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ALIAKBAR DAEMI, KENJI FUKAYA, AND MAKSIM LIPYANSKIY

Abstract. The mized equation, defined as a combination of the anti-self-duality equa-
tion in gauge theory and Cauchy—Riemann equation in symplectic geometry, is stud-
ied. In particular, regularity and Fredholm properties are established for the solutions
of this equation, and it is shown that the moduli spaces of solutions to the mixed
equation satisfy a compactness property which combines Uhlenbeck and Gormov
compactness theorems. The results of this paper are used in a sequel to study the
Atiyah—Floer conjecture.
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1 Introduction

The Cauchy—Riemann equation and the anti-self-duality equation provide two im-
portant geometric partial differential equations. For any Riemann surface S and an
almost complex manifold M, we may define the CR equation on the space of maps
from S to M. In the case that the target manifold M is a symplectic manifold,
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the moduli of solutions of this equation admits a nice compactification known as
stable map compactification. Such moduli spaces have been the essential ingredient
in the development of various important tools in symplectic topology. For instance,
Lagrangian Floer homology, which is a homology group associated to a pair of La-
grangians in a symplectic manifold M, is defined using the solutions of the CR equa-
tion for the space of maps from the strip S = [—1, 1] x R with Lagrangian boundary
condition [Flo882, Oh93, F+091, F+092]. Given a vector bundle V over a Rieman-
nian 4-manifold X, the ASD equation can be defined on the space of connections
on the vector bundle V. The moduli of solutions to this equation play a key role in
the definition of Donaldson invariants [Don90, DK90] and instanton Floer homology
[F1o881, Don02] which are respectively powerful invariants of 4- and 3-manifolds.

Atiyah—Floer conjecture states that instanton Floer homology and Lagrangian
Floer homology are related to each other (see [Ati88, F1lo881]). More specifically,
the instanton Floer homology of a 3-manifold is isomorphic to Lagrangian Floer
homology of appropriate Lagrangians in the space M of flat connections on a vector
bundle over a Riemann surface. One motivation for this conjecture is due to a relation
between the ASD and CR equations. In fact, the CR equation with the target space
M can be regarded as an adiabatic limit of the ASD equation (see [Ati88]). This
observation was used in the remarkable work [DS94] to prove an instance of the
Atiyah—Floer conjecture for 3-manifolds which are mapping tori. In this paper and
its companion, we follow a different approach toward the Atiyah—Floer conjecture.
We study another geometric PDE, called the mized equation, which is defined by
combining the CR and ASD equations in the third author’s unpublished work [Lip14].
In the sequel, we use the results of the current paper on the analytical properties of
the mixed equation to prove the generalization of [DS94] for admissible bundles on
arbitrary 3-manifolds.

Mized equation. Suppose X is an oriented 4-manifold with boundary v x ¥ where
>} is a possibly disconnected closed Riemann surface and « is an oriented connected
1-manifold. Thus, 7 is diffeomorphic to either S or R. Suppose V is an SO(3)-bundle
over X. For each connected component g of ¥, we require that the restriction of
V to v x X is the pull-back of the non-trivial SO(3)-bundle over ¥. In particular,
the restriction of V' to v x ¥ is the pull-back of an SO(3)-bundle F' on ¥. We
fix a Riemannian metric on X such that the restriction of the metric to a collar
neighborhood of the boundary is given by

ds® + df* + gs, (1.1)

for a fixed metric g», on X. Here we identify a collar neighborhood of the boundary
of X with (—1,0] x v x 3, and s, 6 are respectively the coordinates on (—1,0], .
Suppose A(X, F') denotes the space of connections on F. This space is an affine
Banach space after Banach completion, and the automorphisms of F' acts on it by
taking pullback. The moduli space M (X, F) is the quotient of flat connections in
A(3, F) by the action of determinant one automorphisms of F'. The Hodge operator
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%9, defined using the conformal structure of ¥, acts on the space of 1-forms and
it gives rise to complex structures on A(X, F') and M(Z, F'). We denote the latter
complex structure on M(X, F') by J,. Define

L, F)={(a,[f]) € A(Z, F) x M(X, F) | « is flat and represents the class [(]}.

The spaces A(X, F) and M(XZ, F') admit symplectic forms €2 and wp, and L(X, F)
defines a Lagrangian correspondence from A(X, F') to M(X, F'). Motivated by this,
L(3, F) is called the matching Lagrangian correspondence.

Suppose S is a compact oriented Riemann surface whose boundary is

IS =mU---UnU—y, (1.2)

where 7); is a connected 1-manifold and —v denotes v with the reverse orientation.
Throughout the paper, we use a similar notation to indicate reversing orientation on
a manifold. For each boundary component 7; of S, we fix a Lagrangian submanifold
L; of the moduli space of flat connections M(3, F'). We write LL for the collection
(Ly,...,Ls, L(X, F)).

Following [Lip14], the mixed equation is associated to any quintuple of the form

(X,V,S, M(Z,F),L). (1.3)

A pair of a connection A on the bundle V and a map u:S — M(Z, F) is a solution
of the mixed equation if it satisfies the equations

F+(A) =0,
{ahu:07 (1.4)

and the boundary and matching conditions

u(z) € L; T €N,
{(A|{m}x27u($))€£(E,F) T En. (1'5)

The term FT(A) in (1.4) is the self-dual part of the curvature F4 of the connec-
tion A. That is to say, the first equation requires that A satisfies the ASD equation,
which is also known as the instanton equation. The holomorphic curve equation
d7,u=0 in (1.4) is defined using the conformal structure on S and the complex
structure J, on M(3, F). More generally, we may define the mixed equation when
M(2, F) is replaced by an arbitrary symplectic manifold (M,w) with a compatible
almost complex structure J, and L(X, F) is replaced by a canonical Lagrangian cor-
respondence L from A(3, F') to M (see Definition 2.4). We then call (X,V,S,M,L) a
quintuple, where IL is the data of the canonical Lagrangian correspondence £ and the
Lagrangians L; C M associated to the boundary component 7; of S. A quintuple of
the special form in (1.3) is called a matching quintuple. See Sect. 2 for more details.
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Regularity. The solutions of the mixed equation enjoy regularity properties similar
to those of the ASD equation and the Cauchy—Riemann equation. That is to say,
if (A,u) is a solution of the mixed equation satisfying some initial regularity, then
(A, u) is C* smooth. The precise statement of regularity requires some care because
the mixed equation is invariant with respect to automorphisms of the SO(3)-bundle
V', and we may obtain a non-smooth solution by pulling back A using a non-smooth
automorphism of V. To avoid this issue, we assume that the connection A of the
mixed pair (A4, u) is in Coulomb gauge with respect to a smooth connection Ay on
V', which means that it satisfies

dZU(A—Ao):O, *(A—A())ya)(:o. (16)

Moreover, since regularity is a local phenomenon, we assume that (A4, u) is a solution
to the mixed equation associated to the quintuple

Q(r):=(D_(r) xX,D_(r) x F,D,(r),M,L). (1.7)

Let H, and H_ denote the half planes s >0 and s <0 in the (s,0) plane. Then
D, (r)CH4, D_(r) CH_ in (1.7) are respectively the open subspaces B,(0) N H,,
B,(0)NH_ with B,(z) being the ball of radius r centered at the point z € R%. For
the statement of our regularity result, we may work with an arbitrary symplectic
manifold M and a canonical Lagrangian correspondence £ from A(X, F') to M.

Theorem 1. Suppose p > 2 and (A,u) is an LY solution of the mized equation as-
sociated to Q(r). Suppose A satisfies (1.6) with respect to a smooth connection Ay.
Then (A,u) is smooth.

Since (A,u) is in LY, a priori we can only guarantee that A,y is an LP con-
nection for any = € v using the Trace Theorem for Sobolev spaces. Thus, we need to
take LP completion of A(3, F) to make sense of the second condition in (1.5). This
in turn implies that, we are forced to define the space of flat connections in A(X, F')
in the weak sense as in [Weh041].

Theorem 1 can be used to prove regularity for solutions (A,u) of the mixed equa-
tion for more general quintuples. By picking an appropriate smooth connection A
which is close enough to A in the L} norm, we may assume that A is in the Coulomb
gauge with respect to Ay after applying a gauge transformation of the bundle V.
Then Theorem 1 can be used to prove regularity of A and u in a neighborhood of
the boundary components v x 3 of X and « of S. Then standard regularity of the
solutions of ASD equation and holomorphic curve equation can be employed to show
interior regularity of A and wu.

There is a sequential version of Theorem 1 which shall be useful for our purposes.

Theorem 2. Suppose p > 2 and {(A;,u;)} is a sequence of LY solutions of the mized
equation associated to Q(r) which is LY -convergent to (A,u). Suppose Ay is a smooth
connection on D_(r) x F and A; is in Coulomb gauge with respect to Ay. Then
(Ai,u;) is C™ convergent to (A, u).
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Compactness. Solutions of the mixed equation for the matching quintuple satisfies a
compactness property which generalizes the Uhlenbeck compactness for the solutions
of ASD equation [Uhl821, Uhl822] and the Gromov compactness for holomorphic
curves in the symplectic manifold M(X, F') [Gro85].

Theorem 3. Suppose q is a matching quintuple as in (1.3). Then, there is a constant
h such that the following holds. Suppose {(A;,u;)} is a sequence of smooth solutions
of the mized equation associated to q such that

”FAz

2L2(X) + Hdui”%2(5) Sk (1.8)
for a fixed constant k. Then there are

(i) @ subsequence {(A7,uT)} of {(Aiui)},
(ii) a solution of the mixed equation (Ag,ug) for the quintuple q,
(iii) finite sets o_ Cint(X), o Cy and o C S\ 7,

such that the following holds.

(i) The pair (Ao, uo) satisfies the energy bound
| Eag72x) + lduolz2(s) < -

If any of the sets o_, o9 and o is nonempty, then the above inequality can
be improved by subtracting h from the right hand side.

(ii) uf is C*-convergent to uy on any compact subspace of S\ (o4 U oy).

(iii) There are gauge transformations gF defined over X \ (09 x X Uo_) such that
(9T )* AT is C™ convergent to Ay on any compact subspace of X \ (o9 x ¥ U
o_).

An important ingredient in the proof Theorem 3 is an a priori estimate in Sect. 4.1
which asserts that if we have a solution (A, u) of the mixed equation satisfying the
L? bound in (1.8) for a constant « less than A, then for an appropriate choice of p,
the L} norm of (A,u) can be controlled. Another important input for Theorem 3 is a
removability of singularity result in Sect. 4.2, which is the analogue of corresponding
result for the solutions of the ASD and CR equations.

Theorem 4. Let (A,u) be a solution of the mized equation for the quintuple
((D-(r)\{0}) x 2, (D—(r) \ {0}) x F, Dy (r) \ {0}, M(Z, F), L(3, F))
such that
| EalZacx) + ldullZa(s) < oo
Then the followings hold.

(i) There exists a gauge transformation g over (D_(r)\{0}) x ¥ such that g*A
extends to a smooth connection A on D_(r) x X.
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(ii) u can be extended to a smooth map @ : Dy (r) — M(Z, F).

In particular, (g, u) is a solution of the mized solution associated to the quintuple
(D—(T) X Zv D—(T) X Fa D_,_(T),M(Z,F),E(Z, F))

REMARK 1.9. Theorem 3 asserts that outside a set of bubble points, the sequence
{(A;,u;)}, after passing to a subsequence and modulo the action of the gauge group,
is convergent on the compact subspaces. Moreover, for each bubble point, a cer-
tain amount of energy is lost, which is not smaller than a fixed number A. A priori,
h depends only on the quintuple . Once we obtain the compactness and remov-
ability of singularity results, one can use a standard argument (see, for example,
[DK90, Sect. 4.4.3]) using the mized Chern—Simons functional introduced in [DFL21,
Sect. 5.2] to see that A can be assumed to be 472, Since we do not need this more
refined claim, we will not discuss the details in this paper.

Fredholm theory. The moduli spaces of the solutions of the mixed equation generi-
cally are expected to be finite dimensional smooth manifolds once appropriate decay
conditions are prescribed on the non-compact ends of X and S. The routine ap-
proach to achieve this is to establish a Fredholm theory for the linearization of the
mixed equation. Fredholm theory of the linearized operator can be turned into a
local problem by a cut and paste method. Given the local nature of this property,
we focus on the special case of the mixed equation associated to a cylinder quintuple

;=Y xI,ExI10,1] x I,M,{L,L}), (1.10)

where [ is an open interval in R, Y is a compact Riemannian 3-manifold with
boundary ¥, M is a symplectic manifold, £ is a canonical Lagrangian correspondence
from A(X, F) to M and L is a Lagrangian in M. The assumption on the topological
types of the bundles imply that ¥ has even number of connected components. The
Riemannian metric on Y induces the product metric on Y x I.

In [DFL21], we need Fredholm property for a version of the mixed equation which
is defined using domain dependent almost complex structures. Thus, we slightly
generalize our choice of almost complex structure in this part to address this point
needed for the follow up paper. Let {J; 0} (s.0)c[0,1x1 be a family of compatible almost
complex structures on M. The variable 6 denotes the coordinate on the interval I
and s denotes the coordinate on the factor [0,1] of the region [0,1] x I. We also
orient Y x I using the volume form dvolx = dvoly A df. Using the metric and the
orientation on Y x I, we define the first equation in (1.4), and the second part of
the mixed equation is given by the CR equation defined with respect to the domain
dependent almost complex structures Js .

Given a smooth mixed pair (A,u) associated to ¢;, we may form an operator
D(a,y) which is called the mized operator. If (A,u) is the solution of the mixed
equation, then the local behavior of the moduli of solutions to the mixed equation
around (A,u) is governed by the mixed operator D4 ). For any integer k£ > 1, the
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linearization operator can be regarded as a bounded linear map with the domain
E?A,u)(I) consisting of pairs ((,v) where

CeLi(Y xI,A'® E), ve Li([0,1] x I,u*TM), (1.11)
such that
#(|ex1 =0, (Cloxqoy,v(0,0)) €TL, v(1,0) e TL. (1.12)

To be a bit more detailed, the middle condition, called the matching condition, asserts
that (C|sxe,v(0,0)) belongs to the tangent space of £ at the points (A[sgy,u(0,6))
for any 6. (See Sect. 5 for an elaboration on this condition, especially in the case
that k = 1.) Similarly, the last condition, called the boundary condition, implies that
for any 6, the vector v(1,0) is tangent to the Lagrangian L at u(1,6). The target of
D(4,4) consists of triples (u,&,2) such that

peLli (Y xI,AT®E), cel? (Y xI,E), ze L 1([0,1] x I,u*TM).

(1.13)
The map D4, is a degree one differential operator and an explicit formula for this
operator is given in Sect. 5. This operator is defined by linearizing the mixed equation
and then including a component that is related to the first equation in (1.6).

We can also consider the formal adjoint DE* A of D(4,)- The domain of D’(k Au)
denoted by K ( )+ consists of triples (11,€,2) as in (1.13) where k — 1 is replaced with
k, and the followmg additional conditions hold. Since Y x I is equipped with the
product metric, the self-dual form y has the form 1 5(dO Ab—x3b) where b is a section
of the pullback of T*Y @ E' to Y x I. We have the followmg additional requirements

on (1.6, 2):
*b|2><[:0, (b|2x{9},2(0,9)) ETﬁ, 2(1,0) eTL. (114)

The target of the adjoint operator DE‘ Au) consists of tuples as in (1.11), where k is
replaced with k& — 1. By definition, D? A) is the unique operator which satisfies

<D?A,u) (1,€,2), (Cv)) 2 = (1, &, z)aD(A,u)(C? V))r2, (1.15)

for any (u,§,2) € Kg“A ) and any smooth (¢,v) where ( is compactly supported in
the interior of Y x I and v is compactly supported in the interior of [0,1] x I. As it
is explained in more details in Sect. 5, DE* Au) essentially has the same form as D4 ).

Theorem 5. For any open interval J that its closure is a compact subset of I the
following holds.

(i) Suppose (C,v) € E(lAyu)(I) and D) (C,v) is in Li_y. Then ((,v) € Eé“Am)(J).
Moreover, there is a constant C, independent of ((,v), such that

16¢ iz < C (P €0z iy + ¢ ) ) - (1.16)
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Similarly, suppose (u,&,z) € K(lAyu)(I) and Dy (1., 2) is in L% . Then
(1, €,2) € KfAyu)(J). Moreover, there is a constant C, independent of (u,&, z),
such that

”(u7€7z)HLi(J) <C <’|,DEKA,U)(/J’7éaz)”Li_l(I) + ”(/’L7§7Z)HLZ(I)> . (117)
(ii) Suppose (u,&,2) is as in (1.13) for k=1, and there is a constant k such that

[{(1:€,2), Diay (G )| < BN 2) 220y

for any smooth (,v) in E(lAyu)(I) with compact support. Then (u,§,z) €
K(lA u)(J). Moreover, there is a constant C, independent of (u,&, z), such that

(s, & 2) L2y <€ (HD?A,U)(M,E,Z)||L2(1) + ||(N7§»Z)”L2(I)> : (1.18)

Similarly, suppose (C,v) is as in (1.11) for k=0, and there is a constant k
such that

(¢, Dy (11,6 2))| < w01, € 2 2

for any smooth (p,§,z) in K(lA,u)(I) with compact support. Then ((,v) €
E(lAyu)(J). Moreover, there is a constant C, independent of (,v), such that

IS )20y < C (IDawy (&) L2y + 16 ) 22ny) - (1.19)

Although Theorem 5 does not explicitly assert Fredholmness of any mixed oper-
ator, it is the key ingredient to show that mixed operators are Fredholm in various
contexts. For instance, it is straightforward to use this theorem to show that the
mixed operator is Fredholm if X and S are compact. (The definition of the mixed
operator for cylinder quintuples adapts to more general quintuples in the obvious
way.) In the sequel paper, we use Theorem 5 to obtain Fredholmness of the mixed
operator in a case that X and S are non-compact but appropriate decay conditions
are fixed on the non-compact ends.

Outline and conventions. The precise definition of a canonical Lagrangian corre-
spondence from A(3, F') to a symplectic manifold is given in Sect. 2. We also review
some technical results about such Lagrangians and the special case of the matching
Lagrangian correspondence. The proof of the regularity and compactness results are
respectively given in Sects. 3 and 4. Our treatment here is essentially the same as
the third author’s unpublished work [Lip14] with some minor modifications, most of
them in exposition. Section 5 of the paper is devoted to the proof of Theorem 5 on
Fredholm property of the mixed equation. In Appendices A and B, we collect some
mostly standard analytical results, which are used throughout the paper.

The mixed equation has two predecessors in the existing literature. This equation
is closely related to the ASD equation with Lagrangian boundary conditions intro-
duced and developed in [Weh051, Weh052, SWO08]. In fact, the method of the current
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paper is inspired by these works and our treatment owes a great deal on these works
on the analytical aspects of the ASD equation with Lagrangian boundary condition.
An older relative of the mixed equation is introduced in [Fuk98] by the second au-
thor, which is defined using the ASD equation with respect to a special degenerate
metric. In fact, the mixed equation can be regarded as a limiting version of such
equations. Although compactness and removability of singularity are already estab-
lished for such equations [Fuk98], the Fredholm property seems to be a technically
more difficult problem.

Throughout the paper, we use the following conventions to denote SO(3)-bundles
and connections on them unless otherwise stated. For any closed oriented 2-manifold
Y, there is a unique (up to isomorphism) SO(3)-bundle on X, whose restriction to
each connected component of ¥ is not trivializable. This bundle is denoted by F.
Connections on this bundle are denoted by greek letters such as a and 5. We write
E for a typical SO(3)-bundle on a 3-manifold Y. A typical connection on this bundle
is denoted by B. Finally, an SO(3)-bundle on a 4-manifold is denoted by V, and a
typical notation for a connection on V is A.

The Euclidean space R? with the standard cross product defines a Lie algebra,
which is equivariant with respect to the standard SO(3) action. This SO(3)-Lie al-
gebra is isomorphic to s0(3), linear space of skew-adjoint endomorphisms of R3, and
su(2), the linear space of trace free skew-Hermitian endomorphisms of C2. Conju-
gation defines the SO(3) action on so0(3) and su(2). Throughout this paper, we use
this isomorphism to identify an SO(3) vector bundle V' with the bundle of skew ad-
joint endomorphisms of V. In particular, the curvature of a connection on V' can be
regarded as a 2-form with values in V.

Let tr: R? x R® = R be the bi-linear form given by —% of the standard inner
product. Using the identification with su(2), this bi-linear form can be identified with
tr:su(2) x su(2) — R which maps a pair of a skew-Hermitian matrices A and B to
tr(AB). The bi-linear form tr induces a bi-liner form on sections of any SO(3)-vector
bundle V', which is denoted by the same notation. If « and g are two general k-forms
on a Riemannian manifold M with values in an SO(3) vector bundle V', we use

(a, B) : = — /Mtr(a A #pr3) (1.20)

to define their inner products, where ), is the Hodge *-operator on M.

2 Symplectic manifolds and canonical Lagrangian correspondences

The space of all connections on F' is an affine space modeled on Q(X, F'), the space
of 1-forms with values in F. This space admits a symplectic form given by

Q(a,b) = —/ tr(a A D), for a,b € Q' (%, F).
s
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For p > 2, let AP(X, F) denote the completion of this affine space with respect to
the LP norm. The symplectic form Q clearly extends to AP(X, F'). There is also an
action of a Banach Lie group GV(X,F) on AP(X, F). The Lie group SO(3) acts on
SU(2) by the conjugation action ad, and this action determines a fiber bundle on 3
given an

Fr(F) xaq SU(2), (2.1)

where Fr(F) denotes the framed bundle of F. Then G¥ (3, F') is the space of sections
g of this bundle such that V,,¢ has a finite LP norm where V,, is defined using
a smooth connection «p on F. Any element of GY'(X, F) is continuous and pulling
back connections with respect to the elements of G7(3, F') gives rise to an action of
Gl (3%, F) on AP(X, F). The symplectic form {2 is invariant with respect to this action.

The curvature of an element of AP(X, F') is not necessarily well-defined. However,
we can define the subspace Ag(3, F') of connections in AP(X, F') which are weakly
flat (see [Weh041]). First fix a smooth flat connection ag. For a € LP(3,A' @ F), the
LP-connection ap + a is an element of Ag(3, F), if

[ 6@ (g ) =0
>

holds for any smooth section ¢ of the bundle F'. This space is invariant with respect
to the action of GV'(3, F') and determines a Banach submanifold of AP(X, F). Any
element of this space belongs to the orbit of a smooth flat connection (see [Weh041]).
We may form a neighborhood in AP(X, F) of a smooth connection a € Ag(%, F') by
taking connections of the form

g (& + xdyC) (2.2)

where o/ is a smooth flat connection on ¥ such that it satisfies the Coulomb gauge
fixing condition d’(o/ —a) =0, |a — /| <e, g € GV (X, F) with [Vag|lrr < e and
¢ € LY(%, F) with [Va(|Lr <e. The subspace ¢ =0 of this open set describes the
intersection with Ag(X, F'). The Hodge *-operator on 3, denoted by 2, induces a
GY (3, F)-invariant complex structure on AP(3, F'). This complex structure is com-
patible with © and the induced metric on AP(X, F)) is the standard one.

The quotient Ag(X, F)/GY (3, F) can be identified with the moduli space of flat
connections M (3, F'). The symplectic form © on AP(3, F') gives rise to the standard
symplectic structure wg on M(3, F'). The tangent space of M(X, F) to the class of
a flat connection « can be identified with

H (Z;0) ={a € Q' (S, F)|dya=0,d a=0}. (2.3)

The complex structure x on AP(X, F') induces a wg-compatible complex structure
J, on H'(Z; ).
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DEFINITION 2.4. Suppose (M,w) is a symplectic manifold. A Banach submanifold
LCAP(X,F) x M is called a canonical Lagrangian correspondence from AP(X, F')
to M if it satisfies the following properties:

(i) £ is invariant with respect to the action of the gauge group G¥(%,F) on

AP(3, F) x M, where the gauge group acts trivially on the second factor.

(ii) The first component of any element of £ belongs to Aq(3, F').

(iii) L is isotropic with respect to (—2) Gw, i.e., if a and b are two tangent vectors
to L, then ((—Q) @ w)(a,b) =0.

(iv) L is co-isotropic with respect to (—Q) @ w, i.e., if a is a tangent vector to
AP(X,F) x M at a point (a,z) and ((—Q) @ w)(a,b) =0 for any b € T(4 L,
then a is tangent to L.

There is a correspondence between canonical Lagrangian correspondences from
AP(3,F) to M and Lagrangians in the (finite dimensional) symplectic manifold
M(X,F) x M equipped with the symplectic form (—wg) X w. Given any canoni-
cal Lagrangian correspondences from AP(X, F) to M, we may form a subspace of
M(Z,F) x M by taking the quotient £/GV(3, F'). This subspace is in fact a La-
grangian in M(X, F') x M. This follows from the following standard lemma on Hodge
decomposition associated to twisted Laplace operators.

LEMMA 2.5. Suppose k>0, ¢ >1 and o is a smooth flat connection on F. Then we
have the following splitting of L{(X,A' ® F) into a sum of closed subspaces:

Li(Z,A' @ F) =H' (Z; o) @ image(d,) @ image(xd,,), (2.6)
where image(d,) and image(xd,) are the images of the operators
do: L (S,F) = LYS, A @ F), sdo LY (8, F) = LI(Z,A' @ F).
Proof. This is a standard result which follows from the fact that the twisted laplacian
dodl, + dido LY (S, A' @ F) = LI(S,A' @ F)
is an elliptic operator with cokernel being H!(%; ). O

The splitting (2.6) in the case that ¢ = p and k = 0 gives a splitting of the tangent
space of AP(X, F') at smooth elements of Ag (X, F'). The first two summands describe
the tangent space to Aq(3, F'). For any canonical Lagrangian correspondence £ and
any z = (a,7) € L, T,L contains image(d,) and is L?-orthogonal to image(xd,,).
Therefore, there is a subspace V, of the finite dimensional symplectic vector space
HY(X; ) @ T, M such that

T.L =V, ®image(d,) C LF(X,A' @ F) @ T, M, (2.7)

where the domain of d,, is L} (X, F'). The definition of £ is equivalent to say that V, is
a Lagrangian subspace of H!(3; a) ®T,, M. Consequently, £/GY(X, F') is a Lagrangian
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submanifold of M(X, F') x M. This presentation also gives a useful description for
the closure of (2.7) with respect to LY norms with 1 < g < p: this closure given by
the same direct sum decomposition where d, should be a regarded as a map acting
on L{(X,F). In particular, we will use this in Sect. 5 in the case that ¢ = 2.

ExamMPLE 2.8. Let L£(X,F) be the following Banach submanifold of AP(X, F') x
M(Z,F):

L(E,F)={(B,[B])| BeAa(X,F)}.

This space is diffeomorphic to Ag(X, F) and defines a canonical Lagrangian corre-
spondence from A(X, F) to M(X, F'), which is called the matching Lagrangian cor-
respondence. The corresponding Lagrangian in M(3, F) x M(X, F) is the identity
Lagrangian correspondence form M(X, F') to itself.

Let J be an almost complex structure on M compatible with the symplectic
form w. This induces an almost complex structure J on AP(3, F') x M which acts on
(a,v) e LP(X,A' @ F) ® T, M as

J(a,v) = (—*2a, Jv). (2.9)

For any z = (o, z) € L, property (iii) of £ implies that T,LNJ(T,L) is trivial. More-
over, (iv) implies that V, and JV, generate the finite dimensional symplectic space
HY(Z; ) © T, M. In particular, we have

T.LRI(T.L)=LP(S,AN' @ F)® T, M.

The following lemma gives a suitable chart for the complex structure J in a neigh-
borhood of a point in L.

LEMMA 2.10. Suppose L is a canonical Lagrangian correspondence from AP(¥, F') to
a symplectic manifold M. Suppose an almost complex structure J on AP(X, F') x M s
defined as in (2.9). Suppose B, is the Banach space L} (3, F) @ R"3X()/2 yhere 2n
is the dimension of M. Then for any z = (a, x) € L, there is an open neighborhood U
of the origin of B, ® B, and a diffeomorphism ®, from U onto some open subspace
of AP(X,F) x M with ®,(0) = z such that

(i) ®,'(L) is the intersection of 0® B, with U;

(ii) for any x € LNim(P,), the pullback of the almost complex structure J(z) is

the standard complex structure

(v1,v2) = (—v2,01);
(iii) if ¢ > p, then ®, maps (B, & B,) NU to (AY(X,F) x M) Nimage(P,).

Proof. We may assume that the connection a € Ag (X%, F') is smooth. Let z = ([a], x)
be obtained by projecting z to M(3, F) x M. The quotient of £ by G}(X,F) de-
termines a smooth submanifold £ of the finite dimensional manifold M(X, F') x M,
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which is in fact Lagrangian with respect to the symplectic form (—wq) X w. Using
neighborhood theorems for Lagrangian submanifolds (of finite dimensional symplec-
tic manifolds), there is a chart

®:U - M(E,F)x M

such that U is an open neighborhood of the origin in R23x®) $(0) = 2, (L)
is the intersection of U with {0} x R*3x(3)/2 ¢ Rn=3x(¥)/2 5 R*=3x(%)/2_ The pull
back of the complex structure on M(X, F') x M, given as (— %3 a, Jv), determines a
complex structure on U, and we may pick ® such that for any point in @_l(ﬁ) this
complex structure is the standard one

(Ul, ’UQ) S Rn73X(Z)/2 X :lf_{nig)((z)/2 — (—UQ, Ul).

The chart (®,U) can be used to define a chart for AP(X,F) x M(Z, F). Let
® = (¥, P,) where &1 and ®, are respectively maps from U to M(Z, F) and M.
By shrinking the open set U, we may assume that the elements in the image of o,
are lifted to smooth elements of Ag(3, F') which satisfy gauge fixing condition with
respect to the flat connection a. With a slight abuse of notation, this lift of d; to a
map with target Aq (3, F') is still denoted by ®;. Define a map

LP(S,F) x LP(3,F) x U — AP(S, F) x M, (2.11)

as

(€60 = (exp(Q1(0) — 12 | expc 10 (@1(0))), Ba(0)).

dt

t=0

By taking U to be a small enough neighborhood of the origin in L} (3, F') x LY (%, F) x
U and @, being the restriction of (2.11), inverse function theorem allows us to obtain
the desired chart. O

3 Regularity

The main goal of this section is to prove Theorems 1 and 2 on regularity of solutions
of the mixed equation. For p > 2, suppose (A4,u) is an L} solution of the mixed
equation for the quintuple Q(r) in (1.7), which we copy here again:

(X:=D_(r)xX,V:=D_(r)x F,S:=Dy(r), M, L). (3.1)

Here M is a symplectic manifold with a symplectic form w and a compatible almost
complex structure J. The space L is a canonical Lagrangian correspondence from
AP (X, F) to M. The mixed equation for the pair (A, u) has the form

FH(A) =0,
{ du 7y du =, (3.2)
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We write Us(r) for the intersection of the half discs Dy (r) and D_(r). We also
assume that A is in Coulomb gauge with respect to a smooth connection Ay:

d*AO(A—Ao):O, *(A_AO)|U3><E:O- (33)
Then a more precise statement of Theorem 1 is given as follows.

Theorem 3.4. Any (A,u) as above is smooth.

The proof of Theorem 3.4 is performed in several steps where the regularity of
(A, u) is improved in each step. The proof is slightly more involved in the case that
p < 4. In this case, first we show that one can improve regularity by increasing the
value of p. Let {g;}o<i<n be an increasing finite sequence of real numbers such that
qo =p, qv >4 and

2
Git1= 7 e , for0<i<N-—1. (3.5)

%

We shall show that if the assumptions of Theorem 3.4 hold for p = ¢;, then it also
holds for p = g;41. In the case that p > 4, we shall show that one can obtain Lg/ 2
regularity from L} regularity. In the case that p>2 and k > 2, a similar argument
as above shows that if (A,u) is in L%, then it also belongs to L7 ;. Section 3.1 is
devoted to the proof of these claims.

The following theorem is a more detailed version of Theorem 2 and its proof will
be discussed in Sect. 3.2.

Theorem 3.6. Any {(A;,u;)}; is a sequence of smooth solutions of (3.2) which satisfy
(3.3). For p > 2, suppose (A;,u;) is LY convergent to (A,u). Then (A;,u;) is C™
convergent to (A,u).

3.1 Proof of Theorem 1.  Suppose (A4, u) is an L} solution of (3.2) associated to
the quintuple Q(r) with 2 < p < 4 that satisfies (3.3) for a smooth connection Ay.
Suppose A — Ay has the form

A— Ay =a+ pds -+ 1pdb

with respect to the coordinate system on D_(r) x X. Since the connection A satisfies
the ASD equation, we have

03, (A~ Ag) = ~F(A0)" +Q(A ~ Ay) (3.7)

where Q(A — Ay) is defined to be the quadratic term —((A — Ag) A (A — Ap))™.
We list some inequalities and identities here which will be used in various stages
of the proof. For any ¢ < 4, Sobolev embedding implies that

|A - AOHLquq(X) < CJA = Aolpsx)-
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Since we have

4 — 1 8-
4-¢ 1_8-q
49 g 4
the Holder inequality gives
QA ~40)] . < O1A~ Aol (33
1

Similarly, if we fix ¢ > 1, then for any positive integer k£ with gk > 4 there is a
constant C}, such that

|Q(A — Aog)ll2(x) < Crll A = Aol 71 x)- (3.9)

For each (s,0) € D_(r), let 5(s,6) (respectively, Sy(s,f)) denote the restriction of A
(respectively, Ag) to ¥ x {(s,0)}. In particular, we have 5 = By + a. Since 5(0,0) is
flat, we have

dgo(0,0)(B(0,0) — Bo(0,6)) = —F(Bo(0,0)) — (8(0,0) — Bo(0,6)) A (B(0,6) — 5(0,6)).

(3.10)

We wish to use Lemma A.11 to improve regularity of the components ¢ and 1)

of A— Ag over D_(r') with ' <r. Let p: D_(r) — R=" be a compactly supported

function which is equal to 1 on D_(r") where v < r” < r. As the first step, note

that the second identity of the Coulomb gauge condition (3.3) implies that for any

Ein To(D_(r) x X,V), the space of compactly supported smooth sections of V' over
X =D_(r) x X, we have

[ (oA = 20),d008) = [ (3, (p(A= 40)).)
X X

~ [ (B(Tp A~ 40).6). (3.11)
Here R(Vp, A — Ap) is a bilinear expression in A — Ay and the derivative Vp of p.
In particular, we observe that the L} norm of R(Vp, A — Ag) is bounded by the L}
norm of A — Ap.

For any n in I'-(D_(r) x ¥,V), the space of sections of V' over D_(r) x ¥ with
vanishing restriction to Uy(r) x X, we have

[ (04 = o).y das (ds)) =2 [ (p(A = Ao}, (nds)
X X
+ | (A = Ao), +[F(Ao), nds])
=2 [ (5, (p(A = A40)). df, (nds)

42 / tr(p(A — Ag) A d, (ds))
YxUg
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+ [ (oA = A0 4P (o) mds])
=2 [ (4, (p(A— A0)) g nd)

+ / p(A— Ag), F(Ao)], nds) (3.12)

where in the last identity we use the assumption on 7 that it vanishes on Uy x X to
drop the boundary term. The identity in (3.7) and the inequality in (3.8) imply that

ld%, (p(A = Ao)) 21 (x) < C(IA = Aol ) + 1), (3.13)
where p; = 2. Identities (3.11) and (3.12) and the inequality in (3.13) allow us to
apply Lemma A 11 in the case that o= p(A — Ap), k=1, r = p; and the vector field
o equals %. This implies that

lpdll Lz xy < C([A - AOH%’{(X) +1). (3.14)
In order to improve the regularity of ¢, let n € I',(D_(r) x X,V) where

I',(D_(r) x ¥, V) is the space of sections of V over D_(r) x ¥ with vanishing normal
covariant derivate on Uy x ¥ with respect to Ag. Then

/X< (A — Ao),d’y da, (ndf)) _2/ (A= Ao),d}y,d}, (ndf))
n / (A — Ao), *[F(Ao), ndd])
:/ (p(A — Ag), *[F(Ap),nd6)])
+2/ (d}, (p(A— Ag)), d (nd6))

+2 tr(p(A — Ag) Adf (ndf))

YxUp

:/< [p(A — Ao), F(Ao)], nds)
42 / (s, (p(A— Ag)), da, (1d6))

+ /U a /E te(p(8 — Bo) Adgym)dd.  (3.15)

By the Stokes theorem and (3.10), the last term can be rewritten as

[ [ator@) ands [ [ txp(3 - 80) A8~ Bo) Amde. (3.16)
Us J T Us JE
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As in (3.8), the quadratic term (5 — o) A (8 — Bo), regarded as a 2-form on the
4-manifold X, satisfies

[(8 = Bo) A (B = Bo)ll Lz (x) < CIA = AollZr (- (3.17)

-

Thus, Lemma A.11 with o0 = % and the same «, k£ and r as in the previous case,
together with (3.13) and (3.17) gives

I ]z o) < CUA = Aolze ) +1)- (3.18)

Using Sobolev embedding theorem, we may assume that (3.14) and (3.18) hold if the

L% norm on the left hand side is replaced with L{" where ¢; = 427”17.

For each (s,0) € D_(r), Coulomb gauge condition (3.3) implies that

ld5all oo (s xs) = 1050 + 8é401/1“L’1’1 ({(s:0)} x3)- (3.19)
We have
dag(A— Ag) = dgya+(ds, ¢ — 820a) Nds + (dg, 00 — ;0 a) NdO + (9209 — 9 ) ds A db),

where dg,a denotes the exterior derivative of a in the ¥ direction. This identity can
be used to show

ldsoall o ((s.0pxs) < Clldh, (A= Aol 21 ((s.0)yx5) + |05 ¢ — 3240¢||Lf1 ({(5,9)}??2)])2)(‘))
Therefore, we can use Lemma A.26 and the inequalities (3.14) and (3.18) to show
IVsal o1 (p_ryxsy SCUIA = Aol Zr(x) + 1) (3.21)

We may again assume that the same inequality holds if the L}" norm on the left
hand side is replaced with L% norm. In particular, a belongs to the Sobolev spaces
LAY (S, A @ LP1(D_(+"))) and LT (2, A' @ L& (D_(r"))).

Next, we improve regularity of dsa, 9pa and u. Define p: Dy (r") — LP(Z,A' @
F)x M as

p(s,0)=(a(—s,0),u(s,0)). (3.22)

Following (2.9), the almost complex structures J on M induces an almost complex
structure J on LP(X,A' ® F) x M given as (—xs,.J). Using the assumption p > 2 and
by decreasing the value of r if necessary, we may assume that p takes values in a
chart where the pullback of J has the special form given in Lemma 2.10. The ASD
and CR equations in (3.2) implies that

(Opp — J(p)0sp)(s,0) = ((Opa — *205a)(—s,0), (Opu — J5,005u)(s,0))

= ((dﬁo’l/) - *2d50¢ - [d} + 1/Joaa] + *2[¢ + ¢07a] + F;_(AO))(_'S’Q)’O)’
(3.23)
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where ¢ and 1y are respectively the components of Ag in the s and 6 directions
(that is Ag = By + ¢odf + 1odf) and F, (Ag) is the projection of 2F+(Ap) to the
summand F ® AY(X) Adf of F® A?(X). Using (3.14), (3.18) and an application of
Holder inequality analogous to (3.8), we may conclude that the first entry of (3.23) is
in L' (D_(r") x ¥), and hence in L9 (D_(r") x X) by Sobolev embedding. Therefore,
Opp — J(p)Osp is an element of

P (D_ ("), LP(S,A' @ F)) nL® (D_(r”), L7 (S, A ® F)).

Lemma 2.10 allows us to apply Proposition B.10 and conclude that p is in
L (D_(r"), L2(E,A' ® F)) and

Pl25 0y earsmy < C(1+ 14 = Aolp e + Idul iogs) ) (3.24)

In summary, (A4,u) is in L{", and in fact the L{" norm of the restriction of (A,u)
to D_(r") x ¥ can be controlled using the inequalities in (3.14), (3.18), (3.21) and
(3.24). By iterating this process, we can prove a similar result where ¢; is replaced
with ¢; of (3.5). In particular, we can reduce the proof of the regularity to the case
that p > 4.

The rest of the proof of regularity can be addressed in a similar way. For p > 4,
we may obtain (3.14), (3.18), (3.21) where p; can be replaced with p because we can
use (3.9) with £ =1 in this case instead of (3.8). In particular, we obtain

¢, € L5(D_(r') x 2, F), ac L2, A @ LP(D_(r"))). (3.25)

In the last step of the above proof where we improve the regularity of p, we
need to use Proposition B.4 instead of Proposition B.10 to conclude that p is in
LIZ’/Q(D, (r"), LP(%, A ® F)). This in addition to (3.25) implies that (A,u) is in L§/2
(see (B.1)). Thus the proof of regularity is reduced to the show that if (A4,u) is in
L}, with p>2 and k> 2, then (A,u) is in L} . The proof of this claim follows the
same strategy. Following the first three steps of the above proof, we obtain

b Ll (D-(FM)x B, F),  acLl (SN @L/(D-(")).  (3.26)

In the last step of the proof, Proposition B.4 allows us to conclude that p €
LE(D_(r"), LP(3,A' ® F)). This complete the proof of smoothness of (A,u). In each
step of the proof, we can bound the given Sobolev norm of (A4,u) over any region
D_(r") x ¥ with 7" <r using a polynomial function of |A — Ao[zr(x) and ||dul s,
where the coefficients of this polynomial depend only on Ay and 7.

3.2 Proof of Theorem 2. The proof of Theorem 2 can be verified with a similar
argument as in the previous section. Given a sequence (A;,u;) as in the statement
of Theorem 3.6, let

Ai — Ao =a; + <Z>Z-d3 + 1/sz(9
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The instances of (3.7) for A; and A; imply that
di (A — 45) = Q(A; — Ao) — Q(A; — Ay) (3.27)
As an analogue of (3.8) and (3.9), we have

1Q(A; — Ag) — Q(A; — Ao)|| a0
LF7(x)

< ClAi — Ajllpax) ([ Ai — Aol axy + 147 — Aol e (x)) (3.28)
for ¢ < 4, and
1Q(A:i — Aj)llLe(x) < CllA;i — Ajll e x) (1 Ai — Aol x) + 145 — Aollax))  (3.29)

when ¢k >4 and k is a positive integer. Similarly, if 3;(s,t) denotes the restriction
of A Y x{(s,0)}, then we have

dﬂO(O,O) (ﬁl(()? 9) - ﬁj(O, 9)) :(ﬁj(O, 9) - ﬁo(O, 9)) A (BJ(O’ 0) - 50(07 6))
= (Bi(0,0) — Bo(0,0)) A (8:(0,8) — 5o(0,0)).  (3.30)

Now, by following the steps of the previous section and replacing (3.7), (3.10),
(3.8) and (3.9) with the above identities and inequalities, we can inductively show
that the LY convergence of (A;,u;) can be improved to higher regularities. As the
starting point, (3.11) implies that for any £ € T'.(D_(r) x ¥,V we have

[ o= 4),dus) = [ (R(T0.A = 4)).6), (3.31)
X X

(3.12) implies that for any n € I';(D_(r) x 3,V) we have
[ (o= A7), day (1))

=2 [ (4, (A = 4))),day (0d)) + [ (p(Ai = A}).F(Ao)]nds),
(3.32)

and (3.15) and (3.16) imply that for any n € I',(D_(r) x £,V) we have

[ (0 = A9y g 1d8)) = [ (+lp(As = A7), F(Ao)) )
X X

+2 [ (@5, (p(A: = 4). s (1)

- /U /E tr(p((B; — Bo) A (B — Bo) — (B — Bo) A (B; — Bo)) A digm)d.
(3.33)

From these identities we obtain

Ip(pi = i)z (x) < ClAi = Ajlle ) (14i = Aollzrx) + 145 = Aollpx) +1), (3.34)
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and

lp(bi = )l Lo x) < CllA: = Ajll e x) ([ 4i — Aol e x) + [ A5 — Aollrx) +1). (3.35)

Similar inequalities can be obtained for the terms a; —a; and the distance between
u; and u;. First note that we have

ld5, (@i = ap)l oo sy xsy = 105 (0 — ) + 05'° (i — Vilr qsoyxsy,  (3.36)

and

g, (ai — aj)”Lfl({(s,e)}xz) <C (”dzo(Ai - Aj)HL’l’l({(s,e)}xz)+

H195° (61 = 65) = 02 (s = )l 1 (s ) )
(3.37)

as the counterparts of (3.19) and (3.20). Thus we obtain the following inequality
analogous to (3.21):

IVs(ai —a;)llzr (p_gryxsy SCIA = Ajll e oo ([4i — Aol ey + 1145 — Aollzrx) + 1)
(3.38)

We define p; using a; and u; as in (3.22). Since p > 2, the maps p; are C° convergent
to p associated to (A,u). Thus by decreasing the value of r if necessary and for
large enough values of i, the map p; takes values in a chart where the pullback of
J has the special form given in Lemma 2.10. We may simplify dgp; — J(p;)Osp; as
in (3.23). In particular, a similar argument as in the previous steps can be used to
show that the difference between the LP(X, A’ ® F)-coordinates of dgp; — J(p;)0sp;
and dpp; — J(p;)0sp; is given by an LI section of the bundle A' @ F over D_(r") x %
whose L}" norm is bounded by the same term as in the right hand side of (3.34) if C
is chosen appropriately. By applying Proposition B.10 to the sequence p; := o, Lop;
with @, being given by Lemma 2.10, we conclude that p; is convergent to p as
elements of LY (D_(r"), L9 (X, A! ® F). Combining our results we conclude that the
restriction of A; (resp. u;) to D_(r') x X (resp. D4 (r")) for any r’ < ris L{" convergent
to A (resp. u). Analogous to the proof of Theorem 3.1, iterating this argument allows
us to show that A; (resp. ;) to D_(r') x ¥ (resp. D4 (r')) for any r' <r is L}
convergent to A (resp. u) for any p and positive integer k. This completes the proof
of Theorem 3.2.

4 Compactness

In this section, we study compactness properties of the moduli space of mixed solu-
tions. We specialize to the case that our target symplectic manifold for the mixed
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equation is the moduli space M(X, F') of flat connections on F and consider the
quintuples of the form

B(r):=(D_(r)x X, D_(r) x F,Dy(r), M(X,F),L(X, F)). (4.1)

Recall that the Lagrangian correspondence £(X, F') is given in Example 2.8. We fix
a positive real number ry and we drop r from our notation if r = r( in the following.
In this section C' is a constant depending only on ry and the metric g on X such that
its value might increase from each line to the next line.

4.1 Energy quantization. Suppose (A, u) is an element of the configuration space
associated to the quintuple B (ro). Let the energy density of u, denoted by e, : D_ —
R=°, and the 2-dimensional energy density of A, denoted by es : D_ — RZ°, be
defined as

(s 0) = [duP(=5,0),  eats0)= [ |FaP,
{(s,0)}x%

where (s,0) € D_. The energy density of (A,u), denoted by es, : D — R=" is
defined as

€Au = €A + ey.

Theorem 4.2. There exist constants k and h depending only on ro and the metric
g on X such that the following holds. Let (A,u) be a solution of the mized equation
associated to the quintuple P(rg). Let z € U_ and r be given such that D,(z) :=
B.(z)NH_ C B,,(0). Let also

/ eaudvol < A.
D, (z)

Then we have:

fDr(Z) €A7udV01
R .

<
ean(z) < =

(4.3)

The following proposition allows us to obtain interior regularity for the energy
densities of a solution (A4, u) of the mixed solution associated to the quintuple B(rp).

PROPOSITION 4.4. A solution (A,u) of the mized equation associated to the quintuple
B(ro) satisfies the inequalities

A4(|FaP?) < C(Fal* + [ Fal?), As(eu) < Clew +€3), (4.5)

As(ean) <Clean+ eiu + eiqu), (4.6)

where Ay is the Laplacian on D_, Ay is the Laplace—Beltrami operator associated
to D_x ¥, and fa:D_ — R2% is given by

Falz) = (/{Z}XE |Fal* dvol)3. (4.7)
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Proof. Let X be a Riemannian 4-manifold and E be a vector bundle over X. Let
A be a unitary connection on E and ¢ be a 2-form with values in E. Then the
Weitzenbock formula states that

VaVa¢ = (dady + dyda)p = Qi(Rx, ¢) + Q2(Fa, ), (4.8)

where Q1(Rx, ®) (respectively, Q2(F4, ¢)) denotes a point-wise smooth bi-linear form
of the Riemannian curvature Ry (respectively, the curvature of the connection A)
and ¢. (See [BB81, Theorem 3.2] for more details.) In particular, if we apply this
identity to the case that ¢ is equal to the curvature F4 of an ASD connection A,
then Bianchi identity implies that:

ViVaFy=Q1(Rx,Fa)+ Qa(Fa,Fa). (4.9)
By taking the inner product of (4.9) with F)4, we can conclude that:

Ay|Fa? + 2|V AF4|? =2(V\VaFa, Fa)
< C(|Fal* + [FaP). (4.10)

This implies the first claimed inequality of (4.5).

An analogue of (4.8) holds for 1-forms on a Riemannian manifold X for appro-
priate choices of @1, Q2 (see, for example, [ABK+94, Remark 6.40]), and the second
inequality in (4.5) can be also proved using this Weitzenbock identity, as we explain
next. The differential du of the holomorphic map u can be regarded as a 1-form on
D, with values in the bundle v*T M (X, F'). Let V denote the Levi-Civita connection
associated to the metric on M(X, F') given as wq(+, Ji-) by the symplectic form wg
and the complex structure J,. It is useful to consider the J,-linear connection on
TM(E,F)

V(v):=V(v)— %J*(VJ*)’U (4.11)

which is compatible with the metric, and its torsion has vanishing (1, 1)-component.
Therefore, if we let B be the pull back of this connection on u*T M (X, F), then
dp(du) = 0. Since u satisfies the Cauchy—Riemann equation, it is also straightforward
to check that d(du) =0. We apply the 1-form version of (4.8) to ¢ = du and the
connection B on uw*TM(X, F). As in the previous case, taking the inner product of
the resulting identity with du implies that:

Agey + 2|V pdul* = 2(V5V pdu, du)
- <Q1(RD+7du)7 du> + <Q2(FB7 dU,), du)
< COle, +€2). (4.12)

Note that in the last inequality we use the fact that the norm of Fg can be controlled
by |dul?.
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Consider the function on D_ that associates to z € D_ the integral of |F4|? over
{z} x X. Inequality (4.10) and Cauchy—Schwarz inequality implies that the Laplacian
of this function satisfies

Mol BB = [ AEPE [ ds(esds|Fal)
{z}xZ {z}x% {z}x%

<o P +IFA®)
{z}x%

2 23 z) ).
§C</{z}x2|FA| +(/{z}xE’FA’ VIl )>

Note that the Stokes’ theorem implies that the second integral on the right hand
side of the first line vanishes. This inequality together with (4.12) verifies the final
inequality of the proposition. O

PROPOSITION 4.13. For any point z := (0, 6) € Uy, the normal derivative of the mized
energy density satisfies the following inequality:

njw

Osean(z) <Ceayl(z) (4.14)

Proof. First we pick an appropriate gauge for the connection A. Decompose the
connection A as follows

A= ﬁ(sv 0) + d)(S,H)ds + ¢(37 9)d9

where (s, ) is a connection on F' over ¥ and ¢(s,0), ¥ (s,0) are sections of F'. Fix a
gauge for A by firstly taking the parallel transport of a fixed frame at the point (0,0)
along Uy, and then extending the frames on Uy to D_ by parallel transport in the
s-direction. Therefore, ¢ and the restriction of 1 to Uy vanish. The ASD equation
for the connection A implies that 5 and v satisfy

*2F/3—|—35¢:O, —895+*285ﬁ+d5¢20, (4.15)

where 0; and 0y are defined with respect to the chosen frame. Since Fjg =0 on Uy,
the first equation in (4.15) implies that ds1 on the matching line Uy vanishes. Using
this and the second equation in (4.15), we can conclude that:

0p3 = *x0s03, 0903 = %0905 8 = —05053 Vz € Us. (4.16)

The curvature of the connection A with respect to the above gauge has the fol-
lowing form:

Fa=Fg+dsAOB+df A DS+ dgib Adb+ dyipds A do.
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Thus we have

1
S0a0.0)= [ (0.5.0.0.8) + (008,0.00)
{(0,0)} xx

:_g/ tr(3p3 A 00y 3),
{(0,6)}x=

where the last identity follows from (4.16).

We follow a similar strategy to fix a representative for the map v : D, — M(X, F).
For any (0,0) € Uy, there is a unique connection 8'(0,6) such that 8'(0,0) = 5(0,0),
B8'(0,0) represents the flat connection u(0,6) and dj, , 4,98'(0,0) = 0. We extend this
family of connections to D by requiring that 5'(s,6) represents the flat connection
u(s,0) and dg/(sye)asﬁ’(s, 6) = 0. Since u is a holomorphic map, for each (s,0) € D,
there is a section 9(s,#) of F' such that

—0pf3' + *505' + dg)" = 0. (4.17)

In particular, d dgi)" =0 on Up, which implies that ¢'(0,0) = 0. Taking the deriva-
tive of (4.17) along the #-direction on the matching line Uy implies that

89895/ = *gagasﬁl Vz € Us. (4.18)

For (0,0) € Us, the exterior derivatives dg (o4 and d,gf(o,e) act trivially on
09/3'(0,0), and hence we have

|dul|?(0,6) =2 . 1095’ (0,6) %

This together with dz’(o,e)(%ﬁl (0,60) =0 gives rise to the following identity for the

normal derivative of e, : D_ — R on Uy:

1aseu(o,e) =2 / (0:003',093")
2 {(0,0)}x=

=2 tr(@eﬁ’ A 6089[3/).
{(0,0)}x%

The matching condition on Uy implies that there is gy € G(X, F) such that
5'(0,0) = g;3(0,80) for each 6. Moreover, gy is smooth with respect to 6 and gy = 1.
Let ¢p := 99_18999. Then we have

998(0,0) = g9s3'(0,0) 95" — godr(0,0)C095 - (4.19)

Using the extension theorem of Sobolev spaces, we may find (g € L3([-1,1] x
2
¥, [—1,1] x F') such that

Col_1yxs =0, Coliyxs = Co,
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and
ISoll 2 (-1,11x5.7) < CllGall 25, )-
2

Define gp € G([—1,1] x X,[~1,1] x F) by 0ypgo = goCo- Then gy|_13xx = 1 and
golgiyxs = 9o-

Let By be the connection on [—1,1] x ¥ defined as §;3(0,6). This connection
restricts to £(0,0), 5(0,0) on {—1} x X, {1} x 3. Since By is flat for each 6, we
have:

d§9 (agég) =0 d§9 (898939) = —289@9 A 8939. (4.20)

Here the second identity is obtained by applying 0y to the first one. Stokes theorem
and the identities in (4.20) imply that we have the following identities for each 6

/ tr(aeﬂ/ VAN (99895,) - / tr(aeﬂ A 89805) -
{(0,0)}x% {(0,0)}x%
= / dtr(agég A 6989]%)
L1]x3

= 2/ tr(99 By N 99 By A 89 Bg).
1,1]x5
Thus for any (0,0) € Uy, we have:
0seAu(0,0) < Cuaaée”ia([q,uxz)'
Using the definition of By we can conclude that
190 Boll (1,1 < C(1068'(0,0) (s + I, Golls - 1,17x))

< (1003 0.0l25) + 15, Gl (109 )

< (0.0 + 18l 1)) (421)

In addition to Sobolev embedding inequality, we use the fact that 9y/3'(0, ) belongs to
the kernel of dg(g,9) and dz /(0,0) tO obtain the second inequality. Our choice of (y allows
us to conclude that its L% norm is bounded by C| (| r2(s)» which in turn is bounded
by Cldg 0,6)C6l2(x)- The last claim holds because the kernel of dg:(4) acting on
the space of O-forms is trivial, and 5'(0,6) is a representative for an element of the
compact space M(3, F'). Since (4.19) implies that ||dg:(0,6)Csl|r2(x) is controlled by
1053(0,0) | 25y + 968 (0,0) | 2 (), we conclude that the LQ% norm of ¢y is bounded by

Ceaw(0, 0)2. Therefore, this observation and (4.21) give us the inequality (4.14). O

The following proposition is a weaker version of Theorem 4.2.
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PROPOSITION 4.22. There exist constants k' and I such that the following holds.
Let (A,u) be a solution of the mized equation associated to the quintuple B(ro). Let
z€ D_ and r be given such that D,(z) C B,,(0), and

eAn(w) <Hr? Yw € D, (z). (4.23)

Then we have

eqdvol
H/IDT(Z) A? )

ean(z) < - (4.24)

Before delving into the proof of Proposition 4.22, we show that the assumption
of this proposition allows us to obtain appropriate L? bounds on Fj4 and du:

LEMMA 4.25. There is a constant hy such that the following holds. Suppose (A,u) is

a solution of the mized equation associated to the quintuple B(ry), and z € D_ and
r are given such that D,(z) C By, (0) and (4.23) holds for i’ = hy. Then

fDr,v(Z) €A7udV01
2 )

IV AF A2y xy + 195000 s e ) < C (4.26)
2

r

where B is the connection introduced in the proof of Proposition 4.4 and D7 (z)
2
denotes the reflection of Dz (z) with respect to Up.

Proof. Fix a smooth function on p: C — R which is supported in B;(0) and its value
on B%(O) is equal to 1. We also define p,(w) := p(]|*=|). We have

T

IV a(or FA) 72D, (2) x5y = / (dpr ® Fa,dp, @ Fa)) 4+ (Va(Fa),Va(p}Fa))

D, (z)xX

<O IE o, ey + [ (VAVAPA E

+ [ o [V )a.Fa Fa). (4.27)

Here D?(z) denotes D,(z) N Uy. Using the inequality in (4.10), the point-wise as-
sumption (4.23), Cauchy—Schwarz and Sobolev embedding theorem we have:

| VAVaEagE)<C [ B
D, (z)xX D, (z)xX

1 1
< C(”FA”%2(DT(Z)XE) + (/D ()% |FA|2)2(/D ()% |erA|4)2)

< C(IFalFa(o, sy + Bl Valor Ea)lEa(o, s

Combining the above inequality and (4.27), we obtain:

HVA(IOTFA)H%Q(DT(.Z)XE) <C((r?+ 1)HFAH%2(DT(Z)@) + hOHVA(PrFA)H%%DT(Z)@)

+/D§(Z) pf/z«VA)asFA?FA))-
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If the constant hy is small enough, then we can absorb the term containing
HV(pTFA)H%%Dr(Z)XE) on the right hand side and obtain

IV apr E 0, sy < Cr 2 Ealscp, e + [ F [(Va)oua, Fa). (4:28)

D2(2)
We follow a similar strategy to bound ||V p(du)|2p+ .))-
IVE(prdu) |2 me .y, = (dp, @ du,dp, @ du)) + (V gdu, V g(p>du))
L (Dr (z)) D;._(Z)XE

<Cr?ldul}a iy + /D +(Z)<v}‘gVBclu,p$0lu> - /D o )p3<(VB)asdu,dU>

r (2

<C (TQHdUHiQ(D;L(z)) +/D+(Z) P2 (|dul* + |du|4)> - /Da(z) P3((V ) osdu, du)

T

SOl = [, PR )osds ). (4:29)

Here the second inequality is obtained using (4.12) and we use the point-wise as-
sumption on du in (4.23) to produce the last inequality.
Proposition 4.13 asserts that for any point (0,6) € D2(z), we have:

( / <<vA>asFA,FA>) — (V5)osdu, du) < Cen u(0,6)3
< Chértean(0,0).
Therefore, we have:
[ (LA 00F Fa)) = (T idoutudu) <Ot [ gen(0.0)
D3(2) b D2(2)
(4.30)

Suppose f: D,(z) — R is a compactly supported function. Then Sobolev embed-
ding theorem implies that:

1
1 flz2(p2z)y < Corz|df [ L2, (2))

where the constant Cy is independent of r. By applying this inequality to the func-
tions f4 (s, 0) :=|prdul(—s,0) and f_(s,0) := [y 0«5 \prFa|?)%, we conclude that

/D?(z> prdul® < CrIV 5 (prdu) [
and

Ly 1Al < OPIV A ), 5
z

r
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In order to derive the second inequality, we use the inequality
1 1
A EPREI Ve E0 P (4.31)
{(s,0)} x% {(s,0)} x%

By adding up these two inequalities and using the inequality in (4.30), we conclude
that

/D,‘?(z) o </g<(vA)85FA7 FA>) — p2{(VB)asdu, du)

< Chg (IV(prdu)72(p, ) + 1V alpr Fa)lZ2(p, xx)-

(4.32)
Summing up inequalities in (4.28), (4.29) and (4.32) gives rise to
IV B (prdu) “iQ(D;L(z)) + ”vA(pTFA)H%Q(DT(z)xE)
<C (12 Fal o, s + 2 Idula ot o,
1
4 (178000 oy + 1740 ), ) )
Therefore, if fy is small enough, we can infer the claimed inequality in (4.26). O

Proof of Proposition 4.22. We present the proof in 4 steps:

Step 1: Inverting the Laplacian. Let G(w) be the Green function — 3= In(jw — z[) +
o In(%) of the Laplacian A,. Note that G(w) vanishes on 0Dz (z):=0B:z(z) NH_,
the boundary of Dz (z). As before, Dz (z) denotes Bz (z) N Up. We multiply (4.6) in
Proposition 4.4 by G(w) and integrate over Dz (z). Green’s identity implies that:

1
eau(z) <C G(w)(ean + 6?4 wtei fa)+ eAu0,G — GOyeq,
D£ (2) ’ ’ BDg (Z)L’D% (2)

(4.33)

1
< ClGl 2oy e ((1+ leandzmleanl ooy + el i Ifal ooy o)
(4.34)

+ C<7‘1H€A,u|\L1(aD£(z)) leaudsGlirng )
4

Gz wg e leanliemg plleanli -

Recall that f in (4.33) is given in (4.7). Here |l [z is the L* norm of e4, over
D,.(z), which is less than A'r~2? by assumption. In order to bound the last term in
(4.33), we use Proposition 4.13 and Cauchy—Schwarz inequality. A straightforward
computation shows

|Gz (D 2 < O, ”G“LZ(D‘% (z)) < Cre.
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Thus we deduce from (4.34) that
ean(z) <C (7"_1 leaullzzpg ) + rt leaulzr@ps 772 leaulrz oy )

Flfallze oz ) + leawdsGllrr e (z))> : (4.35)
4
Step 2: Establishing the following bounds on various Sobolev norms of e y:
T

HGA,uHm(D%(Z)) <C

fDr(z) CAu

)

I (o) €A (4.36)

”eA,u”LZ(D‘% ) <C ,

, ||€A,u||L1(aD£(z)) <C

Sobolev embedding and a straightforward change of variable imply that there is
a constant Cj, independent of 7, such that for any function f : Dg(z) —R

(/DM 0

Applying (4.37) to the functions f(s,6) := [du|(—s,0) and g(s,0) := (f{(5 9} x» |Fal?)2
implies that

=

SC’O(T/ ]df\2+r‘1/ ). (4.37)
D (2) Dr(2)

([ dauhi<c [ jdidulf et [
DY (2) DY (2) D (

r r
2

|dul?), (4.38)
2)

1

2
(/ (/ rFAW) <ot [ VaRPer [ (RP). (439)
Dg(z) {(s,0)}x% Dr(2)xX Dr(2)xX

5 5
In order to obtain (4.39), we also used the inequality in (4.31). Using Lemma 4.25 and

Kato’s inequality, we derive the first inequality in (4.36). The remaining inequalities
in (4.36) can be verified in a similar way using the following variations of (4.37):

Step 3: [ fallL2py o)) < CT*Q/ €Au-
r(z)
For r <rg, let a function f:Dz(z) x ¥ — R be given. Then there is a constant

Cy, independent of r, such that

([ osvizalf et ), (4.40)
D£(Z)><E D%(Z)XE D%(Z)XE

(SIS
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This inequality can be verified by considering pz - f and applying the Sobolev embed-
ding inequality for functions defined on Dy, x ¥. By definition, | falz2(p.. (»)) is equal
4

to HFA”%‘*(D%(Z)XE)‘ Thus we can employ (4.40) for f = |F4| and Kato’s inequality to

obtain the following inequality:

I fall2(py 2)) < C(/ IV aFal? +7“72/ !FA!2>
4 Dr(2)xZ D%(Z)XE

r
2

< CT?Q / €Au-
D,.(2)

The second inequality follows from Lemma 4.25.
Step 4: Completing the proof. We have appropriate bounds on all terms in (4.35)
to obtain the desired result except the term [e4.0,Gll 1 (pa (.))- In the case that

4
z € Uy, this term vanishes. Therefore, we obtain the inequality in (4.24) for such
choices of z. This preliminary case, allows us to complete the proof because for a
general z we have:

leawdGlripa 2y < Cleaulr=(pa(z))- 0
4

Theorem 4.2 is a consequence of Proposition 4.22 and the following elementary
lemma.

LEMMA 4.41. Suppose X is a compact metric space and f: X — RZ° is a continuous
function which satisfies the following properties for positive constants I/ and ’. For
any z € X and positive real number r satisfying

f(w) < Hr2 w € D,(z2),
we have

dvol
“ fmz)?f .

f(z)

Then there are constants h and k such that if for any z € X and a positive v we
have the inequality

; (4.42)

/ Fdvol < h,
D, (z)

then:

dvol
< plom vl

() !

Proof. We claim that A=/ /(17x') and k = 4k’ satisfy the required properties. To
that end, we assume that z and r are given such that

h/
< : 4.43
V/Dr(z) /< 17x/ ( )
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Define ¢ : D,.(z) — R=Y" as

$(w) = (r — |w — z[)* f(w).

This continuous function extends to the boundary of D, (z) by zero. Therefore, ¢
achieves its maximum in an interior point wy. First assume that ¢(wg) < A'/4. In
this case, for any w € Dz (2), we have:

(r—|w—z|)?
(5)?
(r — |wo — 2[)?

(5)

f(w) < f(w)
< f(wo)
< HWr2.

Therefore, the assumption implies that

lng(Z)f
f(Z) <K (1)2
2
fDr(Z)f
P
=4k 12 .
In the case ¢(wg) > h'/4, define s := #;UO). Then we have
r—|wy — 2|
s < 5 .

This implies that Ds(wy) is a subset of D, (z). For any y € Ds(wy), we can also write

(r — Jwo — 2|)°
(r=ly—=2)?

(r — |wo — 2])?

f(y) < flwo)

< f(w
= ) G wg— 21+ 9))2
<4f(wo)
< Hs2
Consequently, (4.42) implies
Flwo) < K/M

52
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16K f (wy)
i )

16
< — .
< 17 f(wo)
The last inequality, which leads to a contradiction, follows from (4.43). O
4.2 Removability of singularities. The main goal of this subsection is to prove a

removability of singularity result for the mixed solution. As before, we fix a positive
real constant ro. Let (A,u) be a solution of the mixed equation associated to the
quintuple P(rg) in (4.1) where the ASD connection A is defined on (D_ \ {0}) x 2
and the pseudo-holomorphic map w is defined on D \ {0}. In particular, we assume
that A and u satisfy the matching condition on Uy \ {0}. Then the 2-dimensional
energy density e4, is defined on D_ \ {0}. For any r <r(, define

¢ (A u) ::/ €An
D_(M\{o}

Theorem 4.44. For (A,u) as above, let €, (A,u) be finite. Then we have the follow-
mngs.

(i) There exists g € G((D-\ {0}) x X, F) such that g*A extends to a smooth
connection A on D_ x X.
(ii) uw can be extended to a smooth map u: Dy — M(3, F).

In particular, (ﬁ, u) is a solution of the mized equation associated to B(ro).

Recall that for an SO(3)-bundle V over a 4-manifold X, G(X, V') denotes the space
of smooth sections of the fiber bundle Fr(V') x,q SU(2). Without loss of generality,
we may decrease the value of ry as we wish. In particular, we may assume that

&, (A, u) < ho (4.45)

where Ay is less than the constant A of Theorem 4.2, and 7y is smaller than the
injectivity radius of 3.

We use polar coordinates on B, (0) = D_ U D, throughout this subsection. Polar
coordinate of a typical point is denoted by (r,¢) where r € (0,79] and ¢ € R, and it
is related to our previous notation by the formula (s,0) = (rcos¢,rsin¢). We also
write S} for the set of points in B,,(0) whose radial coordinate is equal to r. The
intersection of S! with D, and D_ are denoted by Sr{ 4 and S}’,.

4.2.1 Strategy of the proof. The key estimate for us is the following proposition.

PROPOSITION 4.46. For (A,u) as in the statement of Theorem 4.44, there exists a
positive 3 such that

¢, (A,u) < Cr?.
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The proof of this estimate, which follows a plan similar to [Weh052, Sects. 3 and
4], will be given in the next two subsections. In the remaining part of this subsection,
we explain how Theorem 4.44 can be derived from Proposition 4.46.

COROLLARY 4.47. For any r <ry/2, we have:

(i) sup 1 Faloyxsllpe) < Crfh
2€S. _

(ii) [[Fal{(rcosdrsimgxsllLe(sy < Clcos ¢)~2rf=2;

(ili) |du(z)] < CrP~t for z€ S} .

Proof of Proposition 4.46 = Corollary 4.47. Since €, (A,u) < h, Theorem 4.2 and
Proposition 4.46 imply that for z € Srly, with 2r <, we have the following sequences
of inequalities

o (A u)

o SO (4.48)
;

[Falzyxsl o) < eau(z) <k
This verifies (i). To prove (ii), let p € ¥ and z = (r cos ¢, sin ¢) with ¢ € (7/2,37/2).
The ball of radius s = 7| cos ¢| centered at (z,p) is contained in D_(ry) x 3. Moreover,
the L? norm of the curvature of A on this ball is estimated by Cr®. Therefore, (ii)
is a consequence of Uhlenbeck’s Theorem which is recalled as Lemma 4.50 below.
Finally, (iii) is also a consequence of Theorem 4.2 and Proposition 4.46:

Eor(A,u)2

< Orf-1 4.4
o <Cr (4.49)

|du(2)| < ean(?)? < k2

where z = (s,0) € S}, and 2’/ = (—s,0). O

LEMMA 4.50. (Uhlenbeck) For a large enough positive integer k, suppose a C*-
compact family of metrics on the 4-dimensional ball B,,(0) is given. There exists
h >0 such that the following holds. Suppose A is an ASD connection on B,.(0) C
Bro (0) with HFAHLz(B,.(O)) < h. Then

|F4(0)| < Cr2||Fall 125, 0)-

Proof. By scaling we may assume r = 1, where it is the standard Uhlenbeck com-
pactness theorem. O

Proof of Corollary 4.47 = Theorem 4.44. Let p be a real number satisfying 2 < p <
ﬁ. Properties (i) and (ii) of Corollary 4.47 are the assumptions of [Weh052, Theo-

rem 5.3 (ii)]. Therefore, there is g € G((D_\ {0}) x &, F) such that A := ¢* A extends
as an LY connection on D_ x . By continuity, A is an ASD-connection. Using (iii)
of Corollary 4.47, we may conclude that u extends as a Holder continuous function
u: Dy — M(X, F) and du belongs to LP. Since A and @ are continuous, they satisfy
the matching condition. Now we can appeal to our regularity results of Sect. 3 to
complete the proof of Theorem 4.44 O
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4.2.2  Energy estimate via the Chern—Simons functional. Let Y be a closed ori-
ented 3-manifold and 3y be a flat connection on an SO(3)-bundle E over Y.! Let
B = y+b be a connection on E where b is a section of A'(Y)® E. The Chern—Simons
functional of B is defined as

CS (B)i= [

1
tr (b/\FB——b/\b/\b). (4.51)
Y 3

Equivalently, if A is an arbitrary connection on [0, 1] x Y whose restrictions to {0} x Y’
and {1} x Y are equal to fy and B, then

CSs, (B) = / tr(Fa A F). (4.52)
[0,1]xY
A consequence of (4.52), which will be helpful for us, is that C'Sg,(B) = CSg, (B),
if By and {; are connected to each other by a path of flat connections. It is also a
well-known fact that
1 *

(OS5 (g7A) — O3 (4)) € 2, (153)
for any g € G(Y, E).

We will be interested in the case that Y =8' x ¥, E= 5! x F and f is the
pull-back of a flat connection on F', which is also denoted by 5y. Let B =y + b
be a connection on E such that b = o + zd¢ where z and « are sections of F and
AY(X) ® E over Y. Then the Chern—Simons function of B is given as

OS5, (B) = /S 1 /E (950 A+ 2F(By + a)2) A dob. (4.54)

We shall also need an analogue of (4.52) for a connection A = By + a + wdr + zdo
on the 4-manifold X = [0,1] x [0,1] x ¥ where r and ¢ denote the coordinates on the
first and the second intervals. In this case Stokes theorem implies that

/ tr(Fa A Fy) = / tr(Bpa A v+ 2F (Bo + )2) A do
X (9[0,1]) x[0,1]x X

— / tr(Ora A a+2F(By + a)w) Adr. (4.55)
[0,1]%(8]0,1]) x X
Let (A,u) be as in Theorem 4.44. Suppose f; denotes the flat connection on F
given by Al¢(;./2)}xx. For z € Sr1,+ with 2r < rg, we can use Theorem 4.2 and (4.45)
as in (4.49) to conclude

QEQT(A, u)%
2r

[s=INT1

1 1 1
|[du(z)| < k2 < 55571 rt. (4.56)

! Here we diverge from our convention that connections on 3-manifolds are denoted by the letter
B because soon we will focus on the case that Y =S x ¥ and Sy is the pullback of a connection
on .
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In particular, the diameter of u(S} ) is smaller than Ch(l)/ ?. Thus by taking rg and
ho small enough, we may assume that there is V', (z) € A'(X) ® F for each z € S |
such that the following conditions hold.

(u1) [Bp + b5 (2)] = ulz).
(w.3) b (r,m/2)=0.

Let B, ; be the connection on S}} 4 X F defined as 3§ + b, (with vanishing d¢ com-
ponent).
By parallel transport along S}y,, we may define a connection B, _ on S,{, x F

which satisfies the following properties.

(A.1) B, _ is gauge equivalent to the restriction of A to 5’7}7,.
(A.2) For each z € S} _, there is 0" (z) € A'(X) ® F such that B,_ = 3§+ b" (2).

That is to say, B, _ has a vanishing d¢ component.
(A.3) b (r,m/2)=0.

Similar to (4.48), we have:

¢ . A 1/2
487 (2) ) < reale)s < b LD (4.57)
LEMMA 4.58. For any r, we have:
. T ., 3T B
107 =l + I S ey < Cr [ eRura) (459)

In particular, the left hand side of the above inequality is smaller than C€y,.(A, u)1/2.
Proof. Using (u.2), we conclude
7 T % 7
167 =gy = || [ 06t . 6)d 25

2

| ldul(r0)dg| <

jus
2

<r

Similarly, (4.57) implies that:

3r

r 3 2 %
0, S sy < Cr [ 3,0,

jus

2
The second part of the lemma is a consequence of Theorem 4.2. Il

The matching condition implies that 35 + b, (1, —7) is gauge equivalent to 8j +
b (r,2). Namely, there exists g, € G(X, F) such that
3T

B + 0 (r,—5) = g1 (B + V. (r, ).
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Sh_

X % Spyx%

0,1] x 2

Figure 1: A schematic picture of the 3-manifold Y; and its decomposition in (4.61).

The proof of the following lemma on the extension of the gauge transformation g,
can be found in [Weh052, Lemma 3.2 (ii)], which is proved based on the results of
[HLO2].

LEMMA 4.60. There exists g, € G([0,1] x 3,[0,1] x F') such that:

(i) Grlfoyxx is identity;
(ii) g?"{l}xz 128 gr
(iii) let by be the 1-form

~ \k (T r 37 T r 3
(gT) (B0+b—(r77)) - (ﬂO—i_b—(Ta?))
on [0,1] x . Then [[by]| L3 (jo,1xx) < C[[b%(r,0) — 07 (7,0)[| 2(5).-

Since the connection B, := g (8 + b"(r,0)) on [0,1] x ¥ restricts to [j +
b" (r,3m/2) and By + 0% (r,—m/2) on {0} x ¥ and {1} x X, we can glue B, _, B,y and
B, 1 to define a connection B, on the closed 3-manifold

Y, :=5,_xXU[0,1]xTUS} x . (4.61)

T

See Fig. 1. Although the connection B, is not smooth, it is clear from (4.54) that
CSgr(B,) is well-defined.

LEMMA 4.62. For any r, there is a constant K such that:
d
|CSpr (B)| < KT‘%€7«(A,U).
Proof. We firstly observe that

1
tr (0. A F, — = (b 3)
/k97{7+><2 ( * B 3( +)

/ br (0, A 9sb%) A d¢>’
Sk x%

5//5 EXA (/ \a¢bg|dzp>d¢dvolz
vJoz é
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< / ( / : |a¢bg}d¢>2dvolz
z\J/-z

<0 [ autr o)Pao < O [ 7 enulr o
’ (4.63)

2

In a similar way, we have

1
/ tr (br AFy - —(br)?’)
S x% ' 3

L)

3

<O [T IFA( ) 3 ot

2

3m

SC’rz/: ean(r,¢)do. (4.64)

2

Finally, Lemma 4.60 and flatness of B, give rise to the following estimates:

[, aGE?)

XX

1
| A, 50))
[0,1]x% 3

1
m ,, O 3 3 =
5)—b_(r,7)\|L2(2)§C’7“ ( .

2

e (1, 0)do)*.
(4.65)

< [|b%(r, =

For th? last inequality we use Lemma 4.58. Since Theorem 4.2 imPIies that
r f%%w €3 ,(r,¢)d¢ is bounded by C&,.(A,u)"/?, we may assume that r [ €3 ,(r,¢)d¢
is smaller than 1 by picking Ay to be small enough. In particular, as a consequence
of (4.65) and the Cauchy—Schwarz inequality we have

1
‘/ tr (b(r) A FBr,o - g(b(r))3>
[0,1]x%

The desired result follows by adding (4.63), (4.64) and (4.66). O

3m

SCTQ/: eau(r,¢)do. (4.66)

2

LEMMA 4.67. CSpr(B,) = €.(A,u).

Proof. For 0 < § < r, we define a 4-dimensional manifold
Xsp=[6,7]x S} xXU[8,r] x [0,1] x SU[4,r] x S}, x X, (4.68)

in the same way as in (4.61). (See Fig. 2.) In particular, this 4-manifold is diffeomor-
phic to [§,7] x S x ¥ and can be written as the union of 3-manifolds Y, for p € [4,r].
The boundary components of X, are identified with Y;. and Ys. The pull-back of F’
on ¥ induces a bundle on Xj,, which we denote by Vj,.
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Y,

[6,7] x S} _ x % [6,r] x S}, x %

[0,7] x [0,1] x X

Figure 2: A schematic picture of the 4-manifold X;,, and its decomposition in (4.68).

We consider a connection As, on Xj, which restricts to B, on the boundary
component Y, and is defined in a similar way. The subspace [d,7] x S}y_ x X of X5,
can be identified canonically with ¥ x (D_(r) \ D_(d)) and the restriction As,
of As, to this region is gauge equivalent to the connection A. To define A;, _, we
firstly fix a gauge along the ray {(p,7/2)}s<,<r by parallel transport and then extend
it in the angular directions by parallel transport along the arcs with fixed radial
coordinate. In particular, the connection As, _ has vanishing d¢ component. The
region [§,r] x S} | x ¥ in X;, is identified with ¥ x (D4 (r) \ D1(4)), and analogous
to B, we require that the restriction As, of As, to this region has vanishing
d¢ and dr components, the restriction A;,(z) of As, 4 to ¥ x {z} represents u(z),
d;ém(z)aquM(z) =0 and the restriction of A;, 4 to [6,7] x {m/2} x X agree with the
restriction of As, .

Next, we extend the above connection to the remaining region [d,7] x [0,1] x ¥ of
(4.68). The restrictions of As, + and A, — to [0,r] x {m/2} x ¥ and [,7] x {37/2} x &
are gauge equivalent to each other. We pick a gauge transformation g over [d,r] X
[0,1] x ¥ such that

(i) g(z)=1for z e [d,r] x {1} x X;
(i1) 50, 0,2)" Asp s (p, 5o2) = Ag_(p, 35, 2) for (p,0,2) € [6,7] x {0} x X
(iii) the restriction of g to {r} x [0,1] x X is equal to g, used in the definition of
the connection B,.

Restrict As,— to [0,7] x {0} x ¥ and pull back this connection to [d,7] x [0,1] x ¥ via
the projection map. Applying the gauge transformation g gives rise to a connection
Asro which can be glued to As, + and Aj, — to form the desired connection A;, on
Xs,r. The restriction of As, to Y, agree with B, and its restriction to Y5, denoted
by Bj, is gauge equivalent to Bs.

Although the connection As, is not smooth, its restriction to each of the three
regions in (4.68) is smooth. We apply (4.55) to each of these regions and add the
resulting identities. Since the connection As, _ satisfies the ASD equation, As, ¢ is
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flat and Aj, + represents the holomorphic map wu, we have

/ |FA|2+/ duf> = S5y (B,) — CS s (BY).
(D—(M\D-(0))xx (D4 (r\D+(6))xE 0

Lemma 4.62 shows that CSﬂg(Bp) is less than a given positive real number if p is
small enough. The above identity shows that

CSgs (By) = CSap(By) + €, (A,u) — €5(A, u). (4.69)

Therefore, if r is small enough, we can guarantee that C'Sgs (Bj) is also less than any
given real number. Since Bj is gauge equivalent to By, (4.53) implies that C'Ss (Bj) =
C'S3s(Bs). Now the result follows by taking the limit of (4.69) as § goes to zero. [

Proof of Proposition 4.46. Let = % where K is given by Lemma 4.62. Lemmas
4.62 and 4.67 imply

i(7“_%(’3 (Au) = —ir_%_l@f (A,u) —l—?“_wi(’f (A,u) >0

dr T Y K T Y dr T 9 - .

Consequently, we have
€ (A,u) <y e, (A u)

for r < ry, which completes the proof of Proposition 4.46. O

4.3 Gromov—Uhlenbeck compactness. Let (A;,u;) be a sequence of solutions of
the mixed equation associated to the mixed pair in (1.3), which we copy here again:

P:=(X,V,S, M(E,F),L). (4.70)

The surface S has a distinguished boundary component Uy and as usual a Lagrangian
in M(X, F) is associated to each of the remaining boundary components. We also
require that there is a uniform bound K on the energy of the mixed pairs (A;, u;)
given as

E(As ;) = / |, [2dvolx + / |duf2dvols. (4.71)
X s
LEMMA 4.72. There are finite sets of points o C int(X), o4 C S\ Uy, 09 C Uy and

a subsequence of {(Ai,u;)} such that the following holds. For any point z € Uy \ 0p
there is a positive real number r, such that

/ | F4, |2dvol + / |du|*dvol < i, (4.73)
D, (2)x% D (2)
for large enough values of i. Similarly for any z € int(X) \ o_, there is r, such that

/ |F4,|*dvol < A, (4.74)
B"‘z (Z)
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if i is large enough, and for any point z € S\ (04 U Uy) there is a positive real number
r, such that

/ \duf2dvol < A, (4.75)
Br, (2)

if i is large enough.

Proof. The boundary of X can be identified with Uy x 3 and a tubular neighborhood
of it is given as U_ x ¥ where U_ = (—1,0] x Uy. Similarly a boundary component
of S is Uy and we may take a regular neighborhood U, of this boundary component
where Uy = [0,1) x Uy. For each i, we may define a positive measure on U_ where a
continuous function f:U_ — R with compact support integrates to

{(s,0)} x%

/lL f(s,9)<|du|2(—s,0) + ]FAi|2)dvol

with respect to this measure. Standard compactness theorems for measures imply
that there is a subsequence of these measures convergent to a positive measure py
on X in the sense that for any continuous function f with compact support, we have

2 2
| f<s,e><|du| (~5,0) + /{ o )dvom |, tua.

In particular, the measure of U_ with respect to uy is at most K, the uniform bound
on (4.71). Let oy be the set of points z € Uy such that the pg-measure of the ball
D, (z) for any r is at least h. Since the measure of U_ is at most K, the set op is
finite and has at most K /h elements. From the definition of py it is clear that for
any point z € Uy \ 09, the inequality in (4.73) holds for an appropriate choice of r,
and large enough values of i. The sets 0_ and o, can be obtained similarly by firstly
defining positive measures u_ and py on X and .S, and then considering the points

with concentrated measure density. O

For z € Uy \ 0g, let 7, be given as in the lemma, which we denote by r for the
ease of notation. Temporarily, we denote the restrictions of A; and w; to D,(z) x X
and D;(z) with the same notation. Theorem 4.2 implies that

duinSK—h for w e DI ().
2 T
,

Thus, after passing to a subsequence, u; is C° convergent to ug : D, (2) = M(Z, F).
In fact, using Lemma 4.25 and Sobolev embedding, we may assume that for a given
p, the subsequence is chosen such that it is convergent to ug in the L] norm.

We may use Theorem 4.2 and Lemma 4.25 to obtain the bounds

h h
2 2 _
L2(D; (2)x%) < K:T_Q’ L2({w}xX) <kK— for w € Dr (Z)

”VAq FAi r2

“FAz
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In particular, ||Fa, [4(D5 (2)x%) 18 uniformly bounded using Kato’s inequality and
Sobolev embedding theorem. Therefore, we may apply the Uhlenbeck compactness
theorem for the manifold D (2) x ¥ to conclude that there are L3 gauge transfor-

mations g; such that gfA;, after passing to a subsequence, is weakly convergent to
Ag in L{ [Uhl821, Weh042]. In particular, the L} norms of the connections g A; are
uniformly bounded. For large enough values of ¢, we may put the connections g; A4; in
the chosen subsequence in the Coulomb gauge with respect to a smooth connection

i, which is close enough to Ay in the L{ norm [Weh042, Theorem F]. For the ease
of notation, we denote g;A; after applying the second gauge transformation by A;.
The Coulomb gauge condition on A; asserts that

dyy (A —Aj) =0, x(A; — AQ)|uyxs = 0. (4.76)
We claim that da; A; is uniformly bounded in Lj. First note that
das Ai = day Ag — (Ai — Ap) N (A — Ay) + Fa, — Fuy. (4.77)

Since |V, Fa, |2, |Fa,|z+ and ||A;]|ps are all uniformly bonded, the term Fjy, in
(4.77) is uniformly bounded in L2, too. Similarly, the term (A; — Af) A (4; — Ap)
is uniformly bounded in L? because there is a uniform bound on | 4;] 4. Thus our
claim about d4; A; follows. Sobolev embedding together with uniform boundedness
of {d4; A;}; implies that for any p <4, the sequence {d4; A;}; is LP convergent after
passing to a subsequence. This together with (4.76) implies that A; are L} convergent
to Ag over D, (z) x X for ' <r. Now we use Theorem 2 to show that (A4;,u;) is in
fact C*° convergent to (Ao, up).

By applying a similar argument to each point z in the complement of o_ UUy X X
in X, we may obtain gauge transformations for the restriction of A; to an open
neighborhood D,(z) C X such that after applying these gauge transformations and
passing to a subsequence the resulting connections are C* convergent to an ASD
connection. On the symplectic side, for any point z in the complement of o U Uy
in S, there is a disc neighborhood D, (z) C S such that the restriction of u; to this
neighborhood is C* convergent to a holomorphic map from D, (z) to M(X, F'). We
may patch together these holomorphic maps together to define a holomorphic map
uy: S\ 64 — M(E, F) where & =4 U~y. Then the maps u; are C*° convergent
on compact subspaces of S\ &4 to ug.

We may also define a connection Ay on X \ &_ where &_ =~_ U~y x X. The
patching argument of [DK90, Sect. 4.4.2] can be used to find a subsequence of {4;}
and a gauge transformations g¢; defined on X \ &_ such that gfA;, after passing
to the subsequence, is C'*° convergent to an ASD connection Ay on any compact
subspace of X \ &_. The pair (Ap,up) defines a solution of the mixed equation for
the quintuple

m/ = (X \ 6*7V|X\6,’S\6+7M(E’F)’£(E’F))'

Since (4.71) is bounded by K, we have &(Ag,up) < K. Moreover, if at least one of
G4 and G- is non-empty, then €(Ag,up) < K — h. Applying the results of Sect. 4.2,
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removability of singularity for ASD connections [Uhl822, DK90] and removability of
singularity for holomorphic maps [MS12] implies that (Ao, ug) can be extended to a
solution of the mixed equation for the quintuple

PBo:= (X, V', S, M(Z, F),L(Z, F)), (4.78)

where V” is an SO(3) bundle over X whose restriction to X \ &_, is isomorphic to V.
This completes the proof of Theorem 3 in the introduction.

5 Fredholm property

Our goal in this section is to address Theorem 5. In fact, it would be more convenient
if we work on a slightly more generalized version of the theorem. First we write
an explicit formula for the mixed operator D 4, for a smooth mixed pair (A,u)
associated to the cylinder quintuple ¢; in (1.10). For any ((,v), we have
” du

Diawy (¢ v) == (dh¢, —di¢, Vv — Jso(w)Ver — (Vst,g)E). (5.1)
The first component is the linearization of the ASD equation F"(A) =0 at the
connection A and the third term is the linearization of the Cauchy—Riemann equation

du du
dp " g =

Here we use the Levi-Civita connection on M defined using a Riemannian metric on
M (possibly the metric induced by a compatible almost complex structure) to define

0.

the covariant derivatives V, and Vy in the s and 6 directions. The middle term in
D(a,u)(¢,v) is given by the Coulomb gauge fixing condition.

It is helpful to rewrite D4, in a from which makes use of the product structure
of ¢;. By applying a gauge transformation, we may assume that the connection A on
Y x I is in temporal gauge and hence is determined by its restrictions By to Y x {0}
for 6 € I. The restriction of By to ¥ = 3dY, which is a flat connection, is denoted by
agy. Any element ¢ of Q'(X, E) can be written as ( = b+ odf. Thus we may identify
QY X, E) with maps from I to Q(Y, E) ® Q°(Y, E). Using this presentation of ¢, we
have

dp
d¢ =digb — =%
A(: B da?

d}(z% dO A (— *3dgb+ % —dpp) — *3(— *3de+% —dpy)| .
An element of Q7 (X, E) can be also identified with a map from I to Q'(Y,E) by
sending a self-dual 2-form %(d@ A b — *3b) to b. Similarly, any element of Q°(X, E)
can be identified with Map(I,Q°(Y, E)) in the obvious way.
To study the last component of D4,), fix a Hermitian isomorphism of
wTM(E, F) with the trivial bundle with fiber (R*",Jy,wp). Here Jy and wy are
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standard complex and symplectic structures on the Euclidean space R?" with 2n
being the dimension of M. Note that the almost complex structure on the fiber of
wWTM(E,F) over (s,0) is given by Js 9. This reparametrization of w*T'M allows us
to regard v as a map [0,1] x I — R?", and then the third component of (5.1) can be
written as

——Jo—S—S(V), (52)

where S is a map from [0,1] x I to the space of endomorphisms of R?". Moreover,
for any 6 € I, there is a family of Lagrangian subspaces Ly C R?" and subspaces Ly
of L?(X,A' ® F) ® R®" such that

*C|Z><I:07 (<’Z><97V(070))e£97 V(170)€L9-

Here Ly is a canonical linearized Lagrangian correspondence from QY (%, F) to R*®
compatible with ay, whose definition is given below.

DEFINITION 5.3. Suppose « is a flat connection on F. A canonical linearized La-
grangian correspondence £ from Q(3, F) to R?® compatible with « is determined
by a Lagrangian subspace V of H!(X;a) x R?® with respect to the symplectic form
—wg @ w. The space L is the subspace of L*(X,A! ® F) @ R?" given by elements of
the form

v+ (dag,0)

where ¢ € L¥(X, F). We write L,y for this Lagrangian correspondence if we want to
clarify the choices of o and V.

Given £ as in the above definition, the pairing of any two elements of £ with re-
spect to the symplectic form —€ @ wy vanishes and as a consequence of Lemma 2.5,
an element of L?(3, A! ® F') @ R*" belongs to £ if its pairing with all elements of £
vanish. The L? closures of the tangent spaces of a canonical Lagrangian correspon-
dence from AP(X, F) to R?" give rise to instances of L.

Motivated by the above discussion, we may slightly relax the definition of the
mixed operator. Suppose A is a smooth connection on £ x I over Y x I such that
the restriction ap of A to ¥ x {6} is flat for any 6 € I. Suppose S is a smooth map
from [0, 1] x I to the space of endomorphisms of R?". Following the same convention
as above, A is in temporal gauge and its restriction to Y x {6} is denoted by By.
Similarly, we write Sy for the restriction of S to [0,1] x {#}. For any 6 € I, suppose
Vp is a Lagrangian subspace of H!(X; ay) x R?® with respect to the symplectic form
—wp ®w and Ly is a Lagrangian subspace of R?" with respect to the symplectic form
wp. We assume that both of Vy and Ly depend smoothly on 0. Let Ly = L, v, -

We define a differential operator D4 gy associated to A, S, £={Ly, Lg}. Fix a
positive integer k. Similar to E?A,u) (I), let E%(I) be the space of pairs

Ce LAY xILA'® E), ve Li([0,1] x I,R*™), (5.4)
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satisfying the boundary conditions
*C‘EXIZO, (C’ZX{Q}vV(070)> €£97 V(170)€L‘9' (55)

Let D45) be the linear map with the domain E%(I) defined as

d
Da,s) = 0 D (By,S0)> (5.6)
where
N dv
Q(BQ,SQ)(()O7 b, V) = (ngbv *dBeb + dBo 2 JO% + SQ(V)) (57)

Here we use the presentation of ¢ in (5.4) as b+ ¢df with ¢ being a section of F and
b being a 1-form on Y with values in E. The target of the operator D4 g is given
as

Li (Y xI,A'®@ E)e L;_,([0,1] x I,R*™™). (5.8)
A straightforward integration by parts shows that the formal adjoint of D4 g), char-
acterized by the analogue of (1.15), is equal to

d
20 TP wasy:

Theorem 5.9. For any open interval J that its closure is a compact subset of I, the

following holds.

(i) For k> 1, suppose ((,v) € E&(I) and D45 (¢,v) is in LE_,. Then ((,v) €
EX(J). Moreover, there is a constant C, depending only on (A,S) and k, such
that

16z <€ (IPas €2z + 1) - (5.10)
(ii) Suppose (C,v) is as in (5.8) for k=1, and there is a constant r such that

((¢,v); Dea,s)(&m) 2 < &I Ml z2r

for any smooth and compactly supported (§,m) as in (5.4) satisfying (5.5).
Then (¢,v) is in E&(J). Moreover, there is a constant C, depending only on
(A,S), such that

1S )20y < C (1D a,s) (€ )l L2y + IS ) 2n)) - (5.11)

Verifying Theorem 5.9 in the case that S is replaced with S 4 S* is sufficient for
proving the theorem in the general case. In particular, we can assume that S takes
values in self-adjoint transformations of R?", and this is the assumption that we
make for the rest of the section. As we shall see in Sect. 5.2, this assumption allows
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us to show that D g, g,) is an unbounded self-adjoint operator. Then we use general
Fredholm property results about operators which have the form
d

——-D 12
20 o (5.12)

for a family of unbounded self-adjoint operators Dy. The additional layer of difficulty
here is that the domain of the operators D p, s,) depends on . To resolve this issue,
we will have a closer look at the domain of these operators in Sect. 5.1 and show
that the variation in the domains of these operators can be controlled in a nice
way. Then we conclude Theorem 5.9 from the results of [SWO08] about Fredholm
property of operators of the form (5.12) where the domains of Dy are not constant.
Our discussion above shows that Theorem 5 follows from Theorem 5.9.

5.1 The Hilbert space W. Let H be the Hilbert space given as the completion
of smooth triples

(,b,v) € QUY,E)® QY(Y, E) ® Q°([0,1], R*), (5.13)

equipped with the L? inner product

1
<((p0, bo, I/(]), (@1, by, V1)>L2 = /y tr ((po A1+ by A *bl) + A WQ(Vo(S), Jor (S))dS
(5.14)
In this subsection and the next one, we write * for the 3-dimensional Hodge operator,
and the Hodge operator on ¥ is denoted by *o as before. Suppose B is a connection
whose restriction a to ¥ is flat and S is a map from [0, 1] to the space of self-adjoint
linear transformations of R?". In the last subsection, we introduced
dv
@(375)(@, b, l/) = (d*Bb, xdpb+ dpy, JOE + S(l/)), (5.15)
which can be regarded as an unbounded operator on H.

We fix a domain for D p 5) using a Lagrangian L C R?" and a canonical linearized
Lagrangian correspondence £ from Q!(X, F) to R?" compatible with «. Thus, £ =
L, v for a Lagrangian subspace V of H!(3; «) @®R?". Let W denote the L? completion
of the space of all triples (¢,b,v) as in (5.13) such that

<bly =0, (bls, v(0)) € L, v(1) e L. (5.16)

Clearly, W is a dense subspace of H because any element of H can be obtained as the
L? limit of a sequence of triples (¢;, b;, ;) as in (5.13) such that such that b; vanishes
in a neighborhood of the boundary > of Y and v; vanishes in a neighborhood of the
boundary of [0,1]. We fix the L? inner product on W where the L? inner product
on sections of F and A' ® E are defined using the connection B and the Levi-
Civita connection associated to the metric on Y. Sobolev embedding implies that
the inclusion of W into H is compact.
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The Hodge decomposition in Lemma 2.5 allows us to give a useful description of
the Hilbert spaces H and W. Fix a tubular neighborhood (—¢, 0] x 3 of the boundary
of ¥. Using (B.1), we have the identification

Li((—&,0l x A5 @ E) = L2((—¢,0], L*(Z,AL @ F)) N L*((—¢,0], L2(Z, Ay, ® F)).

Lemma 2.5 asserts that we have the continuous splitting 17
Li(2,Ay @ F) 2 H(Zi0) © L (5, F) © L (2, F),
for any non-negative integer k. Therefore, we have
L3((—&,0] x 2,A% ® E) = L} ((—¢,0l, H (Z;a)) @ Zy @ Zy, (5.18)
where
Zy, = Li((—&,0], L} (%, F)) N L*((=¢,0], Li 1 (5, F)). (5.19)

Given the canonical Lagrangian correspondence L,y from Q'(3, F) to R**, an ele-
ment of

Li((=&,0] x 2,Ay @ E) @ LE([0,¢), R*") (5.20)
can be written as
v+ JV + (dol + *2da(’,0),

where v,v’ € L2((—¢,0],V), ¢, € Z and J is defined as in (2.9) using Jy. For each
s € (—&,0], v(s),v'(s) € V has a component in H!(Z;«a), and this component for
different values of s gives rise to an element of the first summand of (5.20). The
components of v(s), v/(s) in R?*" define an element of L?((—¢,0],R*"), which we
identify with an element of the second summand of (5.20) by precomposing with the
map s — —s from [0,¢) to (—¢,0]. Moreover, the exterior derivative d, in the above
expression is only taken in the X direction and hence d, maps an element of Zj to
an element of (5.17).

Suppose (p,b,v) € H. We focus on the restriction of (¢,b) to the subspace
(—&,0] x ¥ of Y and the restriction of v to the interval [0,¢) of [0,1], and by a
slight abuse of notation use the same notations to denote these restrictions. Then
the 1-form b has the form

q+ Tds, (5.21)

where s denotes the coordinate on (—¢,0], ¢ € L?((—¢,0] x ,AL ® E) and 7 €
L?((—¢,0] x X, E). Using the discussion of the previous paragraph, the pair ¢ and b
can be reparametrized by

’U,’U’EL2((—€,O],V), <7<I€ZO'
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Then (p,b,v) € W is equivalent to require that v, v and 7 are in L2, ¢, ¢’ are in Z;,
liopes = 0, v/(0) =0, C'(0) = 0.

We shall use this discussion to construct isomorphisms between the Hilbert spaces
W associated to two different choices of («, V, L) that are close to each other. First
we need the following lemma which allows us to identify the vector spaces H!(Z; )
associated to choices of a that are close to each other.

LEMMA 5.22. Fix a flat connection ag on F. There is a positive constant € such
that if o is another flat connection on F with o — aollp2 <€, then there is an
isomorphism ®, : H'(Z;a0) — H(Z;a) and a constant C' such that

[®a(v) —vlrz < Cla = ol 22 0] 22 (5.23)

More generally, there are positive constants e, and Cy such that if |a — aoHLi < €,
then

[®a(v) — vl <Clla—aolrz_ [lv]ca- (5.24)

Proof. For any positive integer k£ and any flat connection o on F', the twisted Laplace
operator

Aa - dzda : Li+l(27 F) - szl(z}?F)

is invertible, and we denote the inverse by G,. It is straightforward to see that there
are positive constants ¢, and Cy such that if oo — aol 2 <&, then we have

ldaCllzz2 < CkliClrz, 1Ga(Olzz,, <ClClzz - (5.25)
For any v € H'(3;ap), define
D, (V) =0 4 doGa(x2]a — ap, %20]) + *9dq Go (k2| — g, v]). (5.26)

Then we have
do®o(v) = dov + dy *2 doGo (2] — g, v])
= (doyv + [ — g, v]) — %2 AL G (2] — ag, v])

:0,

where in the last identity we use the assumption that d,,v = 0. Using a similar
argument we have

d; P, (v) = div + AyGo(*2]a — g, *20])
= (d,, v — *2]a — ag, *2v]) + (x2a — ap, *20])

=0.



706 A. DAEMI ET AL. GAFA

In particular, we have @, (v) € H!(X; ). Using (5.25), we can conclude the following
inequalities where in each line we might need to increase the value of C in compare
to the previous one:

|a(v) = vl1z < ldaGalreler = a0, %20])l 1z + [ %2 daGalraler — a0, v])l13
< Ch([Galsala — ao, w202, + [ Galrala— a0, 0]z )
< Gl vz [ — o, vovllzz_, + (aler = a0, vllz )
< Cilla — aollgg_, o]z

This, in particular, shows that after possibly decreasing the value of &5, ®, :
H(Z;00) — H(Z; @) is an isomorphism of vector spaces. O

Fix a triple (o, Vo, Lo), and let U be the space of all triples («,V, L) such that:

(1) [l — apl 22 is less than the constant € provided by Lemma 5.22;
(ii) V has a trivial intersection with ®,(Jo(Vp)) and JV has trivial intersection
with ®,(V);

In (ii), Jo and J are respectively the almost complex structures on H!(Z; ) & R*?
and H!(¥;a) & R* given as (—J,, Jy). For any («,V, L) €U, there is a Linear map
R: Ly — JoLo such that L is given by the subspace of R?" consisting of x + R(7)
with « € Ly. We define the distance between L and Lg, denoted by d(L, L), to
be the norm of the linear map R. Similarly, there is a linear map R : Vo — JoV)
(resp. R’ : JoVp — Vo) such that @ 1(V) (resp. ®,1(JV)) is given by the subspace of
H(Z; ) ® R? consisting of v+ 2R (v) (resp. v+ MR (v)) with v € V; (resp. v € JoVp).
We define the distance between V' and Vj, denoted by d(V, V}), to be the sum of the
norms of the linear maps R and R’.

PROPOSITION 5.27. Suppose ag, Vo and Lo are given as above, and Wy is the Hilbert

space defined using (o, Vo, Lo). There is a positive constant ¢; such that for any
(o, V,L) €U with

lov = col 2 + d(V, Vo) +d(L, Lo) < ¢1 (5.28)

the following holds. There is an invertible bounded linear map Q : H — H which maps
Wy to W, defined using (o, V,L). There is a constant C, independent of (o, V, L),
such that

1Q — 1|2 < Clle— aoll 2 + d(V. Vo) + d(L, Lo)).

For any k, Q induces an isomorphism on the space of L? triples in L}. There are
positive constants ¢y and Cy, such that for any (o, V,L) € U with

la — aollzz +d(V, Vo) + d(L, Lo) < ck (5.29)
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then the operator norm of Q —Id as an operator, acting on the subspace of H given
by L2 triples, satisfies

|1Q —1d| Lz < C(llo = ol 2 + d(V, Vo) + d(L, Lo)), (5.30)
and for any (p,b,v) in the subspace of L3 triples of L3, we have

Ci (@b, 1) 22 < 1Q(0,0, 1)1 22 < Cill(0,0, 1) 2. (5.31)

Proof. Let Ty, : R*® — R?" be the isomorphism that its restriction to Lg is the or-
thogonal projection to L and its restriction to JyLo (the orthogonal complement
of Lg) is orthogonal projection to JyL. Similarly, let T,y be the isomorphism
HU(Z; ) ® R*™ — HY(Z; ) @ R?™ that maps Vy to V' by the composition of @,
and the orthogonal projection to V and maps the orthogonal complement of Vj in
H(Z;0) @ R to JoV by the composition of @, and the orthogonal projection to
JoV. We extend Ty, y into an isomorphism

LPSAMeF)oR™ - LA(S;A e F) o R™
which maps an element z € L?(3; Al @ F) @ R?" presented as
2 =0+ (doyC + *2day ¢, 0) veH (Z;a0) R, (5.32)
into
To,1.(v) + (daC + #2da(’, 0). (5.33)

By a slight abuse of notation, we denote this map with the same notation 75, . The
key property of T, v is that it maps L, v, isomorphically onto £, . The operators
T,,v and T}, satisfy the following operator norms with respect to the standard norms
on L?(3;A' @ F) @ R*™ and R*™:

[Ty = 1d] < C(Jla = a0z + d(V; Vo) ), IT, —1d| < Cd(L,Ly).  (5.34)

In fact, T,y sends L (Z; Al ® F) & R?" into itself, and the operator norm of T, v,
as an operator acting on L?(X;A! @ F) @ R?" with respect to its standard norm
satisfies

[Ty —1d] 2 < C(lla = aollz + d(V, V0) ). (5.35)

If (o, V, L) satisfies (5.29) for a small enough ¢, then (5.34) implies that for any
s € [0,1], the operator sT,, v + (1 — s)I is invertible. Let

TS, (S @ F)eR™ — LA(S;A' @ F), TSy, (S0 @ F) e R*™ — R,

denote the composition of T, with projection maps to L?(3;A' @ F') and R?".
We use the maps T, v and 77, to define the desired @ : H — H. Fix a cutoff
function p: [0,1] — [0,1] that is equal to 1 on [0,e/3) and vanishes on (g/2,1]. Let
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(p,b,v) € H, and the restriction of b to (—,0] x ¥ C Y is given as in (5.21). Then
Q(p,b,v) = (p,c,m), where ¢ is equal to b on the complement of (—¢,0] x X, the
restriction of ¢ on (—¢,0] x X is given as

p(=8)T5hy (a(s),v(~s)) + (1 = p(—s))a(s) + ds,
n=v on the complement of [0,e) U (1 — ¢, 1], the restriction of 1 on [0,¢) is given as
p()Tev (a(s),v(=5)) + (1 = p(s))v(s),
and the restriction of 1 to (1 —¢,1] is given as
p(1 = )Ty ((s)) + (1 — p(1 — $))w(s).

The inequalities (5.34) and (5.35) can be used to verify (5.29) and (5.30). The in-
equalities in (5.31) is a consequence of (5.30). O

5.2 The operator ® (g g). In this subsection, we fix B, S, £ and L as in the
previous subsection, and form the Hilbert spaces H and W and the operator © p ).
Here we focus on the operator D p gy, and our goal is to show that it is self-adjoint
and satisfies some regularity properties.

LEMMA 5.36. The operator ®(ps) is symmetric. That is to say, for any (p,b,v),
(,e,m) €W, we have

<(<)07 b7 V)a Q(B,S)<17[)7 ¢, 77)>L2 = <®(B,S)(Q05 b) V)a (17[)7 ¢, T])>L2'
Proof. Using Stokes theorem we have
/ tr(dish A 1)) — / tr(b A +dpp) = — / tr (kb A 1)), (5.37)
Y Y b
and

/Ytr(d*Bc A %) — /Ytr(c Axdpp) = —/Ztr(*c/\ ©). (5.38)

Since *b|y; and xc|y, vanish, the above expressions are equal to zero. Another appli-
cation of Stokes theorem implies that

/Y tr(dgb A c) — /Y tr(b A de) = /E (b A c), (5.39)

and

[ oS mds = [ n(GLwds =enfw(1)m(1)) ~ o(v(0),0(0). (340)

The first term on the right hand side of the above expression vanishes because
v(1),n(1) € L and the second term is equal to the negative of the right hand side of
(5.39), because (b|s,v(0)), (c[s,n(0)) € L. These observations immediately yield the
claim that ©p gy is symmetric. O
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LEMMA 5.41. There is a constant C such that the following holds. Suppose (¢,b,v) €
H has the property that there exists a constant k with

<(90’ b7 V)’ Q(B,S) (wv ¢, 77)>L2 < ’%H(wv ¢, 77)”L2 (542)
for any (¢,c,n) € W. Then (¢,b,v) €W and

(e, 0,v) ]2 < C(k + [|(0,0,v) ] 2)- (5.43)

In other words, this lemma asserts that the domain of the adjoint of the symmetric
unbounded operator D p 5) is WW. Therefore, D p g is a self-adjoint operator. An-
other immediate consequence of the above two lemmas is that for any (¢, b,v) € W,
we have

I(p,0,0)[ 2 < C(1D(8,5)(9,0,¥) |2 + (0, b, 1) 22)- (5.44)

Proof. Suppose p1: Y — R and ps:[0,1] = R are smooth functions such that the
restriction of p; to dY =X is the constant function with value p2(0). If (5.42)
holds for (¢,b,v), then it is also satisfied for (p1¢, p1b, pav). To see this, note that if
(,c,m) €W, then (p19, p1c, pan) € W, and the difference

[((p1, p1b, p2v), D(B,5) (Y, ;) 12 — (0, 0,1),D(B,5) (P10, prC, p2n)) 12|

is bounded by C|(y,b,v)||r2| (1, ¢,n)| 2 for a suitable constant C, which depends
only on p; and py. Thus a partition of unity argument allows us to divide the propo-
sition into three cases:

(i) v=0 and (¢,b) is compactly supported in the interior of Y;
(ii) (¢,b) =0 and v is compactly supported in (0, 1]

(iii) (¢,b) is compactly supported in a collar neighborhood (—¢,0] x ¥ of the
boundary of Y and v is compactly supported in [0,£). We use s to denote the
standard coordinate for the first factor of the collar neighborhood (—¢,0] x 3.
The metric in this neighborhood has the form ds? + gs.

The first two cases are standard and we only need to address the third case.
Let b= g+ 7ds as in (5.21). We assume that the connection B on (—&,0] x ¥ is in
temporal gauge with respect to the coordinate s, and for each s € (—¢,0], we write
Bs (or simply /3) for the restriction of the connection B to {s} x X C (—¢,0] x 3. We
prove the claim of (5.44) in four steps. In the following, C' is the desired constant in
(5.44). Throughout the proof we might need to increase this constant from each line
to the next one.

Step 1: The term ¢ is in L3 and the constant C can be chosen such that

lelrs < C(x + (e, 0)] L2)- (5.45)

Suppose £ is a smooth section of E such that the normal derivative 9s€ restricted
to the boundary ¥ vanishes. This means that £ € T',(Y, E) in the notation of Ap-
pendix A. Then (0,dp&,0) belongs to W with respect to the connection B. Applying
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(5.42) implies that the expression

<(907bvy)7©(3,5)(07d3£aO)>L2 = <907d*BdB€>L2 + <ba *[FB)SDL?

is bounded by k|dg&| 2. In particular, we may pick C' such that

(0, dpdp&)r> < Ok +[b]L2)[€] 2. (5.46)

By working in charts on (—¢,0] x ¥ and trivializing F' on each chart, we can bound
(¢, A&) 2 by C(k+ [ (,b)[ 2)[[€] L2 Therefore, we may apply part (ii) of Lemma A.1
to obtain (5.45).

Step 2: The component T of b= q+7ds is in L? and the constant C' can be chosen
such that

I7lzz < Cls+ (@, )] 2)- (5.47)

If ¢ is a smooth section of E, then (£,0,0) defines an element of V. Thus (5.42)
implies that

(b,dp&) 12 < K| L2 (5.48)

Next, let v be a smooth section of E that vanishes on X, that is to say v € I'+(Y, E).
We also assume that the support of v is contained in (—¢,0] x X. Therefore, *dp(yds)
can be regarded as a 1-form on Y. Moreover, (0,*dp(yds),0) belongs to W. There-
fore, another application of (5.42) gives

(¢, 0,v),D(p,5)(0, *xdp(vds),0)) 12 = (b, *dp * dp(vds)) > — (@, *([FB, 7] A ds)) 2

is bounded by k||dpy| 2. Thus we can conclude that:

(b,dpdp(vds)) 2 < C(k + |@lr2) || L2 (5.49)

after possibly enlarging the value of C'. Inequalities (5.48) and (5.49) are the necessary
inputs to apply Lemma A.20, where «, r, o and Ay in the statement of this lemma
are b, 2, 95 and the smooth connection B. In particular, this shows that 7 is in L?
and

1702z = 16(8s)ll2 < C(s + (@, 0) ] 22)-

This gives us the inequality in (5.47).

Step 3: The section Vs(q) of T* Y QT*YQE on (—¢,0] x ¥ given by the covariant
derivatives of q along X with respect to the connection B is in L%. Moreover, the
constant C can be chosen such that

IVe(@)llz < Cls+ [[(9,0)]22)- (5.50)

Let £ be a smooth section of F that vanishes on the boundary of Y and is supported
in the collar neighborhood (—¢,0] x X. Since (0,&ds,0) is an element of W, the
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expression

((307b7V)yg(B,S)(07£d570)>L2 = <907d*B(§ds)>L2 + <b7 *dB(gds»Lz

is bounded by k|| 2. Using Stokes’ theorem and Step 1, the first term on the right
hand side of the above identity is bounded by C(x + ||(¢,b)|z2) €| z2- Note that the
assumption on the vanishing of £ on the boundary implies that there is no boundary
term in the application of Stokes’ theorem. In summary, we have

0
[ oo, € smcsyds < Cls+ I, 01 el :51)
—&
where ¢s and &, are restrictions of ¢ and £ to ¥ x {s}. In fact, the same inequality
holds if we drop the assumption of the vanishing of ¢ on the boundary. Let p:
(—00,0] x R be a smooth function that vanishes on (—¢/3,0] and is equal to 1 on
(—o0,—¢&/2]. For any smooth section ¢ of E, we map apply (5.51) to & := p(is)&, and
by taking the limit i — oo, we obtain a similar inequality for &.
Suppose again £ is a smooth section of E and follow Step 2 to show that
0 0
(b,dB&) > =/ (@5, dp.Es) 12(x) +/ (Ts,0s&s) 12(z)

—€ —&
is bounded by k|| L2. Integration by parts and Step 2 imply that the second term
on the right hand side of the above identity is bounded by C(x + ||(©,)]2)[€] 2-

We again use the vanishing of £ on the boundary to show that there is no boundary
term. Thus we obtain

0
/E<qs» dp.&s)r2(myds < Ok + [ (0, )] 2) 1] >
We can again drop the assumption on the vanishing of £ on the boundary as in the
previous paragraph. Therefore, we can deduce from Lemma A.26 that Vy(q) is in
L? and the constant C' can be chosen such that (5.50) holds.

Step 4: The derivatives of ¢ and v with respect to s are in L?, and the constant
C can be chosen such that

dv
19sallzz + 1= llr2 < Cls + [, b, )] 2).- (5.52)

Suppose ¢ is a 1-form with values in E supported in (—&,0] x ¥ which has a vanishing
ds component and ¢|y, = 0. We write xyc¢ for the 1-form on (—&,0] x ¥ given by the
Hodge star of ds A c. Suppose also 7: [0,1] — R?*" is a smooth map supported in
[0,¢) such that 7(0) = 0. Then (0, *oc, Jon) € W and (5.42) implies that

<(307 ba V)a D(B,S) (Oa *2C, JOT’)>L2 :<S07 *2dﬁC>L2 - <q7 6SC>L2 - <7-7 dEC>L2

1 dn
+ [ =G+ (s
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is bounded by k| (c,n)| 2. Stokes’ theorem, Step 1 and Step 2 imply that the first
and the third term on the right hand side of the above identity is bounded by
C(k+||(©,b)|12)|c| 2. Therefore, we have

1 dn
(g, Osc) 12 +/0 (v g 1dsl < Clr+ (@, b, v) |2l (e, ) 2.

This shows that the derivative of ¢ and v with respect to s exist in the weak sense
and the claimed inequality in (5.52) holds.

Step 5: (p,b,v) €W.

Previous steps give us a control over the L? norm of (¢, b,v). Thus we just need to
check the boundary conditions. This is a straightforward consequence of the identities
produced by the Stokes theorem in (5.37), (5.38) and (5.39). In fact, these identities
show that if (¢, c,n) € W, then

<(§07 b, V)ag(B,S) (¢7 ) 77)>L2

is equal to the sum of

<©(375)(907b71/)7(wac777)>L2 (553)

and the boundary terms
/ tr(xc A ) — / tr(xb A1) + / tr(b A c) +wo(v(0),m(0)) — wo(r(1),n(1)). (5.54)
b 2 2

The first and the last terms in (5.54) vanish because (¢, ¢,n) € W and v(1) = 0. Pre-
vious steps show that (5.53) is bounded by C(k+ | (¢, b,v)|2)| (¢, ¢, n)| 2. Therefore,
(5.42) asserts that the same is true for (5.54). This implies that

— —/Ztr(b/\ﬁ) —wo@(0),n), V(B eL.  (5.55)

These identities show that (¢,b,v) satisfy the conditions in (5.16). O

REMARK 5.56. One might ask how the constant C'in Lemma 5.41 depends on (B, S).
An examination of the proof shows that for an open neighborhood of (B, .S), defined
using the L} norm for some value of [, we may find a constant C' which works for
all elements in this neighborhood. (In fact, we can work with [ = 2. But the precise
value of [ shall not be important for us.)

REMARK 5.57. It is worthwhile to observe that for the most part in the proof of
Lemma 5.41 we can work with (¢,¢,n) inside a smaller subspace of W (compare
[SW08, Lemma 3.5].) In Step 1, triples (¢, ¢,n) = (0,dp&,0) with £ € T, (Y, E) suffices
for our purposes and through Steps 2-4 of the proof, we need the inequality in (5.42)
only for smooth (¢, ¢,n) such that n(0) =n(1) =0, *c|x, =0 and c|x, = 0. It is only
in the last step of the proof that we use the full strength of (5.42) to show that
(p,b,v) € W.
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The following lemma concerns the generalization of (5.44) for higher Sobolev

norms. This lemma is the counterpart of [SWO08, Proposition 3.1].

LEMMA 5.58. For any non-negative integer k, there is a constant Cy such that if

(¢,b,v) €W and D s)(p,b,v) has finite L norm, then (p,b,v) is in L}, and

I, )22, < CrllD(B,5) (0,0, ) 22 + (0, b, 1) 2).-

Proof. 1t is obvious from the definition that
Ivlcz,, < CellDs,s5) (0, b,0)llL2 + [V]22)-

We prove the corresponding claim for (¢,b) by induction on k. We already verified
the case that k= 0. Suppose X, ..., Xj are smooth vector fields on Y. We assume
that the restriction of X; to the boundary of Y is either tangential or is 0s. To obtain
the desired result, it suffices to show that for any such combination of vector fields,
the inequality in (5.42) holds for any (v, ¢, n) if we replace (¢,b,v) with

Z(p,b,v) = (X (), ZX(0),0). (5.59)

Here .Z% is the composition Z, ... ZLx, of Lie derivatives. This would be a straight-
forward application of integration by parts if there were no boundary terms. However,
the boundary terms on Y and the interval [0, 1] require a more careful analysis.

First we consider the case that all X; have tangential restriction to the boundary
of Y. Let (¢,¢,m) € W be chosen such that c|y; = 0. Since *b|y, =0 and the vector
fields X; are tangential, we have *.Z£b|s = 0. For now, we also assume that (p,b,v)
is a smooth triple. By replacing ¢ and b in (5.37), (5.38) and (5.39) with .Z%¢ and
Zkb, we have

(Z(p,b,v),D(B,5)(Y,c,n)) L2
= <®(B,S)g(90v b,v), (¥, c,n))r2
< LD 5.5)(,0,0), (0, em) 1] + Cl (2, b,0) |1z - ()
<C(I19(s.5)(2:b: )z + 10,0122 ) 1, em)] 12
< CC1 (ID8.5) (9,512 + (2,59 |12 ) [, e,m) | 2.

The first inequality above is a consequence of the fact that . and D p ¢y commute
up to differential operators of degree at most k. We can drop the smoothness as-
sumption on (¢,b,v) by taking a sequence of smooth triples {(¢’,b/,27)} which are
L3 convergent to (¢,b,v). Repeating the above argument gives the inequality

<$(80jabj,Vj)a©(B,s)(¢aC, 77)>L2 §|<$©(B,S)(9@jabja’/j)a (d}aQ nj)>L2‘
+ OV )z - 1@, e, e (5.60)



714 A. DAEMI ET AL. GAFA

Since all the vector fields involved in the definition of . are tangential, we can use
integration by parts to move the operator of degree k to the other side of the pairing
without adding any boundary term:

<$®(B,S)((Pjvbjayj)7 (1%07 nj)>L2 = <©(B,S)((pjvbj7yj)vg*(wvc7 nj)>L2

This can be used to show that we can take the limit of the inequality in (5.60) as j
goes to infinity to obtain the desired inequality for (¢,b,v).

According to Remark 5.57, in order to obtain (5.44) with (¢,b,v) being replaced
by Z(¢,b,v), we need to control the following L2-pairing where ¢ € T, (Y, E):

<$(907b7 V)’Q(B,S) (07 nga 0)>L2 = <Z}§¢’d*BdB§>L2 + <Z)Izb’ *[FB)€]>L2' (561)

To estimate (5.61), we assume that (¢,b,v) is smooth. Then a similar argument as
in the previous case shows that the same estimate holds for the general case. First
consider the first term on the right hand side, which is equal to (dp- L@, d&) as a
consequence of the Stokes theorem and £ € ', (Y, E):

(dpL%p,dpE)

< [(LXdpe,dp&)| + Cll(p,b,v)| 12 - |dBé] L2
<|{dpp + *dpb, (L%)*dpE)| + |(xdpb, (£%)*dBE)| + Cl(¢,b,v) | 2 - [dBE] 2
|(xdpb, (£%)*dBE)| + CCOL1(|D(5,5)(0,0,0) |12 + |(:b,0) [ 22) - |dBE] 12
< |(#dpb, dp(L%) )|+ CCr1 (1D (5.5) (0,0, )12 + (2, 6,0) 1 22) - |dBE | 2.

IN

The first inequality is a consequence of the fact that dp.Z% — LEdp is a differential
operator of degree at most k. Similarly, to obtain the last inequality we observe that
(LE)*dp —dp(L%)* is a differential operator of degree at most k such that each term
has at most one derivative in the normal direction. Therefore, we can use integration
by parts to obtain

|(edish, (%) d — dp(£5%)")©)| < Cll(p.b, )12 - e 2.

To bound the term (xdgb,dp(LE)*€), note that we have

(v, (L)€ H (b, +[Fy, (LEY€]) — /E tr(b A dp(LE)€) (5.62)
<Ol bz ldstlie (5.63)

The identity in (5.62) is a consequence of (5.39). To obtain (5.63), we use integration
by parts and the fact that the integral over ¥ in (5.62) vanishes because (b|y,7(0))
and (dp(-£%)*¢,0) belong to £. In summary, we have

(ZXp,ddpe) 2 < CO1 (|D(5.5) (0,0, 0) |12 + (0, 5,0) [ 22) - |ldBE ] 2.
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It is clear that the second term on the left hand side of (5.61) can be also bounded
by a similar term as in the right hand side of the above inequality. Therefore, we can
use Lemma 5.41 and Remark 5.57 to conclude that £ (p,b,v) is in L} norm and we
have

12 (0,0,v)l12 < CCL1(|1D(B,5) (0,0, V)22 + (2, 0,v) [ 2) - |l dBE]| > (5.64)

for an appropriate choice of C. This completes the proof in the case that all vector
fields X; are tangential.

Let b have the form g+ 7ds in a collar neighborhood (—¢,0] X ¥ of the boundary
of Y and S, denotes the restrictions of B to ¥ x {s}. Then we have

*dpb + dpp = (%2059 — *2dp, T + dg, ) + (05 + *2dp,q) ds,
dpb=dj q— 0.

Thus, these identities can be used to replace each normal derivative with components
of D (p,s)(¢,b,v) and tangential derivatives. Our analysis in the tangential case allows
us to conclude that (5.64) holds in the case that some of the vector fields X; are equal
to ds in a neighborhood of the boundary. This completes the proof of the lemma. [J

REMARK 5.65. An analogue of Remark 5.56 applies to Lemma 5.58. We may find a
neighborhood of (B, S), defined using an appropriate L? norm, such that Lemma 5.58
holds for all elements of this neighborhood using a universal constant C.

REMARK 5.66. Lemma 5.41 implies that D p g): H — W is a self-adjoint Fredholm
operator because the inclusion of W in H is compact. In particular, for A € R, the
operator D (g ) — A-1d is invertible if and only if ® g 5y — A-Id is injective. Moreover,
spectral theory of self-adjoint compact operators implies that eigenvectors of D p g)
provide a basis for H, and the intersection of any finite interval with the eigenvalues
of D (p,s) is finite. In particular, if § is small enough, then the operator D (g ¢)—d-1d
is invertible.

5.3 Fredholm theory on mixed cylinders. Our next goal is to use the results
of the previous two subsections to prove Theorem 5.9. Another key input is given
by the results of [SWO08] about spectral flows of self-adjoint operators with varying
domains. In fact, our proof here is inspired by the proof of Fredholm theory results
in [SWO08]. We assume that I, J, A, S, {Lg, Lo}gcr are given as in Theorem 5.9. As
before we denote the restriction of A and S to Y x {6} and [0,1] x {8} by By and
Sp. Let also ay denote the restriction of By to ¥ x {6}. Associated to ay, Ly and 6,
we have the Hilbert subspace Wy of H, defined in Sect. 5.1. Then any element ((,v)
in E%(I), the domain of D(4,u), determines

((pg,bg,llg)EW.g, el

by restriction to Y x {8} and [0,1] x {#}. (In the case that k =1, this holds for
almost every value of §.) Moreover, the operator D4 gy has the form d% — D (By,5%)
as it is pointed out in (5.6).
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Proposition 5.27 implies that for 6y € I, there is an open neighborhood of 6
such that for any point 6 in this neighborhood, there is an isomorphism Qg : H — H
mapping Wy, to Wy. To prove Theorem 5.9, it suffices to consider the case that I
equals this neighborhood of 6y, and then use compactness of the closure of J in I to
extend the result to the general case. We also assume that 6y =0, and denote Wy,
by Wy. The following lemma is a consequence of Proposition 5.27 and the definition
of the operators Qg given there.

LEMMA 5.67. The map Q: 1 — B(H) given by {Qg}oecs is smooth. Furthermore, for
any k and any (¢,v) € L*(I,’H), we have

(¢v) € LE(Y x ,A'® E) o Li([0,1] x I,R*")
— Q(¢v) € Li(Y x I, A' @ E) & Li([0,1] x I,R*™),

where Q(C,v) is defined as follows. The restriction of Q((,v) to Y x {0} and I x {0}
is given by the triple Qo(wa,bg,ve) where (g, bg,vp) is given by the restriction of
(C,v) to Y x {0} and I x {0}. There is also a constant Cy, such that for any (¢,v)
as above, we have

C 1)z < 1QEE V)2 < Cill (G )z
The following lemma follows easily from Proposition 5.27 and Lemma 5.67.

LEMMA 5.68. There is a constant C' such that for any 6 € I, the operator
Dy := Q;lg(Bg,SQ)QQ Wo —H

satisfies

dD
Do, bl + 120 b0z <l b, sz (5.69)

for (p,b,v) € W.

In summary, we verify the following properties for the Hilbert spaces Wy, and the
operators (y.

(W1) (Proposition 5.27) The inclusion map from the Hilbert space Wy to the
Hilbert space H is compact and has a dense image. The bounded maps
Qo : H — H defines a family of isomorphisms such that Qg(Wy) = Wy.

(W2) (Proposition 5.27 and Lemma 5.67) Q:J — B(#H) is C* and for any k >0,
there is a constant Cj such that for any (¢, b,v) € Wy we have

Ci (e, b,0) 12 < 1Qo(,0. 1)1 22 < Cill(i0,0,v)] 2,

ey
122 0,001 12 < Coll b, .

The following properties are also established for the operators ® g, g,)-
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(A1) (Lemma 5.41 and Remark 5.56) The operators D g, g,) : H — H is an (un-
bounded) self-adjoint operator with domain Wjy, and they satisfy

1,602z < CLID (8s.56) (01 b, W) |2 + (0,0, 0)] £2),

where the constant Cf is independent of 6.
(A2) (Lemma 5.68) For any (¢,b,r) € Wy, we have

dDg
Dol b, ) ez + 122 (bl < Chllo b )i,

where the constant C} is independent of 6.

Now, we turn to the proof of Theorem 5.9. We first address the second part of
the theorem. Fix

(C,v) e LAY x I,A'® E) @ L*([0,1] x I,R*").

Then ({,v) can be regarded as an L? map from I to H, and we denote the value
of this map at 6§ € I by (pg,bg,vp). Suppose for any compactly supported smooth
(¢,m) € EL(I) the following inequality holds for a constant x independent of (&,7):

((¢,v), Da,s)(§sm) 2 < k[(§m) 2y (5.70)

Then (W1), (W2), (A1) and (A2) essentially imply that we may apply Theorem
A.3 of [SWO8] to show that ({,v) is in E4(J). One wrinkle is that the statement
of Theorem A.3 of [SWO08], a priori, applies to the case that I = J =R, and the
operators Qg and D p, s,) satisfy the following additional assumptions.

(W3) There are Hilbert space isomorphisms Q* : H — H such that Qg is conver-
gent to QF in B(H) as 6 — +oo.

(A3) There are isomorphisms D¥ : Wy — H such that Dy is convergent to D* in
BWp, H) as 0 — to0.

We may modify our setup slightly such that the conditions (W3) and (A3) are
satisfied. First we replace the interval I with J and the interval J with a smaller
interval around 0. Pick a smooth map f:R — I that is identity in a neighborhood
K of the closure of J in I and is a constant map on the complement of I in the
domain. Similarly, pick g: R — R such that g(f) =0if 0 € J and g(f) =1if 0 € K.
For any 6 € R, define

Wy :=Wr(s), Qo= Q) D (By.5) = D (Bjay.550y) — 09(0) - 1d,

for a small positive real number §. As in Lemma 5.67, suppose also Q" : R — B(H) is
given by the operators (). Clearly the analogues of (W1), (W2), (A1) and (A2) are
satisfied for these operators. Moreover, @ and D/ (Bo,S,) AT€ constant with respect to
6 once |0 is large enough. In particular, (W3) clearly holds and Remark 5.66 implies
that (A3) holds if § is small enough. Suppose also

(¢'.v) e L*(Y x R,A' ® E) @ L*([0,1] x R,R*"),
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is given such that its restriction to Y x {6} and I x {6}, denoted by (¢}, by, 1), is
given by

(©ps by, vg) == (1 —g(0)) - (¢y(0), br0): V1 (0))-

As a consequence of (5.70), we have

[ (851 g = D) o) 28 < ([ (o)l )

—00 —0oQ0

where {(vg,co,m9) € Wpteer is a l-parameter family of triples such that the map
0 — Q' (19, co,mp) is an element of LI(R,H) N L3R, W,). Then Theorem A.3 of
[SWO08] implies that Q'(¢’,v") belongs to L2(J,H) N L*(I,W,). In particular, ({,v) €
EL(J). Furthermore, (proof of) Lemma A.2 of [SW08] implies that

1<)z <€ (1D ()l + 1S )]z ) (5.71)

where DE A,9) is the operator d% — 33’( Bo,S0) and the constant C depends continuously
) 6,20

on Cy, C in (W2), C] in (Al) and C% in (A2). In fact, an explicit formula for C

can be found in the proof of Lemma A.2 of [SWO08]. As an immediate consequence

of (5.71), we have

Gy < C (1D, (C )z + 1E V) 22n) (5.72)

where C’ is determined by C and the intervals K and J through the choice of g.

REMARK 5.73. The properties of the constants C and C’ in the previous paragraph
allow us to obtain an analogue of Remark 5.56 for the operator D4 g), as an extension
of Theorem 5.9. To be more detailed, there are neighborhoods of A, S, {Lg, Lo }ecr,
defined with respect to some Sobolev L? norm such that for any A’, S’, {£}, Lj}eer,
the analogue of inequality (5.72) holds with the same constant C’.

We prove the first part of Theorem 5.9 by induction on k. We already addressed
the case that k=1. Now let (¢,v) € E§(I) and (§,7) :=Das)(¢,v) is in Lj_, for
k > 2. In particular, the induction hypothesis implies that (¢,v) € Ef:_l(l) after
shrinking the interval I, and we wish to show that ({,v) € E%(J). First we consider

(C9)=Qu(Q ).

Then (¢, 7) € EX™2(I), and if k> 3, we have

D(4,s) ¢, 7)= Qd% (Q_ID(A,S)(Q V)) +P((,v), (5.74)

where P is the commutator of D4 5) and Qo die o QL. In particular, the properties
of Q and the fact that the commutator of D4 gy and d% is a differential operator of
degree 0 imply that P is a bounded linear map

Be(I) = Li_,(Y x R,A' @ E) @ Lj_,([0,1] x R,R™)
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for any k> 1. Since D4 5)(¢,v) is in L% |, we conclude that D(Aﬁ)(f, v)isin L7 ,.
Thus, the induction hypothesis implies that (C,7) € E&(J). In the case that k = 2,
the right hand side of (5.74) is still well-defined and is in L?. We may use this to
show that

((C,9), Diag) (& m)rz < (€M) | r2(r), (5.75)

for any compactly supported (£,n) € EL(I) where £ is the L? norm of the right hand
side of (5.74).

To see this, take a sequence {((;,v;)} of elements of E%(I) converging to ((,v)
in L2 Let (G,i) = QL (Q " (¢,v;)), which is L? convergent to ((,7). Then
D4, S)(é, ;) is given by the analogue of (5.74), and hence we have

((Cir 1), D 5y (&:m)) = (Das) (Gir ), (€,m))
= Qo (Q 7 Das) (G ) + P(Gra), (E)

*\ — d *
= <D(A,S) (Cm Vi)a (Q ) 1@(Q (fﬂ?)»Lz + <P(Cl7 Vi)? (Ean»
Here Q* is the L?-adjoint of the operator Q, and we use integration by parts to
obtain the last identity. By taking the limit as i — oo, we have

((C7), Diasy(Em)) = (Pasy (€0, (Q) (@ (€)1 + (PG, (€.1)

= QU (Q D5y (C.1)) + P ), (€ m)e

where in the last identity we use integration by parts and the assumption that
Dia,5)(¢,v) it is Li. The inequality in (5.75) and the second part of Theorem 5.9
imply that (C,7) € EL(J). (Strictly speaking, we need the second part of Theorem 5.9
for the formal adjoint DE‘ A.8)" As we explained there, Theorem 5.9 would be sufficient

for this because D( A.9) has the form required for the application of Theorem 5.9.)
Our arguments in any of the above cases give rise to the following inequality

v . d v oo
“(le/)HEg*l(J) < C(HQ 1@(QD(A,5)(C7V))”L@Z(I) + [P )2y + H(Cay)”LQ(I))
<C(IPws)CW) ez +1EW) ez + 1) ) )
<C(IPas) W)z, +1EV I m))-

Thus, to complete the proof we need to show that all derivatives of ({, ) up to order
k, that do not involve derivation with respect to #, are in L?. That is to say, it suffices
to show that (¢,v) € L*(J, L}). By assumption and the above argument, D4 (¢, v)
and %((,V) are both in L? . Since Da,s) — d% maps (,v) to a pair in L} ,, we
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conclude that D g, s, (¢g, by, vp) is in L7_; for almost every 6 € J. Lemma 5.58 implies
that for these values of 0, (¢g,bg,v) € Li and we have

(0,0, v6) L2 < Co-1 (D (5,5) (0, ba, vo)[ 2, + (e, o, v0) | 2)

where the constant Ci_; can be chosen to be independent of # by Remark 5.65.
Therefore, we can write

16 Bz = [ osbos )3y d8
J
< Cica | 1D0msy (00,0 0)y_, + (o, bos o)l

<1 (IPs) € PB2 o+ G o):

As usual, we use the convention that the value of C;_; might increase from a line to
the next one. This completes the proof of Theorem 5.9.

REMARK 5.76. One can see easily from the above proof that an extension of Re-
mark 5.73 holds for higher Sobolev norms. That is to say, for any k > 1, there is a
neighborhood of A, S, {Ls, Lo}ecr, defined with respect to some Sobolev norm lek
such that for any element of this neighborhood, the analogue of (5.10) holds with
the same constant C'.

5.4 Infinite mixed cylinders. In this subsection, we consider the operator D4 g)
in the case of an infinite cylinder, namely, I = R. We simplify the setup by assuming
that A is the pull-back of a connection B on the bundle F over Y and S is constant
in the R direction. That is to say, S is the pull-back of a map from [0, 1] to the space
of self-adjoint operators, which is denoted by the same notation. In particular, the
operator Dy g) has the form

d
Dasy = 0 D(B,s)- (5.77)

We also fix a Lagrangian L in R?" and a canonical linearized Lagrangian correspon-
dence £ from Q'(X) to R?" which is compatible with «, the flat connection obtained
from the restriction of B to the boundary. Associated to (£, L), we have the Hilbert
space W and we regard the operator in (5.77) as a bounded Linear map from

LI(R,H)N L*(R,W) (5.78)

to the space of L? pairs ((,v). Clearly, the space in (5.78) can be identified with
E4(R), defined using (£, L), which is regarded as a constant family with respect to
6. We wish to show that the operator in (5.77) is not just a Fredholm operator, but
in fact an isomorphism at least in the case that D p g) is invertible.
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PROPOSITION 5.79. Suppose L : W — H is an invertible bounded operator. Then the
operator

d% —L:LAR,H)NL*R, W) = L*(R,H)

s an isomorphism.

Sketch of the proof. The proof is standard and we only sketch the main steps. See,
for example, [RS95] or [Don02, Chap. 3] for more details. The composition of L~}
and the inclusion of W into H determines a compact self-adjoint operator. Thus,
there is a complete eigenspace decomposition {e;}; associated to the operator L
which provides an orthonormal basis for H. Using this eigenspace decomposition,
any element (¢,v) of L?>(R,H) can be written as

D)= filoes
where f;(t) € L*(R,R) and

v)lz: = Zl\fz )z < 0.

The norm on (5.78) is equivalent to

Il = VZ £/ + (01

‘We have

(L> Zfz ei) = Y (1) + Nif{(8))es,

i
and one can write down an explicit inverse for this operator in terms of the eigenspace
decomposition. O

REMARK 5.80. As it is explained in Sect. 5.2, we may assume that D p gy is invertible
after adding a small multiple of the identity operator. Therefore Proposition 5.79 is
applicable to such perturbations of D g g). In fact, Proposition 5.79 can be used in a
more general setup where L =9 g )+ h is an invertible operator for some bounded
self-adjoint operator h:H — H. Such perturbations of D p g) appear in [DFL21],
where we have to consider perturbations of the mixed equation.

Appendix A: Elliptic regularity of bundle-valued 1-forms

In this appendix, first we review some well-known results about regularity of the
Laplace—Beltrrami operator. Then we consider slight variations to the case of bundle
valued maps. Throughout this section, M denotes a compact Riemannian manifold
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possibly with boundary. In this appendix, for any Riemannian manifold M and
differential k-forms o and § on M, we slightly diverge from our notation in (1.20),
and denote the inner product of a and S by

| (ap).

For any real number r > 1, we also write r* for the conjugate of r» which satisfies

r r*

The following lemma is a standard fact about the Laplace-Beltrrami operator (see
[GT13, Theorems 9.14 and 9.15], [ADN59, Theorem 15.2] and [Weh042, Chaps. 3
and Appendix D].)

LEMMA A.1. Let k be a non-negative integer and p > 1 be a real number. Let u be
an L} function on M.

(i) If k> 1, suppose there is an L} | function F on M such that for any smooth
function ¢ with p|lay =0, we have

| wag=[ (£, (A2)
Then u is in L£+1(M), and there is a constant C, independent of u, such that
ulsg oy < COFlzz ony + lulioqan). (A.3)
In the case that k=0, the assumption (A.2) has to be replaced with
], 80) < Flel g (A1)
and the conclusion (A.3) has to be modified to:
lull e ary < C (6 + [ull Lo an)- (A.5)

(ii) If k > 1, suppose there are functions F' and G on M such that for any smooth
function ¢ with 0,p|an =0 we have:

| wag=[ wa+ | @ (A.6)

If F and G are respectively in Lj,_ (M) and L} (M), then u is in L} ,(M).
Furthermore, there is a constant C, independent of u, such that

Jullzz

o SCWUF e oy H Gl Le ary + |l o ary)- (A7)

In the case that k =0, the assumption (A.6) has to be replaced with:

LAY < e A8
] w80 < el (A8)
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and the conclusion (A.9) has to be modified to:
lull Ly < C(s 4 [l Lear))- (A.9)

We recall the following definition from Sect. 3.1 about some functions spaces
associated to the sections of a vector bundle.

DEFINITION A.10. Suppose U is a (possibly non-compact) manifold with boundary
and F is a vector bundle over U. Then the space of smooth sections of £/ with compact
support are denoted by T'.(U, E). The space of compactly supported sections of E,
which vanish on the boundary of E, are denoted by I'- (U, E'). Suppose a connection
Ay is fixed on E. Then I', (U, E) is the space of all compactly supported sections s of
FE such that the covariant derivative of s in the normal directions to the boundary
of U vanish.

The following Lemma is a slightly generalized version of [Weh051, Lemma A.2].

LEMMA A.11. Let k be a positive integer, and r > 1 be a real number. Let M be
a compact n-manifold with boundary and a Riemannian metric g, U be an open
subset of M, and K be an open subspace of U whose closure in U is compact. Let
E be an SO(3)-vector bundle over M equipped with a smooth connection Ay. Let
o be a smooth vector field on U. Let T'o(U,E) be one of the spaces T'-(U, E) or
', (U, E), where T',(U, E) is defined using Ag. Then there is a constant C' such that
the following holds. Let

feLi(UE), a&eLi(UA(M)eE),
¢eL (UA(M)®E), weLi(UN(M)oE),

and for any ¢ €T.(U,E), ¥ € I',(U, E) we have

[ tadais)= [ (1.9, (A.12)

[ {0 didant09) = [ ordag(etag)+ [ (€0 ta)+ [ (600 000). (A13)

Then (o) is an element of Ly ,(K) and we have:

la(o)lcy, o) < CUS Ny w) + 1€l @y + 1¢e; @) +lwllzy @) + lally@)-

Proof. Without loss of generality, we may assume that U is a precompact open subset
of the half-space

H";:{(xl,...,xn)GR"\m Zo}a

E is trivialized over U and the connection Ay is given by a 1-form with values in R?.
We will denote this 1-form with Ay, too. We may pick this trivialization in a way
that the normal covariant derivative with respect to the connection Ay agrees with
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the ordinary derivative. That is to say, I',(U,R?) defined with respect to Ay is the
space of all compactly supported sections 7 of R? such that 0,7 vanishes along the
boundary.

Fix a function p: M — R which is supported in U and is equal to 1 on K. Then
we show that there are compactly supported maps F and G from U to R? such that
for any n € I'o(U,R?) we have

/M<pa(0), An) = /M<F, ) + /8M<G, n) (A.14)

and F', G respectively have finite Lj,_,, L} norms.
First we claim that

[ ooty sm == [ plasdipdn)~ [ (o, (prog ndi)) = [ pdivier)(adn)
M M M M
= [ ptByadn) = [ oo )., (A.15)
M M
where B, is defined by firstly taking the Lie derivative £,g of the Riemannian metric
g and then requiring B, to satisfy the following identity for any pair of 1-forms 3

and (3’

ﬁa’(Q)(ﬂvﬂl) = <Bgﬁa6/>'
To see (A.15), we pick a sequence {«;}ien of smooth 1-forms on U with values in

R3 such that «; vanishes in a neighborhood of U N OH" and the sequence {a;} is
L"-convergent to «. Then the left hand side of (A.15) is equal to

lim [ (pa;(o),d"dn)

= lim M<dl,a(pai),d77> = lim l:/M<[’g(Pai)7d77> — (tod(pa;), dn)}
=l |~ [ (oo, Lodn) ~ [ div(o)pas.dn) = [ La(g)(pas,dn)

- [ (dassptag ndn) = [ Galdpna.dn)]
= lim [— /Mp<ozi,dbadn> —/MpdiV(0)<az',d77) —/MP(BgaiadU)

- [ fawd (puag )~ [ {eoldpncu).dn)|. (A.16)
M M

Now by taking the limit in (A.16) we obtain the desired identity.
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The assumption (A.12) can be used to rewire the first term in the right hand side
of (A.15) as

| olasdusdn) = [ (a.dag(prodn) = | (ool todil) = [ (o (dp) - (o)
:/ (pf — *[pa,xAg] — x(a A xdp), Lodn)
M
= [ {(of = slpa o] = x(a A xdp)) 1o, di)
:/M<d*((pf — *[pa, xAo] — *(a A xdp)) Log), n)
+/ (kn—1* ((pf — *[pa, *Ag] — *(a A xdp)) 19), M) (A17)
oM

where *,_1 in the last line denotes the Hodge operator on M.
We rewrite the second term in the right hand side of (A.15) as

| {@d (ag i) = [ (o (o)) = [ (" d(pragn)
= [ tdondpueg) = | tracalennd(piog))o)
M oM
— [ (e dageagom) + (<1 [ (a0 wdlaagon))
M M

+ [ {0 o, agonl) + (<1 [ (axl Ao, (Ao, tagon]).

Therefore, we can use (A.13), to write

|t (puog rn)) = [ (s(da Asd(prog)i = [ (rna(a hsd(piog)) )
- /M<w,dAo(Lagpn)> - /M<<,ngpn> - /a (& tagpn)
D™ [ (asldo,sd(eogon) + [ (a.d"[Aostogon)

(1" [ a4 #ldos tagon)). (A15)

Finally, the last three terms of (A.15) are equal to

[ 4By + (o)) = ol )]

_ / (knr * [(B, + div(o))pa — i (a A dp)], ). (A.19)
oM
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By applying further integration by parts to the expressions in (A.18), we can find F’
and G satisfying (A.14), which are respectively in L} , and L}, and satisfy

1FN;_, + Gy ) < C U lpwy + lolzgwy + 1€z @) + 1€y ) + Ny @)

for some constant C’ depending only on Ag, g, o, U and K. Therefore, Lemma A.1
(part (i) or (ii) depending on whether o =7 or v) implies that

lpa(o)lry, @) < CUflypw) + Iwlgw) + ISy, @) + 1€ley@) + laloyw))-
This inequality proves the desired claim. O

The following lemma is an extension of the previous lemma to the case that k= 0.

LEMMA A.20. Letr, M, K, U, o, E and Ag be as in Lemma A.11. Let o be either T
and v. There is a constant C such that the following holds. Let o be an L" section of
AL @ E over the open subset U of M such that for any ¢ € Uo(U, E) and ) € To(U, E):

|| (e, dayd)| < Cildl (), | [ (adiydag (V- 109)] < Callll ). (A21)
M M !
Then a(o) belongs to LY(K) and
(o) Lr ) < C(C1+ Co + ]| zr@y)- (A.22)

Proof. In the following C is a constant independent of o which might increase from
each line to the next one. As in the proof of Lemma A.11, we can show that « satisfies
(A.15). In particular, we have

[ (oot an) < | [ placdiodn)]+| [ (od*(prag nan)l+1 [ pdivio)(andn)

1 [ ptByadn)|+| [ {ualdp) na), ) (A.23)

The first term on the left hand side of the above inequality can be estimated as in
(A.17):

[ pladiaan) | <1 [ (das(prodn) 1+ [ (e plAostodn) 41 [ (. (dp)- (o)

Ly (A.24)

To. obtain the second inequality, we use the first assumption in (A.21). Next, we find

<C(Cr+ |alr@y)ln

an upper bound for the second term in (A.23) using the second inequality in (A.21)
following an argument similar to the previous lemma:

[ (e (prag )| <] [ (" rd(prag)] + | [ (e, das agon))

1 [ aslda sdluogoml +1 [ tond'[Avsiagpn
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1 [ (ol o, s (Ao togonl)
<C(Ca +llal )l @, (A25)

It is straightforward to bound the remaining three terms in (A.23) with
Cllall - @nlnll = 1) Consequently, Lemma A.1 implies that a(o) is in Lj(K) and
(A.22) holds. O

LEMMA A.26. Let k be a non-negative integer and r > 1 is a real number. Suppose
M is a Riemannian manifold possibly with boundary. Suppose 3. is a closed surface
and F is an SO(3)-bundle over X. Suppose = {Bz}tzenm is a smooth family of
connections on F parametrized by M. Suppose f is an L section of the bundle
T*Y ® F over ¥ x M. If k> 1, suppose there are Lj sections (i and (2 of the
pullback of F over ¥ x M such that for any smooth section & of the pullback of F
over X X M, we have

| do=[ o [ twmde=[ o @

where dg& denotes the section of T*X @ F over ¥ x M given by the exterior derivatives
of £ in the X direction with respect to the family of connections 3. Then ng, the
covariant derivative of f in the X direction with respect to 3, is in Ly, and there is
a constant C, independent of f, such that:

vafHL;(MxE) <Oy rxs) + 18202y rxs) + 1 f | zr (arxs))- (A.28)

In the case that k=0, the assumption (A.27) has to be replaced with
[ a1 [ (Forsdsl < rlEle (4.29)

In this case, ng belongs to L" (X x X) and

||V§f”Lr(sz) SC(E+flrrxxs))- (A.30)

Lemma A.26 can be regarded as the family version of A.1 where we also replace the
degree two elliptic operator A with the degree one operator dz & dj. This proposition
in the case that F' is the trivial bundle and 8 is the trivial family of connections is
proved in [Weh051, Lemma 2.9]. Clearly, this implies the lemma for the case that F
is trivial and B is arbitrary. The proof in the case that F' is non-trivial is similar.

Appendix B: Regularity of holomorphic curves in a Banach space

Suppose B is a Banach space and M is a compact Riemannian manifold. In this
appendix, we are interested in maps from M to B. For 1 < p < oo and any non-
negative integer k, we can define the Sobolev norm | - [1» on the space of such
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maps in the usual way. The completion of space of smooth maps from M to B with
respect to this Sobolev norm is denoted by L} (M, B). As an example, let B = LP(N)
for a compact manifold N. Any function in C*°(M x N), determines an element of
LP(M, B). In fact, the space of smooth functions on M x N is dense in LP(M, B) (see
[Weh041] and [Lip14]). This gives us the following identifications of Sobolev spaces:

LP(M, LP(N)) = LP(N, LP(M)) = LP(M x N).

More generally, C*°(M x N) is dense in L} (M, LP(X)) for any non-negative integer
k, and we have (see [Weh041, Lip14]):

Li(M x N) = Ly (M, LP(N)) N Lg(N, LP(M)),

(B.1)
Ly(M,LP(N)) = LP(N, L} (M)).

For the rest of this appendix, we fix B), to be a Banach space that can be identified
with a closed subspace of the space LP(N) for a closed manifold N. In particular,
the intersection B, := B, N LY(N) with ¢ > p determines a closed subspace of LI(N).
For ¢ < p, By is the closure of B, in LI(N).

LEMMA B.2 ([Weh041] and [Lipl4]). Suppose M is a Riemannian manifold with
boundary. Let k be a mon-negative integer and p > 1 be a real number. Let u €
LY (M, B,). Then the same claims as in parts (i) and (1) of Lemma A.1 hold if we
assume that F', G and ¢ are B,-valued.

Sketch of the Proof. Without loss of generality, we can assume that B, = LP(N).
Using the identifications in (B.1), we can regard v as an LP map from N to the
Banach space L} (M). Next, we can apply the properties of the Laplacian operator

acting on L} (M) to obtain the desired conclusions. For more details, we refer the
reader to [Weh041, Lemma 2.1] and [Lip14, Sect. 3.3]. O

The proof of the following proposition about regularity of Banach valued Cauchy—
Riemann equation can be found in [Weh041, Theorem 1.2] and [Lip14, Lemmas 27
and 28]. In this proposition, B, denotes the direct sum B, & B,. This space admits
an obvious complex structure Jy given by

Jo(vo,v1) = (—=v1,00). (B.3)

The subspace £ :=0® B, defines a completely real subspace of B, with respect
to j().

ProprosITION B.4. Suppose U is a bounded open subspace of
H?:= {(s,0) € R*| s >0},

and Uy denotes the intersection H> NU. Suppose J : B, — End(B,, B,,) is a smooth
family of complex structures such that J(x) = Jo for x € L. For p>2 and k > 2,
suppose u:U — B, is an L} map that satisfies

Opu — J (u)9su =z € LY (U, By), (B.5)
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and the boundary condition
uly, C L. (B.6)

Then for any open subspace K C U, whose closure in U is compact, the map u is in

LiH(K). Moreover, there is a constant C, depending only on K, such that

lullzz ) < CUzlr @) + lul o (U)). (B.7)
If u; : U — By, is a sequence of L} map that satisfies
86%‘ - j(ul)asuz =2z € LZ(Uu Bp)7 (BS)

such that u; and z; are respectively L} -convergent to u and z, then u; restricted to
K is LzH-com}ergent to the restriction of u to K. In the case that k=1, similar

. . 2
results hold if we replace LZH with LZil.

Sketch of the proof. For k > 2, suppose u is a map that satisfies (B.5) and (B.6). We
apply g + J (u)0s to (B.5). Then we have:

02 u+ fu = T (u)0s(T (1)) Osu + 0p (T (1)) 05t + Doz + T (u)0s2. (B.9)

Using the assumptions k& > 2, v € L} and z € L}, we can conclude that the left
hand side of the above identity is an element of L¥ ;. The maps u and z can be
written as (ug,u1) and (zo, z1) with respect to the decomposition of B,,. The boundary
condition (B.6) implies that ug|y, =0 and 9su1|y, = 20|y, . Therefore, we can invoke
Lemma B.2 to verify the claim. To be a bit more detailed, we use the assumption
k > 2 to conclude that the products of two Liq functions are still in qu' In the
case that k =1, the products of two LP(U,B,) functions is in LP/2(U, B,), which in
turn is a subspace of LP/?(U, B, /2). That allows us to use the same argument to prove
the claim in this case. The sequential versions of these claims can be also treated
similarly. U

We need a slight improvement of Proposition B.4 to the case k =0 [Lipl4,
Lemma 29].

ProposITION B.10. Suppose U is given as in Proposition B.4. Suppose J : B, —
End(B,,B,) is a smooth family of complex structures such that J(z) = Jy forx € L
and for any x € By, the space L is totally real with respect to J(x), i.e., B, =
L& T(x)L. Forp>2,let u:U— B, be in LY. Suppose ¢ >p and u is also an L1
map from U to B,. Suppose u satisfies

dou — J (u)dsu =z € LY(U,By), (B.11)
and the boundary condition (B.6). Then u is an L] map from U to B, and

luls < C(ll2la + ullza). (B.12)
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Moreover, if u; : U — B, are L] solutions of
Opu; — J (u;)Osu; = z; € LU, By), (B.13)

such that u; is convergent to uw in LY N LY and z; is convergent to z in L%, then u; is
convergent to u in L.

Proof. Given p > 2 and any bounded domain  in R? with smooth boundary, let
L7(9,B,)s be the space of L} maps u:Q — B, such that the restriction of u to the
boundary is in £. Then the Cauchy—Riemann operator

B9 — Jods : LY (Q,B,)s — LP(Q, B,) (B.14)

is a surjective bounded operator with kernel being constant maps to £. This can be
seen in the same way as in Lemma B.2.

Now suppose z € U and D,(x) = B,(x) NH? is contained in U. Suppose ), is
the region given by rounding the corners of D, (x) such that it is contained in D, (x)
and it contains D, 5(x). Since J (u) : U — End(B,, B,) is continuous and J () = Jo,
the operator 9y — J (u)ds : LY (9, Bp)ao — LP(Q,,B,) is surjective with kernel being
constant maps to £ if r is small enough. This holds because the operator 9y — J (u)0s
is a deformation of the operator in (B.14) by a bounded operator of small norm for
small values of r. We assume that r is chosen such that the same claim holds if we
replace ¢ with p. Now let p: 2. — R be a smooth bump function that vanishes on
the complement of D, 5(z) and equals 1 on D, 3(z). Then our assumption implies
that pu is an element of LY(,,B,)s and

99 (pu) — T (u)9s(pu) = pz + g (p)u — T (u)0s(p)u
is in L?. Thus there is v’ € L{(Q,B,)s such that
Opu’ — T (w)0su’ = pz + 9g(p)u — T (u)ds(p)u.

This implies that v’ — pu is a constant map to L. In particular, the restriction
of u to D,/3(x) is in L{(Q,B,)s. For an interior point =, we may apply a similar
argument to show that the restriction of u to a neighborhood of  in is L(€,B)s.
The only new point that we need is that we can find an isomorphism 7": B, — B,
such that Tflj(x)T = Jo. In fact, we may take T to be the linear map that sends
(vo,v1) € B, @ By, to (v, 0) + 7 (z)(v1,0). Since L is totally with respect to J(x), T
is an isomorphism. O
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