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LAGRANGIANS, SO(3)-INSTANTONS AND
MIXED EQUATION

Aliakbar Daemi, Kenji Fukaya, and Maksim Lipyanskiy

Abstract. The mixed equation, defined as a combination of the anti-self-duality equa-
tion in gauge theory and Cauchy–Riemann equation in symplectic geometry, is stud-
ied. In particular, regularity and Fredholm properties are established for the solutions
of this equation, and it is shown that the moduli spaces of solutions to the mixed
equation satisfy a compactness property which combines Uhlenbeck and Gormov
compactness theorems. The results of this paper are used in a sequel to study the
Atiyah–Floer conjecture.
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1 Introduction

The Cauchy–Riemann equation and the anti-self-duality equation provide two im-

portant geometric partial differential equations. For any Riemann surface S and an

almost complex manifold M , we may define the CR equation on the space of maps

from S to M . In the case that the target manifold M is a symplectic manifold,

http://crossmark.crossref.org/dialog/?doi=10.1007/s00039-024-00677-8&domain=pdf


660 A. DAEMI ET AL. GAFA

the moduli of solutions of this equation admits a nice compactification known as

stable map compactification. Such moduli spaces have been the essential ingredient

in the development of various important tools in symplectic topology. For instance,

Lagrangian Floer homology, which is a homology group associated to a pair of La-

grangians in a symplectic manifold M , is defined using the solutions of the CR equa-

tion for the space of maps from the strip S = [−1,1] × R with Lagrangian boundary

condition [Flo882, Oh93, F+091, F+092]. Given a vector bundle V over a Rieman-

nian 4-manifold X , the ASD equation can be defined on the space of connections

on the vector bundle V . The moduli of solutions to this equation play a key role in

the definition of Donaldson invariants [Don90, DK90] and instanton Floer homology

[Flo881, Don02] which are respectively powerful invariants of 4- and 3-manifolds.

Atiyah–Floer conjecture states that instanton Floer homology and Lagrangian

Floer homology are related to each other (see [Ati88, Flo881]). More specifically,

the instanton Floer homology of a 3-manifold is isomorphic to Lagrangian Floer

homology of appropriate Lagrangians in the space M of flat connections on a vector

bundle over a Riemann surface. One motivation for this conjecture is due to a relation

between the ASD and CR equations. In fact, the CR equation with the target space

M can be regarded as an adiabatic limit of the ASD equation (see [Ati88]). This

observation was used in the remarkable work [DS94] to prove an instance of the

Atiyah–Floer conjecture for 3-manifolds which are mapping tori. In this paper and

its companion, we follow a different approach toward the Atiyah–Floer conjecture.

We study another geometric PDE, called the mixed equation, which is defined by

combining the CR and ASD equations in the third author’s unpublished work [Lip14].

In the sequel, we use the results of the current paper on the analytical properties of

the mixed equation to prove the generalization of [DS94] for admissible bundles on

arbitrary 3-manifolds.

Mixed equation. Suppose X is an oriented 4-manifold with boundary γ × Σ where

Σ is a possibly disconnected closed Riemann surface and γ is an oriented connected

1-manifold. Thus, γ is diffeomorphic to either S1 or R. Suppose V is an SO(3)-bundle

over X . For each connected component Σ0 of Σ, we require that the restriction of

V to γ × Σ0 is the pull-back of the non-trivial SO(3)-bundle over Σ0. In particular,

the restriction of V to γ × Σ is the pull-back of an SO(3)-bundle F on Σ. We

fix a Riemannian metric on X such that the restriction of the metric to a collar

neighborhood of the boundary is given by

ds2 + dθ2 + gΣ, (1.1)

for a fixed metric gΣ on Σ. Here we identify a collar neighborhood of the boundary

of X with (−1,0] × γ × Σ, and s, θ are respectively the coordinates on (−1,0], γ.

Suppose A(Σ, F ) denotes the space of connections on F . This space is an affine

Banach space after Banach completion, and the automorphisms of F acts on it by

taking pullback. The moduli space M(Σ, F ) is the quotient of flat connections in

A(Σ, F ) by the action of determinant one automorphisms of F . The Hodge operator
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∗2, defined using the conformal structure of Σ, acts on the space of 1-forms and

it gives rise to complex structures on A(Σ, F ) and M(Σ, F ). We denote the latter

complex structure on M(Σ, F ) by J∗. Define

L(Σ, F ) = {(α, [β]) ∈ A(Σ, F ) × M(Σ, F ) | α is flat and represents the class [β]}.

The spaces A(Σ, F ) and M(Σ, F ) admit symplectic forms Ω and ωfl, and L(Σ, F )

defines a Lagrangian correspondence from A(Σ, F ) to M(Σ, F ). Motivated by this,

L(Σ, F ) is called the matching Lagrangian correspondence.

Suppose S is a compact oriented Riemann surface whose boundary is

∂S = η1 ∪ · · · ∪ ηk ∪ −γ, (1.2)

where ηi is a connected 1-manifold and −γ denotes γ with the reverse orientation.

Throughout the paper, we use a similar notation to indicate reversing orientation on

a manifold. For each boundary component ηi of S, we fix a Lagrangian submanifold

Li of the moduli space of flat connections M(Σ, F ). We write L for the collection

(L1, . . . ,Ls,L(Σ, F )).

Following [Lip14], the mixed equation is associated to any quintuple of the form

(X, V, S, M(Σ, F ),L). (1.3)

A pair of a connection A on the bundle V and a map u : S → M(Σ, F ) is a solution

of the mixed equation if it satisfies the equations

{
F +(A) = 0,

∂J∗
u = 0,

(1.4)

and the boundary and matching conditions

{
u(x) ∈ Li x ∈ ηi,

(A|{x}×Σ, u(x)) ∈ L(Σ, F ) x ∈ γ.
(1.5)

The term F +(A) in (1.4) is the self-dual part of the curvature FA of the connec-

tion A. That is to say, the first equation requires that A satisfies the ASD equation,

which is also known as the instanton equation. The holomorphic curve equation

∂J∗
u = 0 in (1.4) is defined using the conformal structure on S and the complex

structure J∗ on M(Σ, F ). More generally, we may define the mixed equation when

M(Σ, F ) is replaced by an arbitrary symplectic manifold (M, ω) with a compatible

almost complex structure J , and L(Σ, F ) is replaced by a canonical Lagrangian cor-

respondence L from A(Σ, F ) to M (see Definition 2.4). We then call (X, V, S, M,L) a

quintuple, where L is the data of the canonical Lagrangian correspondence L and the

Lagrangians Li ⊂ M associated to the boundary component ηi of S. A quintuple of

the special form in (1.3) is called a matching quintuple. See Sect. 2 for more details.
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Regularity. The solutions of the mixed equation enjoy regularity properties similar

to those of the ASD equation and the Cauchy–Riemann equation. That is to say,

if (A, u) is a solution of the mixed equation satisfying some initial regularity, then

(A, u) is C∞ smooth. The precise statement of regularity requires some care because

the mixed equation is invariant with respect to automorphisms of the SO(3)-bundle

V , and we may obtain a non-smooth solution by pulling back A using a non-smooth

automorphism of V . To avoid this issue, we assume that the connection A of the

mixed pair (A, u) is in Coulomb gauge with respect to a smooth connection A0 on

V , which means that it satisfies

d∗
A0

(A − A0) = 0, ∗(A − A0)|∂X = 0. (1.6)

Moreover, since regularity is a local phenomenon, we assume that (A, u) is a solution

to the mixed equation associated to the quintuple

Q(r) := (D−(r) × Σ, D−(r) × F, D+(r), M,L). (1.7)

Let H+ and H− denote the half planes s ≥ 0 and s ≤ 0 in the (s, θ) plane. Then

D+(r) ⊂ H+, D−(r) ⊂ H− in (1.7) are respectively the open subspaces Br(0) ∩ H+,

Br(0) ∩ H− with Br(z) being the ball of radius r centered at the point z ∈ R2. For

the statement of our regularity result, we may work with an arbitrary symplectic

manifold M and a canonical Lagrangian correspondence L from A(Σ, F ) to M .

Theorem 1. Suppose p > 2 and (A, u) is an Lp
1 solution of the mixed equation as-

sociated to Q(r). Suppose A satisfies (1.6) with respect to a smooth connection A0.

Then (A, u) is smooth.

Since (A, u) is in Lp
1, a priori we can only guarantee that A|{x}×Σ is an Lp con-

nection for any x ∈ γ using the Trace Theorem for Sobolev spaces. Thus, we need to

take Lp completion of A(Σ, F ) to make sense of the second condition in (1.5). This

in turn implies that, we are forced to define the space of flat connections in A(Σ, F )

in the weak sense as in [Weh041].

Theorem 1 can be used to prove regularity for solutions (A, u) of the mixed equa-

tion for more general quintuples. By picking an appropriate smooth connection A0

which is close enough to A in the Lp
1 norm, we may assume that A is in the Coulomb

gauge with respect to A0 after applying a gauge transformation of the bundle V .

Then Theorem 1 can be used to prove regularity of A and u in a neighborhood of

the boundary components γ × Σ of X and γ of S. Then standard regularity of the

solutions of ASD equation and holomorphic curve equation can be employed to show

interior regularity of A and u.

There is a sequential version of Theorem 1 which shall be useful for our purposes.

Theorem 2. Suppose p > 2 and {(Ai, ui)} is a sequence of Lp
1 solutions of the mixed

equation associated to Q(r) which is Lp
1-convergent to (A, u). Suppose A0 is a smooth

connection on D−(r) × F and Ai is in Coulomb gauge with respect to A0. Then

(Ai, ui) is C∞ convergent to (A, u).
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Compactness. Solutions of the mixed equation for the matching quintuple satisfies a

compactness property which generalizes the Uhlenbeck compactness for the solutions

of ASD equation [Uhl821, Uhl822] and the Gromov compactness for holomorphic

curves in the symplectic manifold M(Σ, F ) [Gro85].

Theorem 3. Suppose q is a matching quintuple as in (1.3). Then, there is a constant

� such that the following holds. Suppose {(Ai, ui)} is a sequence of smooth solutions

of the mixed equation associated to q such that

||FAi
||2L2(X) + ||dui||

2
L2(S) ≤ κ (1.8)

for a fixed constant κ. Then there are

(i) a subsequence {(Aπ
i , uπ

i )} of {(Ai, ui)},

(ii) a solution of the mixed equation (A0, u0) for the quintuple q,

(iii) finite sets σ− ⊂ int(X), σ∂ ⊂ γ and σ+ ⊂ S \ γ,

such that the following holds.

(i) The pair (A0, u0) satisfies the energy bound

||FA0 ||2L2(X) + ||du0||2L2(S) ≤ κ.

If any of the sets σ−, σ∂ and σ+ is nonempty, then the above inequality can

be improved by subtracting � from the right hand side.

(ii) uπ
i is C∞-convergent to u0 on any compact subspace of S \ (σ+ ∪ σ∂).

(iii) There are gauge transformations gπ
i defined over X \ (σ∂ × Σ ∪ σ−) such that

(gπ
i )∗Aπ

i is C∞ convergent to A0 on any compact subspace of X \ (σ∂ × Σ ∪

σ−).

An important ingredient in the proof Theorem 3 is an a priori estimate in Sect. 4.1

which asserts that if we have a solution (A, u) of the mixed equation satisfying the

L2 bound in (1.8) for a constant κ less than �, then for an appropriate choice of p,

the Lp
1 norm of (A, u) can be controlled. Another important input for Theorem 3 is a

removability of singularity result in Sect. 4.2, which is the analogue of corresponding

result for the solutions of the ASD and CR equations.

Theorem 4. Let (A, u) be a solution of the mixed equation for the quintuple

((D−(r) \ {0}) × Σ, (D−(r) \ {0}) × F, D+(r) \ {0},M(Σ, F ),L(Σ, F ))

such that

||FA||2L2(X) + ||du||2L2(S) < ∞.

Then the followings hold.

(i) There exists a gauge transformation g over (D−(r) \ {0}) × Σ such that g∗A

extends to a smooth connection Ã on D−(r) × Σ.
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(ii) u can be extended to a smooth map ũ : D+(r) → M(Σ, F ).

In particular, (Ã, ũ) is a solution of the mixed solution associated to the quintuple

(D−(r) × Σ, D−(r) × F, D+(r),M(Σ, F ),L(Σ, F )).

Remark 1.9. Theorem 3 asserts that outside a set of bubble points, the sequence

{(Ai, ui)}, after passing to a subsequence and modulo the action of the gauge group,

is convergent on the compact subspaces. Moreover, for each bubble point, a cer-

tain amount of energy is lost, which is not smaller than a fixed number �. A priori,

� depends only on the quintuple q. Once we obtain the compactness and remov-

ability of singularity results, one can use a standard argument (see, for example,

[DK90, Sect. 4.4.3]) using the mixed Chern–Simons functional introduced in [DFL21,

Sect. 5.2] to see that � can be assumed to be 4π2. Since we do not need this more

refined claim, we will not discuss the details in this paper.

Fredholm theory. The moduli spaces of the solutions of the mixed equation generi-

cally are expected to be finite dimensional smooth manifolds once appropriate decay

conditions are prescribed on the non-compact ends of X and S. The routine ap-

proach to achieve this is to establish a Fredholm theory for the linearization of the

mixed equation. Fredholm theory of the linearized operator can be turned into a

local problem by a cut and paste method. Given the local nature of this property,

we focus on the special case of the mixed equation associated to a cylinder quintuple

cI := (Y × I, E × I, [0,1] × I, M,{L, L}), (1.10)

where I is an open interval in R, Y is a compact Riemannian 3-manifold with

boundary Σ, M is a symplectic manifold, L is a canonical Lagrangian correspondence

from A(Σ, F ) to M and L is a Lagrangian in M . The assumption on the topological

types of the bundles imply that Σ has even number of connected components. The

Riemannian metric on Y induces the product metric on Y × I .

In [DFL21], we need Fredholm property for a version of the mixed equation which

is defined using domain dependent almost complex structures. Thus, we slightly

generalize our choice of almost complex structure in this part to address this point

needed for the follow up paper. Let {Js,θ}(s,θ)∈[0,1]×I be a family of compatible almost

complex structures on M . The variable θ denotes the coordinate on the interval I

and s denotes the coordinate on the factor [0,1] of the region [0,1] × I . We also

orient Y × I using the volume form dvolX = dvolY ∧ dθ. Using the metric and the

orientation on Y × I , we define the first equation in (1.4), and the second part of

the mixed equation is given by the CR equation defined with respect to the domain

dependent almost complex structures Js,θ.

Given a smooth mixed pair (A, u) associated to cI , we may form an operator

D(A,u) which is called the mixed operator. If (A, u) is the solution of the mixed

equation, then the local behavior of the moduli of solutions to the mixed equation

around (A, u) is governed by the mixed operator D(A,u). For any integer k ≥ 1, the
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linearization operator can be regarded as a bounded linear map with the domain

Ek
(A,u)(I) consisting of pairs (ζ, ν) where

ζ ∈ L2
k(Y × I,Λ1 ⊗ E), ν ∈ L2

k([0,1] × I, u∗TM), (1.11)

such that

∗ζ|Σ×I = 0, (ζ|Σ×{θ}, ν(0, θ)) ∈ T L, ν(1, θ) ∈ TL. (1.12)

To be a bit more detailed, the middle condition, called the matching condition, asserts

that (ζ|Σ×θ, ν(0, θ)) belongs to the tangent space of L at the points (A|Σ×{θ}, u(0, θ))

for any θ. (See Sect. 5 for an elaboration on this condition, especially in the case

that k = 1.) Similarly, the last condition, called the boundary condition, implies that

for any θ, the vector ν(1, θ) is tangent to the Lagrangian L at u(1, θ). The target of

D(A,u) consists of triples (μ, ξ, z) such that

μ ∈ L2
k−1(Y × I,Λ+ ⊗ E), ξ ∈ L2

k−1(Y × I, E), z ∈ L2
k−1([0,1] × I, u∗TM).

(1.13)

The map D(A,u) is a degree one differential operator and an explicit formula for this

operator is given in Sect. 5. This operator is defined by linearizing the mixed equation

and then including a component that is related to the first equation in (1.6).

We can also consider the formal adjoint D∗
(A,u) of D(A,u). The domain of D∗

(A,u),

denoted by Kk
(A,u), consists of triples (μ, ξ, z) as in (1.13) where k −1 is replaced with

k, and the following additional conditions hold. Since Y × I is equipped with the

product metric, the self-dual form μ has the form 1
2(dθ ∧ b − ∗3b) where b is a section

of the pullback of T ∗Y ⊗ E to Y × I . We have the following additional requirements

on (μ, ξ, z):

∗b|Σ×I = 0, (b|Σ×{θ}, z(0, θ)) ∈ T L, z(1, θ) ∈ TL. (1.14)

The target of the adjoint operator D∗
(A,u) consists of tuples as in (1.11), where k is

replaced with k − 1. By definition, D∗
(A,u) is the unique operator which satisfies

〈D∗
(A,u)(μ, ξ, z), (ζ, ν)〉L2 = 〈(μ, ξ, z),D(A,u)(ζ, ν)〉L2 , (1.15)

for any (μ, ξ, z) ∈ Kk
(A,u) and any smooth (ζ, ν) where ζ is compactly supported in

the interior of Y × I and ν is compactly supported in the interior of [0,1] × I . As it

is explained in more details in Sect. 5, D∗
(A,u) essentially has the same form as D(A,u).

Theorem 5. For any open interval J that its closure is a compact subset of I the

following holds.

(i) Suppose (ζ, ν) ∈ E1
(A,u)(I) and D(A,u)(ζ, ν) is in L2

k−1. Then (ζ, ν) ∈ Ek
(A,u)(J).

Moreover, there is a constant C, independent of (ζ, ν), such that

||(ζ, ν)||L2
k

(J) ≤ C
(
||D(A,u)(ζ, ν)||L2

k−1
(I) + ||(ζ, ν)||L2(I)

)
. (1.16)



666 A. DAEMI ET AL. GAFA

Similarly, suppose (μ, ξ, z) ∈ K1
(A,u)(I) and D∗

(A,u)(μ, ξ, z) is in L2
k−1. Then

(μ, ξ, z) ∈ Kk
(A,u)(J). Moreover, there is a constant C, independent of (μ, ξ, z),

such that

||(μ, ξ, z)||L2
k

(J) ≤ C
(
||D∗

(A,u)(μ, ξ, z)||L2
k−1

(I) + ||(μ, ξ, z)||L2(I)

)
. (1.17)

(ii) Suppose (μ, ξ, z) is as in (1.13) for k = 1, and there is a constant κ such that

∣∣〈(μ, ξ, z),D(A,u)(ζ, ν)〉
∣∣ ≤ κ||(ζ, ν)||L2(I)

for any smooth (ζ, ν) in E1
(A,u)(I) with compact support. Then (μ, ξ, z) ∈

K1
(A,u)(J). Moreover, there is a constant C, independent of (μ, ξ, z), such that

||(μ, ξ, z)||L2
1(J) ≤ C

(
||D∗

(A,u)(μ, ξ, z)||L2(I) + ||(μ, ξ, z)||L2(I)

)
. (1.18)

Similarly, suppose (ζ, ν) is as in (1.11) for k = 0, and there is a constant κ

such that
∣∣∣〈(ζ, ν),D∗

(A,u)(μ, ξ, z)〉
∣∣∣ ≤ κ||(μ, ξ, z)||L2(I)

for any smooth (μ, ξ, z) in K1
(A,u)(I) with compact support. Then (ζ, ν) ∈

E1
(A,u)(J). Moreover, there is a constant C, independent of (ζ, ν), such that

||(ζ, ν)||L2
1(J) ≤ C

(
||D(A,u)(ζ, ν)||L2(I) + ||(ζ, ν)||L2(I)

)
. (1.19)

Although Theorem 5 does not explicitly assert Fredholmness of any mixed oper-

ator, it is the key ingredient to show that mixed operators are Fredholm in various

contexts. For instance, it is straightforward to use this theorem to show that the

mixed operator is Fredholm if X and S are compact. (The definition of the mixed

operator for cylinder quintuples adapts to more general quintuples in the obvious

way.) In the sequel paper, we use Theorem 5 to obtain Fredholmness of the mixed

operator in a case that X and S are non-compact but appropriate decay conditions

are fixed on the non-compact ends.

Outline and conventions. The precise definition of a canonical Lagrangian corre-

spondence from A(Σ, F ) to a symplectic manifold is given in Sect. 2. We also review

some technical results about such Lagrangians and the special case of the matching

Lagrangian correspondence. The proof of the regularity and compactness results are

respectively given in Sects. 3 and 4. Our treatment here is essentially the same as

the third author’s unpublished work [Lip14] with some minor modifications, most of

them in exposition. Section 5 of the paper is devoted to the proof of Theorem 5 on

Fredholm property of the mixed equation. In Appendices A and B, we collect some

mostly standard analytical results, which are used throughout the paper.

The mixed equation has two predecessors in the existing literature. This equation

is closely related to the ASD equation with Lagrangian boundary conditions intro-

duced and developed in [Weh051, Weh052, SW08]. In fact, the method of the current
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paper is inspired by these works and our treatment owes a great deal on these works

on the analytical aspects of the ASD equation with Lagrangian boundary condition.

An older relative of the mixed equation is introduced in [Fuk98] by the second au-

thor, which is defined using the ASD equation with respect to a special degenerate

metric. In fact, the mixed equation can be regarded as a limiting version of such

equations. Although compactness and removability of singularity are already estab-

lished for such equations [Fuk98], the Fredholm property seems to be a technically

more difficult problem.

Throughout the paper, we use the following conventions to denote SO(3)-bundles

and connections on them unless otherwise stated. For any closed oriented 2-manifold

Σ, there is a unique (up to isomorphism) SO(3)-bundle on Σ, whose restriction to

each connected component of Σ is not trivializable. This bundle is denoted by F .

Connections on this bundle are denoted by greek letters such as α and β. We write

E for a typical SO(3)-bundle on a 3-manifold Y . A typical connection on this bundle

is denoted by B. Finally, an SO(3)-bundle on a 4-manifold is denoted by V , and a

typical notation for a connection on V is A.

The Euclidean space R3 with the standard cross product defines a Lie algebra,

which is equivariant with respect to the standard SO(3) action. This SO(3)-Lie al-

gebra is isomorphic to so(3), linear space of skew-adjoint endomorphisms of R3, and

su(2), the linear space of trace free skew-Hermitian endomorphisms of C2. Conju-

gation defines the SO(3) action on so(3) and su(2). Throughout this paper, we use

this isomorphism to identify an SO(3) vector bundle V with the bundle of skew ad-

joint endomorphisms of V . In particular, the curvature of a connection on V can be

regarded as a 2-form with values in V .

Let tr : R3 × R3 → R be the bi-linear form given by −1
2 of the standard inner

product. Using the identification with su(2), this bi-linear form can be identified with

tr : su(2) × su(2) → R which maps a pair of a skew-Hermitian matrices A and B to

tr(AB). The bi-linear form tr induces a bi-liner form on sections of any SO(3)-vector

bundle V , which is denoted by the same notation. If α and β are two general k-forms

on a Riemannian manifold M with values in an SO(3) vector bundle V , we use

〈α, β〉 := −

∫

M
tr(α ∧ ∗M β) (1.20)

to define their inner products, where ∗M is the Hodge ∗-operator on M .

2 Symplectic manifolds and canonical Lagrangian correspondences

The space of all connections on F is an affine space modeled on Ω1(Σ, F ), the space

of 1-forms with values in F . This space admits a symplectic form given by

Ω(a, b) = −

∫

Σ
tr(a ∧ b), for a, b ∈ Ω1(Σ, F ).
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For p > 2, let Ap(Σ, F ) denote the completion of this affine space with respect to

the Lp norm. The symplectic form Ω clearly extends to Ap(Σ, F ). There is also an

action of a Banach Lie group Gp
1(Σ, F ) on Ap(Σ, F ). The Lie group SO(3) acts on

SU(2) by the conjugation action ad, and this action determines a fiber bundle on Σ

given an

Fr(F ) ×ad SU(2), (2.1)

where Fr(F ) denotes the framed bundle of F . Then Gp
1(Σ, F ) is the space of sections

g of this bundle such that ∇α0g has a finite Lp norm where ∇α0 is defined using

a smooth connection α0 on F . Any element of Gp
1(Σ, F ) is continuous and pulling

back connections with respect to the elements of Gp
1(Σ, F ) gives rise to an action of

Gp
1(Σ, F ) on Ap(Σ, F ). The symplectic form Ω is invariant with respect to this action.

The curvature of an element of Ap(Σ, F ) is not necessarily well-defined. However,

we can define the subspace Afl(Σ, F ) of connections in Ap(Σ, F ) which are weakly

flat (see [Weh041]). First fix a smooth flat connection α0. For a ∈ Lp(Σ,Λ1 ⊗ F ), the

Lp-connection α0 + a is an element of Afl(Σ, F ), if

∫

Σ
tr(a ∧ (dα0ψ − ψa)) = 0

holds for any smooth section ψ of the bundle F . This space is invariant with respect

to the action of Gp
1(Σ, F ) and determines a Banach submanifold of Ap(Σ, F ). Any

element of this space belongs to the orbit of a smooth flat connection (see [Weh041]).

We may form a neighborhood in Ap(Σ, F ) of a smooth connection α ∈ Afl(Σ, F ) by

taking connections of the form

g∗(α′ + ∗dα′ζ) (2.2)

where α′ is a smooth flat connection on Σ such that it satisfies the Coulomb gauge

fixing condition d∗
α(α′ − α) = 0, |α − α′| < ε, g ∈ Gp

1(Σ, F ) with ||∇αg||Lp < ε and

ζ ∈ Lp
1(Σ, F ) with ||∇αζ||Lp

1
< ε. The subspace ζ = 0 of this open set describes the

intersection with Afl(Σ, F ). The Hodge ∗-operator on Σ, denoted by ∗2, induces a

Gp
1(Σ, F )-invariant complex structure on Ap(Σ, F ). This complex structure is com-

patible with Ω and the induced metric on Ap(Σ, F ) is the standard one.

The quotient Afl(Σ, F )/Gp
1(Σ, F ) can be identified with the moduli space of flat

connections M(Σ, F ). The symplectic form Ω on Ap(Σ, F ) gives rise to the standard

symplectic structure ωfl on M(Σ, F ). The tangent space of M(Σ, F ) to the class of

a flat connection α can be identified with

H1(Σ;α) = {a ∈ Ω1(Σ, F ) | dαa = 0, d∗
αa = 0}. (2.3)

The complex structure ∗2 on Ap(Σ, F ) induces a ωfl-compatible complex structure

J∗ on H1(Σ;α).
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Definition 2.4. Suppose (M, ω) is a symplectic manifold. A Banach submanifold

L ⊂ Ap(Σ, F ) × M is called a canonical Lagrangian correspondence from Ap(Σ, F )

to M if it satisfies the following properties:

(i) L is invariant with respect to the action of the gauge group Gp
1(Σ, F ) on

Ap(Σ, F ) × M , where the gauge group acts trivially on the second factor.

(ii) The first component of any element of L belongs to Afl(Σ, F ).

(iii) L is isotropic with respect to (−Ω)⊕ω, i.e., if a and b are two tangent vectors

to L, then ((−Ω) ⊕ ω)(a, b) = 0.

(iv) L is co-isotropic with respect to (−Ω) ⊕ ω, i.e., if a is a tangent vector to

Ap(Σ, F ) × M at a point (α, x) and ((−Ω) ⊕ ω)(a, b) = 0 for any b ∈ T(α,x)L,

then a is tangent to L.

There is a correspondence between canonical Lagrangian correspondences from

Ap(Σ, F ) to M and Lagrangians in the (finite dimensional) symplectic manifold

M(Σ, F ) × M equipped with the symplectic form (−ωfl) × ω. Given any canoni-

cal Lagrangian correspondences from Ap(Σ, F ) to M , we may form a subspace of

M(Σ, F ) × M by taking the quotient L/Gp
1(Σ, F ). This subspace is in fact a La-

grangian in M(Σ, F )×M . This follows from the following standard lemma on Hodge

decomposition associated to twisted Laplace operators.

Lemma 2.5. Suppose k ≥ 0, q > 1 and α is a smooth flat connection on F . Then we

have the following splitting of L2
k(Σ,Λ1 ⊗ F ) into a sum of closed subspaces:

Lq
k(Σ,Λ1 ⊗ F ) = H1(Σ;α) ⊕ image(dα) ⊕ image(∗dα), (2.6)

where image(dα) and image(∗dα) are the images of the operators

dα : Lq
k+1(Σ, F ) → Lq

k(Σ,Λ1 ⊗ F ), ∗dα : Lq
k+1(Σ, F ) → Lq

k(Σ,Λ1 ⊗ F ).

Proof. This is a standard result which follows from the fact that the twisted laplacian

dαd∗
α + d∗

αdα : Lq
k+2(Σ,Λ1 ⊗ F ) → Lq

k(Σ,Λ1 ⊗ F )

is an elliptic operator with cokernel being H1(Σ;α). �

The splitting (2.6) in the case that q = p and k = 0 gives a splitting of the tangent

space of Ap(Σ, F ) at smooth elements of Afl(Σ, F ). The first two summands describe

the tangent space to Afl(Σ, F ). For any canonical Lagrangian correspondence L and

any z = (α, x) ∈ L, TzL contains image(dα) and is L2-orthogonal to image(∗dα).

Therefore, there is a subspace Vz of the finite dimensional symplectic vector space

H1(Σ;α) ⊕ TxM such that

TzL = Vz ⊕ image(dα) ⊂ Lp(Σ,Λ1 ⊗ F ) ⊕ TxM, (2.7)

where the domain of dα is Lp
1(Σ, F ). The definition of L is equivalent to say that Vz is

a Lagrangian subspace of H1(Σ;α)⊕TxM . Consequently, L/Gp
1(Σ, F ) is a Lagrangian
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submanifold of M(Σ, F ) × M . This presentation also gives a useful description for

the closure of (2.7) with respect to Lq norms with 1 < q < p: this closure given by

the same direct sum decomposition where dα should be a regarded as a map acting

on Lq
1(Σ, F ). In particular, we will use this in Sect. 5 in the case that q = 2.

Example 2.8. Let L(Σ, F ) be the following Banach submanifold of Ap(Σ, F ) ×

M(Σ, F ):

L(Σ, F ) = {(B, [B]) | B ∈ Afl(Σ, F )}.

This space is diffeomorphic to Afl(Σ, F ) and defines a canonical Lagrangian corre-

spondence from A(Σ, F ) to M(Σ, F ), which is called the matching Lagrangian cor-

respondence. The corresponding Lagrangian in M(Σ, F ) × M(Σ, F ) is the identity

Lagrangian correspondence form M(Σ, F ) to itself.

Let J be an almost complex structure on M compatible with the symplectic

form ω. This induces an almost complex structure J on Ap(Σ, F ) × M which acts on

(a, v) ∈ Lp(Σ,Λ1 ⊗ F ) ⊕ TxM as

J(a, v) = (− ∗2 a, Jv). (2.9)

For any z = (α, x) ∈ L, property (iii) of L implies that TzL ∩ J(TzL) is trivial. More-

over, (iv) implies that Vz and JVz generate the finite dimensional symplectic space

H1(Σ;α) ⊕ TxM . In particular, we have

TzL ⊕ J(TzL) = Lp(Σ,Λ1 ⊗ F ) ⊕ TxM.

The following lemma gives a suitable chart for the complex structure J in a neigh-

borhood of a point in L.

Lemma 2.10. Suppose L is a canonical Lagrangian correspondence from Ap(Σ, F ) to

a symplectic manifold M . Suppose an almost complex structure J on Ap(Σ, F )×M is

defined as in (2.9). Suppose Bp is the Banach space Lp
1(Σ, F ) ⊕ Rn−3χ(Σ)/2 where 2n

is the dimension of M . Then for any z = (α, x) ∈ L, there is an open neighborhood U

of the origin of Bp ⊕ Bp, and a diffeomorphism Φp from U onto some open subspace

of Ap(Σ, F ) × M with Φp(0) = z such that

(i) Φ−1
p (L) is the intersection of 0 ⊕ Bp with U ;

(ii) for any x ∈ L ∩ im(Φp), the pullback of the almost complex structure J(x) is

the standard complex structure

(v1, v2) → (−v2, v1);

(iii) if q > p, then Φp maps (Bq ⊕ Bq) ∩ U to (Aq(Σ, F ) × M) ∩ image(Φp).

Proof. We may assume that the connection α ∈ Afl(Σ, F ) is smooth. Let z̆ = ([α], x)

be obtained by projecting z to M(Σ, F ) × M . The quotient of L by Gp
1(Σ, F ) de-

termines a smooth submanifold L̆ of the finite dimensional manifold M(Σ, F ) × M ,
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which is in fact Lagrangian with respect to the symplectic form (−ωfl) × ω. Using

neighborhood theorems for Lagrangian submanifolds (of finite dimensional symplec-

tic manifolds), there is a chart

Φ̆ : Ŭ → M(Σ, F ) × M

such that Ŭ is an open neighborhood of the origin in R2n−3χ(Σ), Φ̆(0) = z̆, Φ̆−1(L̆)

is the intersection of Ŭ with {0} × Rn−3χ(Σ)/2 ⊂ Rn−3χ(Σ)/2 × Rn−3χ(Σ)/2. The pull

back of the complex structure on M(Σ, F ) × M , given as (− ∗2 a, Jv), determines a

complex structure on Ŭ , and we may pick Φ̆ such that for any point in Φ̆−1(L̆) this

complex structure is the standard one

(v1, v2) ∈ Rn−3χ(Σ)/2 × Rn−3χ(Σ)/2 → (−v2, v1).

The chart (Φ̆, Ŭ) can be used to define a chart for Ap(Σ, F ) × M(Σ, F ). Let

Φ̆ = (Φ̆1, Φ̆2) where Φ̆1 and Φ̆2 are respectively maps from Ŭ to M(Σ, F ) and M .

By shrinking the open set Ŭ , we may assume that the elements in the image of Φ̆1

are lifted to smooth elements of Afl(Σ, F ) which satisfy gauge fixing condition with

respect to the flat connection α. With a slight abuse of notation, this lift of Φ̆1 to a

map with target Afl(Σ, F ) is still denoted by Φ̆1. Define a map

Lp
1(Σ, F ) × Lp

1(Σ, F ) × Ŭ → Ap(Σ, F ) × M, (2.11)

as

(ζ, ξ, v) →

(
exp(ζ)∗Φ̆1(v) − ∗2

(
d

dt

∣∣∣∣
t=0

exp(ζ + tξ)∗(Φ̆1(v))

)
, Φ̆2(v)

)
.

By taking U to be a small enough neighborhood of the origin in Lp
1(Σ, F )×Lp

1(Σ, F )×

Ŭ and Φp being the restriction of (2.11), inverse function theorem allows us to obtain

the desired chart. �

3 Regularity

The main goal of this section is to prove Theorems 1 and 2 on regularity of solutions

of the mixed equation. For p > 2, suppose (A, u) is an Lp
1 solution of the mixed

equation for the quintuple Q(r) in (1.7), which we copy here again:

(X := D−(r) × Σ, V := D−(r) × F, S := D+(r), M,L). (3.1)

Here M is a symplectic manifold with a symplectic form ω and a compatible almost

complex structure J . The space L is a canonical Lagrangian correspondence from

Ap(Σ, F ) to M . The mixed equation for the pair (A, u) has the form

{
F +(A) = 0,
du
dθ − J(u)du

ds = 0.
(3.2)
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We write U∂(r) for the intersection of the half discs D+(r) and D−(r). We also

assume that A is in Coulomb gauge with respect to a smooth connection A0:

d∗
A0

(A − A0) = 0, ∗(A − A0)|U∂×Σ = 0. (3.3)

Then a more precise statement of Theorem 1 is given as follows.

Theorem 3.4. Any (A, u) as above is smooth.

The proof of Theorem 3.4 is performed in several steps where the regularity of

(A, u) is improved in each step. The proof is slightly more involved in the case that

p < 4. In this case, first we show that one can improve regularity by increasing the

value of p. Let {qi}0≤i≤N be an increasing finite sequence of real numbers such that

q0 = p, qN > 4 and

qi+1 =
2qi

4 − qi
, for 0 ≤ i ≤ N − 1. (3.5)

We shall show that if the assumptions of Theorem 3.4 hold for p = qi, then it also

holds for p = qi+1. In the case that p > 4, we shall show that one can obtain L
p/2
2

regularity from Lp
1 regularity. In the case that p > 2 and k ≥ 2, a similar argument

as above shows that if (A, u) is in Lp
k, then it also belongs to Lp

k+1. Section 3.1 is

devoted to the proof of these claims.

The following theorem is a more detailed version of Theorem 2 and its proof will

be discussed in Sect. 3.2.

Theorem 3.6. Any {(Ai, ui)}i is a sequence of smooth solutions of (3.2) which satisfy

(3.3). For p > 2, suppose (Ai, ui) is Lp
1 convergent to (A, u). Then (Ai, ui) is C∞

convergent to (A, u).

3.1 Proof of Theorem 1. Suppose (A, u) is an Lp
1 solution of (3.2) associated to

the quintuple Q(r) with 2 < p < 4 that satisfies (3.3) for a smooth connection A0.

Suppose A − A0 has the form

A − A0 = a + φds + ψdθ

with respect to the coordinate system on D−(r) × Σ. Since the connection A satisfies

the ASD equation, we have

d+
A0

(A − A0) = −F (A0)+ + Q(A − A0) (3.7)

where Q(A − A0) is defined to be the quadratic term −((A − A0) ∧ (A − A0))+.

We list some inequalities and identities here which will be used in various stages

of the proof. For any q < 4, Sobolev embedding implies that

||A − A0||
L

4q
4−q (X)

≤ C||A − A0||Lq
1(X).
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Since we have

4 − q

4q
+

1

q
=

8 − q

4q
,

the Hölder inequality gives

||Q(A − A0)||
L

4q
8−q
1 (X)

≤ C||A − A0||2Lq
1(X). (3.8)

Similarly, if we fix q ≥ 1, then for any positive integer k with qk > 4 there is a

constant Ck such that

||Q(A − A0)||Lq

k
(X) ≤ Ck||A − A0||2Lq

k
(X). (3.9)

For each (s, θ) ∈ D−(r), let β(s, θ) (respectively, β0(s, θ)) denote the restriction of A

(respectively, A0) to Σ × {(s, θ)}. In particular, we have β = β0 + a. Since β(0, θ) is

flat, we have

dβ0(0,θ)(β(0, θ) − β0(0, θ)) = −F (β0(0, θ)) − (β(0, θ) − β0(0, θ)) ∧ (β(0, θ) − β0(0, θ)).

(3.10)

We wish to use Lemma A.11 to improve regularity of the components φ and ψ

of A − A0 over D−(r′) with r′ < r. Let ρ : D−(r) → R≥0 be a compactly supported

function which is equal to 1 on D−(r′′) where r′ < r′′ < r. As the first step, note

that the second identity of the Coulomb gauge condition (3.3) implies that for any

ξ in Γc(D−(r) × Σ, V ), the space of compactly supported smooth sections of V over

X = D−(r) × Σ, we have

∫

X
〈ρ(A − A0), dA0ξ〉 =

∫

X
〈d∗

A0
(ρ(A − A0)), ξ〉

=

∫

X
〈R(∇ρ, A − A0), ξ〉. (3.11)

Here R(∇ρ, A − A0) is a bilinear expression in A − A0 and the derivative ∇ρ of ρ.

In particular, we observe that the Lp
1 norm of R(∇ρ, A − A0) is bounded by the Lp

1

norm of A − A0.

For any η in Γτ (D−(r) × Σ, V ), the space of sections of V over D−(r) × Σ with

vanishing restriction to U∂(r) × Σ, we have

∫

X
〈ρ(A − A0), d∗

A0
dA0(ηds)〉 = 2

∫

X
〈ρ(A − A0), d∗

A0
d+

A0
(ηds)〉

+

∫

X
〈ρ(A − A0),∗[F (A0), ηds]〉

= 2

∫

X
〈d+

A0
(ρ(A − A0)), d+

A0
(ηds)〉

+ 2

∫

Σ×U∂

tr(ρ(A − A0) ∧ d+
A0

(ηds))
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+

∫

X
〈ρ(A − A0),∗[F (A0), ηds]〉

= 2

∫

X
〈d+

A0
(ρ(A − A0)), dA0(ηds)〉

+

∫

X
〈∗[ρ(A − A0), F (A0)], ηds〉 (3.12)

where in the last identity we use the assumption on η that it vanishes on U∂ × Σ to

drop the boundary term. The identity in (3.7) and the inequality in (3.8) imply that

||d+
A0

(ρ(A − A0))||Lp1
1 (X) ≤ C(||A − A0||2Lp

1(X) + 1), (3.13)

where p1 = 4p
8−p . Identities (3.11) and (3.12) and the inequality in (3.13) allow us to

apply Lemma A.11 in the case that α = ρ(A − A0), k = 1, r = p1 and the vector field

σ equals ∂
∂s . This implies that

||ρφ||Lp1
2 (X) ≤ C(||A − A0||2Lp

1(X) + 1). (3.14)

In order to improve the regularity of ψ, let η ∈ Γν(D−(r) × Σ, V ) where

Γν(D−(r)×Σ, V ) is the space of sections of V over D−(r)×Σ with vanishing normal

covariant derivate on U∂ × Σ with respect to A0. Then

∫

X
〈ρ(A − A0), d∗

A0
dA0(ηdθ)〉 = 2

∫

X
〈ρ(A − A0), d∗

A0
d+

A0
(ηdθ)〉

+

∫

X
〈ρ(A − A0),∗[F (A0), ηdθ]〉

=

∫

X
〈ρ(A − A0),∗[F (A0), ηdθ]〉

+ 2

∫

X
〈d+

A0
(ρ(A − A0)), d+

A0
(ηdθ)〉

+ 2

∫

Σ×U∂

tr(ρ(A − A0) ∧ d+
A0

(ηdθ))

=

∫

X
〈∗[ρ(A − A0), F (A0)], ηds〉

+ 2

∫

X
〈d+

A0
(ρ(A − A0)), dA0(ηdθ)〉

+

∫

U∂

∫

Σ
tr(ρ(β − β0) ∧ dβ0η)dθ. (3.15)

By the Stokes theorem and (3.10), the last term can be rewritten as

−

∫

U∂

∫

Σ
tr(ρF (β0) ∧ η)dθ −

∫

U∂

∫

Σ
tr(ρ(β − β0) ∧ (β − β0) ∧ η)dθ. (3.16)
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As in (3.8), the quadratic term (β − β0) ∧ (β − β0), regarded as a 2-form on the

4-manifold X , satisfies

||(β − β0) ∧ (β − β0)||Lp1
1 (X) ≤ C||A − A0||2Lp

1(X). (3.17)

Thus, Lemma A.11 with σ = ∂
∂θ and the same α, k and r as in the previous case,

together with (3.13) and (3.17) gives

||ρψ||Lp1
2 (X) ≤ C(||A − A0||2Lp

1(X) + 1). (3.18)

Using Sobolev embedding theorem, we may assume that (3.14) and (3.18) hold if the

Lp1

2 norm on the left hand side is replaced with Lq1

1 where q1 = 2p
4−p .

For each (s, θ) ∈ D−(r), Coulomb gauge condition (3.3) implies that

||d∗
β0

a||Lp1
1 ({(s,θ)}×Σ) = ||∂A0

s φ + ∂A0

θ ψ||Lp1
1 ({(s,θ)}×Σ). (3.19)

We have

dA0(A−A0) = dβ0a+(dβ0φ−∂A0
s a)∧ds+(dβ0ψ −∂A0

θ a)∧dθ +(∂A0
s ψ −∂A0

θ φ)ds∧dθ,

where dβ0a denotes the exterior derivative of a in the Σ direction. This identity can

be used to show

||dβ0a||Lp1
1 ({(s,θ)}×Σ) ≤ C(||d+

A0
(A − A0)||Lp1

1 ({(s,θ)}×Σ) + ||∂A0

θ φ − ∂A0
s ψ||Lp1

1 ({(s,θ)}×Σ)).

(3.20)

Therefore, we can use Lemma A.26 and the inequalities (3.14) and (3.18) to show

||∇Σa||Lp1
1 (D−(r′′)×Σ) ≤C(||A − A0||2Lp

1(X) + 1). (3.21)

We may again assume that the same inequality holds if the Lp1

1 norm on the left

hand side is replaced with Lq1 norm. In particular, a belongs to the Sobolev spaces

Lp1

2 (Σ,Λ1 ⊗ Lp1(D−(r′′))) and Lq1

1 (Σ,Λ1 ⊗ Lq1(D−(r′′))).

Next, we improve regularity of ∂sa, ∂θa and u. Define p : D+(r′′) → Lp(Σ,Λ1 ⊗

F ) × M as

p(s, θ) = (a(−s, θ), u(s, θ)). (3.22)

Following (2.9), the almost complex structures J on M induces an almost complex

structure J on Lp(Σ,Λ1 ⊗ F ) × M given as (−∗2, J). Using the assumption p > 2 and

by decreasing the value of r if necessary, we may assume that p takes values in a

chart where the pullback of J has the special form given in Lemma 2.10. The ASD

and CR equations in (3.2) implies that

(∂θp − J(p)∂sp)(s, θ) = ((∂θa − ∗2∂sa)(−s, θ), (∂θu − Js,θ∂su)(s, θ))

= (
(
dβ0ψ − ∗2dβ0φ − [ψ + ψ0, a] + ∗2[φ + φ0, a] + F +

θ (A0)
)
(−s, θ),0),

(3.23)
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where φ0 and ψ0 are respectively the components of A0 in the s and θ directions

(that is A0 = β0 + φ0dθ + ψ0dθ) and F +
θ (A0) is the projection of 2F +(A0) to the

summand F ⊗ Λ1(Σ) ∧ dθ of F ⊗ Λ2(X). Using (3.14), (3.18) and an application of

Hölder inequality analogous to (3.8), we may conclude that the first entry of (3.23) is

in Lp1

1 (D−(r′′)×Σ), and hence in Lq1(D−(r′′)×Σ) by Sobolev embedding. Therefore,

∂θp− J(p)∂sp is an element of

Lp1

1

(
D−(r′′), Lp(Σ,Λ1 ⊗ F )

)
∩ Lq1

(
D−(r′′), Lq1(Σ,Λ1 ⊗ F )

)
.

Lemma 2.10 allows us to apply Proposition B.10 and conclude that p is in

Lq1

1 (D−(r′), Lq1(Σ,Λ1 ⊗ F )) and

||p||Lq1
1 (D−(r′),Lq1 (Σ,Λ1⊗F )) ≤ C

(
1 + ||A − A0||2Lp

1(X) + ||du||Lp(S)

)
. (3.24)

In summary, (A, u) is in Lq1

1 , and in fact the Lq1

1 norm of the restriction of (A, u)

to D−(r′) × Σ can be controlled using the inequalities in (3.14), (3.18), (3.21) and

(3.24). By iterating this process, we can prove a similar result where q1 is replaced

with qi of (3.5). In particular, we can reduce the proof of the regularity to the case

that p > 4.

The rest of the proof of regularity can be addressed in a similar way. For p > 4,

we may obtain (3.14), (3.18), (3.21) where p1 can be replaced with p because we can

use (3.9) with k = 1 in this case instead of (3.8). In particular, we obtain

φ, ψ ∈ Lp
2(D−(r′) × Σ, F ), a ∈ Lp

2(Σ,Λ1 ⊗ Lp(D−(r′′))). (3.25)

In the last step of the above proof where we improve the regularity of p, we

need to use Proposition B.4 instead of Proposition B.10 to conclude that p is in

L
p/2
2 (D−(r′), Lp(Σ,Λ1 ⊗ F )). This in addition to (3.25) implies that (A, u) is in L

p/2
2

(see (B.1)). Thus the proof of regularity is reduced to the show that if (A, u) is in

Lp
k with p > 2 and k ≥ 2, then (A, u) is in Lp

k+1. The proof of this claim follows the

same strategy. Following the first three steps of the above proof, we obtain

φ, ψ ∈ Lp
k+1(D−(r′) × Σ, F ), a ∈ Lp

k+1(Σ,Λ1 ⊗ Lp(D−(r′′))). (3.26)

In the last step of the proof, Proposition B.4 allows us to conclude that p ∈

Lp
2(D−(r′), Lp(Σ,Λ1 ⊗ F )). This complete the proof of smoothness of (A, u). In each

step of the proof, we can bound the given Sobolev norm of (A, u) over any region

D−(r′) × Σ with r′ < r using a polynomial function of ||A − A0||Lp
1(X) and ||du||Lp(S)

where the coefficients of this polynomial depend only on A0 and r′.

3.2 Proof of Theorem 2. The proof of Theorem 2 can be verified with a similar

argument as in the previous section. Given a sequence (Ai, ui) as in the statement

of Theorem 3.6, let

Ai − A0 = ai + φids + ψidθ.
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The instances of (3.7) for Ai and Aj imply that

d+
A0

(Ai − Aj) = Q(Ai − A0) − Q(Aj − A0) (3.27)

As an analogue of (3.8) and (3.9), we have

||Q(Ai − A0) − Q(Aj − A0)||
L

4q
8−q
1 (X)

≤ C||Ai − Aj ||Lq
1(X)(||Ai − A0||Lq

1(X) + ||Aj − A0||Lq
1(X)) (3.28)

for q < 4, and

||Q(Ai − Aj)||Lq

k
(X) ≤ C||Ai − Aj ||Lq

k
(X)(||Ai − A0||Lq

k
(X) + ||Aj − A0||Lq

k
(X)) (3.29)

when qk > 4 and k is a positive integer. Similarly, if βi(s, t) denotes the restriction

of A Σ × {(s, θ)}, then we have

dβ0(0,θ)(βi(0, θ) − βj(0, θ)) =(βj(0, θ) − β0(0, θ)) ∧ (βj(0, θ) − β0(0, θ))

− (βi(0, θ) − β0(0, θ)) ∧ (βi(0, θ) − β0(0, θ)). (3.30)

Now, by following the steps of the previous section and replacing (3.7), (3.10),

(3.8) and (3.9) with the above identities and inequalities, we can inductively show

that the Lp
1 convergence of (Ai, ui) can be improved to higher regularities. As the

starting point, (3.11) implies that for any ξ ∈ Γc(D−(r) × Σ, V ) we have
∫

X
〈ρ(Ai − Aj), dA0ξ〉 =

∫

X
〈R(∇ρ, Ai − Aj), ξ〉, (3.31)

(3.12) implies that for any η ∈ Γτ (D−(r) × Σ, V ) we have
∫

X
〈ρ(Ai − Aj), d

∗
A0

dA0(ηds)〉

=2

∫

X
〈d+

A0
(ρ(Ai − Aj)), dA0(ηds)〉 +

∫

X
〈∗[ρ(Ai − Aj), F (A0)], ηds〉,

(3.32)

and (3.15) and (3.16) imply that for any η ∈ Γν(D−(r) × Σ, V ) we have
∫

X
〈ρ(Ai − Aj),d

∗
A0

dA0(ηdθ)〉 =

∫

X
〈∗[ρ(Ai − Aj), F (A0)], ηds〉

+ 2

∫

X
〈d+

A0
(ρ(Ai − Aj)), dA0(ηdθ)〉

−

∫

U∂

∫

Σ
tr(ρ((βi − β0) ∧ (βi − β0) − (βj − β0) ∧ (βj − β0)) ∧ dβ0η)dθ.

(3.33)

From these identities we obtain

||ρ(φi − φj)||Lp1
2 (X) ≤ C||Ai − Aj ||Lp

1(X)(||Ai − A0||Lp
1(X) + ||Aj − A0||Lp

1(X) + 1), (3.34)
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and

||ρ(ψi − ψj)||Lp1
2 (X) ≤ C||Ai − Aj ||Lp

1(X)(||Ai − A0||Lp
1(X) + ||Aj − A0||Lp

1(X) + 1). (3.35)

Similar inequalities can be obtained for the terms ai −aj and the distance between

ui and uj . First note that we have

||d∗
β0

(ai − aj)||Lp1
1 ({(s,θ)}×Σ) = ||∂A0

s (φi − φj) + ∂A0

θ (ψi − ψj)||Lp1
1 ({(s,θ)}×Σ), (3.36)

and

||dβ0(ai − aj)||Lp1
1 ({(s,θ)}×Σ) ≤ C

(
||d+

A0
(Ai − Aj)||Lp1

1 ({(s,θ)}×Σ)+

+||∂A0

θ (φi − φj) − ∂A0
s (ψi − ψj)||Lp1

1 ({(s,θ)}×Σ)

)
,

(3.37)

as the counterparts of (3.19) and (3.20). Thus we obtain the following inequality

analogous to (3.21):

||∇Σ(ai − aj)||Lp1
1 (D−(r′′)×Σ) ≤C||Ai − Aj ||Lp

1(X)(||Ai − A0||Lp
1(X) + ||Aj − A0||Lp

1(X) + 1).

(3.38)

We define pi using ai and ui as in (3.22). Since p > 2, the maps pi are C0 convergent

to p associated to (A, u). Thus by decreasing the value of r if necessary and for

large enough values of i, the map pi takes values in a chart where the pullback of

J has the special form given in Lemma 2.10. We may simplify ∂θpi − J(pi)∂spi as

in (3.23). In particular, a similar argument as in the previous steps can be used to

show that the difference between the Lp(Σ,Λ1 ⊗ F )-coordinates of ∂θpi − J(pi)∂spi

and ∂θpj −J(pj)∂spj is given by an Lp1

1 section of the bundle Λ1 ⊗F over D−(r′′)×Σ

whose Lp1

1 norm is bounded by the same term as in the right hand side of (3.34) if C

is chosen appropriately. By applying Proposition B.10 to the sequence p′
i := Φ−1

p ◦ pi

with Φp being given by Lemma 2.10, we conclude that pi is convergent to p as

elements of Lq1

1 (D−(r′), Lq1(Σ,Λ1 ⊗ F ). Combining our results we conclude that the

restriction of Ai (resp. ui) to D−(r′)×Σ (resp. D+(r′)) for any r′ < r is Lq1

1 convergent

to A (resp. u). Analogous to the proof of Theorem 3.1, iterating this argument allows

us to show that Ai (resp. ui) to D−(r′) × Σ (resp. D+(r′)) for any r′ < r is Lp
k

convergent to A (resp. u) for any p and positive integer k. This completes the proof

of Theorem 3.2.

4 Compactness

In this section, we study compactness properties of the moduli space of mixed solu-

tions. We specialize to the case that our target symplectic manifold for the mixed
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equation is the moduli space M(Σ, F ) of flat connections on F and consider the

quintuples of the form

P(r) := (D−(r) × Σ, D−(r) × F, D+(r),M(Σ, F ),L(Σ, F )). (4.1)

Recall that the Lagrangian correspondence L(Σ, F ) is given in Example 2.8. We fix

a positive real number r0 and we drop r from our notation if r = r0 in the following.

In this section C is a constant depending only on r0 and the metric g on Σ such that

its value might increase from each line to the next line.

4.1 Energy quantization. Suppose (A, u) is an element of the configuration space

associated to the quintuple P(r0). Let the energy density of u, denoted by eu : D− →

R≥0, and the 2-dimensional energy density of A, denoted by eA : D− → R≥0, be

defined as

eu(s, θ) = |du|2(−s, θ), eA(s, θ) =

∫

{(s,θ)}×Σ
|FA|2,

where (s, θ) ∈ D−. The energy density of (A, u), denoted by eA,u : D− → R≥0 is

defined as

eA,u = eA + eu.

Theorem 4.2. There exist constants κ and � depending only on r0 and the metric

g on Σ such that the following holds. Let (A, u) be a solution of the mixed equation

associated to the quintuple P(r0). Let z ∈ U− and r be given such that Dr(z) :=

Br(z) ∩H− ⊂ Br0(0). Let also
∫

Dr(z)
eA,udvol ≤ �.

Then we have:

eA,u(z) ≤ κ

∫
Dr(z) eA,udvol

r2
. (4.3)

The following proposition allows us to obtain interior regularity for the energy

densities of a solution (A, u) of the mixed solution associated to the quintuple P(r0).

Proposition 4.4. A solution (A, u) of the mixed equation associated to the quintuple

P(r0) satisfies the inequalities

Δ4(|FA|2) ≤ C(|FA|2 + |FA|3), Δ2(eu) ≤ C(eu + e2
u), (4.5)

Δ2(eA,u) ≤ C(eA,u + e2
A,u + e

1
2
A,ufA), (4.6)

where Δ2 is the Laplacian on D−, Δ4 is the Laplace–Beltrami operator associated

to D− × Σ, and fA : D− → R≥0 is given by

fA(z) = (

∫

{z}×Σ
|FA|4 dvol)

1
2 . (4.7)



680 A. DAEMI ET AL. GAFA

Proof. Let X be a Riemannian 4-manifold and E be a vector bundle over X . Let

A be a unitary connection on E and φ be a 2-form with values in E. Then the

Weitzenböck formula states that

∇∗
A∇Aφ − (dAd∗

A + d∗
AdA)φ = Q1(RX , φ) + Q2(FA, φ), (4.8)

where Q1(RX , φ) (respectively, Q2(FA, φ)) denotes a point-wise smooth bi-linear form

of the Riemannian curvature RX (respectively, the curvature of the connection A)

and φ. (See [BB81, Theorem 3.2] for more details.) In particular, if we apply this

identity to the case that φ is equal to the curvature FA of an ASD connection A,

then Bianchi identity implies that:

∇∗
A∇AFA = Q1(RX , FA) + Q2(FA, FA). (4.9)

By taking the inner product of (4.9) with FA, we can conclude that:

Δ4|FA|2 + 2|∇AFA|2 = 2〈∇∗
A∇AFA, FA〉

≤ C(|FA|2 + |FA|3). (4.10)

This implies the first claimed inequality of (4.5).

An analogue of (4.8) holds for 1-forms on a Riemannian manifold X for appro-

priate choices of Q1, Q2 (see, for example, [ABK+94, Remark 6.40]), and the second

inequality in (4.5) can be also proved using this Weitzenböck identity, as we explain

next. The differential du of the holomorphic map u can be regarded as a 1-form on

D+ with values in the bundle u∗T M(Σ, F ). Let ∇ denote the Levi–Civita connection

associated to the metric on M(Σ, F ) given as ωfl(·, J∗·) by the symplectic form ωfl

and the complex structure J∗. It is useful to consider the J∗-linear connection on

T M(Σ, F )

∇̃(v) := ∇(v) −
1

2
J∗(∇J∗)v (4.11)

which is compatible with the metric, and its torsion has vanishing (1,1)-component.

Therefore, if we let B be the pull back of this connection on u∗T M(Σ, F ), then

dB(du) = 0. Since u satisfies the Cauchy–Riemann equation, it is also straightforward

to check that d∗
B(du) = 0. We apply the 1-form version of (4.8) to φ = du and the

connection B on u∗T M(Σ, F ). As in the previous case, taking the inner product of

the resulting identity with du implies that:

Δ2eu + 2|∇Bdu|2 = 2〈∇∗
B∇Bdu, du〉

= 〈Q1(RD+ , du), du〉 + 〈Q2(FB, du), du〉

≤ C(eu + e2
u). (4.12)

Note that in the last inequality we use the fact that the norm of FB can be controlled

by |du|2.
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Consider the function on D− that associates to z ∈ D− the integral of |FA|2 over

{z}×Σ. Inequality (4.10) and Cauchy–Schwarz inequality implies that the Laplacian

of this function satisfies

Δ2(

∫

{z}×Σ
|FA|2) =

∫

{z}×Σ
Δ4|FA|2 +

∫

{z}×Σ
dΣ(∗ΣdΣ|FA|2)

≤ C(

∫

{z}×Σ
|FA|2 + |FA|3)

≤ C

(∫

{z}×Σ
|FA|2 + (

∫

{z}×Σ
|FA|2)

1
2 fA(z)

)
.

Note that the Stokes’ theorem implies that the second integral on the right hand

side of the first line vanishes. This inequality together with (4.12) verifies the final

inequality of the proposition. �

Proposition 4.13. For any point z := (0, θ) ∈ U∂ , the normal derivative of the mixed

energy density satisfies the following inequality:

∂seA,u(z) ≤ CeA,u(z)
3
2 . (4.14)

Proof. First we pick an appropriate gauge for the connection A. Decompose the

connection A as follows

A = β(s, θ) + φ(s, θ)ds + ψ(s, θ)dθ

where β(s, θ) is a connection on F over Σ and φ(s, θ), ψ(s, θ) are sections of F . Fix a

gauge for A by firstly taking the parallel transport of a fixed frame at the point (0,0)

along U∂ , and then extending the frames on U∂ to D− by parallel transport in the

s-direction. Therefore, φ and the restriction of ψ to U∂ vanish. The ASD equation

for the connection A implies that β and ψ satisfy

∗ΣFβ + ∂sψ = 0, −∂θβ + ∗Σ∂sβ + dβψ = 0, (4.15)

where ∂s and ∂θ are defined with respect to the chosen frame. Since Fβ = 0 on U∂ ,

the first equation in (4.15) implies that ∂sψ on the matching line U∂ vanishes. Using

this and the second equation in (4.15), we can conclude that:

∂θβ = ∗Σ∂sβ, ∂θ∂θβ = ∗Σ∂θ∂sβ = −∂s∂sβ ∀z ∈ U∂ . (4.16)

The curvature of the connection A with respect to the above gauge has the fol-

lowing form:

FA = Fβ + ds ∧ ∂sβ + dθ ∧ ∂θβ + dβψ ∧ dθ + ∂sψds ∧ dθ.
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Thus we have

1

2
∂seA(0, θ) =

∫

{(0,θ)}×Σ
〈∂sβ, ∂s∂sβ〉 + 〈∂θβ, ∂s∂θβ〉

= −2

∫

{(0,θ)}×Σ
tr(∂θβ ∧ ∂θ∂θβ),

where the last identity follows from (4.16).

We follow a similar strategy to fix a representative for the map u : D+ → M(Σ, F ).

For any (0, θ) ∈ U∂ , there is a unique connection β′(0, θ) such that β′(0,0) = β(0,0),

β′(0, θ) represents the flat connection u(0, θ) and d∗
β′(0,θ)∂θβ′(0, θ) = 0. We extend this

family of connections to D+ by requiring that β′(s, θ) represents the flat connection

u(s, θ) and d∗
β′(s,θ)∂sβ

′(s, θ) = 0. Since u is a holomorphic map, for each (s, θ) ∈ D+,

there is a section ψ′(s, θ) of F such that

−∂θβ′ + ∗Σ∂sβ
′ + dβ′ψ′ = 0. (4.17)

In particular, d∗
β′dβ′ψ′ = 0 on U∂ , which implies that ψ′(0, θ) = 0. Taking the deriva-

tive of (4.17) along the θ-direction on the matching line U∂ implies that

∂θ∂θβ′ = ∗Σ∂θ∂sβ
′ ∀z ∈ U∂ . (4.18)

For (0, θ) ∈ U∂ , the exterior derivatives dβ′(0,θ) and d∗
β′(0,θ) act trivially on

∂θβ′(0, θ), and hence we have

|du|2(0, θ) = 2

∫

{(0,θ)}×Σ
|∂θβ′(0, θ)|2.

This together with d∗
β′(0,θ)∂θβ′(0, θ) = 0 gives rise to the following identity for the

normal derivative of eu : D− → R on U∂ :

1

2
∂seu(0, θ) = −2

∫

{(0,θ)}×Σ
〈∂s∂θβ′, ∂θβ′〉

= 2

∫

{(0,θ)}×Σ
tr(∂θβ′ ∧ ∂θ∂θβ′).

The matching condition on U∂ implies that there is gθ ∈ G(Σ, F ) such that

β′(0, θ) = g∗
θβ(0, θ) for each θ. Moreover, gθ is smooth with respect to θ and g0 = 1.

Let ζθ := g−1
θ ∂θgθ. Then we have

∂θβ(0, θ) = gθ∂θβ′(0, θ)g−1
θ − gθdβ′(0,θ)ζθg−1

θ . (4.19)

Using the extension theorem of Sobolev spaces, we may find ζ̃θ ∈ L2
3
2

([−1,1] ×

Σ, [−1,1] × F ) such that

ζ̃θ|{−1}×Σ = 0, ζ̃θ|{1}×Σ = ζθ,
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and

||ζ̃θ||L2
3
2

([−1,1]×Σ,F ) ≤ C||ζθ||L2
1(Σ,F ).

Define g̃θ ∈ G([−1,1] × Σ, [−1,1] × F ) by ∂θg̃θ = g̃θζ̃θ. Then g̃θ|{−1}×Σ = 1 and

g̃θ|{1}×Σ = gθ.

Let B̃θ be the connection on [−1,1] × Σ defined as g̃∗
θβ(0, θ). This connection

restricts to β(0, θ), β′(0, θ) on {−1} × Σ, {1} × Σ. Since B̃θ is flat for each θ, we

have:

d
B̃θ

(∂θB̃θ) = 0 d
B̃θ

(∂θ∂θB̃θ) = −2∂θB̃θ ∧ ∂θB̃θ. (4.20)

Here the second identity is obtained by applying ∂θ to the first one. Stokes theorem

and the identities in (4.20) imply that we have the following identities for each θ
∫

{(0,θ)}×Σ
tr(∂θβ′ ∧ ∂θ∂θβ′) −

∫

{(0,θ)}×Σ
tr(∂θβ ∧ ∂θ∂θβ) =

=

∫

[−1,1]×Σ
dtr(∂θB̃θ ∧ ∂θ∂θB̃θ)

= 2

∫

[−1,1]×Σ
tr(∂θB̃θ ∧ ∂θB̃θ ∧ ∂θB̃θ).

Thus for any (0, θ) ∈ U∂ , we have:

∂seA,u(0, θ) ≤ C||∂θB̃θ||3L3([−1,1]×Σ).

Using the definition of B̃θ we can conclude that

||∂θB̃θ||L3([−1,1]×Σ) ≤ C
(
||∂θβ′(0, θ)||L3(Σ) + ||d

B̃θ
ζ̃θ||L3([−1,1]×Σ)

)

≤ C

(
||∂θβ′(0, θ)||L2(Σ) + ||d

B̃θ
ζ̃θ||L2

1
2

([−1,1]×Σ)

)

≤ C

(
eu(0, θ)

1
2 + ||ζ̃θ||L2

3
2

([−1,1]×Σ)

)
. (4.21)

In addition to Sobolev embedding inequality, we use the fact that ∂θβ′(0, θ) belongs to

the kernel of dβ′(0,θ) and d∗
β′(0,θ) to obtain the second inequality. Our choice of ζ̃θ allows

us to conclude that its L2
3
2

norm is bounded by C||ζθ||L2
1(Σ), which in turn is bounded

by C||dβ′(0,θ)ζθ||L2(Σ). The last claim holds because the kernel of dβ′(0,θ) acting on

the space of 0-forms is trivial, and β′(0, θ) is a representative for an element of the

compact space M(Σ, F ). Since (4.19) implies that ||dβ′(0,θ)ζθ||L2(Σ) is controlled by

||∂θβ(0, θ)||L2(Σ) + ||∂θβ′(0, θ)||L2(Σ), we conclude that the L2
3
2

norm of ζ̃θ is bounded by

CeA,u(0, θ)
1
2 . Therefore, this observation and (4.21) give us the inequality (4.14). �

The following proposition is a weaker version of Theorem 4.2.
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Proposition 4.22. There exist constants κ′ and �
′ such that the following holds.

Let (A, u) be a solution of the mixed equation associated to the quintuple P(r0). Let

z ∈ D− and r be given such that Dr(z) ⊂ Br0(0), and

eA,u(w) ≤ �
′r−2 ∀w ∈ Dr(z). (4.23)

Then we have

eA,u(z) ≤ κ′

∫
Dr(z) eA,udvol

r2
. (4.24)

Before delving into the proof of Proposition 4.22, we show that the assumption

of this proposition allows us to obtain appropriate L2
1 bounds on FA and du:

Lemma 4.25. There is a constant �0 such that the following holds. Suppose (A, u) is

a solution of the mixed equation associated to the quintuple P(r0), and z ∈ D− and

r are given such that Dr(z) ⊂ Br0(0) and (4.23) holds for �
′ = �0. Then

||∇AFA||2L2(D r
2

(z)×Σ) + ||∇B(du)||2
L2(D+

r
2

(z))
≤ C

∫
Dr(z) eA,udvol

r2
, (4.26)

where B is the connection introduced in the proof of Proposition 4.4 and D+
r
2
(z)

denotes the reflection of D r
2
(z) with respect to U∂ .

Proof. Fix a smooth function on ρ : C → R which is supported in B1(0) and its value

on B 1
2
(0) is equal to 1. We also define ρr(w) := ρ(|w−z

r |). We have

||∇A(ρrFA)||2L2(Dr(z)×Σ) =

∫

Dr(z)×Σ
〈dρr ⊗ FA, dρr ⊗ FA)〉 + 〈∇A(FA),∇A(ρ2

rFA)〉

≤ Cr−2||FA||2L2(Dr(z)×Σ) +

∫

Dr(z)×Σ
〈∇∗

A∇AFA, ρ2
rFA〉

+

∫

D∂
r (z)

ρ2
r

∫

Σ
〈(∇A)∂sFA, FA〉. (4.27)

Here D∂
r (z) denotes Dr(z) ∩ U∂ . Using the inequality in (4.10), the point-wise as-

sumption (4.23), Cauchy–Schwarz and Sobolev embedding theorem we have:
∫

Dr(z)×Σ
〈∇∗

A∇AFA,ρ2
rFA〉 ≤ C

∫

Dr(z)×Σ
ρ2

r|FA|2 + ρ2
r|FA|3

≤ C(||FA||2L2(Dr(z)×Σ) + (

∫

Dr(z)×Σ
|FA|2)

1
2 (

∫

Dr(z)×Σ
|ρrFA|4)

1
2 )

≤ C
(
||FA||2L2(Dr(z)×Σ) + �0||∇A(ρrFA)||2L2(Dr(z)×Σ)

)
.

Combining the above inequality and (4.27), we obtain:

||∇A(ρrFA)||2L2(Dr(z)×Σ) ≤ C((r−2 + 1)||FA||2L2(Dr(z)×Σ) + �0||∇A(ρrFA)||2L2(Dr(z)×Σ)

+

∫

D∂
r (z)

ρ2
r

∫

Σ
〈(∇A)∂sFA, FA〉).
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If the constant �0 is small enough, then we can absorb the term containing

||∇(ρrFA)||2L2(Dr(z)×Σ) on the right hand side and obtain

||∇A(ρrFA)||2L2(Dr(z)×Σ) ≤ Cr−2||FA||2L2(Dr(z)×Σ) +

∫

D∂
r (z)

ρ2
r

∫

Σ
〈(∇A)∂sFA, FA〉. (4.28)

We follow a similar strategy to bound ||∇B(du)||L2(D+
r
2

(z)).

||∇B(ρrdu)||2
L2(D+

r (z))
=

∫

D+
r (z)×Σ

〈dρr ⊗ du, dρr ⊗ du)〉 + 〈∇Bdu, ∇B(ρ2
rdu)〉

≤ Cr−2||du||2
L2(D+

r (z))
+

∫

D+
r (z)

〈∇∗
B∇Bdu, ρ2

rdu〉 −

∫

D∂
r (z)

ρ2
r〈(∇B)∂sdu, du〉

≤ C

(
r−2||du||2

L2(D+
r (z))

+

∫

D+
r (z)

ρ2
r(|du|2 + |du|4)

)
−

∫

D∂
r (z)

ρ2
r〈(∇B)∂sdu, du〉

≤ Cr−2||du||2
L2(D+

r (z))
−

∫

D∂
r (z)

ρ2
r〈(∇B)∂sdu, du〉. (4.29)

Here the second inequality is obtained using (4.12) and we use the point-wise as-

sumption on du in (4.23) to produce the last inequality.

Proposition 4.13 asserts that for any point (0, θ) ∈ D∂
r (z), we have:

(∫

Σ
〈(∇A)∂sFA, FA〉

)
− 〈(∇B)∂sdu, du〉 ≤ CeA,u(0, θ)

3
2

≤ C�

1
2
0 r−1eA,u(0, θ).

Therefore, we have:

∫

D∂
r (z)

ρ2
r

(∫

Σ
〈(∇A)∂sFA, FA〉

)
− ρ2

r〈(∇B)∂sdu, du〉 ≤ C�

1
2
0 r−1

∫

D∂
r (z)

ρ2
reA,u(0, θ).

(4.30)

Suppose f : Dr(z) → R is a compactly supported function. Then Sobolev embed-

ding theorem implies that:

||f ||L2(D∂
r (z)) ≤ C0r

1
2 ||df ||L2(Dr(z)),

where the constant C0 is independent of r. By applying this inequality to the func-

tions f+(s, θ) := |ρrdu|(−s, θ) and f−(s, θ) := (
∫

{(s,θ)}×Σ |ρrFA|2)
1
2 , we conclude that

∫

D∂
r (z)

|ρrdu|2 ≤ Cr||∇B(ρrdu)||2
L2(D+

r (z))
,

and
∫

D∂
r (z)×Σ

|ρrFA|2 ≤ Cr||∇A(ρrFA)||2L2(Dr(z)×Σ).
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In order to derive the second inequality, we use the inequality

|d(

∫

{(s,θ)}×Σ
|ρrFA|2)

1
2 | ≤ |(

∫

{(s,θ)}×Σ
|∇A(ρrFA)|2)

1
2 |. (4.31)

By adding up these two inequalities and using the inequality in (4.30), we conclude

that
∫

D∂
r (z)

ρ2
r

(∫

Σ
〈(∇A)∂sFA, FA〉

)
− ρ2

r〈(∇B)∂sdu, du〉

≤ C�

1
2
0 (||∇B(ρrdu)||2L2(Dr(z)) + ||∇A(ρrFA)||2L2(Dr×Σ)).

(4.32)

Summing up inequalities in (4.28), (4.29) and (4.32) gives rise to

||∇B(ρrdu)||2
L2(D+

r (z))
+ ||∇A(ρrFA)||2L2(Dr(z)×Σ)

≤ C
(
r−2||FA||2L2(Dr(z)×Σ) + r−2||du||2

L2(D+
r (z))

+�

1
2
0

(
||∇B(ρrdu)||2

L2(D+
r (z))

+ ||∇A(ρrFA)||2L2(Dr(z)×Σ))
))

.

Therefore, if �0 is small enough, we can infer the claimed inequality in (4.26). �

Proof of Proposition 4.22. We present the proof in 4 steps:

Step 1: Inverting the Laplacian. Let G(w) be the Green function − 1
2π ln(|w −z|)+

1
2π ln( r

4) of the Laplacian Δ2. Note that G(w) vanishes on ∂D r
4
(z) := ∂B r

4
(z) ∩ H−,

the boundary of D r
4
(z). As before, D∂

r
4
(z) denotes B r

4
(z) ∩ U∂ . We multiply (4.6) in

Proposition 4.4 by G(w) and integrate over D r
4
(z). Green’s identity implies that:

eA,u(z) ≤ C

∫

D r
4

(z)
G(w)(eA,u + e2

A,u + e
1
2
A,ufA) +

∫

∂D r
4

(z)	D∂
r
4

(z)
eA,u∂νG − G∂νeA,u

(4.33)

≤ C||G||L2(D r
4

(z))

(
(1 + ||eA,u||L∞)||eA,u||L2(D r

4
(z)) + ||eA,u||

1
2
L∞ ||fA||L2(D r

4
(z))

)

(4.34)

+ C

(
r−1||eA,u||L1(∂D r

4
(z)) + ||eA,u∂νG||L1(D∂

r
4

(z))

+||G||L2(D∂
r
4

(z))||eA,u||L2(D∂
r
4

(z))||eA,u||
1
2
L∞

)
.

Recall that fA in (4.33) is given in (4.7). Here ||eA,u||L∞ is the L∞ norm of eA,u over

Dr(z), which is less than �
′r−2 by assumption. In order to bound the last term in

(4.33), we use Proposition 4.13 and Cauchy–Schwarz inequality. A straightforward

computation shows

||G||L2(D r
4

(z)) ≤ Cr, ||G||L2(D∂
r
4

(z)) ≤ Cr
1
2 .
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Thus we deduce from (4.34) that

eA,u(z) ≤C

(
r−1||eA,u||L2(D r

4
(z)) + r−1||eA,u||L1(∂D r

4
(z)) + r− 1

2 ||eA,u||L2(D∂
r
4

(z))

+||fA||L2(D r
4

(z)) + ||eA,u∂νG||L1(D∂
r
4

(z))

)
. (4.35)

Step 2: Establishing the following bounds on various Sobolev norms of eA,u:

||eA,u||L2(D r
4

(z)) ≤ C

∫
Dr(z) eA,u

r
,

||eA,u||L2(D∂
r
4

(z)) ≤ C

∫
Dr(z) eA,u

r
3
2

, ||eA,u||L1(∂D r
4

(z)) ≤ C

∫
Dr(z) eA,u

r
.

(4.36)

Sobolev embedding and a straightforward change of variable imply that there is

a constant C0, independent of r, such that for any function f : D r
2
(z) → R

(

∫

D r
4

(z)
f4)

1
2 ≤ C0(r

∫

D r
2

(z)
|df |2 + r−1

∫

D r
2

(z)
f2). (4.37)

Applying (4.37) to the functions f(s, θ) := |du|(−s, θ) and g(s, θ) := (
∫

{(s,θ)}×Σ |FA|2)
1
2

implies that

(

∫

D+
r
4

(z)
|du|4)

1
2 ≤ C(r

∫

D+
r
2

(z)
|d|du||2 + r−1

∫

D+
r
2

(z)
|du|2), (4.38)

(∫

D r
4

(z)
(

∫

{(s,θ)}×Σ
|FA|2)2

) 1
2

≤ C(r

∫

D r
2

(z)×Σ
|∇AFA|2 + r−1

∫

D r
2

(z)×Σ
|FA|2). (4.39)

In order to obtain (4.39), we also used the inequality in (4.31). Using Lemma 4.25 and

Kato’s inequality, we derive the first inequality in (4.36). The remaining inequalities

in (4.36) can be verified in a similar way using the following variations of (4.37):

∫

∂D r
4

(z)
f2 ≤ C0(r

∫

D r
2

(z)
|df |2 + r−1

∫

D r
2

(z)
f2),

(

∫

D∂
r
4

(z)
f4)

1
2 ≤ C0(r

1
2

∫

D r
2

(z)
|df |2 + r− 3

2

∫

D r
2

(z)
f2).

Step 3: ||fA||L2(D r
4

(z)) ≤ Cr−2
∫

Dr(z)

eA,u.

For r ≤ r0, let a function f : D r
2
(z) × Σ → R be given. Then there is a constant

C0, independent of r, such that

(

∫

D r
4

(z)×Σ
f4)

1
2 ≤ C0(

∫

D r
2

(z)×Σ
|df |2 + r−2

∫

D r
2

(z)×Σ
f2). (4.40)
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This inequality can be verified by considering ρ r
2

·f and applying the Sobolev embed-

ding inequality for functions defined on D2r0 ×Σ. By definition, ||fA||L2(D r
4

(z)) is equal

to ||FA||2L4(D r
4

(z)×Σ). Thus we can employ (4.40) for f = |FA| and Kato’s inequality to

obtain the following inequality:

||fA||L2(D r
4

(z)) ≤ C

(∫

D r
2

(z)×Σ
|∇AFA|2 + r−2

∫

D r
2

(z)×Σ
|FA|2

)

≤ Cr−2
∫

Dr(z)
eA,u.

The second inequality follows from Lemma 4.25.

Step 4: Completing the proof. We have appropriate bounds on all terms in (4.35)

to obtain the desired result except the term ||eA,u∂νG||L1(D∂
r
4

(z)). In the case that

z ∈ U∂ , this term vanishes. Therefore, we obtain the inequality in (4.24) for such

choices of z. This preliminary case, allows us to complete the proof because for a

general z we have:

||eA,u∂νG||L1(D∂
r
4

(z)) ≤ C||eA,u||L∞(D∂
r (z)). �

Theorem 4.2 is a consequence of Proposition 4.22 and the following elementary

lemma.

Lemma 4.41. Suppose X is a compact metric space and f : X → R≥0 is a continuous

function which satisfies the following properties for positive constants �
′ and κ′. For

any z ∈ X and positive real number r satisfying

f(w) ≤ �
′r−2 w ∈ Dr(z),

we have

f(z) ≤ κ′

∫
Dr(z) fdvol

r2
. (4.42)

Then there are constants � and κ such that if for any z ∈ X and a positive r we

have the inequality
∫

Dr(z)
fdvol ≤ �,

then:

f(z) ≤ κ

∫
Dr(z) fdvol

r2
.

Proof. We claim that � = �
′/(17κ′) and κ = 4κ′ satisfy the required properties. To

that end, we assume that z and r are given such that

∫

Dr(z)
f ≤

�
′

17κ′
. (4.43)
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Define φ : Dr(z) → R≥0 as

φ(w) := (r − |w − z|)2f(w).

This continuous function extends to the boundary of Dr(z) by zero. Therefore, φ

achieves its maximum in an interior point w0. First assume that φ(w0) ≤ �
′/4. In

this case, for any w ∈ D r
2
(z), we have:

f(w) ≤ f(w)
(r − |w − z|)2

( r
2)2

≤ f(w0)
(r − |w0 − z|)2

( r
2)2

≤ �
′r−2.

Therefore, the assumption implies that

f(z) ≤ κ′

∫
D r

2
(z) f

( r
2)2

= 4κ′

∫
D r

2
(z) f

r2
.

In the case φ(w0) > �
′/4, define s :=

√
�′

16f(w0) . Then we have

s <
r − |w0 − z|

2
.

This implies that Ds(w0) is a subset of Dr(z). For any y ∈ Ds(w0), we can also write

f(y) ≤ f(w0)
(r − |w0 − z|)2

(r − |y − z|)2

≤ f(w0)
(r − |w0 − z|)2

(r − (|w0 − z| + s))2

≤ 4f(w0)

≤ �
′s−2.

Consequently, (4.42) implies

f(w0) ≤ κ′

∫
Ds(w0) f

s2

=
16κ′f(w0)

�′

∫

Ds(w0)
f
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≤
16κ′f(w0)

�′

∫

Dr(z)
f

≤
16

17
f(w0).

The last inequality, which leads to a contradiction, follows from (4.43). �

4.2 Removability of singularities. The main goal of this subsection is to prove a

removability of singularity result for the mixed solution. As before, we fix a positive

real constant r0. Let (A, u) be a solution of the mixed equation associated to the

quintuple P(r0) in (4.1) where the ASD connection A is defined on (D− \ {0}) × Σ

and the pseudo-holomorphic map u is defined on D+ \ {0}. In particular, we assume

that A and u satisfy the matching condition on U∂ \ {0}. Then the 2-dimensional

energy density eA,u is defined on D− \ {0}. For any r ≤ r0, define

Er(A, u) :=

∫

D−(r)\{0}
eA,u.

Theorem 4.44. For (A, u) as above, let Er0(A, u) be finite. Then we have the follow-

ings.

(i) There exists g ∈ G((D− \ {0}) × Σ, F ) such that g∗A extends to a smooth

connection Ã on D− × Σ.

(ii) u can be extended to a smooth map ũ : D+ → M(Σ, F ).

In particular, (Ã, ũ) is a solution of the mixed equation associated to P(r0).

Recall that for an SO(3)-bundle V over a 4-manifold X , G(X, V ) denotes the space

of smooth sections of the fiber bundle Fr(V ) ×ad SU(2). Without loss of generality,

we may decrease the value of r0 as we wish. In particular, we may assume that

Er0(A, u) < �0 (4.45)

where �0 is less than the constant � of Theorem 4.2, and r0 is smaller than the

injectivity radius of Σ.

We use polar coordinates on Br0(0) = D− ∪ D+ throughout this subsection. Polar

coordinate of a typical point is denoted by (r, φ) where r ∈ (0, r0] and φ ∈ R, and it

is related to our previous notation by the formula (s, θ) = (r cosφ, r sin φ). We also

write S1
r for the set of points in Br0(0) whose radial coordinate is equal to r. The

intersection of S1
r with D+ and D− are denoted by S1

r,+ and S1
r,−.

4.2.1 Strategy of the proof. The key estimate for us is the following proposition.

Proposition 4.46. For (A, u) as in the statement of Theorem 4.44, there exists a

positive β such that

Er(A, u) ≤ Cr2β.
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The proof of this estimate, which follows a plan similar to [Weh052, Sects. 3 and

4], will be given in the next two subsections. In the remaining part of this subsection,

we explain how Theorem 4.44 can be derived from Proposition 4.46.

Corollary 4.47. For any r ≤ r0/2, we have:

(i) sup
z∈S1

r,−

‖FA|{z}×Σ‖L2(Σ) ≤ Crβ−1;

(ii) ‖FA|{(r cos φ,r sin φ)}×Σ‖L∞(Σ) ≤ C(cosφ)−2rβ−2;

(iii) |du(z)| ≤ Crβ−1 for z ∈ S1
r,+.

Proof of Proposition 4.46 ⇒ Corollary 4.47. Since Er0(A, u) ≤ �, Theorem 4.2 and

Proposition 4.46 imply that for z ∈ S1
r,− with 2r ≤ r0, we have the following sequences

of inequalities

‖FA|{z}×Σ‖2
L2(Σ) ≤ eA,u(z) ≤ κ

E2r(A, u)

4r2
≤ Cr2β−2. (4.48)

This verifies (i). To prove (ii), let p ∈ Σ and z = (r cosφ, r sin φ) with φ ∈ (π/2,3π/2).

The ball of radius s = r| cosφ| centered at (z, p) is contained in D−(r0)×Σ. Moreover,

the L2 norm of the curvature of A on this ball is estimated by Crβ . Therefore, (ii)

is a consequence of Uhlenbeck’s Theorem which is recalled as Lemma 4.50 below.

Finally, (iii) is also a consequence of Theorem 4.2 and Proposition 4.46:

|du(z)| ≤ eA,u(z′)
1
2 ≤ κ

1
2
E2r(A, u)

1
2

2r
≤ Crβ−1 (4.49)

where z = (s, θ) ∈ S1
r,+ and z′ = (−s, θ). �

Lemma 4.50. (Uhlenbeck) For a large enough positive integer k, suppose a Ck-

compact family of metrics on the 4-dimensional ball Br0(0) is given. There exists

� > 0 such that the following holds. Suppose A is an ASD connection on Br(0) ⊂

Br0(0) with ‖FA‖L2(Br(0)) ≤ �. Then

|FA(0)| < Cr−2‖FA‖L2(Br(0)).

Proof. By scaling we may assume r = 1, where it is the standard Uhlenbeck com-

pactness theorem. �

Proof of Corollary 4.47 ⇒ Theorem 4.44. Let p be a real number satisfying 2 < p <
4

2−β . Properties (i) and (ii) of Corollary 4.47 are the assumptions of [Weh052, Theo-

rem 5.3 (ii)]. Therefore, there is g ∈ G((D− \ {0}) × Σ, F ) such that Ã := g∗A extends

as an Lp
1 connection on D− × Σ. By continuity, Ã is an ASD-connection. Using (iii)

of Corollary 4.47, we may conclude that u extends as a Holder continuous function

ũ : D+ → M(Σ, F ) and dũ belongs to Lp. Since Ã and ũ are continuous, they satisfy

the matching condition. Now we can appeal to our regularity results of Sect. 3 to

complete the proof of Theorem 4.44 �
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4.2.2 Energy estimate via the Chern–Simons functional. Let Y be a closed ori-

ented 3-manifold and β0 be a flat connection on an SO(3)-bundle E over Y .1 Let

B = β0 +b be a connection on E where b is a section of Λ1(Y )⊗E. The Chern–Simons

functional of B is defined as

CSβ0(B) :=

∫

Y
tr

(
b ∧ FB −

1

3
b ∧ b ∧ b

)
. (4.51)

Equivalently, if A is an arbitrary connection on [0,1]×Y whose restrictions to {0}×Y

and {1} × Y are equal to β0 and B, then

CSβ0(B) =

∫

[0,1]×Y
tr(FA ∧ FA). (4.52)

A consequence of (4.52), which will be helpful for us, is that CSβ0(B) = CSβ1(B),

if β0 and β1 are connected to each other by a path of flat connections. It is also a

well-known fact that

1

8π2
(CSβ0(g∗A) − CSβ0(A)) ∈ Z, (4.53)

for any g ∈ G(Y, E).

We will be interested in the case that Y = S1 × Σ, E = S1 × F and β0 is the

pull-back of a flat connection on F , which is also denoted by β0. Let B = β0 + b

be a connection on E such that b = α + zdφ where z and α are sections of E and

Λ1(Σ) ⊗ E over Y . Then the Chern–Simons function of B is given as

CSβ0(B) =

∫

S1

∫

Σ
tr(∂φα ∧ α + 2F (β0 + α)z) ∧ dφ. (4.54)

We shall also need an analogue of (4.52) for a connection A = β0 + α + wdr + zdφ

on the 4-manifold X = [0,1] × [0,1] × Σ where r and φ denote the coordinates on the

first and the second intervals. In this case Stokes theorem implies that
∫

X
tr(FA ∧ FA) =

∫

(∂[0,1])×[0,1]×Σ
tr(∂φα ∧ α + 2F (β0 + α)z) ∧ dφ

−

∫

[0,1]×(∂[0,1])×Σ
tr(∂rα ∧ α + 2F (β0 + α)w) ∧ dr. (4.55)

Let (A, u) be as in Theorem 4.44. Suppose βr
0 denotes the flat connection on F

given by A|{(r,π/2)}×Σ. For z ∈ S1
r,+ with 2r < r0, we can use Theorem 4.2 and (4.45)

as in (4.49) to conclude

|du(z)| ≤ κ
1
2
E2r(A, u)

1
2

2r
≤

1

2
κ

1
2�

1
2
0 r−1. (4.56)

1 Here we diverge from our convention that connections on 3-manifolds are denoted by the letter
B because soon we will focus on the case that Y = S1

× Σ and β0 is the pullback of a connection
on Σ.
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In particular, the diameter of u(S1
r,+) is smaller than C�

1/2
0 . Thus by taking r0 and

�0 small enough, we may assume that there is br
+(z) ∈ Λ1(Σ) ⊗ F for each z ∈ S1

r,+

such that the following conditions hold.

(u.1) [βr
0 + br

+(z)] = u(z).

(u.2) d∗
βr

0 +br
+(z)∂φbr

+(z) = 0.

(u.3) br
+(r, π/2) = 0.

Let Br,+ be the connection on S1
r,+ × F defined as βr

0 + br
+ (with vanishing dφ com-

ponent).

By parallel transport along S1
r,−, we may define a connection Br,− on S1

r,− × F

which satisfies the following properties.

(A.1) Br,− is gauge equivalent to the restriction of A to S1
r,−.

(A.2) For each z ∈ S1
r,−, there is br

−(z) ∈ Λ1(Σ) ⊗ F such that Br,− = βr
0 + br

−(z).

That is to say, Br,− has a vanishing dφ component.

(A.3) br
−(r, π/2) = 0.

Similar to (4.48), we have:

‖∂φbr
−(z)‖L2(Σ) ≤ reA(z)

1
2 ≤ κ

1
2
E2r(A, u)1/2

2
. (4.57)

Lemma 4.58. For any r, we have:

‖br
+(r, −

π

2
)‖L2(Σ) + ‖br

−(r,
3π

2
)‖L2(Σ) ≤ Cr

∫ 3π
2

π
2

e
1
2
A,u(r, φ). (4.59)

In particular, the left hand side of the above inequality is smaller than CE2r(A, u)1/2.

Proof. Using (u.2), we conclude

‖br
+(r, −

π

2
)‖L2(Σ) = ‖

∫ π
2

− π
2

∂φbr
+(r, φ)dφ‖L2(Σ)

≤ r

∣∣∣∣∣

∫ π
2

− π
2

|du|(r, φ)dφ

∣∣∣∣∣ ≤ Cr

∫ 3π
2

π
2

e
1
2

A,u(r, φ).

Similarly, (4.57) implies that:

‖br
−(r,

3π

2
)‖L2(Σ) ≤ Cr

∫ 3π
2

π
2

e
1
2

A,u(r, φ).

The second part of the lemma is a consequence of Theorem 4.2. �

The matching condition implies that βr
0 + br

+(r, −π
2 ) is gauge equivalent to βr

0 +

br
−(r, 3π

2 ). Namely, there exists gr ∈ G(Σ, F ) such that

βr
0 + br

+(r, −
π

2
) = g∗

r (βr
0 + br

−(r,
3π

2
)).
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Figure 1: A schematic picture of the 3-manifold Yr and its decomposition in (4.61).

The proof of the following lemma on the extension of the gauge transformation gr

can be found in [Weh052, Lemma 3.2 (ii)], which is proved based on the results of

[HL02].

Lemma 4.60. There exists g̃r ∈ G([0,1] × Σ, [0,1] × F ) such that:

(i) g̃r|{0}×Σ is identity;

(ii) g̃r|{1}×Σ is gr;

(iii) let br
0 be the 1-form

(g̃r)∗(βr
0 + br

−(r,
3π

2
)) − (βr

0 + br
−(r,

3π

2
))

on [0,1] × Σ. Then ‖br
0‖L3([0,1]×Σ) ≤ C‖br

+(r, 0) − br
−(r, 0)‖L2(Σ).

Since the connection Br,0 := g̃∗
r (βr

0 + br
−(r, 0)) on [0,1] × Σ restricts to βr

0 +

br
−(r, 3π/2) and βr

0 + br
+(r, −π/2) on {0} × Σ and {1} × Σ, we can glue Br,−, Br,0 and

Br,+ to define a connection Br on the closed 3-manifold

Yr := S1
r,− × Σ ∪ [0,1] × Σ ∪ S1

r,+ × Σ. (4.61)

See Fig. 1. Although the connection Br is not smooth, it is clear from (4.54) that

CSβr
0
(Br) is well-defined.

Lemma 4.62. For any r, there is a constant K such that:

|CSβr
0
(Br)| ≤ Kr

d

dr
Er(A, u).

Proof. We firstly observe that

∣∣∣∣∣

∫

S1
r,+×Σ

tr

(
br

+ ∧ FBr,+ −
1

3
(br

+)3

)∣∣∣∣∣ =

∣∣∣∣∣

∫

S1
r,+×Σ

tr
(
br

+ ∧ ∂φbr
+

)
∧ dφ

∣∣∣∣∣

≤

∫

Σ

∫ π
2

− π
2

∣∣∂φbr
+

∣∣
(∫ π

2

φ

∣∣∂φbr
+

∣∣ dψ

)
dφdvolΣ
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≤

∫

Σ

(∫ π
2

− π
2

∣∣∂φbr
+

∣∣ dφ

)
2dvolΣ

≤ Cr2
∫ π

2

− π
2

|du(r, φ)|2dφ ≤ Cr2
∫ 3π

2

π
2

eA,u(r, φ)dφ.

(4.63)

In a similar way, we have

∣∣∣∣∣

∫

S1
r,−

×Σ
tr

(
br

− ∧ FBr,−
−

1

3
(br

−)3

)∣∣∣∣∣ ≤ Cr2
∫ 3π

2

π
2

‖FA(r, φ)‖2
L2(Σ)dφbr

−

≤ Cr2
∫ 3π

2

π
2

eA,u(r, φ)dφ. (4.64)

Finally, Lemma 4.60 and flatness of Br,0 give rise to the following estimates:

∣∣∣∣∣

∫

[0,1]×Σ
tr

(
br

0 ∧ FBr,0−
1

3
(br

0)3

)∣∣∣∣ =

∣∣∣∣∣

∫

S1
r,+×Σ

tr(
1

3
(br

0)3)

∣∣∣∣∣

≤ ‖br
+(r, −

π

2
) − br

−(r,
3π

2
)‖3

L2(Σ) ≤ Cr3(

∫ 3π
2

π
2

e
1
2
A,u(r, φ)dφ)3.

(4.65)

For the last inequality we use Lemma 4.58. Since Theorem 4.2 implies that

r
∫ 3π

2
π
2

e
1
2
A,u(r, φ)dφ is bounded by CE2r(A, u)1/2, we may assume that r

∫ π
0 e

1
2
A,u(r, φ)dφ

is smaller than 1 by picking �0 to be small enough. In particular, as a consequence

of (4.65) and the Cauchy–Schwarz inequality we have

∣∣∣∣∣

∫

[0,1]×Σ
tr

(
br

0 ∧ FBr,0 −
1

3
(br

0)3

)∣∣∣∣∣ ≤ Cr2
∫ 3π

2

π
2

eA,u(r, φ)dφ. (4.66)

The desired result follows by adding (4.63), (4.64) and (4.66). �

Lemma 4.67. CSβr
0
(Br) = Er(A, u).

Proof. For 0 < δ < r, we define a 4-dimensional manifold

Xδ,r = [δ, r] × S1
r,− × Σ ∪ [δ, r] × [0,1] × Σ ∪ [δ, r] × S1

r,+ × Σ, (4.68)

in the same way as in (4.61). (See Fig. 2.) In particular, this 4-manifold is diffeomor-

phic to [δ, r] × S1 × Σ and can be written as the union of 3-manifolds Yρ for ρ ∈ [δ, r].

The boundary components of Xδ,r are identified with Yr and Yδ. The pull-back of F

on Σ induces a bundle on Xδ,r, which we denote by Vδ,r.
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Figure 2: A schematic picture of the 4-manifold Xδ,r and its decomposition in (4.68).

We consider a connection Aδ,r on Xδ,r which restricts to Br on the boundary

component Yr and is defined in a similar way. The subspace [δ, r] × S1
r,− × Σ of Xδ,r

can be identified canonically with Σ × (D−(r) \ D−(δ)) and the restriction Aδ,r,−

of Aδ,r to this region is gauge equivalent to the connection A. To define Aδ,r,−, we

firstly fix a gauge along the ray {(ρ, π/2)}δ≤ρ≤r by parallel transport and then extend

it in the angular directions by parallel transport along the arcs with fixed radial

coordinate. In particular, the connection Aδ,r,− has vanishing dφ component. The

region [δ, r] × S1
r,+ × Σ in Xδ,r is identified with Σ × (D+(r) \ D+(δ)), and analogous

to Br,+ we require that the restriction Aδ,r,+ of Aδ,r to this region has vanishing

dφ and dr components, the restriction Aδ,r(z) of Aδ,r,+ to Σ × {z} represents u(z),

d∗
Aδ,r(z)∂φAδ,r(z) = 0 and the restriction of Aδ,r,+ to [δ, r] × {π/2} × Σ agree with the

restriction of Aδ,r,−.

Next, we extend the above connection to the remaining region [δ, r] × [0,1] × Σ of

(4.68). The restrictions of Aδ,r,+ and Aδ,r,− to [δ, r]×{π/2}×Σ and [δ, r]×{3π/2}×Σ

are gauge equivalent to each other. We pick a gauge transformation g̃ over [δ, r] ×

[0,1] × Σ such that

(i) g̃(z) = 1 for z ∈ [δ, r] × {1} × Σ;

(ii) g̃(ρ,0, x)∗Aδ,r,+(ρ, π
2 , x) = Aδ,r,−(ρ, 3π

2 , x) for (ρ,0, x) ∈ [δ, r] × {0} × Σ;

(iii) the restriction of g̃ to {r} × [0,1] × Σ is equal to g̃r used in the definition of

the connection Br.

Restrict Aδ,r,− to [δ, r]×{0}×Σ and pull back this connection to [δ, r]× [0,1]×Σ via

the projection map. Applying the gauge transformation g̃ gives rise to a connection

Aδ,r,0 which can be glued to Aδ,r,+ and Aδ,r,− to form the desired connection Aδ,r on

Xδ,r. The restriction of Aδ,r to Yr agree with Br and its restriction to Yδ, denoted

by B′
δ, is gauge equivalent to Bδ.

Although the connection Aδ,r is not smooth, its restriction to each of the three

regions in (4.68) is smooth. We apply (4.55) to each of these regions and add the

resulting identities. Since the connection Aδ,r,− satisfies the ASD equation, Aδ,r,0 is
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flat and Aδ,r,+ represents the holomorphic map u, we have

∫

(D−(r)\D−(δ))×Σ
|FA|2 +

∫

(D+(r)\D+(δ))×Σ
|du|2 = CSβr

0
(Br) − CSβδ

0
(B′

δ).

Lemma 4.62 shows that CSβρ
0
(Bρ) is less than a given positive real number if ρ is

small enough. The above identity shows that

CSβδ
0
(B′

δ) = CSβr
0
(Br) +Er(A, u) − Eδ(A, u). (4.69)

Therefore, if r is small enough, we can guarantee that CSβδ
0
(B′

δ) is also less than any

given real number. Since B′
δ is gauge equivalent to Bδ, (4.53) implies that CSβδ

0
(B′

δ) =

CSβδ
0
(Bδ). Now the result follows by taking the limit of (4.69) as δ goes to zero. �

Proof of Proposition 4.46. Let β = 1
2K where K is given by Lemma 4.62. Lemmas

4.62 and 4.67 imply

d

dr
(r−2βEr(A, u)) = −

1

K
r−2β−1Er(A, u) + r−2β d

dr
Er(A, u) ≥ 0.

Consequently, we have

Er(A, u) ≤ r2βr−2β
0 Er0(A, u)

for r ≤ r0, which completes the proof of Proposition 4.46. �

4.3 Gromov–Uhlenbeck compactness. Let (Ai, ui) be a sequence of solutions of

the mixed equation associated to the mixed pair in (1.3), which we copy here again:

P := (X, V, S, M(Σ, F ),L). (4.70)

The surface S has a distinguished boundary component U∂ and as usual a Lagrangian

in M(Σ, F ) is associated to each of the remaining boundary components. We also

require that there is a uniform bound K on the energy of the mixed pairs (Ai, ui)

given as

E(Ai, ui) =

∫

X
|FAi

|2dvolX +

∫

S
|du|2dvolS . (4.71)

Lemma 4.72. There are finite sets of points σ− ⊂ int(X), σ+ ⊂ S \ U∂ , σ∂ ⊂ U∂ and

a subsequence of {(Ai, ui)} such that the following holds. For any point z ∈ U∂ \ σ∂

there is a positive real number rz such that

∫

Drz (z)×Σ
|FAi

|2dvol +

∫

D+
rz (z)

|du|2dvol ≤ �, (4.73)

for large enough values of i. Similarly for any z ∈ int(X) \ σ−, there is rz such that

∫

Brz (z)
|FAi

|2dvol ≤ �, (4.74)
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if i is large enough, and for any point z ∈ S \(σ+ ∪ U∂) there is a positive real number

rz such that

∫

Brz (z)
|du|2dvol ≤ �, (4.75)

if i is large enough.

Proof. The boundary of X can be identified with U∂ ×Σ and a tubular neighborhood

of it is given as U− × Σ where U− = (−1,0] × U∂ . Similarly a boundary component

of S is U∂ and we may take a regular neighborhood U+ of this boundary component

where U+ = [0,1) × U∂ . For each i, we may define a positive measure on U− where a

continuous function f : U− → R with compact support integrates to

∫

U−

f(s, θ)

(
|du|2(−s, θ) +

∫

{(s,θ)}×Σ
|FAi

|2
)

dvol

with respect to this measure. Standard compactness theorems for measures imply

that there is a subsequence of these measures convergent to a positive measure μ∂

on X in the sense that for any continuous function f with compact support, we have

∫

U−

f(s, θ)

(
|du|2(−s, θ) +

∫

{(s,θ)}×Σ
|FAi

|2
)

dvol →

∫

U−

fμ∂ .

In particular, the measure of U− with respect to μ∂ is at most K, the uniform bound

on (4.71). Let σ∂ be the set of points z ∈ U∂ such that the μ∂-measure of the ball

D−
r (z) for any r is at least �. Since the measure of U− is at most K, the set σ∂ is

finite and has at most K/� elements. From the definition of μ∂ it is clear that for

any point z ∈ U∂ \ σ∂ , the inequality in (4.73) holds for an appropriate choice of rz

and large enough values of i. The sets σ− and σ+ can be obtained similarly by firstly

defining positive measures μ− and μ+ on X and S, and then considering the points

with concentrated measure density. �

For z ∈ U∂ \ σ∂ , let rz be given as in the lemma, which we denote by r for the

ease of notation. Temporarily, we denote the restrictions of Ai and ui to Dr(z) × Σ

and D+
r (z) with the same notation. Theorem 4.2 implies that

|dui(w)|2 ≤ κ
�

r2
for w ∈ D+

r (z).

Thus, after passing to a subsequence, ui is C0 convergent to u0 : D−
r (z) → M(Σ, F ).

In fact, using Lemma 4.25 and Sobolev embedding, we may assume that for a given

p, the subsequence is chosen such that it is convergent to u0 in the Lp
1 norm.

We may use Theorem 4.2 and Lemma 4.25 to obtain the bounds

||∇Ai
FAi

||2
L2(D−

r (z)×Σ)
≤ κ

�

r2
, ||FAi

||2L2({w}×Σ) ≤ κ
�

r2
for w ∈ D−

r (z).
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In particular, ||FAi
||L4(D−

r (z)×Σ) is uniformly bounded using Kato’s inequality and

Sobolev embedding theorem. Therefore, we may apply the Uhlenbeck compactness

theorem for the manifold D−
r (z) × Σ to conclude that there are L4

2 gauge transfor-

mations gi such that g∗
i Ai, after passing to a subsequence, is weakly convergent to

A0 in L4
1 [Uhl821, Weh042]. In particular, the L4

1 norms of the connections g∗
i Ai are

uniformly bounded. For large enough values of i, we may put the connections g∗
i Ai in

the chosen subsequence in the Coulomb gauge with respect to a smooth connection

A′
0 which is close enough to A0 in the L4

1 norm [Weh042, Theorem F]. For the ease

of notation, we denote g∗
i Ai after applying the second gauge transformation by Ai.

The Coulomb gauge condition on Ai asserts that

d∗
A′

0
(Ai − A′

0) = 0, ∗(Ai − A′
0)|U∂×Σ = 0. (4.76)

We claim that dA′

0
Ai is uniformly bounded in L2

1. First note that

dA′

0
Ai = dA′

0
A0 − (Ai − A′

0) ∧ (Ai − A′
0) + FAi

− FA′

0
. (4.77)

Since ||∇Ai
FAi

||L2 , ||FAi
||L4 and ||Ai||L4 are all uniformly bonded, the term FAi

in

(4.77) is uniformly bounded in L2
1, too. Similarly, the term (Ai − A′

0) ∧ (Ai − A′
0)

is uniformly bounded in L2
1 because there is a uniform bound on ||Ai||L4

1
. Thus our

claim about dA′

0
Ai follows. Sobolev embedding together with uniform boundedness

of {dA′

0
Ai}i implies that for any p < 4, the sequence {dA′

0
Ai}i is Lp convergent after

passing to a subsequence. This together with (4.76) implies that Ai are Lp
1 convergent

to A0 over D−
r′(z) × Σ for r′ < r. Now we use Theorem 2 to show that (Ai, ui) is in

fact C∞ convergent to (A0, u0).

By applying a similar argument to each point z in the complement of σ− ∪U∂ ×Σ

in X , we may obtain gauge transformations for the restriction of Ai to an open

neighborhood Dr(z) ⊂ X such that after applying these gauge transformations and

passing to a subsequence the resulting connections are C∞ convergent to an ASD

connection. On the symplectic side, for any point z in the complement of σ+ ∪ U∂

in S, there is a disc neighborhood Dr(z) ⊂ S such that the restriction of ui to this

neighborhood is C∞ convergent to a holomorphic map from Dr(z) to M(Σ, F ). We

may patch together these holomorphic maps together to define a holomorphic map

u0 : S \ S+ → M(Σ, F ) where S+ = γ+ ∪ γ∂ . Then the maps ui are C∞ convergent

on compact subspaces of S \S+ to u0.

We may also define a connection A0 on X \ S− where S− = γ− ∪ γ∂ × Σ. The

patching argument of [DK90, Sect. 4.4.2] can be used to find a subsequence of {Ai}

and a gauge transformations gi defined on X \ S− such that g∗
i Ai, after passing

to the subsequence, is C∞ convergent to an ASD connection A0 on any compact

subspace of X \ S−. The pair (A0, u0) defines a solution of the mixed equation for

the quintuple

P′ := (X \S−, V |X\S−
, S \S+,M(Σ, F ),L(Σ, F )).

Since (4.71) is bounded by K, we have E(A0, u0) ≤ K. Moreover, if at least one of

S+ and S− is non-empty, then E(A0, u0) ≤ K − �. Applying the results of Sect. 4.2,
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removability of singularity for ASD connections [Uhl822, DK90] and removability of

singularity for holomorphic maps [MS12] implies that (A0, u0) can be extended to a

solution of the mixed equation for the quintuple

P0 := (X, V ′, S,M(Σ, F ),L(Σ, F )), (4.78)

where V ′ is an SO(3) bundle over X whose restriction to X \S−, is isomorphic to V .

This completes the proof of Theorem 3 in the introduction.

5 Fredholm property

Our goal in this section is to address Theorem 5. In fact, it would be more convenient

if we work on a slightly more generalized version of the theorem. First we write

an explicit formula for the mixed operator D(A,u) for a smooth mixed pair (A, u)

associated to the cylinder quintuple cI in (1.10). For any (ζ, ν), we have

D(A,u)(ζ, ν) := (d+
Aζ,−d∗

Aζ,∇θν − Js,θ(u)∇sν − (∇νJs,θ)
du

ds
). (5.1)

The first component is the linearization of the ASD equation F +(A) = 0 at the

connection A and the third term is the linearization of the Cauchy–Riemann equation

du

dθ
− Js,θ(u)

du

ds
= 0.

Here we use the Levi–Civita connection on M defined using a Riemannian metric on

M (possibly the metric induced by a compatible almost complex structure) to define

the covariant derivatives ∇s and ∇θ in the s and θ directions. The middle term in

D(A,u)(ζ, ν) is given by the Coulomb gauge fixing condition.

It is helpful to rewrite D(A,u) in a from which makes use of the product structure

of cI . By applying a gauge transformation, we may assume that the connection A on

Y × I is in temporal gauge and hence is determined by its restrictions Bθ to Y × {θ}

for θ ∈ I . The restriction of Bθ to Σ = ∂Y , which is a flat connection, is denoted by

αθ. Any element ζ of Ω1(X, E) can be written as ζ = b + ϕdθ. Thus we may identify

Ω1(X, E) with maps from I to Ω1(Y, E) ⊕ Ω0(Y, E). Using this presentation of ζ, we

have

d∗
Aζ = d∗

Bb −
dϕ

dθ
,

d+
Aζ =

1

2

[
dθ ∧ (− ∗3 dBb +

db

dθ
− dBϕ) − ∗3(− ∗3 dBb +

db

dθ
− dBϕ)

]
.

An element of Ω+(X, E) can be also identified with a map from I to Ω1(Y, E) by

sending a self-dual 2-form 1
2(dθ ∧ b − ∗3b) to b. Similarly, any element of Ω0(X, E)

can be identified with Map(I,Ω0(Y, E)) in the obvious way.

To study the last component of D(A,u), fix a Hermitian isomorphism of

u∗T M(Σ, F ) with the trivial bundle with fiber (R2n, J0, ω0). Here J0 and ω0 are
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standard complex and symplectic structures on the Euclidean space R2n with 2n

being the dimension of M . Note that the almost complex structure on the fiber of

u∗T M(Σ, F ) over (s, θ) is given by Js,θ. This reparametrization of u∗TM allows us

to regard ν as a map [0,1] × I → R2n, and then the third component of (5.1) can be

written as

dν

dθ
− J0

dν

ds
− S(ν), (5.2)

where S is a map from [0,1] × I to the space of endomorphisms of R2n. Moreover,

for any θ ∈ I , there is a family of Lagrangian subspaces Lθ ⊂ R2n and subspaces Lθ

of L2(Σ,Λ1 ⊗ F ) ⊕ R2n such that

∗ζ|Σ×I = 0, (ζ|Σ×θ, ν(0, θ)) ∈ Lθ, ν(1, θ) ∈ Lθ.

Here Lθ is a canonical linearized Lagrangian correspondence from Ω1(Σ, F ) to R2n

compatible with αθ, whose definition is given below.

Definition 5.3. Suppose α is a flat connection on F . A canonical linearized La-

grangian correspondence L from Ω1(Σ, F ) to R2n compatible with α is determined

by a Lagrangian subspace V of H1(Σ;α) × R2n with respect to the symplectic form

−ωfl ⊕ ω. The space L is the subspace of L2(Σ,Λ1 ⊗ F ) ⊕ R2n given by elements of

the form

v + (dαζ,0)

where ζ ∈ L2
1(Σ, F ). We write Lα,V for this Lagrangian correspondence if we want to

clarify the choices of α and V .

Given L as in the above definition, the pairing of any two elements of L with re-

spect to the symplectic form −Ω ⊕ ω0 vanishes and as a consequence of Lemma 2.5,

an element of L2(Σ,Λ1 ⊗ F ) ⊕ R2n belongs to L if its pairing with all elements of L

vanish. The L2 closures of the tangent spaces of a canonical Lagrangian correspon-

dence from Ap(Σ, F ) to R2n give rise to instances of L.

Motivated by the above discussion, we may slightly relax the definition of the

mixed operator. Suppose A is a smooth connection on E × I over Y × I such that

the restriction αθ of A to Σ × {θ} is flat for any θ ∈ I . Suppose S is a smooth map

from [0,1] × I to the space of endomorphisms of R2n. Following the same convention

as above, A is in temporal gauge and its restriction to Y × {θ} is denoted by Bθ.

Similarly, we write Sθ for the restriction of S to [0,1] × {θ}. For any θ ∈ I , suppose

Vθ is a Lagrangian subspace of H1(Σ;αθ) × R2n with respect to the symplectic form

−ωfl ⊕ω and Lθ is a Lagrangian subspace of R2n with respect to the symplectic form

ω0. We assume that both of Vθ and Lθ depend smoothly on θ. Let Lθ = Lαθ ,Vθ
.

We define a differential operator D(A,S) associated to A, S, L = {Lθ, Lθ}θ. Fix a

positive integer k. Similar to Ek
(A,u)(I), let Ek

L
(I) be the space of pairs

ζ ∈ L2
k(Y × I,Λ1 ⊗ E), ν ∈ L2

k([0,1] × I,R2n), (5.4)
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satisfying the boundary conditions

∗ζ|Σ×I = 0, (ζ|Σ×{θ}, ν(0, θ)) ∈ Lθ, ν(1, θ) ∈ Lθ. (5.5)

Let D(A,S) be the linear map with the domain Ek
L

(I) defined as

D(A,S) :=
d

dθ
−D(Bθ ,Sθ), (5.6)

where

D(Bθ ,Sθ)(ϕ, b, ν) = (d∗
Bθ

b, ∗dBθ
b + dBθ

ϕ, J0
dν

ds
+ Sθ(ν)). (5.7)

Here we use the presentation of ζ in (5.4) as b + ϕdθ with ϕ being a section of E and

b being a 1-form on Y with values in E. The target of the operator D(A,S) is given

as

L2
k−1(Y × I,Λ1 ⊗ E) ⊕ L2

k−1([0,1] × I,R2n). (5.8)

A straightforward integration by parts shows that the formal adjoint of D(A,S), char-

acterized by the analogue of (1.15), is equal to

d

dθ
+D(Bθ ,S∗

θ
).

Theorem 5.9. For any open interval J that its closure is a compact subset of I , the

following holds.

(i) For k ≥ 1, suppose (ζ, ν) ∈ E1
L

(I) and D(A,S)(ζ, ν) is in L2
k−1. Then (ζ, ν) ∈

Ek
L

(J). Moreover, there is a constant C, depending only on (A, S) and k, such

that

||(ζ, ν)||L2
k

(J) ≤ C
(
||D(A,S)(ζ, ν)||L2

k−1
(I) + ||(ζ, ν)||L2(I)

)
. (5.10)

(ii) Suppose (ζ, ν) is as in (5.8) for k = 1, and there is a constant κ such that

〈(ζ, ν),D(A,S)(ξ, η)〉L2 ≤ κ||(ξ, η)||L2(I)

for any smooth and compactly supported (ξ, η) as in (5.4) satisfying (5.5).

Then (ζ, ν) is in E1
L

(J). Moreover, there is a constant C, depending only on

(A, S), such that

||(ζ, ν)||L2
1(J) ≤ C

(
||D(A,S)(ζ, ν)||L2(I) + ||(ζ, ν)||L2(I)

)
. (5.11)

Verifying Theorem 5.9 in the case that S is replaced with S + S∗ is sufficient for

proving the theorem in the general case. In particular, we can assume that S takes

values in self-adjoint transformations of R2n, and this is the assumption that we

make for the rest of the section. As we shall see in Sect. 5.2, this assumption allows
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us to show that D(Bθ ,Sθ) is an unbounded self-adjoint operator. Then we use general

Fredholm property results about operators which have the form

d

dθ
− Dθ (5.12)

for a family of unbounded self-adjoint operators Dθ. The additional layer of difficulty

here is that the domain of the operators D(Bθ ,Sθ) depends on θ. To resolve this issue,

we will have a closer look at the domain of these operators in Sect. 5.1 and show

that the variation in the domains of these operators can be controlled in a nice

way. Then we conclude Theorem 5.9 from the results of [SW08] about Fredholm

property of operators of the form (5.12) where the domains of Dθ are not constant.

Our discussion above shows that Theorem 5 follows from Theorem 5.9.

5.1 The Hilbert space W . Let H be the Hilbert space given as the completion

of smooth triples

(ϕ, b, ν) ∈ Ω0(Y, E) ⊕ Ω1(Y, E) ⊕ Ω0([0,1],R2n), (5.13)

equipped with the L2 inner product

〈(ϕ0, b0, ν0), (ϕ1, b1, ν1)〉L2 :=

∫

Y
tr (ϕ0 ∧ ∗ϕ1 + b0 ∧ ∗b1) +

∫ 1

0
ω0(ν0(s), J0ν1(s))ds.

(5.14)

In this subsection and the next one, we write ∗ for the 3-dimensional Hodge operator,

and the Hodge operator on Σ is denoted by ∗2 as before. Suppose B is a connection

whose restriction α to Σ is flat and S is a map from [0,1] to the space of self-adjoint

linear transformations of R2n. In the last subsection, we introduced

D(B,S)(ϕ, b, ν) = (d∗
Bb, ∗dBb + dBϕ, J0

dν

ds
+ S(ν)), (5.15)

which can be regarded as an unbounded operator on H.

We fix a domain for D(B,S) using a Lagrangian L ⊂ R2n and a canonical linearized

Lagrangian correspondence L from Ω1(Σ, F ) to R2n compatible with α. Thus, L =

Lα,V for a Lagrangian subspace V of H1(Σ;α)⊕R2n. Let W denote the L2
1 completion

of the space of all triples (ϕ, b, ν) as in (5.13) such that

∗b|Σ = 0, (b|Σ, ν(0)) ∈ L, ν(1) ∈ L. (5.16)

Clearly, W is a dense subspace of H because any element of H can be obtained as the

L2 limit of a sequence of triples (ϕi, bi, νi) as in (5.13) such that such that bi vanishes

in a neighborhood of the boundary Σ of Y and νi vanishes in a neighborhood of the

boundary of [0,1]. We fix the L2
1 inner product on W where the L2

1 inner product

on sections of E and Λ1 ⊗ E are defined using the connection B and the Levi–

Civita connection associated to the metric on Y . Sobolev embedding implies that

the inclusion of W into H is compact.
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The Hodge decomposition in Lemma 2.5 allows us to give a useful description of

the Hilbert spaces H and W . Fix a tubular neighborhood (−ε, 0]×Σ of the boundary

of Σ. Using (B.1), we have the identification

L2
k((−ε, 0] × Σ,Λ1

Σ ⊗ E) = L2
k((−ε, 0], L2(Σ,Λ1

Σ ⊗ F )) ∩ L2((−ε, 0], L2
k(Σ,Λ1

Σ ⊗ F )).

(5.17)

Lemma 2.5 asserts that we have the continuous splitting

L2
k(Σ,Λ1

Σ ⊗ F ) ∼= H1(Σ;α) ⊕ L2
k+1(Σ, F ) ⊕ L2

k+1(Σ, F ),

for any non-negative integer k. Therefore, we have

L2
k((−ε, 0] × Σ,Λ1

Σ ⊗ E) = L2
k((−ε, 0],H1(Σ;α)) ⊕ Zk ⊕ Zk, (5.18)

where

Zk = L2
k((−ε, 0], L2

1(Σ, F )) ∩ L2((−ε, 0], L2
k+1(Σ, F )). (5.19)

Given the canonical Lagrangian correspondence Lα,V from Ω1(Σ, F ) to R2n, an ele-

ment of

L2
k((−ε, 0] × Σ,Λ1

Σ ⊗ E) ⊕ L2
k([0, ε),R2n) (5.20)

can be written as

v + Jv′ + (dαζ + ∗2dαζ ′,0),

where v, v′ ∈ L2
k((−ε, 0], V ), ζ, ζ ′ ∈ Zk and J is defined as in (2.9) using J0. For each

s ∈ (−ε, 0], v(s), v′(s) ∈ V has a component in H1(Σ;α), and this component for

different values of s gives rise to an element of the first summand of (5.20). The

components of v(s), v′(s) in R2n define an element of L2
k((−ε, 0],R2n), which we

identify with an element of the second summand of (5.20) by precomposing with the

map s → −s from [0, ε) to (−ε, 0]. Moreover, the exterior derivative dα in the above

expression is only taken in the Σ direction and hence dα maps an element of Zk to

an element of (5.17).

Suppose (ϕ, b, ν) ∈ H. We focus on the restriction of (ϕ, b) to the subspace

(−ε, 0] × Σ of Y and the restriction of ν to the interval [0, ε) of [0,1], and by a

slight abuse of notation use the same notations to denote these restrictions. Then

the 1-form b has the form

q + τds, (5.21)

where s denotes the coordinate on (−ε, 0], q ∈ L2((−ε, 0] × Σ,Λ1
Σ ⊗ E) and τ ∈

L2((−ε, 0] × Σ, E). Using the discussion of the previous paragraph, the pair q and b

can be reparametrized by

v, v′ ∈ L2((−ε, 0], V ), ζ, ζ ′ ∈ Z0.
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Then (ϕ, b, ν) ∈ W is equivalent to require that v, v′ and τ are in L2
1, ζ, ζ ′ are in Z1,

τ |{0}×Σ = 0, v′(0) = 0, ζ ′(0) = 0.

We shall use this discussion to construct isomorphisms between the Hilbert spaces

W associated to two different choices of (α, V, L) that are close to each other. First

we need the following lemma which allows us to identify the vector spaces H1(Σ;α)

associated to choices of α that are close to each other.

Lemma 5.22. Fix a flat connection α0 on F . There is a positive constant ε such

that if α is another flat connection on F with ||α − α0||L2
1

< ε, then there is an

isomorphism Φα : H1(Σ;α0) → H1(Σ;α) and a constant C such that

||Φα(v) − v||L2
1

≤ C||α − α0||L2 ||v||L2 . (5.23)

More generally, there are positive constants εk and Ck such that if ||α − α0||L2
k

< εk,

then

||Φα(v) − v||L2
k

≤ C||α − α0||L2
k−1

||v||L2 . (5.24)

Proof. For any positive integer k and any flat connection α on F , the twisted Laplace

operator

Δα = d∗
αdα : L2

k+1(Σ, F ) → L2
k−1(Σ, F )

is invertible, and we denote the inverse by Gα. It is straightforward to see that there

are positive constants εk and Ck such that if ||α − α0||L2
k

< εk, then we have

||dαζ||L2
k

≤ Ck||ζ||L2
k+1

, ||Gα(ζ)||L2
k+1

≤ Ck||ζ||L2
k−1

. (5.25)

For any v ∈ H1(Σ;α0), define

Φα(v) := v + dαGα(∗2[α − α0,∗2v]) + ∗2dαGα(∗2[α − α0, v]). (5.26)

Then we have

dαΦα(v) = dαv + dα ∗2 dαGα(∗2[α − α0, v])

= (dα0v + [α − α0, v]) − ∗2ΔαGα(∗2[α − α0, v])

= 0,

where in the last identity we use the assumption that dα0v = 0. Using a similar

argument we have

d∗
αΦα(v) = d∗

αv + ΔαGα(∗2[α − α0,∗2v])

= (d∗
α0

v − ∗2[α − α0,∗2v]) + (∗2[α − α0,∗2v])

= 0.
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In particular, we have Φα(v) ∈ H1(Σ;α). Using (5.25), we can conclude the following

inequalities where in each line we might need to increase the value of Ck in compare

to the previous one:

||Φα(v) − v||L2
k

≤ ||dαGα(∗2[α − α0,∗2v])||L2
k

+ || ∗2 dαGα(∗2[α − α0, v])||L2
k

≤ Ck

(
||Gα(∗2[α − α0,∗2v])||L2

k+1
+ ||Gα(∗2[α − α0, v])||L2

k+1

)

≤ Ck

(
|| ∗2 [α − α0,∗2v]||L2

k−1
+ ||(∗2[α − α0, v]||L2

k−1

)

≤ Ck||α − α0||L2
k−1

||v||L2 .

This, in particular, shows that after possibly decreasing the value of εk, Φα :

H1(Σ;α0) → H1(Σ;α) is an isomorphism of vector spaces. �

Fix a triple (α0, V0, L0), and let U be the space of all triples (α, V, L) such that:

(i) ||α − α0||L2
1

is less than the constant ε provided by Lemma 5.22;

(ii) V has a trivial intersection with Φα(J0(V0)) and JV has trivial intersection

with Φα(V0);

(iii) L ∩ J0L0 = 0.

In (ii), J0 and J are respectively the almost complex structures on H1(Σ;α0) ⊕ R2n

and H1(Σ;α) ⊕ R2n given as (−J∗, J0). For any (α, V, L) ∈ U , there is a Linear map

R : L0 → J0L0 such that L is given by the subspace of R2n consisting of x + R(x)

with x ∈ L0. We define the distance between L and L0, denoted by d(L, L0), to

be the norm of the linear map R. Similarly, there is a linear map R : V0 → J0V0

(resp. R′ : J0V0 → V0) such that Φ−1
α (V ) (resp. Φ−1

α (JV )) is given by the subspace of

H1(Σ;α0) ⊕ R2n consisting of v +R(v) (resp. v +R′(v)) with v ∈ V0 (resp. v ∈ J0V0).

We define the distance between V and V0, denoted by d(V, V0), to be the sum of the

norms of the linear maps R and R′.

Proposition 5.27. Suppose α0, V0 and L0 are given as above, and W0 is the Hilbert

space defined using (α0, V0, L0). There is a positive constant c1 such that for any

(α, V, L) ∈ U with

||α − α0||L2
1

+ d(V, V0) + d(L, L0) < c1 (5.28)

the following holds. There is an invertible bounded linear map Q : H → H which maps

W0 to W , defined using (α, V, L). There is a constant C, independent of (α, V, L),

such that

||Q − Id||L2 ≤ C(||α − α0||L2
1

+ d(V, V0) + d(L, L0)).

For any k, Q induces an isomorphism on the space of L2
k triples in L2

k. There are

positive constants ck and Ck such that for any (α, V, L) ∈ U with

||α − α0||L2
k

+ d(V, V0) + d(L, L0) < ck (5.29)
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then the operator norm of Q − Id as an operator, acting on the subspace of H given

by L2
k triples, satisfies

||Q − Id||L2
k

≤ C(||α − α0||L2
k

+ d(V, V0) + d(L, L0)), (5.30)

and for any (ϕ, b, ν) in the subspace of L2
k triples of L2

k, we have

C−1
k ||(ϕ, b, ν)||L2

k
≤ ||Q(ϕ, b, ν)||L2

k
≤ Ck||(ϕ, b, ν)||L2

k
. (5.31)

Proof. Let TL : R2n → R2n be the isomorphism that its restriction to L0 is the or-

thogonal projection to L and its restriction to J0L0 (the orthogonal complement

of L0) is orthogonal projection to J0L. Similarly, let Tα,V be the isomorphism

H1(Σ;α0) ⊕ R2n → H1(Σ;α) ⊕ R2n that maps V0 to V by the composition of Φα

and the orthogonal projection to V and maps the orthogonal complement of V0 in

H1(Σ;α0) ⊕ R2n to J0V by the composition of Φα and the orthogonal projection to

J0V . We extend Tα,V into an isomorphism

L2(Σ; Λ1 ⊗ F ) ⊕ R2n → L2(Σ; Λ1 ⊗ F ) ⊕ R2n

which maps an element z ∈ L2(Σ; Λ1 ⊗ F ) ⊕ R2n presented as

z = v + (dα0ζ + ∗2dα0ζ ′,0) v ∈ H1(Σ;α0) ⊕ R2n, (5.32)

into

Tα,L(v) + (dαζ + ∗2dαζ ′,0). (5.33)

By a slight abuse of notation, we denote this map with the same notation Tα,L. The

key property of Tα,V is that it maps Lα0,V0 isomorphically onto Lα,V . The operators

Tα,V and TL satisfy the following operator norms with respect to the standard norms

on L2(Σ; Λ1 ⊗ F ) ⊕ R2n and R2n:

||Tα,V − Id|| < C
(
||α − α0||L2

1
+ d(V, V0)

)
, ||TL − Id|| ≤ Cd(L, L0). (5.34)

In fact, Tα,V sends L2
k(Σ; Λ1 ⊗ F ) ⊕ R2n into itself, and the operator norm of Tα,V ,

as an operator acting on L2
k(Σ; Λ1 ⊗ F ) ⊕ R2n with respect to its standard norm

satisfies

||Tα,V − Id||L2
k

< C
(
||α − α0||L2

k
+ d(V, V0)

)
. (5.35)

If (α, V, L) satisfies (5.29) for a small enough c1, then (5.34) implies that for any

s ∈ [0,1], the operator sTα,V + (1 − s)I is invertible. Let

T G
α,V : L2(Σ; Λ1 ⊗F )⊕R2n → L2(Σ; Λ1 ⊗F ), T S

α,V : L2(Σ; Λ1 ⊗F )⊕R2n → R2n,

denote the composition of Tα,V with projection maps to L2(Σ; Λ1 ⊗ F ) and R2n.

We use the maps Tα,V and TL to define the desired Q : H → H. Fix a cutoff

function ρ : [0,1] → [0,1] that is equal to 1 on [0, ε/3) and vanishes on (ε/2,1]. Let
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(ϕ, b, ν) ∈ H, and the restriction of b to (−ε, 0] × Σ ⊂ Y is given as in (5.21). Then

Q(ϕ, b, ν) = (ϕ, c, η), where c is equal to b on the complement of (−ε, 0] × Σ, the

restriction of c on (−ε, 0] × Σ is given as

ρ(−s)T G
α,V (q(s), ν(−s)) + (1 − ρ(−s))q(s) + τds,

η = ν on the complement of [0, ε) ∪ (1 − ε, 1], the restriction of η on [0, ε) is given as

ρ(s)T S
α,V (q(s), ν(−s)) + (1 − ρ(s))ν(s),

and the restriction of η to (1 − ε, 1] is given as

ρ(1 − s)TL(ν(s)) + (1 − ρ(1 − s))ν(s).

The inequalities (5.34) and (5.35) can be used to verify (5.29) and (5.30). The in-

equalities in (5.31) is a consequence of (5.30). �

5.2 The operator D(B,S). In this subsection, we fix B, S, L and L as in the

previous subsection, and form the Hilbert spaces H and W and the operator D(B,S).

Here we focus on the operator D(B,S), and our goal is to show that it is self-adjoint

and satisfies some regularity properties.

Lemma 5.36. The operator D(B,S) is symmetric. That is to say, for any (ϕ, b, ν),

(ψ, c, η) ∈ W , we have

〈(ϕ, b, ν),D(B,S)(ψ, c, η)〉L2 = 〈D(B,S)(ϕ, b, ν), (ψ, c, η)〉L2.

Proof. Using Stokes theorem we have
∫

Y
tr(d∗

Bb ∧ ∗ψ) −

∫

Y
tr(b ∧ ∗dBψ) = −

∫

Σ
tr(∗b ∧ ψ), (5.37)

and
∫

Y
tr(d∗

Bc ∧ ∗ϕ) −

∫

Y
tr(c ∧ ∗dBϕ) = −

∫

Σ
tr(∗c ∧ ϕ). (5.38)

Since ∗b|Σ and ∗c|Σ vanish, the above expressions are equal to zero. Another appli-

cation of Stokes theorem implies that
∫

Y
tr(dBb ∧ c) −

∫

Y
tr(b ∧ dBc) =

∫

Σ
tr(b ∧ c), (5.39)

and
∫ 1

0
ω0(

dν

ds
, η)ds −

∫ 1

0
ω0(

dη

ds
, ν)ds = ω0(ν(1), η(1)) − ω0(ν(0), η(0)). (5.40)

The first term on the right hand side of the above expression vanishes because

ν(1), η(1) ∈ L and the second term is equal to the negative of the right hand side of

(5.39), because (b|Σ, ν(0)), (c|Σ, η(0)) ∈ L. These observations immediately yield the

claim that D(B,S) is symmetric. �
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Lemma 5.41. There is a constant C such that the following holds. Suppose (ϕ, b, ν) ∈

H has the property that there exists a constant κ with

〈(ϕ, b, ν),D(B,S)(ψ, c, η)〉L2 ≤ κ||(ψ, c, η)||L2 (5.42)

for any (ψ, c, η) ∈ W . Then (ϕ, b, ν) ∈ W and

||(ϕ, b, ν)||L2
1

≤ C(κ + ||(ϕ, b, ν)||L2). (5.43)

In other words, this lemma asserts that the domain of the adjoint of the symmetric

unbounded operator D(B,S) is W . Therefore, D(B,S) is a self-adjoint operator. An-

other immediate consequence of the above two lemmas is that for any (ϕ, b, ν) ∈ W ,

we have

||(ϕ, b, ν)||L2
1

≤ C(||D(B,S)(ϕ, b, ν)||L2 + ||(ϕ, b, ν)||L2). (5.44)

Proof. Suppose ρ1 : Y → R and ρ2 : [0,1] → R are smooth functions such that the

restriction of ρ1 to ∂Y = Σ is the constant function with value ρ2(0). If (5.42)

holds for (ϕ, b, ν), then it is also satisfied for (ρ1ϕ, ρ1b, ρ2ν). To see this, note that if

(ψ, c, η) ∈ W , then (ρ1ψ, ρ1c, ρ2η) ∈ W , and the difference

∣∣〈(ρ1ϕ, ρ1b, ρ2ν),D(B,S)(ψ, c, η)〉L2 − 〈(ϕ, b, ν),D(B,S)(ρ1ψ, ρ1c, ρ2η)〉L2

∣∣

is bounded by C||(ϕ, b, ν)||L2 ||(ψ, c, η)||L2 for a suitable constant C, which depends

only on ρ1 and ρ2. Thus a partition of unity argument allows us to divide the propo-

sition into three cases:

(i) ν = 0 and (ϕ, b) is compactly supported in the interior of Y ;

(ii) (ϕ, b) = 0 and ν is compactly supported in (0,1]

(iii) (ϕ, b) is compactly supported in a collar neighborhood (−ε, 0] × Σ of the

boundary of Y and ν is compactly supported in [0, ε). We use s to denote the

standard coordinate for the first factor of the collar neighborhood (−ε, 0]×Σ.

The metric in this neighborhood has the form ds2 + gΣ.

The first two cases are standard and we only need to address the third case.

Let b = q + τds as in (5.21). We assume that the connection B on (−ε, 0] × Σ is in

temporal gauge with respect to the coordinate s, and for each s ∈ (−ε, 0], we write

βs (or simply β) for the restriction of the connection B to {s} × Σ ⊂ (−ε, 0] × Σ. We

prove the claim of (5.44) in four steps. In the following, C is the desired constant in

(5.44). Throughout the proof we might need to increase this constant from each line

to the next one.

Step 1: The term ϕ is in L2
1 and the constant C can be chosen such that

||ϕ||L2
1

≤ C(κ + ||(ϕ, b)||L2). (5.45)

Suppose ξ is a smooth section of E such that the normal derivative ∂sξ restricted

to the boundary Σ vanishes. This means that ξ ∈ Γν(Y, E) in the notation of Ap-

pendix A. Then (0, dBξ,0) belongs to W with respect to the connection B. Applying
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(5.42) implies that the expression

〈(ϕ, b, ν),D(B,S)(0, dBξ,0)〉L2 = 〈ϕ, d∗
BdBξ〉L2 + 〈b, ∗[FB, ξ]〉L2

is bounded by κ||dBξ||L2 . In particular, we may pick C such that

〈ϕ, d∗
BdBξ〉L2 ≤ C(κ + ||b||L2)||ξ||L2

1
. (5.46)

By working in charts on (−ε, 0] × Σ and trivializing F on each chart, we can bound

〈ϕ,Δξ〉L2 by C(κ+ ||(ϕ, b)||L2)||ξ||L2
1
. Therefore, we may apply part (ii) of Lemma A.1

to obtain (5.45).

Step 2: The component τ of b = q +τds is in L2
1 and the constant C can be chosen

such that

||τ ||L2
1

≤ C(κ + ||(ϕ, b)||L2). (5.47)

If ξ is a smooth section of E, then (ξ,0,0) defines an element of W . Thus (5.42)

implies that

〈b, dBξ〉L2 ≤ κ||ξ||L2 . (5.48)

Next, let γ be a smooth section of E that vanishes on Σ, that is to say γ ∈ Γτ (Y, E).

We also assume that the support of γ is contained in (−ε, 0]×Σ. Therefore, ∗dB(γds)

can be regarded as a 1-form on Y . Moreover, (0,∗dB(γds),0) belongs to W . There-

fore, another application of (5.42) gives

〈(ϕ, b, ν),D(B,S)(0,∗dB(γds),0)〉L2 = 〈b, ∗dB ∗ dB(γds)〉L2 − 〈ϕ,∗([FB, γ] ∧ ds)〉L2

is bounded by κ||dBγ||L2 . Thus we can conclude that:

〈b, d∗
BdB(γds)〉L2 ≤ C(κ + ||ϕ||L2)||γ||L2

1
(5.49)

after possibly enlarging the value of C. Inequalities (5.48) and (5.49) are the necessary

inputs to apply Lemma A.20, where α, r, σ and A0 in the statement of this lemma

are b, 2, ∂s and the smooth connection B. In particular, this shows that τ is in L2
1

and

||τ ||L2
1

= ||b(∂s)||L2
1

≤ C(κ + ||(ϕ, b)||L2).

This gives us the inequality in (5.47).

Step 3: The section ∇Σ(q) of T ∗Σ⊗T ∗Σ⊗E on (−ε, 0]×Σ given by the covariant

derivatives of q along Σ with respect to the connection B is in L2. Moreover, the

constant C can be chosen such that

||∇Σ(q)||L2 ≤ C(κ + ||(ϕ, b)||L2). (5.50)

Let ξ be a smooth section of E that vanishes on the boundary of Y and is supported

in the collar neighborhood (−ε, 0] × Σ. Since (0, ξds,0) is an element of W , the
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expression

〈(ϕ, b, ν),D(B,S)(0, ξds,0)〉L2 = 〈ϕ, d∗
B(ξds)〉L2 + 〈b, ∗dB(ξds)〉L2

is bounded by κ||ξ||L2 . Using Stokes’ theorem and Step 1, the first term on the right

hand side of the above identity is bounded by C(κ + ||(ϕ, b)||L2)||ξ||L2 . Note that the

assumption on the vanishing of ξ on the boundary implies that there is no boundary

term in the application of Stokes’ theorem. In summary, we have

∫ 0

−ε
〈qs,∗2dβs

ξs〉L2(Σ)ds ≤ C(κ + ||(ϕ, b)||L2)||ξ||L2 , (5.51)

where qs and ξs are restrictions of q and ξ to Σ × {s}. In fact, the same inequality

holds if we drop the assumption of the vanishing of ξ on the boundary. Let ρ :

(−∞,0] × R be a smooth function that vanishes on (−ε/3,0] and is equal to 1 on

(−∞,−ε/2]. For any smooth section ξ of E, we map apply (5.51) to ξi := ρ(is)ξ, and

by taking the limit i → ∞, we obtain a similar inequality for ξ.

Suppose again ξ is a smooth section of E and follow Step 2 to show that

〈b, dBξ〉L2 =

∫ 0

−ε
〈qs, dβs

ξs〉L2(Σ) +

∫ 0

−ε
〈τs, ∂sξs〉L2(Σ)

is bounded by κ||ξ||L2 . Integration by parts and Step 2 imply that the second term

on the right hand side of the above identity is bounded by C(κ + ||(ϕ, b)||L2)||ξ||L2 .

We again use the vanishing of ξ on the boundary to show that there is no boundary

term. Thus we obtain
∫ 0

−ε
〈qs, dβs

ξs〉L2(Σ)ds ≤ C(κ + ||(ϕ, b)||L2)||ξ||L2 .

We can again drop the assumption on the vanishing of ξ on the boundary as in the

previous paragraph. Therefore, we can deduce from Lemma A.26 that ∇Σ(q) is in

L2 and the constant C can be chosen such that (5.50) holds.

Step 4: The derivatives of q and ν with respect to s are in L2, and the constant

C can be chosen such that

||∂sq||L2 + ||
dν

ds
||L2 ≤ C(κ + ||(ϕ, b, ν)||L2). (5.52)

Suppose c is a 1-form with values in E supported in (−ε, 0]×Σ which has a vanishing

ds component and c|Σ = 0. We write ∗2c for the 1-form on (−ε, 0] × Σ given by the

Hodge star of ds ∧ c. Suppose also η : [0,1] → R2n is a smooth map supported in

[0, ε) such that η(0) = 0. Then (0,∗2c, J0η) ∈ W and (5.42) implies that

〈(ϕ, b, ν),D(B,S)(0,∗2c, J0η)〉L2 =〈ϕ,∗2dβc〉L2 − 〈q, ∂sc〉L2 − 〈τ, d∗
βc〉L2

+

∫ 1

0
〈ν,−

dη

ds
+ S(J0η)〉ds
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is bounded by κ||(c, η)||L2 . Stokes’ theorem, Step 1 and Step 2 imply that the first

and the third term on the right hand side of the above identity is bounded by

C(κ + ||(ϕ, b)||L2)||c||L2 . Therefore, we have

|〈q, ∂sc〉L2 +

∫ 1

0
〈ν,

dη

ds
〉ds| ≤ C(κ + ||(ϕ, b, ν)||L2)||(c, η)||L2 .

This shows that the derivative of q and ν with respect to s exist in the weak sense

and the claimed inequality in (5.52) holds.

Step 5: (ϕ, b, ν) ∈ W .

Previous steps give us a control over the L2
1 norm of (ϕ, b, ν). Thus we just need to

check the boundary conditions. This is a straightforward consequence of the identities

produced by the Stokes theorem in (5.37), (5.38) and (5.39). In fact, these identities

show that if (ψ, c, η) ∈ W , then

〈(ϕ, b, ν),D(B,S)(ψ, c, η)〉L2

is equal to the sum of

〈D(B,S)(ϕ, b, ν), (ψ, c, η)〉L2 (5.53)

and the boundary terms
∫

Σ
tr(∗c ∧ ϕ) −

∫

Σ
tr(∗b ∧ ψ) +

∫

Σ
tr(b ∧ c) + ω0(ν(0), η(0)) − ω0(ν(1), η(1)). (5.54)

The first and the last terms in (5.54) vanish because (ψ, c, η) ∈ W and ν(1) = 0. Pre-

vious steps show that (5.53) is bounded by C(κ+ ||(ϕ, b, ν)||L2)||(ψ, c, η)||L2 . Therefore,

(5.42) asserts that the same is true for (5.54). This implies that

∗b|Σ = 0, −

∫

Σ
tr(b ∧ β) = ω0(ν(0), η), ∀ (β, η) ∈ L. (5.55)

These identities show that (ϕ, b, ν) satisfy the conditions in (5.16). �

Remark 5.56. One might ask how the constant C in Lemma 5.41 depends on (B, S).

An examination of the proof shows that for an open neighborhood of (B, S), defined

using the L2
l norm for some value of l, we may find a constant C which works for

all elements in this neighborhood. (In fact, we can work with l = 2. But the precise

value of l shall not be important for us.)

Remark 5.57. It is worthwhile to observe that for the most part in the proof of

Lemma 5.41 we can work with (ψ, c, η) inside a smaller subspace of W (compare

[SW08, Lemma 3.5].) In Step 1, triples (ψ, c, η) = (0, dBξ,0) with ξ ∈ Γν(Y, E) suffices

for our purposes and through Steps 2-4 of the proof, we need the inequality in (5.42)

only for smooth (ψ, c, η) such that η(0) = η(1) = 0, ∗c|Σ = 0 and c|Σ = 0. It is only

in the last step of the proof that we use the full strength of (5.42) to show that

(ϕ, b, ν) ∈ W .
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The following lemma concerns the generalization of (5.44) for higher Sobolev

norms. This lemma is the counterpart of [SW08, Proposition 3.1].

Lemma 5.58. For any non-negative integer k, there is a constant Ck such that if

(ϕ, b, ν) ∈ W and D(B,S)(ϕ, b, ν) has finite L2
k norm, then (ϕ, b, ν) is in L2

k+1 and

||(ϕ, b, ν)||L2
k+1

≤ Ck(||D(B,S)(ϕ, b, ν)||L2
k

+ ||(ϕ, b, ν)||L2).

Proof. It is obvious from the definition that

||ν||L2
k+1

≤ Ck(||D(B,S)(ϕ, b, ν)||L2
k

+ ||ν||L2).

We prove the corresponding claim for (ϕ, b) by induction on k. We already verified

the case that k = 0. Suppose X1, . . . , Xk are smooth vector fields on Y . We assume

that the restriction of Xi to the boundary of Y is either tangential or is ∂s. To obtain

the desired result, it suffices to show that for any such combination of vector fields,

the inequality in (5.42) holds for any (ψ, c, η) if we replace (ϕ, b, ν) with

L (ϕ, b, ν) := (L k
X(ϕ),L k

X(b),0). (5.59)

Here L k
X is the composition LX1 . . .LXk

of Lie derivatives. This would be a straight-

forward application of integration by parts if there were no boundary terms. However,

the boundary terms on Y and the interval [0,1] require a more careful analysis.

First we consider the case that all Xi have tangential restriction to the boundary

of Y . Let (ψ, c, η) ∈ W be chosen such that c|Σ = 0. Since ∗b|Σ = 0 and the vector

fields Xi are tangential, we have ∗L k
Xb|Σ = 0. For now, we also assume that (ϕ, b, ν)

is a smooth triple. By replacing ϕ and b in (5.37), (5.38) and (5.39) with L k
Xϕ and

L k
Xb, we have

〈L (ϕ, b, ν),D(B,S)(ψ, c, η)〉L2

= 〈D(B,S)L (ϕ, b, ν), (ψ, c, η)〉L2

≤ |〈LD(B,S)(ϕ, b, ν), (ψ, c, η)〉L2| + C||(ϕ, b, ν)||L2
k

· ||(ψ, c, η)||L2

≤ C
(
||D(B,S)(ϕ, b, ν)||L2

k
+ ||(ϕ, b, ν)||L2

k

)
||(ψ, c, η)||L2

≤ CCk−1

(
||D(B,S)(ϕ, b, ν)||L2

k
+ ||(ϕ, b, ν)||L2

)
||(ψ, c, η)||L2 .

The first inequality above is a consequence of the fact that L and D(B,S) commute

up to differential operators of degree at most k. We can drop the smoothness as-

sumption on (ϕ, b, ν) by taking a sequence of smooth triples {(ϕj , bj , νj)} which are

L2
k convergent to (ϕ, b, ν). Repeating the above argument gives the inequality

〈L (ϕj , bj , νj),D(B,S)(ψ, c, η)〉L2 ≤|〈LD(B,S)(ϕ
j , bj , νj), (ψ, c, ηj)〉L2 |

+ C||(ϕj , bj , νj)||L2
k

· ||(ψ, c, η)||L2 . (5.60)
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Since all the vector fields involved in the definition of L are tangential, we can use

integration by parts to move the operator of degree k to the other side of the pairing

without adding any boundary term:

〈LD(B,S)(ϕ
j , bj , νj), (ψ, c, ηj)〉L2 = 〈D(B,S)(ϕ

j , bj , νj),L ∗(ψ, c, ηj)〉L2 .

This can be used to show that we can take the limit of the inequality in (5.60) as j

goes to infinity to obtain the desired inequality for (ϕ, b, ν).

According to Remark 5.57, in order to obtain (5.44) with (ϕ, b, ν) being replaced

by L (ϕ, b, ν), we need to control the following L2-pairing where ξ ∈ Γν(Y, E):

〈L (ϕ, b, ν),D(B,S)(0, dBξ,0)〉L2 = 〈L k
Xϕ, d∗

BdBξ〉L2 + 〈L k
Xb, ∗[FB, ξ]〉L2 . (5.61)

To estimate (5.61), we assume that (ϕ, b, ν) is smooth. Then a similar argument as

in the previous case shows that the same estimate holds for the general case. First

consider the first term on the right hand side, which is equal to 〈dBL k
Xϕ, dBξ〉 as a

consequence of the Stokes theorem and ξ ∈ Γν(Y, E):

〈dBL
k
Xϕ, dBξ〉

≤ |〈L k
XdBϕ, dBξ〉| + C||(ϕ, b, ν)||L2

k
· ||dBξ||L2

≤ |〈dBϕ + ∗dBb, (L k
X)∗dBξ〉| + |〈∗dBb, (L k

X)∗dBξ〉| + C||(ϕ, b, ν)||L2
k

· ||dBξ||L2

≤ |〈∗dBb, (L k
X)∗dBξ〉| + CCk−1(||D(B,S)(ϕ, b, ν)||L2

k
+ ||(ϕ, b, ν)||L2) · ||dBξ||L2

≤ |〈∗dBb, dB(L k
X)∗ξ〉| + CCk−1(||D(B,S)(ϕ, b, ν)||L2

k
+ ||(ϕ, b, ν)||L2) · ||dBξ||L2 .

The first inequality is a consequence of the fact that dBL k
X − L k

XdB is a differential

operator of degree at most k. Similarly, to obtain the last inequality we observe that

(L k
X)∗dB −dB(L k

X)∗ is a differential operator of degree at most k such that each term

has at most one derivative in the normal direction. Therefore, we can use integration

by parts to obtain
∣∣∣〈∗dBb,

(
(L k

X)∗dB − dB(L k
X)∗

)
ξ〉

∣∣∣ ≤ C||(ϕ, b, ν)||L2
k

· ||dBξ||L2 .

To bound the term 〈∗dBb, dB(L k
X)∗ξ〉, note that we have

∣∣∣〈∗dBb, dB(L k
X)∗ξ〉

∣∣∣ =

∣∣∣∣〈b, ∗[FB, (L k
X)∗ξ]〉 −

∫

Σ
tr(b ∧ dB(L k

X)∗ξ)

∣∣∣∣ (5.62)

≤ C||(ϕ, b, ν)||L2
k−1

||dBξ||L2 . (5.63)

The identity in (5.62) is a consequence of (5.39). To obtain (5.63), we use integration

by parts and the fact that the integral over Σ in (5.62) vanishes because (b|Σ, ν(0))

and (dB(L k
X)∗ξ,0) belong to L. In summary, we have

〈L k
Xϕ, d∗

BdBξ〉L2 ≤ CCk−1(||D(B,S)(ϕ, b, ν)||L2
k

+ ||(ϕ, b, ν)||L2) · ||dBξ||L2 .
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It is clear that the second term on the left hand side of (5.61) can be also bounded

by a similar term as in the right hand side of the above inequality. Therefore, we can

use Lemma 5.41 and Remark 5.57 to conclude that L (ϕ, b, ν) is in L2
1 norm and we

have

||L (ϕ, b, ν)||L2
1

≤ CCk−1(||D(B,S)(ϕ, b, ν)||L2
k

+ ||(ϕ, b, ν)||L2) · ||dBξ||L2 (5.64)

for an appropriate choice of C. This completes the proof in the case that all vector

fields Xi are tangential.

Let b have the form q + τds in a collar neighborhood (−ε, 0] × Σ of the boundary

of Y and βs denotes the restrictions of B to Σ × {s}. Then we have

∗dBb + dBϕ = (∗2∂sq − ∗2dβs
τ + dβs

ϕ) + (∂sϕ + ∗2dβs
q)ds,

d∗
Bb = d∗

βs
q − ∂sτ.

Thus, these identities can be used to replace each normal derivative with components

of D(B,S)(ϕ, b, ν) and tangential derivatives. Our analysis in the tangential case allows

us to conclude that (5.64) holds in the case that some of the vector fields Xi are equal

to ds in a neighborhood of the boundary. This completes the proof of the lemma. �

Remark 5.65. An analogue of Remark 5.56 applies to Lemma 5.58. We may find a

neighborhood of (B, S), defined using an appropriate L2
l norm, such that Lemma 5.58

holds for all elements of this neighborhood using a universal constant C.

Remark 5.66. Lemma 5.41 implies that D(B,S) : H → W is a self-adjoint Fredholm

operator because the inclusion of W in H is compact. In particular, for λ ∈ R, the

operator D(B,S) −λ · Id is invertible if and only if D(B,S) −λ · Id is injective. Moreover,

spectral theory of self-adjoint compact operators implies that eigenvectors of D(B,S)

provide a basis for H, and the intersection of any finite interval with the eigenvalues

of D(B,S) is finite. In particular, if δ is small enough, then the operator D(B,S) − δ · Id

is invertible.

5.3 Fredholm theory on mixed cylinders. Our next goal is to use the results

of the previous two subsections to prove Theorem 5.9. Another key input is given

by the results of [SW08] about spectral flows of self-adjoint operators with varying

domains. In fact, our proof here is inspired by the proof of Fredholm theory results

in [SW08]. We assume that I , J , A, S, {Lθ, Lθ}θ∈I are given as in Theorem 5.9. As

before we denote the restriction of A and S to Y × {θ} and [0,1] × {θ} by Bθ and

Sθ. Let also αθ denote the restriction of Bθ to Σ × {θ}. Associated to αθ, Lθ and θ,

we have the Hilbert subspace Wθ of H, defined in Sect. 5.1. Then any element (ζ, ν)

in Ek
L

(I), the domain of D(A,u), determines

(ϕθ, bθ, νθ) ∈ Wθ, θ ∈ I

by restriction to Y × {θ} and [0,1] × {θ}. (In the case that k = 1, this holds for

almost every value of θ.) Moreover, the operator D(A,S) has the form d
dθ − D(Bθ ,Sθ)

as it is pointed out in (5.6).
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Proposition 5.27 implies that for θ0 ∈ I , there is an open neighborhood of θ0

such that for any point θ in this neighborhood, there is an isomorphism Qθ : H → H

mapping Wθ0 to Wθ. To prove Theorem 5.9, it suffices to consider the case that I

equals this neighborhood of θ0, and then use compactness of the closure of J in I to

extend the result to the general case. We also assume that θ0 = 0, and denote Wθ0

by W0. The following lemma is a consequence of Proposition 5.27 and the definition

of the operators Qθ given there.

Lemma 5.67. The map Q : I → B(H) given by {Qθ}θ∈I is smooth. Furthermore, for

any k and any (ζ, ν) ∈ L2(I,H), we have

(ζ, ν) ∈ L2
k(Y × I,Λ1 ⊗ E) ⊕ L2

k([0,1] × I,R2n)

⇐⇒ Q(ζ, ν) ∈ L2
k(Y × I,Λ1 ⊗ E) ⊕ L2

k([0,1] × I,R2n),

where Q(ζ, ν) is defined as follows. The restriction of Q(ζ, ν) to Y ×{θ} and I ×{θ}

is given by the triple Qθ(ϕθ, bθ, νθ) where (ϕθ, bθ, νθ) is given by the restriction of

(ζ, ν) to Y × {θ} and I × {θ}. There is also a constant Ck such that for any (ζ, ν)

as above, we have

C−1
k ||(ζ, ν)||L2

k
≤ ||Q(ζ, ν)||L2

k
≤ Ck||(ζ, ν)||L2

k
.

The following lemma follows easily from Proposition 5.27 and Lemma 5.67.

Lemma 5.68. There is a constant C such that for any θ ∈ I , the operator

Dθ := Q−1
θ D(Bθ ,Sθ)Qθ : W0 → H

satisfies

||Dθ(ϕ, b, ν)||L2 + ||
dDθ

dθ
(ϕ, b, ν)||L2 ≤ C||(ϕ, b, ν)||L2

1
(5.69)

for (ϕ, b, ν) ∈ W0.

In summary, we verify the following properties for the Hilbert spaces Wθ, and the

operators Qθ.

(W1) (Proposition 5.27) The inclusion map from the Hilbert space Wθ to the

Hilbert space H is compact and has a dense image. The bounded maps

Qθ : H → H defines a family of isomorphisms such that Qθ(W0) = Wθ.

(W2) (Proposition 5.27 and Lemma 5.67) Q : J → B(H) is C1 and for any k ≥ 0,

there is a constant Ck such that for any (ϕ, b, ν) ∈ W0 we have

C−1
k ||(ϕ, b, ν)||L2

k
≤ ||Qθ(ϕ, b, ν)||L2

k
≤ Ck||(ϕ, b, ν)||L2

k
,

||
dQθ

dθ
(ϕ, b, ν)||L2 ≤ C0||(ϕ, b, ν)||L2 .

The following properties are also established for the operators D(Bθ ,Sθ).
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(A1) (Lemma 5.41 and Remark 5.56) The operators D(Bθ ,Sθ) : H → H is an (un-

bounded) self-adjoint operator with domain Wθ, and they satisfy

||(ϕ, b, ν)||L2
1

≤ C ′
1(||D(Bθ ,Sθ)(ϕ, b, ν)||L2 + ||(ϕ, b, ν)||L2),

where the constant C ′
1 is independent of θ.

(A2) (Lemma 5.68) For any (ϕ, b, ν) ∈ W0, we have

||Dθ(ϕ, b, ν)||L2 + ||
dDθ

dθ
(ϕ, b, ν)||L2 ≤ C ′

2||(ϕ, b, ν)||L2
1
,

where the constant C ′
2 is independent of θ.

Now, we turn to the proof of Theorem 5.9. We first address the second part of

the theorem. Fix

(ζ, ν) ∈ L2(Y × I,Λ1 ⊗ E) ⊕ L2([0,1] × I,R2n).

Then (ζ, ν) can be regarded as an L2 map from I to H, and we denote the value

of this map at θ ∈ I by (ϕθ, bθ, νθ). Suppose for any compactly supported smooth

(ξ, η) ∈ E1
L

(I) the following inequality holds for a constant κ independent of (ξ, η):

〈(ζ, ν),D(A,S)(ξ, η)〉L2 ≤ κ||(ξ, η)||L2(I). (5.70)

Then (W1), (W2), (A1) and (A2) essentially imply that we may apply Theorem

A.3 of [SW08] to show that (ζ, ν) is in E1
L

(J). One wrinkle is that the statement

of Theorem A.3 of [SW08], a priori, applies to the case that I = J = R, and the

operators Qθ and D(Bθ ,Sθ) satisfy the following additional assumptions.

(W3) There are Hilbert space isomorphisms Q± : H → H such that Qθ is conver-

gent to Q± in B(H) as θ → ±∞.

(A3) There are isomorphisms D± : W0 → H such that Dθ is convergent to D± in

B(W0,H) as θ → ±∞.

We may modify our setup slightly such that the conditions (W3) and (A3) are

satisfied. First we replace the interval I with J and the interval J with a smaller

interval around 0. Pick a smooth map f : R → I that is identity in a neighborhood

K of the closure of J in I and is a constant map on the complement of I in the

domain. Similarly, pick g : R → R such that g(θ) = 0 if θ ∈ J and g(θ) = 1 if θ ∈ K.

For any θ ∈ R, define

W ′
θ := Wf(θ), Q′

θ := Qf(θ), D′
(Bθ ,Sθ) = D(Bf(θ),Sf(θ)) − δg(θ) · Id,

for a small positive real number δ. As in Lemma 5.67, suppose also Q′ : R → B(H) is

given by the operators Q′
θ. Clearly the analogues of (W1), (W2), (A1) and (A2) are

satisfied for these operators. Moreover, Q′
θ and D′

(Bθ ,Sθ) are constant with respect to

θ once |θ| is large enough. In particular, (W3) clearly holds and Remark 5.66 implies

that (A3) holds if δ is small enough. Suppose also

(ζ ′, ν ′) ∈ L2(Y × R,Λ1 ⊗ E) ⊕ L2([0,1] × R,R2n),
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is given such that its restriction to Y × {θ} and I × {θ}, denoted by (ϕ′
θ, b′

θ, ν ′
θ), is

given by

(ϕ′
θ, b′

θ, ν ′
θ) := (1 − g(θ)) · (ϕf(θ), bf(θ), νf(θ)).

As a consequence of (5.70), we have
∫ ∞

−∞
〈(ϕ′

θ, b′
θ, ν ′

θ), (
d

dθ
−D′

(Bθ ,Sθ))(ψθ, cθ, ηθ)〉L2dθ ≤ κ

(∫ ∞

−∞
||(ψθ, cθ, ηθ)||2L2

)
1
2

where {(ψθ, cθ, ηθ) ∈ W ′
θ}θ∈R is a 1-parameter family of triples such that the map

θ → Q′ −1
θ (ψθ, cθ, ηθ) is an element of L2

1(R,H) ∩ L2(R,W0). Then Theorem A.3 of

[SW08] implies that Q′(ζ ′, ν ′) belongs to L2
1(J,H) ∩ L2(I,W0). In particular, (ζ, ν) ∈

E1
L

(J). Furthermore, (proof of) Lemma A.2 of [SW08] implies that

||(ζ ′, ν ′)||L2
1

≤ C
(
||D′

(A,S)(ζ
′, ν ′)||L2 + ||(ζ ′, ν ′)||L2

)
, (5.71)

where D′
(A,S) is the operator d

dθ −D′
(Bθ ,Sθ) and the constant C depends continuously

on C0, C1 in (W2), C ′
1 in (A1) and C ′

2 in (A2). In fact, an explicit formula for C

can be found in the proof of Lemma A.2 of [SW08]. As an immediate consequence

of (5.71), we have

||(ζ, ν)||E1
L

(J) ≤ C′ (
||D(A,S)(ζ, ν)||L2(I) + ||(ζ, ν)||L2(I)

)
, (5.72)

where C′ is determined by C and the intervals K and J through the choice of g.

Remark 5.73. The properties of the constants C and C′ in the previous paragraph

allow us to obtain an analogue of Remark 5.56 for the operator D(A,S), as an extension

of Theorem 5.9. To be more detailed, there are neighborhoods of A, S, {Lθ, Lθ}θ∈I ,

defined with respect to some Sobolev L2
l norm such that for any A′, S′, {L′

θ, L′
θ}θ∈I ,

the analogue of inequality (5.72) holds with the same constant C′.

We prove the first part of Theorem 5.9 by induction on k. We already addressed

the case that k = 1. Now let (ζ, ν) ∈ E1
L

(I) and (ξ, η) := D(A,S)(ζ, ν) is in L2
k−1 for

k ≥ 2. In particular, the induction hypothesis implies that (ζ, ν) ∈ Ek−1
L

(I) after

shrinking the interval I , and we wish to show that (ζ, ν) ∈ Ek
L

(J). First we consider

(ζ̆, ν̆) := Q
d

dθ

(
Q−1(ζ, ν)

)
.

Then (ζ̆, ν̆) ∈ Ek−2
L

(I), and if k ≥ 3, we have

D(A,S)(ζ̆, ν̆) = Q
d

dθ

(
Q−1D(A,S)(ζ, ν)

)
+ P(ζ, ν), (5.74)

where P is the commutator of D(A,S) and Q ◦ d
dθ ◦ Q−1. In particular, the properties

of Q and the fact that the commutator of D(A,S) and d
dθ is a differential operator of

degree 0 imply that P is a bounded linear map

Ek
L(I) → L2

k−1(Y × R,Λ1 ⊗ E) ⊕ L2
k−1([0,1] × R,R2n)
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for any k ≥ 1. Since D(A,S)(ζ, ν) is in L2
k−1, we conclude that D(A,S)(ζ̆, ν̆) is in L2

k−2.

Thus, the induction hypothesis implies that (ζ̆ , ν̆) ∈ Ek−1
L

(J). In the case that k = 2,

the right hand side of (5.74) is still well-defined and is in L2. We may use this to

show that

〈(ζ̆, ν̆),D∗
(A,S)(ξ, η)〉L2 ≤ κ||(ξ, η)||L2(I), (5.75)

for any compactly supported (ξ, η) ∈ E1
L

(I) where κ is the L2 norm of the right hand

side of (5.74).

To see this, take a sequence {(ζi, νi)} of elements of E2
L

(I) converging to (ζ, ν)

in L2
1. Let (ζ̆i, ν̆i) := Q d

dθ (Q−1(ζi, νi)), which is L2 convergent to (ζ̆, ν̆). Then

D(A,S)(ζ̆i, ν̆i) is given by the analogue of (5.74), and hence we have

〈(ζ̆i, ν̆i),D
∗
(A,S)(ξ, η)〉 = 〈D(A,S)(ζ̆i, ν̆i), (ξ, η)〉

= 〈Q
d

dθ

(
Q−1D(A,S)(ζi, νi)

)
+ P(ζi, νi), (ξ, η)〉

= 〈D(A,S)(ζi, νi), (Q
∗)−1 d

dθ
(Q∗(ξ, η))〉L2 + 〈P(ζi, νi), (ξ, η)〉.

Here Q∗ is the L2-adjoint of the operator Q, and we use integration by parts to

obtain the last identity. By taking the limit as i → ∞, we have

〈(ζ̆, ν̆),D∗
(A,S)(ξ, η)〉 = 〈D(A,S)(ζ, ν), (Q∗)−1 d

dθ
(Q∗(ξ, η))〉L2 + 〈P(ζ, ν), (ξ, η)〉

= 〈Q
d

dθ

(
Q−1D(A,S)(ζ, ν)

)
+ P(ζ, ν), (ξ, η)〉L2 ,

where in the last identity we use integration by parts and the assumption that

D(A,S)(ζ, ν) it is L2
1. The inequality in (5.75) and the second part of Theorem 5.9

imply that (ζ̆, ν̆) ∈ E1
L

(J). (Strictly speaking, we need the second part of Theorem 5.9

for the formal adjoint D∗
(A,S). As we explained there, Theorem 5.9 would be sufficient

for this because D∗
(A,S) has the form required for the application of Theorem 5.9.)

Our arguments in any of the above cases give rise to the following inequality

||(ζ̆, ν̆)||Ek−1
L

(J) ≤ C

(
||Q−1 d

dθ

(
QD(A,S)(ζ, ν)

)
||L2

k−2
(I) + ||P(ζ, ν)||L2

k−2
(I) + ||(ζ̆, ν̆)||L2(I)

)

≤ C
(
||D(A,S)(ζ, ν)||L2

k−1
(I) + ||(ζ, ν)||L2

k−1
(I) + ||(ζ̆, ν̆)||L2(I)

)

≤ C
(
||D(A,S)(ζ, ν)||L2

k−1
(I) + ||(ζ, ν)||L2

k−1
(I)

)
.

Thus, to complete the proof we need to show that all derivatives of (ζ, ν) up to order

k, that do not involve derivation with respect to θ, are in L2. That is to say, it suffices

to show that (ζ, ν) ∈ L2(J, L2
k). By assumption and the above argument, D(A,S)(ζ, ν)

and d
dθ (ζ, ν) are both in L2

k−1. Since D(A,S) − d
dθ maps (ζ, ν) to a pair in L2

k−1, we
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conclude that DBθ ,Sθ
(ϕθ, bθ, νθ) is in L2

k−1 for almost every θ ∈ J . Lemma 5.58 implies

that for these values of θ, (ϕθ, bθ, νθ) ∈ L2
k and we have

||(ϕθ, bθ, νθ)||L2
k

≤ Ck−1(||D(B,S)(ϕθ, bθ, νθ)||L2
k−1

+ ||(ϕθ, bθ, νθ)||L2)

where the constant Ck−1 can be chosen to be independent of θ by Remark 5.65.

Therefore, we can write

||(ζ, ν)||2L2(J,L2
k

) =

∫

J
||(ϕθ, bθ, νθ)||2L2

k
dθ

≤ Ck−1

∫

J
||D(B,S)(ϕθ, bθ, νθ)||2L2

k−1
+ ||(ϕθ, bθ, νθ)||2L2dθ

≤ Ck−1

(
||D(A,S)(ζ, ν)||2L2

k−1
(I) + ||(ζ, ν)||2L2

k−1
(I)

)
.

As usual, we use the convention that the value of Ck−1 might increase from a line to

the next one. This completes the proof of Theorem 5.9.

Remark 5.76. One can see easily from the above proof that an extension of Re-

mark 5.73 holds for higher Sobolev norms. That is to say, for any k ≥ 1, there is a

neighborhood of A, S, {Lθ, Lθ}θ∈I , defined with respect to some Sobolev norm L2
lk

such that for any element of this neighborhood, the analogue of (5.10) holds with

the same constant C.

5.4 Infinite mixed cylinders. In this subsection, we consider the operator D(A,S)

in the case of an infinite cylinder, namely, I = R. We simplify the setup by assuming

that A is the pull-back of a connection B on the bundle E over Y and S is constant

in the R direction. That is to say, S is the pull-back of a map from [0,1] to the space

of self-adjoint operators, which is denoted by the same notation. In particular, the

operator D(A,S) has the form

D(A,S) =
d

dθ
− D(B,S). (5.77)

We also fix a Lagrangian L in R2n and a canonical linearized Lagrangian correspon-

dence L from Ω1(Σ) to R2n which is compatible with α, the flat connection obtained

from the restriction of B to the boundary. Associated to (L, L), we have the Hilbert

space W and we regard the operator in (5.77) as a bounded Linear map from

L2
1(R,H) ∩ L2(R,W) (5.78)

to the space of L2 pairs (ζ, ν). Clearly, the space in (5.78) can be identified with

E1
L

(R), defined using (L, L), which is regarded as a constant family with respect to

θ. We wish to show that the operator in (5.77) is not just a Fredholm operator, but

in fact an isomorphism at least in the case that D(B,S) is invertible.
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Proposition 5.79. Suppose L : W → H is an invertible bounded operator. Then the

operator

d

dθ
− L : L2

1(R,H) ∩ L2(R,W) → L2(R,H)

is an isomorphism.

Sketch of the proof. The proof is standard and we only sketch the main steps. See,

for example, [RS95] or [Don02, Chap. 3] for more details. The composition of L−1

and the inclusion of W into H determines a compact self-adjoint operator. Thus,

there is a complete eigenspace decomposition {ei}i associated to the operator L

which provides an orthonormal basis for H. Using this eigenspace decomposition,

any element (ζ, ν) of L2(R,H) can be written as

(ζ, ν) =
∑

i

fi(t)ei,

where fi(t) ∈ L2(R,R) and

||(ζ, ν)||2L2 =
∑

i

||fi(t)||
2
L2 < ∞.

The norm on (5.78) is equivalent to

||(ζ, ν)|| =

√∑

i

||f ′
i(t)||

2
L2 + λ2

i ||fi(t)||2L2 .

We have
(

d

dθ
− L

)
(
∑

i

fi(t)ei) =
∑

i

(f ′
i(t) + λif

′
i(t))ei,

and one can write down an explicit inverse for this operator in terms of the eigenspace

decomposition. �

Remark 5.80. As it is explained in Sect. 5.2, we may assume that D(B,S) is invertible

after adding a small multiple of the identity operator. Therefore Proposition 5.79 is

applicable to such perturbations of D(B,S). In fact, Proposition 5.79 can be used in a

more general setup where L = D(B,S) + h is an invertible operator for some bounded

self-adjoint operator h : H → H. Such perturbations of D(B,S) appear in [DFL21],

where we have to consider perturbations of the mixed equation.

Appendix A: Elliptic regularity of bundle-valued 1-forms

In this appendix, first we review some well-known results about regularity of the

Laplace–Beltrrami operator. Then we consider slight variations to the case of bundle

valued maps. Throughout this section, M denotes a compact Riemannian manifold
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possibly with boundary. In this appendix, for any Riemannian manifold M and

differential k-forms α and β on M , we slightly diverge from our notation in (1.20),

and denote the inner product of α and β by
∫

M
〈α, β〉.

For any real number r > 1, we also write r∗ for the conjugate of r which satisfies

1

r
+

1

r∗
= 1.

The following lemma is a standard fact about the Laplace–Beltrrami operator (see

[GT13, Theorems 9.14 and 9.15], [ADN59, Theorem 15.2] and [Weh042, Chaps. 3

and Appendix D].)

Lemma A.1. Let k be a non-negative integer and p > 1 be a real number. Let u be

an Lp
k function on M .

(i) If k ≥ 1, suppose there is an Lp
k−1 function F on M such that for any smooth

function ϕ with ϕ|∂M = 0, we have

∫

M
〈u, Δϕ〉 =

∫

M
〈F, ϕ〉. (A.2)

Then u is in Lp
k+1(M), and there is a constant C, independent of u, such that

||u||Lp

k+1
(M) ≤ C(||F ||Lp

k−1
(M) + ||u||Lp(M)). (A.3)

In the case that k = 0, the assumption (A.2) has to be replaced with

|

∫

M
〈u, Δϕ〉| ≤ κ||ϕ||

Lp∗

1 (M)
, (A.4)

and the conclusion (A.3) has to be modified to:

||u||Lp
1(M) ≤ C(κ + ||u||Lp(M)). (A.5)

(ii) If k ≥ 1, suppose there are functions F and G on M such that for any smooth

function ϕ with ∂νϕ|∂M = 0 we have:
∫

M
〈u, Δϕ〉 =

∫

M
〈F, ϕ〉 +

∫

∂M
〈G, ϕ〉. (A.6)

If F and G are respectively in Lp
k−1(M) and Lp

k(M), then u is in Lp
k+1(M).

Furthermore, there is a constant C, independent of u, such that

||u||Lp

k+1
(M) ≤ C(||F ||Lp

k−1
(M) + ||G||Lp

k
(M) + ||u||Lp(M)). (A.7)

In the case that k = 0, the assumption (A.6) has to be replaced with:

|

∫

M
〈u, Δϕ〉| ≤ κ||ϕ||

Lp∗

1 (M)
, (A.8)



GAFA LAGRANGIANS, SO(3)-INSTANTONS AND MIXED EQUATION 723

and the conclusion (A.9) has to be modified to:

||u||Lp
1(M) ≤ C(κ + ||u||Lp(M)). (A.9)

We recall the following definition from Sect. 3.1 about some functions spaces

associated to the sections of a vector bundle.

Definition A.10. Suppose U is a (possibly non-compact) manifold with boundary

and E is a vector bundle over U . Then the space of smooth sections of E with compact

support are denoted by Γc(U, E). The space of compactly supported sections of E,

which vanish on the boundary of E, are denoted by Γτ (U, E). Suppose a connection

A0 is fixed on E. Then Γν(U, E) is the space of all compactly supported sections s of

E such that the covariant derivative of s in the normal directions to the boundary

of U vanish.

The following Lemma is a slightly generalized version of [Weh051, Lemma A.2].

Lemma A.11. Let k be a positive integer, and r > 1 be a real number. Let M be

a compact n-manifold with boundary and a Riemannian metric g, U be an open

subset of M , and K be an open subspace of U whose closure in U is compact. Let

E be an SO(3)-vector bundle over M equipped with a smooth connection A0. Let

σ be a smooth vector field on U . Let Γ◦(U, E) be one of the spaces Γτ (U, E) or

Γν(U, E), where Γν(U, E) is defined using A0. Then there is a constant C such that

the following holds. Let

f ∈ Lr
k(U, E), α, ξ ∈ Lr

k(U,Λ1(M) ⊗ E),

ζ ∈ Lr
k−1(U,Λ1(M) ⊗ E), ω ∈ Lr

k(U,Λ2(M) ⊗ E),

and for any φ ∈ Γc(U, E), ψ ∈ Γ◦(U, E) we have

∫

M
〈α, dA0φ〉 =

∫

M
〈f, φ〉, (A.12)

∫

M
〈α, d∗

A0
dA0(ψ · ισg)〉 =

∫

M
〈ω, dA0(ψ · ισg)〉+

∫

M
〈ζ, ψ · ισg〉+

∫

∂M
〈ξ, ψ · ισg〉. (A.13)

Then α(σ) is an element of Lr
k+1(K) and we have:

||α(σ)||Lr
k+1

(K) ≤ C(||f ||Lr
k

(U) + ||ξ||Lr
k

(U) + ||ζ||Lr
k−1

(U) + ||ω||Lr
k

(U) + ||α||Lr
k

(U)).

Proof. Without loss of generality, we may assume that U is a precompact open subset

of the half-space

H
n := {(x1, . . . , xn) ∈ Rn | x1 ≥ 0},

E is trivialized over U and the connection A0 is given by a 1-form with values in R3.

We will denote this 1-form with A0, too. We may pick this trivialization in a way

that the normal covariant derivative with respect to the connection A0 agrees with
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the ordinary derivative. That is to say, Γν(U,R3) defined with respect to A0 is the

space of all compactly supported sections η of R3 such that ∂νη vanishes along the

boundary.

Fix a function ρ : M → R which is supported in U and is equal to 1 on K. Then

we show that there are compactly supported maps F and G from U to R3 such that

for any η ∈ Γ◦(U,R3) we have

∫

M
〈ρα(σ),Δη〉 =

∫

M
〈F, η〉 +

∫

∂M
〈G, η〉 (A.14)

and F , G respectively have finite Lr
k−1, Lr

k norms.

First we claim that

∫

M
〈ρα(σ),Δη〉 = −

∫

M
ρ〈α, dισdη〉 −

∫

M
〈α, d∗(ρισg ∧ dη)〉 −

∫

M
ρdiv(σ)〈α, dη〉

−

∫

M
ρ〈Bgα, dη〉 −

∫

M
〈ισ(dρ ∧ α), dη〉, (A.15)

where Bg is defined by firstly taking the Lie derivative Lσg of the Riemannian metric

g and then requiring Bg to satisfy the following identity for any pair of 1-forms β

and β′:

Lσ(g)(β, β′) = 〈Bgβ, β′〉.

To see (A.15), we pick a sequence {αi}i∈N of smooth 1-forms on U with values in

R3 such that αi vanishes in a neighborhood of U ∩ ∂Hn and the sequence {αi} is

Lr-convergent to α. Then the left hand side of (A.15) is equal to

lim
i→∞

∫

M
〈ραi(σ), d∗dη〉

= lim
i→∞

∫

M
〈dισ(ραi), dη〉 = lim

i→∞

[∫

M
〈Lσ(ραi), dη〉 − 〈ισd(ραi), dη〉

]

= lim
i→∞

[
−

∫

M
〈ραi,Lσdη〉 −

∫

M
div(σ)〈ραi, dη〉 −

∫

M
Lσ(g)(ραi, dη)

−

∫

M
〈dαi, ρισg ∧ dη〉 −

∫

M
〈ισ(dρ ∧ αi), dη〉

]

= lim
i→∞

[
−

∫

M
ρ〈αi, dισdη〉 −

∫

M
ρdiv(σ)〈αi, dη〉 −

∫

M
ρ〈Bgαi, dη〉

−

∫

M
〈αi, d

∗(ρισg ∧ dη)〉 −

∫

M
〈ισ(dρ ∧ αi), dη〉

]
. (A.16)

Now by taking the limit in (A.16) we obtain the desired identity.
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The assumption (A.12) can be used to rewire the first term in the right hand side

of (A.15) as

∫

M
ρ〈α, dισdη〉 =

∫

M
〈α, dA0(ρισdη)〉 −

∫

M
〈α, ρ[A0, ισdη]〉 −

∫

M
〈α, (dρ) · (ισdη)〉

=

∫

M
〈ρf − ∗[ρα,∗A0] − ∗(α ∧ ∗dρ), ισdη〉

=

∫

M
〈(ρf − ∗[ρα,∗A0] − ∗(α ∧ ∗dρ)) ισg, dη〉

=

∫

M
〈d∗((ρf − ∗[ρα,∗A0] − ∗(α ∧ ∗dρ)) ισg), η〉

+

∫

∂M
〈∗n−1 ∗ ((ρf − ∗[ρα,∗A0] − ∗(α ∧ ∗dρ)) ισg), η〉, (A.17)

where ∗n−1 in the last line denotes the Hodge operator on ∂M .

We rewrite the second term in the right hand side of (A.15) as

∫

M
〈α, d∗(ρισg ∧ dη)〉 =

∫

M
〈α, d∗(ηd(ρισg))〉 −

∫

M
〈α, d∗d(ρισgη)〉

=

∫

M
〈dα, ηd(ρισg)〉 −

∫

∂M
〈∗n−1(α ∧ ∗d(ρισg)), η〉

−

∫

M
〈α, d∗

A0
dA0(ισgρη)〉 + (−1)n−1

∫

M
〈α,∗[A0,∗d(ισgρη)]〉

+

∫

M
〈α, d∗[A0, ισgρη]〉 + (−1)n−1

∫

M
〈α,∗[A0,∗[A0, ισgρη]]〉.

Therefore, we can use (A.13), to write

∫

M
〈α, d∗(ρισg ∧ dη)〉 =

∫

M
〈∗(dα ∧ ∗d(ρισg)), η〉 −

∫

∂M
〈∗n−1(α ∧ ∗d(ρισg)), η〉

−

∫

M
〈ω, dA0(ισgρη)〉 −

∫

M
〈ζ, ισgρη〉 −

∫

∂M
〈ξ, ισgρη〉

+ (−1)n−1
∫

M
〈α,∗[A0,∗d(ισgρη)]〉 +

∫

M
〈α, d∗[A0, ισgρη]〉

+ (−1)n−1
∫

M
〈α,∗[A0,∗[A0, ισgρη]]〉. (A.18)

Finally, the last three terms of (A.15) are equal to

−

∫

M
〈d∗ [(Bg + div(σ))ρα − ισ(α ∧ dρ)] , η〉

−

∫

∂M
〈∗n−1 ∗ [(Bg + div(σ))ρα − ισ(α ∧ dρ)], η〉. (A.19)
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By applying further integration by parts to the expressions in (A.18), we can find F

and G satisfying (A.14), which are respectively in Lr
k−1 and Lr

k, and satisfy

||F ||Lr
k−1

+ ||G||Lr
k

(U) ≤ C ′(||f ||Lr
k

(U) + ||ω||Lr
k

(U) + ||ζ||Lr
k−1

(U) + ||ξ||Lr
k

(U) + ||α||Lr
k

(U))

for some constant C ′ depending only on A0, g, σ, U and K. Therefore, Lemma A.1

(part (i) or (ii) depending on whether ◦ = τ or ν) implies that

||ρα(σ)||Lr
k+1

(U) ≤ C(||f ||Lr
k

(U) + ||ω||Lr
k

(U) + ||ζ||Lr
k−1

(U) + ||ξ||Lr
k

(U) + ||α||Lr
k

(U)).

This inequality proves the desired claim. �

The following lemma is an extension of the previous lemma to the case that k = 0.

Lemma A.20. Let r, M , K, U , σ, E and A0 be as in Lemma A.11. Let ◦ be either τ

and ν. There is a constant C such that the following holds. Let α be an Lr section of

Λ1 ⊗E over the open subset U of M such that for any φ ∈ Γc(U, E) and ψ ∈ Γ◦(U, E):

|

∫

M
〈α, dA0φ〉| ≤ C1||φ||Lr∗ (U), |

∫

M
〈α, d∗

A0
dA0(ψ · ισg)〉| ≤ C2||ψ||Lr∗

1 (U). (A.21)

Then α(σ) belongs to Lr
1(K) and

||α(σ)||Lr
1(K) ≤ C(C1 + C2 + ||α||Lr(U)). (A.22)

Proof. In the following C is a constant independent of α which might increase from

each line to the next one. As in the proof of Lemma A.11, we can show that α satisfies

(A.15). In particular, we have

|

∫

M
〈ρα(σ),Δη〉| ≤ |

∫

M
ρ〈α, dισdη〉| + |

∫

M
〈α, d∗(ρισg ∧ dη)〉| + |

∫

M
ρdiv(σ)〈α, dη〉|

+ |

∫

M
ρ〈Bgα, dη〉| + |

∫

M
〈ισ(d(ρ) ∧ α), dη〉|. (A.23)

The first term on the left hand side of the above inequality can be estimated as in

(A.17):

|

∫

M
ρ〈α, dισdη〉| ≤|

∫

M
〈α, dA0(ρισdη)〉| + |

∫

M
〈α, ρ[A0, ισdη]〉| + |

∫

M
〈α, (dρ) · (ισdη)〉|

≤C(C1 + ||α||Lr(U))||η||Lr∗

1 (U). (A.24)

To. obtain the second inequality, we use the first assumption in (A.21). Next, we find

an upper bound for the second term in (A.23) using the second inequality in (A.21)

following an argument similar to the previous lemma:

|

∫

M
〈α, d∗(ρισg ∧ dη)〉| ≤|

∫

M
〈α, d∗(ηd(ρισg))〉| + |

∫

M
〈α, d∗

A0
dA0(ισgρη)〉|

+ |

∫

M
〈α,∗[A0,∗d(ισgρη)]〉| + |

∫

M
〈α, d∗[A0, ισgρη]〉|
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+ |

∫

M
〈α,∗[A0,∗[A0, ισgρη]]〉|

≤C(C2 + ||α||Lr(U))||η||Lr∗

1 (U). (A.25)

It is straightforward to bound the remaining three terms in (A.23) with

C||α||Lr(U)||η||Lr∗

1 (U). Consequently, Lemma A.1 implies that α(σ) is in Lr
1(K) and

(A.22) holds. �

Lemma A.26. Let k be a non-negative integer and r > 1 is a real number. Suppose

M is a Riemannian manifold possibly with boundary. Suppose Σ is a closed surface

and F is an SO(3)-bundle over Σ. Suppose β = {βx}x∈M is a smooth family of

connections on F parametrized by M . Suppose f is an Lr
k section of the bundle

T ∗Σ ⊗ F over Σ × M . If k ≥ 1, suppose there are Lr
k sections ζ1 and ζ2 of the

pullback of F over Σ × M such that for any smooth section ξ of the pullback of F

over Σ × M , we have

∫

M×Σ
〈f, dβξ〉 =

∫

M×Σ
〈ζ1, ξ〉,

∫

M×Σ
〈f,∗Σdβξ〉 =

∫

M×Σ
〈ζ2, ξ〉, (A.27)

where dβξ denotes the section of T ∗Σ⊗F over Σ×M given by the exterior derivatives

of ξ in the Σ direction with respect to the family of connections β. Then ∇β
Σf , the

covariant derivative of f in the Σ direction with respect to β, is in Lr
k, and there is

a constant C, independent of f , such that:

||∇β
Σf ||Lr

k
(M×Σ) ≤ C(||ξ1||Lr

k
(M×Σ) + ||ξ2||Lr

k
(M×Σ) + ||f ||Lr

k
(M×Σ)). (A.28)

In the case that k = 0, the assumption (A.27) has to be replaced with

|

∫

Σ×X
〈f, dβξ〉| + |

∫

Σ×X
〈f,∗Σdβξ〉| ≤ κ||ξ||Lr∗ (Σ×X). (A.29)

In this case, ∇β
Σf belongs to Lr(X × Σ) and

||∇β
Σf ||Lr(X×Σ) ≤ C(κ + ||f ||Lr(X×Σ)). (A.30)

Lemma A.26 can be regarded as the family version of A.1 where we also replace the

degree two elliptic operator Δ with the degree one operator dβ ⊕d∗
β . This proposition

in the case that F is the trivial bundle and β is the trivial family of connections is

proved in [Weh051, Lemma 2.9]. Clearly, this implies the lemma for the case that F

is trivial and B is arbitrary. The proof in the case that F is non-trivial is similar.

Appendix B: Regularity of holomorphic curves in a Banach space

Suppose B is a Banach space and M is a compact Riemannian manifold. In this

appendix, we are interested in maps from M to B. For 1 < p < ∞ and any non-

negative integer k, we can define the Sobolev norm || · ||Lp

k
on the space of such
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maps in the usual way. The completion of space of smooth maps from M to B with

respect to this Sobolev norm is denoted by Lp
k(M, B). As an example, let B = Lp(N)

for a compact manifold N . Any function in C∞(M × N), determines an element of

Lp(M, B). In fact, the space of smooth functions on M ×N is dense in Lp(M, B) (see

[Weh041] and [Lip14]). This gives us the following identifications of Sobolev spaces:

Lp(M, Lp(N)) = Lp(N, Lp(M)) = Lp(M × N).

More generally, C∞(M × N) is dense in Lp
k(M, Lp(Σ)) for any non-negative integer

k, and we have (see [Weh041, Lip14]):

Lp
k(M × N) = Lp

k(M, Lp(N)) ∩ Lp
k(N, Lp(M)),

Lp
k(M, Lp(N)) = Lp(N, Lp

k(M)).
(B.1)

For the rest of this appendix, we fix Bp to be a Banach space that can be identified

with a closed subspace of the space Lp(N) for a closed manifold N . In particular,

the intersection Bq := Bp ∩ Lq(N) with q > p determines a closed subspace of Lq(N).

For q < p, Bq is the closure of Bp in Lq(N).

Lemma B.2 ([Weh041] and [Lip14]). Suppose M is a Riemannian manifold with

boundary. Let k be a non-negative integer and p > 1 be a real number. Let u ∈

Lp
k(M, Bp). Then the same claims as in parts (i) and (ii) of Lemma A.1 hold if we

assume that F , G and ϕ are Bp-valued.

Sketch of the Proof. Without loss of generality, we can assume that Bp = Lp(N).

Using the identifications in (B.1), we can regard u as an Lp map from N to the

Banach space Lp
k(M). Next, we can apply the properties of the Laplacian operator

acting on Lp
k(M) to obtain the desired conclusions. For more details, we refer the

reader to [Weh041, Lemma 2.1] and [Lip14, Sect. 3.3]. �

The proof of the following proposition about regularity of Banach valued Cauchy–

Riemann equation can be found in [Weh041, Theorem 1.2] and [Lip14, Lemmas 27

and 28]. In this proposition, Bp denotes the direct sum Bp ⊕ Bp. This space admits

an obvious complex structure J0 given by

J0(v0, v1) = (−v1, v0). (B.3)

The subspace L := 0 ⊕ Bp defines a completely real subspace of Bp with respect

to J0.

Proposition B.4. Suppose U is a bounded open subspace of

H
2 := {(s, θ) ∈ R2 | s ≥ 0},

and U∂ denotes the intersection H
2 ∩ U . Suppose J : Bp → End(Bp,Bp) is a smooth

family of complex structures such that J (x) = J0 for x ∈ L. For p > 2 and k ≥ 2,

suppose u : U → Bp is an Lp
k map that satisfies

∂θu − J (u)∂su = z ∈ Lp
k(U,Bp), (B.5)
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and the boundary condition

u|U∂
⊂ L. (B.6)

Then for any open subspace K ⊂ U , whose closure in U is compact, the map u is in

Lp
k+1(K). Moreover, there is a constant C, depending only on K, such that

||u||Lp

k+1
(K) ≤ C(||z||Lp

k
(U) + ||u||Lp(U)). (B.7)

If ui : U → Bp is a sequence of Lp
k map that satisfies

∂θui − J (ui)∂sui = zi ∈ Lp
k(U,Bp), (B.8)

such that ui and zi are respectively Lp
k-convergent to u and z, then ui restricted to

K is Lp
k+1-convergent to the restriction of u to K. In the case that k = 1, similar

results hold if we replace Lp
k+1 with L

p/2
k+1.

Sketch of the proof. For k ≥ 2, suppose u is a map that satisfies (B.5) and (B.6). We

apply ∂θ + J (u)∂s to (B.5). Then we have:

∂2
s u + ∂2

θ u = J (u)∂s(J (u))∂su + ∂θ(J (u))∂su + ∂θz + J (u)∂sz. (B.9)

Using the assumptions k ≥ 2, u ∈ Lp
k and z ∈ Lp

k, we can conclude that the left

hand side of the above identity is an element of Lp
k−1. The maps u and z can be

written as (u0, u1) and (z0, z1) with respect to the decomposition of Bp. The boundary

condition (B.6) implies that u0|U∂
= 0 and ∂su1|U∂

= z0|U∂
. Therefore, we can invoke

Lemma B.2 to verify the claim. To be a bit more detailed, we use the assumption

k ≥ 2 to conclude that the products of two Lp
k−1 functions are still in Lp

k−1. In the

case that k = 1, the products of two Lp(U,Bp) functions is in Lp/2(U,Bp), which in

turn is a subspace of Lp/2(U,Bp/2). That allows us to use the same argument to prove

the claim in this case. The sequential versions of these claims can be also treated

similarly. �

We need a slight improvement of Proposition B.4 to the case k = 0 [Lip14,

Lemma 29].

Proposition B.10. Suppose U is given as in Proposition B.4. Suppose J : Bp →

End(Bp,Bp) is a smooth family of complex structures such that J (x) = J0 for x ∈ L

and for any x ∈ Bp, the space L is totally real with respect to J (x), i.e., Bp =

L ⊕ J (x)L. For p > 2, let u : U → Bp be in Lp
1. Suppose q > p and u is also an Lq

map from U to Bq. Suppose u satisfies

∂θu − J (u)∂su = z ∈ Lq(U,Bq), (B.11)

and the boundary condition (B.6). Then u is an Lq
1 map from U to Bq and

||u||Lq
1

≤ C(||z||Lq + ||u||Lq ). (B.12)
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Moreover, if ui : U → Bp are Lq
1 solutions of

∂θui − J (ui)∂sui = zi ∈ Lq(U,Bq), (B.13)

such that ui is convergent to u in Lp
1 ∩ Lq and zi is convergent to z in Lq, then ui is

convergent to u in Lq
1.

Proof. Given p > 2 and any bounded domain Ω in R2 with smooth boundary, let

Lp
1(Ω,Bp)∂ be the space of Lp

1 maps u : Ω → Bp such that the restriction of u to the

boundary is in L. Then the Cauchy–Riemann operator

∂θ − J0∂s : Lp
1(Ω,Bp)∂ → Lp(Ω,Bp) (B.14)

is a surjective bounded operator with kernel being constant maps to L. This can be

seen in the same way as in Lemma B.2.

Now suppose x ∈ ∂U and Dr(x) = Br(x) ∩ H
2 is contained in U . Suppose Ωr is

the region given by rounding the corners of Dr(x) such that it is contained in Dr(x)

and it contains Dr/2(x). Since J (u) : U → End(Bp,Bp) is continuous and J (x) = J0,

the operator ∂θ − J (u)∂s : Lp
1(Ωr,Bp)∂ → Lp(Ωr,Bp) is surjective with kernel being

constant maps to L if r is small enough. This holds because the operator ∂θ −J (u)∂s

is a deformation of the operator in (B.14) by a bounded operator of small norm for

small values of r. We assume that r is chosen such that the same claim holds if we

replace q with p. Now let ρ : Ωr → R be a smooth bump function that vanishes on

the complement of Dr/2(x) and equals 1 on Dr/3(x). Then our assumption implies

that ρu is an element of Lp
1(Ωr,Bp)∂ and

∂θ(ρu) − J (u)∂s(ρu) = ρz + ∂θ(ρ)u − J (u)∂s(ρ)u

is in Lq. Thus there is u′ ∈ Lq
1(Ω,Bq)∂ such that

∂θu′ − J (u)∂su
′ = ρz + ∂θ(ρ)u − J (u)∂s(ρ)u.

This implies that u′ − ρu is a constant map to L. In particular, the restriction

of u to Dr/3(x) is in Lq
1(Ω,Bq)∂ . For an interior point x, we may apply a similar

argument to show that the restriction of u to a neighborhood of x in is Lq
1(Ω,Bq)∂ .

The only new point that we need is that we can find an isomorphism T : Bp → Bp

such that T −1J (x)T = J0. In fact, we may take T to be the linear map that sends

(v0, v1) ∈ Bp ⊕ Bp to (v0,0) + J (x)(v1,0). Since L is totally with respect to J (x), T

is an isomorphism. �
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