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3±Manifolds without any embedding in
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We show that there exist infinitely many closed 3±manifolds that do not embed in closed symplectic

4±manifolds, disproving a conjecture of Etnyre±Min±Mukherjee. To do this, we construct L±spaces that

cannot bound positive- or negative-definite manifolds. The arguments use Heegaard Floer correction

terms and instanton moduli spaces.

57R57; 57K43, 57R40

Theorem 1 There exist infinitely many rational homology spheres which cannot embed in a closed

symplectic 4±manifold.

The family of manifolds we use are particular connected sums of elliptic manifolds. Let P denote the

Poincaré homology sphere oriented as the boundary of the negative-definite E8 plumbing or, equivalently,

�1±surgery on the left-handed trefoil. Let O denote the ªfirstº octahedral manifold with Seifert invariants
�

�2I 1
2
; 2

3
; 3

4

�

oriented as the boundary of the negative-definite E7 plumbing or, equivalently, �2±surgery

on the left-handed trefoil (see, for example, Doig [5, Theorem 2, Equation 2]). The manifolds in the

theorem are those of the form mP #�kO with m � 1 and k > 8m. This answers the conjecture of Etnyre,

Min and Mukherjee [9, page 6] in the negative. (Note that this is stronger than saying that the manifolds

are not symplectically fillable, since a separating 3±manifold may sit in a symplectic 4±manifold in a

way which is not compatible with any contact structure on the 3±manifold.)

The rational homology spheres above are L±spaces, since they are connected sums of elliptic manifolds

(see Ozsváth and Szabó [24, Section 2]). It is shown by Mukherjee [20] that if an L±space embeds in a

symplectic 4±manifold, then it must bound a definite 4±manifold. Hence, we are able to prove Theorem 1

by proving:

Theorem 2 For any pair of integers k and m with m � 1 and k > 8m, the manifolds mP # �kO are

L±spaces which cannot bound positive- or negative-definite 4±manifolds.

The argument has two steps. In Section 1 we use the Heegaard Floer correction terms to obstruct the

negative-definite manifolds. In Section 2 we use Chern±Simons invariants and ASD moduli spaces to

obstruct the positive-definite manifolds. This section is where the real importance of our choice of the
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manifolds O and P appears. In particular, because these manifolds have finite fundamental group, the

values of the Chern±Simons functional are bounded in terms of the order of �1. This then greatly affects

the structure of the moduli space of ASD connections on a definite manifold with boundary a sum of P ’s

and O’s. The two essential properties of O used in the proof are that j�1.O/j < j�1.P /j and all of the

d±invariants of O are strictly negative. We also use that H1.O/ is 2±torsion to simplify the discussion,

but this is not an essential point.

Examples of 3±manifolds that do not bound any definite 4±manifold were previously given by Nozaki,

Sato and Taniguchi [21] and Golla and Larson [14]. In [21], a filtration of instanton Floer homology

given by the Chern±Simons functional is used to construct integer homology spheres without any positive-

or negative-definite 4±manifold filling. In [14], the Heegaard Floer correction terms are used to construct

examples of rational homology spheres that bound no definite 4±manifold.
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1 The d±invariant argument

In this section, we use Heegaard Floer d±invariants [23] to obstruct the manifolds mP # �kO from

bounding negative-definite manifolds for suitable positive values of k and m.

Proposition 1.1 Let k; m > 0. The manifold mP # �kO cannot bound a negative-definite 4±manifold

for k > 8m.

Before proving this, we need to compute the Heegaard Floer d±invariants of O.

Lemma 1.2 For a choice of labeling , the two Spinc structures on O , s0 and s1, satisfy

d.�O; s0/ D �7
4
; d.�O; s1/ D �1

4
:

Proof There are several ways to compute the d±invariants of O . We opt for the surgery description

of �O as S3
2

.T2;3/. By [22, Theorem 6.1] (and the formulas following), there is a labeling of the Spinc

structures such that

d.S3
2 .T2;3/; s0/ D 1

4
� 2t0.T2;3/; d.S3

2 .T2;3/; s1/ D �1
4

� 2t1.T2;3/;

where ti.K/ denotes the i th torsion coefficient, namely
P

j�1 jajijCj , and ak is the k th coefficient of the

symmetrized Alexander polynomial. The result now follows, since t0.T2;3/ D 1 and t1.T2;3/ D 0 (see

[22, Equations 2 and 3]).
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Proof of Proposition 1.1 Suppose that mP # �kO bounds a negative-definite 4±manifold. Then [22,

Proposition 5.2] implies that

max
s

d.mP # �kO; s/ �

�

0 if k is even;
1
4

if k is odd:

In particular,

(1) max
s

d.mP # �kO; s/ � 0:

Recall that d±invariants are additive under connected sum and that d.P / D 2. We thus have, from

Lemma 1.2,

max
s

d.mP # �kO; s/ D 2m � 1
4
k:

It follows that, for k > 8m, (1) is violated.

Remark 1.3 It seems likely that Proposition 1.1 can also be proved using Donaldson’s diagonalizability

theorem and lattice techniques. We anticipate that the assumption k > 8m can be relaxed somewhat using

refinements of Frùyshov’s instanton h±invariant for rational homology spheres.

2 The Chern±Simons argument

In this section, we use the instanton moduli spaces to obstruct mP #�kO from bounding a positive-definite

manifold, complementary to the results in Proposition 1.1.

Proposition 2.1 Let m and k be integers with m > 0. Then the manifold mP # �kO cannot bound a

positive-definite 4±manifold.

To prove this claim, we consider moduli spaces of SU.2/±instantons. We first provide a sketch of the

argument for nonexperts. In Section 2.1, we discuss generalities about instanton moduli spaces; this

section consists of mostly standard facts about such moduli spaces mainly aimed at a nonexpert reader who

needs a quick review of the relevant background. In Section 2.2, we expand on the proof of Proposition 2.1

sketched below.

Sketch of proof Suppose X is a positive-definite compact 4±manifold with boundary mP # �kO .

Reverse the orientation to obtain a negative-definite manifold with boundary �mP # kO . By attaching

pairs-of-pants cobordisms Y #Y 0 ! Y tY 0 (or, equivalently, attaching 3±handles along the connected-sum

spheres in the boundary), we obtain a cobordism W0 W P !
F

m�1 �P t
F

jkj ˙O , where the sign on

˙O is the sign of k (which we do not assume positive). Let W be the result of performing surgery

along a family of embedded loops in W0 which give a basis for H1.W0I Q/. A Mayer±Vietoris argument

implies that b1.W / D 0, and that the intersection form is unchanged by addition of 3±handles and surgery

on loops which are nontrivial in rational homology, so that W remains negative definite.
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We will obtain a contradiction by considering an orientable 1±dimensional moduli space M of instantons

on this cobordism W (more precisely, we attach cylindrical ends to W and consider a perturbation of the

ASD equation). Our contradiction will come from showing that the number of ends, counted with sign, is

nonzero. The ends of this moduli space M correspond to gluing instantons on W to instantons on the

incoming end R �P or the outgoing ends R � ˙O (the sign coinciding with the sign of k) and R � �P .

We first construct a family of ends of M by gluing a particular instanton on R � P to the reducible

flat connections over W. These reducibles are determined by H1.W I Z/, and are isolated and well-

behaved with respect to gluing because b1.W / D 0 and bC.W / D 0, respectively, as discussed in the

proof of Lemma 2.8(iii). This construction produces as many ends of M as there are elements of

H1.W I Z/=H1.@W I Z/, and they are all oriented in the same direction.

We use topological energy �.A/ of instantons to establish that these are the only ends. The moduli space

M is the moduli space of instantons with topological energy equal to 1
120

. In general, topological energy

is nonnegative, additive under gluing of instantons, and multiplicative under passing to covering spaces.

An instanton A on W determines flat connections ˛ and ˛0 on the incoming and outgoing boundary

components of W, and the topological energy �.A/ is equal modulo Z to the difference of Chern±Simons

invariants CS.˛/ � CS.˛0/ 2 R=Z.

There are two key points.

� The instanton on R � P used above has �.A/ D 1
120

, and the reducible flat connections on W have

�.A/ D 0. By additivity of energy, the instantons we constructed on W above have energy � D 1
120

, as

do all other instantons in the moduli space M. All other instantons on R � P have larger energy; when

glued to instantons on W they produce instantons of energy larger than 1
120

, which do not lie in M.

� All instantons on R � ˙O have �.A/ � 1
48

, so also do not contribute to ends of M. Here we use the

relation to the Chern±Simons invariant: for any flat connection ˛ on O , we have 48 CS.˛/ � 0 2 R=Z.

This follows because the universal cover of O is the 3±sphere, where the Chern±Simons invariant of a

flat connection is zero; the Chern±Simons invariant is multiplicative under covers and j�1.O/j D 48.

Because every end of M is constructed by the gluing procedure (gluing an instanton on a cylindrical

end to one on W ), the only ends are those initially described. In particular, M is a noncompact oriented

1±manifold without boundary with finitely many ends. This gives the desired contradiction: the signed

count of ends is ˙jH1.W I Z/=H1.@W I Z/j ¤ 0, but a noncompact oriented 1±manifold without boundary

has zero ends, counted with sign.

Remark 2.2 Proposition 2.1 holds more generally for any closed oriented 3±manifold Y with j�1.Y /j <

120 in place of O , with a similar proof.

Remark 2.3 Using moduli spaces of SU.2/±instantons to study negative-definite smooth closed 4±

manifolds goes back to Donaldson’s groundbreaking work [6]. Here we use an energy argument to
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analyze boundary components of a 1±dimensional moduli space of SU.2/±instantons. Similar strategies

appear, for example, in [10; 11; 13; 15; 25]. Another key tool in the study of negative-definite 4±manifolds

with integer homology sphere boundary is Frùyshov’s invariant h of [12]. In fact, the d±invariant used

in the previous section is the Heegaard Floer analogue of Frùyshov’s invariant, and it is expected that

d D 2h. Topological energy is employed in [3; 21] to construct refinements of Frùyshov’s invariant. We

expect that the invariants of [3; 21] generalize to invariants of rational homology spheres using the results

of [4; 19], and that the argument above can be recast in that language.

2.1 Properties of instanton moduli spaces

Suppose W is a compact 4±manifold with boundary. Choose a metric on W which is cylindrical (identical

to the product metric) in a collar neighborhood of the boundary. We will consider instantons on the

complete Riemannian manifold W [@W Œ0; 1/ � @W, where we have attached infinite cylindrical ends.

By an abuse of notation, we ignore this subtlety and refer by the same name W to both the compact

manifold W and the version with cylindrical ends. By partitioning @W into a set of incoming ends and

outgoing ends, we may write that W W Y ! Y 0 is a cobordism, where @W D Y 0 t �Y .

We are interested in SU.2/±connections A on the trivial bundle over W which are asymptotic to a flat

connection ˛ over Y and a flat connection ˛0 over Y 0, and for which the topological energy, defined as

�.A/ WD
1

8�2

Z

W

tr.FA ^ FA/;

is finite. This quantity is constant with respect to continuous deformations of A, and its mod Z value is

equal to CS.˛/�CS.˛0/. (Taking Y 0 to be empty, this serves as a definition of CS.˛/.) Further, as discussed

in [8, Section 3.2], � determines the deformation class of A through connections with flat limits ˛; ˛0.

We are more specifically interested in those finite-energy connections A on W which satisfy the ASD

equation

FC.A/ D 0

with respect to the metric on W. Any such connection satisfying the ASD equation is also called an

instanton. Any instanton A satisfies

�.A/ D
1

8�2
kFAk2

L2 :

In particular, �.A/ � 0, and �.A/ D 0 if and only if A is flat.

There is an infinite-dimensional space of instantons, because the ASD equation is invariant under an

infinite-dimensional symmetry group. Define the gauge group to be the space of all maps u W W ! SU.2/

which are asymptotic to a map v W Y ! SU.2/ on the incoming end and a map v0 W Y 0 ! SU.2/ on the

outgoing end, regarded as automorphisms of the trivial SU.2/±bundle. Then we may pull back any

connection A as above with respect to u to obtain a connection u�A which has the same topological

energy as A and is asymptotic to v�˛ and .v0/�˛0 on the incoming and the outgoing ends of W.
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The automorphisms u D ˙I act trivially on A, and A is called irreducible if these are the only elements

of the stabilizer �A of A under the action of the gauge group. The other possibilities for the isomorphism

type of �A are U.1/ and SU.2/ where A is called respectively an abelian and a central connection. For

instance, the trivial connection is a central connection. We use similar terminology to define the three

types of connections on 3±manifolds.

Now, for any nonnegative real number

� � CS.˛/ � CS.˛0/ mod Z;

let M�.W I ˛; ˛0/ denote the moduli space of instantons, the set of gauge equivalence classes of instantons

A on W with topological energy � which are asymptotic to ˛ along the incoming ends and ˛0 along the

outgoing ends. As is recalled below, these moduli spaces are finite-dimensional because they are locally

modeled on the solution set to an elliptic equation.

A special case of interest is when W D R�Y for a connected 3±manifold Y . For any flat connections ˛; ˇ

on Y and any � as above, we have a moduli space M�.R � Y I ˛; ˇ/. Translation along the R factor

determines an action of R on this moduli space. This action is free if � is positive, and the quotient in

this case is denoted by MM�.Y I ˛; ˇ/. The only instantons with � D 0 are constant trajectories, which

we exclude by defining MM�.Y I ˛; ˇ/ D ¿. These moduli spaces MM�.Y I ˛; ˇ/ consist of irreducible

instantons (see for example [19, Proposition 4.14]).

Reducible flat connections and instantons complicate the analysis of instanton moduli spaces. We restrict

attention to a special class of 3±manifolds which are general enough to prove the main theorem, but

simple enough to avoid some of the difficulties of the reducibles.

Definition 2.4 A two-torsion homology sphere is a closed, connected, oriented 3±manifold Y for which

H1.Y I Z/ consists only of two-torsion; that is, H1.Y I Z/ Š .Z=2/a for some a.

Flat connections up to gauge equivalence are in bijection with homomorphisms �1.Y / ! SU.2/ up to

conjugacy. Reducible flat connections are those whose image is conjugate to a subgroup of U.1/, and are

classified by homomorphisms H1.Y / ! S1 up to complex conjugation; the central flat connections are

those with image in the center f˙1g, and are classified by homomorphisms H1.Y / ! f˙1g. Pontryagin

duality implies that Y is a two-torsion homology sphere if and only if all flat connections on Y are

irreducible or central.

The 4±manifolds we work with will be cobordisms W W Y ! Y 0, where Y and Y 0 are disjoint unions of

two-torsion homology spheres, and for which b1.W / D bC.W / D 0. The first assumption will guarantee

that there are finitely many reducibles, while the second assumption will guarantee that reducibles are cut

out transversely in the reducible locus.

We will need an enumeration of these reducibles, in a special case.
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Lemma 2.5 Supposing W W Y ! Y 0 is a cobordism with b1.W / D 0, write a for the number of

abelian flat connections on W which are asymptotically trivial , and write z for the number of central

flat connections on W which are asymptotically trivial. Then z C 2a is equal to the cardinality of

H1.W I Z/= i�H1.@W I Z/, where i� is the homomorphism induced by inclusion.

Proof Reducible flat SU.2/±connections on W up to gauge correspond bijectively to homomorphisms

H1.W / ! S1 � SU.2/ up to complex conjugation. The asymptotically trivial flat connections cor-

respond to those homomorphisms which vanish on the boundary, or equivalently homomorphisms

H1.W /= i�H1.@W / ! S1 up to complex conjugation. The central flat connections correspond to the

fixed points of complex conjugation, while the abelian flat connections correspond to its free orbits. Thus

z C 2a can be identified with the number of homomorphisms H1.W /= i�H1.@W / ! S1.

Because b1.W / D 0, the domain is a finite group, and Pontryagin duality noncanonically identifies the

set of such homomorphisms with H1.W /= i�H1.@W / itself.

In general, it need not be the case that the flat connections on Y are cut out transversely by the equation

F˛ D 0. Even if they are, it need not be the case that each MM�.Y I ˛; ˇ/ is cut out transversely. When

both of these properties hold, we say that Y is regular.

Henceforth, suppose that W W Y ! Y 0 is a cobordism between disjoint unions of two-torsion regular

two-torsion homology spheres.

The local behavior of the moduli space around any instanton A is governed by the ASD operator

DA WD dC
A

˚ d�
A

W �1 ! �C ˚ �0, which (on appropriate Sobolev completions) is a Fredholm operator

obtained as a combination of the Coulomb gauge condition and linearizing the instanton equation at A

[8, Chapter 3]. When at least one of A’s flat limits is reducible, these should be defined on appropriate

weighted Sobolev completions, as in [8, Chapter 3.3.3].

If dC
A

is surjective, a neighborhood of A in this moduli space is modeled on ker.DA/= �A, where

f˙1g � �A acts trivially. In particular, if A is irreducible and DA is surjective, a neighborhood of A is

locally Euclidean; in this case we say that A is cut out transversely. However, it is rarely the case that DA

is surjective for all instantons A. This necessitates the introduction of a holonomy perturbation � of the

ASD equation. The precise definition of these holonomy perturbations is given in [19, Definition 4.2],

following the presentation of [17, Section 3].1 While the latter article focuses on the case of compact

4±manifolds without boundary, its definition of holonomy perturbation remains well-behaved so long as

one demands they vanish on a chosen neighborhood of infinity in W.

1Another approach to holonomy perturbations is given in [18, Section 3.2; 8, Chapter 5.4]. These perturbation schemes are

insufficient in our setting: they vanish automatically on flat connections which are central on the ends, which feature in our

argument in an essential way. The former authors do not need to contend with this, as they restrict attention to admissible bundles

(which support no reducible connections) and the latter author does not discuss in detail the perturbation scheme on cobordisms.
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A standard argument shows that for a generic choice of � , the moduli space of solutions to

(2) FC.A/ C �.A/ D 0

is cut out transversely away from reducible elements of the moduli space [19, Theorem 4.37]. We can

pick � so that the L2 norm of �.A/ is less than a given positive constant, the perturbation �.A/ vanishes

for any reducible connection A, and �.A/ vanishes outside of a fixed compact submanifold of W for any

connection A.

When performing a gluing analysis of the ends of MM �
� .W I ˛; ˛0/, we will also need to assume the

perturbation is well-behaved on the reducible flat connections ƒ on W. This is somewhat more difficult.

First, Dƒ will not be surjective, as the cokernel of d�
A

can be identified with the Lie algebra of the

stabilizer �A.

Any reducible flat connection ƒ is asymptotically central (as the ends of W are two-torsion homology

spheres), so the index calculation of [19, Proposition 4.26] drastically simplifies: the ª�±invariantº and

ªsignature dataº terms are automatically zero for central connections. Because ƒ is flat, the characteristic

class term is also trivial, so that the formula simply gives ind.Dƒ/ D �3.

Ideally, we would ensure that dC
ƒ

is surjective after perturbation, but this is sometimes impossible. When

ƒ is central, the cokernel of dC
A

has dimension bC.W / D 0, and there is no issue. When ƒ is an abelian

flat connection, the map d�
ƒ

has cokernel of rank 1, so dC
ƒ

cannot be surjective: at best it can be injective,

with cokernel of rank 2. The following lemma asserts that this best case scenario can be always achieved.

Lemma 2.6 Suppose W W Y ! Y 0 is a cobordism between a disjoint union of regular two-torsion

homology spheres , and suppose that b1.W / D bC.W / D 0. For any � > 0 there is a holonomy

perturbation � for W such that �.A/ vanishes for A reducible , we have k�.A/kL2 < � for all A, and the

following hold :

(i) All irreducible solutions A to the perturbed ASD equations have surjective ASD operator , so that

the irreducible part of M �
� .W I ˛; ˛0/ is a smooth manifold of dimension equal to ind.DA/.

(ii) For all reducible flat connections ƒ on W, the perturbed ASD operator D�
ƒ

is injective.

We call such a perturbation a small regular perturbation.

Proof As discussed above, perturbations satisfying (i) are generic.

Because reducible connections on a cobordism with bC.W / D 0 are cut out transversely in the reducible

locus [19, Lemma 4.20], the perturbation �.A/ can be assumed to vanish when A is reducible. The

ASD operators coincide for any central connection (as the ASD operator only depends on the associated

connection on the adjoint SO.3/±bundle). When b1.W / D bC.W / D 0, the ASD operator for the trivial

connection has Dƒ injective with cokernel of rank 3, isomorphic to the cokernel of d�
ƒ

as dC
ƒ

is surjective.

It follows that the same is true for any central connection. Because injectivity is an open condition, the

same holds for any small perturbation � .
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That we may choose � so that this is also true for abelian flat connections follows from the argument of

[19, Theorem 4.37]; see also [2, Section 7.3] for a similar discussion and conclusion. For completeness,

we will outline the argument here.

Suppose ƒ is a flat abelian connection on W. As discussed above, ind.Dƒ/ D �3. Because Dƒ is a

�ƒ Š S1±equivariant Fredholm operator, this index breaks into a sum of two terms: the index internal

to the reducible locus (which is �1 by Hodge theory) and the normal index (the index of this operator

normal to the reducible locus), which is thus �2. Write D�
�;ƒ

for this normal part.

While � is trivial on the reducible locus, it is nontrivial normal to the reducible locus. For each

flat reducible ƒ, sending � 7! D�
�;ƒ

defines a map from the space of perturbations to the space of

S1±equivariant Fredholm operators of index �2. One argues using the fact that the normal index is

nonpositive that this map is transverse at � D 0 to the locus of operators with nonzero kernel (a union

of countably many submanifolds, all of codimension at least 2), and thus that for small generic � the

operator D�
ƒ

is injective.2

The assumption that b1.W / D 0 guarantees that there are only finitely many reducible flat connections,

so that for generic small � and all reducible flat ƒ the operator D�
ƒ

is injective.

Supposing that � is sufficiently small, the topological energy behaves as it does for unperturbed instantons:

Lemma 2.7 If .W; �/ is as in Lemma 2.6, and � is sufficiently small , then all instantons on W have

nonnegative topological energy. Further , if A is a reducible solution to the perturbed ASD equations , then

�.A/ 2 1
2
Z is a nonnegative half-integer , zero if and only if A is flat.

Proof For any connection A we have

�.A/ D
1

8�2

Z

W

tr.FA ^ FA/ D
1

8�2
.kFAk2

L2 � 2kFC
A

k2
L2/:

Thus for any solution of (2) we have �.A/ D 1
8�2

.kFAk2
L2

� 2k�.A/k2
L2

/.

By taking � small enough, we can guarantee that �.A/ is greater than �� for any fixed positive constant �.

The mod Z value of �.A/ belongs to a fixed finite set, as the mod Z value is determined by the Chern±

Simons values of the flat connections A is asymptotic to, and each component of @W supports finitely

many gauge equivalence classes of flat connections. The first part of the claim follows as soon as

� < 1
2

min
˚

j CS.˛/ � CS.ˇ/j j ˛ flat on Y; ˇ flat on Y 0; CS.˛/ ¤ CS.ˇ/
	

:

As for the second part of the claim, because the boundary of W is a disjoint union of 2±torsion homology

spheres, the limits of A are central. The Chern±Simons invariant of a central connection is 0 or 1
2

: if

2If the normal index were nonnegative, one could instead argue that generically the normal part of the perturbed ASD operator is

surjective.
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a central connection � on a 3±manifold M has holonomy representation ' W �1.M / ! f˙1g, and zM

is the double-cover associated to ker.'/, then � lifts to the trivial connection on zM which has zero

Chern±Simons invariant. Thus 2 CS.�/ � 0 mod Z, and it then follows that �.A/ 2 1
2
Z. Finally, because

the perturbation vanishes on reducible connections, a perturbed reducible instanton is an unperturbed

instanton, and unperturbed instantons are flat if and only if they have �.A/ D 0.

When b1.W / D bC.W / D 0, the discussion of [8, Chapter 5.4] shows that moduli spaces of instantons are

canonically oriented; for general cobordisms W between rational homology spheres, one must choose an

orientation on H 0.W /˚H 1.W /˚H C.W /. Given a regular perturbation � and a one-dimensional moduli

space M �
� .W I ˛; ˛0/, we can apply gluing theory to explicitly determine the oriented ends of this moduli

space in terms of the moduli spaces of W, Y and Y 0. A careful description of these ends requires case anal-

ysis depending on the reducibility type of ˛; ˛0, and whether the instantons being ªgluedº are irreducible

or reducible. To cut down on case analysis, we describe the gluing result only in the case of interest to us.

Suppose W W Y ! Y 0 is a cobordism, where Y is a regular integer homology sphere and Y 0 is a disjoint

union of regular 2±torsion homology spheres. In the next statement, we will write � for the trivial

connection on Y and � 0 for the trivial connection on each component of Y 0.

Suppose W has b1.W / D bC.W / D 0, and is equipped with a small regular perturbation � . Fix � 2
�

0; 1
2

�

and an irreducible flat connection ˛ on Y such that the moduli space M �
� .W I ˛; � 0/ is a 1±dimensional

oriented smooth manifold.

Lemma 2.8 In the situation above , the moduli space M �
� .W I ˛; � 0/ has finitely many ends. The oriented

finite set of ends may be identified as the disjoint union of the following:

(i) A disjoint union over all products MM�1
.Y I ˛; ˇ/ � M �

�2
.W I ˇ; � 0/ in which ˇ is irreducible ,

�1 C �2 D �, and both factors are zero-dimensional.

(ii) A disjoint union over all products M �
�1

.W I ˛; ˇ0 t � 0/ � MM�2
.N 0I ˇ0; � 0/, where N 0 is a connected

component of Y 0, ˇ0 is an irreducible flat connection on N 0, �1 C �2 D �, and both factors are

zero-dimensional.

(iii) A disjoint union over jH1.W /= i�H1.@W /j copies of MM�.Y I ˛; �/, all with the same orientation.

Proof Our goal is to construct a finite set of open embeddings .0; 1/ ,! M�.W I ˛; � 0/ with disjoint

image, one for each element enumerated above, so that the complement of their union is compact.

The key is that this moduli space admits a compactification M C
� .W I ˛; � 0/ by adding broken trajectories

and ideal instantons (corresponding to Uhlenbeck bubbling limits), as in [8, Proposition 5.5]. While

Donaldson’s interest is primarily in the case where the ends of W are modeled on integer homology

spheres, the standing assumption in [8, Section 5.1] is merely that for each flat connection ˇ over one of

the connected components N of @W, we have H 1.N I ˇ/ D 0. This follows from our assumption that the

boundary of W is a disjoint union over regular two-torsion homology spheres.
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The compactification includes ªweak limitsº (Uhlenbeck bubbles) in which energy accumulates at k � 1

points in W, and the limiting (broken) instanton A has �.A/ � � � k; but because �.A/ � 0 and we

assume � < 1, such bubble points do not appear.

The relevant limits take the following form: a sequence An of instantons in M �
� .W I ˛; � 0/ may converge

to a sequence .B1; : : : ; Bn; A; C1; : : : ; Cm/, where each Bi is an instanton on R � Y , each Cj is an

instanton over R � Y 0 which is constant on all but one connected component, A is an instanton over W,

and the limit at C1 of each instanton agrees with the limit at �1 of the previous. We say that the flat

limits at C1 of B1; : : : ; Bn, and the flat limits at �1 of the nonconstant components of C1; : : : ; Cm

are ªintermediateº flat connections. Write r for the number of these which are reducible, hence central.

Because no Uhlenbeck bubble point appears, [8, Proposition 5.7] gives

(3)

n
X

iD1

ind.DBi
/ C ind.DA/ C 3r C

m
X

jD1

ind.DCj
/ D ind.DAn

/ D 1:

To see the appearance of 3r in Donaldson’s formula, note that his rank.H 0
� / is the dimension of the

stabilizer of �; it is trivial when the intermediate flat connection � is irreducible and is rank 3 when the

intermediate flat connection is reducible (hence central, because we assume @W supports no abelian flat

connections). Each ind.DBi
/ and ind.DCj

/ is at least 1, as these compute the dimensions of nonempty

smooth manifolds with a free R±action, so we have

(4) 1 � n C m C 3r C ind.DA/:

We will now split into two cases depending on whether A is irreducible or reducible.

If A is irreducible, we have ind.DA/ � 0, as this computes the dimension of the nonempty smooth

manifold of irreducible solutions to the perturbed ASD equations. It follows that r D 0 and .n; m/ is

either .1; 0/ or .0; 1/, with ind.DA/ D 0 and ind.DB/ D 1 in the first case or ind.DC / D 1 in the second

case, corresponding to cases (i) or (ii) in the enumeration. In these cases, [8, Theorem 4.17] implies that a

punctured neighborhood of .B; A/ or .A; C / in the compactification may be identified with .0; 1/. This

gives precisely one end of M �
� .W I ˛; � 0/ per such pair, as in parts (i) and (ii) of the enumeration.

If A is reducible, then by Lemma 2.7 �.A/ must be zero and A must be flat. To see this, first observe

that by the same lemma, perturbed solutions to the ASD equations have nonnegative topological energy.

Secondly, topological energy is additive under gluing of instantons, so

0 � �.A/ �
P

�.Bi/ C �.A/ C
P

�.Cj / D � < 1
2
;

the final inequality by assumption on �. Thus �.A/ is a half-integer with 0 � �.A/ < 1
2

, hence zero.

As discussed before the proof of Lemma 2.6, because A is flat and central on the ends, we have

ind.A/ D �3. Because the incoming end is a central flat connection, it is not ˛, and so is an intermediate

flat connection; thus r � 1 and n � 1. It follows from (4) that n D r D 1 and m D 0. Further, because

Y is an integer homology sphere, A is trivial at �1. Because m D 0, the asymptotic value of A at
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C1 coincides with the asymptotic value of the connections An at C1, so we also have that A is trivial

at C1. Therefore, the possible limits are reduced precisely to pairs .B; ƒ/, where B 2 MM�.Y I ˛; �/ and

ƒ 2 M �
0

.W I �; � 0/. Because this moduli space consists of connections of index �3, and the irreducible

locus is cut out transversely, it contains no irreducible connections whatsoever. Further, because �

vanishes on the reducible locus, M �
0

.W I �; � 0/ coincides with the set of flat reducible connections which

are trivial on the ends.

When ƒ is central, the map dC
ƒ

is surjective by Hodge theory, so the discussion of [8, Chapter 4.4.1]

(which relies on the assumption that dC
ƒ

is surjective) applies, giving an identification of a punctured

neighborhood of each .B; ƒ/ in the compactification with an oriented copy of .0; 1/. See also [7,

Example 4.8(i)], which implies that all of the ends with fixed B are oriented the same way, independent

of the central connection ƒ.

When ƒ is abelian, the map dC
ƒ

is not surjective (it has a cokernel of rank 2), and we are instead in the

situation of obstructed gluing theory. Here we instead apply the argument of [7, Example 4.8(ii)], which

implies that this gluing procedure contributes two ends, all oriented the same for fixed B (and the same

as in the previous paragraph). Briefly, these ends correspond to the zero set of a section of a line bundle

over the space of gluing parameters S2, and this line bundle has Euler class 2; a similar discussion can

be found in [4, Section 6.1].

In total, these contribute 2a C z copies of MM C
� .Y I ˛; �/, all with the same orientation, to the set of

oriented ends. By Lemma 2.5, this coincides with the stated cardinality.

By the Uhlenbeck compactness theorem, a sequence of instantons An in M �
� .W I ˛; � 0/ has a subsequence

which converges to one of the previously enumerated broken trajectories, so eventually lies in one of the

neighborhoods enumerated above. If An lies wholly in the complement of these neighborhoods, it must

have a convergent subsequence in M �
� .W I ˛; � 0/ itself, as desired.

2.2 Detailed argument

Our manifold W will be a cobordism from P to a disjoint union of some number of copies of �P and ˙O .

Notice that H1.P I Z/ D 0 and H1.OI Z/ D .Z=2/2, so these are two-torsion homology spheres.

To apply the results of the previous section, we need to recall some facts about the moduli spaces of

instantons on these 3±manifolds.

Lemma 2.9 If Y is a spherical 3±manifold , then Y is regular with respect to the spherical metric. We

also have the following facts about flat connections and instantons over R � Y for Y D ˙O; ˙P :

(i) The manifold P supports three flat connections: the trivial connection � and two irreducible flat

connections ˛1; ˛2 with CS±values 1
120

, 49
120

, respectively. The moduli space MM1=120.P I ˛1; �/ is

a singleton.
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(ii) Every other nonempty moduli space MM�.P I ˛; ˇ/ has � � 2
5

.

(iii) Every nonempty moduli space MM�.�P I ˛; �/ has � � 71
120

.

(iv) Every nonempty moduli space MM�.˙OI ˛; ˇ/ has � � 1
48

.

Proof Item (i) is the most substantial, and we discuss this last. The claim about smoothness is proved in

[1, Section 4.5]: for a spherical 3±manifold Y D S3= � , if R � Y is equipped with the product metric

corresponding to the round metric on Y and A is a finite-energy ASD connection with respect to this

metric, then we may lift A to R�S3 and apply removability of singularities to obtain an ASD connection

QA on S4 with respect to the round metric. The cokernel of the ASD operator of A is identified with the

�±invariant part of the cokernel of the ASD operator of QA, which is zero for any ASD connection on S4.

As for items (ii)±(iv), a nonempty moduli space has � > 0 (an instanton has � � 0, but we define

MM0.Y I ˛; ˇ/ to be empty), so we have CS.˛/ � CS.ˇ/ � � > 0. Items (ii) and (iii) follow from (i) by

inspection of these Chern±Simons invariants, where for (iii) we use that CS�Y .˛/ D � CSY .˛/; item (iv)

follows because S3 is a 48±fold cover of O , so the minimal positive difference between Chern±Simons

invariants is 1
48

.

We will establish item (i) in three steps. First, we enumerate the flat connections of P and their Chern±

Simons values. Second, we show that there is a zero-dimensional moduli space containing a single ASD

connection A0 that is asymptotic to the trivial connection on the outgoing end. Finally, we establish that

A0 has energy 1
120

and hence it is asymptotic to ˛1 on the incoming end.

The first part will follow from the work of Fintushel and Stern [11]. Their conventions are different from

ours in several ways. First, they study the self-duality equations FA D �FA over Y � R D R � .�Y /,

whereas we study the anti-self-duality equations FA D ��FA over R � Y . There is a canonical bijection

between these two sets of connections. Next, Fintushel and Stern work with SO.3/±connections, whereas

we work with SU.2/±connections, and their version of topological energy (called ªPontryagin chargeº

in [11])3 is related to our version of topological energy by a constant factor of �4, related to the fact that

if g 2 SU.2/ and adg 2 SO.3/, then tr.ad2
g/ D 4 tr.g2/.

It is shown in [11, Proposition 2.8] that there is a bijection between the set of irreducible flat connections

on †.p; q; r/ and the set of triples .k; `; m/ of integers 0 < k < p, 0 < ` < q, 0 < m < r satisfying

certain further conditions. Write ˛k;`;m for the corresponding flat connection. In the special case

.p; q; r/ D .2; 3; 5/, there are two such triples: .1; 1; 1/ and .1; 1; 3/. We write the associated irreducible

flat connections as ˛1 and ˛2, respectively. For a general irreducible flat connection ˛k;`;m on †.p; q; r/,

the computation of [11, Theorem 3.7] establishes

CS.˛k;`;m/ D
.kqr C `pr C mpq/2

4pqr
mod Z;

3The expression for Pontryagin charge in [11] is written with the incorrect sign; the authors intend the constant factor outside their

integral to be �1
8�2

, as this would be the factor needed to make the first displayed equation in the proof of [11, Theorem 3.9] correct.
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by constructing a connection A over Œ0; 1��† which is trivial at 0 and equal to ˛k;`;m at 1, and establishing

that, for this connection,

p1.A/ D
.kqr C `pr C mpq/2

pqr
:

The formula above follows from the relation �.A/ D �1
4
p1.A/.

The remaining parts follow from the work of [1, Section 4.3], but we refer to the more recent discussion

of [16, Section 4]. There the author discusses framed moduli spaces on R�.�P /, denoted Mz.�P I ˛; ˇ/,

which carry a free action of SO.3/, a pair of equivariant maps to SO.3/= �˛ and SO.3/= �ˇ (where �˛ is

the set of ˛±parallel gauge transformations). Here z is the homotopy class of a path between ˛ and ˇ in

the configuration space of all connections on P . The quotient of Mz.�P I ˛; ˇ/ by the SO.3/ action is a

compactification of our MM�.z/.�P I ˛; ˇ/ for a choice of �.z/ that is uniquely determined by z. When

MM�.z/.�P I ˛; ˇ/ is zero-dimensional, we simply have Mz.�P I ˛; ˇ/=SO.3/ D MM�.z/.�P I ˛; ˇ/.

First, [16, Theorem 4.1] asserts that when � is ªadjacent to ˇº in a certain graph SI � , there is a choice

of z such that the moduli space Mz.�P I �; ˇ/ is diffeomorphic to SU.2/= � 0 for some discrete subgroup

� 0 � SU.2/. Because this space carries a free SO.3/±action, we must have Mz.�P I �; ˇ/ D SO.3/ and

thus � 0 D Z=2. It follows immediately from the definition in [16, Section 3.3] that for Q the ªcanonical

representationº �1.P / ! SU.2/, we have � adjacent to Q in the graph SI � . Thus for this irreducible rep-

resentation Q, there is a zero-dimensional moduli space MM�.z/.P I Q; �/ containing a single element A0.

We show that �.z/ D �.A0/ D 1
120

, which in particular implies that Q D ˛1 using the computation of the

Chern±Simons invariants of P . It is established in [16, Equation (4.2)] that the energy of this instanton

coincides with c2. zE/=j�1P j, where zE is the associated bundle over S4. In [16, Theorem 4.2], this Chern

class is named k, and in [16, Lemma 4.4] a certain vector space H is introduced whose dimension

is k. In [16, Definition 4.20] a constant n�Q is introduced which here is equal to dim H (the group � 0

was computed above to be Z=2). Finally, in [16, Lemma 4.23] it is established that n�Q D 1. Thus the

corresponding instanton on R � P has energy n�Q=j�1P j D 1
120

.

Proof of Proposition 2.1 As discussed earlier, if X is positive-definite with boundary mP # �kO , we

may construct a cobordism W W P !
F

m�1 �P t
F

jkj ˙O with b1.W / D bC.W / D 0.

For a perturbation � as in Lemma 2.6, we consider the moduli space M �
1=120

.W I ˛1; � 0/. Because ˛1

is irreducible, all elements of this moduli space are irreducible. Further, because one may obtain a

connection W W ˛1 ! � 0 of energy 1
120

by gluing the instanton A of Lemma 2.9(i) to the trivial connection

‚ on W along the trivial connection � on P , we have by (3) that this moduli space has dimension

ind.DB/ C 3 C ind.D‚/ D 1 C 3 � 3 D 1:

Here ind.DB/ D 1 as ind.DB/ computes the dimension of the moduli space M.P I ˛1; �/ before the

quotient by the R±action, and after quotienting this space is 0±dimensional. So M �
1=120

.W I ˛1; � 0/ is a

smooth oriented 1±manifold, and we may apply Lemma 2.8 to determine the ends of this moduli space.
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There are no ends of the form given in Lemma 2.8(i), as such an instanton would factor through an

instanton on R � P with �1 � 1
120

and irreducible flat limits .˛; ˇ/, but no such instantons exist by

Lemma 2.9(ii).

There are also no ends of the form given in Lemma 2.8(ii), as such an instanton would factor through an

instanton on one of R��P or R�˙O with �2 � 1
120

, but no such instantons exist by Lemma 2.9(iii)±(iv).

Therefore all ends arise from Lemma 2.8(iii), gluing the single instanton in MM1=120.P I ˛1; �/ to the

reducibles on W which are trivial on the ends; this contributes jH1.W /= i�H1.@W /j ends, all with the

same sign. This contradicts the fact that an oriented 1±manifold with finitely many ends has zero ends,

counted with sign.
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