jerk ζacc at 263.02 rad2/s3, whereas MPPI exhibits

higher jerk values (257.75m2/s3 and 306.91 rad2/s3, respec-

tively). As a result of this enhanced motion smoothness,

U-MPPI demonstrates improved robot localization accuracy

based on LOAM, with smaller errors in both the x-direction

(Ex = 0.1m) and the y-direction (Ey = −0.04m), relative

to the reference frame Fo, compared to MPPI (0.38m and

0.30m, respectively). However, MPPI has a slightly higher

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3526078

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indiana University. Downloaded on January 05,2025 at 03:09:15 UTC from IEEE Xplore. Restrictions apply.

duced the occurrences of local minima from 2 to 1 in

Scenario #1 (see Test #6 in Table II),

(iii) setting γ < 0, which makes the control strategy more

aggressive in attempting to reach the desired state, as

explained in Section IV-B, thereby improving the quality

of the robot trajectory. For instance, in Scenario #2,

simulations were conducted with γ = −1 instead of

γ = 1. This adjustment demonstrated improved perfor-

mance in the robot’s average travel distance dav (namely,

dav = 74.8m), thereby outperforming both U-MPPI and

MPPI, as indicated in Table I. Moreover, this configura-

tion achieved a perfect task completion rate of 100%.

Concerning the second argument regarding the improvement

in the average linear velocity, it is noteworthy that the MPPI

algorithm slightly outperforms the U-MPPI algorithm in only

one scenario: Forest #1, as reported in Table III. However, it

achieves marginally higher average speeds in the remaining

tests, as indicated in Tables I, III, and IV. The limited

improvements in average linear velocity are primarily due to

the risk-sensitive cost function employed by U-MPPI, which

prioritizes safer, more robust trajectories, inherently resulting

in more conservative control actions with γ > 0. Additionally,

the integration of the UT for state propagation allows for

comprehensive state-space exploration by considering both the

mean and covariance of the system dynamics, leading to the

selection of more cautious trajectories that ensure safety but

may not be the fastest. This might result in fluctuations in

the velocity profile of U-MPPI, especially when navigating at

high speed in extremely crowded environments, as discussed

at the end of Section V-A4.

3) Dynamic Obstacles Integration: While our current study

evaluates the U-MPPI control strategy in static environments

to establish foundational performance metrics, navigating dy-

namic environments, particularly those shared with humans or

other agents, necessitates enhanced safety measures. Despite

achieving zero collisions (Nc) in all simulations and real-

world validations, the challenge of dynamic obstacle avoidance

remains. For instance, our previous work [22] demonstrated

successful avoidance of moving agents, such as eight pedes-

trians, in 2D grid-based navigation scenarios. However, an

increase in the number of agents led to a noisier 2D costmap,

raising the risk of the vehicle being trapped in local minima

and compromising safety. Given our current reliance on a 2D

grid for collision avoidance, similar behaviors and safety con-

cerns are anticipated. Therefore, to tackle this issue and ensure

safety, an alternative solution involves enhancing our control

strategy by incorporating formulations similar to equation (17)

in [19], which adjusts the cost function to better account

for collision risks, or by applying chance constraints [6] to

provide probabilistic guarantees of collision avoidance. These

measures aim to ensure safety in highly dynamic scenarios,

further improving the reliability of our autonomous navigation

system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the U-MPPI control strategy, a

novel methodology that enhances the vanilla MPPI algorithm

by leveraging the unscented transform for two primary objec-

tives. Firstly, it regulates the propagation of the dynamical

system, resulting in a more effective sampling distribution

policy that effectively propagates both the mean x̄k and

covariance Σk of the state vector xk at each time-step k.

Secondly, it incorporates a risk-sensitive cost function that

explicitly accounts for risk or uncertainty throughout the

trajectory evaluation process. Through extensive simulations

and real-world demonstrations, we demonstrated the effec-

tiveness of U-MPPI in achieving aggressive collision-free

navigation in both known and unknown cluttered environ-

ments. By comparing it to MPPI, our approach accomplished

a substantial improvement in state-space exploration while

utilizing the same injected Gaussian noise δuk in the mean

control sequence. As a result, it yielded higher success and

task completion rates, effectively minimizing the likelihood

of getting trapped in local minima, and enabling the robot to

identify feasible trajectories that avoid collisions. Our future

plan involves incorporating chance constraints into the U-

MPPI control architecture to effectively address uncertainties

in system dynamics and the environment, including moving

obstacles, resulting in an enhanced safety and robustness of

the control system to handle uncertain conditions, especially in

safety-critical applications. Moreover, we intend to extend our

experimental validation to include UAVs, mobile manipulators,

and autonomous ground vehicles with higher-dimensional state

spaces. This will provide empirical evidence of the algorithm’s

performance in these contexts, demonstrating its robustness

and efficiency in handling more complex systems.

REFERENCES

[1] H. Kurniawati, Y. Du, D. Hsu, and W. S. Lee, “Motion planning under
uncertainty for robotic tasks with long time horizons,” The International

Journal of Robotics Research, vol. 30, no. 3, pp. 308–323, 2011.
[2] J. Mattingley, Y. Wang, and S. Boyd, “Receding horizon control,” IEEE

Control Systems Magazine, vol. 31, no. 3, pp. 52–65, 2011.
[3] J. Löfberg, Minimax approaches to robust model predictive control.

Linköping University Electronic Press, 2003, vol. 812.
[4] A. Bemporad and M. Morari, “Robust model predictive control: A

survey,” in Robustness in identification and control. Springer, 2007,
pp. 207–226.

[5] A. Mesbah, “Stochastic model predictive control: An overview and
perspectives for future research,” IEEE Control Systems Magazine,
vol. 36, no. 6, pp. 30–44, 2016.

[6] N. E. Du Toit and J. W. Burdick, “Probabilistic collision checking with
chance constraints,” IEEE Transactions on Robotics, vol. 27, no. 4, pp.
809–815, 2011.

[7] T. Knudsen and J. Leth, “Stochastic MPC using the unscented trans-
form,” in Annual American Control Conference (ACC), 2018, pp. 4718–
4724.

[8] L. Hewing and M. N. Zeilinger, “Stochastic model predictive control
for linear systems using probabilistic reachable sets,” in 2018 IEEE

Conference on Decision and Control (CDC), 2018, pp. 5182–5188.
[9] S. A. Sajadi-Alamdari, H. Voos, and M. Darouach, “Risk-averse stochas-

tic nonlinear model predictive control for real-time safety-critical sys-
tems,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5991–5997, 2017.

[10] X. Yang and J. Maciejowski, “Risk-sensitive model predictive control
with gaussian process models,” IFAC-PapersOnLine, vol. 48, no. 28, pp.
374–379, 2015.

[11] E. Hyeon, Y. Kim, and A. G. Stefanopoulou, “Fast risk-sensitive model
predictive control for systems with time-series forecasting uncertainties,”
in 2020 59th IEEE Conference on Decision and Control (CDC). IEEE,
2020, pp. 2515–2520.

[12] M. Schuurmans, A. Katriniok, H. E. Tseng, and P. Patrinos, “Learning-
based risk-averse model predictive control for adaptive cruise control
with stochastic driver models,” IFAC-PapersOnLine, vol. 53, no. 2, pp.
15 128–15 133, 2020.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3526078

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indiana University. Downloaded on January 05,2025 at 03:09:15 UTC from IEEE Xplore. Restrictions apply.

[13] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal of

Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357, 2017.
[14] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,

“Information-theoretic model predictive control: Theory and applications
to autonomous driving,” IEEE Transactions on Robotics, vol. 34, no. 6,
pp. 1603–1622, 2018.

[15] I. S. Mohamed, G. Allibert, and P. Martinet, “Model predictive path inte-
gral control framework for partially observable navigation: A quadrotor
case study,” in 16th Int. Conf. on Control, Automation, Robotics and

Vision (ICARCV), Shenzhen, China, Dec. 2020, pp. 196–203.
[16] J. Pravitra, K. A. Ackerman, C. Cao, N. Hovakimyan, and E. A.

Theodorou, “L1-adaptive MPPI architecture for robust and agile control
of multirotors,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), 2020, pp. 7661–7666.
[17] I. S. Mohamed, G. Allibert, and P. Martinet, “Sampling-based MPC for

constrained vision based control,” in IEEE/RSJ Int. Conf. on Intelligent

Robots and Systems (IROS), 2021, pp. 3753–3758.
[18] M. Kazim, J. Hong, M.-G. Kim, and K.-K. K. Kim, “Recent advances

in path integral control for trajectory optimization: An overview in
theoretical and algorithmic perspectives,” Annual Reviews in Control,
vol. 57, p. 100931, 2024.

[19] I. S. Mohamed, “MPPI-VS: Sampling-based model predictive control
strategy for constrained image-based and position-based visual servo-
ing,” arXiv preprint arXiv:2104.04925, 2021.

[20] T. Howell, N. Gileadi, S. Tunyasuvunakool, K. Zakka, T. Erez, and
Y. Tassa, “Predictive sampling: Real-time behaviour synthesis with
mujoco,” arXiv preprint arXiv:2212.00541, 2022.

[21] J. Yin, Z. Zhang, E. Theodorou, and P. Tsiotras, “Trajectory distribution
control for model predictive path integral control using covariance
steering,” in IEEE Int. Conf. on Robotics and Automation (ICRA), 2022,
pp. 1478–1484.

[22] I. S. Mohamed, K. Yin, and L. Liu, “Autonomous navigation of AGVs
in unknown cluttered environments: log-MPPI control strategy,” IEEE

Robotics and Automation Letters, vol. 7, no. 4, pp. 10 240–10 247, 2022.
[23] G. Williams, B. Goldfain, P. Drews, K. Saigol, J. M. Rehg, and

E. A. Theodorou, “Robust sampling based model predictive control
with sparse objective information,” in Robotics: Science and Systems,
Pittsburgh, Pennsylvania, USA, 2018, pp. 42—-51.

[24] I. S. Mohamed, M. Ali, and L. Liu, “GP-guided MPPI for efficient
navigation in complex unknown cluttered environments,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
2023, pp. 7463–7470.

[25] F. Rastgar, H. Masnavi, B. Sharma, A. Aabloo, J. Swevers, and A. K.
Singh, “PRIEST: Projection guided sampling-based optimization for
autonomous navigation,” IEEE Robotics and Automation Letters, 2024.

[26] M. Gandhi, H. Almubarak, and E. Theodorou, “Safe importance
sampling in model predictive path integral control,” arXiv preprint

arXiv:2303.03441, 2023.
[27] D. M. Asmar, R. Senanayake, S. Manuel, and M. J. Kochenderfer,

“Model predictive optimized path integral strategies,” in IEEE Interna-

tional Conference on Robotics and Automation (ICRA), 2023, pp. 3182–
3188.

[28] Y. Qu, H. Chu, S. Gao, J. Guan, H. Yan, L. Xiao, S. E. Li, and J. Duan,
“RL-driven MPPI: Accelerating online control laws calculation with
offline policy,” IEEE Transactions on Intelligent Vehicles, 2023.

[29] L. Yan and S. Devasia, “Output-sampled model predictive path inte-
gral control (o-MPPI) for increased efficiency,” in IEEE International

Conference on Robotics and Automation (ICRA), 2024.
[30] E. Trevisan and J. Alonso-Mora, “Biased-MPPI: Informing sampling-

based model predictive control by fusing ancillary controllers,” arXiv

preprint arXiv:2401.09241, 2024.
[31] J. Yin, C. Dawson, C. Fan, and P. Tsiotras, “Shield model predictive path

integral: A computationally efficient robust MPC method using control
barrier functions,” IEEE Robotics and Automation Letters, 2023.

[32] Z. Wang, O. So, K. Lee, and E. A. Theodorou, “Adaptive risk sensi-
tive model predictive control with stochastic search,” in Learning for

Dynamics and Control. PMLR, 2021, pp. 510–522.
[33] J. Yin, Z. Zhang, and P. Tsiotras, “Risk-aware model predictive path

integral control using conditional value-at-risk,” in IEEE International

Conference on Robotics and Automation (ICRA), 2023, pp. 7937–7943.
[34] I. M. Ross, R. J. Proulx, and M. Karpenko, “Unscented guidance,” in

American Control Conference (ACC). IEEE, 2015, pp. 5605–5610.
[35] A. Savitzky and M. J. Golay, “Smoothing and differentiation of data

by simplified least squares procedures.” Analytical chemistry, vol. 36,
no. 8, pp. 1627–1639, 1964.

[36] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach
for filtering nonlinear systems,” in Proceedings of 1995 American

Control Conference-ACC’95, vol. 3. IEEE, 1995, pp. 1628–1632.
[37] J. Xu, K. Yin, and L. Liu, “Online planning in uncertain and dynamic

environment in the presence of multiple mobile vehicles,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 2410–2416.

[38] R. Van Der Merwe, “Sigma-point kalman filters for probabilistic infer-
ence in dynamic state-space models,” Ph.D. dissertation, Oregon Health
& Science University, 2004.

[39] S. J. Julier, “The scaled unscented transformation,” in American Control

Conference, vol. 6. IEEE, 2002, pp. 4555–4559.
[40] I. M. Ross, R. J. Proulx, and M. Karpenko, “Unscented optimal control

for space flight,” in International Symposium on Space Flight Dynamics

(ISSFD), 2014, pp. 1–12.
[41] N. Ozaki, S. Campagnola, and R. Funase, “Tube stochastic optimal

control for nonlinear constrained trajectory optimization problems,”
Journal of Guidance, Control, and Dynamics, 2020.

[42] P. Whittle, “Risk-sensitive linear/quadratic/gaussian control,” Advances

in Applied Probability, vol. 13, no. 4, pp. 764–777, 1981.
[43] E. Marder-Eppstein, D. V. Lu!!, and D. Hershberger. Costmap_2d

package. [Online]. Available: http://wiki.ros.org/costmap_2d
[44] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-

time.” in Robotics: Science and Systems, vol. 2, no. 9. Berkeley, CA,
2014, pp. 1–9.

[45] M. Ali and L. Liu, “GP-frontier for local mapless navigation,” in IEEE

International Conference on Robotics and Automation (ICRA), 2023, pp.
10 047–10 053.

[46] M. A. Woodbury, Inverting modified matrices. Department of Statistics,
Princeton University, 1950.

APPENDIX A

DERIVATIVE OF Risk-Sensitive COST

Considering the risk-sensitive cost defined as:

qrs(xk) = −
2

γ
logE

[

exp

(

−1

2
γ ‖xk − xf‖2Q

)]

, (22)

our objective is to obtain the following formulation:

qrs(xk) =
1

γ
log det (I+ γQΣk) + ‖x̄k − xf‖2Qrs

, (23)

where Qrs =
(
Q−1 + γΣk

)−1
, Q is a diagonal matrix, and

Σk is a symmetric matrix. We assume that the system state xk

follows a Gaussian distribution N (x̄k,Σk), and xf represents

the reference (desired) state. To derive the expression for

qrs(xk) as presented in (23), we will proceed with a step-

by-step derivation as follows. We will start by expanding the

quadratic form in (22):

qrs(xk) = −
2

γ
logE

[

exp
{

−γ

2
‖xk − xf‖2Q

}]

= − 2

γ
logE

[

exp
{

−γ

2
(xk − xf)

⊤
Q (xk − xf)

}]

.

(24)

Since xk ∼ N (x̄k,Σk), we can assume that xk = x̄k + ek,

where ek ∼ N (0,Σk). Therefore, by substituting xk in (24),

we can express the expectation as follows:

qrs = −
2

γ
logE

[

exp
{

−γ

2
X

⊤
k QXk − γe⊤k QXk −

γ

2
e⊤k Qek

}]

= − 2

γ
logE

[

exp
{

−γ

2
X

⊤
k QXk

}

× exp
{

−γe⊤k QXk −
γ

2
e⊤k Qek

}]

=
∥
∥Xk

∥
∥
2

Q
− 2

γ
logE

[

exp
{

−γ

2
‖ek‖2Q − γe⊤k QXk

}]

,

(25)

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3526078

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indiana University. Downloaded on January 05,2025 at 03:09:15 UTC from IEEE Xplore. Restrictions apply.

where Xk = x̄k − xf . Now, to compute the expectation E[·]
in (25), given by

− 2

γ
logE

[

exp
{

−γ

2
e⊤k Qek − γe⊤k QXk

}]

, (26)

we introduce a new term yk to simplify and express the

expectation in the quadratic form. To achieve this, let us define

yk = −γK−1QXk, where K = γQ + Σ−1
k . By using this

definition, we can accordingly prove that

1

2
(ek − yk)

⊤
K (ek − yk)−

1

2
y⊤
k Kyk

=
γ

2
e⊤k Qek +

1

2
e⊤k Σ

−1
k ek + γe⊤k QXk.

(27)

Building on the equivalence in (27), we can approximate

the expectation in (26) by integrating with respect to the

distribution of the random variable ek. Since ek ∼ N (0,Σk),
we can express it as follows:

− 2

γ
logE

[

exp
{

−γ

2
e⊤k Qek − γe⊤k QXk

}]

= − 2

γ
log

(∫

Rn

exp

{−1
2

(ek − yk)
⊤
K (ek − yk)

+
1

2
y⊤
k Kyk +

1

2
e⊤k Σ

−1
k ek

}

p(ek)dek

)

,

(28)

where p(ek) =
1√
A
exp

{
− 1

2e
⊤
k Σ

−1
k ek

}
represents the prob-

ability density function of ek. By substituting p(ek) in (28)

and simplifying it further, we obtain:

− 2

γ
logE

[

exp
{

−γ

2
e⊤k Qek − γe⊤k QXk

}]

= − 2

γ
log

(
1√
A

∫

Rn

exp

{

−1

2
(ek − yk)

⊤
K (ek − yk)

+
1

2
y⊤
k Kyk

}

dek

)

= − 2

γ
log

(
1√
A

exp

(
1

2
y⊤
k Kyk

)

×
∫

Rn

exp

{−1
2

(ek − yk)
⊤
K (ek − yk)

}

dek

)

,

(29)

where A = (2π)n detΣk. We can now evaluate the integral.

Since the integrand is a Gaussian distribution with mean yk

and covariance matrix K−1, the integral evaluates to

√
(2π)n

detK .

Substituting this back into the expression given in (29), we

have:

− 2

γ
logE

[

exp
{

−γ

2
e⊤k Qek − γe⊤k QXk

}]

= − 2

γ
log

(

exp
(
1
2y

⊤
k Kyk

)

√

(2π)n detΣk

√

(2π)n

detK

)

= − 2

γ
log

(

exp
(
1
2y

⊤
k Kyk

)

√

det(ΣkK)

)

=
1

γ
log det(ΣkK)− 1

γ
y⊤
k Kyk

=
1

γ
log det (I+ γQΣk)−

1

γ
y⊤
k Kyk.

(30)

By substituting yk = −γK−1QXk, and K = γQ+Σ−1
k into

(30), we can simplify the second term − 1
γ
y⊤
k Kyk as follows:

− 1

γ
y⊤
k Kyk = −γX⊤

k Q
(
γQ+Σ−1

k

)−1
QXk, (31)

assuming that Q is a diagonal matrix and Σk is a symmet-

ric matrix. Afterward, we can utilize the Woodbury matrix

identity to simplify the expression
(
γQ+Σ−1

k

)−1
, where the

Woodbury matrix identity is defined as [46]:

(A+ UCV)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.
(32)

By applying the Woodbury identity expressed in (32) to the

given expression with A = γQ, C = Σ−1
k , and U =

V = I (where I denotes the identity matrix), we can rewrite
(
γQ+Σ−1

k

)−1
as follows:

(
γQ+Σ−1

k

)−1
=

1

γ
Q−1

[

I−QrsQ
−1
]

, (33)

where Qrs =
(
Q−1 + γΣk

)−1
. By substituting (33) back into

(31), we obtain:

− 1

γ
y⊤
k Kyk = −

∥
∥Xk

∥
∥
2

Q
+
∥
∥Xk

∥
∥
2

Qrs

. (34)

Subsequently, by substituting (34) into (30) and further substi-

tuting the obtained results into (25), while replacing Xk with

x̄k − xf , the desired result can be obtained as follows:

qrs(xk) =
1

γ
log det (I+ γQΣk) + ‖x̄k − xf‖2Qrs

. (35)

Remarkably, as γ approaches zero, the term 1
γ
log det(I +

γQΣk) approximates Tr(QΣk), avoiding the singularity that

occurs if γ = 0. Therefore, as γ → 0, qrs(xk) simplifies to:

qrs(xk) = Tr(QΣk) + ‖x̄k − xf‖2Qrs

,

where Qrs = Q and Tr(·) denotes the trace of a matrix. It

is worth emphasizing that a similar form of (35), along with

its derivation, can be found in [11]. However, the presented

derivation process in [11] is brief and lacks detailed explana-

tions and clarifications.

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2025.3526078

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Indiana University. Downloaded on January 05,2025 at 03:09:15 UTC from IEEE Xplore. Restrictions apply.

