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A B S T R A C T

A variety of biosensors have been recently introduced as wearable devices to collect physiological data, with
applications ranging from personalized medicine and point-of-care diagnostics to home and fitness monitoring,
among others, garnering substantial interest. This interest has been fueled by the increasing demand for ubiq-
uitous, continuous, and pervasive vital signs monitoring, coupled with advancements in biosensor technology
and IoT-enabled capabilities. Existing research studies have only relied on a limited number of health- and
physiological-related indicators (thus, do not offer a comprehensive health monitoring and assessment system)
due to the technical difficulties to integrate multiple sensors. In fact, the issues of multimodality, heterogeneity,
and complexity of data as well as the interoperability among sensors make it challenging to seamlessly integrate
multiple sensors into one system. This study overcame these technical challenges by leveraging multi-sensor
fusion capabilities to develop an intelligent, IoT-enabled wearable multi-modal biosensing device and cloud-
based digital dashboard for real-time, comprehensive health, physiological, emotional, and cognitive moni-
toring. First, 18 different health- and physiological-related indicators were identified. Second, 14 different
sensors were used to acquire the entire data for the 18 different indicators using a hardware sensing system
designed using four ESP32 microcontroller boards integrated with Wi-Fi and Bluetooth connectivity by fusing the
various data from the 14 different sensors. Third, the designed system was developed as a wearable device that
can be installed on the hip as well as the right and left feet using 3D printed parts. Fourth, a web-based digital
dashboard was created onan edge computing server that was hosted on a microprocessor to instantly publish the
data, and a graphical user interface (GUI) was developed to provide intuitive and real-time visualization of the
various health-related indicators using the Django and JavaScript-based React.js web development frameworks.
The accuracy of the developed IoT-enabled biosensing system was tested and validated by benchmarking and
comparing the obtained results from the proposed system with those aquired from various commercially used
sensors. The validation outcomes reflected that the proposed system achieved an accuracy of more than 90% for
most of the 18 considered indicators and an accuracy greater than 85% for all indicators. This study adds to the
body of knowledge by being the first research capable of reporting the following 18 indicators into a single
biosensing system in real-time: Electrocardiogram (ECG or EKG), Electroencephalogram (EEG), Electrooculo-
gram (EOG), Electromyography (EMG), Photoplethysmography (PPG), heart rate (HR), heart rate variability
(HRV), respiratory rate (RR), skin temperature (ST), skin humidity (SH), blood glucose level (BGL), blood
pressure (BP), oxygen saturation (SpO2), body weight pressure (BWP), body motion (BM), electrodermal activity
(EDA), galvanic skin response (GSR), and skin conductance responses (SCR). The proposed system provides rich
information on various vital signs and could be used for a wide window of applications, including monitoring and
assessing health status; emotional and arousal status; mental and cognitive status; behavioral, physical, and
attention status; and physiological status. The developed system is not specific to a particular industry but rather
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could be used for any sector of interest. This paper lays the ground to significant advancements in wearable
sensor technology, data visualization techniques, and health monitoring practices.

1. Introduction

The current trend in healthcare leans towards early disease detection
as a cost-effective strategy, reducing the financial burden of treating
fully developed diseases [1,57]. This proactive approach also yields
improved health outcomes. Wearable biosensors have emerged as a key
player in this paradigm shift. Their high specificity, portability, fast
detection capabilities, affordability, low power consumption, and
real-time data availability integrated with Internet of Things (IoT) ca-
pabilities make them ideal for wearable applications [50]. These devices
play a pivotal role in gathering vital information continuously and
non-invasively 21,3.
Wearable technology encompasses a broad spectrum of devices. On

one end, there are consumer-grade wearables designed for entertain-
ment or fitness tracking. On the other end, there are research-grade and
medical-grade wearables that adhere to the skin or body, tracking
physiological health data [12,22]. These devices can collect data
round-the-clock, in various environments, while users go about their
daily routines at home or work [13]. Wearable devices can provide
valuable insights into physiological, emotional, health, and illness
states. They empower individuals to self-monitor without the need for
costly equipment or professional medical staff [11,20]. Furthermore, the
non-invasive nature of wearable technologies makes them highly
beneficial for continuous health monitoring and early disease di-
agnostics. They also facilitate patient access to clinical information,
promoting greater health awareness and compliance in a convenient and
cost-effective manner [73].
In recent years, a variety of wearable biosensors have been intro-

duced as wearable devices to collect physiological data, with applica-
tions ranging from personalized medicine and point-of-care diagnostics
to home and fitness monitoring [50]. These devices, which include shirts
[17], necklaces [5], lenses [37], headbands [19], smart wristbands [65],
smartwatches [2], shoes [35], eyeglasses [6], wristbands [26], and
patches [56], have garnered significant interest. This interest has been
fueled not only by the growing demand for ubiquitous, continuous, and
pervasive vital sign monitoring in the wearable technology market but
also by advancements in biosensor technology, IoT-enabled capabilities,
and Wireless Sensor Networks (WSNs) communications [15,47]. The
global wearable technology market, valued at over $1.131 billion at the
end of 2023, is projected to reach $4.891 billion by the end of 2033 [71].
Pervasive health monitoring applications are the fastest-growing
segment in the wearable technology market, driven by the pressing
need to monitor chronic diseases and aging populations [51,53].
Modern wearable devices have evolved beyond simple fitness

tracking, such as daily step counts. With the advancements in sensors
fusion in developing multimodal sensing devices [9], it is currently
possible to monitor critical physiological indicators, such as Electro-
cardiogram (ECG) to measure the electrical activity of the heart [64];
Photoplethysmography (PPG) to detect blood volume changes in the
microvascular bed of tissue [36]; Electromyography (EMG) to assess the
health of muscles [74]; Electroencephalogram (EEG) to evaluate the
electrical activity in the brain [16]; Electrooculogram (EOG) to measure
the resting potential of the retina [54]; Respiratory Rate (RR) [52]; Skin
Temperature (ST) [18]; Heart Rate (HR) [43]; Heart Rate Variability
(HRV) to evaluate the variation in the time interval between consecutive
heartbeats [69]; Skin Humidity (SH) [7]; Blood Glucose Level (BGL)
[48]; Blood Pressure (BP) [60]; oxygen saturation (SpO2) [70]; Body
Motion (BM) measurement [38]; Body Weight Pressure (BWP) on feet to
detect the weight distribution during activities and detect abnormal gait
patterns [40]; and additional emotional arousal health-related infor-
mation such as Electrodermal Activity (EDA) to identify the emotional

status [49]; Galvanic Skin Response (GSR) to evaluate the cognitive
status [34]; and Skin Conductance Responses (SCR) to determine the
emotion and attention status [52].
An electrocardiogram (ECG or EKG) is a medical test that measures

the electrical activity of the heart over a period of time. Photo-
plethysmography (PPG) is a non-invasive optical technique used to
measure changes in blood volume in microvascular tissues; it detects
variations in light absorption by blood vessels as they expand and con-
tract with each heartbeat. Electromyography (EMG) is a diagnostic
procedure that assesses the electrical activity of muscles. An electroen-
cephalogram (EEG) is a diagnostic test that measures the electrical ac-
tivity of the brain. An electrooculogram (EOG) is a diagnostic test that
measures the electrical potential difference between the front and back
of the eye, which reflects eye movement and position. Respiratory rate
(RR) is the number of breaths a person takes per minute; it is a vital sign
that reflects respiratory health and overall physiological status. Skin
temperature (ST) refers to the temperature of the surface of the skin,
which can provide insights into a person’s overall thermal state and
health. Heart rate (HR) is the number of times the heart beats per minute
(bpm). It is a vital sign that indicates the efficiency of the heart’s
pumping action and overall cardiovascular health. Heart rate variability
(HRV) is the measure of the variation in time intervals between
consecutive heartbeats; it reflects the autonomic nervous system’s
regulation of the heart, providing insights into cardiovascular health
and overall well-being. Skin humidity (SH) refers to the moisture level
present on the surface of the skin; it is an important factor in assessing
skin hydration and overall skin health. Blood glucose level (BGL) refers
to the concentration of glucose (sugar) present in the bloodstream at a
given time; it is a critical measure for assessing metabolic health and is
especially important for managing diabetes. Blood pressure (BP) is the
force exerted by circulating blood against the walls of blood vessels,
primarily arteries; it is a vital sign that helps assess cardiovascular
health. Oxygen saturation (SpO2) is the percentage of hemoglobin in the
blood that is saturated with oxygen; it indicates how effectively oxygen
is being transported throughout the body and helps in indicating res-
piratory or circulatory issues. Body motion (BM) refers to the movement
and activity of the body, encompassing various types of physical
movements; it is important for assessing physical activity levels, un-
derstanding biomechanics, and evaluating health and fitness. Body
Weight Pressure (BWP) on feet refers to the distribution of an in-
dividual’s weight across the foot when standing, walking, or engaging in
other activities; this pressure affects how forces are transmitted through
the feet and can influence balance, stability, and overall gait, and it is
important for understanding foot mechanics, identifying areas of
excessive pressure that may lead to discomfort or injury. Electrodermal
activity (EDA) refers to the change in electrical conductance of the skin,
which is influenced by sweat gland activity and can indicate physio-
logical arousal; changes in EDA can reflect emotional states, stress
levels, and overall sympathetic nervous system activity. Galvanic skin
response (GSR) is a measure of the electrical conductance of the skin,
which varies with changes in moisture levels due to sweating. It is
commonly used to assess physiological arousal associated with
emotional and psychological states. Skin conductance responses (SCR)
refer to the changes in the electrical conductance of the skin that occur
in response to stimuli, such as emotional arousal, stress, or excitement;
SCR is a component of EDA.
The integration of biosensors with IoT capabilities and WSNs offers

numerous advantages in the development of multimodal sensing devices
[27,29,46]. These devices can collect a wide range of physiological in-
dicators, providing a comprehensive view of an individual’s health
status [59]. The collected data can be analyzed and visualized through a
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user-friendly IoT-enabled Graphical User Interface (GUI), making it easy
for individuals to understand and monitor their health status. This
comprehensive health monitoring system can help individuals take
proactive measures towards maintaining their health, facilitate timely
intervention by healthcare professionals when necessary, and ultimately
improve the overall quality of healthcare services [61]. Moreover, these
health monitoring systems have broad applicability across various in-
dustry sectors. For instance, these systems can be used to monitor
workers’ health and performance in the construction, underground
mining, chemical, and logistic industries [28]. This enables tasks to be
carried out more safely and efficiently, thereby enhancing productivity
while ensuring the well-being of workers [66]. By providing real-time
health status and alerting for any potential health risks, these systems
can significantly contribute to creating a safer and healthier work
environment [76].
Despite the numerous studies that have attempted to collect various

physiological indicators, several gaps persist. First, most previous
studies have relied on commercially available biosensors to collect some
health monitoring-related indicators. However, these available devices
measure, collect, and analyze data on limited number of health
monitoring-related indicators (and thus do not offer a comprehensive
and accurate biological and physiological assessment) mainly due to the
technical difficulties to integrate multiple sensors into a single device. In
fact, due to the issues of multimodality, heterogeneity, and complexity
of data, the interoperability among sensors with various measurements,
sampling rates, and technical requirements makes it very challenging to
seamlessly integrate multiple sensors into one device. In other words,
these available devices are specialized to measure, collect, and analyze
data on specific indicators (e.g., EEG, or ECG, or EDA, etc.) rather than
providing a comprehensive data collection and assessment on all of the
possible health monitoring-related indicators into a single device or
system. Thus, necessitating the use of various commercial devices which
creates issues in fusing the multi-modal data from the various sensors
and devices, complicates the data collection process, and increased the
deployment cost. Also, access to raw data from these existing commer-
cial devices is often restricted as they are not open source. Additionally,
the reliability of their results may be questionable in some cases, espe-
cially for consumer-grade commercial devices, due to the lack of
transparency in the raw data analysis process as they do not provide the
user with the capability to access and/or modify the data analysis al-
gorithms. Furthermore, these devices are often very expensive and thus
are not cost-effective for comprehensive health monitoring assessments
and evaluations.
To address these critical knowledge gaps, this paper introduces an

intelligent IoT-enabled multimodal wearable biosensing system for real-
time comprehensive health and physiological monitoring using sensor
fusion capabilities and relying on open source and affordable compo-
nents. By integrating sensor fusion with IoT capabilities and WSNs, this
system aims to provide a more reliable, cost-effective, and comprehen-
sive solution for real-time health monitoring and assessment. This
innovative approach not only enhances the functionality and reliability
of wearable health monitoring systems but also paves the way for a new
era of proactive and personalized healthcare.

2. Goal and objectives

The primary objective of this research is to develop an intelligent and
comprehensive multimodal health monitoring system by integrating
sensor fusion, WSNs, and IoT capabilities. This system enables real-time
collection and visualization of comprehensive biological and physio-
logical indicators. The specific objectives are: 1) identifying a compre-
hensive list of health-monitoring indicators to be integrated into the
proposed health monitoring system; these indicators will serve as
essential measures of an individual’s well-being, and corresponding
sensors suitable for collected data on and capturing these indicators will
be selected based on their accuracy, reliability, and practicality; 2)

designing and implementing a sensor fusion IoT-based sensing device
that seamlessly integrates data from various sensors, accommodating
the heterogeneity, multimodality, and complexity of the collected in-
formation to provide a holistic view of an individual’s health status in
real-time; 3) creating a user-friendly GUI platform for real-time data
analysis, management, storage and visualization, where users have the
flexibility to access the results from any device connected to the internet;
these clear and intuitive visualizations will enhance the usability and
effectiveness of the system.
This study aims to address several critical aspects of health moni-

toring. By providing the ability to track and visualize extensive physi-
ological indicators, the proposed system offers a more comprehensive
understanding of an individual’s health. Also, the integration of sensor
fusion techniques ensures accurate and timely data collection. More-
over, the user-friendly GUI platform promotes accessibility and en-
courages proactive engagement with health information. Furthermore,
successful implementation of this research can lead to substantial im-
provements in individual well-being across various industries and con-
texts. Ultimately, this innovative approach not only enhances the
functionality and reliability of wearable health monitoring systems but
also lays the groundwork for personalized and proactive healthcare
practices.

3. Background information and knowledge gap

This section reviews the previous relevant literature and identifies
the gaps present in the existing body of knowledge that this paper
addresses.

3.1. Related research studies on health monitoring systems

In recent years, wearable devices have evolved beyond mere fitness
trackers, transcending simple step-counting functionalities. These
modern wearables now delve into crucial physiological considerations,
providing a holistic approach to health monitoring [63]. Researchers
and developers have harnessed the potential of wearable technology to
capture a wide range of physiological indicators. These research efforts
can be categorized into two groups. The first group includes research
studies that have used and/or developed multimodal sensing devices to
collect physiological indicators without utilizing a GUI or a platform to
visualize the collected data second, while the second group includes
research studies that attempted to develop a platform for real-time
visualization of the collected data.
In terms of the first group of research studies, they include research

efforts that used or developed multimodal health monitoring device for
collecting certain or specific (rather than comprehensive) physiological
indicators without considering a visualization platform. For instance,
the influence of human movement on emotion recognition and health
states was investigated by collecting physiological indicators such as
EMG, ECG, HR, and ST and emotional arousal indicators such as EDA
through a specialized commercial multi-sensor platform (i.e., Bio-
signalplux) [74]. Furthermore,a multimodal sensing device that in-
tegrates three biosensors on a wrist was used as a wearable health
monitoring system to collect PPG and ECG [36,64]. Additionally, a
wearable multimodal bio-sensing system integrated into a headset with
capabilities to collect PPG, EEG, BM, and GSR data was used to track the
HR and HRV [54]. Moreover, in another study, physiological indicators
such as HR, ST, and GSR were collected, and deep learning facial
emotion recognition was applied to identify emotion recognition and
health states [10]. In addition, a healthcare wearable device to track
heart health status was developed based on collecting heart-related
physiological indicators such as ECG, HR, and BM through three bio-
sensors and integrating them onto a belt [31]. In another study, the
effect of sedentary motion and micro-motion (e.g., typing) on HR was
investigated by collecting PPG, ECG, and HR through a proposed
wearable device attached to the upper arm [14]. Additionally, to track
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behavioral and emotional arousal symptoms of dementia, a wearable
wristband was developed to collect PPG, BM, ST, and EDA data, and a
personalized machine learning method was utilized to classify the
presence of dementia symptoms [30]. Furthermore, PPG and ST data
from physiological indicators and EDA data from emotional arousal
indicators were collected to propose a construction workers’ risk per-
ceptions model based on these collected data and the use of classifica-
tion machine learning algorithms [42]. Moreover, a noninvasive method
for assessing workers’ physical demands was introduced based on col-
lecting PPG, EDA, and ST data from workers while they perform regular
tasks in the field, thus, estimating the rate of energy expenditure, and
applying Gaussian kernel support vector machine to predict different
physical-intensity levels [33]. Previous studies also considered collect-
ing physiological, emotional, and cognitive arousal indicators to track
the stress levels of the workers [16,32,49], perceived risk [42], workers’
fatigue [7], workers’ physiological activity [43,69], safety training of
workers [62], environmental distress [38], and the effect of different
learning scenarios [70].
The second group of studies included research efforts that utilized a

visualization platform to display the collected data from the used bio-
sensors. For example, a wearable monitoring system was developed
based on collecting ECG, GSR, SCR, HR, and HRV data, and displaying
results on console screens while participants were engaged in mental
performance [52]. Additionally, an approach for monitoring and
tracking in-home, fine-grained activity recognition was proposed based
on collecting BM data (i.e., accelerometer and gyroscope data) and
ambient temperature, humidity, and atmospheric pressure and visual-
izing the collected data through a developed GUI [18]. Moreover, a
wearable stress monitoring system was proposed based on gathering
EEG, ECG, EMG, HR, and ST data from wearable biosensors, utilizing
WSN communication to transmit collected data, and developing a user
interface to visualize the raw data and quantified stress credibility index

[75]. In addition, an IoT-based BP and ST monitoring device with a
web-based visualization interface was developed based on quantifying
systolic and diastolic pressure from an air pressure sensor attached to a
manual blood pressure cuff and a temperature sensor [60]. In another
example of utilizing a web-based user interface for visualization of
collected data, a healthcare monitoring system was developed based on
collecting ECG, HR, ST, BM, and BP data from an integrated commercial
biosensor and enabling WSNs for data transmission [55]. In another
study, to track foot deformation, inadequate rotation, or improper bal-
ance, a foot weight pressure distribution monitoring system with an
IoT-based application for smartphones was developed based on using
commercial smart shoe insoles integrated with built-in pressure sensors
laminated [40]. Furthermore, a physiological computing toolkit was
designed to collect PPG, GSR, EDA, and RR data and visualize real-time
processed data through a web-based user interface [34]. More recently,
a noninvasive approach for estimating the BGL was developed based on
calculating a metabolic index from oxy- and deoxyhemoglobin signals
resulting from PPG data and visualizing the results through a
smartwatch-based prototype [48]. In another example of noninvasive
approaches for estimating the BGL, a breath analysis model was pro-
posed based on identifying the concentration of three gases (i.e., alcohol,
acetone, and propane) in exhaled and their correlation with BGL [4,45].

3.2. Knowledge gaps

The comprehensive review of pertinent literature and studies reveals
that, despite significant progress in the field of wearable bio-sensing
health monitoring and assessment systems, there are still notable gaps.
Table 1 provides a detailed summary of previous related research studies
and compares them with the proposed approach in this paper, which
helps in better highlighting the knowledge gaps and underscoring the
novelty of the proposed wearable multimodal bio-sensing health

Table 1
Summary of previous studies in wearable multimodal bio-sensing health monitoring and assessment systems.

Reference Biological and/or physiological indicators considered in each research study GUI

ECG EMG EOG EEG BM PPG BGL BWP HR HRV SpO2 RR ST SH EDA GSR SCR BP

[52] ✓ - - - - - - - ✓ - - ✓ - - - ✓ ✓ - ✓
[18] - - - - ✓ - - - - - - - ✓ - - - - - ✓
[36] ✓ - - - - ✓ - - - - - - - - - - - - -
[70] - - - - - - - - ✓ - ✓ ✓ ✓ - - ✓ - - -
[7] - - - ✓ - - - - ✓ - - - - ✓ - - - - -
[43] - - - - - - - - ✓ ✓ - - - - - - - - -
[74] ✓ ✓ - ✓ - ✓ - - - - - ✓ ✓ - ✓ - - - -
[54] - - - ✓ ✓ ✓ - - ✓ ✓ - - - - - ✓ - - -
[33] - - - - - ✓ - - - - - - ✓ - ✓ - - - -
[32] - - - - - ✓ - - - - - - ✓ - ✓ - - - -
[58] ✓ - - - - - - - ✓ - ✓ ✓ ✓ - - - - - ✓
[39] - - ✓ ✓ - - - - - - - - - - - - - - -
[38] - - - - ✓ - - - ✓ - - - - - ✓ - - - -
[64] ✓ - - - - ✓ - - - - - - - - - - - - -
[45] - - - - - - ✓ - ​ - - - - - - - - - ✓
[10] - - - - - ✓ - - ✓ - - - ✓ - - ✓ - - -
[31] ✓ - - - ✓ - - - ✓ - - - - - - - - - -
[16] - - - ✓ - - - - - - - - - - ✓ - - - -
[42] - - - - - ✓ - - - - - - ✓ - ✓ - - - -
[69] - - - - - - - - - ✓ - - - - - - - - -
[49] - - - - - ✓ - - - - - - - - ✓ - - - -
[14] ✓ - - - - ✓ - - ✓ - - - - - - - - - -
[30] - - - - ✓ - - - ✓ - - - ✓ - ✓ - - - -
[75] ✓ - - ✓ - - - - ✓ - - - ✓ - - - - - ✓
[60] - - - - - - - - - - - - ✓ - - - - ✓ ✓
[55] ✓ - - ✓ - - - - ✓ - - - ✓ - - - - ✓ ✓
[4] - - - - - - ✓ - - - - - ​ - - - - - ✓
[72] - - ✓ ✓ - - - - - - - - - - - - - - -
[34] - - - - - ✓ - - - - - ✓ - - ✓ ✓ - - ✓
[62] - - - ✓ - ✓ - - - - - - - - ✓ - - - -
[40] - - - - - - - ✓ - - - - - - - - - - ✓
[48] - - - - - - ✓ - - - - - - - - - - - ✓
This Study ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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monitoring and assessment system in this paper.
Table 1 indicates that a comprehensive health and physiological

monitoring system requires complicated sensing capabilities and inte-
grating data on various health-related indicators, which is a very hard
task to achieve as it requires the fusion of a high number of sensors and
combining heterogeneity, multimodality data with different formats and
requirements. Therefore, the majority of existing research studies have
focused on collecting data on basic or fundamental or specific health-
related aspects, while disregarding other important indicators. While
these studies have contributed valuable insights, they lack the compre-
hensiveness required for a reliable health monitoring and assessment
system. The more sensors there are, the harder it is to fuse them to a
single IoT-enabled health device as many challenges emerge with the
heterogeneity, multimodality, and complexity of various data from the
various sensors. These challenges exist due to the fact that the sensors
have different measurements, formats, resolutions, sampling rates,
calibration requirements, error models, and spatio-temporal alignments.
Setting different sensors to seamlessly communicate with one another in
real time is significantly challenging in the sensor fusion field [67].
Table 1 also indicated that the number of health and/or

physiological-related indicators collected from biosensing systems in
previous studies generally ranges between 1 and 7. In contrast, the
proposed approach in this paper provides a comprehensive health and
physiological monitoring and assessment based on 18 indicators by
integrating 14 different biosensors using open-source components and
sensors. Further, Table 1 illustrates that the majority of existing studies
have relied on the collection of ECG, PPG, and HR data for the devel-
opment of a multimodal healthcare monitoring system through utilizing
plug-and-play biosensors. While these studies have contributed valuable
insights into health monitoring, their primary focus has been very spe-
cific on tracking heart-related behaviors. This focus has resulted in a lack
of comprehensive and other vital health sign monitoring and
assessment.
Another gap identified in previous studies is the lack of a user-

friendly GUI capable of visualizing different health-related indicators
with varying quantification approaches, sample rates, and time delays.
Some of these indicators (such as ECG, EEG, EOG, EMG, and PPG) need
to be transmitted in real-time, while other indicators (like HR, HRV, BP,
and BGL) require appropriate delays for quantification. As Table 1
shows, the development of a visualization platform to display collected
data has not kept pace with the increase in the number of monitored
health-related indicators (e.g., see [70] and [74] in Table 1).
To address these critical knowledge gaps, this paper develops a

research grade IoT-enabled multimodal wearable bio-sensing system
compromised of both a device and a GUI-based dashboard for real-time
health monitoring. This system provides comprehensive tracking of
physiological symptoms using sensor fusion technologies. This approach
represents a significant advancement in the field and offers a promising
solution to the identified gaps in the literature.
It is important to note that to the authors’ best knowledge, this is the

first time an intelligent multimodal IoT-enabled health monitoring sys-
tem of this level of comprehensiveness is being developed/proposed.
This pioneering work opens a new era in the field of wearable bio-
sensing health monitoring and assessment systems. The proposed sys-
tem’s ability to collect more than 18 indicators by integrating 14 bio-
sensors is unprecedented. This level of comprehensive monitoring can
provide a more holistic view of an individual’s health and performance,
making it a significant advancement in the field. This underscores the
novelty and potential impact of this study in the realm of health moni-
toring systems.

4. Methodology

To achieve the goal and objectives of this paper, an integrated
research framework has been implemented, as shown in Fig. 1.

4.1. Multimodal sensing and signal acquisition and fusion

In this phase, several critical processes were undertaken, each
contributing to the development of a comprehensive health monitoring
system. These processes are detailed in the subsequent subsections.
Initially, the necessary physiological indicators for comprehensive

health monitoring were identified; and reliable, open-source, and cost-
effective sensors capable of collecting the identified indicators were
selected. Afterwards, a multimodal sensing device, enabled by IoT and
capable of fusing various sensor data, was designed. This device is pri-
marily responsible for signal acquisition. The developed multimodal
sensing device transmits the collected data from the biosensors to an
edge server, where further processing and real-time analysis are con-
ducted. This systematic approach ensures the robustness and efficiency
of the health monitoring system as detailed in the next subsections.

4.1.1. Identification of Health-related Indicators
To comprehensively monitor health physiological indicators, a

comprehensive literature review was conducted to identify potential
indicators to be used for monitoring various vital health-related signs.
Table 2 shows the various identified indicators and the associated
reference(s). Ultimately, 18 key indicators were determined as illus-
trated in Table 2.

4.1.2. Development of a multimodal sensing device
After identifying the various health-related indicators, a multimodal

sensing device was designed/developed to collect and integrate the data
for each indicator. First, the needed wearable sensors for collecting these
18 health-related indicators were identified. Specific features were
considered when selecting the sensors and designing the multimodal
sensing device, including measurement sensitivity, response speed,
reception accuracy, drive circuit complexity, lifespan, and cost. The
selected sensors for each indicator along with their position on the body
and data acquisition/communication methods are detailed in Fig. 2.
As depicted in Fig. 2, EEG, EOG, ECG, and EMG signals were

collected through three electrodes (e.g., IN+, IN-, and REF for each in-
dicator) that were connected to an analog-front-end (AFE) biosensor
signal acquisition board that can be paired with anymicrocontroller unit
(MCU) or single-board computer (SBC) with an analog-to-digital con-
verter (ADC) such as ESP32 (which is a series of low-cost, low-power
system on a chip microcontrollers with integrated Wi-Fi and dual-mode
Bluetooth) or any Arduino board. In this paper, the AFE boards were
paired with ESP32 by connecting the VCC and GND pins of the AFE
board to the 5 volts and GND pins of the ESP32 microcontroller. In
addition, the output pin of the AFE boards was connected to the ADC pin
of the ESP32 microcontroller. The ESP32 microcontroller is responsible
for collecting and pre-processing the data such as on-sensor signal pro-
cessing to reduce data transfer rates and the computational burden
before sending it to the edge computing server.
As for the HR and HRV indicators, they were measured through

signals acquisition from the ECG sensor.
As for the RR indicator, it was measured by developing a belt

respiration sensor. The developed respiration sensor includes a chest
strap with a conductive rubber curd, as shown in Fig. 3. The changes in
resistance of the conductive rubber cord due to stretches of expansion of
the chest when breathing were used to measure RR [77] (i.e., when the
conductive rubber stretches, its resistance increases).
As illustrated in Fig. 3, one end of the conductive rubber cord was

connected to the 5-volt pin of the ESP32 microcontroller, another end
was connected to one side of a 4.7 KΩ resistance and the GND pin of the
ESP32 microcontroller, and the other side was connected to an ADC of
the ESP32 microcontroller.
As for the BP indicator, it was measured based on quantifying the

systolic and diastolic pressure of blood. Systolic pressure occurs when
the ventricles contract and eject blood into the arteries, while diastolic
pressure occurs when the ventricles relax and fill with blood from the
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Fig. 1. Summary of the research methodology.
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atria [60]. Measuring the BP indicator was conducted based on inte-
grating a pressure sensor sensitive to low pressure with a manual blood
pressure cuff as shown in Fig. 4. The pressure sensor was connected to
the ESP32 microcontroller, and when the user uses the manual cuff
pump to apply pressure to 40 KPa (i.e., 300 mmHg) and slowly release
the pressure, the sensor can detect the systolic and diastolic pressure of

blood based on the correlation between the changes of the sensor output
voltage and PB value [60].
As depicted in Fig. 4, the VCC and GND pins of the pressure sensor

were connected to the 5-voltage and GND pins of the ESP32 microcon-
troller. Furthermore, the data communication between the pressure
sensor and the ESP32 microcontroller was conducted through Inter-
Integrated Circuit (IIC) serial communication protocol by connecting
the serial data line (SDA) pin and serial clock line (SCL) pin of the
pressure sensor and the ESP32 microcontroller.
As for the BGL, it was measured by developing a non-invasive breath

analyzer sensor that collects the concertation of the acetone gas with
exhaled breath and quantifies the BGL based on its correlation with
acetone concertation [4,45]. To do so, an MQ138 gas sensor with high
sensitivity to acetone was selected and connected to the ESP32 micro-
controller as shown in Fig. 5.
As shown in Fig. 5, the VCC and GND pins of the MQ138 were

connected to the 5-volts and GND pins of the ESP32 microcontroller.
Moreover, the digital output pin of MQ138 was connected to a digital
pin of the ESP32microcontroller. The acetone concentration with breath
exhaled was quantified based on Equation 3 as follows [24].

Table 2
List of health-related indicators considered in this paper.

Indicator References

ECG [14,31,36,52,55,58,64,75,74]
EEG [7,74,54,39,16,75,55,72,62]
EOG [39,72]
EMG [74]
PPG [10,14,33,32,34,36,42,49,54,62,64,74]
HR [7,10,14,30,31,38,43,52,54,55,58,70,75]
HRV [43,54,69]
RR [34,52,58,70,74]
ST [10,18,30,33,32,42,55,58,60,70,75,74]
SH [7]
BGL [24,45,4,48]
BP [55,60]
SpO2 [58,70]
BWP [40]
BM [18,30,31,38,54]
EDA [16,30,33,32,34,38,42,49,62,74]
GSR [10,34,52,54,70]
SCR [52]

As depicted in Table 2, 18 indicators were identified to comprehensively
monitor and analyze the human body’s vital signs including biological,
psychological, and emotional arousal indicators.

Fig. 2. The selected sensors for each indicator along with their position on the body.

Fig. 3. The developed respiration sensor to measure the RR indicator.
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AcetoneConcet = (−2.6× log
( R
R0

)
+ 2.7)10 (1)

Where AcetoneConcet is acetone concentration in breath measured in
part per million (PPM), R is the converted sensor output from digital pin
into resistance, and R0 is the constant resistance and equal to 10 KΩ.
Ultimately, the BGL was quantified based on a linear regression method
as shown in Eq. 2 [24].

BGL = 91.38× AcetoneConcet +6.3743 (2)

Where BGL is the blood glucose level in mg/dl.
As for the ST and SH, they were measured through a wearable sensor

integrated with a finger strap.
As for the three emotional and cognitive arousal indicators (i.e.,

EDA, GSR, and SCR), their sensed signals were collected through two
electrodes (e.g., IN+ and IN-) attached to two finger straps that were
integrated with an AFE biosensor signal acquisition board. The AFE
board was paired with the ESP32 microcontroller through an ADC pin.
As for the SpO2, it was measured through an IIC-based low-power

plug-and-play biosensor connected to the ESP32 microcontroller by
connecting the VCC and GND pins to the 3.3-volts and GND pins of the
ESP32 microcontroller. The communication between the SpO2 sensor
and the ESP32 microcontroller was based on the IIC serial communi-
cation protocol.
As for the PPG signals, they were acquired through a wearable

biosensor to detect the changes in the volume of a blood vessel when the
heart pumps blood.
As for the BM indicators (e.g., accelerometer and gyroscope data),

they were collected for each foot through a 6-DOF inertial measurement
unit (IMU) sensor attached to the user’s foot (see Fig. 6). It is worth
mentioning that the BM indicator which is responsible for tracking body
motion includes six sub-indicators as shown in Fig. 6.
As shown in Fig. 6, the BM data include: 1) A 3-axis linear acceler-

ometer that is used to measure linear velocity (i.e., linear velocity in X,
Y, and Z directions), and 2) A 3-axis gyroscope accelerometer is used to
measure angular velocity and orientation (i.e., angular velocity in X, Y,
and Z directions known as pitch, roll, and yaw).
Finally, the BWP data were collected for each foot by developing an

insole integrated with 16 pressure sensors and a 16-channel multiplexer

board to read and transmit all sensors’ data to the ESP32microcontroller
in real-time, as shown in Fig. 7.
As depicted in Fig. 7, each insole includes 16 pressure sensors that

are connected to the 16-channel multiplexer. The multiplexer collects
data from the pressure sensor and sends it to the corresponding ESP32
microcontroller.
A total number of four ESP32 microcontrollers (see Figs. 1 and 2)

were considered to collect the 18 health-related indicators from 14
biosensors. Two of these ESP32 microcontrollers were responsible for
collecting all health-related data except BM and BWP. Also, each foot
was integrated with one ESP32 microcontroller, one IMU sensor to
collect BM data, and one developed BWP sensor (see Fig. 2).
All collected data from the ESP32 microcontrollers were transmitted

to an edge computing server for further processing and analysis through
WSNs communication in real-time. It is noteworthy that a power bank
with a capacity of 10,000 mAh was utilized as an external power supply
for the ESP32 microcontrollers tasked with collecting all health-related
data, except the BM and BWP indicators where a 7.4-volt battery served
as an external power supply for each ESP32microcontrollers responsible
for gathering the BM- and BWP-related data. These external power

Fig. 4. The developed blood pressure sensor to measure the BP indicator.

Fig. 5. The developed blood glucose sensor to measure the BGL indicator.

Fig. 6. The position of the BM sensors and corresponding collected acceler-
ometer and gyroscope data.

Fig. 7. The developed body weight pressure sensor to measure the
BWP indicator.
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supplies were instrumental in ensuring sufficient power operation for
the AFEs and the developed biosensors. Moreover, they provided a quiet
power supply, thereby minimizing power supply noise, a critical factor
in maintaining the integrity of the collected data [68].
The power of the proposed device when it is collecting and analyzing

the data for the 18 indicators from all the 14 sensors concurrently is
around 3.8 watts (i.e., assuming all sensors are active at the same time)
divided as follows: around 2.115 watts for the 4 ESP32 microcontrollers,
around 0.2 watts for the Analog Front-End boards, around 0.035 watts
for the IMU sensors, around 0.15 watts for the BWP sensors, around 1
watts for the BGL sensor, around 0.05 watts for the SpO2 sensor, and
around 0.25 watts for all other sensors combined (i.e., ECG, HRV, PPG,
etc.).

4.2. Data processing and digital dashboard creation

After collecting health- and physiological- related signals through
IoT-enabled WSNs communication, they were sent from the ESP32
microcontrollers to the edge computing server (i.e., Jetson Xavier NX)
for further processing as detailed in the next subsections. In addition, the
Jetson board was responsible for hosting a user-friendly GUI-based
digital dashboard capable of visualizing health-related indicators with
varying quantification approaches, sample rates, and time delays as
detailed below.

4.2.1. Data processing
To collect the biosensors’ health-related physiological signals and

indicators synchronously, each ESP32 microcontroller was assigned a
developed integrated programming and computational script to collect
the corresponding indicators. The integrated code for each ESP32 mi-
crocontroller was uploaded using the Arduino Integrated Development
Environment (IDE). Afterward, the collected data were transferred to the
Jetson board via WSNs communication for further processing. The Jet-
son board was chosen based on its compact size, powerful CPU (which is
a 6-core NVIDIA Carmel ARM v8.2 64-bit), efficient GPU (which in-
cludes 384 NVIDIA CUDA cores and 48 Tensor cores), and 16 GB of
memory. These features make it suitable for implementing the health
monitoring system. Additionally, it comes with a built-in WiFi module,
which is essential for enabling IoT capabilities.
The Jetson board was used to: 1) perform signal processing (e.g., Fast

Fourier Transform (FFT)) on the EEG, ECG, EOG, EMG, PPG, EDA, GSR,
and SCR signals; 2) develop an IoT-based web server user-friendly GUI-
based dashboard to visualize all collected physiological signals and in-
dicators in real-time as detailed in following sub-section.

4.2.2. Signal processing techniques
Various signal processing techniques were used in order to process

the raw signal obtained from the various integrated sensors and extract
meaningful data. More specifically, filtering techniques such as low-
pass, high-pass, and band-pass filters have been used to eliminate
noise and drift and to retain the signals of interest (i.e., isolating the
frequencies of interest). Also, moving average techniques have been
implemented to smoothens the signals. In addition, signal amplification
methods were used to increase the strength of week signals to ensure
that the signals are within the detectable range of the sensors.
Furthermore, Fast Fourier Transform (FFT) techniques were conducted
to convert time-domain signals into frequency-domain representations
to help in determining the frequency components of the signal and in the
identification of periodic signals or noise, which is essential in charac-
terizing biosensor responses. As for analyzing non-stationary signals,
wavelet transform methods were used to provide both time and fre-
quency information (i.e., allow for time-frequency analysis) that can
capture transient features of the biosensor response that might be missed
in traditional Fourier analysis. Finally, peak detection methods were
employed to identify and analyze signal peaks that can correspond to, or
indicate the presence of, specific events.

4.2.3. IoT-based digital dashboard
In order to design a user-friendly GUI-based digital dashboard that

dynamically visualizes the collected health-related physiological signals
and indicators in real-time from the developed multi-modal sensing
system, the collected data from ESP32 microcontrollers were trans-
mitted to the Jetson board through IoT-enabled WSNs communication.
On the Jetson side, these data are received through utilizing the Django
framework, which is a high-level, free, and open-source Python-based
web framework that runs on a web server [44]. Due to Django’s ad-
vantages such as scalability, simplicity of use, flexible framework, fast
processing, numerous available resources, secure framework, and ability
to design powerful administrative dashboards, Django was selected as a
suitable backend web development choice for handling heterogeneity,
multimodality, and complexity of the collected data/information.
In terms of the front-end framework, the React (i.e., React.js) which

is a free and open-source front-end JavaScript library was used to design
the GUI for the various health-related physiological signals and in-
dicators. React’s advantages such as fast rendering, friendly search en-
gine, reliable development tools, the capability of designing mobile
applications, effortless maintenance, and stable and streamlined code
make it the proper choice for developing comprehensive and user-
friendly GUI [41].
To accommodate multi-user scenarios, enhance privacy access to the

collected data, and improve the tracking of collected data for users, a
fingerprint sensor was integrated with the Jetson board. This integration
is noteworthy as it adds an additional layer of security and personali-
zation to the system. Initially, users are prompted to authenticate their
identity. Upon successful authentication, users are requested to provide
basic information such as age, weight, and height. This information is
utilized to calculate the Body Mass Index (BMI), a widely accepted
measure of body fat based on height and weight that applies to adult
men and women [8]. The BMI is categorized into four distinct groups:
(1) “Underweight” for a BMI less than 18.5 kg/m2; (2) “Normal weight”
for a BMI in the range of 18.5–25 kg/m2; (3) “Overweight” for a BMI in
the range of 25–30 kg/m2; and (4) “Obesity” for a BMI greater than
30 kg/m2. Subsequently, the developed multimodal sensing health
monitoring digital dashboard collects, stores, and visualizes the user’s
vital signs. This process ensures a personalized and secure health
monitoring experience for each user, thereby enhancing the overall
utility and effectiveness of the developed system.

5. Results and analysis

This section presents the results of the developed IoT-based multi-
modal sensing system for collecting and analyzing the health-related
signals and indicators and its designed web-based digital dashboard or
GUI for visualizing these vital symptoms. In addition, the validation of
the collected signals and indicators is presented based on comparing the
collected data with consumer-level devices.

5.1. Developed IoT-based multimodal sensing device

As detailed in the “Methodology” section, the multimodal sensing
device includes a total number of 18 indicators that are collected
through four ESP32 micron rollers. The collected data are transmitted to
an edge computing server for further processing and analysis through
WSNs communication in real-time. Fig. 8 shows the developed multi-
modal sensing device for health monitoring of all considered health-
related indicators except BM and BWP, which are presented in Fig. 9.
It is worth that 3D modeling and 3D printing was used to design and

construct an enclosure (i.e., cover made from 3D printed parts) for the
developed health monitoring system in this paper, as shown in Fig. 8.
As shown in Fig. 8 (a) and (b), the developed multimodal sensing

device collects various health-related indicators including EEG, EOG,
BGL, ECG, EMG, RR, BP, PPG, SpO2, ST, HT, EDA, GSR, and SCR, where
the HR and HRV indicators are calculated through on-sensor ECG and
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PPG signal processing by the ESP32 microcontrollers. Thus, a total
number of 16 indicators are collected by the device shown in Fig. 8,
while the remaining 2 indicators (i.e., BM and BWP) are collected
through the system present in Fig. 9. Fig. 8(a) also shows the fingerprint
sensor for authorizing users along with the 10,000 mAh power bank for
providing sufficient power operation for the AFEs and the various
biosensors.
Fig. 9 shows the system used to collect and monitor the remaining 2

indicators (i.e., BM and BWP).
As depicted in Fig. 9(a), the BM and BWP data is collected for each

foot. Fig. 9(b) also shows that each unit includes a battery charger
module, a 7.4 V battery as the external power supply, an IMU sensor for
collecting the 3-axis linear velocity and 3-axis gyroscope accelerometer,
an on/off switch, and an ESP32 microcontroller.
To show the developed multimodal sensing device for the compre-

hensive monitoring of the various health- and physiological-related in-
dicators, it was placed on a subject’s body as shown in Fig. 10.
As illustrated in Fig. 10, the developed wearable multimodal sensing

device was attached to three parts of the subject’s body to collect all 18
health-related physiological indicators (i.e., on the hip, on the right foot,
and on the left foot). The collected data are then transmitted to the edge
computing server (i.e., Jetson board) through WSNs for further signal
processing and analysis in real-time, and, subsequently, the visualiza-
tion of the results in the developed web-based digital dashboard or GUI,
as detailed below.

5.2. Developed web-based GUI and digital dashboard

A comprehensive user-friendly GUI was developed as detailed in the
“Methodology” section. Leveraging the capabilities of the Jetson Xavier
embedded system’s WIFI module, the received data from the various
ESP32 microcontrollers through the Django framework were further
processed by applying FFT to calculate the frequency domain compo-
nent (e.g., for calculating the HRV indicator). Additionally, the React
JavaScript library was used as the front-end framework to design the
web-based GUI or digital dashboard to create a graphical representation
for each health-related indicator. The developed GUI was comprised of

Fig. 8. The developed multimodal sensing device; (a) isometric view of the device and its connections; (b) left side view; (c) inside view.

Fig. 9. The developed multimodal sensing device for BM and BWP monitoring.

Fig. 10. The developed multimodal sensing device placed on a subject’s body.
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two main sections. The first section is the “Home” page and includes
graphical representations and plots of 16 (out of the 18) indicators, as
shown in Fig. 11. It is worth mentioning that user’s access to the
developed web-based GUI is only available after the authorization step
(i.e., using the fingerprint sensor).
As depicted in Fig. 11, the authorized user has access to the home-

page (i.e., main page) of the web-based GUI or digital dashboard to
visualize the collected data. In addition, the age, height, and weight of
the authorized user along with his/her BMI calculated are also shown
(see top left corner in Fig. 11). Fig. 11 also shows the user accessibility of
the various health-related indicators in real-time.
In addition to the “Home” page, the developed digital dashboard also

includes another page/section which provides the graphical represen-
tation of the developed sensor for tracking the weight distribution on the
feet (i.e., the BWP indicator) along with the 3-axis linear velocity and 3-
axis gyroscope accelerometer data collected for each foot from the IMU
sensor (i.e., the BM indicator). The visualization of the BM and BWP
indicators shown in the developed digital dashboard is illustrated in
Fig. 12.
As shown in Fig. 12, for the feet position shown in Fig. 12 (a), the

weight distribution on the user’s feet was visualized in the developed
digital dashboard (i.e., Fig. 12 (b)). Additionally, the 3-axis linear ve-
locity and 3-axis gyroscope accelerometer data collected from IMUs for
each foot were also displayed in Fig. 12 (b).

5.3. Validation of the collected data from the developed multi-modal
sensing device

The validation process is crucial in establishing the reliability and
accuracy of the data collected from the developed IoT-enabled multi-
modal sensing system. To validate the data collected on the 18 health-
related physiological indicators by the proposed multimodal sensing
system, a comparative and benchmark analysis was conducted against
available commercial consumer-grade devices. These devices, while
widely used, often collect a limited range of health- and physiological-
related indicators and they are not cost-effective. In contrast, the pro-
posed multimodal sensing device offers a more comprehensive moni-
toring solution, collecting a broader range of indicators. Table 3 presents
the results of the accuracy of the proposed health monitoring system
compared and benchmarked with similar available commercial devices.

Fig. 11. A snapshot of the home page of the developed digital dahsboard and web-based GUI.
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This comparison not only validates the accuracy of the collected data but
also highlights the enhanced capabilities of the proposed device.
As delineated in Table 3, the proposed multimodal sensing device

demonstrates a high degree of accuracy across all 18 health-related
physiological indicators, when compared with available commercial
devices. Specifically, indicators such as EEG, EOG, PPG, HRV, RR, ST,
SH, BGL, SpO2, BWP, SCR, and GSR exhibit an accuracy of 90 % or
more, relative to their corresponding consumer-grade commercial de-
vices. In addition, indicators such as ECG, EMG, and EDA display an
accuracy within the range of 85–89.9 % when compared with their
respective commercial devices. The HR indicator, with an error margin

of ±1 bpm (calculated through PPG signals) and ±2 bpm (calculated
through ECG signals), also demonstrates a high degree of accuracy.
Lastly, the BM indicator, which measures body motion, records a high
accuracy with an error of ±0.35 m/s in linear velocity and ±3.1◦/sec in
the gyroscope accelerometer.
These validation results underscore the potential of the proposed

multimodal sensing device as a robust and comprehensive solution for
health monitoring.
As for the indicators that achieved an accuracy less than 90 % such as

ECG, EMG, and EDA, while the obtained accuracies in Table 3 are
considered to be acceptable for non-medical applications, different

Fig. 12. The snapshot of the plot representations of the BM and BWP indicators.

R.H. Assaad et al. Sensors�and��	
��

()��A.�Physical�381��������116074�

12�



measures could be implemented to further enhance the accuracies of
these indicators. More specifically, to increase the accuracy of ECG,
additional measures include the following: 1) properly placing the
electrodes and maintaining skin preparation by cleaning the skin to
reduce impedance; 2) using a higher-quality electrodes that can reduce
noise; 3) minimizing motion artifacts by securing electrodes properly
and instructing participants to remain still; 4) regularly calibrating the
ECG sensing system; 5) using additional digital signal filtering tech-
niques to remove noise and/or software improvements (such as baseline
correction, QRS detection, and morphological analysis); 6) and con-
trolling participant factors by ensuring proper hydration and mini-
mizing stress before the ECG recording as these can influence heart rate
and rhythm. As for increasing the accuracy of the EMG data, the
following measures could be implemented: 1) ensuring electrodes are
placed correctly on the muscle and avoiding tendons and bony areas; 2)
removing oils and dirt using alcohol swabs or abrasive pads to enhance
electrode contact; 3) relying on electrodes with better conductivity and
durability; 4) instructing participants to stay still and avoid muscle
contractions unrelated to the task; 5) reducing electrical noise from
surrounding equipment; 6) using high-quality amplifiers to boost EMG
signals while minimizing noise; 7) and applying further data processing
methods (such as rectification, smoothing, and envelope detection) to
enhance the signal for analysis. As for the EDA data, measures for
increasing the accuracy include: 1) placing electrodes on areas with high
sweat gland density (such as the fingers or palms) to capture clearer
signals; 2) using conductive gel or adhesive to improve electrode contact
with the skin; 3) minimizing hair interference by shaving the needed
area if necessary to reduce impedance; 4) maintaining consistent envi-
ronmental conditions as temperature and humidity can affect EDA
readings; and 5) using other data processing methods to account for
individual baseline variations and improve the accuracy of arousal
detection or extracting relevant features such as the skin conductance
level (SCL) and phasic responses (SCRs) for more precise analysis.

6. Contributions

The paper offers significant and various contributions. This research
is the first of its kind in integrating this high number of 14 biosensors
capable of collecting 18 health-related vital signs; and thus, it represents
a substantial leap forward in sensor fusion technology. This compre-
hensive approach allows for the simultaneous collection of diverse
health-related physiological indicators, providing a more holistic view
of an individual’s health status. In fact, the various integrated biosensors
provide rich information on various vital signs into a single monitoring
system, including: health (e.g., ECG, HR, HRV, PPG, SpO2, BGL, BP);
emotional and arousal status (e.g., EDA, SH); mental and cognitive
status (e.g., EEG, GSR, SCR); behavioral, physical, and attention status
(e.g., EOG, EMG, BWP, BM); and physiological status (e.g., ST, RR); thus,
reflecting the wide window of applications for which the developed
system could be used.
By fusing multiple sensors into a single device, the system simplifies

data collection processes and reduces the need for multiple, disparate
devices, thereby streamlining the monitoring process for both re-
searchers and users. Also, by relying on open-source sensing devices (i.
e., the ES32 microcontroller and the associated used biosensors in this
paper) fosters multi-disciplinary collaboration and innovation within
the research community working on biosensing and health monitoring.
Researchers and developers have the flexibility to adapt and customize
the developed system to meet the specific needs of their applications,
enabling rapid prototyping and experimentation. The use of open-source
hardware promotes transparency and reproducibility in research; ulti-
mately, facilitating the sharing of knowledge and accelerating progress
in the field of health monitoring systems. In addition, the obtained
promising validation results reflect the efficacy and reliability of the
proposed multimodal sensing system and its ability to accurately cap-
ture and analyze physiological data in real-time, paving the way for its
potential integration into clinical settings and real-world applications.
These validation results provide confidence in the device’s performance
and underscore its potential as a robust solution for health monitoring.
Furthermore, the integration of a user-friendly GUI and digital dash-
board enhances the accessibility and usability of the proposed system for
both researchers and end-users. A visually appealing and intuitive
interface not only simplifies data visualization but also promotes user
engagement and adoption. By leveraging familiar technologies such as
Django (i.e., Django framework as the back end for receiving data from
ESP32s through WSNs) and React JavaScript (i.e., React JavaScript as
the front-end framework for designing web-based GUI), the GUI facili-
tates seamless interaction with the system, empowering users to explore
and interpret collected data effectively and in real-time.
The paper also offers various advancements. The developed system’s

ability to track a wide range of heart-related indicators, including ECG,
PPG, HR, HRV, RR, BGL, BP, and SpO2, holds immense significance.
Early detection of abnormalities in these indicators can aid in the timely
diagnosis and management of cardiovascular diseases, potentially
saving lives and improving patient outcomes [25,48]. Furthermore, in-
sights gained from continuous monitoring of heart behavior can inform
personalized interventions and preventive strategies, leading to better
overall cardiac health. Furthermore, the system’s capabilities in moni-
toring EEG, EOG, EMG, EDA, GSR, and SCR signals provide valuable
insights into brain function and cognitive states. These insights have
far-reaching implications across various domains, including neurosci-
ence, psychology, and clinical medicine [23]. The ability to
non-invasively assess brain activity opens up new possibilities for
diagnosing neurological disorders, understanding cognitive processes,
and developing targeted interventions for conditions such as autism,
depression, and anxiety. The sensing capabilities of the developed sys-
tem also offer early musculoskeletal disorder detection, enabling timely
intervention for musculoskeletal disorders which can significantly
improve patient outcomes and quality of life [40]. More specifically, by
monitoring foot movement (i.e., through the 3-axis linear velocity and

Table 3
The results of the accuracy of the proposed multimodal device vs available
commercial devices.

Indicator Accuracy of the developed sensing
system in this paper against
benchmark commercially available
devices

Commercial device used
for benchmark

ECG 89.9 % in the detection of heart peaks PC−80B easy ECG
monitor

EEG 99.67 % in detection blinking or focusing
on context

EEG-Z3-T7680

EOG 96 % upward eye movements and
87.67 % left-right eye movements

Biosignalsplux EOG
sensor

EMG 86.86 % in recognition of elbow muscle
activity

Qubit EMG sensor

PPG 96.5 % in the detection of heart peaks DigiDop PPG vascular
HR 1 bpm for the PPG signals Meet Fitbit Inspire 3

2 bpm for the ECG signals
HRV 95.90 % for the PPG signals Frontier

93.16 % for the ECG signals
RR 92 % CONTEC CA10S
ST +/- 1.0 ◦C or 99.2 % Thermometer- ETB−018
SH +/- 3 % or 97 % Bio-Therapeutic bt-

analyze
BGL 99.5 % Medline EvenCare G2
BP 96.26 % ZIQING BP monitor
SpO2 99.62 % Santamedical fingertip

pulse oximeter
BWP 94 % in recognizing pressure distribution Foot film pressure sensor
BM 0.35 m/s linear velocity accuracy Amazfit band 7

3.1◦/sec gyroscope accuracy
EDA 85 % in emotion recognition PLUX Biosignals, EDA

monitorSCR 90 % emotion recognition
GSR 90 % in recognition of immediate

memory recall
NeuLog, GSR monitor
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3-axis gyroscope accelerometer of each foot) and pressure distribution
(i.e., through the 16 pressure sensors used for each foot), the proposed
system enables early identification of abnormalities that may contribute
to musculoskeletal issues. This proactive approach to monitoring can
prevent the progression of conditions such as foot deformities and
postural abnormalities, reducing the need for invasive treatments and
improving long-term musculoskeletal health.
Overall, the proposed system in this paper is a powerful technology

that can play a significant role in various fields, including personalized
medicine, fitness monitoring, diagnosis, and personal health manage-
ment. More specifically, it could be useful for personalized medicine
through real-time monitoring of biomarkers in real-time, thus allowing
for personalized treatment adjustment based on each individual’s
response to therapy. It could also be used for fitness monitoring as a
wearable system that monitors various bio-markers such as heart rate,
oxygen levels, and even sweat to assess hydration and electrolyte bal-
ance during workouts and, or a system that analyzes data on individuals’
physical performance to help in refining training regimens and
improving outcomes, or as a tool that can provide feedback on physical
activity levels to motivate individuals to reach their fitness goals. The
proposed work could also be used for diagnosis and monitoring as the
various integrated biosensors can detect diseases at an early stage by
identifying specific biomarkers, thus improving timely diagnosis and
treatment. Other use cases include for personal health management and
tracking where the proposed system can be used by individuals to
monitor vital signs (e.g., heart rate, temperature) and other health in-
dicators at home including stress and mental health as the integrated
biosensors can track physiological responses to stress, providing insights
for mental health management. Although the proposed system possesses
many of the features of a medical-grade patient monitoring system, it
does not have any certifications for medical use (it is not officially
approved for medical or diagnostic use), but rather it is considered a
consumer and research grade device that could either be used for
research and experimentation purposes or for personal use, making it
accessible to individual users. Also, while the proposed system demon-
strates promising validation results and accuracy, its effectiveness in
diverse real-world scenarios and populations is recommended to be
further validated by future studies.
The importance of this paper and its proposed application in health

monitoring cannot be overstated. The broad applicability of the pro-
posed system across various industry sectors significantly enhances its
value. For instance, in sectors such as construction, underground min-
ing, chemical, and logistics, tracking the health and performance of
workers are of paramount importance. The proposed IoT-enabled
multimodal wearable bio-sensing health monitoring system can play a
crucial role in these sectors. By providing real-time, comprehensive
tracking of physiological symptoms, the system can help ensure the
safety and well-being of workers. It can alert supervisors to potential
health issues before they become serious, enabling timely intervention.
Moreover, this paper not only addresses significant knowledge gaps in
the field of wearable bio-sensing health monitoring and assessment
systems but also proposes a solution with far-reaching implications. The
proposed system has the potential to revolutionize health monitoring
across various industries, contributing to safer work environments and
more efficient operations. This underscores the significance of this study
and the potential impact of its findings.
Moreover, the developed user-friendly GUI makes the proposed

health monitoring system a suitable choice for individuals to track their
health status and early identify and diagnose health abnormalities. With
an intuitive interface and seamless interaction, users can easily interpret
the collected data, empowering them to take proactive measures to
improve their health and well-being.
The effect of this real-time health monitoring on individual well-

being and society as a whole is profound. By providing timely insights
into physiological indicators, the proposed system enables individuals to
make informed decisions about their health and lifestyle choices. Early

detection of health issues allows for prompt intervention and treatment,
potentially reducing healthcare costs and improving patient outcomes.
Furthermore, at the societal level, the widespread adoption of wearable
health monitoring systems can lead to a healthier population, reduced
burden on healthcare systems, and improved overall quality of life. As
researchers and developers continue to refine and expand upon these
innovations, the impact on public health and well-being is poised to
grow exponentially, ushering in a new era of preventive healthcare and
personalized medicine.

7. Conclusion and limitations

To enhance health monitoring and assessment practices, this paper
introduced a comprehensive wearable sensor fusion multimodal sensing
device and health monitoring system. Through the integration of 14
different sensors capable of acquiring the entire data for the 18 different
health- and physiological-related indicators, coupled with an open-
source IoT-enabled hardware architecture based on four ESP32 micro-
controllers, this research represents a significant advancement in the
field. The validation results underscore the reliability and efficacy of the
proposed system, demonstrating its potential for real-world imple-
mentations in various sectors and industries and for various applica-
tions. The user-friendly GUI or digital dashboard developed in this study
enhances accessibility and usability of the developed system, making
health monitoring more intuitive and engaging for both researchers and
end-users. Furthermore, the ability to track a wide range of indicators,
including EEG, EOG, EMG, ECG, PPG, HR, HRV, SpO2, BP, BGL, RR, ST,
SH, EDA, GSR, SCR, BM, and BWP, holds promise for early disease
detection and personalized interventions.
To the best of the authors’ knowledge, the proposed multimodal

sensing device in this paper is the first inaugural development of a health
monitoring system exhibiting such a remarkable level of comprehen-
siveness. By collecting 18 health-related indicators, leveraging sensor
fusion and IoT capabilities for seamless data transmission through
WSNs, harnessing Django for efficient data reception, utilizing React for
intuitive GUI design, and ensuring secure access to collected data via
fingerprint sensor authentication, this innovative system sets a new
standard in health monitoring technology. This pioneering approach not
only advances the boundaries of wearable sensor technology but also
revolutionizes data visualization techniques, representing a significant
milestone in the realm of health monitoring practices.
Similar to any research study, this paper has some limitations.

Although the proposed system possesses many of the features of a
medical-grade patient monitoring system, it does not have any certifi-
cations for medical use (it is not officially approved for medical or
diagnostic use), but rather it is considered a consumer and research
grade device that could either be used for research and experimentation
purposes or for personal use, making it accessible to individual users.
Also, while the proposed system demonstrates promising validation re-
sults and accuracy, its effectiveness in diverse real-world scenarios and
populations is recommended to be further validated by future studies.
Additionally, challenges related to data privacy, security, and interop-
erability could be further improved to ensure the widespread adoption
and ethical use of wearable health monitoring technologies. Despite
these limitations, this research lays a solid foundation for future ad-
vancements in health monitoring systems. Looking ahead, future
research can explore the integration of additional sensors to further
expand the capabilities of the multimodal sensing device. Moreover, the
development of advanced data analytics techniques (such as machine
learning models or other data processing capabilities) can enhance the
system’s ability to derive actionable insights from collected data.
Additionally, conducting longitudinal studies to assess the long-term
efficacy and user acceptance of the proposed system would provide
valuable insights for its refinement and optimization.
The findings of this research have broader implications for future

research and clinical practice. More specifically, the findings obtained
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from the developed multi-modal biosensing system provides the needed
foundations and seed for continued research in this area by driving
further technological advancements that can leading to the development
of more sophisticated multimodal biosensing devices (both hardware
and software) with improved accuracy and functionality. In fact, inte-
grating multiple biosensing modalities allows researchers to understand
the interplay between different health, physiological, emotional, and
cognitive processes, leading to more nuanced insights. Also, due to the
multidisciplinary nature of the proposed system, the research findings
could improve the collaboration among disciplines (e.g., engineering,
psychology, medicine), thus fostering innovative research approaches.
The research outcomes will ultimately enhance clinal practice by mak-
ing multi-modal biosensing systems more commonly used in practice,
thus allowing the simultaneous capture of data from various physio-
logical signals to provide a more comprehensive view of an individual’s
health status. Also, the proposed system could be used in clinical prac-
tice to combine data frommultiple biosensors in order to: identify subtle
changes across different signals, enabling earlier detection of potential
health issues; enhance the accuracy of diagnosing complex conditions,
such as mental health disorders, cardiovascular diseases, and chronic
illnesses; and enable clinicians to better tailor interventions and treat-
ments based on an individual’s specific physiological responses; and
provide real-time feedback, allowing for adjustments to treatment plans
as needed. Thus, the proposed multi-modal biosensing system can be
integrated into clinical workflows, improving efficiency in patient
monitoring and data collection through improved data analytics that
can better support clinical decision-making by providing clinicians with
actionable insights based on comprehensive patient data.
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