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Multisensor Multiobject Tracking

With Improved Sampling Efficiency
Wenyu Zhang , Student Member, IEEE and Florian Meyer , Member, IEEE

Abstract—Passive monitoring of acoustic or radio sources has
important applications in modern convenience, public safety, and
surveillance. A key task in passive monitoring is multiobject
tracking (MOT). This paper presents a Bayesian method for
multisensor MOT for challenging tracking problems where the
object states are high-dimensional, and the measurements follow
a nonlinear model. Our method is developed in the framework
of factor graphs and the sum-product algorithm (SPA) and im-
plemented using random samples or “particles”. The multimodal
probability density functions provided by the SPA are effectively
represented by a Gaussian mixture model (GMM). To perform
the operations of the SPA with improved sample efficiency, we
make use of particle flow (PFL). Here, particles are migrated
towards regions of high likelihood based on the solution of a
partial differential equation. This makes it possible to obtain good
object detection and tracking performance even in challenging
multisensor MOT scenarios with single sensor measurements that
have a lower dimension than the object positions. We perform a
numerical evaluation in a passive acoustic monitoring scenario
where multiple sources are tracked in 3-D from 1-D time-
difference-of-arrival (TDOA) measurements provided by pairs
of hydrophones. Our numerical results, obtained by processing
synthetic and real data, demonstrate favorable detection and
estimation accuracy compared to state-of-the-art reference tech-
niques.

Index Terms—Multiobject tracking, particle flow, factor
graphs, sum-product algorithm.

I. INTRODUCTION

M
ULTIOBJECT tracking (MOT) is an important capa-

bility for a variety of applications, including surveil-

lance, autonomy, and marine mammal research. MOT is

a high-dimensional nonlinear filtering problem complicated

by measurement-origin uncertainty (MOU), i.e., the associ-

ations between measurements and objects, and an unknown
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number of objects to be tracked. In this paper, we develop

a sequential Bayesian MOT framework for the particularly

challenging scenarios where object states are high-dimensional

and measurement models are nonlinear. We expect that our

approach is particularly useful for the passive monitoring of

acoustic [1] or radio [2] sources in 3-D.

A. State-of-the-Art

Traditional methods for MOT include probabilistic data as-

sociation (PDA) [3], multi-hypothesis tracking (MHT) [4], and

methods based on random finite sets (RFS) [5], [6], [7], [8].

Most of these traditional approaches suffer from a compu-

tational complexity that is exponential in important system

parameters, including the number of measurements, objects,

and sensors. MOT methods that are scalable with respect to

these parameters have been recently developed in the frame-

work of factor graphs and the SPA [9], [10], [11], [12], [13].

Factor graphs represent statistical independencies of random

variables. The SPA is known to provide accurate solutions

to high-dimensional Bayesian estimation problems efficiently.

In particular, by performing local operations (“messages”) on

the factor graph, accurate approximations (“beliefs”) of the

marginal posterior pdfs of unknown states [14] are computed.

SPA-based methods are versatile and have been successfully

applied to a variety of applications, including cooperative lo-

calization [15], [16], [17], [18], simultaneous localization and

mapping (SLAM) [19], [20], [21], and focalization for under-

water localization [22].

To calculate messages that, due to nonlinearities in the system

model, cannot be evaluated in closed form, SPA-based methods

for MOT typically rely on particle-based computations that

closely follow the bootstrap particle filter (BPF) [23], [24],

[25] and rely on importance sampling. A known drawback

of this approach is that it typically fails in tracking problems

where (i) the states of individual objects have dimensions higher

than four, (ii) measurements are very informative compared

to the predicted/prior pdfs. In particular, tracking of objects

in 3-D Cartesian coordinates or employing sensors that yield

low measurement variance often leads to a failure of particle-

based computations due to particle degeneracy [26]. The parti-

cle degeneracy problem is related to the fact that predicted pdfs

are used as proposal pdfs for sampling. Since predicted pdfs

can have completely different shapes than the posterior pdfs,

this sampling strategy is highly inefficient, i.e., few or none of

the generated particles are suitable to represent the posterior

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Particle degeneracy in a tracking scenario with 3-D object state, x= [x1 x2 x3]T, and a single 1-D TDOA measurement z1. A single time step is
considered. The 1-D TDOA measurement is generated by the sensor shown as gray circle. Assuming no measurement noise, the 1-D TDOA measurement
describes potential 3-D object locations on the hyperboloid shown in red. The object, shown in black, is located on the hyperboloid. Note that any other
location on the hyperboloid will lead to the same measurement in the case without noise. (a): The prior pdf, f(x), is Gaussian, with the mean depicted as a
big blue dot. 2000 particles, shown as small light blue dots, are drawn from the prior distribution. On the right, the prior and posterior pdfs for the case with
measurement noise are shown in three separate 2-D plots. Each of these plots is obtained by depicting the prior and posterior pdfs along the three axes of the
coordinate system. (b): After importance sampling, as performed by the conventional “bootstrap” particle filter, only a single particle has a nonzero weight.
This single particle does not accurately represent the posterior pdf p(x|z1) for future processing, e.g., of a measurement, z2, provided by a second sensor.

pdfs. Fig. 1 shows an example of particle degeneracy in a 3-D

tracking scenario with a single object and a single TDOA

measurement. Particle degeneracy is exacerbated in high di-

mensional problems and in problems with low measurement

variance. In particular, it can lead to the unwanted behav-

ior that filter performance degrades as measurement variance

is reduced. As the dimension of the problem increases, or

measurement variance is reduced, the likelihood function be-

comes “peakier,” and it becomes more unlikely that a particle,

sampled from the prior distribution, is located in a region of

high likelihood.

Sometimes particle degeneracy can be avoided by using vast

numbers of particles or by implementing regularization strate-

gies [16], [25], [27]. A straightforward approach to improve

sampling efficiency and avoid particle degeneracy is to design

proposal pdfs that are similar to the posterior pdfs [23], [24],

[25]. However, finding a distribution that is easy to sample from

and simultaneously similar to posterior pdfs [23], [24], [25]

is often challenging. To improve sampling efficiency, adaptive

importance sampling can be employed [28], [29]. In particular,

auxiliary particle filters use a delayed resampling strategy to

increase the number of particles with significant weights after

importance sampling [30]. This approach can improve sampling

efficiency but can only be applied in combination with a predic-

tion step, which may be unavailable for newly introduced object

states in MOT scenarios. Furthermore, multiple particle filtering

[31], similar to a particle-based implementation of the SPA,

aims to increase sample efficiency by exploiting factorization of

the underlying statistical model [28]. Since it relies on a suitable

factorization of the conditional posterior, its applicability is

restricted. Incorporating sequential Markov chain Monte Carlo

(SMCMC) methods into particle filters [32], [33] is another

general approach for nonlinear sequential Bayesian estimation,

which is known to be very computationally expensive in high-

dimensional state spaces. An alternative approach to improve

sampling efficiency in sequential estimation is to perform the

update step of an unscented Kalman filter [34] and use the

resulting Gaussian pdf as a proposal pdf for particle filtering.

The unscented particle filter [35], [36] combines this idea with

a Gaussian mixture representation of predicted and posterior

pdfs. To the best of our knowledge, the unscented particle

filtering approach has not yet been extended to problems with

MOU and an unknown number of states to be estimated.

PFL [37], [38], [39], [40], [41] is a promising strategy for

challenging nonlinear estimation problems that has recently

received significant attention [42]. It has the potential to avoid

particle degeneracy due to its ability to actively move par-

ticles representing a prior or predicted pdf to locations of

high likelihood.1

This active motion is illustrated in Fig. 2. For PFL a ho-

motopy function is defined to formulate a pdf that can be

smoothly deformed from the predicted pdf (or prior pdf) to the

posterior pdf. PFL then makes use of the homotopy function

to incrementally move a set of particles sampled from the pre-

dicted pdf. In particular, a partial differential equation (PDE)

for particle velocity is obtained by combining the homotopy

function with the Fokker-Planck equation. The particle velocity

solution to the PDE can be discretized and used as a trans-

port equation for particle migration. After migration, the set of

particles represents the posterior pdf. There are two different

types of PFL resulting in the exact Daum and Huang (EDH)

filter and the localized exact Daum and Huang (LEDH) filter.

In the EDH filter, the PFL equations are computed once for

the mean of all particles. In contrast, in the computationally

1Conventional strategies that rely on resampling also move particles but
do so in a more passive way. In particular, in conventional strategies, after
particles are randomly drawn, only those that correspond to locations of high
likelihood remain after resampling. In challenging problems, this is prone to
particle degeneracy, i.e., the number of remaining particles can become too
low to be a representative description of the underlying posterior pdf.
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Fig. 2. Example of PFL in the tracking scenario with 3-D object state and a single 1-D TDOA measurement discussed in Fig. 1. (a): 2000 particles represent
the prior pdf at the onset of the flow, i.e., at pseudo time λ= 0, are depicted. (b): An intermediate flow state corresponding to λ= 2× 10−9 is shown.
The tracks of 8 selected particles are indicated as red dashed line with arrows. (c): At pseudo time λ= 1, particle migration is completed and the resulting
particles represent the hyperboloid-shaped posterior pdf. (d): The histogram of the flowed particles together with 1-D prior and posterior pdfs is drawn.
The representation of the posterior pdf provided by the particles after the flow is much more accurate than the single “degenerated” particle resulting from
conventional particle filtering discussed in Fig. 1. Due to approximations performed in PFL, there can be a small mismatch of particles after the flow and
the true posterior pdf. Such a mismatch can also be seen in (d) by comparing the posterior pdf with the histogram of particles at λ= 1. Invertible PFL
can eliminate such mismatch and provide an asymptotical optimal representation of the posterior pdf by making it possible to compute particle weights for
importance sampling.

more demanding LEDH filter, the PFL equations are computed

for each particle individually. PFL has been demonstrated to

achieve a superior performance complexity tradeoff compared

to existing approaches that aim at improving sampling effi-

ciency [42]. PFL is highly parallelizable [38], [39], [40] and

thus ideal for real-time processing on graphical processing

units (GPUs).

Traditional PFL methods avoid importance sampling and

can only provide an approximate representation of posterior

pdfs in general nonlinear systems [37], [38], [39], [40], [41].

Nevertheless, these “proposal-free” methods often lead to accu-

rate estimation results at a significantly reduced computational

complexity compared to BPF [42]. Recently, it has been shown

that PFL can be described by an invertible mapping and can

thus be used as a measurement-driven proposal pdf for impor-

tance sampling [42]. The resulting invertible PFL filter [42] is

an asymptotically optimal approach to nonlinear filtering that

avoids particle degeneracy and can provide accurate estimation

results in high-dimensional and nonlinear problems.

A significant limitation of the PFL filter presented in [42] is

that it assumes that the prior or predicted pdfs follow Gaussian

distributions. It is thus unsuitable for problems that involve

multimodal pdfs. For problems where the measurement noise

follows a Gaussian mixture pdf, [43] introduces the Gaus-

sian sum PFL filter. Here, the means of the Gaussian mixture

components are updated by performing an update step similar

to the LEDH. On the other hand, the covariance matrices of

the components are updated by extended Kalman filters that

also run in parallel. An extension of [43] to the case where

both driving noise and measurement noise are distributed by a

Gaussian mixture pdf is presented in [44]. Here, invertible flow

is used for particle weight update in an importance sampling

step. For problems where both driving noise and measurement

noise can be multimodal, [45] combines the invertible PFL

with a SMCMC method that relies on the Metropolis-Hastings

approach, i.e., a Metropolis-Hastings kernel is constructed us-

ing a PFL algorithm based on a GMM. However, aforemen-

tioned PFL approaches that can represent multimodal pdfs

[43], [44], [45] are unsuitable for MOT since neither model

MOU nor an unknown number of states to be estimated. For

the cooperative localization problem, a method that relies on

invertible PFL is presented in [46], [47]. This method is not

suitable for the more challenging MOT problems since it can

only be applied to problems without MOU, known number

of states to be estimated, and posterior pdfs with simple, uni-

modal shapes. A variant of the PFL filter has been proposed

for MOT [8]. In particular, EDH and LEDH variants of the

single-sensor δ-Generalized Labeled Multi-Bernoulli filter [7]

with invertible flow are presented. These approaches are unsuit-

able for MOT problems where measurements are provided by

multiple sensors.

B. Contributions, Paper Organization, and Notation

We develop a method for multisensor MOT with improved

sample efficiency that can be used in scenarios with high-

dimensional object states and informative measurements. Of

particular interest are multisensor MOT problems, where inex-

pensive sensors are used and the tracking of objects in Cartesian

coordinates is impossible based on the measurements provided

by a single sensor. In this type of tracking problems, the mea-

surement of a single sensor typically has a lower dimension than

the positions of objects. Consider a scenario where object posi-

tions are 3-D, but sensors only provide 1-D measurements, e.g.,

times of arrival (TOAs), time differences of arrival (TDOAs), or

directions of arrival (DOAs). In this type of MOT problem, prior

or predicted pdfs can have complicated multimodal shapes, e.g.,

spheres, hyperboloids, or cones at the initial step after the ap-

pearance of a new object. As an example, Figs. 1 and 2 show the

hyperboloid-shaped pdfs resulting from a TDOA measurement

model in a 3-D tracking scenario.
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Our approach performs SPA-based message passing on the

factor graph for scalable multisensor MOT developed in [10].

The messages of the SPA are computed sequentially across

sensors. To improve sampling efficiency, we embed invertible

PFL into SPA computations. For the evaluations of particle

weights, invertible PFL relies on a Gaussian representation of

the prior or predicted pdf at the onset of the flow. To represent

beliefs of object states with complicated non-Gaussian shapes,

such as, e.g., hyperboloids, as in the example in Figs. 1 and

2, we make use of a GMM representation that is known to

be asymptotically optimal [48]. Combining a GMM with an

efficient sampling approach to represent pdfs with complicated

shapes in high dimensions is inspired by unscented particle

filtering [35], [36]. A general proposal pdf that takes MOU into

account and consists of a mixture of pdfs related to different par-

ticle flows is developed. The resulting computations are asymp-

totically optimal. In particular, since particles are migrated to-

wards regions of high likelihood, an accurate approximation

of SPA messages with a relatively small number of particles

is obtained.

The technical novelty of the proposed method lies in a new

method for multitarget tracking that can achieve a superior

runtime–estimation accuracy tradeoff in nonlinear and high-

dimensional problems by improving sampling efficiency. The

improved tradeoff is obtained by carefully embedding invertible

PFL. In particular, to address MOU, association probabilities

are computed by performing parallel flows, one for each com-

ponent of the GMM and each possible measurement-to-object

association. The particles of the parallel flows are weighted

based on association probabilities and combined into a mixture

of flows. The mixture of flows provides samples of the pro-

posal for importance sampling. Since all flows are invertible,

it is possible to evaluate the proposal pdf represented by the

mixture of flows at each particle. Thus, the resulting SPA-based

computation of beliefs is asymptotically optimal in the sense

that the resulting particle representation of the beliefs provided

by the SPA is arbitrarily accurate for an increasingly large

number of Gaussian components and a number of particles. Our

method, for the first time, performs MOT with probabilistic data

association (DA) based on PFL.

We further demonstrate that the proposed multisensor MOT

can outperform reference methods based on conventional

(“bootstrap”) and unscented particle filtering in a 3-D passive

source tracking scenario. In particular, in the considered re-

alistic source tracking scenario, graph-based MOT based on

conventional particle filtering [9] cannot provide acceptable

estimation accuracy. The also considered, yet unpublished, im-

plementation of graph-based MOT based on unscented particle

filtering, has a lower estimation accuracy but a higher runtime

compared to the proposed method that embeds invertible PFL.

Key contributions of this paper are as follows.

• We develop a graph-based MOT method based on a

GMM and invertible PFL for challenging scenarios with

high-dimensional object states and arbitrarily shaped

posterior pdfs.

• We demonstrate that the proposed method can significantly

outperform reference techniques in a challenging 3-D

passive source multisensor MOT scenario and show track-

ing results using real passive acoustic data.

This paper advances over the preliminary account of our

method provided in the conference publication [49] by (i) intro-

ducing a GMM for multimodal state distribution with dynamic

kernel resampling; (ii) considering the multisensor MOT prob-

lem; (iii) presenting an improved proposal distribution based

on PFL; (iv) performing a comprehensive numerical evaluation

in a 3-D passive source tracking scenario; and (v) applying

the proposed method to an underwater acoustic dataset2. Con-

trary to the approach presented in [8], the proposed method

is suitable for multisensor scenarios. In addition, SPA-based

processing makes our approach scalable with respect to relevant

system parameters.

Notation: Random variables are displayed in sans serif, up-

right fonts and their realizations in serif, italic fonts. Vectors and

matrices are denoted by bold lowercase and uppercase letters,

respectively. For example, a random variable and its realization

are denoted by x and x, respectively, and a random vector and

its realization by x and x, respectively. Furthermore, ‖x‖ and

xT denote the Euclidean norm and the transpose of vector x,

respectively; and ∝ indicates equality up to a normalization

factor. N (x;x∗,P ) denotes the Gaussian pdf (of random vec-

tor x) with mean x∗ and covariance matrix P . The trace of

matrix M is denoted as Tr{M}. Finally, 1(a) denotes the

indicator function of the event a= 0, i.e., 1(a) = 1 if a= 0 and

0 otherwise.

II. REVIEW OF INVERTIBLE PFL

We consider the general setting of calculating the posterior

pdf based on Bayes’ rule f(x|z)∝ f(x)f(z|x) with the state

of interest x and the observed (fixed) measurement z. If the

prior pdf f(x) follows a Gaussian distribution and the likeli-

hood function f(z|x) represents a linear measurement model

z=Hx+ v with Gaussian measurement noise v, the posterior

pdf f(x|z) also follows a Gaussian distribution. In this special

case, the mean and covariance of the Gaussian posterior pdf

f(x|z) can be calculated in closed form by the Kalman update

step [51].

If the measurement model is nonlinear, e.g., z= h(x) + v,

a popular approach is to approximate the posterior pdf f(x|z)
by a set of Np weighted particles {(x(i), w(i))}

Np

i=1. Note that

the weights are normalized to one, i.e.,
∑Np

i=1 w
(i) = 1 and can

be computed based on the importance sampling principle [25]

as follows

w(i) ∝
f(x(i))f(z|x(i))

q(x(i)|z)
. (1)

Here, the proposal pdf q(x|z) is used to sample the par-

ticles {x(i)}
Np

i=1. It is an arbitrary pdf that has the same

support as f(x|z). Importance sampling is asymptotically

optimal if q(x|z) is “heavier tailed”, i.e., less informative, than

f(x|z) [24]. In particular, importance sampling can provide

2More details on the application of the proposed method to the problem of
tracking multiple whales underwater by performing TDOA measurements of
their echolocation clicks, is presented in the companion paper [50].
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an approximation of f(x|z) that can be made arbitrarily good

by choosing Np sufficiently large [25]. For Np fixed, if the

proposal q(x|z) is “more similar” to the posterior f(x|z) [24],

importance sampling is “more accurate”.

A simple choice for the proposal pdf used in the update step

of the conventional “bootstrap” particle filter [23], [25] is the

prior pdf f(x). However, for a feasible number of particles

Np and most choices of the proposal pdf, importance sampling

can suffer from particle degeneracy [26]. Particle degeneracy

is especially severe if the state x is high-dimensional and the

measurement z is informative (i.e., the likelihood function has

narrow and sharp peaks).

A. Particle Flow (PFL)

PFL [37], [38], [39], [40] is an approach that aims at avoiding

particle degeneracy. Here, particles are smoothly migrated in

the state space from a representation of the prior pdf to a

representation of the posterior pdf by solving a PDE. Let us

introduce the homotopy function πλ(x) = f(x)lλ(x) where

λ∈[0, 1] is the pseudo time of the flow process and l(x) =
f(z|x) is the likelihood function. Note that for λ= 1, the

homotopy function is equal to the unnormalized posterior pdf,

i.e., π(x)� π1(x) = f(x)l(x). The log-homotopy function is

then given by [37], [38],

φ(x, λ) = log f(x) + λ log l(x). (2)

The log-homotopy function is a pseudo posterior pdf in the

log domain that defines a smooth and continuous deformation

from φ(x, 0) = log f(x) to φ(x, 1) = log π(x). This deforma-

tion describes the PFL process.

It can be shown that the stochastic process defined by homo-

topy function πλ(x) satisfies the Fokker-Planck equation [39],

[40], [41]. Combining the Fokker-Planck equation for the zero-

diffusion case with (2) results in the following PDE [39], [40]

∂φ(x, λ)

∂x
ζ(x, λ) + log l(x) =−Tr

(∂ζ(x, λ)

∂x

)

(3)

where ζ(x, λ) = dx
dλ describes particle velocity (samples of x)

as the pseudo time λ increases from 0 to 1, i.e., as the homotopy

function is deformed from the prior pdf to the posterior pdf. This

migration is referred to as the PFL.

B. PFL Update Step

If f(x) and l(x) are Gaussians or in another exponential fam-

ily, then an exact and closed form solution for (3) is available.

The EDH filter [39], [52] makes use of this closed-form solution

in its update step. More precisely, let f(x) =N (x;x∗
0,P ) and

z=Hx+ v be a linear measurement model with measurement

noise v ∼N (v; 0,R). The exact flow solution [39], [52] now

reads ζ(x, λ) =A(λ)x+ b(λ) where we introduce

A(λ) =−
1

2
PHT(λHPHT +R)−1H (4)

and

b(λ) = (I + 2λA(λ))
[

(I + λA(λ))PHTR−1z +A(λ)x∗
0

]

.

(5)

Algorithm 1: PFL Update Step

1

[

{

x
(i)
1

}Np
i=1, {Al}

Nλ
l=1

]

= ParticleFlow
(

{

x
(i)
0

}Np
i=1,x

∗
0 ,P , z

)

2 Define pseudo time steps 0 = λ0 < λ1 < ... < λNλ
= 1;

3 for l = 1 : Nλ do

4 Calculate the linearized measurement model Hl according to (9);

5 Compute Al and bl according to (7) and (8);

6 for i = 1 : Np do

7 ζ̃(x
(i)
λl−1

, λl) = Alx
(i)
λl−1

+ bl;

8 x
(i)
λl

= x
(i)
λl−1

+ ζ̃(x
(i)
λl−1

, λl)(λl − λl−1);

9 ζ̃(x∗
λl−1

, λl) = Alx
∗
λl−1

+ bl;

10 x∗
λl

= x∗
λl−1

+ ζ̃(x∗
λl−1

, λl)(λl − λl−1);

11 Output:
{

x
(i)
1

}Np
i=1 �

{

x
(i)
λNλ

}Np
i=1 and {Al}

Nλ
l=1

Note that in (5), z is the observed and thus fixed

measurement.

This solution is extended to the nonlinear measurement

model z= h(x) + v by performing a suboptimal linearization

step. In particular, in a first-order approximation, a Jacobian

matrix is computed, i.e. H(λ) = ∂h(x)
∂x

∣

∣

∣

x=x∗
λ

where x∗
λ is the

approximated mean of x at pseudo time λ.

In a practical implementation, we calculate ζ(x, λ) at Nλ

discrete values of λ, i.e., 0 = λ0 < λ1 < ... < λNλ
= 1, to per-

form the PFL. Here, we first sample Np particles
{

x
(i)
0

}Np

i=1
�

{

x
(i)
λ0
}
Np

i=1 from f(x). Next, at each discrete pseudo time step

l ∈ {1, . . . , Nλ}, particles are migrated according to

x
(i)
λl

= x
(i)
λl−1

+ ζ̃(x
(i)
λl−1

, λl)(λl − λl−1) (6)

for all i ∈ {1, . . . , Np}. Here, the linearized flow solution

ζ̃(x
(i)
λl−1

, λl) =Alx
(i)
λl−1

+ bl is computed based on Al and bl
given by (cf. (4) and (5))

Al =−
1

2
PH l

T(λlH lPH l
T +R)−1H l (7)

bl = (I + 2λlAl)[(I + λlAl)PH l
TR−1(z − el) +Alx

∗
0].

(8)

Note that el = h(x∗
λl−1

, 0)−H lx
∗
λl−1

is the error of linear-

ization and that the linearized measurement model, H l, is com-

puted based on the mean of the last step l − 1, i.e.,

H l =
∂h(x)

∂x

∣

∣

∣

∣

x=x∗
λl−1

. (9)

The mean at which the measurement model is linearized is

typically propagated in parallel to the particles, i.e., x∗
λl

=

x∗
λl−1

+ ζ̃(x∗
λl−1

, λl)(λl − λl−1).
After the last discrete pseudo time step, l =Nλ, particles

{x
(i)
1 }

Np

i=1�{x
(i)
λNλ

}
Np

i=1 that approximately represent the unnor-

malized posterior pdf π(x) are finally obtained. Pseudocode for

the PFL update step is provided in Algorithm 1. PFL based on a

linearized model has no optimality guarantees. However, it has

been demonstrated numerically to typically provide an accurate

representation of the posterior pdf f(x|z) [37], [38], [39], [40],

[41], [42]. In what follows, the PFL related to the measurement

z as defined by (6)–(8), is denoted as x0 −→ z −→ x1 or for

notational convenience in future derivations as x0 −→ z −→ x.
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As an alternative to EDH PFL as discussed above, LEDH

PFL has been introduced in [42], [53]. Here, a linearization is

performed for each particle location individually instead of only

at the mean particle location, i.e., individual flow parameters

H
(i)
l ,A

(i)
l , and b

(i)
l are computed to migrate the particles along

their individual flows. Although the LEDH flow usually outper-

forms the EDH flow, it suffers from considerable computational

complexity since the main computational burden is related to

calculating the flow parameters.

In Fig. 2, it is depicted how PFL actively move particles

representing a prior or predicted pdfs to locations of high

likelihood. Active motion of particles leads to a significantly

improved approximation of the posterior pdf compared to con-

ventional importance sampling shown in Fig. 1.

C. Importance Sampling With Invertible Flow

PFL can be used to compute a measurement-driven proposal

pdf q(x|z) for importance sampling (cf. (1)) to perform asymp-

totically optimal estimation [42]. Here, the mapping as per-

formed by PFL x0 −→ z −→ x is invertible, i.e., there exists an in-

vertible mapping of the particles after the flow
{

x(i)
}Np

i=1
to the

particles
{

x
(i)
0

}Np

i=1
if certain constraints on the differences of

consecutive discrete pseudo times λl − λl−1, l ∈ {1, . . . , Nλ}
are satisfied [42].

By exploiting the invertible mapping, the proposal pdf result-

ing from PFL can be evaluated at the particles as [42]

qPFL(x
(i)|z) =

f(x
(i)
0 )

θ
. (10)

Here, the “mapping factor” θ is defined as

θ =

Nλ
∏

l=1

∣

∣det
[

I + (λl − λl−1)Al

]∣

∣. (11)

By plugging (10) into (1) the weight of the particle x(i) is

obtained as

w(i) ∝
θf(z|x(i))f(x(i))

f(x
(i)
0 )

. (12)

The resulting particle set {x(i), w(i)}
Np

i=1 is an asymptotically

optimal sample representation of the posterior pdf f(x|z) that

can often provide accurate estimation results in nonlinear and

high-dimensional estimation problems even if the number of

particles is moderate [42]. Pseudocode for importance sampling

with invertible PFL is provided in Algorithm 2. Note that

since the PFL used for the measurement-driven proposal pdf is

typically based on the EDH filter update step, a Gaussian prior

pdf is assumed.

An approximate Gaussian representation of this posterior

distribution can be subsequently obtained by applying Algo-

rithm 3 which calculates a mean x∗
1 and a covariance matrix

P 1 from the unnormalized weighted particles
{

x
(i)
1 , w

(i)
1

}Np

i=1
.

Note that in Algorithm 2, the same mapping factor θ is used

to calculate all particle weights. If Algorithm 3 is applied after

Algorithm 2, this factor is irrelevant since all weights are nor-

malized in Algorithm 3. However, making use of θ is important

Algorithm 2: Importance Sampling with Invertible Flow

1

[

{

x
(i)
1 , w

(i)
1

}Np
i=1

]

= InvertibleFlow
(

x∗,P , z
)

2 for i = 1 : Np do

3 Draw x
(i)
0 ∼ N

(

x;x∗,P
)

;

4 Perform PF according
[

{

x
(i)
1

}Np
i=1, {Al}

Nλ
l=1

]

= ParticleFlow
(

{

x
(i)
0

}Np
i=1,x

∗,P , z
)

;

5 // see Alg. 1

6 Compute the mapping factor θ from {Al}
Nλ
l=1 following (11);

7 for i = 1 : Np do

8 Perform weight update according to (12), i.e.,

w
(i)
1 =

θ f
(

z|x
(i)
1

)

N
(

x
(i)
1 ;x∗,P

)

N
(

x
(i)
0 ;x∗,P

) ;

9 Output:
{

x
(i)
1 , w

(i)
1

}Np
i=1

Algorithm 3: Computation of Gaussian Representation

1
[

x∗,P
]

= GaussianRepresentation
(

{

x(i), ω(i)
}Np
i=1

)

2 Normalize particles, i.e.,

3 for i = 1 : Np do

4 w(i) = ω(i)

∑Np
i′=1

ω(i′)
;

5 Compute mean and covariance matrix from particles, i.e.,

6 x∗ =
∑Np

i=1 w(i)x(i)

7 P =
∑Np

i=1 w(i)x(i)x(i)T − x∗x∗T

8 Output: x∗,P

if multiple flows are performed in parallel, as will be discussed

in Section III.

Note that instead of a particle-based covariance matrix com-

putation as performed in Line 7 of Algorithm 3, an extended

or unscented Kalman update step can be used [42]. For a large

number of particles Np, a particle-based computation is more

accurate than a computation based on the extended or unscented

Kalman update step.

III. GAUSSIAN MIXTURE REPRESENTATION FOR NONLINEAR

ESTIMATION IN HIGH-DIMENSIONS

In this section, we use GMM representations [54], [55], [56]

for nonlinear estimation in high dimensions. In particular, we

developed methods for updating the parameters of GMMs based

on PFL. This approach is suitable for high-dimensional pdfs

that are multimodal and thus relevant for estimation problems

in MOT and SLAM [19].

A. GMM Importance Sampling With Invertible Flow

As discussed in the previous Section II, for the evaluations

of particle weights, invertible particle flow relies on a Gaus-

sian representation of the prior pdf at the onset of the flow.

In challenging multisensor MOT problems, the complicated

multimodal shapes of prior and posterior pdfs (see, e.g., the

hyperboloid-shaped posterior pdf in Fig. 2(c)) can often not

be approximated accurately by a single Gaussian. A GMM

aims at representing multimodal distributions based on an ad-

ditively weighted combination of multiple Gaussian compo-

nents. Each Gaussian component is typically referred to as
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Algorithm 4: GMM Importance Samp. with Invertible Flow

1

[

{

x
∗(h)
+ ,P

(h)
+

}Nk
h=1

]

= InvertibleFlowGMM
(

{

x∗(h),P (h)
}Nk
h=1, z

)

2 for h = 1 : Nk do

3

[

{

x
(i,h)
1 , w

(i,h)
1

}Np
i=1

]

= InvertibleFlow
(

x∗(h),P (h), z
)

4 // see Alg. 2

5

[

∼,P
(h)
1

]

= GaussianRepresentation
(

{

x
(i,h)
1 , w

(i,h)
1

}Np
i=1

)

6 // see Alg. 3

7

[

{

x
∗(h)
+ ,P

(h)
+

}N′
k

h=1

]

=Resampling
({

P
(h)
1 ,

{

x
(i,h)
1 , w

(i,h)
1

}Np
i=1

}Nk

h=1

)

8 // see Alg. 5

9 Output:
{

x
∗(h)
+ ,P

(h)
+

}N′
k

h=1

Algorithm 5: Resampling

1

[

{

x
∗(h′)
+ ,P

(h′)
+

}N′
k

h′=1

]

= Resampling
({

P
(h)
1 ,

{

x
(i,h)
1 , w

(i,h)
1

}Np
i=1

}Nk

h=1

)

2 for h = 1 : Nk do

3 for i = 1 : Np do

4 w
(i,h)
1 =

w
(i,h)
1

∑Nk
h′=1

∑Np
i′=1

w
(i′,h′)
1

;

5 for h′ = 1 : N ′
k do

6 Sample index (i′, �) using
{

{

w
(i,h)
1

}Np
i=1

}Nk

h=1
;

7 Set x
∗(h′)
+ = x

(i′,�)
1 and P

(h′)
+ = P

(�)
1 ;

8 Output:
{

x
∗(h′)
+ ,P

(h′)
+

}N′
k

h′=1

a “kernel”. Let Nk be the total number of kernels and let

h ∈ {1, . . . , Nk} be the kernel index. A multimodal prior pdf

that follows a GMM representation can then be written as

f(x) = 1
Nk

∑Nk

h=1 N
(

x;x∗(h),P (h)
)

. The corresponding mul-

timodal posterior pdf f(x|z) can be computed by perform-

ing Algorithm 2 and Algorithm 3 Nk times in parallel, i.e.,

one instance of both algorithms is performed for each kernel

N
(

x;x∗(h),P (h)
)

, h ∈ {1, . . . , Nk}. To obtain a GMM rep-

resentation composed of an arbitrary number N ′
k of kernels, a

resampling step is then performed, i.e., N ′
k particles are drawn

from the overall NkNp particles based on their weights w
(h,i)
1 .

The resampled particles represent the mean of N ′
k new ker-

nels. The covariance of the new kernels is inherited from the

original kernel the mean was sampled from. Pseudocode for

GMM importance sampling with invertible PFL is provided in

Algorithm 4. Importance sampling with invertible PFL makes

use of resampling as presented in Algorithm 5.

For Nk = 1 and Np > 1, this importance sampling approach

is equivalent to invertible PFL based on the EDH update step.

Furthermore, if Np = 1, Nk > 1, this importance sampling ap-

proach is equivalent to invertible PFL based on the LEDH

update step. Note that for Np = 1, as performed by the LEDH,

an additional extended or unscented Kalman update step needs

to be used to calculate an approximate covariance matrix [42].

B. Measurement-Origin Uncertainty (MOU)

In a variety of estimation problems, the measurement model

suffers from a deficiency beyond measurement noise referred

to as MOU [3]. Here, there is a single object but multiple

measurements and it is not known which measurement was gen-

erated by the object. Consider a single object with state x and

measurements z(m),m ∈ {1, . . . ,M}. Ifm′ is the measurement

that was generated by the object, the corresponding measure-

ment model is given by z
(m′) = h(x) + v. Based on this model,

the conditional pdf of the object-originated measurement z(m′)

reads fo
(

z(m′)|x
)

. All the other measurements are false pos-

itives (FPs) that follow the FP pdf ffp
(

z(m′)
)

. It is assumed

that at most one measurement originates from the object. The

probability that the object generates a measurement is pd, and

the mean number of FPs is Poisson distributed with mean

μfp. Since it is unknown which measurement was generated

by the object, a discrete and random association variable a ∈
{0, 1, . . . ,M} is introduced. Here, a= 0 describes the event

where no measurement originated from the object and a=m,

m ∈ {1, . . . ,M} describes the event where measurement z(m)

was originated from the object. Let z= [z(1)T, . . . , z(M)T]T be

the joint measurement vector. Following common assumptions

[3], conditioned on x, the joint pdf of z and a is given by

f(z, a|x)∝

{

pdf(z
(m)|x)

μfpffp(z(m))
, a=m ∈ {1, . . . ,M}

1− pd, a= 0.
(13)

For z fixed, one can use this conditional pdf to directly compute

the MOU likelihood function

f(z|x) =
M
∑

a=0

f(z, a|x)

∝ 1− pd +

M
∑

a=1

pdf(z
(a)|x)

μfpffp(z(a))
(14)

and the marginal probability mass function (pmf)

p(a|z)∝ f(a, z)

=

∫

f(z, a|x)f(x)dx. (15)

The values of the pmf p(a|z) are also referred to as marginal

association probabilities [3], i.e., they represent the probability

of a particular association event a ∈ {0, . . . ,M} conditioned on

an observed z.

C. Importance Sampling With Invertible PFL for Problems

With MOU

In principle, the MOU likelihood function in (14) can be

directly used for importance sampling as in (1). However, in

problems with MOU, importance sampling based on invertible

PFL is complicated by the fact that there are multiple mea-

surements, and it is thus not clear which measurement should

be used to compute PFL parameters (7) and (8), i.e., the PFL

proposal pdf qPFL(x
(i)
1 |z) in (10) cannot be directly used. To

address this problem, we propose the combined proposal pdf

q(x|z) = p(a= 0|z)f(x)

+

M
∑

m=1

p(a=m|z)qPFL

(

x|z(m)
)

(16)
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where we used the marginal association probabilities p(a|z) to

weight the proposal pdfs qPFL

(

x|z(m)
)

related to PFL based

on measurements z(m), m ∈ {1, . . . ,M} (cf. (10)) and the

Gaussian prior pdf f(x) =N (x;x∗
0,P ). In particular, recall

that the proposal distribution qPFL

(

x|z(m)) related to the PFL

x0 −→ z(m) −→ x
(m), can be evaluated as

qPFL

(

x(i,m)|z(m)
)

=
N (x

(i,m)
0 ;x∗

0,P )

θ(m)
(17)

where θ(m) is the mapping factor.

A total of (M + 1)Np particles representing the proposal pdf

in (16) is obtained by drawing Np particles for each of the M +
1 components in (16) and calculating corresponding marginal

association probabilities and weights. For the first component

related to association event a= 0, Np particles
{

x(i,0)
}Np

i=1
are directly drawn from f(x), the corresponding marginal as-

sociation probability is obtained by using (13) in (15), i.e.,

p(a= 0|z)∝ 1− pd, and the corresponding combined pro-

posal weights are set to ω′(i,0) = p(a= 0|z)N (x
(i,0)
0 ;x∗

0,P )
(cf. (16)). For each other component related to association event

a=m, m ∈ {1, . . . ,M}, first Np particles
{

x
(i,m)
0

}Np

i=1
are

drawn from f(x). Next, the PFL x0 −→ z
(m) −→ x

(m) is applied

to the particles
{

x
(i,m)
0

}Np

i=1
and new particles

{

x(i,m)
}Np

i=1
are

obtained for each m ∈ {1, . . . ,M}. An approximation of each

marginal association probability p̃(a=m|z), m ∈ {1, . . . ,M}
is finally calculated from these particles by using (13) in (15)

and performing Monte Carlo integration [24] based on the

proposal pdf qPFL

(

x(i,m)|z(i,m)
)

in (17), i.e.,

p̃(a=m|z)∝

Np
∑

i=1

pdθ
(m)f

(

z(m)|x(i,m)
)

N (x(i,m);x∗
0,P )

Npμfpffp
(

z(m)
)

N (x
(i,m)
0 ;x∗

0,P )
.

(18)

The corresponding combined proposal weights are set accord-

ing to (cf. (16) and (17))

ω′(i,m) = p̃(a=m|z)
N (x

(i,m)
0 ;x∗

0,P )

θ(m)
. (19)

Finally, we reindex the resulting particles and weights
{(

ω′(i,a),

x(i,a)
)}Np

i=1
, a ∈ {0, . . . ,M} to obtain

{(

ω(l), x(l)
)}L

l=1
where

l = i(a+ 1) and L=Np(M + 1).
Following the importance sampling principle, we next aim to

compute particles
{(

w(l),x(l)
)}L

l=1
that represent the posterior

pdf f(x|z). In particular, by plugging (14) into (1) and by using
{(

ω(l),x(l)
)}

(cf. (19)) to represent q(x|z) in (1), we obtain

w(l) ∝
N (x(l);x∗

0,P )
(

1− pd +
∑M

m=1
pdf(z

(m)|x(l))f(x(l))
μfpffp(z(m))

)

ω(l)
.

(20)

The resulting set of particles
{(

w(l),x(l)
)}L

l=1
is an asymptoti-

cally optimal representation of f(x|z) for scenarios with MOU.

Algorithm 6: GMM Importance Sampling with Invert-

ible Flow and DA

1

[

{

x
∗(h)
+ ,P

(h)
+

}Nk
h=1

]

= InvertibleFlowGMMwithDA
(

{

x∗(h),P (h)
}Nk
h=1, z

)

2

[{{

{

x(i,h,a), ω(i,h,a)
}Np
i=1, θ

(h,a)
}Nk

h=1
, β(a)

}M

a=0

]

=

Evaluation
(

{

x∗(h),P (h)
}Nk
h=1, 1, z

)

3 // see Alg. 7

4

[

{

x
∗(h)
+ ,P

(h)
+

}Nk
h=1,∼

]

=

Update
({{

{

x(i,h,a), ω(i,h,a)
}Np
i=1, θ

(h,a)
}Nk

h=1
, β(a), 1

}M

a=0

)

5 // see Alg. 8

6 Output:
{

x
∗(h)
+ ,P

(h)
+

}Nk
h=1

Algorithm 7: GMM Importance Sampling with Invert-

ible Flow and DA – Measurement Evaluation

1

[{{

{

x(i,h,a), ω(i,h,a)
}Np
i=1, θ

(h,a)
}Nk

h=1
, β(a)

}M

a=0

]

=

Evaluation
(

{

x∗(h),P (h)
}Nk
h=1, p, z

)

2 Initialize association variables as β(0)=(1 − pd)p + (1 − p);

3 for h = 1 : Nk do

4 for i = 1 : Np do

5 Draw x
(i,h)
0 ∼ N

(

x(h);x∗(h),P (h)
)

;

6 Initialize particles as
{

x(i,h,0)
}Np
i=1 =

{

x
(i,h)
0

}Np
i=1;

7 Initialize proposal weights according to

8 ω(i,h,0)=N
(

x(i,h,0);x∗(h),P (h)
)

, i=1, . . . , Np;

9 Initialized mapping factor θ(h,0)=1;

10 for m = 1 : M do

11 for h = 1 : Nk do

12 Perform PFL, i.e.,

13

[

{

x(i,h,m)
}Np
i=1,

{

A
(h,m)
l

}Nλ
l=1

]

14 = ParticleFlow
(

{

x
(i,h)
0

}Np
i=1,x

∗(h),P (h), z(m)
)

15 // see Alg. 1

16 Compute mapping factor θ(h,m) from
{

A
(h,m)
l

}Nλ
l=1 as in (11);

17 Precompute weights (cf. (19) and (20)), i.e.,

18 ω(i,h,m)=
N
(

x
(i,h,0);x∗(h),P (h)

)

N
(

x
(i,h,m);x∗(h),P (h)

)

θ(h,m)
, i=1, . . . , Np;

19 Compute approximate association variables following (18), i.e.,

β(m) =
ppd

NpNkμfp

∑Nk
h=1

∑Np
i=1

f
(

z
(m)

∣

∣

x
(i,h,m)

)

ffp

(

z
(m)

)

ω(i,h,m)
;

20 Output:
{{

{

x(i,h,a), ω(i,h,a)
}Np
i=1, θ

(h,a)
}Nk

h=1
, β(a)

}M

a=0

D. GMM Importance Sampling With Invertible Flow for

Problems With MOU

For problems where the prior distribution is non-Gaussian

and potentially multimodal, GMM PFL with invertible flow dis-

cussed in Section III-A can be directly applied to problems with

MOU. Pseudocode for GMM importance sampling with the

invertible flow for MOU problems is provided in Algorithm 6.

Algorithm 6 relies on the measurement evaluation presented

in Algorithm 7 and the measurement update presented in

Algorithm 8. Note that in Algorithm 8, for future reference,

we have also introduced extrinsic DA information denoted as

κ(a), a ∈ {0, . . . ,M}. In the single object tracking considered



2044 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Algorithm 8: GMM Importance Sampling with Invert-

ible Flow and DA – Measurement Update

1

[

{

x
∗(h)
+ ,P

(h)
+

}Nk
h=1, p+

]

=

Update
({{

{

x(i,h,a), ω(i,h,a)
}Np
i=1, θ

(h,a)
}Nk

h=1
, β(a), κ(a)

}M

a=0
, p

)

2 Compute association probabilities p̃(a|z) = β(a)κ(a)
∑M

a=0 β(a)κ(a)
, a=0, . . . ,M

3 for h = 1 : Nk do

4 for a = 0 : M do

5 Update proposal weights (cf. (16)–(20)), i.e.,

6 ω′(i,h,a)= p̃(a|z)ω(i,h,a), i=1, . . . , Np;

7 Reindex particles and proposal weights using l = i(a + 1) to obtain
{(

ω(l,h),x(l,h)
)}L

l=1
from

{(

ω′(i,h,a), x(i,h,a)
)}Np

i=1,

a∈{0, . . . ,M};

8 Compute final particle weights according to (cf. (20))

9 for l = 1 : L do

10 w(l,h) =

(

κ(0)(1−pd)+
∑M

m=1
κ(m)pdf

(

z
(m)

∣

∣

x
(l,h)

)

μfpffp

(

z
(m)

)

)

ω(l,h)
;

11

[

∼,P (h)
]

= GaussianRepresentation
(

{

x(l,h), w(l,h)
}L

l=1

)

12 // see Alg. 3

13 w = p
NkL

∑Nk
h=1

∑L
l=1 w(l,h)

14 p+ = w
(1−p)p̃(a=0|z)+w

15

[

{

x
∗(h)
+ ,P

(h)
+

}Nk
h=1

]

=Resampling
({

P (h),
{

x(l,h), w(l,h)
}L

l=1

}Nk

h=1

)

16 // see Alg. 5

17 Output:
{

x
∗(h)
+ ,P

(h)
+

}Nk
h=1, p+

here, we have κ(a) = 1. Note that for later use in Section V-D,

Algorithm 7 performs measurements evaluation by also taking a

probability of existence, p, into account. Similarly, Algorithm 8

also updates p. By using p= 1 as input for Algorithm 7 (see

Algorithm 6, line 2), Algorithm 6 is equivalent to the estimation

method discussed in Sections III-B and III-C. Furthermore,

note that for consistency with Section V-D, we introduced the

notation β(a) ∝ p̃(a|z), a ∈ {0, . . . ,M} in Algorithm 6, Algo-

rithm 7, and Algorithm 8.

IV. REVIEW OF GRAPH-BASED MULTISENSOR MOT

We will first discuss the concept of potential object (PO)

states and then review the SPA messages that will later be

calculated based on PFL. A summary of the system model and

corresponding factor graph can be found in the supplemen-

tary material [57]. Graph-based MOT will be combined with

a Gaussian mixture representation and PFL-based processing

in Section V.

A. PO States

As in [9], [10], we consider MOT for an unknown, time-

varying number of objects by introducing PO states. The num-

ber of POs Jk−1 at discrete time k − 1� 0 is the maximum

possible number of objects that have generated a measurement

up to time k − 1. At time k, a new PO is introduced for each of

the Mk observed measurements, and the total number of POs is

updated as Jk = Jk−1 +Mk. All POs that have been introduced

at previous time steps are referred to as legacy POs, i.e., at time

k, there are Jk−1 legacy POs and Mk new POs.

The augmented state of PO j ∈ {1, . . . , Jk} is given by

y
(j)
k �

[

x
(j)T
k r

(j)
k

]T
, where the state x

(j)
k of PO j consists of

the position and possibly further parameters of the object rep-

resented by the PO. Furthermore, the existence variable r
(j)
k ∈

{0, 1} models the existence/nonexistence of PO j in the sense

that PO j exists at time k if and only if r
(j)
k = 1. For nonexistent

POs, i.e., r
(j)
k =0, the state x

(j)
k is obviously irrelevant. Thus,

all pdfs of augmented PO states f
(

y
(j)
k

)

= f
(

x
(j)
k , r

(j)
k

)

can

be expressed as f
(

x
(j)
k , 0

)

= f
(j)
k fD

(

x
(j)
k

)

, where fD

(

x
(j)
k

)

is

an arbitrary “dummy pdf” and f
(j)
k ∈ [0, 1] is a constant. To

distinguish between legacy and new POs, we denote by y
(j)
k

and by y
(m)
k the augmented state of a legacy PO and a new PO

states, respectively.

The concept of legacy and new POs can be extended to

scenarios with S sensors as follows. Let Mk,s be the number

of measurements at time k and sensor s ∈ (1, . . . , S), where

(1, . . . , S) is an arbitrary processing order of the sensors. The

maximum possible number of objects that generated a measure-

ment up to time k and sensor s is Jk,s = Jk,s−1 +Mk,s, with

Jk,0 � Jk−1.

B. Problem Formulation and Selected Messages of the SPA

At each time step k � 1, we consider the tracking of an un-

known number of objects based on measurements z1:k. Object

detection is performed by comparing the existence probability

p
(

r
(j)
k = 1

∣

∣z1:k

)

with a threshold Pth, i.e., PO j ∈ {1, . . . , Jk}

is declared to exist if p
(

r
(j)
k = 1

∣

∣z1:k

)

> Pth. Note that

p
(

r
(j)
k = 1

∣

∣z1:k

)

=
∫

f
(

x
(j)
k , r

(j)
k = 1

∣

∣z1:k

)

dx
(j)
k . For existent

POs, state estimation is performed by calculating the minimum

mean-square error (MMSE) estimate [58] as x̂
(j)
k �

∫

x
(j)
k

f
(

x
(j)
k

∣

∣r
(j)
k = 1, z1:k

)

dx
(j)
k , where f

(

x
(j)
k

∣

∣r
(j)
k = 1, z1:k

)

=

f
(

x
(j)
k , r

(j)
k = 1

∣

∣z1:k

)

/p
(

r
(j)
k = 1

∣

∣z1:k

)

.

Both object detection and estimation require the

marginal posterior pdfs f
(

x
(j)
k , r

(j)
k

∣

∣z1:k)� f
(

y
(j)
k

∣

∣z1:k),

j ∈ {1, . . . , Jk}. However, calculating f
(

x
(j)
k , r

(j)
k

∣

∣z1:k

)

by

direct marginalization is infeasible due to the large number

parameters in the joint posterior distribution in [57, Eq. (1)].

As in [9], [10], we consider approximate calculation by

performing the loopy SPA on the factor graph in Fig. 1

of [57] and passing messages only forward in time. This

makes it possible to efficiently calculate so-called beliefs

f̃
(

x
(j)
k , r

(j)
k

)

� f̃
(

y
(j)
k

)

, j ∈ {1, . . . , Jk} which accurately ap-

proximate the marginal posterior pdfs f
(

x
(j)
k , r

(j)
k

∣

∣z1:k

)

, j ∈
{1, . . . , Jk} needed for object detection and estimation. To

keep computational complexity feasible, at the end of each

time k with all sensors processed, a suboptimal pruning step

has to be performed. Here, POs with probability of existence

p
(j)
k �p̃(r

(j)
k =1|z1:k) below a threshold Ppr are removed from

the state space.

Next, we review the SPA messages that will later be calcu-

lated based on PFL. We will limit our discussion to messages

and beliefs related to legacy PO states. Messages and beliefs
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related to new PO states are obtained by performing similar

steps. (A complete description of message passing for MOT is

provided in [10, Section IX-A].)

We consider sequential sensor processing, where the SPA in-

corporates sensor measurements sequentially and in an arbitrary

processing order at each time step. The part of the factor graph

that represents the processing of the measurements of one sen-

sor at one time step is shown in Fig. 1 of [57]. At the processing

step related to time k and sensor s, the “prior messages” of

legacy PO states are denoted as α
(j)
k,s

(

x
(j)
k,s, r

(j)
k,s

)

= α
(j)
k,s

(

y
(j)
k,s

)

.

At time k and sensor s= 1, these message are computed by a

prediction step [10, Section IX-A1], i.e.,

α
(j)
k,1

(

x
(j)
k,1, r

(j)
k,1

)

=
∑

r
(j)
k−1∈{0,1}

∫

f
(

x
(j)
k,1, r

(j)
k,1

∣

∣x
(j)
k−1, r

(j)
k−1

)

×f̃
(

x
(j)
k−1, r

(j)
k−1

)

dx
(j)
k−1 (21)

that makes use of the state-transition function

f
(

x
(j)
k,1, r

(j)
k,1

∣

∣x
(j)
k−1, r

(j)
k−1

)

� f
(

y
(j)
k,1,

∣

∣y
(j)
k−1

)

. At the time

k and sensor s > 1, the “prior message” is the same

as the belief after the previous sensor update, i.e.,

α
(j)
k,s

(

x
(j)
k,s, r

(j)
k,s

)

� f̃
(

x
(j)
k,s−1, r

(j)
k,s−1

)

. For future reference,

we also introduce p
(j)
k,s =

∫

α
(j)
k,s

(

x
(j)
k,s, r

(j)
k,s = 1

)

dx
(j)
k,s as the

predicted probability of existence for each legacy PO. Note

that p
(j)
k,s +

∫

α
(j)
k,s

(

x
(j)
k,s, r

(j)
k,s = 0

)

dx
(j)
k,s = 1.

After the prior messages have been computed, a “measure-

ment evaluation” step for each legacy and each new PO is

performed. Here, we denote by a
(j)
k,s the association variable

related to POj at the update step related to sensor s at time

k and by b
(m)
k,s the association variable related to measure-

ment m at the update step related to sensor s at time k (see

[57, Sec. 1.2] for details). The SPA messages that are passed

from the factor nodes q(x
(j)
k,s, r

(j)
k,s, a

(j)
k,s; zk,s) in [57, Eq. (2)]

and v
(

x
(m)
k,s , r

(m)
k,s , b

(m)
k,s ; z

(m)
k,s

)

in [57, Eq. (3)] to the adjacent

variables nodes a
(j)
k,s and b

(m)
k,s , respectively, are computed. For

legacy POs, these messages are given by (see [10, Section IX])

β
(j)
k,s

(

a
(j)
k,s

)

=

∫

q
(

x
(j)
k,s, 1, a

(j)
k,s; zk,s

)

α
(j)
k,s

(

x
(j)
k,s, 1

)

dx
(j)
k,s

+ 1(a
(j)
k,s)

(

1− p(j)
k,s

)

. (22)

For new POs, the corresponding messages are denoted as

ξ
(m)
k,s

(

b
(m)
k,s

)

, m ∈ {1, . . . ,Mk,s} and are calculated similarly

(see [10, Section IX]).

Next, probabilistic DA is performed by means of itera-

tive SPA message passing with input messages β
(j)
k,s

(

a
(j)
k,s

)

,

j ∈ {1, . . . , Jk,s−1} and ξ
(m)
k,s

(

b
(m)
k,s

)

, m ∈ {1, . . . ,Mk,s} (see

[10, Section IX-A3] for details). After convergence, corre-

sponding output messages κ
(j)
k,s

(

a
(j)
k,s

)

, j ∈ {1, . . . , Jk,s−1} and

ι
(m)
k,s

(

b
(m)
k,s

)

, m ∈ {1, . . . ,Mk,s} are available for legacy POs

and new POs, respectively. Probabilistic DA is followed by a

“measurement update” step. Here, for legacy POs, messages

γ
(j)
k,s

(

x
(j)
k,s, r

(j)
k,s

)

passed from q
(

x
(j)
k,s, r

(j)
k,s, a

(j)
k,s; zk,s

)

to y
(j)
k,s are

calculated as

γ
(j)
k,s

(

x
(j)
k,s, 1

)

=

Mk,s
∑

a
(j)
k,s

=0

q
(

x
(j)
k,s, 1, a

(j)
k,s; zk,s

)

κ
(j)
k,s

(

a
(j)
k,s

)

(23)

and as γ
(j)
k,s

(

x
(j)
k,s, 0

)

= γ
(j)
k,s = κ

(j)
k,s

(

0
)

. Measurement update for

new POs is performed by following similar steps [10, Section

IX-A].

Finally, beliefs are calculated to approximate the posterior

pdfs of POs. For legacy POs, beliefs f̃
(

x
(j)
k,s, r

(j)
k,s

)

approximat-

ing f
(

x
(j)
k,s, r

(j)
k,s

∣

∣z1:k

)

are obtained as

f̃
(

x
(j)
k,s, 1

)

=
1

C
(j)
k,s

α
(j)
k,s

(

x
(j)
k,s, 1

)

γ
(j)
k,s

(

x
(j)
k,s, 1

)

(24)

and as f̃
(

x
(j)
k,s, 0

)

= f (j)

k,s
fD

(

x
(j)
k,s

)

with f (j)

k,s
=
(

1− p
(j)
k,s

)

γ
(j)
k,s/C

(j)
k,s. The constant C

(j)
k,s is given by C

(j)
k,s �

∫

α
(j)
k,s

(

x
(j)
k,s, 1

)

γ
(j)
k,s

(

x
(j)
k,s, 1

)

dx
(j)
k,s +

(

1− p
(j)
k,s

)

γ
(j)
k,s.

Calculating the beliefs f̃
(

x
(m)
k,s , r

(m)
k,s

)

, m ∈ {1, . . . ,Mk,s}
for new POs is performed by following similar steps [10, Sec-

tion IX-A]. Note that this calculation of new POs involves the

messages ι
(m)
k,s

(

b
(m)
k,s

)

and ς
(m)
k,s

(

y
(m)
k,s

)

, m ∈ {1, . . . ,Mk,s} also

shown in Fig. 1 of [57]. The resulting beliefs for legacy and new

POs are used as the prior messages for measurement update of

sensor s+ 1 as discussed above, i.e., α
(j)
k,s+1

(

x
(j)
k,s+1, r

(j)
k,s+1

)

�

f̃
(

x
(j)
k,s, r

(j)
k,s

)

, j ∈ {1, . . . , Jk,s}. When the measurements of

the last sensor in the sequence have been processed, i.e., s= S,

the resulting beliefs are used in the prediction steps (21) of the

next time step k + 1.

V. GRAPH-BASED MULTISENSOR MOT WITH

INVERTIBLE PFL

In nonlinear MOT scenarios, calculation of β
(j)
k,s

(

a
(j)
k,s

)

in (22)

and f̃
(

x
(j)
k,s, r

(j)
k,s

)

in (24) related to legacy PO states as well

as their counterparts ξ
(m)
k,s

(

b
(m)
k,s

)

and f̃
(

x
(m)
k,s , r

(m)
k,s

)

, related to

new PO states cannot be performed in closed form. We propose

a particle-based implementation where a proposal pdf is estab-

lished using invertible PFL as introduced in Section II-B. This

makes it possible to implement multisensor MOT with high

dimensional states and nonlinear measurement models. A sin-

gle time step of the proposed particle-based implementation is

discussed next. At first, we assume a single Gaussian kernel

as the prior knowledge for each PO. An extension to GMM is

also presented. In what follows, we consider a single time step,

remove the time index k, and use the index − short for k − 1.

A. Prediction

It is assumed that the beliefs of legacy POs at time

k − 1 are represented by a single Gaussian distribution, i.e.,

f̃
(

x
(j)
− , r

(j)
− = 1

)

= p
(j)
− N (x

(j)
− ;x

∗(j)
− ,P

(j)
− ), j∈{1, . . . , J−}.

In MOT problems, the state transition function underlying the
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state transition model f
(

x
(j)
1

∣

∣x
(j)
−

)

discussed in [10, Section

VIII-C] is typically linear with additive Gaussian noise, i.e.,

x
(j)
1 =Gx

(j)
− + u

(j) where G is the state transition matrix and

u
(j) is an additive Gaussian noise vector with mean u∗ and

covariance matrix P u. Consequently, the messages computed

in the prediction step are also represented by a Gaussian dis-

tribution, i.e., α
(j)
1

(

x
(j)
1 , r

(j)
1

)

= p(j)
1

N (x
(j)
1 ;x

∗(j)
1 ,P

(j)
1 ), j∈

{1, . . . , J−} with mean, covariance matrix, and existence prob-

ability given by x
∗(j)
1 =Gx

∗(j)
− + u∗, P

(j)
1 =GP

(j)
− GT +

P u, and p(j)
1

= psup
(j)
− , respectively. Here, psu is the sur-

vival probability, i.e., the probability that an object that exists

at time step k − 1, still exists at time step k. Here, if the

state transition function is not linear with additive Gaussian

noise, for each j∈{1, . . . , J−}, Np particles are drawn from

N (x
(j)
− ;x

∗(j)
− ,P

(j)
− ), the prediction step of a conventional par-

ticle filter is performed [25], and a predicted Gaussian repre-

sentation N (x
(j)
1 ;x

∗(j)
1 ,P

(j)
1 ) is computed from the resulting

particles using Algorithm 3.

B. Measurement Evaluation

The following steps are performed sequentially for

each sensor s= 1, . . . , S. First, a particle representation
{(

x
(i,j)
0,s , ω

(i,j)
0,s

)}Np

i=1
is obtained by drawing particles x

(i,j)
0,s ,

i ∈ {1, . . . , Np} from N (x
(j)
s ;x

(j)∗
s ,P (j)

s ) and setting the

corresponding weights to ω
(i,j)
0,s = p(j)

s
/Np. Next, we compute

an extended set
{{(

x
(i,a,j)
s , ω

(i,a,j)
s

)}Np

i=1

}Ms

a=0
, that consists of

Np particles and weights for each value of a
(j)
s ∈ {0, . . . ,Ms}

and j∈{1, . . . , Js−1}. (Note that measurement gating [3]

can be employed to reduce the number of measurements

used for PFL.) For a
(j)
s = 0, we perform no flow, i.e.,

we set
{(

x
(i,0,j)
s , ω

(i,0,j)
s

)}Np

i=1
=
{(

x
(i,j)
0,s , ω

(i,j)
0,s

)}Np

i=1
. For

a
(j)
s =m∈{1, . . . ,Ms}, the PFL x

(j)
0,s −→ z

(m)
s −→ x

(j,m)
s is

applied to obtain new particles
{

x
(i,m,j)
s

}Np

i=1
by migrating the

particles
{

x
(i,m,j)
0,s

}Np

i=1
. By making use of the invertible PFL

principle (cf. (10)) [42], the weights ω
(i,m,j)
s corresponding to

the migrated particles x
(i,m,j)
s are obtained as

ω(i,m,j)
s =

N (x
(i,m,j)
s ;x

(j)∗
s ,P (j)

s )θ(j)m,s

N (x
(i,j)
0,s ;x

(j)∗
s ,P (j)

s )
ω
(i,j)
0,s , i ∈ {1, . . . , Np}

with mapping factor θ(j)m,s (cf. (11)). Note that the sets of

weighted particles
{

x
(i,m,j)
s , ω

(i,m,j)
s

}Np

i=1
, m ∈ {1, . . . ,

Ms}, despite all being based on a different proposal

pdf qPFL

(

x
(j)
s |z

(m)
s

)

, m ∈ {1, . . . , Ms}, still represent

α
(j)
s

(

x
(j)
s , 1

)

. The result of this particle migration along the

flow defined by a measurement z
(m)
s , m ∈ {1, . . . ,Ms}, is

that the particles are now at locations where the evaluation

of the corresponding likelihood function f
(

z
(m)
s

∣

∣x
(j)
s

)

will

produce a significant particle weight. The migrated particles

can thus approximate message-passing operations accurately

even if the dimension of the state is high [9].

The measurement evaluation step can now be performed on

weighted particles
{{(

x
(i,a,j)
s , ω

(i,a,j)
s

)}Np

i=1

}Ms

a=0
by calculat-

ing an approximation β̃
(j)
s (a) of the messages β

(j)
s (a) in (22)

for all j∈{1, . . . , Js−1}, a∈{0, . . . ,Ms} as

β̃(j)
s

(

a(j)s = a
)

=

Np
∑

i=1

q
(

x(i,a,j)
s , 1, a; zs

)

ω(i,a,j)
s

+ 1(a)
(

1− p̃(j)
s

)

.

For the computation of a particle representation of new PO

states, we first draw particles x
(i)
0,s, i ∈ {1, . . . , Np} from fb

(

x
)

as introduced in [Sec. 1.1] [57]. Next, for each new PO j =
Js−1 +m, m∈{1, . . . ,Ms}, new particles and corresponding

weights
{

x(m,i)
s , w

(m,i)
s

}Np

i=1
are obtained from

{

x
(i)
0,s

}Np

i=1
by

performing the invertible PFL x0,s −→ z
(m)
s −→ x

(m)
s . Note that

this flow relies on the mean xb and covariance matrix P b of

fb
(

x
)

. Finally, for each m ∈ {1, . . . ,Ms} approximate mes-

sages ξ̃
(m)
s

(

b
(m)
s

)

are calculated from
{

x(m,i)
s , w

(m,i)
s

}Np

i=1
by

performing the same steps as described above for the calculation

of β̃
(j)
s

(

a
(j)
s

)

. These messages are used as an input for the

iterative SPA for DA [9], [10], [59] performed next (see [10,

Sec. VI] for details).

C. Measurement Update and Belief Calculation

After the iterative loopy SPA for DA has been converged,

the messages κ̃
(j)
s

(

a
(j)
s

)

, j∈{1, . . . , Js−1} and ι̃
(m)
s

(

b
(m)
s

)

,

m ∈ {1, . . . ,Ms} are available. These messages are used

to obtain an approximation γ̃
(j)
s

(

x
(j)
s , 1

)

of the messages

γ
(j)
s

(

x
(j)
s , 1

)

, j∈{1, . . . , Js−1} in (23) as well as an approx-

imation ς̃
(m)
s

(

x(m)
s , 1

)

of the messages ς
(m)
s

(

x(m)
s , 1

)

, m∈
{1, . . . ,Ms} in [10, Section IX].

Beliefs approximating the posterior pdf of POs are now

computed by means of importance sampling. As in Sec-

tion III-C, we use the marginal association probabilities

p(a
(j)
s |zs) to weight the proposal pdfs qPFL

(

x
(j)
s |z

(m)
s

)

related

to PFL based on measurements z
(m)
s , m ∈ {1, . . . ,Ms}. Note

that in MOT scenarios, accurate approximations of p(a
(j)
s |zs)

can be obtained as p̃(a
(j)
s |zs)∝ β̃

(j)
s

(

a
(j)
s

)

κ̃
(j)
s

(

a
(j)
s

)

(see [10,

Section IX] for details). Consequently, we obtain a new set

of reindex particles and weights
{(

x
(l,j)
s , ω

(l,j)
s ,

)}Ls

l=1
from

{(

x(i,a,j), ω(i,a,j)
)}Np

i=1
, a ∈ {0, . . . ,Ms} by using l = i(a+

1), ω
(l,j)
s = ω(i,a,j)/p̃(a

(j)
s = a|zs), and Ls =Np(Ms + 1).

Next, based on (24), we update the particle weights of the

legacy POs j∈{1, . . . , Js−1} by first computing

w′(l,j)
s = γ̃(j)

s

(

x(l,j)
s , 1

)

ω(l,j)
s , l ∈ {1, . . . , Ls}

and then calculating normalized weights as

w(l,j)
s =

w
′(l,j)
s

∑Ls

l=1 w
′(l,j)
s +

(

1− p̃(j)
s

)

γ̃
(j)
s

, l ∈ {1, . . . , Ls}.

(25)

Note that denominator of (25) is a particle-based approxi-

mation of C(j)
s in (24). The resulting particles and weights
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Algorithm 9: Gaussian Mixture Implementation of

Multisensor MOT – Single Sensor Update Step

1

[{

{

x
∗(h,j)
+ ,P

(h,j)
+

}Nk
h=1, p

(j)
+

}Js

j=1

]

=

SingleSensorUpdate
({

{

x∗(h,j),P (h,j)
}Nk
h=1, p

(j)
}Js−1

j=1
, zs

)

2

[{

{

x
∗(h,m)
+ ,P

(h,m)
+

}Nk
h=1, ξ

(m)
}Ms

m=1

]

= NewObjects
(

zs

)

3 // see Alg. 10

4 for j = 1 : Js−1 do

5

[{{

{

x(i,h,a,j), w(i,h,a,j)
}Np
i=1, θ

(h,a,j)
}Nk

h=1
, β(a,j)

}Ms

a=0

]

=

Evaluation
(

{

x∗(h,j),P (h,j)
}Nk
h=1, p

(j), zs

)

6 // see Alg. 7

7

[

{{

κ(a,j)
}Ms
a=0

}Js−1
j=1 ,

{

ι(a)
}Ms
a=0

]

=

8 DataAssociation
(

{{

β(a,j)
}Ms
a=0

}Js−1
j=1 ,

{

ξ(a)
}Ms
a=0

)

9 // see [10, Sec. VI]

10 Compute p
(m)
+ =

(ξ(m)−1)ι(m)

(ξ(m)−1)ι(m)+1
, m∈{1, . . . ,Ms}

11 for j = 1 : Js−1 do

12

[

{

x
∗(h,j)
+ ,P

(h,j)
+

}Nk
h=1, p+

(j)
]

= Update
({{

{

x(i,h,a,j),

13 w(i,h,a,j)
}Np
i=1, θ

(h,a,j)
}Nk

h=1
, β(a,j), κ(a,j)

}M

a=0
, p(j)

)

14 // see Alg. 8

15 For j=1, . . . , Js−1, reindex legacy object state information according to
{

x
∗(h,j)
+ ,P

(h,j)
+

}Nk
h=1 =

{

x
∗(h,j)
+ ,P

(h,j)
+

}Nk
h=1 and p

( j)
+ = p(j)

+
.

16 For j=Js−1+1, . . . Js, reindex new object state information following
{

x
∗(h,j)
+ ,P

(h,j)
+

}Nk
h=1=

{

x
∗(h,m)
+ ,P

(h,m)
+

}Nk
h=1 and p

( j)
+ = p

(m)
+

using m = j − Js−1 and Js = Js−1 + Ms.

17 Output:
{

{

x
∗(h,j)
+ ,P

(h,j)
+

}Nk
h=1, p

( j)
+

}Js

j=1

{(

x
(l,j)
s , w

(l,j)
s

)}Ls

l=1
represent the belief f̃

(

x
(j)
s , 1

)

of legacy

PO j ∈ {1, . . . , Js−1}. These particles can be used to cal-

culate an approximation of the existence probability as

p̃
(j)
s =

∑Ls

l=1 w
(l,j)
s . A Gaussian representation of the belief

f̃
(

x
(j)
s , r

(j)
s

)

� f̃
(

x
(j)
s , r

(j)
s

)

is furthermore obtained by apply-

ing Algorithm 3, which calculates a mean x
(j)∗
s and a covari-

ance matrix P (j)
s from

{(

x
(l,j)
s , w

(l,j)
s /p̃

(j)
s

)}Ls

l=1
.

For new POs j ∈ {Js−1 + 1, . . . , Js}, approximate existence

probabilities p̃
(j)
s and a Gaussian representation of the beliefs

f̃
(

x
(j)
s , r

(j)
s

)

� f̃
(

x(m)
s , r

(m)
s

)

, for m= j − Js−1 are calcu-

lated by performing similar steps as discussed above for legacy

POs. Existence probabilities and Gaussian representations of

the beliefs related to PO that have not been pruned are then

used as input for processing measurements of the next sensor

s+ 1 or, in case s= S, for processing at the next time step.

For POs that have been declared to exist after the last sensor

update, i.e., p̃
(j)
S > Pth, an approximate MMSE state estimate is

directly given by the mean of the Gaussian representation, i.e.,

x̂
(j) ≈ x

∗(j)
S .

D. The Proposed Multisensor MOT Method

In multisensor MOT problems with nonlinear measurement

models, object beliefs are non-Gaussian and potentially

Algorithm 10: Gaussian Mixture Implementation of

Multisensor MOT – Generation of New POs

1

[{

{

x
∗(h,m)
+ ,P

(h,m)
+

}Nk
h=1, ξ

(m)
}M

m=1

]

=NewObjects
(

zs

)

2 Draw x
∗(h)
b

, h=1, . . . , Nk from fb(x);

3 Compute covariance matrix P b from fb(x);

4 for m = 1 : Ms do

5 for h = 1 : Nk do

6

[

{

x(i,h,m), w(i,h,m)
}Np
i=1

]

=

7 InvertibleFlow
(

x
∗(h)
b ,P b, z

(m)
s

)

;

8 // see Alg. 4

9

[

∼,P
(h,m)

]

=

GaussianRepresentation
(

{

x(i,h,m), w(i,h,m)
}Np
i=1

)

;

10 // see Alg. 3

11 ξ(m) = 1 +
μb

NkNpμfpffp

(

z
(m)
s

)

∑Nk
h=1

∑Np
i=1 w(i,h,m) ;

12

[

{

x
∗(h,m)
+ ,P

(h,m)
+

}Nk
h=1

]

=

13 Resampling
({

P
(h,m)

,
{

x(i,h,m), w(i,h,m)
}Np
i=1

}Nk

h=1

)

;

14 // see Alg. 5

15 Output:
{

{

x
∗(h,m)
+ ,P

(h,m)
+

}Nk
h=1, ξ

(m)
}M

m=1

multimodal. Here, graph-based multisensor MOT with

invertible PFL has to be combined with a GMM discussed in

Section III-A. Pseudocode for a single time step of the resulting

multisensor MOT method is provided in Algorithm 11.

Algorithm 11 relies on the single sensor update step provided

in Algorithm 9 which, in turn, relies on the introduction of

new POs presented in Algorithm 10, measurement evaluation

presented in Algorithm 7 and measurement update presented

in Algorithm 8. Note that at time k = 0, Algorithm 11 is

typically initialized by setting J− = 0. However, if prior

information is available, it can be incorporated in the form

of the set
{

{

x
∗(h,j)
− ,P

(h,j)
−

}Nk

h=1
, p

(j)
−

}J−

j=1
. Note that in a

GMM, an approximate MMSE estimate can be obtained as

x̂
(j) ≈ 1

Nk

∑Nk

h=1 x
∗(h,j)
S .

Note that for the execution of the proposed method, for

each time step and each object, we need to update each par-

ticle per kernel, pseudo-time, measurement, and sensor. The

asymptotic complexity with respect to these parameters, per

object and time step, thus reads O
(

NλNkNp

(
∑S

s=1 Ms

))

.

The complexity of a conventional bootstrap implementation per

object and time step is O
(

Nb

(
∑S

s=1 Ms

))

, where Nb is the

number of particles. The improved runtime-complexity tradeoff

of the proposed method is due to the fact that, in challenging

problems as the one considered in Section VI, for NλNkNp =
Nb, the proposed method strongly outperforms graph-based

MOT that relies on conventional particle filtering. Since mem-

ory requirements per time step and object are NkNp for the

proposed method, and Nb for bootstrap particle filtering, and

since Nλ � 1, for NλNkNp =Nb, the memory requirements

of the proposed method are significantly lower compared to

conventional particle filtering.
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Algorithm 11: Single Time Step of Multisensor MOT

with GMM and Invertible Flow

1

[{

{

x∗(h,j),P (h,j)
}Nk
h=1, p

(j)
}J

j=1

]

=

MultisensorMOT
[{

{

x
∗(h,j)
− ,P

(h,j)
−

}Nk
h=1, p

(j)
−

}J−

j=1
, z

]

2 Perform prediction step according to

3 for j = 1 : J− do

4 for h = 1 : Nk do

5 x
∗(h,j)
1 =Gx

∗(h,j)
− +u∗

6 P
(h,j)
1 = GP

(h,j)
− GT+P u

7 p(j)

1
= psu p

(j)
−

8 Perform single sensor update steps sequentially, i.e.,

9 for s = 1 : S do

10

[{

{

x∗(h,j)
s ,P (h,j)

s

}Nk
h=1, p

(j)
s

}Js

j=1

]

=

SingleSensorUpdate
[{

{

x∗(h,j)
s ,P (h,j)

s

}Nk
h=1, p

(j)

s

}Js−1

j=1
, zs

]

11 // see Alg. 9

12 Set
{

{

x∗(h,j),P (h,j)
}Nk
h=1, p

(j)
}J

j=1
=

{

{

xS
∗(h,j),P

(h,j)
S

}Nk
h=1, p

(j)
S

}JS

j=1
where J = JS

13 Output:
{

{

x∗(h,j),P (h,j)
}Nk
h=1, p

(j)
}J

j=1

VI. NUMERICAL RESULTS

Next, we report simulation results assessing the performance

of our method and comparing it with that of two reference

methods for multisensor MOT.

A. Tracking Scenario and Reference Methods

We consider an underwater 3-D surveillance scenario where

eight objects are tracked by two static sonar hydrophone

arrays. 200 time steps are considered. The hydrophones

are deployed about 1300 m below sea level. The object

states at time k consist of 3-D position and velocity, i.e.,

x
(j)
k = [x

(j)
1,k x

(j)
2,k x

(j)
3,k ẋ

(j)
1,k ẋ

(j)
2,k ẋ

(j)
3,k]

T, j = 1, . . . , 8 and evolve

according to a constant-velocity model [60, Sec. 6.3.2],

where the dynamic noise has the physical interpretation as an

acceleration with variance σ2
w

. The region of interest (ROI) is

[−1000m, 1000m]× [−1000m, 1000m]× [−1500m,−500m].
Objects appear at k ∈ {1, 10, 20, 30, 40, 50, 60, 70} and

disappear at k ∈ {130, 140, 150, 160, 170, 180, 190, 200}. To

simulate a tracking scenario with challenging DA, we generate

the initial state of the objects as follows. The initial state of the

first object is randomly generated by setting its position at a

circle centered at the origin with a radius of 50 m and a depth

of 1000 m, i.e., for its position, we have

√

x
(1)2
1,0 + x

(1)2
2,0 = 50

m and x
(1)
3,0 =−1000 m. The velocity is obtained by setting

the vertical speed to zero and the horizontal velocity vector

pointing to the circle center with

√

ẋ
(1)2
1,0 + ẋ

(1)2
2,0 = 0.3m/s. For

the appearance of each further object j = 2, . . . , 8, an initial

position is randomly generated near the initial position of the

previously appeared object, i.e., around a circle with radius 50

m centered at [x
(j−1)
1,k x

(j−1)
2,k x

(j−1)
3,k ]. The initial velocity vector

is set with respect to the center circle, as discussed above. As

a result of this initialization procedure, tracks start in close

proximity in time and space. This makes it challenging to

perform DA and declare the existence of newborn objects. The

times when objects appear and disappear, as well as the states

of appearing objects, are unknown to all simulated tracking

methods. All methods aim to detect the presence of a new

object and sequentially estimate its state across time merely

based on TDOA measurements and the statistical model. The

prior intensity of object birth is modeled at each timestep by a

Poisson point process with mean μb = 0.05. The prior pdf for

newborn object, fb
(

xk

)

, is uniform on the ROI for the 3-D

position and Gaussian with zero mean and covariance matrix

5m2/s2I3 for the 3-D velocity. The survival probability is

psu = 0.95. The object declaration threshold is set to Pth = 0.5
and the pruning threshold to Ppr = 10−4.

The two hydrophone arrays have the geometry of the array

described in [61] and are located at [519m 137m − 1300m]T

and [−519m − 137m − 1300m]T, respectively. Each hydro-

phone array consists of 4 receivers. Hence, there are six

receiver pairs at each array. Each receiver pair generates TDOA

measurements and is considered a sensor for MOT. This means

that multisensor measurements z
(m)
k,s , m ∈

{

1, . . . ,Mk,s

}

and

s ∈
{

1, . . . , 12
}

are obtained by the two arrays at time k.

At each sensor s, a random number of Mk,s measurements

are generated. In particular, the TDOA measurement z
(m)
k,s

of a detected object with state x
(j)
k is modeled as z

(m)
k,s =

1
c

(

∥

∥

[

x
(j)
1,k x

(j)
2,k x

(j)
3,k

]T
−psL

∥

∥−
∥

∥

[

x
(j)
1,k x

(j)
2,k x

(j)
3,k

]T
−psR

∥

∥

)

+ v
(m)
k,s

where psL
and psR

are the paired receiver positions of sensor

s, c= 1500m/s is the propagation speed, and v
(m)
k,s is additive

zero-mean Gaussian noise with standard deviation σv that

is assumed statistically independent across s, k, and m.

The pdf of FP measurements, ffp
(

z
(m)
k,s

)

, is uniform on
1
c

[

− ‖psL
− psR

‖, ‖psL
− psR

‖
]

.

We compare the proposed SPA-based MOT with the em-

bedded particle flow sampling strategy (“SPA-PF”) with two

reference sampling strategies. The first (“SPA-PM”) follows

the sampling strategy of the bootstrap particle filter [23], [25]

and uses predicted beliefs as proposal pdf [9]. The second (yet

unpublished) (“SPA-UT”) follows the sampling strategy of the

unscented particle filter [35], i.e., it uses a Gaussian mixture

representation and the unscented transformation to calculate

an informative proposal pdfs. For SPA-PM, we use Nb = 106

particles for newborn POs and Nb = 6 · 104 particles for legacy

POs. For all other simulated methods, we use Nk = 100 kernels.

For each kernel representing a newborn PO, we set Np = 500
for SPA-UT and SPA-PF and for each kernel representing a

legacy PO, we set Np = 30 for SPA-UT and SPA-PF. Since

Nb/NpNk = 20 the memory requirements of SPA-PM are 20

times higher compared to SPA-PF and SPA-UT.

We also simulate two variants of the second reference

method to obtain a similar runtime for SPA-PF. In particular,

for “SPA-UT-1”, we set Np = 4000 for kernels representing

newborn POs and Np = 250 for kernels representing legacy

POs. Furthermore, for “SPA-UT-2”, we set Np = 6000 for ker-

nels representing newborn PO and Np = 30 for kernels rep-

resenting legacy PO. Note that the memory requirements of
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Fig. 3. MOSPA performance for high uncertainty of prior with σw = 1
m/s2. Other parameters are set as μfp = 5, σv = 10−6 s, pd = 0.9.

SPA-UT-1 and SPA-UT-2 are higher than the ones of SPA-UT

and SPA-PF due to their higher values of Np. Finally, we also

simulate a method (“SPA-PF-H”) that uses the sampling strat-

egy of SPA-PF for kernels representing newborn POs and the

sampling strategy of SPA-PM for kernels representing legacy

POs. Using fewer samples for the kernels representing legacy

PO, or even using the strategy of SPA-PF, is motivated by

the fact that the beliefs of legacy POs are typically unimodal

and quite informative. We set Nλ = 20 for SPA-PF. For all

considered methods, 100 simulation runs are performed. All

methods are implemented in MATLAB, and each simulation

run is processed on a single core of a 2.6GHz Intel Xeon Gold

6240 processor.

The performance of the six MOT methods is evaluated w.r.t.

to changes in four system parameters (i) object driving noise

standard deviation σw, (ii) mean number of FPs μfp, (iii) detec-

tion probability pd and (iv) measurement noise standard devia-

tion σv. Note that for the setting σv = 5×10−7 s, the number of

samples Np was doubled for all methods to yield high tracking

performance. The tracking accuracy of the various methods is

measured by the Euclidean distance-based OSPA metric with

cutoff parameter C=50 [62].

B. Performance Comparison

In what follows, we discuss two scenarios where particle

degeneracy is particularly pronounced. Particle degeneracy can

be caused by uninformative prior information or a very infor-

mative likelihood function. To obtain a scenario with uninfor-

mative prior information, we consider the case σw = 1 m/s2.

In addition, to obtain a scenario with an informative likelihood

function, we consider the case σv = 5×10−7 s. Fig. 3 and

Fig. 4 show the mean (MOSPA) error—averaged over 100

simulation runs—of all methods versus time k for these two

scenarios. It can be seen that all methods yield error peaks

at time steps where the objects appear. This is because the

MOT methods do not know when a new object appears and

often need a few time steps after the appearance of an object

to declare its existence based on TDOA measurements and the

statistical model. However, the proposed methods, i.e., SPA-PF

and SPA-PF-H, have lower error peaks at the time steps when

Fig. 4. MOSPA performance for informative measurement model with
σv = 5×10−7 s. Other parameters are set as μfp = 5, σw = 0.1 m/s2,
pd = 0.9.

objects appear, i.e., SPA-PF and SPA-PF-H can often declare

the existence of an object faster. In addition, SPA-PF and SPA-

PF-H can outperform the other reference methods at almost all

time steps. SPA-PM, in particular performs very poorly due to

particle degeneracy. It can be noted that SPA-UT-1 and SPA-

UT-2 have improved performance compared to SPA-UT but are

still outperformed by SPA-PF and SPA-PF-H despite their more

extensive memory requirements.

Furthermore, the MOSPA error and the runtime per time

step of the six methods for different system parameter values

are shown in Table I. The default value of the four parameters

are σw = 0.1 m/s2, σv = 1×10−6 s, μfp = 5 and pd = 0.9. For

each row corresponding to a particular system parameter value,

the value of the other three parameters is set to the default

value. For each system parameter value corresponding to one

row, the MOSPA and runtime are averaged over 100 simulation

runs and 200 time steps. The best and the second best MOSPA

value corresponding to each system parameter value is marked

by an underline and dashed underline, respectively. As can

be noted, the performance of SPA-PM significantly degrades

when measurement noise standard deviation is reduced to σv =
5×10−7 s. This unwanted and counterintuitive behavior is a

clear indicator of particle degeneracy in SPA-PM. Only with

the proposed method is it possible to yield improved tracking

performance as measurement noise variance is reduced.

It can be seen that for almost all system parameter values,

the proposed SPA-PF and SPA-PF-H outperform the refer-

ence methods. At the same time, their runtime is comparable

with SPA-UT-1 and SPA-UT-2, which yield higher memory

requirements. The only scenario where SPA-PF and SPA-PF-

H do not result in the lowest MOSPA is when σv=2×10−6 s.

In this case, since measurements are not very informative,

SPA-PM does not suffer from particle degeneracy. It can also

be seen that SPA-PF-H outperforms SPA-PF both in terms

of MOSPA and runtime, while both SPA-PF and SPA-PF-H

typically outperform SPA-UT. We can thus conclude that the

main challenge for the sampling method is the initial time step

after a new object appears in the scene. Here, beliefs of new

POs are highly uninformative and have complicated shapes. At

later time steps, beliefs become informative and unimodal and
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TABLE I
MOSPA AND RUNTIME PER TIME STEP OF DIFFERENT ALGORITHMS FOR THE CONSIDERED TRACKING SCENARIO W.R.T RELATED PARAMETERS

Parameter Value

SPA-PM SPA-UT SPA-UT-1 SPA-UT-2 SPA-PF SPA-PF-H

OSPA Runtime
(s)

OSPA Runtime
(s)

OSPA Runtime
(s)

OSPA Runtime
(s)

OSPA Runtime
(s)

OSPA Runtime
(s)

1 m/s2 11.38 20.94 7.02 3.22 6.06 19.98 6.45 25.84 5.31 21.66 4.64 13.19

0.5 m/s2 9.13 23.54 5.84 3.35 4.50 21.42 5.11 28.10 3.80 22.54 3.45 13.90σw

0.1 m/s2 7.61 23.99 4.82 3.35 3.45 21.59 4.35 29.10 2.96 22.48 2.67 13.68

2×10−6 s 4.51 21.69 5.25 3.19 4.78 19.85 5.31 25.64 5.37 22.53 5.13 14.43

1×10−6 s 7.61 20.77 4.69 3.05 3.44 19.33 4.45 25.95 3.02 20.64 2.69 12.62σv

5×10−7 s 18.60 42.83 5.10 5.06 3.59 37.94 4.28 51.82 2.61 31.72 2.40 21.26

10 7.79 33.88 5.85 5.29 4.89 33.13 6.74 41.76 4.30 41.21 4.10 29.48

5 7.61 22.66 4.78 3.15 3.48 20.20 4.38 27.02 3.28 21.58 2.82 13.21μfp

2 9.70 15.66 5.03 2.40 2.36 14.20 4.23 19.22 2.67 13.42 2.33 7.27

0.85 11.78 20.72 8.52 3.27 4.89 20.15 8.00 26.36 4.32 22.31 5.02 14.89

0.9 7.61 22.15 5.01 3.02 3.29 18.98 4.65 24.97 3.09 21.15 2.66 12.50pd

0.95 8.06 21.80 3.90 3.26 2.58 20.77 3.01 27.83 2.56 21.10 2.35 12.40

Fig. 5. MOSPA performance of SPA-PM and SPA-PF-H for different
number of kernels, Nk .

can thus be computed accurately with fewer samples and the

sampling strategy of the bootstrap particle filter. For real-time

processing, it is expected that an adaptation of the proposed

method for execution on GPUs, can strongly reduce runtimes

by exploiting the highly parallelizable nature of PFL.

In what follows, we numerically investigate the effect of the

number of kernels Nk on system performance. In particular,

we set the number of kernels as Nk ∈ {1, 5, 10, 50, 100} in

SPA-PF-H and compare SPA-PF-H for these different values

of Nk with SPA-PM. The parameters σv, μfp, σw, and pd are

set as dicussed above. For comparable runtimes of all SPA-

PF-H variants, we set Np ∈ {100000, 20000, 8000, 1300, 500}
for newborn object and Np ∈ {15000, 1000, 400, 70, 30} for

legacy objects. As expected, it can be seen in Fig. 5 that

the accuracy of SPA-PF-H improves with increasing Nk. While

SPA-PF-H performs very poorly for Nk = 1, notably, it can al-

ready outperform SPA-PM for Nk = 5. The average runtime per

time step of SPA-PF-H is 27.14 s, 15.06 s, 10.85 s, 11.35 s, and

12.72 s for Nk = 1,Nk = 5, Nk = 10, Nk = 50, and Nk = 100,

respectively, as well as 22.66 s for SPA-PM.

C. Real Data Experiment: Echolocation in Oceanography

We further validate our proposed MOT method in an under-

water acoustic tracking scenario. The acoustic signals “clicks”

emitted by two Cuvier’s beaked whales are recorded by two

high-frequency acoustic recording package (HARP) [61], each

of which is equipped with four hydrophones. HARPs are de-

ployed at a depth of 1330 m and approximately 1 km apart.

Preprocessing of acoustic data is described in [50]. Each pair

of hydrophones on each HARP acts as a sensor that provides

TDOA measurements every 7 s. Since there are 6 pairs of hy-

drophones on each HARP, there are a total of S = 12 sensors

providing TDOA measurements. We use a dataset that consists

of 172 time steps and has a total duration of roughly 20 min-

utes. It was recorded on July 1st, 2018, in Southern California.

Tracking results are shown in Fig. 6. The red solid lines show

the estimated tracks of two whales provided by SPA-PF-H. The

two whales were initially detected at depths of about 450 m and

then kept diving until a depth of 1300 m. For obvious reasons,

no ground truth information exists for this scenario. However,

we have added reference tracks of the two whales that are

the result of a trained operator hand-annotating preprocessed

acoustic data.

In Fig. 7, we show the estimate tracks of SPA-PF-H com-

pared with SPA-PM in 2-D. SPA-PM does break and merge

tracks, which makes it very difficult to determine how many

whales are actually there. Most importantly SPA-PF-H can

potentially replace the human operator, while SPA-PM cannot.

The overall number of particles of SPA-PM is 20 times that

of SPA-PF-H. The runtime per time step of SPA-PM is 4.65 s

while 2.35 s of SPA-PF-H, i.e., SPA-PF-H is faster than SPA-

PM. Since the measurement interval is 7 s, both SPA-PF-H and

SPA-PM can be used in real-time. For larger scenarios with
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Fig. 6. Underwater acoustic tracking scenario with two Cuvier’s beaked
whales.

Fig. 7. A comparison between the estimated tracks provided by SPA-PF-
H and SPA-PM. The hand-annotated tracks of the two whales are marked
for reference (gray dashed line). Each axis of the 3-D domain is shown
individually.

more than two whales, a GPU implementation is required for

real-time processing.

VII. CONCLUSION

We presented a graph-based Bayesian method for multisen-

sor MOT with high-dimensional object states. Particle degen-

eracy is avoided by performing operations on the graph using

PFL. Our numerical results indicate that the main challenge

for sampling is representing the posterior distribution at the

initial time step after a new object appears in the scene. Com-

pared to state-of-the-art reference methods, we show favorable

tracking performance in a 3-D MOT scenario. The introduced

approach is expected to be particularly appealing for passive

surveillance problems [63]. Future research avenues include

graph-based processing with embedded stochastic PFL [64],

[65] and applications including extended object tracking [13],

[66], simultaneous localization and object tracking [16], and

information-seeking control [67]. We also aim to demonstrate

real-time processing capabilities of the proposed approach by

execution on GPUs, exploiting the highly parallelizable nature

of PFL.

ACKNOWLEDGMENT

The authors would like to thank Dr. Thomas Kropfreiter for

carefully reading the manuscript. The authors would also like

to thank Junsu Jang for carefully reading the manuscript and

for his advise on real data processing.

DISTRIBUTION STATEMENT A: Approved for public re-

lease. Distribution is unlimited. This material is based upon

work supported by the Under Secretary of Defense for Research

and Engineering under Air Force Contract No. FA8702-15-D-

0001. Any opinions, findings, conclusions, or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of the Under Secretary of Defense

for Research and Engineering

REFERENCES

[1] M. Zimmer, S. Dolman, and L. Weilgart, Passive Acoustic Monitoring

of Cetaceans. Cambridge, U.K.: Cambridge Univ. Press, 2011.
[2] K. L. Cummins and M. J. Murphy, “An overview of lightning locating

systems: History, techniques, and data uses, with an in-depth look at
the U.S. NLDN,” IEEE Trans. Electromagn. Compat., vol. 51, no. 3,
pp. 499–518, Aug. 2009.

[3] Y. Bar-Shalom, P. K. Willett, and X. Tian, Tracking and Data Fusion: A

Handbook of Algorithms. Storrs, CT, USA: Yaakov Bar-Shalom, 2011.
[4] D. B. Reid, “An algorithm for tracking multiple targets,” IEEE Trans.

Autom. Control, vol. 24, no. 6, pp. 843–854, Dec. 1979.
[5] R. Mahler, Statistical Multisource-Multitarget Information Fusion. Nor-

wood, MA, USA: Artech House, 2007.
[6] J. L. Williams, “Marginal multi-Bernoulli filters: RFS derivation of

MHT, JIPDA and association-based MeMBer,” IEEE Trans. Aerosp.

Electron. Syst., vol. 51, no. 3, pp. 1664–1687, Jul. 2015.
[7] B.-N. Vo, B.-T. Vo, and H. G. Hoang, “An efficient implementation

of the generalized labeled multi-Bernoulli filter,” IEEE Trans. Signal

Process., vol. 65, no. 8, pp. 1975–1987, Apr. 2017.
[8] A. Saucan, Y. Li, and M. Coates, “Particle flow SMC delta-GLMB filter,”

in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
New Orleans, LA, USA, Mar. 2017, pp. 4381–4385.

[9] F. Meyer, P. Braca, P. Willett, and F. Hlawatsch, “A scalable algorithm
for tracking an unknown number of targets using multiple sensors,” IEEE

Trans. Signal Process., vol. 65, no. 13, pp. 3478–3493, Jul. 2017.
[10] F. Meyer et al., “Message passing algorithms for scalable multitarget

tracking,” Proc. IEEE, vol. 106, no. 2, pp. 221–259, Feb. 2018.
[11] G. Soldi, F. Meyer, P. Braca, and F. Hlawatsch, “Self-tuning algorithms

for multisensor-multitarget tracking using belief propagation,” IEEE

Trans. Signal Process., vol. 67, no. 15, pp. 3922–3937, Aug. 2019.
[12] A. Tesei, F. Meyer, and R. Been, “Tracking of multiple surface vessels

based on passive acoustic underwater arrays,” J. Acoust. Soc. Am.,
vol. 147, no. 2, pp. EL87–EL92, 2020.

[13] F. Meyer and J. L. Williams, “Scalable detection and tracking of
geometric extended objects,” IEEE Trans. Signal Process., vol. 69,
pp. 6283–6298, 2021.

[14] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 498–519, Feb. 2001.

[15] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in
wireless networks,” Proc. IEEE, vol. 97, no. 2, pp. 427–450, Feb. 2009.

[16] F. Meyer, O. Hlinka, H. Wymeersch, E. Riegler, and F. Hlawatsch,
“Distributed localization and tracking of mobile networks includ-
ing noncooperative objects,” IEEE Trans. Signal Inf. Process. Netw.,
vol. 2, no. 1, pp. 57–71, Mar. 2016.

[17] M. Z. Win, F. Meyer, Z. Liu, W. Dai, S. Bartoletti, and A. Conti,
“Efficient multisensor localization for the Internet of Things: Exploring
a new class of scalable localization algorithms,” IEEE Signal Process.

Mag., vol. 35, no. 5, pp. 153–167, 2018.



2052 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

[18] B. Teague, Z. Liu, F. Meyer, A. Conti, and M. Z. Win, “Network local-
ization and navigation with scalable inference and efficient operation,”
IEEE Trans. Mobile Comput., vol. 21, no. 6, pp. 2072–2087, Jun. 2022.

[19] E. Leitinger, F. Meyer, F. Hlawatsch, K. Witrisal, F. Tufvesson, and
M. Z. Win, “A belief propagation algorithm for multipath-based SLAM,”
IEEE Trans. Wireless Commun., vol. 18, no. 12, pp. 5613–5629,
Dec. 2019.

[20] X. Li, E. Leitinger, A. Venus, and F. Tufvesson, “Sequential detection
and estimation of multipath channel parameters using belief propaga-
tion,” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 8385–8402,
Oct. 2022.

[21] E. Leitinger, A. Venus, B. Teague, and F. Meyer, “Data fusion for
multipath-based SLAM: Combing information from multiple propaga-
tion paths,” 2022, arXiv: 2211.09241.

[22] F. Meyer and K. L. Gemba, “Probabilistic focalization for shallow water
localization,” J. Acoust. Soc. Am., vol. 150, no. 2, pp. 1057–1066, 2021.

[23] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach
to nonlinear/non-Gaussian Bayesian state estimation,” IEE Proc. F,
vol. 140, no. 2, pp. 107–113, 1993.

[24] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo

Methods in Practice. New York, NY, USA: Springer-Verlag, 2001.
[25] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial

on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.

[26] P. Bickel, B. Li, and T. Bengtsson, “Sharp failure rates for the bootstrap
particle filter in high dimensions,” in Pushing the Limits of Contem-

porary Statistics: Contributions in Honor of Jayanta K. Ghosh, vol. 3.
Beachwood, OH, USA: Inst. Math. Statist., 2008, pp. 318–329.

[27] C. Musso, N. Oudjane, and F. Le Gland, “Improving regularised particle
filters,” in Sequential Monte Carlo Methods in Practice. New York, NY,
USA: Springer-Verlag, 2001, pp. 247–271.

[28] M. F. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Miguez, and
P. M. Djuric, “Adaptive importance sampling: The past, the present,
and the future,” IEEE Signal Process. Mag., vol. 34, no. 4, pp. 60–79,
Jul. 2017.

[29] V. Elvira, L. Martino, M. F. Bugallo, and P. M. Djuric, “Elucidating
the auxiliary particle filter via multiple importance sampling [lecture
notes],” IEEE Signal Process. Mag., vol. 36, no. 6, pp. 145–152,
Nov. 2019.

[30] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle
filters,” J. Am. Stat. Assoc., vol. 94, no. 446, pp. 590–599, Jun. 1999.

[31] P. M. Djuric, T. Lu, and M. F. Bugallo, “Multiple particle filtering,” in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), vol. 3,
2007, pp. 1181–1184.

[32] C. Berzuini, N. G. Best, W. R. Gilks, and C. Larizza, “Dynamic condi-
tional independence models and Markov chain Monte Carlo methods,”
J. Am. Stat. Assoc., vol. 92, no. 440, pp. 1403–1412, 1997.

[33] W. R. Gilks and C. Berzuini, “Following a moving target-Monte Carlo
inference for dynamic Bayesian models,” J. Roy. Statist. Soc. Ser. B

Statist. Methodol., vol. 63, no. 1, pp. 127–146, 2001.
[34] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear

estimation,” Proc. IEEE, vol. 92, no. 3, pp. 401–422, Mar. 2004.
[35] R. van der Merwe, A. Doucet, N. de Freitas, and E. Wan, “The unscented

particle filter,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2000,
pp. 584–590.

[36] R. van der Merwe, A. Doucet, N. de Freitas, and E. Wang, “Four
hydrophone array for acoustic three-dimensional location,” Cambridge
Univ. Eng. Dept., Cambridge, U.K., Tech. Rep. CUED/F-INFENG/TR
380, Aug. 2000.

[37] F. Daum and J. Huang, “Nonlinear filters with log-homotopy,” in Proc.

Signal Data Process. Small Targets (SPIE), Aug. 2007, pp. 423–437.
[38] F. Daum and J. Huang, “Nonlinear filters with particle flow induced

by log-homotopy,” in Proc. Signal Process., Sensor Fusion, Target

Recognit. XVIII (SPIE), May 2009, pp. 76–87.
[39] F. Daum, J. Huang, and A. Noushin, “Exact particle flow for nonlinear

filters,” in Proc. Signal Process., Sensor Fusion, Target Recognit. XIX

(SPIE), Apr. 2010, pp. 92–110.
[40] F. Daum and J. Huang, “Particle flow with non-zero diffusion for non-

linear filters,” in Proc. Signal Process., Sensor Fusion, Target Recognit.

XXII (SPIE), May 2013, pp. 226–238.
[41] P. Bunch and S. Godsill, “Approximations of the optimal importance

density using Gaussian particle flow importance sampling,” J. Am. Stat.

Assoc., vol. 111, no. 514, pp. 748–762, Aug. 2016.
[42] Y. Li and M. Coates, “Particle filtering with invertible particle flow,”

IEEE Trans. Signal Process., vol. 65, no. 15, pp. 4102–4116, Aug. 2017.

[43] S. Pal and M. Coates, “Gaussian sum particle flow filter,” in Proc.

IEEE 7th Int. Workshop Comput. Adv. Multi-Sensor Adaptive Process.

(CAMSAP), Curacao, Dutch Antilles, Dec. 2017, pp. 1–5.
[44] S. Pal and M. Coates, “Particle flow particle filter for Gaussian mixture

noise models,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Calgary, Canada, 2018, pp. 4249–4253.

[45] Y. Li, S. Pal, and M. J. Coates, “Invertible particle-flow-based sequential
MCMC with extension to Gaussian mixture noise models,” IEEE Trans.
Signal Process., vol. 67, no. 9, pp. 2499–2512, May 2019.

[46] L. Wielandner, E. Leitinger, F. Meyer, and K. Witrisal, “Message
passing-based 9-D cooperative localization and navigation with em-
bedded particle flow,” IEEE Trans. Signal Inf. Process. Netw., vol. 9,
pp. 95–109, 2023.

[47] L. Wielandner, E. Leitinger, F. Meyer, B. Teague, and K. Witrisal,
“Message passing-based cooperative localization with embedded par-
ticle flow,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), 2022, pp. 5652–5656.

[48] B. W. Silverman, Density Estimation for Statistics and Data Analysis.
London, U.K.: Chapman & Hall, 1986.

[49] W. Zhang and F. Meyer, “Graph-based multiobject tracking with em-
bedded particle flow,” in Proc. IEEE Radar Conf., Atlanta, GA, USA,
May 2021, pp. 1–6.

[50] J. Jang, F. Meyer, E. R. Snyder, S. M. Wiggins, S. Baumann-Pickering,
and J. A. Hildebrand, “Bayesian detection and tracking of odontocetes
in 3-D from their echolocation clicks,” J. Acoust. Soc., vol. 153, no. 5,
pp. 2690–2705, May 2023.

[51] Y. Bar-Shalom, T. Kirubarajan, and X.-R. Li, Estimation with Applica-
tions to Tracking and Navigation. New York, NY, USA: Wiley, 2002.

[52] F. Daum and J. Huang, “Exact particle flow for nonlinear filters:
Seventeen dubious solutions to a first order linear underdetermined
PDE,” in Proc. Conf. Rec. 44th Asilomar Conf. Signals, Syst. Comput.,
Pacific Grove, CA, USA, Nov. 2010, pp. 64–71.

[53] T. Ding and M. J. Coates, “Implementation of the Daum-Huang exact-
flow particle filter,” in Proc. IEEE Statist. Signal Process. Workshop
(SSP), Ann Arbor, MI, USA, 2012, pp. 257–260.

[54] B. Silverman, Density Estimation for Statistics and Data Analysis. New
York, NY, USA: Taylor & Francis, 1986.

[55] G. J. McLachlan, S. X. Lee, and S. I. Rathnayake, “Finite mixture
models,” Annu. Rev. Statist. Appl., vol. 6, no. 1, pp. 355–378, 2019.

[56] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing. New York, NY,
USA: Cambridge Univ. Press, 2007.

[57] W. Zhang and F. Meyer, “Multisensor multiobject tracking with
improved sampling efficiency: Supplementary Material,” 2024. Ac-
cessed: Mar. 1, 2024. [Online]. Available: https://fmeyer.ucsd.edu/TSP-
ZhaMey-2024-SM.pdf

[58] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
New York, NY, USA: Springer-Verlag, 1994.

[59] J. L. Williams and R. Lau, “Approximate evaluation of marginal as-
sociation probabilities with belief propagation,” IEEE Trans. Aerosp.
Electron. Syst., vol. 50, no. 4, pp. 2942–2959, Oct. 2014.

[60] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with
Applications to Tracking and Navigation. New York, NY, USA:
Wiley, 2001.

[61] S. M. Wiggins and J. A. Hildebrand, “High-frequency acoustic recording
package (HARP) for broad-band, long-term marine mammal moni-
toring,” in Proc. IEEE Int. Symp. Underwater Technol., Apr. 2007,
pp. 551–557.

[62] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Trans. Signal
Process., vol. 56, no. 8, pp. 3447–3457, Aug. 2008.

[63] G. Ferri et al., “Cooperative robotic networks for underwater surveil-
lance: An overview,” IET Radar Sonar Navig., vol. 11, no. 12,
pp. 1740–1761, Dec. 2017.

[64] L. Dai and F. Daum, “Stiffness mitigation in stochastic particle flow
filters,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 4, pp. 3563–
3577, Aug. 2022.

[65] L. Dai and F. Daum, “On the design of stochastic particle flow filters,”
IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 3, pp. 2439–2450,
Jun. 2023.

[66] F. Meyer and M. Z. Win, “Scalable data association for extended object
tracking,” IEEE Trans. Signal Inf. Process. Netw., vol. 6, pp. 491–
507, 2020.

[67] F. Meyer, H. Wymeersch, M. Fröhle, and F. Hlawatsch, “Distributed
estimation with information-seeking control in agent networks,” IEEE
J. Sel. Areas Commun., vol. 33, no. 11, pp. 2439–2456, Nov. 2015.



ZHANG and MEYER: MULTISENSOR MULTIOBJECT TRACKING WITH IMPROVED SAMPLING EFFICIENCY 2053

Wenyu Zhang (Student Member, IEEE) received
the B.E. degree in information engineering from
Shanghai Jiao Tong University, Shanghai, China,
in 2017, and the M.S. degree in computer en-
gineering from the University of California San
Diego (UCSD), La Jolla, CA, USA, in 2020. He
is currently working toward the Ph.D. degree with
the Department of Electrical and Computer En-
gineering, UCSD. His research interests include
high dimensional sampling and filtering, Bayesian
inference, information seeking control, and rein-

forcement learning. In 2022, he was a recipient of an Qualcomm Inno-
vation Fellowship. He serves as a Reviewer for IEEE TRANSACTIONS ON

SIGNAL PROCESSING, IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC

SYSTEMS, and the ISIF Journal of Advances in Information Fusion.

Florian Meyer (Member, IEEE) received the M.Sc.
and Ph.D. degrees (with highest honors) in electrical
engineering from TU Wien, Vienna, Austria, in
2011 and 2015, respectively. He is an Assistant
Professor with the University of California San
Diego, La Jolla, CA, USA, jointly between Scripps
Institution of Oceanography and the Electrical and
Computer Engineering Department. From 2017 to
2019, he was a Postdoctoral Fellow and Associate
with the Laboratory for Information & Decision
Systems, Massachusetts Institute of Technology,

Cambridge, MA, USA, and from 2016 to 2017, he was a Research Scientist
with the NATO Centre for Maritime Research and Experimentation, La
Spezia, Italy. His research interests include statistical signal processing,
high-dimensional and nonlinear estimation, inference on graphs, machine
perception, and graph neural networks. He is the recipient of the 2021
ISIF Young Investigator Award, an 2022 NSF CAREER Award, an 2022
DARPA Young Faculty Award, and an 2023 ONR Young Investigator Award.
He is currently an Associate Editor with IEEE TRANSACTIONS ON SIGNAL

PROCESSING and also served as an Associate Editor for IEEE TRANSACTIONS

ON AEROSPACE AND ELECTRONIC SYSTEMS from 2021 to 2023 and the ISIF

Journal of Advances in Information Fusion from 2019 to 2022.


