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Abstract

Breast cancer is the leading cancer affecting women glob-
ally. Despite deep learning models making significant strides
in diagnosing and treating this disease, ensuring fair out-
comes across diverse populations presents a challenge, par-
ticularly when certain demographic groups are underrepre-
sented in training datasets. Addressing the fairness of Al
models across varied demographic backgrounds is crucial.
This study analyzes demographic representation within the
publicly accessible Emory Breast Imaging Dataset (EM-
BED), which includes de-identified mammography and clin-
ical data. We spotlight the data disparities among racial
and ethnic groups and assess the biases in mammography
image classification models trained on this dataset, specif-
ically ResNet-50 and Swin Transformer V2. Our evalu-
ation of classification accuracies across these groups re-
veals significant variations in model performance, high-
lighting concerns regarding the fairness of Al diagnostic
tools. This paper emphasizes the imperative need for fair-
ness in Al and suggests directions for future research aimed
at increasing the inclusiveness and dependability of these
technologies in healthcare settings. Code is available at:
https://github.com/kuanhuang0624/EMBEDFairModels.

Introduction

Breast cancer remains the most commonly diagnosed can-
cer among women in the U.S. and is the second leading
cause of cancer death among women overall. In 2023, breast
cancer was projected to account for 31% of all female can-
cer cases (Giaquinto et al. 2022). Currently, approximately
4.1 million women in the U.S. live with a history of breast
cancer, with about 4% suffering from metastatic disease.
Notably, over half of these cases were identified at early
stages (1-3) (Gallicchio et al. 2022). According to the Amer-
ican Cancer Society, the survival rates for breast cancer at
stages 0 and 1 approached nearly 100% from 2007 to 2013
(DeSantis et al. 2016), underscoring the importance of en-
hanced screening and treatment facilities to boost women’s
health both domestically and globally. X-ray mammography
and ultrasound are the primary modalities for early breast
cancer detection, particularly mammography, which shows
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promising detection outcomes (Prodan, Paraschiv, and Stan-
ciu 2023). Over the past decade, Al-based Computer-Aided
Diagnosis (CAD) systems have been developed for breast
cancer diagnosis in mammography (Ricciardi et al. 2021;
Atrey et al. 2023). The effectiveness of these Al systems
largely depends on the quality of the data used for training,
with data fairness being crucial. The key fairness concerns
include age and racial/ethnic disparities. Age significantly
influences breast density, which is critical for accurate breast
cancer diagnosis in mammography (Garrucho et al. 2023).
Notably, 83% of breast cancer cases occur in women over
50 years of age, who also account for 91% of breast cancer-
related deaths, with half of these deaths occurring in women
aged 70 or older (Giaquinto et al. 2022).

Addtionally, there are significant disparities in breast can-
cer incidence and outcomes among different racial and eth-
nic groups, according to data from the American Cancer So-
ciety (Giaquinto et al. 2022). Table 1 illustrates substantial
racial disparities in both incidence and mortality rates in the
U.S. Black women, for example, have a lower incidence rate
but suffer from a 40% higher death rate compared to White
women, along with the lowest five-year relative survival rate
among all racial and ethnic groups. These variations under-
score the inequities in access to medical resources and finan-
cial support across different communities.

White  Black API*  Hispanic = AIAN*
Incidence | 1337 127.8 1013  99.2 111.3
Mortality | 19.7 27.6 11.7 13.7 20.5

*API represents Asian/Pacific Islander. AIAN represents American
Indian/Alaska Native. Rates are expressed per 100,000 people.

Table 1: Female breast cancer incidence and mortality rates
by race/ethnicity (2015-2019), the U.S.

The presence of biases in breast cancer incidence across
racial and ethnic groups can contribute to biases in the de-
velopment of Al-based CAD systems. Due to the lower inci-
dence rates in certain racial groups, some datasets may have
fewer samples, leading to data imbalances. Several studies
have investigated the fairness and bias in Al-based medical
imaging systems (Logan, Kennedy, and Catchpoole 2023;
Yang et al. 2024; Ueda et al. 2024; Hort et al. 2024). The
issues of bias in deep learning models typically fall into two
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Figure 1: Distribution of selected images across ethnic and racial groups and between malignant and benign classes for training

the classification models.

categories: 1) data imbalance and 2) model training. Efforts
to mitigate bias in Al models generally focus on these areas,
employing strategies such as data augmentation or synthetic
data to enhance data representation (Garrucho et al. 2023),
and improving model training, for instance, by incorporating
regularization terms or using adversarial training approaches
(Lahoti et al. 2020). Additionally, post-processing methods
are used to refine fairness after model training (Soltan and
Washington 2024).

This study investigates how these disparities can lead to
biases in Al-based CAD systems. We mainly focus on base-
line models like ResNet-50 and Swin Transformer V2, cho-
sen for their widespread use in image classification. We do
not choose other complex models because their additional
features could introduce new variables, making it harder to
isolate and study the specific impacts of algorithmic bias
on fairness in classification. Our goal is to highlight con-
cerns about fairness using baseline models. This study uti-
lizes the Emory Breast Imaging Dataset (EMBED) (Jeong
et al. 2023) to explore these issues. Our contributions are:

¢ We assess the fairness of baseline models, ResNet-50 and
Swin Transformer V2, in classifying mammography im-
ages into benign or malignant across different racial and
ethnic groups.

* We highlight significant data imbalances within the EM-
BED dataset and observe notable declines in model per-
formance across demographic lines, underlining the ur-
gent need for fairness in Al research.

With a focus on refining Al diagnostics through a lens of eq-
uity, this research aims to improve technological outcomes
and ensure fair medical practices across all populations.

Materials and Methods
Dataset

The EMBED dataset comprises 400,000 de-identified im-
ages from around 20,000 patients and includes both 2D and
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C-view images in this release. In this research, we exclu-
sively use 2D mammography images and do not use 3D
or C-view images. In addition to images, the dataset pro-
vides detailed metadata for each image, such as the capture
date, image type, and the number and location of regions
of interest (ROI). It also includes patient identifiers and ex-
tensive clinical information about the patients. Notably, the
dataset captures the ethnic and racial backgrounds of the pa-
tients, encompassing categories such as “African American
or Black,” “Asian,” “Caucasian or White,” “Native Hawai-
ian or Other Pacific Islander,” “American Indian or Alaskan
Native,” “Not Recorded,” “Patient Declines,” “Unknown,
Unavailable or Unreported,” and “Multiple” race groups.
For ethnic categorization, it includes “Hispanic or Latino,”
“Non-Hispanic or Latino,” “Not Recorded,” and “Unknown-
Non-Hispanic,” among others. To analyze the fairness of
a deep learning-based classification model, we have cho-
sen specific racial groups, including “African American
or Black,” “Asian,” “Caucasian or White,” “Native Hawai-
ian or Other Pacific Islander,” and “American Indian or
Alaskan Native.” Additionally, we have selected “Hispanic
or Latino” and “Non-Hispanic or Latino” as the ethnic
groups for this study. Groups categorized as unknown or un-
reported have been excluded from our selection.

Approximately 90% of screening mammograms yield
normal results, and only a minority of patients undergo
pathology testing. To train our deep learning models, we
classify patients based on whether they have cancerous con-
ditions or benign lesions in the breast. For this purpose, we
use the “path_severity” attribute from the clinical data as
the label, indicating the most severe pathology result from a
given specimen. The “path_severity” attribute encompasses
7 categories: 0: invasive cancer 1: non-invasive cancer 2:
high-risk lesion 3: borderline lesion 4: benign findings 5:
negative (normal breast tissue) 6: non-breast cancer. For this
study, we select images from patients with “path_severity”
values of 0 and 1 to represent malignant cases and those



with a “path_severity” of 4 for benign cases. Images from
other categories are excluded from our selection.

Under the abovementioned conditions, the total number
of selected samples amounts to 7,475. We analyze the dis-
tribution of these selected images across various ethnic and
racial groups. The distribution of images among different
racial and ethnic groups and between malignant and benign
classes is depicted in Figure 1. To train deep learning mod-
els, we have divided the 7,475 selected images into an 70%
training set and a 30% testing set, maintaining consistent
distributions across racial and ethnic groups in both datasets.

Implementation Details and Metric

All experiments are conducted using PyTorch 1.13.1 on an
Ubuntu 20.04 system. The hardware setup includes an AMD
EPYC 7513 2.60 GHz CPU and eight NVIDIA GeForce
RTX 3090 graphics cards, each with 24GB of memory. We
assess the training performance of the model using accuracy
as the metric. The model is trained on a dataset that includes
all racial and ethnic groups. We then evaluate and report the
accuracy for different racial and ethnic groups within the test
dataset and the entire test dataset. We also employ Equal-
ized Odds (EqOdd) following (Zong, Yang, and Hospedales
2023) as a group fairness metric, which requires that the
true positive and false positive rates be equalized across sub-
groups. We evaluate EqOdd specifically for the Hispanic or
Latino and Non-Hispanic or Latino groups.

Methods

Models: We train two widely utilized classification models:
ResNet-50 (He et al. 2016) and Swin Transformer V2 (Liu
et al. 2022). The implementation of ResNet-50 is sourced
from the torchvision library, using an input image size of
224 x 224 pixels, and the model is configured to output two
classes, utilizing a pre-trained model from ImageNet. The
Swin Transformer V2 implementation is derived from a pre-
trained small model available on the Hugging Face library,
with the same input image size of 224 x 224 pixels.

Training Details: We employ a consistent training ap-
proach for both models, spanning 40 epochs with a batch
size of 32, utilizing the Adam optimizer. The optimizer is
configured with a learning rate of le-4 and a weight decay
of le-4. We use cross-entropy loss as the loss function. The
learning rate is scheduled to decay every 20 epochs, reduc-
ing to 10% of its original value.

Results

The breast mammography classification results for ResNet-
50 and Swin Transformer V2 models are presented in Tables
2 and 3, respectively. These results show the test accuracy
across different races and ethnicities.

ResNet-50: Table 2 presents the test accuracy for the
ResNet-50 model. The overall test accuracy is 0.8012. When
breaking down by race and ethnicity, the accuracies are as
follows: African American or Black: 0.5000 (Hispanic or
Latino), 0.8183 (Non-Hispanic or Latino), and a combined
accuracy of 0.8172. Asian: Data for Hispanic or Latino is
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unavailable, while non-Hispanic or Latino shows an accu-
racy of 0.8182. Caucasian or White: 0.6667 (Hispanic or
Latino), 0.7829 (Non-Hispanic or Latino), and a combined
accuracy of 0.7770. Native Hawaiian or Other Pacific Is-
lander: 0.8000 (Hispanic or Latino), 0.6923 (Non-Hispanic
or Latino), and a combined accuracy of 0.7500. American
Indian or Alaskan Native: Data for Hispanic or Latino is
unavailable, while non-Hispanic or Latino shows an accu-
racy of 1.0000. Overall, Hispanic or Latino groups had a
lower test accuracy (0.6875) compared to non-Hispanic or
Latino groups (0.8045). The fairness analysis between His-
panic or Latino and Non-Hispanic or Latino groups yielded
an EqOdd score of 0.9387. The EqOdd scores for Hispanic
or Latino and Non-Hispanic or Latino groups were 0.8056
for African American or Black, 0.9323 for Caucasian or
White, and 0.9231 for Native Hawaiian or Other Pacific Is-
lander, respectively.

Swin Transformer V2: Table 3 shows the test accuracy
for the Swin Transformer V2 model, with an overall test ac-
curacy of 0.7704. The breakdown by race and ethnicity is
as follows: African American or Black: 0.5000 (Hispanic or
Latino), 0.8115 (Non-Hispanic or Latino), and a combined
accuracy of 0.8104. Asian: Data for Hispanic or Latino is un-
available, while non-Hispanic or Latino shows an accuracy
of 0.7576. Caucasian or White: 0.5778 (Hispanic or Latino),
0.7248 (Non-Hispanic or Latino), and a combined accuracy
of 0.7173. Native Hawaiian or Other Pacific Islander: 0.8667
(Hispanic or Latino), 0.6154 (Non-Hispanic or Latino), and
a combined accuracy of 0.7500. American Indian or Alaskan
Native: Data for Hispanic or Latino is unavailable, while
non-Hispanic or Latino shows an accuracy of 1.0000. The
Swin Transformer V2 model also displayed a lower accuracy
for Hispanic or Latino groups (0.6406) than non-Hispanic or
Latino groups (0.7742). The fairness analysis between His-
panic or Latino and Non-Hispanic or Latino groups yielded
an EqOdd score of 1.0.

Discussion

The results of our study demonstrate significant dispari-
ties in model performance across different racial and ethnic
groups when classifying breast mammography images using
the ResNet-50 and Swin Transformer V2 models. As shown
in Figure 1, the dataset distribution provides essential con-
text for interpreting these results.

Dataset Analysis: The dataset distribution reveals several
important aspects that impact the performance and fairness
of the models: 1) Race imbalance: The number of images is
significantly higher for African American or Black (3,955)
and Caucasian or White (2,959) compared to other races
combined (561). 2) Ethnic imbalance: The dataset is heavily
skewed towards non-Hispanic or Latino cases (1,645 malig-
nant, 5,608 benign), making up the vast majority of the data
(7,253 out of 7,475 total cases). Hispanic or Latino cases are
significantly underrepresented (71 malignant, 151 benign),
making it challenging for the model to learn and generalize
accurately for this group. 3) Class imbalance: A substan-
tial imbalance exists between benign (7,253) and malignant
(222) images.



Race Ethnicity Hispanic or Latino  Non-Hispanic or Latino | Total
African American or Black 0.5000 0.8183 0.8172
Asian - 0.8182 0.8182
Caucasian or White 0.6667 0.7829 0.7770
Native Hawaiian or Other Pacific Islander 0.8000 0.6923 0.7500
American Indian or Alaskan Native - 1.0000 1.0000
Total 0.6875 0.8045 0.8012

Table 2: Test Accuracy for the ResNet-50 Model

Race Ethnicity Hispanic or Latino  Non-Hispanic or Latino | Total
African American or Black 0.5000 0.8115 0.8104
Asian - 0.7576 0.7576
Caucasian or White 0.5778 0.7248 0.7173
Native Hawaiian or Other Pacific Islander 0.8667 0.6154 0.7500
American Indian or Alaskan Native - 1.0000 1.0000
Total 0.6406 0.7742 0.7704

Table 3: Test Accuracy for the Swin Transformer V2 Model

Model Performance and Fairness: 1) Both models show
higher accuracy for non-Hispanic or Latino groups than for
Hispanic or Latino groups. This disparity is due to the sig-
nificant imbalance between the two groups, which makes
it challenging for the models to learn and generalize effec-
tively for Hispanic or Latino individuals, resulting in poorer
performance. The models perform better in the more rep-
resented non-Hispanic or Latino groups due to the larger
volume of training data. 2) Among different races, having a
larger number of images does not necessarily result in higher
accuracy. For example, the number of images is significantly
higher for African American or Black (3,955) and Caucasian
or White (2,959) individuals compared to all other races
combined (561). However, despite having a large number
of images, the Caucasian or White group has the lowest ac-
curacy in Swin Transformer V2 and the second to the lowest
accuracy in the ResNet-50. This suggests that merely hav-
ing more images does not guarantee better model perfor-
mance within this group. 3) The imbalance between malig-
nant and benign cases affects the models’ ability to achieve
higher performance. The overwhelming number of benign
cases compared to malignant ones can lead to a bias in the
models, making them less effective at correctly identifying
malignant cases. 4) The Swin Transformer V2 model yields
an EqOdd score of 1.0 because it performs poorly on both
Hispanic or Latino and Non-Hispanic or Latino groups, ren-
dering the fairness metric meaningless in this context.

Conclusion and Future Works

In this study, we evaluate the performance and fairness of
two widely used baseline classification models, ResNet-
50 and Swin Transformer V2, in classifying mammogra-
phy images from the EMBED dataset. Our results demon-
strated significant disparities in model accuracy across dif-
ferent racial and ethnic groups in two baseline models. The
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key findings of our study are as follows: 1) Imbalance in
Data Representation: The dataset has significant imbalances
in race, ethnicity, and class distributions. The number of
images is disproportionately higher for African American
or Black and Caucasian or White individuals compared to
other races. Non-Hispanic or Latino cases are vastly over-
represented compared to Hispanic or Latino cases. There
is a substantial imbalance between benign and malignant
images, with benign cases overwhelmingly dominating the
dataset. 2) Model Performance and Fairness: The ResNet-50
and Swin Transformer V2 models exhibit higher accuracy
for non-Hispanic or Latino groups compared to Hispanic or
Latino groups due to the imbalance in representation. The
imbalances in the number of samples among different racial
groups also contribute to varying performance across these
groups. Additionally, the significant imbalance between be-
nign and malignant cases introduces a bias in the models,
reducing their effectiveness in accurately identifying malig-
nant cases.

Future Works: To address these disparities and enhance
the fairness and performance of deep learning models in
breast cancer diagnosis, we will focus on the following ar-
eas: 1) Data balancing techniques: Implement methods to
balance the representation of different demographic groups
in the dataset. 2) Data augmentation: Use augmentation
techniques to increase the diversity and quantity of training
data, especially for underrepresented groups. 3) Bias mitiga-
tion strategies: Develop and apply strategies to reduce model
bias arising from data imbalances.
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