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ABSTRACT

Aims. We have implemented a novel method to create simulated [CII] emission line intensity mapping (LIM) data cubes using
COSMOS 2020 galaxy catalogue data. It allows us to provide solid lower limits for previous simulation-based model predictions and
the expected signal strength of upcoming surveys.
Methods. We applied [CII]158µm luminosity models to COSMOS 2020 to create LIM cubes covering a 1.2×1.2 deg2 sky area. These
models were derived using galaxy bulk property data from the ALPINE-ALMA survey over the redshift range of 4.4 < z < 5.9, while
additional models were taken from the literature. The LIM cubes cover 3.42 < z < 3.87, 4.14 < z < 4.76, 5.34 < z < 6.31, and 6.75 <
z < 8.27, matched to planned observations from the EoR-Spec module of the Prime-Cam instrument in the Fred Young Submillimeter
Telescope (FYST). We also created predictions including additional galaxies below current detection limits by ‘extrapolating’ from
the faint end of the COSMOS 2020 luminosity function, comparing these to predictions from the literature. In addition, we computed
the signal-to-noise (S/N) ratios for the power spectra, using parameters from the planned FYST survey with predicted instrumental
noise levels.
Results. We find lower limits for the expected power spectrum using the likely incomplete empirical data: when normalised by 2π2,
the amplitudes at k = 1 Mpc−1 are 3.06 × 107, 1.43 × 107, 9.80 × 105, 2.77 × 105 (Jy sr−1)2 for the aforementioned redshift ranges. For
the extrapolated sample, the power spectra are consistent with prior predictions, indicating that extrapolation is a viable method for
creating mock LIM cubes. In this case, we expect a result of S/N>1 when using FYST parameters. However, our high-redshift results
remain inconclusive because of the poor completeness of COSMOS 2020 at z > 6.3. These predictions will be improved on the basis
of future JWST data.

Key words. galaxies: high-redshift – galaxies: evolution – large-scale structure of Universe – dark ages, reionization, first stars –
Infrared: galaxies

1. Introduction

The mechanisms underlying the Epoch of Reionisation (EoR)
are not yet fully understood. This period marks the phase when
high-energy photons emitted by the first stars and galaxies
ionised the gas in the intergalactic medium, occurring at redshifts
of 6 < z < 20, subject to specific cosmic conditions (e.g. Haiman
& Loeb 1997; Barkana & Loeb 2001). These early galaxies trace
the evolution of the Universe’s dark matter structure, commonly
referred to as the cosmic web. There is an ongoing debate on
the intricacies of reionisation, including the relative contribu-
tions of stars versus active galactic nuclei (e.g. Zaroubi 2013;
Kulkarni et al. 2017; Madau 2017). Additionally, galaxies from
these early times are distant and faint, with only the brightest be-
ing detectable. This limitation leaves the luminosity function of
dim galaxies largely undetermined, and their impact on reionisa-
tion uncertain. As a result, constraining the specifics of the EoR
remains a significant technical challenge.

Only the most sensitive pencil-beam surveys, such as those
conducted by the Hubble Space Telescope (HST) or James Webb

⋆ e-mail: jclarke@ph1.uni-koeln.de

Space Telescope (JWST) (e.g. Álvarez-Márquez et al. 2019;
Treu et al. 2023), are capable of resolving the dimmest galaxies
at the EoR. However, the area coverage of these surveys is signif-
icantly smaller than 1 square degree (deg2), which precludes us
from gathering a more comprehensive galaxy sample or exam-
ining larger structures. To overcome this limitation, we can use
a promising technique known as line intensity mapping (LIM,
Bernal & Kovetz 2022). Unlike traditional observation methods,
which focus on individual galaxies, LIM measures the aggre-
gate integrated signal over a wide survey area that typically ex-
ceeds 1 deg2, using a beam up to 1 arcmin wide which covers a
fractional bandwidth. This technique maps the tomography of a
given region across different redshifts, resulting in a LIM cube
(or intensity cube) — a sky map extended to three dimensions by
each low-resolution frequency channel of the instrument. There-
fore, LIM surveys extensive areas more efficiently than conven-
tional techniques while also capturing the integrated intensity
from elusive, low-luminosity galaxies within the aggregate sig-
nal. This approach provides valuable insights into galaxy clus-
ters, the corresponding host dark matter halos and large-scale
structure, and the luminosity function of the field. Consequently,
LIM observations would allow us to constrain the early stages of
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the EoR. The primary analytical tool we use to find this informa-
tion is the 3D spherically averaged power spectrum derived from
the LIM cube. This two-point statistic connects first-order spa-
tial correlations to each other, enabling the calculation of signal
variations across different spatial scales (e.g. Gelabert & Roeder
1989; Barkana & Loeb 2005). The investigation of these power
spectra has been central to previous work on LIM.

Line intensity mapping enables the investigation of var-
ious epochs of the universe by detecting different spectral
lines, depending on the spectral range of the detector used.
Of the most important lines in the EoR, including CO, HI,
and [OIII], several experiments have specifically focused on the
[CII] fine structure emission line (2P3/2–2P1/2 at rest frequency
1900.537 GHz, Harwit 1984; Watson 1985). Previous observa-
tions have found a tight correlation between [CII] emission and
the star formation rate (SFR) of galaxies (e.g. Boselli et al. 2002;
Vallini et al. 2015; Lagache et al. 2018), which is potentially re-
lated to how [CII] is a key cooling line for photo-dissociation re-
gions (PDRs) in nearby galaxies. In this way [CII] can be used to
trace massive star-forming regions, star-forming galaxies (SFGs)
and, therefore, the ionising radiation that drives the EoR.

Numerous surveys are in preparation with an aim to probe
the EoR. This study focusses on the EoR-Spec Deep Spec-
troscopic Survey (DSS), a major program for the Cerro Chaj-
nantor Atacama Telescope (CCAT) Collaboration’s second year
of observations. The EoR-Spec DSS will utilise the EoR-Spec
module within Prime-Cam, an instrument to be mounted on
the Fred Young Submillimeter Telescope (FYST, CCAT Col-
laboration 2023). Scheduled for its initial observations in 2026,
EoR-Spec aims to span frequencies between 420 and 210 GHz,
corresponding to 3.5 < z < 8 for [CII] observations. Other
similar projects include the Arizona Radio Observatory’s To-
mographic Intensity Mapping Experiment (TIME, Crites et al.
2014) and the Atacama Pathfinder EXperiment’s CarbON CII
line in post-reionization and Reionization epoch (CONCERTO,
Lagache 2018; Dumitru et al. 2019; CONCERTO Collaboration
2020; Béthermin et al. 2022).

To prepare for work with observational data, prior studies
have simulated galaxy samples to create [CII] intensity cubes
and mock power spectra. Our work builds upon those data
(e.g. Silva et al. 2015; Serra et al. 2016; Chung et al. 2020;
Karoumpis et al. 2022; Roy et al. 2023). This preparatory
work relied on a variety of simulation tools, each underpinned
by different assumptions for their simulated catalogues. Most
models have found [CII] luminosity for their mock catalogues
by assuming a strong, linear correlation between [CII] emission
and SFR, using existing observational data for calibration,
although a number of models were more complex, while others
have used simulation work to determine their [CII] models (e.g.
Vallini et al. (2015), Lagache et al. 2018, Padmanabhan 2019).
However, the scarcity of known [CII] emitters at high redshifts
(Schaerer & de Barros 2010; Lagache et al. 2018) limits the ro-
bustness of these models. Therefore, this variety and uncertainty
result in predicted power spectra that can vary by more than
1 dex (order of magnitude), even when focusing on identical
frequency ranges. Such variability underscores the challenges
faced in understanding the EoR and the role forthcoming
surveys such as EoR-Spec DSS will play in advancing our
knowledge.

In this work, we find robust lower bounds for the power spec-
tra at this epoch, constraining the potential outcomes for sim-
ulations of LIM and future observations. Our findings validate
prior projections and provide a foundation for error calibration
of future observations. We constructed these limits by using the

COSMOS 2020 galaxy catalogue (from now on referred to as
COSMOS 2020, Weaver et al. 2022), the newest iteration of the
COSMOS catalogues, which cover the well-documented COS-
MOS field. By combining galaxy data from this newest data re-
lease with several different [CII] emission models, we can create
mock LIM cubes that are appropriate for the COSMOS field.
Despite COSMOS 2020 not matching the depth of JWST sur-
veys and so having lower completeness for faint galaxies, it is
the most comprehensive catalogue available that combines the
necessary large sky coverage and depth for creating mock LIM
cubes. This data set only includes galaxies up to z = 9 which are
confirmed to exist, so consequently the constructed maps pro-
duce power spectra of the minimum possible magnitude. The
COSMOS 2020 catalogue is also highly relevant because of its
overlap with the area covered by the Extended-Cosmic Evolution
Survey (E-COSMOS, Scoville et al. 2007; Aihara et al. 2018), a
target for future observations by the EoR-Spec DSS. The [CII]
emission models we used are sourced from existing literature
and are complemented by models derived using empirical data
from the ALMA Large Program to Investigate [CII] at Early
Times (ALPINE, Béthermin et al. 2020; Faisst et al. 2020; Le
Fèvre et al. 2020), similar to the approaches of Schaerer et al.
(2020) and Romano et al. (2022). As ALPINE lies within the
COSMOS field, these [CII] models should reflect the wider field.
Beyond setting these lower limits, we validated our methodology
by generating samples that account for the assumed incomplete-
ness in COSMOS 2020. By extrapolating the original catalogue
to include the fainter end of the luminosity function and to pro-
duce power spectra as a result, then comparing the results to pre-
vious simulations that assume this faint end does indeed exist,
we aim to confirm the reliability of our sample and methodol-
ogy. Aside from demonstrating the practicality of employing this
strategy for creating realistic simulated LIM maps, we also scru-
tinised the analytical errors associated with these power spectra.
In this way, we were able to assess the detectability of the power
spectra. While our analysis is tailored to the specifications of
EoR-Spec, the results may be relevant for other instruments and
LIM studies, offering a versatile framework for future research
in this area.

Section 2 of this paper presents a detailed overview of our
methodology, including a procedural flowchart. This section de-
scribes the EoR-Spec DSS, the data sets from ALPINE and
COSMOS 2020, and the process involved in generating initial
line intensity mapping (LIM) cubes and power spectra. Section
3 examines the characteristics of these mock cubes and power
spectra, making a comparison with prior studies and identifying
the lower bounds for power spectra values. Section 4 expands on
these lower limits, along with a discussion of the methodology
of our extrapolation technique to address COSMOS 2020’s in-
completeness. This section also outlines the enhanced samples
and power spectra derived from this procedure. Lastly, Section
5 discusses the significance of our findings, the constraints they
provide, and suggests ways for refining the simulated LIM cubes
in future research.

We use a flat ΛCDM dark matter universe, taking H0 =
70kms−1Mpc−1, ΩM = 0.3, and ΩΛ = 0.7. However, we did not
find meaningful differences when using other cosmologies (e.g.
Planck Collaboration 2020). We use magnitudes in AB format
(Oke & Gunn 1983).

2. Method

Here, we outline the methodology for creating a mock LIM cube,
as visualised in Figure 1. First, we created a sub-sample for a
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Begin map-making for
a given redshift band

Take COSMOS
2020 galaxy

catalogue (Sect. 2.3)

Take ALPINE
galaxy cata-

logue (Sect. 2.2)

Create [CII] models for map-making

Take [CII] models
from the litera-
ture (Sect. 2.4)

Take FARMER LP, filter by IRAC
Ch1 magnitudes for appropriate

frequency band (Sect. 2.3)

Account for foreground mask
from bright stars, by adding
and placing galaxies within
masked regions (Sect. 2.5)

Apply [CII] models
to the sample,

acquire luminosi-
ties (Sect. 2.4)

Derive [CII] models from
ALPINE Data (Sect. 2.4)

Do we extrapolate?

Take sample, create intensity
cube based on luminosi-

ties and locations (Sect. 2.5)

Calculate 3D power spectrum
based on cube (Sect. 2.6)

Perform analysis (Sect. 3 for no
extrapolation, Sect. 4.4 for extrapolation)

no

Extrapolate high-mass galax-
ies based on discrepancies

with CANDELS (Sect. 4.1)

Fit Schechter curve to mass
or luminosity function, ex-

trapolate faint galaxies
appropriately (Sect. 4.2)

Use weighting mesh to de-
termine location for extrap-
olated galaxies (Sect. 4.3)

Create weighting
mesh for galaxy

locations based on
original sample and

Voronoi Tessel-
lation (Sect. 4.3)

yes

Fig. 1: Flowchart showing the steps of intensity cube creation, with or without extrapolation. This forms an overview for the rest of
the paper, therefore section labels are included for reference.

given frequency band from COSMOS 2020 (Sect. 2.3) and then
account for the stellar mask within this sample (Sect. 2.5). We
applied the [CII] models to the bulk property data (i.e. stellar
masses, SFRs) of the sub-sample to estimate [CII] luminosity
data (Sect. 2.4), using models from the literature or those de-
rived from ALPINE (Sect. 2.2) to create intensity cubes. Subse-
quently, we calculated the power spectra for these sub-samples
(Sect. 2.6) and performed our analysis on them (Sect. 3), which
we expect to provide lower limits by their construction. We
can also choose to extrapolate additional galaxies from the sub-
sample, adjusting the bright galaxy population based on known
incompleteness (Sect. 4.1), assuming a significant population of
faint galaxies exist (Sect. 4.2). As a result, we produced power
spectra that we expect to be concordant with existing simula-
tion work. Galaxies are placed within the sample using Voronoi
Tessellation techniques (Sect. 4.3), with the analysis of the re-
sulting power spectra and their errors discussed in Sect. 4.4. We
kept the procedure of extrapolation and the results it provides

separate, as an extension of the default procedure we applied to
the sub-sample of COSMOS 2020 and its corresponding lower
limits.

2.1. EoR-Spec DSS

We characterised the survey we assumed for this work, EoR-
Spec DSS (CCAT Collaboration 2023), as follows. This sur-
vey offers a total of 4000 hours of coverage split between
the Extended-Cosmic Evolution Survey (E-COSMOS, Scoville
et al. 2007; Aihara et al. 2018) and Extended-Chandra Deep
Field South (E-CDFS, Giacconi et al. 2002) fields over the initial
survey period. Each field covers a survey area of 4 deg2, notably
larger than the areas covered by CONCERTO and TIME, thereby
allowing EoR-Spec DSS to reach a larger scale clustering signal.

The frequency range of EoR-Spec DSS, 420–210 GHz, is to
be split into four frequency bands. We took the specific bands
used in past work (e.g. Chung et al. 2020; Karoumpis et al.
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2022; Roy et al. 2023), with the corresponding [CII] redshifts
ranges and instrument properties listed in Table 1. The fre-
quency resolutions, approximately 2–4 GHz, are wider than the
typical spectral velocity widths of [CII] lines from the galaxies
(∼200 kms−, e.g. Wagg et al. 2010; Béthermin et al. 2020), be-
cause we expect LIM experiments to capture large numbers of
galaxies within a single beam. As we are focussed on [CII] emis-
sion, we use the frequency and redshift bands interchangeably
throughout this paper.

2.2. Data: ALPINE

The ALPINE survey was undertaken between mid-2018 and
early 2019 as an Atacama Large Millimeter/submillimeter Ar-
ray (ALMA) Large Program, in order to investigate [CII] data
at high redshift (4.4 < z < 5.9) in isolated star-forming regions
within the COSMOS and CDFS fields (Béthermin et al. 2020;
Faisst et al. 2020; Le Fèvre et al. 2020). The authors targeted
known galaxies that had strong UV emission, mostly detected
from the Keck/DEIMOS campaigns (Capak et al. 2004; Mallery
et al. 2012) and the VUDS survey (Le Fèvre et al. 2015), in what
is described as a pan-chromatic approach. These galaxies had
UV and optical properties which were largely consistent with
the first ‘normal’ SFGs at z > 5 detected with ALMA (Riechers
et al. 2014; Capak et al. 2015), and so ALPINE also included a
sub-set of the ALMA galaxies for re-observation. This resulted
in a sample of 118 spectroscopically confirmed galaxies with
redshifts between 4.4 < z < 4.65 or 5.05 < z < 5.9, falling
within ALMA band 7 (275–373 GHz) (Béthermin et al. 2020).
The gap in redshift exists due to an H2O atmospheric feature
around 325 GHz.

This sample is ideal for creating models of [CII] emission for
the wider COSMOS field, as ALPINE galaxies are also present
in the COSMOS 2020 galaxy catalogue in EoR-Spec DSS’s
redshift range (see Sect. 2.1). We therefore took the 65 galax-
ies that have successful [CII] detection above 3.5σ, lie within
the COSMOS field, and have the empirical bulk property data
(stellar masses and SFRs) required to create [CII] models. Of
these galaxies, 45 lie within 4.4 < z < 4.65 and 20 lie within
5.05 < z < 5.9. The bulk properties were determined using
the LePhare code, as done in COSMOS 2015 (Arnouts et al.
2002; Davidzon et al. 2017), by matching ALPINE’s photomet-
ric sources to COSMOS 2015, HST and UltraVISTA Ks im-
ages. Due to the selection methods used, this sample is biased
towards SFGs over quiescent galaxies (non-star-forming galax-
ies) as shown in Fig. 2; therefore, any models created from it
may be poorly equipped to cover non-SFG mechanisms for [CII]
emission.

2.3. Data: COSMOS 2020

We created our intensity cubes using data from the COSMOS
2020 galaxy catalogue, release version 4.1.1 (March 5, 2023,
Weaver et al. 2022, 2023). These galaxies are observed in the UV
through IR wavelengths, including data from GALEX, Mega-
Cam, HST, Subaru, UltraVISTA DR4, and Spitzer. This sample
is an evolution of previous work (Scoville et al. 2007; David-
zon et al. 2017) with additional inclusions from Hyper Suprime-
Cam (HSC) Subaru Strategic Program (SSP) PDR2 (Aihara et al.
2019), new Visible Infrared Survey Telescope for Astronomy
(VISTA) data from DR4, and additional Spitzer Infrared Ar-
ray Camera (IRAC) data. This catalogue includes ∼1.7 million
galaxies with z < 9 over a 1.7×2 deg2 area (149-151 deg right as-

Fig. 2: Distributions of galaxy SFRs and stellar masses (galaxy
main sequences) for FARMER LP and ALPINE. We also take
main sequences from FARMER LP in the two separate redshift
bands covered by ALPINE (4.4 < z < 4.65 and 5.05 < z <
5.9) for comparison. The majority of ALPINE galaxies lie in this
lower redshift band. All ALPINE galaxies, and most FARMER
LP galaxies, lie in the galaxy main sequence area associated with
SFGs (SFR> 100 M⊙ yr−1 for all masses), although FARMER
LP has a small number of quiescents which have low SFR and
high stellar mass.

cension (RA), 1.4-3.1 deg declination (Dec)), primarily selected
using combined izY JHKs spectral band images. In practise this
area is 1.279 deg2 (149.35-150.8 deg RA, 1.6-2.8 deg Dec) be-
cause of an outer mask region and a stellar mask to account
for bright foreground stars. This is reduced further to 0.7 deg2

at z > 6.3, the area of the four Ultra-Deep stripes of UltraVISTA
(McCracken et al. 2012). The COSMOS 2020 catalogue is or-
ganised in two separate samples: CLASSIC, which was created
using Source Extractor and IRACLEAN (Laigle et al. 2016);
and THE FARMER, which was created using The Tractor pho-
tometry code (Lang et al. 2016). photometric properties were
computed for each sample using LePhare (Arnouts et al. 2002)
and EAZY (Brammer et al. 2008), leading to four sub-samples
with different galaxy measurements and properties. As Weaver
et al. (2023) used THE FARMER with the LePhare photometric
code, we adopted that sub-sample and refer to it as FARMER
LP throughout the paper, using this term synonymously with the
COSMOS 2020 galaxy catalogue data.

From FARMER LP, we took galaxies with photometric red-
shifts within a square area (1.2 × 1.2 deg2, 149.6-150.8 deg RA,
1.6-1.8 deg Dec) in the redshift ranges described in Sect. 2.1,
3.42 < z < 3.87, 4.14 < z < 4.76, 5.34 < z < 6.31, and
6.75 < z < 8.27. Weaver et al. (2023) removed galaxies with
IRAC Channel 1 AB magnitudes above 26 as these galaxies
are likely to be artefacts, and when we did the same we ob-
tained 14 611, 9322, 1732, 510 galaxies respectively. We took
LP_zPDF as photometric redshift, MASS_MED for stellar mass,
SFR_MED for SFR, sSFR_MED for specific star formation rate
(sSFR), and IRAC_CH1 for IRAC channel 1 magnitudes from
the Spitzer Space Telescope.

Weaver et al. (2022) noted that COSMOS 2020 is increas-
ingly incomplete at high redshift because they were not able to
select galaxies by mass above z > 3.5, due to a lack of Ks band
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Table 1: Instrument properties of EoR-Spec for the frequency bands of EoR-Spec DSS, with corresponding [CII] redshift ranges.

Frequency Band (GHz) 410±20 350±20 280±20 225±20
[CII] redshift range 3.42-3.87 4.14-4.76 5.34-6.31 6.75-8.27

Frequency Resolution (GHz) 4.1 3.5 2.8 2.2
Angular Resolution (arcsecs) 37.2 39 46.2 52.8

References. CCAT Collaboration (2023); Nikola et al. (2022); Nikola et al. (2023)

detections. Correspondingly we expect to miss many low-mass
galaxies in the redshift ranges we cover, with the 75% mass com-
pleteness limit of 109.3M⊙ for z = 3.5. The ramifications of this
are discussed extensively in Sect. 4. We also expect to miss many
quiescent galaxies in FARMER LP (Weaver, priv. comm). How-
ever there is little evidence that they provide a significant fraction
of the total [CII] emission at any redshift, as their [CII] emis-
sion is dominated by diffuse regions instead of PDRs (e.g. Pierini
et al. 1999; Boselli et al. 2002). In addition, evidence from the
local universe shows that most massive quiescent galaxies have
L[CII] < 107 L⊙ (e.g. Pineda et al. 2018; Temi et al. 2022), several
dex below typical SFGs. Therefore, this quiescent galaxy incom-
pleteness and subsequent missing [CII] signal is unlikely to be a
significant source of uncertainty for our study.

2.4. [CII] modelling

When creating mock LIM cubes, we used several [CII] luminos-
ity relations from the literature as well as relations derived from
ALPINE, which are then applied to FARMER LP. While apply-
ing one model to all categories of galaxies is overly simplistic
and fails to account for the nuances between different galaxy
types, using a broad range of models should cover many poten-
tial scenarios including dependencies on different bulk proper-
ties. We took models from previous literature that used empirical
data instead of those that used PDR modelling and other simula-
tions, in order to reduce the number of assumptions made when
creating our intensity cubes and power spectra. We also excluded
models which were based on data that are irrelevant to our sam-
ple, such as models based solely on dwarf galaxies. All previ-
ous models assume a linear correlation in log-log space between
[CII] and SFR as described in Eq. (1), with the fit parameters in
Table 2:

log10

(
L[CII]

L⊙

)
= a + b log10

(
SFR

M⊙yr−1

)
. (1)

De Looze et al. (2014): The authors determined linear log-
log relations and the scatter between the SFR and IR line emis-
sion from dwarf galaxies in the Herschel Dwarf Galaxy Survey
(Madden et al. 2013). By using IR-[CII] proportionalities the au-
thors then found linear log-log [CII]-SFR models, which were
calculated separately for individual populations. We took the re-
lations involving the entire sample or only starburst galaxies, as
the other fits are specifically for dim dwarf galaxies which would
be inappropriate to apply to the SFG-dominated FARMER LP.
We refer to these models as DL14 Entire and Starburst.

Silva et al. (2015): The authors used a number of [CII] re-
lations derived from high-redshift and local galaxies, as well as
a SFR-LIR-LFIR-L[CII] relation that assumes a large proportion of
[CII] luminosity comes from PDRs. We took one of their models,
an empirical fit to De Looze et al. (2014)’s high-redshift galax-
ies, as it is the most appropriate for our purposes. We refer to it
as Si15.

Table 2: Linear log-log [CII]-SFR fit parameters for Eq. (1).

Model a b References
DL14 Entire 6.99 1.01 1

DL14 Starburst 7.06 1 1
Si15 7.2204 0.8475 2
Sc20 6.43 1.26 3
Ro22 6.76 1.14 4

References. (1) De Looze et al. (2014); (2) Silva et al. (2015); (3)
Schaerer et al. (2020); (4) Romano et al. (2022)

Schaerer et al. (2020) and Romano et al. (2022): The authors
derived empirical linear log-log [CII]-SFR relations based on the
ALPINE sample. Schaerer et al. (2020) fitted the entire sample
of ALPINE data combined with 36 other [CII] emission sources,
while Romano et al. (2022) added an artificial detection based
on the non-detections within the sample. While the fundamental
ideas behind their model creations are the same as ours, there are
several notable differences such as how they included ALPINE
data outside of the COSMOS field, and they did not find relations
for properties outside of SFR. We refer to these models as Sc20
and Ro22.

These models are all empirical and, thus, they were useful
for our purposes; however, none of them are solely based on the
ALPINE galaxies in the COSMOS field. Furthermore, as all of
the models assume a [CII]-SFR relation, this results in a limited
range of predictions. A number of other [CII] emission models
were considered, notably those from Vallini et al. (2015), La-
gache et al. (2018), and Padmanabhan (2019), but they were in-
appropriate for our purposes, either being based on simulated
galaxies or requiring bulk properties, such as halo mass, which
were not recorded in FARMER LP. Nevertheless, these mod-
els were important in our considerations whilst creating models
from ALPINE.

In order to create models from ALPINE data, we fitted [CII]
results to bulk property data in a similar manner to Schaerer et al.
(2020) and Romano et al. (2022). However, unlike them we only
used the 65 galaxies in ALPINE that lie within the COSMOS
field with [CII] detections above the 3.5σ limit, and we fitted to
more variables using Eq. (2):

log10

(
L[CII]

L⊙

)
= a + b log10(X) + c log10(Y)

+ d log10(X) log10(Y),
(2)

where a, b, c, d are the fit coefficients, and X and Y are the bulk
properties. We did attempt to fit to second-order terms, but no
higher order models successfully converged. The bulk properties
we primarily used were SFR/M⊙yr−1, stellar mass M⋆/M⊙ (or in
the format M⋆/1010M⊙), but we also included specific star for-
mation rate sSFR/ yr−1, and metallicity in units of oxygen abun-
dance Z/12 + log (O/H). We used these bulk properties due to
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their intrinsic links to the physical properties of the galaxy it-
self, and therefore L[CII] emission. While these fits cannot repli-
cate the intricacies of gas cloud emission within the ISM of a
galaxy, we believe that a broad range of simple fits which cover
more conceptual space than linear log-log fits with SFR should
produce a variety of different intensity cubes and corresponding
power spectra. For similar reasons we attempted fits with stellar
mass and sSFR even though these properties are closely related
to SFR, as we wanted the maximum amount of leeway for our fit-
ting functions. Metallicity is not included in the ALPINE sample
data, but we calculated it for each galaxy using Mannucci et al.
(2010)’s method (Eq. 3):

log10

(
Z

12 + log (O/H)

)
= 8.90 + 0.37 log10

(
M⋆

1010M⊙

)
− 0.14 log10

(
SFR

M⊙yr−1

)
− 0.19 log2

10

(
M⋆

1010M⊙

)
−0.054 log2

10

(
SFR

M⊙yr−1

)
+0.12 log10

(
M⋆

1010M⊙

)
log10

(
SFR

M⊙yr−1

)
.

(3)

We did not attempt to fit models with spectral lines (such as
[OIII]), IR emission, or redshift, as these properties do not di-
rectly affect the physical environment that results in the [CII]
emission. In this way, we only used [CII] models relating to the
physical bulk properties of the galaxies.

These fits were applied to all 65 data points using standard
least-squares fitting procedures, as well as to these data points
sorted into 5 bins. We performed this binning using each bulk
property. As this fitting was done for all combinations of bulk
properties, we retrieved a large number of potential [CII] mod-
els. However, most of these models had poor fits or did not make
physical sense, so we applied procedures to find the best mod-
els as described in Appendix A. This resulted in four best-fit
models within the 4σ limit, shown in Eqs. (4–7). We calculated
the errors in the fit parameters using Monte Carlo methods. The
equations are as follows:

log10

(
L[CII]

L⊙

)
= 48.22(±12.07) − 3.49(±2.24) log10

(
M⋆
M⊙

)
− 5.616(±1.417) log10

(
Z

12 + log (O/H)

)
+ 0.508(±0.220) log10

(
M⋆
M⊙

)
log10

(
Z

12 + log (O/H)

)
,

(4)

log10

(
L[CII]

L⊙

)
= 4.02(±0.35) + 0.476(±0.035) log10

(
M⋆
M⊙

)
, (5)

log10

(
L[CII]

L⊙

)
= 3.31(±0.38) − 0.33(±0.16) log10

(
SFR

M⊙yr−1

)
+ 0.601(±0.057) log10

(
M⋆
M⊙

)
,

(6)

log10

(
L[CII]

L⊙

)
= 6.14(±1.29) − 0.31(±0.15) log10

(
sSFR
yr−1

)
+ 0.27(±0.12) log10

(
M⋆

1010M⊙

)
.

(7)

These models are m1-m4 respectively. They show a greater vari-
ety of behaviour compared to the linear log-log [CII]-SFR mod-
els of the previous literature: m1 has a high level of complexity

Fig. 3: Map of the area covered by COSMOS 2020 over 3.42 <
z < 8.27. The regions masked due to foreground stars (the stellar
mask) are shown in blue.

with cross terms in metallicity, m2 is a simplistic model with re-
gards to stellar mass instead of SFR, and m3 and m4 have terms
based on stellar mass and SFR. Despite these differences in con-
struction and complexity, the resulting galaxy [CII] luminosities
were relatively similar: when applied to any given galaxy, the
[CII] luminosities always lay within 1 dex. It initially seemed
surprising that none of these models are solely based on SFR, in
contrast to previous literature. However, m1-m4 still retain this
core conceptual relation because there is a close correlation be-
tween SFR and stellar mass for SFGs, as shown in the galaxy
main sequences of ALPINE and COSMOS 2020 (Fig. 2).

We note that m1-m4 are likely to be more applicable to red-
shift bands 4.14 < z < 4.76 and 5.34 < z < 6.31, as the
galaxy distribution of ALPINE is more representative of COS-
MOS 2020 at these redshifts. Consequently we treated results at
3.42 < z < 3.87 and 6.75 < z < 8.27 with caution, as discussed
in Sect. 5.

In conclusion, we took DL14, Si15, Sc20, and Ro22 from
the previous literature (Eq. 1 with Table 2), and obtained m1-m4
from the ALPINE sample (Eqs. 4–7). We group models together
in upcoming figures to aid readability, typically using purple for
DL14, Si15, Sc20, and Ro22, blue for m1-m4, orange for all
models with no extrapolation, and red when using mass function
extrapolation.

We did apply the models from Vallini et al. (2015) and La-
gache et al. (2018) to the sample in order to compare specific
statistics such as the luminosity function, as these models are
commonly used throughout the literature. However, we do not
include them in the power spectra or error discussions.

2.5. Map creation

When making our mock LIM cubes, we covered a 1.2× 1.2 deg2

area corresponding to 149.6–150.8 deg RA and 1.6–2.8 deg Dec,
and an appropriate 40 GHz wide frequency band. We determined
the dimensions of the cube using the EoR-Spec specifications
(Nikola et al. 2022; Nikola et al. 2023) and the data in the COS-
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MOS 2020 catalogue paper (Weaver et al. 2022). In our cube,
equivalent to a 3D array, each voxel has the dimensions relating
to the angular and spectral resolution of EoR-Spec as discussed
in Sect. 2.1 (37.2′′, 39′′, 46.2′′, 52.8′′ and 4.1, 3.5, 2.8, 2.2 GHz
for 3.42 < z < 3.87, 4.14 < z < 4.76, 5.34 < z < 6.31, 6.75 <
z < 8.27 respectively). Using the 1.2 × 1.2 deg2 square area this
results in cube dimensions of 117 × 117 × 10, 112 × 112 × 11,
94 × 94 × 14, and 82 × 82 × 18 voxels, respectively. This third
‘depth’ dimension spans a larger comoving distance than the 2D
sky map width, despite having far fewer voxels, so the objects
we refer to as ‘cubes’ are actually cuboids.

In these 3D cubes we inserted each galaxy’s luminosity at the
corresponding voxel location, depending on its RA, Dec, and lu-
minosity distance which we calculated using its redshift and the
cosmology in Sect. 1. We only included galaxies with photomet-
ric redshifts corresponding to the relevant channels, and made
sure to convert the galaxy co-ordinate data in FARMER LP to fit
this new co-ordinate scheme, accounting for the outer mask sur-
rounding COSMOS 2020 and the FARMER LP catalogue pixel
size of 0.15′′. However, when creating the mock cubes, we found
that the width of the spectral bins is narrower than the uncer-
tainty in photometric redshift for many FARMER LP galaxies
(typically ∆z ≈ 0.1). This redshift scatter implies that galaxies
from the sample could potentially be in different frequency slices
of the intensity cube, which has implications for the structure
of the mock cubes and therefore the resulting power spectrum.
Upon investigation we found that the difference in power spectra
magnitude from this scatter is less than 0.1 dex, as discussed in
Appendix B. We note that this is an issue for our technique of
constructing mock cubes and our results and this will not be a
problem for the actual instrument.

As we need intensity cubes, we used Eq. (8) to determine
intensity (I[CII]) from [CII] luminosity:

I[CII]

L⊙/Mpc2/GHz/rad2 =
rad2

∆θ2beam

∑
i

GHz
∆ν0

L[CII],i

L⊙

Mpc2

4πr2
i (1 + zi)2

,(8)

where L[CII] is the luminosity of each galaxy in the voxel (re-
ferred to by index i), ∆ν0 is the frequency channel of a given
redshift slice in the 3D data cube, r(1 + z) is the luminosity dis-
tance because r is the comoving distance and z is the redshift,
and ∆θbeam is the instrument beam width (specifically the full
width half maximum), which is equivalent to the angular size of
the voxel on the sky. We then converted these units to Jy sr−1,
which are our preferred intensity units by convention.

After carrying out this procedure for the original FARMER
LP sample, we then accounted for masked regions of COSMOS
2020 due to foreground stars, namely, the ‘stellar mask’. This re-
moval of unwanted signal creates areas of no intensity, as shown
in Fig. 3. As these regions span over a total area of 0.12 deg2, ap-
proximately 10% of the area of FARMER LP, this could poten-
tially impact the power spectra. The statistical averaging would
be skewed by the voids, thereby resulting in an increase of power
spectra magnitude by approximately 10%, and compensating
for the changed volume could add additional complications. We
used extrapolation to counteract this: the process of adding mock
galaxy data to FARMER LP sample based on projected incom-
pleteness of the original sample. In the case of mask extrapola-
tion, we added a number of galaxies to the sample in the masked
regions to ensure the galaxy density of masked and unmasked
regions was made equal, that is ∼10% of the number of galaxies
in the original sample. For example, for the 14 611 galaxies in
the 3.42 < z < 3.87 region, we would add 1 964 galaxies. The
locations were randomly picked within the voids, and the prop-

Fig. 4: 2D cross-section of the 3D intensity cube at 3.42 < z <
3.87, having applied m1 to FARMER LP. We include additional
galaxies extrapolated in the stellar mask region as indicated by
Fig. 3.

erties of the galaxies were randomly selected from the existing
galaxies in the redshift band, which on average reproduced the
existing luminosity function and galaxy distribution of the sam-
ple. In this way we do not expect the [CII] luminosity function to
be meaningfully affected by this extrapolation. To ensure we re-
produced these existing statistics in these extrapolated data, we
created ten random masks to use in intensity cube creation, and
averaged the resulting power spectra of these cubes. We discuss
this further in Appendix B, where we demonstrated that these
corrections are appropriate. An example of an extrapolated in-
tensity cube is shown in Fig. 4.

For z > 6.3 most galaxy data are concentrated in the 0.7 deg2

covered by the four Ultra-Deep stripes of UltraVISTA (Mc-
Cracken et al. 2012), the areas defined by Weaver et al. (2022).
We therefore applied our mask extrapolation methods to the re-
gions not covered by the stripes for the band 6.75 < z < 8.27, as
shown in Fig. 5. This mask extrapolation approximately doubled
the FARMER LP sample in that redshift range as the areas of no
signal are significantly larger when compared to lower redshifts,
and likely compromised any large-scale structure in that band.
This is discussed further in Appendix B.

2.6. Power spectra

The 3D spherically averaged power spectrum is the primary
statistic used to analyse intensity cubes in previous work. In the
context of upcoming LIM experiments, power spectra will al-
low us to probe the luminosity function of the covered fields and
to determine the existence and impact of regions with significant
galaxy clustering. This statistic is therefore useful in characteris-
ing the EoR, so we applied it to our mock intensity cubes. When
performing this for maps created from mock samples, as done in
this work, we already know the ‘input’ luminosity function and
clustering. Therefore, the resulting power spectra can be viewed
as predictions for if reality matches our simulated conditions.

Firstly we established the dimensions of the voxels and the
intensity cube in comoving space, in units of Mpc. We then took
the 3D intensity cubes and performed a Fast Fourier Transform
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Fig. 5: As Fig. 3, but only for FARMER LP galaxies with z >
6.3. Even in the yellow stripes where we expect galaxies to be
visible, there are blank pixels as we can only detect the brightest
galaxies.

(FFT) over all elements in the cube, producing a new 3D cube
centred around the origin point in Fourier space, where each in-
tensity element was transformed into corresponding Fourier am-
plitudes. These Fourier amplitudes are multiplied by the volume
of a voxel divided by total number of voxels (i.e. volume of a
voxel per voxel), a normalisation factor to arrive at the units of
the Fourier transform, thereby preventing the physical scale of
the intensity cube from influencing the power spectra amplitude.

To get from this Fourier space cube to the power spectra P(k),
we had to spherically average the Fourier amplitudes for each
spatial frequency bin. We determined the spatial frequency co-
ordinates kx, ky, and kz corresponding to each Fourier amplitude,
equivalent to x, y, z in physical space. Following this we cal-
culated the magnitude of the spatial frequency co-ordinates for
each Fourier amplitude, which we refer to as k, using Pythago-
ras’ theorem. Subsequently we averaged the Fourier amplitudes
of all points with k co-ordinates within a given k bin, of width
∆k. These averaged values correspond to P(k). To visualise this
concept we can use Fig. 6, based on a diagram by Ponthieu et al.
(2011). For our 3D cubes, we move in concentric shells of width
∆k away from the central value of k = 0, finding the average of
all values within each shell. This indicates that amplitudes cor-
responding to the highest k values will have a greater degree of
uncertainty as there will be missing k modes in the cube, visu-
alised by the green circles in the figure. The physical interpreta-
tion of these frequencies is that small k represents larger physical
scales, up to and including the whole intensity cube, while large
k represents small physical scales, including the variation of sig-
nal within individual beam widths. In the context of LIM the
power spectrum at small k is dominated by the impact of galaxy
clusters and other large structures in ‘clustering signal’, and the
power spectrum at large k represents the differences between in-
dividual galaxies in ‘shot-noise signal’.

As our k values are calculated by Fourier transforming the
comoving length of the cube in Mpc, subdivided by the num-
ber of voxels in each dimension, k is in units of Mpc−1. Conse-

Fig. 6: Fourier modes of a 3D cube and a 2D map (upper and
lower subplot respectively), in the manner of Ponthieu et al.
(2011). The power spectrum P(k) at a given k value is the av-
erage of all spatial frequencies with the same magnitude, that is
concentric shells or rings around the centre where k = 0. The
inner shell or circle in red, which touches the edges of the box,
is the largest k value where all k modes can be included. All k
values with higher magnitude, such as the outer shell or circle
in green, lie outside the box and thus miss k modes, introducing
greater uncertainties in the corresponding power spectrum value.
In these examples k is unit-less.

quently, the spherically averaged power spectra P(k) has units
Mpc3(Jy sr−1)2. By convention we multiplied P(k) through to
find k3P(k)/2π2 in units of (Jy sr−1)2, and all power spectra are
to be shown in this format.

Due to the size and resolution of our cubes, the k scales are
restricted. For a spherically averaged power spectrum the largest
k scale is limited by the smallest physical scale, equivalent to
the comoving distance covered by one voxel on the sky map (the
beam width), as discussed in detail by Karoumpis et al. (2022).

kmax =
π

r⊥,min
, (9)

r⊥,min = Dangular(zcen)∆θbeam, (10)

where Dangular(zcen) is the comoving angular distance at the mean
redshift of the voxel in Mpc. The smallest k scale is limited by
the largest physical scale, equivalent to the diagonal between two
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opposite corners of the intensity cube, across the distance on the
sky map and the full distance covered by the redshift range:

kmin =
2π

rmax
, (11)

rmax =

√
r2
⊥,max + r2

∥,max, (12)

r⊥,max = Dangular(zcen)∆θmap, (13)

r∥,max =
c

H0

∫ zmax

zmin

dz√
ΩM(1 + z)3 + ΩΛ

, (14)

where c is the speed of light, ∆θmap is the angular size of the
whole sky map, zmin is the low end of the redshift band, zmax is
the high end of the redshift band, andΩM andΩΛ are the cosmo-
logical parameters of our flat cosmology. No spatial frequencies
exist outside this range.

Throughout our analysis we used two different measures to
find the width of the k bins, that is the widths of the shells. We
primarily used the narrowest possible interval, where there is a
separate k bin for each pixel in a ring around the origin in the
2D plane. This corresponds to using half the number of pixels
along the map dimension+1 (60, 57, 50, 42 for 3.42 < z < 3.87,
4.14 < z < 4.76, 5.34 < z < 6.31, 6.75 < z < 8.27
respectively) giving a frequency width between k modes of
∆k = 0.043, 0.040, 0.037, 0.035 Mpc−1 respectively. The second
method used far broader k bins with ∆k = 0.3 Mpc−1, similar to
those used in preliminary LIM work such as Chung et al. (2022).
All power spectra in subsequent figures feature narrower bins
unless stated otherwise, due to their increased spatial frequency
resolution as well as their use in most prior work.

We also determined a first estimate of the error in our power
spectra in order to find the S/N. This error, σ, depends on instru-
mental thermal noise, the sample variance from binning k modes,
and instrumental beam smoothing. It was formulated by Li et al.
(2016), and we followed the adapted version of their process as
used by Chung et al. (2020) and Karoumpis et al. (2022). The
full details of its calculation is shown in Appendix C, with the
most important takeaway being that σ is inversely proportional
to bin size. Correspondingly power spectra with narrower k bins
have greater relative errors.

3. Results

We now discuss the sample of empirical data, and the power
spectra resulting from the generated 3D intensity cubes, com-
paring our models to each other and to previous simulated work.
Due to the incompleteness of FARMER LP, the range covered
by our power spectra form clear lower limits, the minimum es-
timate for a LIM cube from observational data. By performing
error analysis we also discuss the challenges in determining the
power spectra for EoR-Spec in this minimum case.

3.1. Sample analysis

In order to provide appropriate context to the upcoming
power spectra, we discuss the L[CII] distribution of galaxies
in FARMER LP when applying [CII] models, using intensity-
frequency and luminosity function diagrams. In addition, we di-
rectly compare these statistics to the samples of previous liter-
ature, primarily Yue et al. (2015), Breysse et al. (2017), Chung

Fig. 7: Average [CII] intensity of slices of the 3D intensity cubes
(in units of Jy sr−1), plotted against the frequencies and redshifts
of the respective slices. We separate the results from our cubes
into the models from ALPINE and the models from the previ-
ous literature, in blue and purple respectively. We compared the
results of our cubes to the equivalent statistic from previous sim-
ulated cubes in green (all taken from Karoumpis et al. 2022, in-
cluding itself and Yue et al. 2015; Breysse et al. 2017; Chung
et al. 2020).

et al. (2020), and Karoumpis et al. (2022). We first examine the
intensity-frequency (or intensity-redshift) graph and the [CII] lu-
minosity function of FARMER LP and compare our results to
those from Karoumpis et al. (2022). Here we averaged the in-
tensity of each individual slice within the intensity cubes, equiv-
alent to each individual frequency channel within the 40 GHz
bands, and plotted against frequency or redshift. We did this for
all models applied to the FARMER LP galaxies for the frequency
channels covered by our cubes.

We only performed this analysis for the 40 GHz frequency
bands we cover to maintain consistency with other works, as
well as to not misleadingly cover frequencies where there is
weak transmission through the atmosphere. Figure 7 shows that
the previous literature is broadly in agreement with itself, within
1 dex, and demonstrates the expected result: low mean intensity
at low frequency, which rises with frequency in a curve shaped
similarly to a logarithm. Their results follow the natural relation
we expect as galaxies with the same luminosity at greater dis-
tances would give less flux, assuming [CII] emission does not
significantly change with redshift. Our intensity cube channels
agree with previous work at low redshift, albeit with slightly
lower average intensity, indicating that FARMER LP is unlikely
to be missing a significant amount of the galaxy luminosity func-
tion at lower redshift. Consequently, the significant decrease in
average intensity at 5.34 < z < 6.31 indicates that we have lost
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much of the dim end of the luminosity function at this distance.
In contrast the lack of a sharp decrease at 6.75 < z < 8.27 ini-
tially seems surprising in relation to the expected trend. However
this behaviour is explained by the much greater mask extrapo-
lation, drawing from a limited sample which is already biased
towards the most luminous galaxies, potentially inserting more
bright galaxies than we expect to exist. This indicates that our
methodology is likely to be inaccurate for the 6.75 < z < 8.27
band, at least when using data from the COSMOS 2020 cata-
logue. Finally, it is shown that m1-m4 produce higher intensity
slice averages when applied to FARMER LP in comparison to
the previous literature models, except for 6.75 < z < 8.27 (a
band that ALPINE data do not cover). This potentially indicates
that ALPINE’s bias towards galaxies that are further along the
main sequence could produce models that overestimate [CII] in-
tensity, which we discuss in Sect. 5.

It is important to note that it will be challenging to cleanly re-
cover this intensity-frequency statistic from actual observations.
This is because instrumental white noise and foreground signal
prevent us from accurately measuring the average [CII] intensity
specifically, as discussed by Breysse et al. (2017) and Karoumpis
et al. (2022). We used this statistic here as it is a clear method
to compare different samples of [CII] data to each other in this
idealised scenario.

We also examined the [CII] luminosity function of FARMER
LP for our different redshift bands in Fig. 8, a standard measure
that shows the relative density of galaxies with a given lumi-
nosity (number per unit volume per unit luminosity dex, where
in this specific context dex is the magnitude interval which we
take as 0.1). These luminosity functions verify that FARMER
LP has a small population of [CII]-dim galaxies, because the ex-
pected Schechter curve shape (Schechter 1976) of the luminosity
function falls off at ∼108L⊙ for each redshift band. For compari-
son, we note that the lowest [CII] luminosity from a local dwarf
galaxy relevant to our work is ∼104L⊙ (Cormier et al. 2015), and
that 106L⊙ is a typical [CII] luminosity of dwarf galaxies. This
missing population for FARMER LP is in contrast to previous
simulated work, which we show by overlaying the sample lumi-
nosity function used by Karoumpis et al. (2022) when they used
Vallini et al. (2015)’s [CII] model. This discrepancy increases
drastically below L = 108L⊙, indicating potential incomplete-
ness in FARMER LP. However it is vital to state that we do not
claim that the sample from Karoumpis et al. (2022) is more accu-
rate than FARMER LP, but instead that simulated predictions as-
sume greater contributions to [CII] emission from the dim end of
the luminosity function. Consequently, this means that our work
in the form presented in this section is useful as a scenario where
the expected low-luminosity galaxies do not exist, or contribute
significantly less to the [CII] emission than previous simulations
predict. This becomes visible in the power spectrum when we
make our comparisons to previous simulations.

Furthermore, FARMER LP has a slightly larger proportion
of high-luminosity galaxies compared to some previous simula-
tions (see 3.42 < z < 3.87, 4.14 < z < 4.76). For 6.75 < z <
8.27, this difference exceeds 1 dex above 1010L⊙, even eclipsing
FARMER LP from 5.34 < z < 6.31. While the discrepancies at
low redshifts are most likely due to specific simulation param-
eters in previous simulations, the specifics of the Vallini et al.
(2015) model, or a slight sample bias towards high-luminosity
galaxies in FARMER LP, the discrepancies at high redshift are
far more significant. The high-redshift case indicates that previ-
ous simulations vastly underestimate the number of bright galax-
ies at high redshift, or that there is some sample or methodolog-
ical error in COSMOS 2020 for galaxies with z > 6.3. This is

Fig. 8: Luminosity functions of FARMER LP in the four fre-
quency bins within the range of EoR-Spec, including the extrap-
olated mask galaxies, shown down to 104L⊙. Comparison lumi-
nosity functions in the same redshift bands from Karoumpis et al.
(2022) are also shown. As they used the [CII] model from Eq.
(8) of Vallini et al. (2015), we applied the same model to ensure
consistency. We did not include this SFR- and metallicity-based
[CII] model in our wider analysis because it was derived from
radiative transfer cosmological simulations instead of from an
existing sample. For all redshift bands there is a clear discrep-
ancy below 108L⊙, as the models from Karoumpis et al. (2022)
assume a significant population exists below this point, which
FARMER LP does not have. At lower redshift bands, especially
visible for 4.14 < z < 4.76, we see small upturns in the luminos-
ity function below 106L⊙. In addition, the luminosity function
of FARMER LP shows larger populations of high-luminosity
galaxies for all bands except 5.34 < z < 6.31. This is most no-
ticeable for 6.75 < z < 8.27, where our function is greater by
1 dex. These deviations are likely caused or exacerbated by the
propagated errors when calculating [CII] luminosity, as shown
by the shaded error bars.

also shown in our results in Fig. 7. It is possible that this is
a consequence of error propagation when calculating [CII] lu-
minosity, as shown by the error bars in the luminosity function
found by Monte Carlo simulations. We discuss this further with
direct comparisons to the ALMA Reionization Era Bright Emis-
sion Line Survey (REBELS, Bouwens et al. 2022) in Appendix
B. While we show the results at this redshift band using this
mask extrapolation to maintain consistency with the other red-
shift bands, we believe that results at 6.75 < z < 8.27 should be
viewed with caution.

3.2. Power spectra, comparison to previous work, and lower
limits

Our power spectra, derived from the mock samples we produced,
can be viewed as predictions for if the [CII] luminosity func-
tion and clustering of the FARMER LP sample matched that
of actual observations. Therefore, in the context of Figs. 7 and
8, these power spectra provide lower limits for the results from
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EoR-Spec’s observation of E-COSMOS. Before we compare our
work and the constraints they provide to the previous litera-
ture, we first show the nuances between each individual model’s
power spectra for all redshift bands in Fig. 9.

We found trends amongst the magnitudes of these models,
equivalent to their shot-noise and therefore their sample lumi-
nosity functions, which describe their fundamental behaviour.
Overall, we saw that most models (m1, Si15, DL14, Sc20,
Ro22) stay within 1 dex over all redshift bands. These mod-
els, which are primarily from previous literature, exhibit the
expected downwards shift in magnitude with increasing red-
shift as intensity decreases. This trend does not continue at
6.75 < z < 8.27, with the magnitudes not meaningfully de-
creasing due to the unusual nature of that sub-sample as dis-
cussed earlier (e.g. Fig. 7). The m2 model is similar but expe-
riences a decrease between the final bands, which indicates that
the model assigns relatively low luminosities to the galaxies at
6.75 < z < 8.27. The m3 and m4 models have significantly
larger magnitudes compared to other models for 3.42 < z < 3.87
and 4.14 < z < 4.76, are roughly equivalent for 5.34 < z < 6.31,
and have significantly lower magnitudes for 6.75 < z < 8.27.
This indicates that m3 and m4 assigned a higher average lu-
minosity than other [CII] models at low redshift. This includes
dim galaxy detections and lower average luminosity than other
models at high redshift, which only includes bright galaxy de-
tections. These deviations most likely arise from the construc-
tion of the ALPINE models (Eqs. 4–7) and how they interact
with the specific properties of the sample galaxies in each band.
Overall, m1 is the most complex model we created, however
it behaving as a typical model has precedence due to its struc-
tural similarity to [CII] models formed from simulations, such
as from Vallini et al. 2015. In contrast, m2 directly relates the
[CII] emission to stellar mass, which is correlated with but not
equivalent to SFR. For most redshift bands there is no significant
difference, however in FARMER LP galaxy detections at z > 6.3
are made by UltraVISTA in NIR. For those distant galaxies, this
corresponds to rest-frame UV emission and so, those galaxies
must have high UV luminosities to be detected. As there is a
strong correlation between UV emission and SFR, because UV
emission is dominated by the unobscured light from young mas-
sive stars (e.g. Kennicutt 1998), most of the detected galaxies in
FARMER LP have high SFR but they do not necessarily have
high stellar mass. Galaxies with high stellar mass at these dis-
tances would have high rest-frame optical emission, however at
present we cannot probe this emission as we do not have ac-
cess to the relevant bands from JWST. Therefore, m2 is likely
to assign these galaxies lower [CII] emission when compared to
models from the literature which relate to SFR, and so having
a power spectrum with lower magnitude for 6.75 < z < 8.27.
For m3 and m4, these models have opposing linear terms in stel-
lar mass and SFR or sSFR. Due to the correlation between these
opposing terms, we see a smaller difference in assigned [CII]
emission between bright and dim galaxies. This is a useful idea
to explore within our models, but it deviates significantly from
the established literature. When applying m3 and m4 to the low-
redshift bands of FARMER LP, the many smaller galaxies are
assigned relatively high [CII] emission, resulting in power spec-
tra with higher magnitudes. We see the inverse effect for high-
redshift bands which only have a few large galaxies. In this way,
power spectra from m1-m4 show useful results for unconven-
tional models of [CII] emission.

In addition to the narrow k bin power spectra, we also super-
impose a version of the lowest magnitude power spectra whilst
using large k bins, to more accurately visualise what upcoming

Table 3: Lower limits of FARMER LP power spectra, when
∆k = 0.3 Mpc−1.

k3P(k)/2π2 ((Jy sr−1)2)
k (Mpc−1) 0.25-0.55 0.55-0.85 0.85-1.15 1.15-1.45

3.42 < z < 3.87 2.11×106 1.06×107 3.06×107 6.56×107

4.14 < z < 4.76 9.93×105 5.29×106 1.43×107 3.26×107

5.34 < z < 6.31 7.66×104 3.58×105 9.80×105 2.07×106

6.75 < z < 8.27 2.16×104 9.80×104 2.77×105 6.26×105

Notes. For most redshift bands this minimum model comes from Si15,
with the exception of 6.75 < z < 8.27 where the minimum is m4
(Fig. 9). Due to the averaging of power spectra within these wide bins,
there are slight discrepancies on clustering scales when comparing these
power spectra to those with narrower bin sizes (and so higher frequency
resolution).

observations would find in the minimum possible case. While
these power spectra appear to have stronger clustering signal at
small k compared to the narrow bin power spectra, this is only
because they average the power spectra over a wider k range
and so have less resolution on clustering scales. Even so, these
power spectra cover the same intensity cubes as the narrow bin
versions, and so can still be taken as lower limits. To quantify
these lower limits, we show the power spectra values from Fig.
9 in Table 3.

Subsequently, we determined the impact of galaxy cluster-
ing on the power spectrum. As discussed in detail by Uzgil et al.
(2014), the shot-noise (small scales, right hand side of each sub-
plot) is effectively a Poisson noise effect which creates the power
law shape in the k3P(k)/2π2 power spectra. The clustering com-
ponent (large scales, left hand side of each subplot) of the power
spectrum is shown by a ‘kick’ at low k, a deviation from the
shot-noise power law. The region where both contributions are
approximately equal is called the transition region, a concept we
take from Karoumpis et al. (2022) to visualise the strength of
clustering on different scales more clearly. We calculated this
for FARMER LP (hatched blue region) by finding the k modes
where the magnitude of the power spectrum for each [CII] model
is approximately twice the shot-noise power law, that is where
the additional clustering signal component is equal to the shot-
noise component, and then taking the median k modes of these
points for all the models of the given redshift band. By look-
ing at these transition regions, we found that the kick is only
noticeable at low redshifts for all models (3.42 < z < 3.87,
4.14 < z < 4.76), with power spectra never leaving the transition
region for higher redshifts. Weaker clustering at higher redshift
is similar to the work of Roy et al. (2023). Furthermore, for low-
redshift bands most models exhibit kicks at k ≈ 10−1 Mpc−1,
with notable deviations for m3 and m4. This is potentially due to
m3 and m4 having low variation between galaxy [CII] emission
as discussed earlier, reducing the impact of specific overdense
regions.

When comparing this clustering to that of previous simula-
tions, their power spectra have far greater clustering signal, as
shown by the transition region from Karoumpis et al. (2022)
for their power spectra in Fig. 9 (hatched grey region). This
contrast is likely due to FARMER LP excluding many of the
low-luminosity galaxies that surround more luminous galaxies
in the sample. This therefore reduces the impact of any existing
galaxy clusters on the power spectra, a problem which becomes
far worse for the high-redshift bands with greater incomplete-
ness. This idea can also be described by power spectra statis-
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Fig. 9: Power spectra of models m1-m4, Si15, DL14, Sc20 and Ro22 for all redshift bands, demonstrating a spread of up to 2 dex.
We always show power spectra in the k3P(k)/2π2 format. Differences in maximum and minimum k with regards to redshift are due
to different beam and map size. The lines are kept consistent across all future graphs, however, the colours change to display the
contrast with respect to previous simulation works. While most of these power spectra are shown with narrower k bins as discussed
in Sect. 2.6, we also overlay the wider k bin versions (∆k = 0.3 Mpc−1) of the absolute minimum power spectra (Si15 for most
redshifts, m4 for 6.75 < z < 8.27). These minimum values are quantified in Table 3. The upturn at small k for these lower limits is
due to using wider k bins compared to the other power spectra. The transition region (see text) for our calculated models is shown
in hatched blue, with a transition region from Karoumpis et al. (2022) shown in hatched grey for contrast.

tics as discussed by Uzgil et al. (2014) and Karoumpis et al.
(2022), as low-luminosity galaxies in the sample have a signif-
icantly greater impact on the clustering signal component than
the shot-noise component. In addition, as 6.75 < z < 8.27 had
a far larger mask (and thus more mask extrapolation), this likely
resulted in most large-scale structure being destroyed. Finally,
when using large k bins the kicks appear to occur at higher k,
however this effect is due to the lower precision of these bins.

In this way, by making intensity cubes and the corresponding
power spectra whilst only using galaxies from COSMOS 2020,
that is galaxies which we know exist without any additional sig-
nal, we derived a lower limit for possible [CII] power spectra.
It is therefore unlikely that the future observed power spectra of
EoR-Spec will stray below the limits as quantified in Table 3.

We then compared our power spectra to the simulated power
spectra from the literature in detail, as shown in Fig. 10. In
graphs below, we group our power spectra together to make them
more readable, with specific smaller groupings being used to ex-
amine specific models. The methodology of the previous litera-
ture is described below.

Karoumpis et al. (2022): The authors used 4 × 4 deg2 mock
scans created by the Illustris TNG300-1 simulation with fre-
quency bands in the range covered by EoR-Spec. They assigned
SFR and other bulk properties to their galaxies using abundance
matching. From this, the authors selected a 2×2 deg2 region, ap-
ply models from Vallini et al. (2015), Lagache et al. (2018), and
Sc20 and obtained a range of predictions. We show the range
they covered using the blue shaded area in Fig. 10 and similar
figures.

Chung et al. (2020): The authors used the Lagache et al.
(2018) model with an added scatter of ∼0.5 dex to emulate the
deviation within said model, creating cubes from the galaxy-
halo model of UNIVERSE MACHINE with EoR-Spec’s fre-
quency bands. They acquired maps with an approximate size of
2×2 deg2. Their results indicate a relatively weak clustering sig-
nal and that detection past z ≈ 6 will be challenging.

Serra et al. (2016): Using galaxy data from z < 4, the au-
thors used LIR emission to infer L[CII] emission assisted by a
halo model. Their power spectra have a relatively high magni-
tude, giving an upper bound when compared to other simula-
tions. The authors aimed to cover CONCERTO (200–360 GHz)
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Fig. 10: Power spectra at all frequency channels comparing our work to previous literature power spectra. Our models are grouped
together in orange, with different shadings used to highlight models m3 and m4 at 3.42 < z < 3.87 and 4.14 < z < 4.76. We
show all models with narrow k bins, equivalent to the best resolution possible, however the lowest models are also shown with bin
width ∆k = 0.3 Mpc−1, these power spectra having worse resolution but being more accurate to expected observations. Previous
simulation work is shown with dashed lines, with the exception of Karoumpis et al. (2022) and Roy et al. (2023), where the range
of predictions is shown in blue and green shaded regions respectively. We also include the power spectra of the expected EoR-Spec
sensitivity taken from CCAT Collaboration (2023).

with an area of 2 deg2, which overlaps with all our bands except
3.42 < z < 3.87.

Dumitru et al. (2019): The authors used Lagache et al. (2018)
without any added scatter, applied to a hydro-dynamical cos-
mological simulation made by the Sherwood simulation suite
(Bolton et al. 2017), which was combined with the G.A.S semi-
analytical model (Cousin et al. 2016) to determine SFR. They
covered snapshots at high redshifts (z ≈ 6.3, 7.1, 8.2, 9) with an
area of 1.5 × 1.5 deg2.

Silva et al. (2015): The authors used simulations from the
SImfast 2021 code (Santos et al. 2010; Silva et al. 2013) and
galaxy data from De Lucia & Blaizot (2007), applied a halo
mass-SFR relation, and created their cubes using their four sep-
arate [CII] models (Si15 and three others). They assumed strong
clustering signal and weak shot-noise, leading to a large kick at
relatively high k modes. The authors covered a range of 200–
300 GHz (5.33 < z < 8.5), but we only include their work at
5.34 < z < 6.31 as their specific frequency bands overlap poorly
with 6.75 < z < 8.27. This map has a 1.35 × 1.35 deg2 coverage,
similar to our work.

Roy et al. (2023): The authors used the LIMpy package to
generate power spectra with SFR provided by UNIVERSE MA-

CHINE and Illustris TNG. They implemented a broad range of
SFR models: Visbal & Loeb (2010), all models from Si15, Fon-
seca et al. (2017), Lagache et al. (2018), and Sc20. We show the
range they covered using the green shaded area. They covered
the same redshift bands as us, with map sizes of 4 × 4 deg2.

As these simulated works typically cover larger sky map
scales than the area covered by COSMOS 2020, their power
spectra extend to small k. However as power spectra are nor-
malised with cube volume we do not expect any meaningful dis-
crepancies in the magnitudes, and as the previous literature typi-
cally used narrow k bins we expect to see the kicks to be directly
comparable to our models when using narrow k bins. We also
show the first estimate of FYST’s sensitivity from CCAT Collab-
oration (2023), the approximate detection limit, for comparison
purposes.

Our power spectra are almost always lower in magnitude
when compared to the previous literature, including lying be-
low the expected sensitivity of the instrument. At high k most of
our models partially overlap with some previous simulated work
such as the lower ends of Karoumpis et al. (2022) and Roy et al.
(2023). This overlap shrinks as k decreases, indicating that pre-
vious work has stronger clustering components, as indicated by
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Fig. 11: Comparing P(k) and its error, σ, by finding their ratio (equivalent to S/N). We show the ratio of P(k)/σ for all models
and redshifts. Orange is for narrower bins of width ∆k = 0.043, 0.040, 0.037, 0.035 Mpc−1 respectively, whilst blue is for bins with
width ∆k = 0.3 Mpc−1. If this ratio is greater than 1, denoted by the green hatched region, we have greater signal than noise. m3 and
m4 are highlighted by shading.

the transition regions in Fig. 9. While the absolute lower limits
do not exclude any previous simulation work, models m3 and
m4 eclipse the lower ends of other simulated models and the ex-
pected EoR-Spec sensitivity power spectrum for 3.42 < z < 3.87
and 4.14 < z < 4.76. However, other power spectra from the lit-
erature including Serra et al. (2016), Dumitru et al. (2019), and
the upper end of Roy et al. (2023) are significantly greater in
magnitude than any of FARMER LP power spectra, which is
to be expected as these works assume a much greater contribu-
tion from faint galaxies. 6.75 < z < 8.27 is the exception to
these trends with significantly greater overlap, however as noted
in Sects. 2.5, 3.1 and Appendix B this band is likely limited in
use.

In summary, Figs. 7 and 8 show that COSMOS 2020 pro-
vides an empirical lower limit to simulation-based estimates for
the luminosity function when we apply our luminosity models.
This is also demonstrated in the power spectra of Fig. 9. Our
lower limits for power spectra based on existing data cannot
definitively exclude the lower ends of previous simulated power
spectra from the literature (Fig. 10), and the FARMER LP power
spectra have comparatively weaker clustering components due to
the lack of faint galaxies in the sample.

3.3. Error analysis

We found a first estimate of the error in the power spectra and
visualised it in the form of the S/N P(k)/σ, where σ is the ana-
lytically calculated instrumentation error of EoR-Spec (process
described in Appendix C). While we cannot presently include all
possible error contributions, such as errors from foreground con-
tamination removal and sky noise, this does include instrumen-
tal thermal noise, the sample variance from binning k modes,
and instrumental beam smoothing. Measurements of σ will be
improved when we obtain the initial data, after the first light of
EoR-Spec, but we consider this a good first estimate of noise in
the power spectra.

When viewing the relative error for power spectra in Fig. 11,
we can determine useful information at k scales where the S/N
is above 1, that is when there is more signal than noise (denoted
by the hatched green region). When using narrow k bins this is
possible for m3 and m4 at 3.42 < z < 3.87 and 4.14 < z < 4.76,
but all other models fail to reach S/N> 1 at these redshifts, and
all models fail at higher redshifts. If we use wider bins we re-
trieve greater S/N as σ is inversely proportional to the number of
k modes in a bin, a number which increases if we use wider bins
(Appendix C). However, noise still dominates for lower mag-
nitude models and models at higher redshifts. We recalculated
these for greater observation time than our assumed 2000 hours,
however even when using large bins, we only achieved S/N> 1
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for most models at z < 6.3 after tripling our observation time.
These calculations also assume that signal extraction is 100%
efficient, so in reality these ratios are likely to be lower.

This metric indicates that observations cannot retrieve any
useful information in the initial observation period for the most
pessimistic cases, even when using wide k bins. This issue
is more pressing for shot-noise regions, which typically have
greater errors compared to clustering regions, thereby leading to
problems when constraining the luminosity function of observed
fields. In this case higher redshift bands would be a significant
technical challenge, as discussed by Chung et al. (2020).

4. Extrapolation

The limited completeness of FARMER LP is useful for making
our lower bound mock LIM cubes, however it is noticeably dif-
ferent compared to previous simulation work. This is due to their
implicit assumption of fainter galaxies at high redshift contribut-
ing significantly to the [CII] luminosity function. In this context
we decided to create a hypothetically more complete sample by
extrapolating from FARMER LP, creating additional galaxies to
fill in perceived missing gaps in the sample’s mass or luminosity
function, which are then added to the mock LIM cubes. By creat-
ing a variety of power spectra from physically plausible samples
and checking their concordance with previous simulations, we
could verify if the simulated works are consistent with existing
empirical data from COSMOS 2020. In addition, as part of this
extension we aimed to create reasonable upper limits for the ob-
served power spectra, although these will not be as rigorous as
the lower limits due to the inherent uncertainties in extrapolating
from an existing mass or luminosity function.

When extrapolating we had to determine the number of ad-
ditional galaxies with appropriate bulk properties, and devise a
method to sensibly add these galaxies to the existing cubes. We
explored three techniques of extrapolation: exploiting data from
surveys which probed deeper than COSMOS 2020, extrapolat-
ing from the mass function of FARMER LP, and extrapolating
from the luminosity functions we generated from applying [CII]
models to FARMER LP. Each process was performed separately
for each frequency band to account for the sample variation on
different cosmological timescales. The galaxies were then added
to the LIM cubes appropriately using a Voronoi Tessellation
(VT) technique. After creating these samples and corresponding
power spectra, we repeated our analysis with the power spectra
and relative errors to show concordance with previous simula-
tion work.

4.1. Using CANDELS data

We made a first estimate of the incompleteness of FARMER
LP by comparing it to deeper surveys in the wider COSMOS
field. We primarily used the Cosmic Assembly Near-infrared
Deep Extragalactic Legacy Survey (CANDELS, Nayyeri et al.
2017), which covers a ∼0.06deg2 region within one of Ultra-
VISTA’s Ultra-Deep stripes in the COSMOS field, using HST
data. Weaver et al. (2022, 2023) noted that the galaxy number
ratio of FARMER LP to CANDELS is ∼75% for z > 2.5 within
the region probed by CANDELS, implying that FARMER LP
did not detect at least 25% of galaxies in that region. Therefore
we planned to use the ratio between FARMER LP and CAN-
DELS to find an appropriate number of galaxies to add to the
sample. In order to do this we calculated this ratio again for each
frequency band, for galaxies past a certain stellar mass thresh-
old where FARMER LP was determined to be almost ‘mass

complete’ (excluding discrepancies with CANDELS). We used
this mass limit as we only intended to correct for the high-mass
galaxies with this method, the fainter galaxies being accounted
for by Schechter curve comparisons. This mass threshold was
calculated in several ways to ensure the limit was accurate, first
by using the following equations from Weaver et al. (2022, 2023)
for 95% mass completeness:

Mlim, ‘22 = −1.51 × 106(1 + z) + 6.81 × 107(1 + z)2, (15)

Mlim, ‘23 = −3.23 × 107(1 + z) + 7.83 × 107(1 + z)2. (16)

In addition to these methods we also manually calculated the
Mlim value by following the same procedure as Weaver et al.
(2023). However, instead of re-scaling the 30th mass percentile
of galaxies by IRAC Ch1 luminosity, we took the 40th percentile
of masses within FARMER LP because of our focus on high-
redshift bright galaxies. All three methods return the same stel-
lar mass thresholds within 0.05 dex: 109.2, 109.3, 109.5, 109.7M⊙

for 3.42 < z < 3.87, 4.14 < z < 4.76, 5.34 < z < 6.31, and
6.75 < z < 8.27 respectively. We then found the number ratio of
galaxies in FARMER LP to CANDELS above these mass thresh-
olds (after accounting for the stellar mask regions of FARMER
LP within the CANDELS region), which were 78%, 78%, 51%,
and 58% respectively. We always extrapolated additional galax-
ies above the mass thresholds in the FARMER LP sample fol-
lowing these ratios before applying the other extrapolation meth-
ods. For example, when we applied this correction to the 5.34 <
z < 6.31 sub-sample, we generated (100/51) − 1 ≈ 1 galaxy
for each existing FARMER LP galaxy with stellar mass above
109.5M⊙, duplicating existing galaxies to determine the proper-
ties of these new galaxies. That is, we added an 1 extra galaxy for
each original galaxies in FARMER LP with stellar mass above
the mass completeness threshold, intuitively accounting for the
49% assumed incompleteness in this FARMER LP band. In the
3.42 < z < 3.87 band, we generated (100/78) − 1 ≈ 0.28 galax-
ies per original galaxy above 109.2M⊙, or approximately 1 extra
galaxy for 4 originals, and so on. In this way, the CANDELS fac-
tor corrects for the high end of the galaxy main sequence, with
Schechter fits correcting for the low end.

4.2. Extrapolating from mass and luminosity functions using
Schechter curves

The assumed missing dim end of the [CII] luminosity function
for models applied to FARMER LP has been a key indicator
of incompleteness, as shown in Fig. 8. Correspondingly, we at-
tempted to construct more complete samples by extrapolating
out from this end of the function. As a way to verify this tech-
nique we also did the same with the mass function of FARMER
LP. A basic visualisation of this is shown in Fig. 12: by com-
puting the difference between our extrapolated function and the
existing function for faint galaxies within each redshift band, we
can estimate the number of ‘missing’ galaxies in FARMER LP
and add them to our sample.

To find the function we used to add galaxies, we assumed
that the mass and luminosity functions of galaxy populations are
likely to follow a Schechter function (Schechter 1976) as in the
following equations:

Φ(M)dM =
(
Φ0

Mc/M⊙

) (
M
Mc

)α
e−

M
Mc dM, (17)

Φ(L)dL =
(
Φ0

Lc/L⊙

) (
L
Lc

)α
e−

L
Lc dL, (18)
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Fig. 12. Examples of how Schechter fits are
applied to mass functions (left) and luminosity
functions (right) at 3.42 < z < 3.87. The lu-
minosity function in this case is when we apply
DL14 Entire to FARMER LP. In both cases, we
applied the CANDELS correction to the sample
before fitting the Schechter curves. We extrap-
olate galaxies corresponding to the difference
between the projected curves and the existing
functions. While there are slight discrepancies
at high mass or luminosity, this is acceptable as
this extrapolation method focuses on dim galax-
ies, and there are higher errors for the bright end
of these functions (as shown in Fig. 8).

Fig. 13. Comparison of different Schechter
curve fits to the DL14 Entire [CII] luminosity
function at 3.42 < z < 3.87. This sample in-
cludes FARMER LP, the stellar mask and CAN-
DELS factor adjustments. We include the ac-
tual fit we chose, as well as fits that are under-
estimates, overestimates, or were similar. Pa-
rameters for these fits are in Appendix D. The
left subplot shows the actual Schechter curves
themselves, including the two limits of extrap-
olation we investigate, and the right subplots
show the resulting power spectra. The power
spectra are mostly similar, except for the ‘over-
estimate’ case.

Fig. 14. Example VT map when applied to the
m4 FARMER LP map at 3.42 < z < 3.87.
We typically use 3D weighting maps, however
we show this example in 2D for clarity. Here
this example takes nodes (blue) as the top 3%
brightest pixels.

where Φ is the number of galaxies per unit mass or luminos-
ity per unit dex per unit volume and Lc, Mc, Φ0, and α are fit
parameters. The number of galaxies in each mass or luminosity
band of the function can be found by multiplying Φ by the dex
and the volume covered by the frequency band we used. As be-
fore, we always used dex=mass or luminosity interval=0.1, with
the comoving volume calculated using our given cosmology -
4 630 000, 5 880 000, 7 900 000, 10 300 000 Mpc3 for 3.42 < z <
3.87, 4.14 < z < 4.76, 5.34 < z < 6.31, and 6.75 < z < 8.27
respectively. After calculating the existing mass or luminosity
function for FARMER LP when including the added CANDELS
correction, we attempted to fit Eqs. (17), (18) to the high-mass
or -luminosity points. We recorded the parameters for all of the
fits we used in Appendix D.

Once we obtained our expected curves, we generated a
number of galaxies equivalent to the difference between the
Schechter fit and the actual FARMER LP function for each dex
interval. When generating galaxies using a luminosity function,
we assigned their bulk properties so that they reproduce the ap-

propriate [CII] luminosity for the given luminosity band. For the
mass function case, we assigned galaxy stellar masses according
to the mass of the dex band and then used the galaxy main se-
quence of the given redshift band to calculate SFR, and therefore
sSFR and metallicity (Eq. 19). The main sequence parameters
are in Table 4). In addition to our own fits, we also used the mass
function fit parameters found by Weaver et al. (2023) for SFGs
in COSMOS 2020.

log10

(
SFR

M⊙yr−1

)
= a + b log10

(
M⋆
M⊙

)
. (19)

After completing the extrapolation, we took these enhanced
samples and ran the same procedures as described in Sects. 2.5
and 2.6. When using the samples extrapolated using a [CII] lu-
minosity function, we only applied the [CII] model which was
used to create the corresponding luminosity function.

However, there are significant limitations with this tech-
nique. In many cases we could produce multiple valid Schechter
fits for a given function as demonstrated by Figure 13, thereby
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Table 4: Galaxy main sequence fit parameters for redshift bands.

Model a b
3.42 < z < 3.87 -6.42 0.789
4.14 < z < 4.76 -5.81 0.740
5.34 < z < 6.31 -6.79 0.834
6.75 < z < 8.27 -7.68 0.942

Notes. We found these by applying least-squares fitting between stellar
mass and SFR using a standard linear log-log model, similar to Fig. 2.

adding different numbers of extrapolated galaxies and altering
the resulting power spectra. In the ‘overestimate fit’, a vastly
unrealistic number of galaxies were extrapolated due to the
steep gradient of the fit, in this case half a million galaxies in
a 1.2 × 1.2 deg2 area per 0.1 dex band. While we found negli-
gible differences between the power spectra for the other fits,
the shot-noise for the overestimate fit was inflated by at least
0.2 dex. Furthermore, the minimum mass or luminosity point
for extrapolation was unknown, as we do not know the prop-
erties of the faintest galaxies at high redshift. Nevertheless, we
calibrated these end points by reviewing the literature on the
smallest dwarf galaxies in the local universe, where we found
[CII] luminosities as low as 104L⊙ and stellar masses as low as
106M⊙ (e.g. Cormier et al. 2015; Madden et al. 2013). As it is
unlikely that the Schechter function accurately predicts galaxy
numbers for the very dimmest galaxies, we only extrapolated
down to 105L⊙ or 107M⊙. In addition we experimented with the
end points 107L⊙ or 108M⊙, which are the end point of [CII]-
metallicity relations (De Looze et al. 2014; Lagache 2018) and
a typical dwarf galaxy mass respectively. We found minimal dif-
ferences between the power spectra from these different extrap-
olation depths for most fits in Fig. 13, so it is likely that the
contribution of signal from the smallest galaxies is negligible.
The primary exception to this trend is the overestimate fit, where
the clustering signal is greatly inflated at k < 100 Mpc−1 when
we extrapolate to 105 L⊙. As discussed in Sect. 3.2, this is due to
faint galaxies greatly contributing to the clustering signal. There-
fore we only included fits that do not demonstrate this dramatic
increase in shot-noise and clustering signal. However there were
still multiple valid fits in some cases, and while this is not a prob-
lem for the final power spectrum magnitude, we discuss con-
straining these fits further with additional data in Sect. 5.

4.3. Voronoi tessellation for galaxy distribution

Once we generated the additional galaxies via extrapolation, we
determined the new galaxies’ map positions and redshifts. In-
stead of determining these co-ordinates randomly, which was
appropriate for adding galaxies in the small stellar mask areas
but would destroy any of the existing structure within the inten-
sity cube, we implemented a weighting cube. This is an array
that has the same dimensions of the intensity cube and stores
relative weights in each voxel, which then calibrates the random
selection of x, y and z co-ordinates for the extrapolated galaxies.
The weights used in the weighting cube are the normalised stel-
lar mass of FARMER LP’s galaxies, and are stored within the
voxels in the same way that [CII] intensity is stored within the
intensity cube. We also added a proportion of a galaxy’s weight
to voxels on the same redshift slice within two spaces, to pre-
vent over-weighting for specific pixels. The ratio of weights of
‘central pixel’:‘adjacent pixel’:‘pixel two spaces away’ is 3:2:1.

Furthermore, we added a baseline weight equivalent to adding
an average galaxy to each voxel. This method was inspired by
and produces similar maps to Voronoi tessellation (VT) (e.g.
Ramella et al. 2001; Kim et al. 2002), which determines over-
densities and voids by identifying bright nodes on a map and
drawing equidistant lines between them. An example of this ap-
plied to FARMER LP is shown in Fig. 14, where we treat high-
weight voxels as nodes. In this way the highest mass galaxies
of FARMER LP (primarily SFGs) become the bright centres of
large galaxy clusters within the assumed dark matter halos. This
process assumes the majority of extrapolated dim galaxies lie
within these clusters, however does not meaningfully account for
other structures such as cosmological filaments. Consequently
we must therefore exercise caution when viewing the strength of
clustering signal in power spectra from extrapolation, which we
discuss in Sect. 5. We also discuss the impact of VT on power
spectra compared to randomly distributing galaxies in Appendix
B, to ensure that our initial assumptions are somewhat reason-
able.

It would be ideal to use a weighting cube based on known
overdensities in the COSMOS field, however at time of publica-
tion we only have a protocluster density map for 6 < z < 7.7
(Brinch et al. 2023). As this would only apply to the redshift
band 6.75 < z < 8.27, which is unlikely to give useful results as
previously discussed, we did not explore this further.

4.4. Power spectra and error analysis for extrapolated
sample

After extrapolating from FARMER LP, we created power spectra
from these expansions to the existing samples. When comparing
the power spectra from different extrapolation techniques in Fig.
15, we found a consistent increase in magnitude for all meth-
ods. This is to be expected as extrapolating the missing low-
mass or low-luminosity galaxies produces fundamentally sim-
ilar outcomes, as low-mass galaxies are likely to be dim. The
power spectra magnitude increase is relatively small at low red-
shift (0.2 − 0.4 dex at 3.42 < z < 3.87) but is more significant at
high redshift (0.5 − 0.8 dex at 5.34 < z < 6.31). This is consis-
tent with the idea that FARMER LP is more complete at lower
redshift bands, as the survey was able to find a higher proportion
of dim galaxies, so extrapolation has more impact for higher-
redshift sub-samples with worse completeness. When examin-
ing the clustering component we found a small increase due to
the large number of dim galaxies added around assumed clus-
ters using VT. For example, in 3.42 < z < 3.87 we found that
the transition region occurs around k ≈ 0.25 for all extrapolation
methods, that is, where the clustering signal is approximately
equal to the shot-noise component. However, these transition re-
gions are still at smaller k when compared to the simulation work
of Karoumpis et al. (2022), a result that is somewhat surprising
considering our attempts to mimic larger structure. This may be
a consequence of the specific assumptions we made when ap-
plying VT because of the lack of frame of reference we have for
high-redshift structures, as discussed in Sect. 5. In addition, this
could result from previous literature deliberately seeding their
galaxies around specific dark matter halos.

To verify that this extrapolation method leads to results con-
sistent with the literature, we must directly compare their power
spectra. In our figures such as Fig. 16 we only used the mass
function extrapolation sample from Weaver et al. (2023) for
clarity, however the conclusions are the same for all extrapo-
lation techniques. Overall we found significant overlap between
our models and the previous literature at all redshifts. This is
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Table 5: Soft lower and upper limits of FARMER LP power
spectra from an extrapolated sample, using ∆k = 0.3 Mpc−1.

k3P(k)/2π2 ((Jy sr−1)2)
k (Mpc−1) 0.25-0.55 0.55-0.85 0.85-1.15 1.15-1.45

Lower limits from extrapolation
3.42 < z < 3.87 4.79×106 2.49×107 6.93×107 1.52×108

4.14 < z < 4.76 3.48×106 1.81×107 4.91×107 1.11×108

5.34 < z < 6.31 6.98×105 3.29×106 9.19×106 1.91×107

6.75 < z < 8.27 8.68×105 3.87×106 1.11×107 2.50×107

Upper limits from extrapolation
3.42 < z < 3.87 3.98×108 2.13×109 6.02×109 1.31×1010

4.14 < z < 4.76 1.75×108 8.92×108 2.51×109 5.38×109

5.34 < z < 6.31 2.30×108 1.10×109 3.08×109 6.47×109

6.75 < z < 8.27 1.59×107 7.15×107 2.04×108 4.58×108

Notes. These limits are for the power spectra from the Weaver et al.
(2023) mass function extrapolation. The lower limits are Si15 for 3.42 <
z < 3.87 and 4.14 < z < 4.76 and Sc20 for other bands, whilst the upper
limits are m3 for all bands (Fig. 16).

demonstrated by our models managing to reach the shot-noise
component of all models from previous literature. We also vi-
sualise this by showing the non-absolute upper and lower lim-
its from extrapolation when using wide bins, with results shown
in Table 5. Furthermore, almost all of our models exceeded the
expected FYST sensitivity limit, an alternate measure predict-
ing detectability, which implies that if our extrapolated samples
were accurate to reality we would be able to recover usable re-
sults. This concordance is therefore useful in demonstrating that
extrapolating from existing samples (which are useful for abso-
lute lower limits) can be used to replicate predictions where dim
galaxies have a significant impact (therefore providing reason-
able upper limits). Consequently, existing catalogues can model
power spectra from LIM in a variety of test scenarios.

However, there are some caveats to the results from extrap-
olation. 6.75 < z < 8.27 remains an outlier, with power spec-
tra at that redshift being multiple dex above some predictions
at the same redshift. This is because COSMOS 2020 only in-
cludes high-luminosity galaxies in this redshift range, so the
fits and subsequent extrapolation from the existing sample pro-
duced a vast number of galaxies and thereby skewed the power
spectra magnitude. We see this in the Schechter fit parameters
in Table D.3, where the ‘knee’ of the Schechter fit, Lc, is far
higher for most models at this redshift. At lower redshifts, only
the ALPINE models (m1-m4) reach the magnitudes of the high-
magnitude models from the previous literature, with all our other
models only overlapping with the lower estimates. This may be a
consequence of these models being fitted using high-luminosity
data, and thus producing high luminosities even when applied to
smaller galaxies (as discussed in Sect. 3.2). Therefore it may be
best to view these uppermost limits of our work with a level of
caution. Despite these discrepancies, and the differences in clus-
tering signal, it is reassuring to see this overall agreement be-
tween the sample extrapolated from FARMER LP and the previ-
ous literature. In this way, our extrapolation methods are a viable
way to create extensions from existing samples.

We also applied the same error analysis methods for the ex-
trapolated samples, focusing on the mass function extrapolation
using Weaver et al. (2023) to maintain consistency, resulting in
Fig. 17. This figure shows that all models have greater S/N in
comparison to the original versions in Fig. 11. This is especially
clear when using wider bins as all models give S/N>1 for all

redshift bands. Therefore, in the scenario where these samples
accurately reflect reality, observations should be possible when
using wider bins for all redshift ranges as has been predicted by
prior work. When using narrow k bins, the ALPINE models con-
sistently have S/N>1, however the other models do not breach
this barrier even at the lowest redshift. We can alternatively view
this as models working for no redshift bands (previous litera-
ture models) or all redshift bands (ALPINE models). This clear
divide is somewhat surprising, as we would expect to recover us-
able results for all models at the lower redshifts, and other works
such as CCAT Collaboration (2023) expected no models to work
for 6.75 < z < 8.27. Regardless, in order to guarantee detections
observers must use wider k bins, which reduces the resolution of
our results. However, even with this drawback, it is still likely
that we will be able to recover usable results within our initial
observation period, assuming these more complete extrapolated
samples reflect reality.

5. Discussion

In this study, we demonstrate the feasibility of generating mean-
ingful constraints on line intensity mapping (LIM) power spectra
for a specific field, employing empirical data from a known sam-
ple and [CII] luminosity models based on galaxy bulk property
data. In addition, it is also possible to extend this sample via
plausible extrapolation methods to create reasonable limits for
these power spectra, which are consistent with the power spec-
tra of previous simulated work. This approach shows promise for
making predictions in other fields, provided that we can use sam-
ples with bulk properties across sufficiently extensive and deep
volumes. Moreover, we have identified several opportunities to
refine our methodology, using forthcoming data and preliminary
findings from the EoR-Spec DSS. These potential improvements
are explored in detail below.

When solely using empirical data, the lower limits on power
spectra we established in Table 3 are primarily beneficial for
forecasting observations with EoR-Spec. However, these can
also be related to previously conducted simulations (e.g., Fig.
10) and our analysis confirms that all previously reported power
spectra exceed our absolute lower limits. Notably, some of these
power spectra fall beneath our m3 and m4 models within the red-
shift intervals 3.42 < z < 3.87 and 4.14 < z < 4.76, which we
attribute to inherent biases in these models discussed later.

However, the expected observations’ S/N under EoR-Spec’s
parameters are below 1 across most k (Fig. 11), even with
wide binning for the majority of models. Furthermore, extensive
masking beyond z > 6.3 obliterated any features of large-scale
structures which existed within the COSMOS field, leaving only
the most luminous star-forming galaxies (SFGs) in COSMOS
2020. As a result, for the redshift range 6.75 < z < 8.27, we
can only draw conclusions from the small-scale regions. Even
still, the observed magnitudes may be influenced by a preferen-
tial bias towards brighter galaxies. Consequently, we find that
employing this methodology in fields with significant voids is
impractical.

The absolute minimum constraints we derived serve as con-
servative limits for potential outcomes of future observed LIM
cube power spectra, and therefore are valuable for observational
planning. However, to address the limitations presented by these
conservative estimates, we adopted an extrapolation approach to
mitigate the incompleteness in our data sets and to produce more
comprehensive samples. While our specific procedure relates
to the existing COSMOS 2020 catalogue, for example CAN-
DELS lies within the COSMOS field, this methodology should
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Fig. 15: Comparison of extrapolated power spectra from different extrapolation techniques. The models in orange are those from
the original FARMER LP sample with no extrapolation, with blue representing FARMER LP luminosity function extrapolation,
green representing FARMER LP mass function extrapolation, and red representing mass extrapolation using Weaver et al. (2023)
parameters. The key point here is the difference between extrapolated models and the original sample in orange.

be adaptable to other data sets and observational fields. Encour-
agingly, the results shown in Fig. 16 demonstrate that our mod-
els’ shot-noise components align with the previous work, sug-
gesting the number of galaxies extrapolated from the FARMER
LP is appropriate. Despite this, only the ALPINE models m1-m4
reach the uppermost predicted limits, which suggests that these
models and similar prior analyses may be overly optimistic.

Due to the extrapolation adopted here and the corresponding
substantial assumptions used to extend beyond purely empirical
data, the upper limits presented in Table 5 are less stringent than
our absolute lower bounds. Consequently, the shot-noise compo-
nent in extrapolated power spectra is a valuable but not infallible
indicator for forecasting observational results and comparing to
previous work. The clustering signal is weaker relative to prior
simulations, likely due to discrepancies between our clustering
assumptions for VT in Sect. 4.3 and those employed in prior
work. However, because of the uncertainty surrounding the accu-
racy of these prior works’ clustering assumptions, this is a chal-
lenging obstacle based on incomplete information. Future works
will focus on refining this aspect, considering alternative weight-
ing methodologies for VT and closely comparing our clustering
assumptions with those from previous studies. Additionally, the
incorporation of overdensity maps similar to those proposed by
Brinch et al. (2023) could enhance the accuracy of our predic-
tions, using data from forthcoming analyses or initial EoR-Spec

observational results to offer a more robust framework for under-
standing galaxy clustering within LIM.

Analysing the S/N of our extrapolated models reveals that
utilising wider k bins consistently achieves S/N>1 across all
models and redshift intervals, suggesting that detecting a signal
in actual observational scenarios is highly probable. However,
for narrower k bins, only the ALPINE-based models (m1-m4)
maintain an acceptable S/N across various redshifts. In contrast,
other models exhibit poor S/N at all redshifts, even with our as-
sumption of 100% observational efficiency. Aside from imply-
ing that the lower limits of power spectra may be challenging
to distinguish when using EoR-Spec, the acceptable models are
all based on ALPINE data which significantly deviate from the
standard [CII]-SFR models. The power spectra of these models
show a more pronounced decrease in magnitude with redshift
compared to others, potentially due to them being derived from
galaxies with high [CII] luminosity. This carries an underlying
assumption that all galaxies exhibit substantial [CII] emission,
leading to a rapid decline in signal as the galaxy count decreases.
These ALPINE galaxies are also not representative of the red-
shift ranges 3.42 < z < 3.87 and 6.75 < z < 8.27, rendering
the highest limit estimations for these intervals (based on model
m3) questionable. While we believe that incorporating a variety
of [CII] emission models is crucial, with models m3 and m4 ex-
ploring the conceptual space where there is a smaller difference
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Fig. 16: As Fig. 10, but for the extrapolated data based on the mass function fit with parameters given by Weaver et al. (2023). We
group the ALPINE models together and increase shade density for emphasis.

in emission between [CII]-dim and [CII]-bright galaxies, their
discrepancy with the existing literature is clear. Even so, mod-
els m1 and m2 still approximately align with the results from
the literature’s [CII]-SFR models for most redshifts, with m2
even having a similar linear log-log relationship to the literature
models (albeit with stellar mass). In future work we plan to con-
tinue utilising these models while also investigating strategies to
address the limitations presented by ALPINE data, such as its
restricted redshift coverage, bias towards star-forming galaxies
(SFGs), and UV-selection criteria. Additionally, we aim to incor-
porate [CII] data from higher redshifts, such as from REBELS
(Bouwens et al. 2022) upon its full public release, to enhance our
models’ comprehensiveness and accuracy.

An inherent challenge with the extrapolation process lies in
the uncertainty in determining the fit parameters for Schechter
functions. While it is feasible to fit a Schechter function to the
high-luminosity upper knee section after applying CANDELS
extrapolation, the scarcity of data at lower masses and luminosi-
ties introduces ambiguity in identifying appropriate fits. Our ap-
proach was to select fits that minimised errors according to least-
squares fitting procedures and with gradients that were in align-
ment with previous studies, such as those reported by Weaver
et al. (2023). This was to prevent extrapolating a physically im-
possible number of galaxies, such as cases which would add
millions of galaxies per 0.1 dex interval. In most scenarios the
differences in the resulting power spectra are minimal, as illus-
trated in Fig. 13, however it would be ideal to constrain these

fits using data sets which offer more comprehensive coverage of
the mass and luminosity functions. Upcoming surveys such as
COSMOS-Web (Casey et al. 2023; Franco et al. 2023; Silverman
et al. 2023) and other deep pencil field studies are expected to
provide insights into the fainter ends of these functions, thereby
serving as valuable benchmarks for calibrating Schechter curve
fits. In this way we expect to enhance the reliability and accuracy
of extrapolations used in future analyses.

Our foundational methodology is sound, however we must
integrate additional variables to increase precision in forecast-
ing upcoming observations, which we omitted in this work to
maintain consistency with the previous literature. Line intensity
mapping (LIM) inherently measures aggregate signals and thus
includes interlopers within the cubes, such as CO and [OIII] line
emission from galaxies at different redshifts. These should sub-
sequently be isolated and removed using foreground signal elim-
ination techniques, such as cross-referencing with catalogues of
galaxies identified at higher resolution. It is one of EoR-Spec
DSS’s objectives to cross-correlate LIM data from various lines,
as highlighted by Visbal & Loeb (2010) and Chung (2022). We
must also account for various complex noise sources, includ-
ing atmospheric noise, the influence of the instrument’s scanning
pattern, and the masking of specific areas. Ongoing research en-
deavours, such as those by Karoumpis et al. (in prep.) addressing
CO foregrounds, Dev et al. (in prep.) applying frameworks such
as Time Ordered Astrophysics Scalable Tools (TOAST) for at-
mospheric noise and scanning strategies, and Roy & Battaglia

Article number, page 20 of 28



J. Clarke et al.: [CII] image cubes based on COSMOS 2020 + ALPINE near epoch of reionisation

Fig. 17: As Fig. 11, but for the extrapolated data based on the mass function fit with parameters given by Weaver et al. (2023). The
specific shaded region is for the ALPINE models m1-m4.

(2023) examining cross-correlation’s impact on S/N, are ac-
tively addressing these challenges. Each issue presents its unique
set of complications, which makes gauging errors increasingly
complex — for example, CO interlopers pose significant chal-
lenges at lower frequency, whereas atmospheric noise predom-
inantly affects high-frequency channels. Fortunately, the early
FYST science data will serve as a valuable resource for calibrat-
ing our error estimations. Employing techniques such as cross-
correlation and atmospheric de-striping will likely alleviate ma-
jor error sources. Furthermore, as there will be varying levels
of sensitivity over the 2000 hours observation period of EoR-
Spec (CCAT Collaboration 2023), our methodology enables the
generation of distinct predictions for various observation phases,
enhancing the applicability of our forecasts.

Our investigation is tailored to the regions observed by EoR-
Spec DSS, thereby restricting its scope as we require samples
covering a sufficiently large sky area (∼1 deg2) with compre-
hensive bulk property data within the E-COSMOS or E-CDFS
regions. Currently, our analysis is confined to using COSMOS
2020, as the CANDELS/GOODS-S data set (Hsu et al. 2014)
lacks the necessary scale to accurately assess large-scale clus-
tering signal. However, upcoming data from the Euclid mis-
sion (Euclid Collaboration 2022) will extend over 20 deg2 in the
GOODS-S field at appropriate redshifts, thereby allowing for the
generation of meaningful predictions for this field. In the interim,
we can also use our method to project shot-noise estimates for
experiments covering smaller areas, such as TIME and CON-
CERTO. Additionally, we can also examine the relative impact

of individual large galaxy clusters on the power spectra, using
both observed and simulated clusters for this analysis. The ca-
pability of LIM to survey wider fields makes these clusters, for
instance the CRLE and AZTEC-3 protoclusters (Riechers et al.
2010; Capak et al. 2011; Pavesi et al. 2018; Vieira et al. 2022),
a key focus for subsequent simulations and future research. This
could be achieved by incorporating simulated clusters into our
maps to determine their relative impact on the power spectra. Fi-
nally, we also plan to delve into additional analytical techniques
that can be applied to Fourier-transformed cubes, such as delta-
variance and bi-spectra statistics. These approaches hold the po-
tential to reveal further insights, enriching our understanding of
the underlying cosmic structures.

6. Conclusion

In this work, we introduce an empirical methodology for cre-
ating mock [CII] line intensity mapping (LIM) cubes using an
existing sample, in this case: the FARMER LP sub-sample of
the COSMOS 2020 galaxy catalogue. This approach enables us
to make power spectra predictions for the E-COSMOS field,
which will be surveyed by the EoR-Spec Deep Spectroscopic
Survey (DSS) during its 2000-hour campaign commencing in
2026. These LIM cubes are tailored to the observational spec-
ifications of the EoR-Spec instrument aboard the Fred Young
Submillimeter Telescope (FYST). Given the sample’s incom-
pleteness towards faint galaxies, the resulting power spectra es-
tablish lower bounds, which we quantified for k = 1 Mpc−1 as
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P(k)/2π2 = 3.06×107, 1.43×107, 9.80×105, 2.77×105 (Jy sr−1)2

across the redshift intervals of 3.42 < z < 3.87, 4.14 < z < 4.76,
5.34 < z < 6.31, 6.75 < z < 8.27, respectively (Table 3). Fur-
thermore, we developed techniques to extrapolate from this data
set, producing results similar to previous simulations.

These simulated LIM cubes incorporate [CII] luminosity
models from the previous literature as well as those derived from
ALPINE data, including models that deviate from linear log-
log [CII]-SFR relationships. The models were applied across
four aforementioned redshift bands to create a map spanning
1.2 × 1.2 deg2. The key findings from our work are summarised
as follows:

– We created four [CII] models solely using ALPINE galaxy
bulk property data, which diverged from the conventional
linear log-log [CII]-SFR relationship. These models produce
power spectra with a range of ∼1 dex, and are consistent with
existing [CII] models when applied to the FARMER LP sub-
sample. However, these models are less constrained at red-
shift ranges beyond ALPINE’s redshift coverage (3.42 < z <
3.87 and 6.75 < z < 8.27).

– Our approach is capable of generating mock LIM cubes us-
ing available galaxy catalogues, such as COSMOS 2020.
Given the incompleteness of these samples at the faint end
of the luminosity function, the resultant power spectra serve
as lower bounds, reflecting only the galaxies that have been
detected. All previous power spectra from the literature ex-
ceed these minimum values for z<6.3. Our results are less
conclusive above this point, due to the greater level of in-
completeness of COSMOS 2020 at higher redshifts.

– We evaluated the impact of incompleteness from the vari-
ance in power spectra between the original sample and prior
predictions, and extrapolated from the empirical data set in
FARMER LP by considering truncated mass and luminos-
ity functions along with the detection rate ratio between the
CANDELS data and COSMOS 2020. This extension from
the original sample increases the magnitude of our empiri-
cally guided mock power spectra by approximately 0.5 dex,
placing them within the range of earlier simulations. Aside
from providing this concordance, the extrapolation also of-
fers a tool to estimate the signal strength for forthcoming
observations. From this, we can identify potential power
spectra ranges allowed by previous predictions that are only
reached by specific ALPINE models, which are therefore
less likely to reflect the signal strength that is to be observed.

– In our power spectra from the extrapolations, we predicted
a result of S/N>1 only when using wide spatial frequency
bins (∆k = 0.3 Mpc−1). However, this assumes 100% signal
recovery efficiency, so future investigations will necessitate
a more detailed consideration of foreground line signals and
atmospheric noise.

This work provides empirical support for the previous sim-
ulation work. While the anticipated challenges in observations
will be significant at higher redshift bands, we remain confident
that the planned FYST/EoR-Spec surveys will be able to obtain
meaningful constraints for z < 6. Future efforts will extend this
work to include realistic foregrounds and to obtain more solid
constraints at z > 6, based on incoming JWST and Euclid data
in the COSMOS field.
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Appendix A: ALPINE model checks

When creating the ALPINE [CII] models, we attempted to fit Eq.
(2) to all combinations of bulk properties. We performed this fit-
ting for the individual galaxies in the sample as well as binned
galaxies using least-squares fitting procedures. When binning we
used 5 bins with 13 galaxies apiece, with the bins sorted by [CII]
luminosity, stellar mass, SFR, or metallicity. This produced a
vast number of models, most of which were poor fits, so we ap-
plied multiple checks:

– We calculated the reduced chi-squared statistic (χ2
ν) for each

model as described in Eq. (A.1), where ν is the number of
degrees of freedom, L[CII],i(X) is the [CII] luminosity of each
data point with bulk properties X, L[CII], model(X) is the [CII]
luminosity given by the model when substituting in the same
bulk properties X, and σ2

i is the error in [CII] luminosity for
each data point. When calculating this for a binned fit, we
performed error propagation to find σ2

i , and we took X as the
averaged bulk properties of each galaxy within the bin. We
took the number of degrees of freedom ν as the number of
fit parameters subtracted from the number of data points. A
model was viewed as acceptable when its χ2

ν is within 4σ of
the expected value for a good model, 1. This is when we are
within the limits set by Eq. (A.2), where we set the number
of σ n = 4 and ν depends on the model. This has a large
amount of leniency, however we use this limit to allow as
many models as possible. For example, m1 has 4 fit parame-
ters, and was calculated from binned data (5 data points), so
ν = 5 − 4 = 1. As n = 4, the limit χ2

ν, nσ limit = 6.65. This
statistical concept is described in detail in the literature (for
instance Hughes & Hase 2010, pg. 102-107).

χ2
ν =

1
ν

∑
i

[
L[CII], model(X) − L[CII],i(X)

σi

]2

, (A.1)

χ2
ν, nσ limit = 1 + n

√
2
ν
. (A.2)

– For each model, we checked if it diverged significantly from
the expected range of [CII] luminosities when using outlier
values, that is above 1013L⊙ or below 104L⊙. We inserted
the maximum and minimum values of galaxy bulk properties
within FARMER LP (3.42 < z < 8.27) as shown in Table
A.1. If a model failed this test it was rejected.

Table A.1: Maximum and minimum bulk properties within the
FARMER LP sample.

Value Max Min

log10

(
M⋆
M⊙

)
6.600 12.002

log10

(
SFR

M⊙yr−1

)
-4.705 3.807

log10

(
sSFR
yr−1

)
-14.756 -7.337

Z
12+log (O/H) 5.822 9.083

log10

(
Z

12+log (O/H)

)
0.765 0.958

– It was important to determine if each model was consistent
with the known ALPINE [CII] luminosities when applied
to the COSMOS 2020 data. We applied the test models to
FARMER LP data in the same redshift range as ALPINE

Fig. A.1: Comparison of the histogram of the ALPINE [CII]
luminosities compared to m1-m4 histograms when applied to
FARMER LP at 4.4 < z < 4.65 and 5.05 < z < 5.9. As these re-
semble Gaussian distributions, we made fits to these histograms
and compared the means and standard deviations.

(4.4 < z < 4.65 and 5.05 < z < 5.9), calculated the
histograms of the resulting [CII] luminosities, and fitted a
Gaussian distribution to the histograms, which we compared
to the equivalent distribution of the ALPINE [CII] data. If
these distributions had similar means and standard deviations
(< 20% difference), we accepted the model. This is demon-
strated for our successful models in Fig. A.1.

– Finally, we checked that each model made basic physical
sense. For example, we had a seemingly acceptable test
model that was a quadratic in stellar mass - that is, a model
that produced high [CII] emission with very high OR very
low stellar mass. As this is clearly non-physical when con-
sidering the [CII] emission of dwarf galaxies, we excluded
this model.

Appendix B: Assumptions made for constructing
intensity cubes and power spectra

In our methodology, we made many assumptions about how we
should construct our intensity cubes, which we discuss and jus-
tify in this section.

A key assumption in using redshift data from FARMER LP
to select which galaxies lie within each band is that the error
in photometric redshift does not meaningfully impact the power
spectrum. For a non-negligible proportion of galaxies, their pho-
tometric redshift errors are greater than the redshift range cov-
ered by individual frequency slices. Therefore the galaxy could
actually ‘belong’ to a different slice of the 3D intensity cube,
or a galaxy may be erroneously included or excluded from the
cube, thereby impacting the power spectrum. To check that the
power spectra magnitude is unaffected we compared the power
spectra of the default FARMER LP (when using Si15), to ver-
sions where each galaxy within the sample had its redshift in-
creased by σz, redshift decreased by σz, or changed by a random
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Fig. B.1: Comparison of the power spectra of Si15 with sam-
ples using randomised redshifts. Reasonable variation fits ran-
domise the sample galaxies’ redshifts within one standard de-
viation, with maximum variation fits including as many or as
few galaxies as is plausible. In most cases, the reasonable varia-
tion power spectra are nearly indistinguishable from the default
power spectra. We do not include other [CII] models for clarity.

fraction of ±σz. Here σz is the error calculated from the 68%
confidence limit in photometric redshift. We also used more ex-
treme samples that tried to include or exclude as many galaxies
as possible in a given redshift band (within 1σz). As shown in
Fig. B.1, there is negligible deviation in shot-noise (< 0.1 dex)
for the reasonable variations, with slightly greater deviation in
the clustering signal. There are greater changes when using the
extreme examples, with shot-noise deviation up to 0.25 dex and
clustering signal deviation up to 0.5 dex. While these changes are
more perceptible, the samples must be contorted in ways which
are extremely unlikely to occur in reality. Consequently we do
not believe that deviations caused by photometric redshift errors
could impact our results meaningfully. We also assumed that ex-
trapolation within the masked regions of COSMOS 2020 was
appropriate, and that by averaging 10 of these power spectra we
do not introduce false structure. We verified this by comparing
the power spectra of intensity cubes with and without mask ex-
trapolation over all redshift bands using Si15 (Fig. B.2). There is
negligible difference between the power spectra for small k be-
cause the masked areas are too small (< 1 arcsec2) to meaning-
fully contribute to large-scale structure. When observing shot-
noise, there is a small decrease in shot-noise magnitude when
we fill the mask (< 0.1 dex) as the power spectra calculations
when masking necessitated shrinking the volume. A decrease in
volume of 10%, corresponds to a 0.1 dex shot-noise increase,
but as the average intensity per voxel is increased by filling in
the mask we instead see a much smaller increase. The only ex-
ception for this trend is 6.75 < z < 8.27, as the mask cov-
ers a much wider area (50%) and therefore we fill in far more
signal. Overall, we demonstrated that leaving the stellar mask
empty does not change any structural results significantly for
z < 6.3, but marginally overestimates the overall shot-noise of

Fig. B.2: Comparison of the power spectra of Si15 at all red-
shifts with versions where we did not perform extrapolation to
add galaxies in the stellar mask. We do not show other models
for clarity. As shown, the change in magnitude is negligible for
clustering scales (except for 6.75 < z < 8.27).

Fig. B.3: Comparison of the IR luminosity functions of REBELS
when using the entire sample or when using only detections, and
FARMER LP with and without mask extrapolation. We do not
plot the predicted ranges of Schechter functions from Barrufet
et al. (2023) due to the limited number of data points. The points
of the REBELS functions are at the same luminosity, and are
slightly offset in the figure to increase clarity.

the power spectrum - hence, our assumption is valid. In any case,
the calculated power spectra error is much larger than this dis-
crepancy. The only exception to the previous paragraph is the
6.75 < z < 8.27 band, where we take a far greater degree of
mask extrapolation and approximately double the original sam-
ple. Considering the innate bias towards the brightest galaxies at
these distances in FARMER LP, this leads to results that eclipse
those from equivalent simulated work (e.g. Fig. 10). This dis-
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Fig. B.4: Comparison of power spectra demonstrating the impact of VT on extrapolation. In the left subplot we show a cross-section
of the LIM cube at 3.42 < z < 3.87 for m1 when using VT to select galaxy location. In the right subplot we see the same, except for
the random location selection case. In the lower subplot we compare the power spectra.

crepancy is significant and surprising, especially in the context
of the other redshift bands where there is greater concordance.
In order to investigate whether it is appropriate to apply the stan-
dard stellar mask extrapolation principles to the 6.75 < z < 8.27
band, we compare the IR luminosity functions of this band and
of REBELS (Bouwens et al. 2022), a survey targeting 42 galax-
ies at 6.4 < z < 7.7 including 15 spectroscopically confirmed
[CII] sources. We use this sample with its known data as a use-
ful point of reference, even if most of its data do not lie within
the COSMOS field, with its IR luminosity function taken from
Barrufet et al. (2023). Figure B.3 compares this to the IR lumi-
nosity functions of FARMER LP in the 6.75 < z < 8.27 band
with and without the mask extrapolation, and we find that there
is strong agreement in both cases for LIR < 1012 L⊙. However,
it is clear from a visual examination that the high-luminosity
end of the FARMER LP luminosity functions would be in dis-
agreement from any Schechter curve that could be fitted to the
REBELS data. This is true even without mask interpolation. Cor-
respondingly, we do find it appropriate to be cautious of results
at these redshifts. We continued to use the same mask extrapola-
tion methods for this band to ensure consistency with the other
redshift bands.

Finally, it is important to retain the existing structure when
extrapolating to prevent changes in the clustering signal, so we
used the Voronoi tessellation (VT) method as in Sect. 4.3. We
validated this technique by comparing cubes and power spec-
tra using m1 at 3.42 < z < 3.87, when using no extrapolation,

extrapolation with random locations, and extrapolation with lo-
cations determined using VT (Fig. B.4). For both extrapolations,
the shot-noise increase is similar and expected (∼0.5 dex). How-
ever the structure component is very different, with the cluster-
ing in the random location case regressing to the no extrapola-
tion case, while the VT case shows a relatively large kick. This
becomes clear when comparing the intensity cubes, as the ran-
dom location signal is similar to white noise, while the VT case
clearly demonstrates structure. While there is the potential con-
cern of VT over-weighting around the existing galaxies of the
sample, this is in fact ideal for us as FARMER LP is likely to
include the bright centres of galaxy clusters. Despite this, we
find that the clustering signal from our extrapolated samples is
weaker in comparison to work from previous literature (Fig. 16,
indicating that this method will require refinement and calibra-
tion in the future.

Appendix C: Power spectra error

As a first estimate for calculating the error in the power spec-
trum, we included the thermal instrumental noise as well-
understood errors in beam smoothing and sample variance,
which we briefly discussed in our methodology. This is detailed
further by Li et al. (2016) and Chung et al. (2020) where the
authors calculate it analytically using Eq. (C.1):

σ(k) =
P(k) + Pn(k)
√

Nmodes(k,∆k)
1

W(k)
, (C.1)
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where P(k) is the [CII] power spectra, Pn(k) is the power spectra
due to thermal noise, Nmodes(k,∆k) is the number of modes that
are averaged over to calculate P(k) (i.e. the number of points in
3D k space with k − ∆k/2 < k < k + ∆k/2 where ∆k is the shell
width), and W(k) is a power spectrum attenuation factor for large
k caused by the smoothing of the map via the instrumentation
beam. The ∆k we use depends on our use case: for maximum
precision we divide the total k range by a number of intervals
equal to half the number of pixels across the length of the map,
resulting in∆k = 0.044, 0.040, 0.037, 0.035 Mpc−1 from lower to
higher redshift. For lower noise we use wide bins which are more
appropriate for an actual instrument use case, ∆k = 0.3 Mpc−1.
As the thermal noise for each pixel in the instrument is assumed
to follow a purely random white noise Gaussian, the thermal
noise power spectra is a constant as described in Eq. (C.2):

Pn(k) =
σ2

pix/tpix

(Jy sr−1)2

Vvox

Mpc3 , (C.2)

where σpix is the sensitivity per pixel per frequency slice, tpix is
observing time, and Vvox is the comoving volume covered by
a voxel. σpix/t

1/2
pix , the survey sensitivity per pixel in units of

Jy sr−1, is described for EoR-Spec in Table 1 of Chung et al.
(2020) (2.2 × 104, 1.2 × 104, 6.2 × 103, 3.9 × 103 for 3.42 < z <
3.87, 4.14 < z < 4.76, 5.34 < z < 6.31, 6.75 < z < 8.27 re-
spectively), making the fractional term a constant. This assumes
fixed observing conditions, notably a 45 degree observing angle
with 0.4mm precipitable water vapour.

As Nmodes(k,∆k) is equivalent to the number of Fourier-
transformed voxels in a thin shell at radius k (with width ∆k)
in 3D k space, we calculated the volume of this shell via Eq.
(C.3) (Li et al. 2016):

Nmodes(k,∆k) = 4πk2∆k n(k)

= 4πk2∆k
(

2π
L1

2π
L2

2π
L3

)−1 1
Mpc3

= 4πk2∆k
Vsurv/8π3

Mpc3 =
k2∆k
4π2

Vsurv

Mpc3 ,

(C.3)

where n(k) is the number density of voxels, L1,2,3 are the comov-
ing dimensions of the cube in Mpc, and Vsurv is the comoving
volume of the whole survey in Mpc3. Larger k bins result in this
term being larger by an approximate factor of 10, and thus give
a smaller error by an approximate factor of 3. However, Chung
et al. (2020) note that we are limited by instrument resolution
for high k modes, which truncates k values past kδν = π/rcom (the
spatial frequency corresponding to the smallest side length of a
voxel, equivalent to the map pixel length). This corresponds to
shells where we miss several k modes (as in Fig. 6). The altered
expression is given by Eq. (C.4):

Nmodes(k,∆k) =
min(k, kδν )k∆k

4π2

Vsurv

Mpc3 . (C.4)

Finally the instrument attenuation factor, W(k), is described as
in Eq. (C.7):

W(k) = e−k2σ2
⊥

∫ 1

0
e−k2(σ2

∥
−σ2

⊥)µ2
dµ, (C.5)

σ∥ =
c

H(z)
∆νb(1 + z)
2.355νobs

, (C.6)

σ⊥ =
Dangular(z)∆θbeam

2.355
, (C.7)

where ∆νbeam is the frequency width of a slice (the spectral ele-
ment of a beam), νobs is the frequency of [CII] at a given redshift,
and Dangular(z)∆θbeam is the size of a voxel on map scale in Mpc.
By combining all of these, we calculated σ(k), the effective sen-
sitivity limit σ(k)/W(k), and the effective S/N P(k)/σ(k).

Appendix D: Mass and luminosity function fit
parameters

This section has the Schechter fit parameters for the mass and lu-
minosity functions used, according to Eqs. (17) and (18) given in
Sect. 4.2. This information is stored in Tables D.1 and D.3. For
the various fits we used in Fig. 13, we include the fit parameters
in Table D.2. For ease of least-squares fitting, we used the log-
arithmic form of the equations (Eqs. D.1 and D.2), so the tables
store appropriate parameters in 10X format.

log10(Φ(M))d log10(M) = log10(Φ0) − α[log10(M) − log10(Mc)]

− log10(e)
(

10log10(M)

10log10(Mc)

)
, (D.1)

log10(Φ(L))d log10(L) = log10(Φ0) − α[log10(L) − log10(Lc)]

− log10(e)
(

10log10(L)

10log10(Lc)

)
. (D.2)

Table D.1: Mass Schechter function fit parameters.

Fit Φ0 α Mc

COSMOS 2020 3.42 < z < 3.87 10−3.68 0.46 1010.83

COSMOS 2020 4.14 < z < 4.76 10−3.70 0.46 1010.46

COSMOS 2020 5.34 < z < 6.31 10−4.22 0.46 1010.14

COSMOS 2020 6.75 < z < 8.27 10−4.52 0.46 1010.18

FARMER LP Fit 3.42 < z < 3.87 10−2.83 0.35 1010.40

FARMER LP Fit 4.14 < z < 4.76 10−3.67 0.52 1010.71

FARMER LP Fit 5.34 < z < 6.31 10−3.32 -0.03 1010.01

FARMER LP Fit 6.75 < z < 8.27 10−5.17 0.46 1011.39

Notes. ‘COSMOS 2020’ fit parameters were taken from Weaver et al.
(2023).

Table D.2: Luminosity Schechter function fit parameters (as
used in Fig. 13 only).

Fit Φ0 α Lc

Actual 10−2.80 0.26 108.94

Underestimate 10−2.71 -0.003 108.79

Overestimate 10−3.96 0.94 109.67

Similar 10−2.92 0.19 108.98

Notes. These fit parameters were applied to the DL14 Entire [CII] lu-
minosity function at 3.42 < z < 3.87.
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Table D.3: Luminosity Schechter function fit parameters.

Fit Φ0 α Lc

FARMER LP m1 Fit 3.42 < z < 3.87 10−2.69 0.45 109.01

FARMER LP m1 Fit 4.14 < z < 4.76 10−2.30 -1.39 108.28

FARMER LP m1 Fit 5.34 < z < 6.31 10−3.06 0.04 108.63

FARMER LP m1 Fit 6.75 < z < 8.27 10−4.88 0.60 109.65

FARMER LP m2 Fit 3.42 < z < 3.87 10−2.54 0.06 108.84

FARMER LP m2 Fit 4.14 < z < 4.76 10−2.11 0.37 108.52

FARMER LP m2 Fit 5.34 < z < 6.31 10−3.64 -0.32 108.83

FARMER LP m2 Fit 6.75 < z < 8.27 10−3.84 -0.71 108.74

FARMER LP m3 Fit 3.42 < z < 3.87 10−1.71 -0.73 108.41

FARMER LP m3 Fit 4.14 < z < 4.76 10−1.93 -0.93 108.28

FARMER LP m3 Fit 5.34 < z < 6.31 10−4.62 0.56 109.65

FARMER LP m3 Fit 6.75 < z < 8.27 10−4.19 -0.41 108.92

FARMER LP m4 Fit 3.42 < z < 3.87 10−1.69 -0.02 108.52

FARMER LP m4 Fit 4.14 < z < 4.76 10−1.84 -0.26 108.36

FARMER LP m4 Fit 5.34 < z < 6.31 10−2.65 -1.54 108.22

FARMER LP m4 Fit 6.75 < z < 8.27 10−3.99 -1.39 108.58

FARMER LP DL14 Entire Fit 3.42 < z < 3.87 10−2.80 0.26 108.94

FARMER LP DL14 Entire Fit 4.14 < z < 4.76 10−2.98 0.23 108.83

FARMER LP DL14 Entire Fit 5.34 < z < 6.31 10−3.87 0.65 108.96

FARMER LP DL14 Entire Fit 6.75 < z < 8.27 10−4.93 0.44 1010.03

FARMER LP DL14 Starburst Fit 3.42 < z < 3.87 10−3.02 0.50 109.11

FARMER LP DL14 Starburst Fit 4.14 < z < 4.76 10−2.87 0.15 108.84

FARMER LP DL14 Starburst Fit 5.34 < z < 6.31 10−3.87 0.52 109.01

FARMER LP DL14 Starburst Fit 6.75 < z < 8.27 10−10.75 0.68 1017.86

FARMER LP Si15 Fit 3.42 < z < 3.87 10−2.90 0.45 108.94

FARMER LP Si15 Fit 4.14 < z < 4.76 10−3.13 0.48 108.96

FARMER LP Si15 Fit 5.34 < z < 6.31 10−3.01 -0.42 108.37

FARMER LP Si15 Fit 6.75 < z < 8.27 10−11.45 0.78 1017.61

FARMER LP Sc20 Fit 3.42 < z < 3.87 10−3.40 0.52 109.24

FARMER LP Sc20 Fit 4.14 < z < 4.76 10−4.12 0.68 109.72

FARMER LP Sc20 Fit 5.34 < z < 6.31 10−4.28 0.58 109.10

FARMER LP Sc20 Fit 6.75 < z < 8.27 10−9.41 0.52 1017.88

FARMER LP Ro22 Fit 3.42 < z < 3.87 10−3.20 0.46 109.21

FARMER LP Ro22 Fit 4.14 < z < 4.76 10−3.76 0.59 109.52

FARMER LP Ro22 Fit 5.34 < z < 6.31 10−4.27 0.77 109.18

FARMER LP Ro22 Fit 6.75 < z < 8.27 10−9.34 0.48 1018.52
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