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Figure 1: Given an input photo of an indoor scene (a), PSDR-Room automatically retrieves, initializes and optimizes geometry,
procedural materials and illumination to closely match the scene appearance. The reconstructed result (b) is a valid 3D scene,
with editable camera, lighting, geometry, and materials. We provide an option for the user to pick a list of corresponding crop
rectangles for appearance matching, resulting in slightly better color/material matching, as shown in our semi-auto result (c).
Our method leverages optimization using path-space differentiable rendering, combined with initialization based on depth and
segmentation neural models, and object and material search based on CLIP-space proximity.

ABSTRACT

A 3D digital scene contains many components: lights, materials
and geometries, interacting to reach the desired appearance. Stag-
ing such a scene is time-consuming and requires both artistic and
technical skills. In this work, we propose PSDR-Room, a system
allowing to optimize lighting as well as the pose and materials of
individual objects to match a target image of a room scene, with
minimal user input. To this end, we leverage a recent path-space
differentiable rendering approach that provides unbiased gradients
of the rendering with respect to geometry, lighting, and procedural
materials, allowing us to optimize all of these components using
gradient descent to visually match the input photo appearance. We
use recent single-image scene understanding methods to initialize
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the optimization and search for appropriate 3D models and materi-
als. We evaluate our method on real photographs of indoor scenes
and demonstrate the editability of the resulting scene components.
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1 INTRODUCTION

Progress in computer graphics over recent decades has led to al-
gorithms that turn detailed scene descriptions into highly pho-
torealistic renderings. Such a scene description is composed of
many components: lights, materials and geometries (themselves
separated into sub-geometries with different material assignments).
These pieces all interact to reach the desired appearance. However,
the problem of composing such scenes (especially with complex
materials and lighting) is a manual undertaking that requires signif-
icant technical and artistic skill, creating a need for methods that
automatically handle parts of the arduous process of 3D content
creation.
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Composing a scene from a single photograph with a high level
of automation is a long-standing challenge [Roberts 1963]. Sev-
eral recent work made progress on parts of the problem, focusing
either on geometry retrieval and placement [Izadinia et al. 2017;
Nie et al. 2020] or materials and lighting [Yeh et al. 2022] inde-
pendently. Recently, progress in physically-based differentiable
rendering reached a point where full light transport computation
can also provide additional gradients of the final pixel values with
respect to all relevant scene parameters: geometric information,
material parameters, and lighting parameters. For the first time,
this theoretically opens the exciting possibility of jointly refining
the estimates of all scene components through optimization.

In this work, we propose a system, PSDR-Room, to match the
appearance of a single photograph of an indoor scene by initializing
and optimizing all of these components: lighting, geometry and
materials. To do so, we leverage recent path-space differentiable
rendering (PSDR) approaches [Yan et al. 2022; Zhang et al. 2020a,
2021]. We also take advantage of the recent progress in scene under-
standing, using powerful models for image segmentation [Cheng
et al. 2022], depth estimation [Ranftl et al. 2021, 2020], FOV esti-
mation [Jin et al. 2023], and image latent-space encoding [Radford
et al. 2021]. Furthermore, given their importance in industry, we
retrieve and optimize materials represented as procedural node
graphs, using a recent differentiable approach [Li et al. 2023; Shi
et al. 2020]. With our system, given an input photograph, users
can generate a visually matching 3D scene within a few minutes,
using geometry and procedural material assets from their preferred
library. Once optimized, the scene can easily be edited to change
its components, or further modify the parameters of the selected
procedural materials. Throughout our pipeline, differentiable ren-
dering is crucial in adjusting initial guesses and reaching a high
quality match to the target image.

Our method involves several stages as follows. First, the pre-
processing step leverages state-of-the-art single image estimators
for camera intrinsics, depth and object segmentation, which com-
bine to estimate a point cloud and divide the scene into its com-
ponent objects. Based on this initial information, the next stage
finds an approximate room shape, which we further refine through
physically-based differentiable rendering. The object stage then
aims at retrieving, positioning and orienting each object detected
by the segmentation. Again, our method first estimates a rough
position based on the estimated point cloud and further refines
this prediction using differentiable rendering. In the material and
lighting stage, we assign a material, possibly based on a complex
procedural node graph retrieved from a database, to each object
and generate lighting, based on the layout of the scene. Once more,
we leverage differentiable rendering to jointly refine all material
properties as well as the scene lighting.

Our system also allows user guidance, by specifying pairs of
crop between the target image and a rendering of our optimised
scene to enforce material similarity in these areas. As our method
is retrieval based, multiple objects of materials can be similar to the
target. In our main setting (automatic), we select the top-1 result,
but a user can easily adjust the select object/material among the
closest match.

We evaluate our methods against real indoor scene photographs,
obtaining visually close reconstructions. We further compare to
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recent work, showing that our approach is more accurate in jointly
estimating lights and materials. In summary, we propose a method
to go from a single photograph to a 3D scene with lighting and
procedural materials in a few minutes with a minimal amount of
user input. This is the first end-to-end system applying physically-
based differentiable rendering to turn an input photo into a valid
3D scene with separate objects, capable of optimizing geometry
poses, lighting and complex procedural materials.

2 RELATED WORKS

Scene-level inverse rendering. Creating entire 3D scenes from
photographs alone is one of the big challenges at the interaction
between Computer Graphics and Vision. Previous work leverages
deep learning to directly reconstruct meshes [Nie et al. 2020] or in-
fer per-pixel scene illumination, normal and material parameters [Li
et al. 2020; Zhu et al. 2022]. Other approaches take advantage of
the recent progress in differentiable rendering to optimise for tex-
ture and materials [Azinovic et al. 2019; Nimier-David et al. 2021].
Reconstructing both geometries and materials with a production-
level quality is a particularly challenging task. Closer to our ap-
proach, different work proposed to instead retrieve geometries in
a mesh database and optimise their positions given a target pho-
tograph, such as the IM2CAD system [Izadinia et al. 2017]. Other
approaches [Huang et al. 2018; Nie et al. 2020] predict geometries
from a single photo directly, not utilizing a database; it also pre-
dicts poses and camera parameters. As opposed to our approach,
these works do not match lighting or materials and do not bene-
fit from the recent progress in differentiable rendering to enable
fine-grained adjustment to the generated scene.

On the material side, previous work proposed to transfer style or
mood of a photograph into a 3D scene through uniform materials op-
timisation [Nguyen et al. 2012]. A recent method, PhotoScene [Yeh
et al. 2022], retrieves and optimizes materials as well as lighting on
a pre-existing geometry scene (manually created or predicted by a
different method like Total3D [Nie et al. 2020]). This work is fairly
close to our material and lighting stage, and also uses differentiable
procedural materials as a texture prior. However, they use simpler
approximations for differentiable rendering. Our material and light-
ing results improve upon theirs, due to having a more powerful
full-scene differentiable rendering system, and CLIP-based search
for materials. We also find that comparing texture on rectangular
crops is more robust than masked VGG losses used by PhotoScene.

Differentiable rendering. Specialized differentiable renderers
have long existed in computer graphics and vision [Azinovic et al.
2019; Che et al. 2020; Gkioulekas et al. 2016, 2013; Tsai et al. 2019].
Recently, several general-purpose ones like redner [Li et al. 2018],
Mitsuba 2/3 [Nimier-David et al. 2019], and PSDR-CUDA [Zhang
et al. 2020a] have been developed. Alternatively, Fischer et al. [Fis-
cher and Ritschel 2022] proposed a stochastic parameter space
sampling for gradient estimation. A key technical challenge in dif-
ferentiable rendering is to estimate gradients with respect to object
geometry (e.g., positions of mesh vertices). To this end, several
approximated methods [Liu et al. 2019; Loubet et al. 2019] have
been proposed. Unfortunately, inaccuracies introduced by these
techniques can lead to degraded result quality, as demonstrated
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by Luan et al. [2021]. On the contrary, recent techniques specifi-
cally sampling or reparameterizing visibility boundaries [Bangaru
et al. 2020; Li et al. 2018; Zhang et al. 2020a, 2019, 2021] provides
unbiased gradient estimates capable of producing higher-quality
reconstructions.

Procedural material optimization. Procedural materials are an
industry standard for material representation. The manipulation
and generation of such materials has been an active field of research
in recent years. The most recent work on procedural material is
starting to enable procedural graph generation [Guerrero et al.
2022; Hu et al. 2022c], however the generated material quality do
not yet match the existing databases. Most relevant to our goals
are therefore procedural material parameters estimation [Hu et al.
2019] and optimization [Hu et al. 2022a; Li et al. 2023; Shi et al.
2020] methods. Combined with a new material retrieval approach,
we leverage this progress in procedural materials optimization to
better match the target scene appearance.

Single image scene understanding. Recent year saw significant
progress in neural models for single image scene understanding. We
utilize models for intrinsic camera parameter [Jin et al. 2023; Lopez
et al. 2019; Zhang et al. 2020b] and depth estimation [Ranftl et al.
2021, 2020]. We benefit from this progress, to better understand the
photograph FOV and scene geometry. To automate our method as
much as possible, we benefit from recent improvements in instance
level segmentation in a single image [Cheng et al. 2022; Kirillov et al.
2023], allowing us to separate the different geometries both spatially
and semantically. Our approach relies on these scene understanding
components, but is not directly tied to any specific method, meaning
that it would benefit from any future progress in this area.

3 PRELIMINARIES

In this section, we introduce several technical tools, recently made
available by the research community, which are key enablers of our
approach. We give a brief introduction to path-space differentiable
rendering [Zhang et al. 2020a, 2021] used by our PSDR-CUDA
system. We also discuss the inverse procedural material approach
MATch and its library of differentiable procedural nodes, DiffMat
[Shi et al. 2020], as well as losses based on Gram matrices of VGG
layers [Gatys et al. 2016].

3.1 Path-Space Differentiable Rendering

Physically based rendering is frequently formalized using the path-
integral formulation by Veach [1997]. The intensity I of a final
image pixel resulting is an integral over all light paths through that
pixel:

1= [ e duce) B
where: Q is the path space comprised of light paths x =
(x0,...,xn) of all lengths N > 1, connecting the camera to the

light source through a number of scene interaction events; y is an
appropriate measure on the space of paths. Finally, f is the contri-
bution function defined as the product of terms on each path vertex:
source emission on the light source vertex; bidirectional scattering
distribution functions (BSDFs) on vertices corresponding to scene
geometry reflection and transmission events; geometric terms on the
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path segments, and a detector response term on the camera vertex
(typically based on a pixel reconstruction filter such as a box or a
Gaussian).

A key challenge is to extend the above formulation to differen-
tiable rendering, where the goal is to compute the derivative of the
pixel intensity I with respect to some scene parameter 6 € R. We
could think of € as a time-like parameter, where the scene “evolves”
with it, though this does not need to be the case; there could be
many such parameters controlling lighting, materials and geometry.

In the latter case when scene geometry (i.e., union of object sur-
faces) M evolves with some parameters 6 € R, Zhang et al. [2020a;
2021] have demonstrated that the derivative dI/d6 of Eq. (1) can be
expressed as the sum of an interior and a boundary path integrals
where the latter is unique to differentiable rendering and capture
light transport paths with a segment constrained on a visibility
boundary.

In practice, our renderer PSDR-CUDA gives correct gradients
with respect to parameters 6 that cause geometric change, because
it appropriately samples the boundary as well as interior terms.
Note that this formulation can be easily adapted beyond solving
full light transport, and we use it to compute anti-aliased depth and
object mask images as well, by modifying the contribution function
f accordingly.

3.2 Inverse rendering and losses

Optimization-based inverse rendering, or analysis by synthesis,
infers a set of mg scene parameters @ € R” by minimizing some
predetermined rendering loss £ between the rendered image I
and reference image I. Solving this optimization using stochastic
gradient descent methods such as Adam [Kingma and Ba 2014]
requires differentiating the rendering loss £ with respect to the
parameters 6. According to the chain rule, the gradient d£/de sat-
isfies %—g = % g—é where the 9£/aI on the right-hand side can be
obtained using differentiable evaluation of the loss £, and dI/dé is
computed using differentiable rendering (§3.1).

Procedural materials. Substance materials [Adobe 2023] are an
industry standard for defining realistic material textures through
procedural node graphs, where nodes generates noises and pat-
terns, and adjust them using image processing filters. The MATch
approach and DiffMat library by Shi et al. [2020] implemented dif-
ferentiable versions of many of the filter nodes in the Substance
engine, which can be used to optimize their parameters to match
a target material appearance. The DiffMat library was recently
improved (DiffMatV2) for faster optimization and generator node
optimization [Li et al. 2023]. Similar to PhotoScene [Yeh et al. 2022],
we use this approach (we leverage the most recent version) to define
a manifold of plausible textures, with a much smaller number of
optimizable parameters than texels, providing important regular-
ization such that even invisible parts of the scene objects receive
valid texture.

In practice, the presence of procedural material parameters in-
troduces another step into the chain rule above. The differentiable
rendering will back-propagate the loss to a texture space gradient,
after which the DiffMatV2 library (in Taichi) will take over and
further back-propagate to a procedural parameters gradient. This
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requires passing gradients between multiple systems written in
different languages.

Texture descriptors. Gatys et al. [2016] leverage a pre-trained
VGG neural network [Simonyan and Zisserman 2014] to guide
style transfer, using the Gram matrices of extracted deep features
from the VGG layers as their statistical representation. We use 5
layers (the ones after each pooling operation in the VGG19 variant),
and concatenate the flattened Gram matrices into a single vector de-
scriptor of the crop texture. We use this loss to compare the texture
content between image crops, and found it to be the most reliable
of the alternatives. Note that the descriptor size does not depend
on the input crop size, and can be used to compare differently-sized
Ccrops.

Heitz et al. [2021] introduced an alternative sliced Wasserstein
loss, which in theory compares the distributions of VGG activations
more accurately, though this is at the cost of introducing more noise
into the gradients. Some previous works have generalized these
descriptors to arbitrarily-shaped image regions given by masks [Hu
et al. 2022b; Yeh et al. 2022]; however, the masks often need to be
processed by case-dependent amounts of erosion, and we find that
rectangular crop regions remain more reliable.

4 METHOD

Overview. Our PSDR-Room system starts from a single input
image of an indoor scene, with an object segmentation, depth and
camera intrinsics (specifically field-of-view) provided by existing
estimation methods. Our goal is to obtain a visually matching scene
reconstruction, which includes picking the right objects, optimizing
their poses, picking the right materials, and optimizing the light-
ing and materials in the scene. For most objects (at least the ones
where texturing makes sense) our goal is to obtain tileable material
textures, including diffuse color, roughness and normal maps.

Our method includes four high-level stages. First, in the pre-
process stage we predict the camera field-of-view and estimate the
depth map and segmentation per object; this stage is entirely based
on previous methods. These inputs can be interpreted as an approx-
imate segmented point cloud, which is sufficient for initialization
decisions. Second, in the room stage, we initialize a coarsely aligned
room box based on the subset of the point cloud belonging to the
room’s walls, floor and ceiling, and use differentiable rendering to
refine the room box to satisfy an image-space mask loss in com-
bination with a depth loss. Next, in the object stage, we search a
database of objects to match the segmented objects in the input
image, coarsely align them to their point clouds and use differen-
tiable rendering to refine their poses to minimize their image-space
mask loss and depth loss. Finally, in the material and lighting stage,
we choose either a homogeneous material or a procedural node
graph from a database for each material part, initialize lighting in
the scene, and use differentiable rendering to jointly optimize the
materials and lighting; for procedural node graph materials, this
optimization backpropagates to their node parameters.

4.1 Preprocess stage

Camera intrinsics. We assume a simple pinhole camera model.
Given an input image, we use PerspectiveFields [Jin et al. 2023] to
estimate the camera vertical field-of-view and assume square pixels.
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In our experiments, the model is robust enough and its predictions
do not need manual adjustments.

Depth estimation. We use a recent monocular depth estima-
tion proprietary model based on DPT [Ranftl et al. 2021] and Mi-
DaS [Ranftl et al. 2020], to generate an approximate depth map. As
the depth units returned are unknown, we simply used the nor-
malised depth and do not assume anything about absolute scale.
While not perfect, this depth information works reasonably well
for room and object placement, which we will further refine using
differentiable rendering, considering image-space losses. We can
use depth information from any other source, e.g. a depth sensor.

Segmentation. We use Mask2Former [Cheng et al. 2022] to per-
form a panoptic segmentation, which yields a mask image for each
object, including the room ceiling, floor and walls; these are labeled
by the model, which we can use to establish correspondence with
our rendered box and objects.

4.2 Room stage

For simplicity we assume the walls, ceiling and floor of the room
can be approximated as a box; more complex floor plans could be
supported in the future using an extension of our approach. We
aim to initialize a coarsely aligned room box to the approximate
point cloud estimated above, followed by a refinement stage, where
we further optimize the box size and placement to match the image-
space segmentation.

Room initialization. In the coarse stage, we take the depth and
segmentation masks corresponding to room walls, ceiling and floor
(with some erosion applied), to generate a segmented room point
cloud, without objects. We estimate the floor plane using RANSAC
on the floor segmented point cloud. We then estimate the room
height through maximum height point value. If the room does not
have a ceiling visible in the image, we simply set the room height
sufficiently above the top visible point (1.2xXmaximum height point
value). We rotate the room box horizontally around the predicted
floor normal and find the rotation+scaling aligning best with the
RANSAC estimated wall from the point cloud. This results in a
coarsely aligned room box that approximately matches the pre-
dicted room point cloud, and is sufficient as initialization.

Room optimization. We next use differentiable rendering to fur-
ther optimize the room box, improving visual alignment to the
input image. We optimize the pose (object-to-world matrix) of the
room, including rotation, translation and scaling. We base our dif-
ferentiable renderer on PSDR-CUDA and optimise the walls, floor
and ceiling positions based on depth maps and predicted maps dif-
ferences. As PSDR-CUDA handles the edges discontinuities defined
in Section 3.1, losses based on depth/mask can be differentiated
and optimized smoothly. Note that the rendered masks have anti-
aliased edges, which is crucial for gradient descent to work, as only
the edge pixels will have non-zero gradients. We use the predicted
depth and masks to compute our loss function, minimizing the
mean L1 difference of depth predictions, and maximize the inter-
section over union (IoU) for room walls, ceiling and floor. The IoU
metric is extended to correctly handle fractional anti-aliased pixels,
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Figure 2: A high-level overview of our pipeline. In the preprocess stage (Sec. 4.1), we segment the input image and estimate
camera field-of-view and per-pixel depth. A user can optionally edit these estimates. In the room stage (Sec. 4.2) and object
stage (Sec. 4.3), we initialize and optimize the geometry of the box representing the room, as well as the objects in it. The
objects are selected from the 3D-Future database by search using similarity in CLIP space. Finally, the material and lighting
stage (Sec. 4.4) selects procedural node graph materials from a database using CLIP similarity, initializes material texture
transforms and lighting, and refines the estimates using optimization, making use of corresponding crop pairs between input
and rendered images, which can be automatically detected or user-provided. The final output is a reconstructed scene, which

supports camera, geometry, material and lighting edits.

Initialization Optimized Result

(©)

Figure 3: Room stage optimization: We show the estimated
segmentation masks of the walls/floor/ceiling versus the ren-
dered room box before and after the room optimization. The
optimized room box is better aligned to the mask (see circular
insets). Also note that the estimated masks are much smaller
than the rendered box sides, as the room was not empty; our
differentiable IoU metric is appropriate for this scenario.

giving correct gradients from these terms.

Lpox == Zi 10U (M] (Opox), M}) + L1(Dr (Opox): Di), (2)

where 0p,, are the room "box" parameters, i varies over the set
{wall, floor, ceiling}, Ml.r and Mit are the rendered and target masks

respectively, and D" and D’ are the rendered and target depths
respectively. We normalize depths to a unit range.

j el

Figure 4: We use CLIP as a zero-shot ranked classifier of 3D
geometries from the 3D-Future database. We encode the ren-
derings provided with the database as well as a crop around
each object from our input image, and find nearest neighbors
using cosine similarity.

4.3 Object stage

Model database. We use the 3D-FUTURE dataset [Fu et al. 2021]
as the 3D model database. It contains a total of 10,000+ artist-made
models (mostly furniture and similar assets typical in indoor scenes)
with split material groups for each model, so that objects with
multiple materials are possible (for example, a sofa with pillows
of a different material). We discard the materials provided by the
dataset, since we want to retrieve and optimize materials depending
on the input photograph.
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Model search. We use CLIP [Radford et al. 2021] to search 3D
models from the database that match the input scene objects. We
use the renderings available in the database and encode them all
using CLIP into normalized 768-dimensional vectors. To search
an appropriate model for each scene object in our segmentation,
we crop a target image around each object’s mask and encode the
cropped image using CLIP. We then select the Nearest Neighbors
—using a cosine distance- in CLIP space from the database, providing
the closest assets in the database matching the input crop.

Coarse geometry prediction. Similarly to the room stage, we pre-
dict each object’s pose by fitting to the approximate point cloud
of the object and refining it using gradient-based optimization to
match the image-space segmentation. For initial alignment, we first
find the center as the median value of the point cloud over the
three axes. We then compute the scaling factor by matching the
mesh bounding box center to the point cloud median, and the mesh
radius to half the point cloud radius, where radius is defined as
median distance to center. While this process initializes the scaling
to a smaller value than reality, it provides a good starting point
for the later stage of geometry optimization; making the objects
too small at initialization and letting them grow appears to make
the optimization better behaved than trying to initialize the scale
accurately.

We make the vertical axis for each object orthogonal to the
room floor; this heuristic is appropriate for most objects common
in indoor scene settings. We try a number of rotations around the
vertical axis, which is kept orthogonal to the room floor. We pick
as initial rotation the object rotation which has the minimum mean
L1 difference between the rendered mask and object segmented
mask. If the bottom face of an object’s bounding box and the floor
are close (distance < 0.1) and the mask edge is close enough to the
floor mask (distance < 20px), we mark the object as “on the floor”
and use a floor-distance loss when optimizing that object’s position.
If an object is floating, we search if the object mask edge is close
enough (distance < 20px) of another object edge on the floor. If so,
we enforce the floating object to stay on top of the parent object.

Refining geometry. Next, we use differentiable rendering to per-
form a joint pose optimization for all objects. We optimize the
scaling, horizontal translation and rotation around the vertical axis
—keeping alignment with the room floor/ceiling—for each object.
This ensures that objects snapped to the floor/ceiling preserve
this constraint. Similarly, for objects on the wall, the optimization
transforms and scales them only along the wall. Our differentiable
renderer generates the masks with anti-aliasing, which is critical for
non-zero gradient in masks comparing losses. For the loss function,
we use the mean L1 difference between the rendered and estimated
segmentation mask multiplied by the depth of each object. We also
use the L1 difference of heavily blurred versions of the masks, using
a Gaussian blur.

Lopj = 2i L1(M] (Bopj) * Dy (6op ), M} * Dy)
+ 25 L1(G(M] (65p), G(M]))), ®3)

where 0, ; are the object pose parameters, i varies over the set of
objects, M!' and M/ are the rendered and target masks respectively,
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Constructed Segmented Point Cloud

R

Figure 5: Object Stage: We take the segmentation and depth
map to construct segmented point clouds for coarse geometry
prediction. We initialize object poses to the point cloud and
use differentiable rendering in image space (with mask and
depth losses) to further refine the poses.

Optimize Result

and D" and D! are the rendered and target depths respectively,
normalized to unit range. G is a 2D Gaussian convolution pyramid
of a mask.

4.4 Material and lighting stage

In this stage, we predict and optimize the lighting and materials
for the scene. For this, we establish a list of crop pairs between
the input image and the rendering. Our optimization will match
appearance between the crops of each pair, in addition to optimizing
a low-resolution full-image loss. These crop pairs are normally
automatically detected, but can optionally be provided by the user
for best appearance match.

Crop pairs. To achieve the best robustness and closest appearance
match for different material parts, we sample a number of crops
inside the intersection region of a mesh material group rendered
mask and the object segmentation mask. For each object i, let M; :=
M (6,p;) N M be the intersection between the rendered M/ and
the target Mlt masks for this object. Then, we compute a rectangular
mask W; ¢ M; with maximal size to use as the crop window for
this object in both the render and the target images. In this way,
(I;, R;) forms a crop pair where R; = R[W;] and I; = I[W;] denote,
respectively, crops of the rendered image R and the input image I
using the window Wj.

To compare the textures between each pair of crops during opti-
mization, we use a Gram matrix loss as we found it very reliable for
optimization, outperforming alternative losses like masked VGG.

Light initialization. In this stage, we generate the initial lighting
for the scene. We split the room ceiling into a grid of area lights
and scale them down by a ratio of 0.8. We remove the lights that
intersect the camera frustum, or are completely behind the camera.
We also add one large area light behind the camera and one per
invisible wall, simulating an invisible window. We also turn visible
windows and lamps into emissive objects. For windows, we add a
simple frame, though a database of window geometries could be
used if available. For lamps, we make the largest visible rendered
part into emissive.

We try a number of uniform light radiance values as initialization
and pick the one with the minimum down-sampled L1 loss on
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Procedural Graph Collection Top k Graph per Crop

Material and Lighting
Initialization

Image Cropping

Lighting Initialization

Figure 6: We use CLIP for zero-shot classification and rank-
ing of materials, by comparing encoded thumbnails of our
procedural materials with encoded input image crops. A user
can optionally pick from top k matches. We further search
for the best transform (scale and rotation) for the best texture
match; this is done under the initial lighting. We keep some
materials homogeneous (more detail in text).

luminance images as our initial light radiance. As light transport
is linear in light intensity, a single rendering with unit radiance is
needed for this step.

Material initialization and search. For material parts that do not
have any available crop pair because of small mask area, or the co-
sine similarity for the best matched CLIP search result is worse than
0.25, we use homogeneous parameters (constant albedo, roughness,
specular). We initialize homogeneous material albedo to the median
color of the mesh-mask intersection area and a roughness of 0.5. If
there is no intersection, we use the median color of the area of the
entire object segment.

For each material part that needs a procedural material (i.e. that
has at least one crop pair (I;, R;)), we use the crop I; to run a
CLIP search on rendered thumbnails of 118 procedural materials
from the DiffMatV2 library provided by the MATch method [Li
et al. 2023]. Our material search is based on cosine similarity of
normalized CLIP encodings, same as the object search described
above. If multiple crops are on a single material part, all pairs are
used for CLIP search; for each crop we evaluate the top-10 similar
materials. We use a voting scheme and select materials appearing
for multiple crops. Out of these selected materials, we compare
cosine similarities and select the material with highest mean cosine
similarity. To determine the right texture transform, we sample the
chosen material with different scales (0.5-8.0) and rotations (-45, 0,
45, 90) and find the one with minimum Gram matrix loss on that
crop pair. If the Gram matrix loss of a homogeneous material is
better than any of the texture transforms, we refrain from applying
textures to this material and treat it as homogeneous. Note that we
render and compare these crops under the initial lighting in the
scene a the final lighting has not yet been optimized at this stage.

Full scene material and lighting optimization. In the final stage
of our pipeline, we jointly optimize all materials and lights in the
scene, under full global illumination. The loss function we use
combines several terms: the L1 difference between the input image
and rendering (downsized to 1/8), the Gram matrix difference for
each crop pair, as well as the mean RGB color per object mask:
The complete loss for joint material and lighting optimization is as
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Initial Crops

Target Crops Optimized Crops

Input Photo with Crops Initial Material and nghtiné
with Crops

o Optimized Result
with Crops

Figure 7: We visualize the crops from the input image, paired
with rendered crops at initialization and during optimiza-
tion. The optimized crops match the mean color and texture
better comparing to the initialization. Losses based on Gram
matrices of VGG layers are effective at matching texture in
rectangular crops without need for pixel alignment.

follows:

Lrinar = L1(Ry5(0),Iy5) +
2i L1(u(M] (00p))), Ci) + X L1(T6 (Ri(0)), T (1)), 4)

where 0 is the vector of all material and lighting parameters, R; /g
and I; /g are the rendered and input image, downsized to 1/8 of
original size of height and width, i iterates over all crop pairs,
(I;, R;) are the crop pairs, p denotes the RGB mean over a mesh
mask, C; denotes the median color computed during initialization
and Tg is the Gram matrix texture descriptor of a crop. Note that
the optimization over procedural material parameters is bound to
a plausible texture manifold allowed by the node graph, acting as
a prior and ensuring the optimization generates only high-quality
textures without baking in lighting cues, even in invisible parts of
the scene.

5 RESULTS

Scene edits. In Fig. 8, we show examples of material editing. We
can modify the parameters of the procedural node graphs (c) or
switch to a completely different procedural graph material for the
floor (d). Please refer to the Supplemental Material for more editing
examples.

Ablations of design choices. We conduct ablation studies on vari-
ous design choices, as demonstrated in Fig. 9, showing that a proper
initialization before optimization using differentiable rendering is
also important.

Ablation on database size. As described in §4, our pipeline re-
trieves object geometries from an input database. Fortunately, as
demonstrated in Fig. 10, our pipeline is robust to the choice of this
database. Even with only 5% of the data used (containing 800 3D
models), our pipeline remains well-behaved.
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Figure 8: Material variations: We can modify the parameters
of the procedural node graphs (c) or switch to a completely
different procedural material for the floor (d).

Figure 9: Ablations of design choices for the four ablation of
our full result (e): (a) naive initialization of fov = 40° leads to
distorted results; (b) naive initialization of object poses; (c)
without close initialization of texture transform; (d) direct
illumination only.

Comparison with IM2CAD. We compare to IM2CAD [Izadinia
et al. 2017] in Fig. 11. Since the implementation of this technique
has not been made publicly available, we apply our pipeline to two
examples from their paper. To evaluate the results quantitatively,
we use the LPIPS [Zhang et al. 2018] metric, which is appropriate for
comparing images with some misalignment, and RMSE (computed
using downsampled images) metrics. The quantitative errors are
shown under the images, with the lowest error shown in bold,
showing that our approach better matches the target photographs.

Comparison with PhotoScene. In Fig. 12, we compare results gen-
erated with our technique (b) and two pipelines (c, d) based on Pho-
toScene [Yeh et al. 2022]. Similar to the comparison with IM2CAD
in Fig. 11, we compare LPIPS and RMSE metrics to show the effec-
tiveness of our method. PhotoScene with our geometry (c) produces
numerically good results, but worse than ours, due to several fac-
tors. They used simpler approximations for differentiable rendering
compared to our path-space system. We also found that comparing
texture on rectangular crops is more robust than the masked VGG
losses used by PhotoScene. Further, our CLIP based search provides
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Figure 10: Our pipeline is robust to the choice of shape
databases. Rows (b) and (c) show our results for two example
target images generated using, respectively, a full database
(with 16563 models) and one containing 5% of randomly sam-
pled data.

better results than VGG-based Gram matrix distance as demon-
strated on flat surfaces in the supplemental materials. When using

(a)‘Target

LPIPS & RMSE: 0.481/ 0.038

LPIPS & RMSE: 0.636 / 0.040

0.680 / 0.041

Figure 11: Comparison with IM2CAD: We compare results
generated using our (automated) pipeline and IM2CAD using
examples from their paper [Izadinia et al. 2017].
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Example 1

Example 2

LPIPS & RMSE: 0.584 / 0.037 0.658 / 0.038

©

LPIPS & RMSE: 0.712 / 0.041 0.819 / 0.041

(d) Total3D + Photoscene

LPIPS & RMSE: 0.800 / 0.040 0.768 / 0.040

0.781/0.040
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Example 4 Example 5

0.611/ 0.039

0.734 / 0.040

0.822/ 0.040 0.809 / 0.040

Figure 12: Results and comparisons for five clean input photos of room scenes (a). We compare our (automated) pipeline (b),
our geometric pipeline combined with PhotoScene’s material and lighting pipeline (c), and Total3D’s geometry prediction
combined with PhotoScene’s material and lighting (d). LPIPS and RMSE numbers are shown under the images, with the lowest
error shown in bold. Our pipeline (b) offers the best visual and numeric quality for all examples. PhotoScene with our geometry
(c) produces numerically good results, but visually worse than ours, due to factors we discuss in the main text. Total3D produces
lowest-quality geometry (d), though it should be noted that it is solving a much harder problem of neurally predicting the
meshes, rather than searching for them in a database. We also provide an additional 100 comparisons with full PhotoScene

pipeline using sunRGBD dataset in the supplementary.

PhotoScene with geometries reconstructed by Total3D (d), the re-
construction quality becomes poor, although it should be noted
that Total3D [Nie et al. 2020] is solving a much harder problem of
directly predicting the meshes, rather than searching for them in a
database.

Using user-specified crops. Results generated by our automated
pipeline can be further improved by using minimal user inputs. We
demonstrate this in Fig. 13 where user-specified crops are used to
drive the material and lighting stage (§4.4).

Performance and supplementary materials. All experiments are
conducted on a workstation with an AMD Ryzen 9 7950X and an
Nvidia RTX 4090 graphics card. On average, the room optimization
stage takes 100 iterations, with less than 0.1s per iteration. The
geometry initialization and CLIP search take usually around 5s per
object in the scene. The optimization time per iteration is around
1-3 seconds, with a total of 300 iterations. The fine stage usually
takes 3-5 seconds per iteration, with about 120 iterations. A more
detailed performance table is shown in the supplementary materials.

The supplementary also shows animations illustrating optimization
progress and partial results.

6 LIMITATIONS AND FUTURE WORK

While PSDR-Room already gives useful results, there are some
challenges left. First, while our fully automatic pipeline outper-
forms previous work, it is not perfect, and can sometimes benefit
from user inputs. For example, user-provided crop pairs can focus
attention on matching materials that matter to a human viewer,
and establish correspondences between material parts that are se-
mantically related but not aligned in image space. Further, a user
picking from, say, top-3 materials and objects returned by CLIP
search can sometimes make a better choice than simply using the
highest-ranked result.

Our current box assumption is simple, and could be extended to
more intricate floor plan layouts, as well as non-horizontal ceilings.
Our work pushes even the most advanced differentiable rendering
approaches to their limits. Intersection between objects causes erro-
neous zero gradient due to a missing boundary term. Differentiable
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(a1) Target (w/ user crops) (b1) Ours (w/ user crops)

(==
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(a2) Target (w/ auto crops) (b2) Ours (w/ auto crops)

Figure 13: In the case where some correspondences are not trivial to establish (i.e between the different pillows (top row)) or the
user desires to match a geometry to a different material in the scene (bottom row), user-specified crops can be used, potentially

better matching their intent than our automatic crop selection.

collision detection during the optimization process could help avoid
two objects intersecting, but remains out of the scope of this work.
Object databases with well-separated material parts are not easy
to come by and our material database is fairly small; a commercial
deployment of our method would likely invest in curating larger
databases of objects and materials with the right properties.

7 CONCLUSION

In this paper, we introduced PSDR-Room, an end-to-end pipeline
that generates 3D models of indoor scenes, complete with objects,
lighting and textured materials, with minimal user input. Based
on a single segmented image, our technique uses CLIP search to
automatically select the shapes and materials for each object from
databases. Further, our pipeline refines the object poses, lighting
and materials of each object by leveraging physics-based differen-
tiable rendering, significantly improving the reconstruction quality
compared to previous work when evaluated on real indoor pho-
tographs. Our generated 3D models can be easily edited by the
user as a post-process. We believe our pipeline provides a solid
foundation for future improvement towards better learning-based
initialization approaches, more complex room layouts, or other
environments beyond room scenes.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive sugges-
tions. We also thank Liang Shi and Beichen Li for their insightful
suggestions, as well as providing implementation and dataset on
DiffMatV2. This work started when Kai Yan was an intern at Adobe
Research. Kai’s contributions while at the University of California,
Irvine were partially supported by NSF grant 1900927.

REFERENCES

Adobe. 2023. Substance Designer. https://www.substance3d.com/.

Dejan Azinovic, Tzu-Mao Li, Anton Kaplanyan, and Matthias Niefiner. 2019. Inverse
path tracing for joint material and lighting estimation. In Proc. IEEE/CVF CVPR.
2447-2456.

Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased Warped-Area
Sampling for Differentiable Rendering. ACM Trans. Graph. 39, 6 (2020), 245:1-
245:18.

Chenggqian Che, Fujun Luan, Shuang Zhao, Kavita Bala, and Ioannis Gkioulekas. 2020.
Towards Learning-based Inverse Subsurface Scattering. In 2020 IEEE International
Conference on Computational Photography (ICCP). IEEE, 1-12.

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Gird-
har. 2022. Masked-attention mask transformer for universal image segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
1290-1299.

Michael Fischer and Tobias Ritschel. 2022. Plateau-free Differentiable Path Tracing.
arXiv preprint arXiv:2211.17263 (2022).

Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang Zhao, Steve Maybank, and
Dacheng Tao. 2021. 3d-future: 3d furniture shape with texture. International Journal
of Computer Vision (2021), 1-25.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image style transfer using
convolutional neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 2414-2423.

Toannis Gkioulekas, Anat Levin, and Todd Zickler. 2016. An evaluation of computational
imaging techniques for heterogeneous inverse scattering. In ECCV. Springer, 685—
701.

Toannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013.
Inverse volume rendering with material dictionaries. ACM Trans. Graph. 32, 6
(2013), 1-13.

Paul Guerrero, Milos Hasan, Kalyan Sunkavalli, Radomir Mech, Tamy Boubekeur, and
Niloy Mitra. 2022. MatFormer: A Generative Model for Procedural Materials. ACM
Trans. Graph. 41, 4, Article 46 (2022). https://doi.org/10.1145/3528223.3530173

Eric Heitz, Kenneth Vanhoey, Thomas Chambon, and Laurent Belcour. 2021. A sliced
wasserstein loss for neural texture synthesis. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 9412-9420.

Yiwei Hu, Julie Dorsey, and Holly Rushmeier. 2019. A Novel Framework for Inverse
Procedural Texture Modeling. ACM Trans. Graph. 38, 6, Article 186 (Nov. 2019),
14 pages. https://doi.org/10.1145/3355089.3356516

Yiwei Hu, Paul Guerrero, Milos Hasan, Holly Rushmeier, and Valentin Deschaintre.
2022a. Node Graph Optimization Using Differentiable Proxies. In ACM SIGGRAPH
2022 Conference Proceedings (Vancouver, BC, Canada) (SIGGRAPH °22). Association
for Computing Machinery, New York, NY, USA, Article 5, 9 pages. https://doi.org/
10.1145/3528233.3530733

Yiwei Hu, Milos Hagan, Paul Guerrero, Holly Rushmeier, and Valentin Deschaintre.
2022b. Controlling Material Appearance by Examples. Computer Graphics Forum
(2022). https://doi.org/10.1111/cgf.14591

Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rushmeier. 2022¢c.
An Inverse Procedural Modeling Pipeline for SVBRDF Maps. ACM Transactions on
Graphics (TOG) 41, 2 (2022), 1-17.

Siyuan Huang, Siyuan Qi, Yinxue Xiao, Yixin Zhu, Ying Nian Wu, and Song-Chun
Zhu. 2018. Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout,
and Camera Pose Estimation. In Advances in Neural Information Processing Systems.
206-217.

Hamid Izadinia, Qi Shan, and Steven M Seitz. 2017. Im2cad. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 5134-5143.


https://doi.org/10.1145/3528223.3530173
https://doi.org/10.1145/3355089.3356516
https://doi.org/10.1145/3528233.3530733
https://doi.org/10.1145/3528233.3530733
https://doi.org/10.1111/cgf.14591

PSDR-Room: Single Photo to Scene using Differentiable Rendering

Linyi Jin, Jianming Zhang, Yannick Hold-Geoffroy, Oliver Wang, Kevin Matzen,
Matthew Sticha, and David F. Fouhey. 2023. Perspective Fields for Single Image
Camera Calibration. In CVPR.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Pi-
otr Dollar, and Ross Girshick. 2023. Segment Anything. arXiv:2304.02643 [cs.CV]

Beichen Li, Liang Shi, and Wojciech Matusik. 2023. End-to-End Procedural Mate-
rial Capture with Proxy-Free Mixed-Integer Optimization. ACM Transactions on
Graphics (TOG) 42, 4, Article 1 (2023), 15 pages.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable
Monte Carlo ray tracing through edge sampling. ACM Trans. Graph. 37, 6 (2018),
222:1-222:11.

Zhenggqin Li, Mohammad Shafiei, Ravi Ramamoorthi, Kalyan Sunkavalli, and Man-
mohan Chandraker. 2020. Inverse rendering for complex indoor scenes: Shape,
spatially-varying lighting and svbrdf from a single image. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2475-2484.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft rasterizer: A differentiable
renderer for image-based 3D reasoning. In ICCV. 7708-7717.

Manuel Lopez, Roger Mari, Pau Gargallo, Yubin Kuang, Javier Gonzalez-Jimenez, and
Gloria Haro. 2019. Deep single image camera calibration with radial distortion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
11817-11825.

Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing dis-
continuous integrands for differentiable rendering. ACM Transactions on Graphics
(TOG) 38, 6 (2019), 1-14.

Fujun Luan, Shuang Zhao, Kavita Bala, and Zhao Dong. 2021. Unified Shape and
SVBRDF Recovery using Differentiable Monte Carlo Rendering. Computer Graphics
Forum 40, 4 (2021), 101-113.

Chuong H. Nguyen, Tobias Ritschel, Karol Myszkowski, Elmar Eisemann, and Hans-
Peter Seidel. 2012. 3D Material Style Transfer. Computer Graphics Forum (Proc.
EUROGRAPHICS 2012) 2, 31 (2012).

Yinyu Nie, Xiaoguang Han, Shihui Guo, Yujian Zheng, Jian Chang, and Jian Jun Zhang.
2020. Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction
for Indoor Scenes From a Single Image. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR).

Merlin Nimier-David, Zhao Dong, Wenzel Jakob, and Anton Kaplanyan. 2021. Material
and Lighting Reconstruction for Complex Indoor Scenes with Texture-space Differ-
entiable Rendering. In Eurographics Symposium on Rendering - DL-only Track,
Adrien Bousseau and Morgan McGuire (Eds.). The Eurographics Association.
https://doi.org/10.2312/s1.20211292

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba
2: A retargetable forward and inverse renderer. ACM Trans. Graph. 38, 6 (2019),
203:1-203:17.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.

SA Conference Papers "23, December 12-15, 2023, Sydney, NSW, Australia

2021. Learning transferable visual models from natural language supervision. In
International Conference on Machine Learning. PMLR, 8748-8763.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. 2021. Vision transformers
for dense prediction. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 12179-12188.

René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun.
2020. Towards robust monocular depth estimation: Mixing datasets for zero-shot
cross-dataset transfer. IEEE transactions on pattern analysis and machine intelligence
(2020).

Lawrence G Roberts. 1963. Machine perception of three-dimensional solids. Ph.D.
Dissertation. Massachusetts Institute of Technology.

Liang Shi, Beichen Li, Milo§ Hasan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir
Mech, and Wojciech Matusik. 2020. MATch: Differentiable Material Graphs for
Procedural Material Capture. ACM Trans. Graph. 39, 6, Article 196 (Dec. 2020),
15 pages.

Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Chia-Yin Tsai, Aswin C Sankaranarayanan, and Ioannis Gkioulekas. 2019. Beyond
Volumetric Albedo-A Surface Optimization Framework for Non-Line-Of-Sight
Imaging. In Proc. IEEE/CVF CVPR. 1545-1555.

Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Vol. 1610.
Stanford University PhD thesis.

Kai Yan, Christoph Lassner, Brian Budge, Zhao Dong, and Shuang Zhao. 2022. Efficient
estimation of boundary integrals for path-space differentiable rendering. ACM
Trans. Graph. 41, 4 (2022), 123:1-123:13.

Yu-Ying Yeh, Zhenggin Li, Yannick Hold-Geoffroy, Rui Zhu, Zexiang Xu, Milos Hasan,
Kalyan Sunkavalli, and Manmohan Chandraker. 2022. PhotoScene: Photorealistic
Material and Lighting Transfer for Indoor Scenes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 18562-18571.

Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020a.

Path-space differentiable rendering. ACM Trans. Graph. 39, 4 (2020), 143:1-143:19.
Chaoning Zhang, Francois Rameau, Junsik Kim, Dawit Mureja Argaw, Jean-Charles

Bazin, and In So Kweon. 2020b. Deepptz: Deep self-calibration for ptz cameras. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
1041-1049.

Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and
Shuang Zhao. 2019. A differential theory of radiative transfer. ACM Trans. Graph.
38, 6 (2019), 227:1-227:16.

Cheng Zhang, Zihan Yu, and Shuang Zhao. 2021. Path-space differentiable rendering
of participating media. ACM Trans. Graph. 40, 4 (2021), 76:1-76:15.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.

Rui Zhu, Zhenggin Li, Janarbek Matai, Fatih Porikli, and Manmohan Chandraker. 2022.
IRISformer: Dense Vision Transformers for Single-Image Inverse Rendering in
Indoor Scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2822-2831.


https://arxiv.org/abs/2304.02643
https://doi.org/10.2312/sr.20211292

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Path-Space Differentiable Rendering
	3.2 Inverse rendering and losses

	4 Method
	4.1 Preprocess stage
	4.2 Room stage
	4.3 Object stage
	4.4 Material and lighting stage

	5 Results
	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

