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Multisensor Multiobject Tracking
With Improved Sampling Efficiency

Wenyu Zhang

Abstract—Passive monitoring of acoustic or radio sources has
important applications in modern convenience, public safety, and
surveillance. A key task in passive monitoring is multiobject
tracking (MOT). This paper presents a Bayesian method for
multisensor MOT for challenging tracking problems where the
object states are high-dimensional, and the measurements follow
a nonlinear model. Our method is developed in the framework
of factor graphs and the sum-product algorithm (SPA) and im-
plemented using random samples or “particles”. The multimodal
probability density functions provided by the SPA are effectively
represented by a Gaussian mixture model (GMM). To perform
the operations of the SPA with improved sample efficiency, we
make use of particle flow (PFL). Here, particles are migrated
towards regions of high likelihood based on the solution of a
partial differential equation. This makes it possible to obtain good
object detection and tracking performance even in challenging
multisensor MOT scenarios with single sensor measurements that
have a lower dimension than the object positions. We perform a
numerical evaluation in a passive acoustic monitoring scenario
where multiple sources are tracked in 3-D from 1-D time-
difference-of-arrival (TDOA) measurements provided by pairs
of hydrophones. Our numerical results, obtained by processing
synthetic and real data, demonstrate favorable detection and
estimation accuracy compared to state-of-the-art reference tech-
niques.

Index Terms—Multiobject tracking, particle flow, factor
graphs, sum-product algorithm.

1. INTRODUCTION

ULTIOBIJECT tracking (MOT) is an important capa-
bility for a variety of applications, including surveil-
lance, autonomy, and marine mammal research. MOT is
a high-dimensional nonlinear filtering problem complicated
by measurement-origin uncertainty (MOU), i.e., the associ-
ations between measurements and objects, and an unknown
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number of objects to be tracked. In this paper, we develop
a sequential Bayesian MOT framework for the particularly
challenging scenarios where object states are high-dimensional
and measurement models are nonlinear. We expect that our
approach is particularly useful for the passive monitoring of
acoustic [1] or radio [2] sources in 3-D.

A. State-of-the-Art

Traditional methods for MOT include probabilistic data as-
sociation (PDA) [3], multi-hypothesis tracking (MHT) [4], and
methods based on random finite sets (RFS) [5], [6], [7], [8].
Most of these traditional approaches suffer from a compu-
tational complexity that is exponential in important system
parameters, including the number of measurements, objects,
and sensors. MOT methods that are scalable with respect to
these parameters have been recently developed in the frame-
work of factor graphs and the SPA [9], [10], [11], [12], [13].
Factor graphs represent statistical independencies of random
variables. The SPA is known to provide accurate solutions
to high-dimensional Bayesian estimation problems efficiently.
In particular, by performing local operations (“messages’”) on
the factor graph, accurate approximations (“beliefs”) of the
marginal posterior pdfs of unknown states [14] are computed.
SPA-based methods are versatile and have been successfully
applied to a variety of applications, including cooperative lo-
calization [15], [16], [17], [18], simultaneous localization and
mapping (SLAM) [19], [20], [21], and focalization for under-
water localization [22].

To calculate messages that, due to nonlinearities in the system
model, cannot be evaluated in closed form, SPA-based methods
for MOT typically rely on particle-based computations that
closely follow the bootstrap particle filter (BPF) [23], [24],
[25] and rely on importance sampling. A known drawback
of this approach is that it typically fails in tracking problems
where (i) the states of individual objects have dimensions higher
than four, (ii) measurements are very informative compared
to the predicted/prior pdfs. In particular, tracking of objects
in 3-D Cartesian coordinates or employing sensors that yield
low measurement variance often leads to a failure of particle-
based computations due to particle degeneracy [26]. The parti-
cle degeneracy problem is related to the fact that predicted pdfs
are used as proposal pdfs for sampling. Since predicted pdfs
can have completely different shapes than the posterior pdfs,
this sampling strategy is highly inefficient, i.e., few or none of
the generated particles are suitable to represent the posterior
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Fig. 1. Particle degeneracy in a tracking scenario with 3-D object state, = [x1 x2 23]T, and a single 1-D TDOA measurement z1. A single time step is

considered. The 1-D TDOA measurement is generated by the sensor shown as gray circle. Assuming no measurement noise, the 1-D TDOA measurement
describes potential 3-D object locations on the hyperboloid shown in red. The object, shown in black, is located on the hyperboloid. Note that any other
location on the hyperboloid will lead to the same measurement in the case without noise. (a): The prior pdf, f(x), is Gaussian, with the mean depicted as a
big blue dot. 2000 particles, shown as small light blue dots, are drawn from the prior distribution. On the right, the prior and posterior pdfs for the case with
measurement noise are shown in three separate 2-D plots. Each of these plots is obtained by depicting the prior and posterior pdfs along the three axes of the
coordinate system. (b): After importance sampling, as performed by the conventional “bootstrap” particle filter, only a single particle has a nonzero weight.
This single particle does not accurately represent the posterior pdf p(x|z1) for future processing, e.g., of a measurement, z2, provided by a second sensor.

pdfs. Fig. 1 shows an example of particle degeneracy in a 3-D
tracking scenario with a single object and a single TDOA
measurement. Particle degeneracy is exacerbated in high di-
mensional problems and in problems with low measurement
variance. In particular, it can lead to the unwanted behav-
ior that filter performance degrades as measurement variance
is reduced. As the dimension of the problem increases, or
measurement variance is reduced, the likelihood function be-
comes “peakier,” and it becomes more unlikely that a particle,
sampled from the prior distribution, is located in a region of
high likelihood.

Sometimes particle degeneracy can be avoided by using vast
numbers of particles or by implementing regularization strate-
gies [16], [25], [27]. A straightforward approach to improve
sampling efficiency and avoid particle degeneracy is to design
proposal pdfs that are similar to the posterior pdfs [23], [24],
[25]. However, finding a distribution that is easy to sample from
and simultaneously similar to posterior pdfs [23], [24], [25]
is often challenging. To improve sampling efficiency, adaptive
importance sampling can be employed [28], [29]. In particular,
auxiliary particle filters use a delayed resampling strategy to
increase the number of particles with significant weights after
importance sampling [30]. This approach can improve sampling
efficiency but can only be applied in combination with a predic-
tion step, which may be unavailable for newly introduced object
states in MOT scenarios. Furthermore, multiple particle filtering
[31], similar to a particle-based implementation of the SPA,
aims to increase sample efficiency by exploiting factorization of
the underlying statistical model [28]. Since it relies on a suitable
factorization of the conditional posterior, its applicability is
restricted. Incorporating sequential Markov chain Monte Carlo
(SMCMC) methods into particle filters [32], [33] is another
general approach for nonlinear sequential Bayesian estimation,
which is known to be very computationally expensive in high-
dimensional state spaces. An alternative approach to improve

sampling efficiency in sequential estimation is to perform the
update step of an unscented Kalman filter [34] and use the
resulting Gaussian pdf as a proposal pdf for particle filtering.
The unscented particle filter [35], [36] combines this idea with
a Gaussian mixture representation of predicted and posterior
pdfs. To the best of our knowledge, the unscented particle
filtering approach has not yet been extended to problems with
MOU and an unknown number of states to be estimated.

PFL [37], [38], [39], [40], [41] is a promising strategy for
challenging nonlinear estimation problems that has recently
received significant attention [42]. It has the potential to avoid
particle degeneracy due to its ability to actively move par-
ticles representing a prior or predicted pdf to locations of
high likelihood.'

This active motion is illustrated in Fig. 2. For PFL a ho-
motopy function is defined to formulate a pdf that can be
smoothly deformed from the predicted pdf (or prior pdf) to the
posterior pdf. PFL then makes use of the homotopy function
to incrementally move a set of particles sampled from the pre-
dicted pdf. In particular, a partial differential equation (PDE)
for particle velocity is obtained by combining the homotopy
function with the Fokker-Planck equation. The particle velocity
solution to the PDE can be discretized and used as a trans-
port equation for particle migration. After migration, the set of
particles represents the posterior pdf. There are two different
types of PFL resulting in the exact Daum and Huang (EDH)
filter and the localized exact Daum and Huang (LEDH) filter.
In the EDH filter, the PFL equations are computed once for
the mean of all particles. In contrast, in the computationally

!Conventional strategies that rely on resampling also move particles but
do so in a more passive way. In particular, in conventional strategies, after
particles are randomly drawn, only those that correspond to locations of high
likelihood remain after resampling. In challenging problems, this is prone to
particle degeneracy, i.e., the number of remaining particles can become too
low to be a representative description of the underlying posterior pdf.
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Example of PFL in the tracking scenario with 3-D object state and a single 1-D TDOA measurement discussed in Fig. 1. (a): 2000 particles represent

the prior pdf at the onset of the flow, i.e., at pseudo time A = 0, are depicted. (b): An intermediate flow state corresponding to A =2 x 10~ is shown.

The tracks of 8 selected particles are indicated as red dashed line with arrows.

(c): At pseudo time A = 1, particle migration is completed and the resulting

particles represent the hyperboloid-shaped posterior pdf. (d): The histogram of the flowed particles together with 1-D prior and posterior pdfs is drawn.
The representation of the posterior pdf provided by the particles after the flow is much more accurate than the single “degenerated” particle resulting from
conventional particle filtering discussed in Fig. 1. Due to approximations performed in PFL, there can be a small mismatch of particles after the flow and
the true posterior pdf. Such a mismatch can also be seen in (d) by comparing the posterior pdf with the histogram of particles at A = 1. Invertible PFL
can eliminate such mismatch and provide an asymptotical optimal representation of the posterior pdf by making it possible to compute particle weights for

importance sampling.

more demanding LEDH filter, the PFL equations are computed
for each particle individually. PFL has been demonstrated to
achieve a superior performance complexity tradeoff compared
to existing approaches that aim at improving sampling effi-
ciency [42]. PFL is highly parallelizable [38], [39], [40] and
thus ideal for real-time processing on graphical processing
units (GPUs).

Traditional PFL methods avoid importance sampling and
can only provide an approximate representation of posterior
pdfs in general nonlinear systems [37], [38], [39], [40], [41].
Nevertheless, these “proposal-free” methods often lead to accu-
rate estimation results at a significantly reduced computational
complexity compared to BPF [42]. Recently, it has been shown
that PFL can be described by an invertible mapping and can
thus be used as a measurement-driven proposal pdf for impor-
tance sampling [42]. The resulting invertible PFL filter [42] is
an asymptotically optimal approach to nonlinear filtering that
avoids particle degeneracy and can provide accurate estimation
results in high-dimensional and nonlinear problems.

A significant limitation of the PFL filter presented in [42] is
that it assumes that the prior or predicted pdfs follow Gaussian
distributions. It is thus unsuitable for problems that involve
multimodal pdfs. For problems where the measurement noise
follows a Gaussian mixture pdf, [43] introduces the Gaus-
sian sum PFL filter. Here, the means of the Gaussian mixture
components are updated by performing an update step similar
to the LEDH. On the other hand, the covariance matrices of
the components are updated by extended Kalman filters that
also run in parallel. An extension of [43] to the case where
both driving noise and measurement noise are distributed by a
Gaussian mixture pdf is presented in [44]. Here, invertible flow
is used for particle weight update in an importance sampling
step. For problems where both driving noise and measurement
noise can be multimodal, [45] combines the invertible PFL
with a SMCMC method that relies on the Metropolis-Hastings

approach, i.e., a Metropolis-Hastings kernel is constructed us-
ing a PFL algorithm based on a GMM. However, aforemen-
tioned PFL approaches that can represent multimodal pdfs
[43], [44], [45] are unsuitable for MOT since neither model
MOU nor an unknown number of states to be estimated. For
the cooperative localization problem, a method that relies on
invertible PFL is presented in [46], [47]. This method is not
suitable for the more challenging MOT problems since it can
only be applied to problems without MOU, known number
of states to be estimated, and posterior pdfs with simple, uni-
modal shapes. A variant of the PFL filter has been proposed
for MOT [8]. In particular, EDH and LEDH variants of the
single-sensor §-Generalized Labeled Multi-Bernoulli filter [7]
with invertible flow are presented. These approaches are unsuit-
able for MOT problems where measurements are provided by
multiple sensors.

B. Contributions, Paper Organization, and Notation

We develop a method for multisensor MOT with improved
sample efficiency that can be used in scenarios with high-
dimensional object states and informative measurements. Of
particular interest are multisensor MOT problems, where inex-
pensive sensors are used and the tracking of objects in Cartesian
coordinates is impossible based on the measurements provided
by a single sensor. In this type of tracking problems, the mea-
surement of a single sensor typically has a lower dimension than
the positions of objects. Consider a scenario where object posi-
tions are 3-D, but sensors only provide 1-D measurements, e.g.,
times of arrival (TOAs), time differences of arrival (TDOASs), or
directions of arrival (DOAs). In this type of MOT problem, prior
or predicted pdfs can have complicated multimodal shapes, e.g.,
spheres, hyperboloids, or cones at the initial step after the ap-
pearance of a new object. As an example, Figs. 1 and 2 show the
hyperboloid-shaped pdfs resulting from a TDOA measurement
model in a 3-D tracking scenario.
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Our approach performs SPA-based message passing on the
factor graph for scalable multisensor MOT developed in [10].
The messages of the SPA are computed sequentially across
sensors. To improve sampling efficiency, we embed invertible
PFL into SPA computations. For the evaluations of particle
weights, invertible PFL relies on a Gaussian representation of
the prior or predicted pdf at the onset of the flow. To represent
beliefs of object states with complicated non-Gaussian shapes,
such as, e.g., hyperboloids, as in the example in Figs. 1 and
2, we make use of a GMM representation that is known to
be asymptotically optimal [48]. Combining a GMM with an
efficient sampling approach to represent pdfs with complicated
shapes in high dimensions is inspired by unscented particle
filtering [35], [36]. A general proposal pdf that takes MOU into
account and consists of a mixture of pdfs related to different par-
ticle flows is developed. The resulting computations are asymp-
totically optimal. In particular, since particles are migrated to-
wards regions of high likelihood, an accurate approximation
of SPA messages with a relatively small number of particles
is obtained.

The technical novelty of the proposed method lies in a new
method for multitarget tracking that can achieve a superior
runtime—estimation accuracy tradeoff in nonlinear and high-
dimensional problems by improving sampling efficiency. The
improved tradeoff is obtained by carefully embedding invertible
PFL. In particular, to address MOU, association probabilities
are computed by performing parallel flows, one for each com-
ponent of the GMM and each possible measurement-to-object
association. The particles of the parallel flows are weighted
based on association probabilities and combined into a mixture
of flows. The mixture of flows provides samples of the pro-
posal for importance sampling. Since all flows are invertible,
it is possible to evaluate the proposal pdf represented by the
mixture of flows at each particle. Thus, the resulting SPA-based
computation of beliefs is asymptotically optimal in the sense
that the resulting particle representation of the beliefs provided
by the SPA is arbitrarily accurate for an increasingly large
number of Gaussian components and a number of particles. Our
method, for the first time, performs MOT with probabilistic data
association (DA) based on PFL.

We further demonstrate that the proposed multisensor MOT
can outperform reference methods based on conventional
(“bootstrap”) and unscented particle filtering in a 3-D passive
source tracking scenario. In particular, in the considered re-
alistic source tracking scenario, graph-based MOT based on
conventional particle filtering [9] cannot provide acceptable
estimation accuracy. The also considered, yet unpublished, im-
plementation of graph-based MOT based on unscented particle
filtering, has a lower estimation accuracy but a higher runtime
compared to the proposed method that embeds invertible PFL.

Key contributions of this paper are as follows.

« We develop a graph-based MOT method based on a
GMM and invertible PFL for challenging scenarios with
high-dimensional object states and arbitrarily shaped
posterior pdfs.

« We demonstrate that the proposed method can significantly
outperform reference techniques in a challenging 3-D
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passive source multisensor MOT scenario and show track-
ing results using real passive acoustic data.

This paper advances over the preliminary account of our
method provided in the conference publication [49] by (i) intro-
ducing a GMM for multimodal state distribution with dynamic
kernel resampling; (ii) considering the multisensor MOT prob-
lem; (iii) presenting an improved proposal distribution based
on PFL; (iv) performing a comprehensive numerical evaluation
in a 3-D passive source tracking scenario; and (v) applying
the proposed method to an underwater acoustic dataset?. Con-
trary to the approach presented in [8], the proposed method
is suitable for multisensor scenarios. In addition, SPA-based
processing makes our approach scalable with respect to relevant
system parameters.

Notation: Random variables are displayed in sans serif, up-
right fonts and their realizations in serif;, italic fonts. Vectors and
matrices are denoted by bold lowercase and uppercase letters,
respectively. For example, a random variable and its realization
are denoted by x and x, respectively, and a random vector and
its realization by x and «, respectively. Furthermore, ||| and
2T denote the Euclidean norm and the transpose of vector x,
respectively; and  indicates equality up to a normalization
factor. N'(z; «*, P) denotes the Gaussian pdf (of random vec-
tor x) with mean x* and covariance matrix P. The trace of
matrix M is denoted as Tr{M}. Finally, 1(a) denotes the
indicator function of the event a = 0, i.e., 1(a) = 1 if a = 0 and
0 otherwise.

II. REVIEW OF INVERTIBLE PFL

We consider the general setting of calculating the posterior
pdf based on Bayes’ rule f(x|z) x f(x)f(z|x) with the state
of interest & and the observed (fixed) measurement z. If the
prior pdf f(x) follows a Gaussian distribution and the likeli-
hood function f(z|x) represents a linear measurement model
z = Hx + v with Gaussian measurement noise v, the posterior
pdf f(x|z) also follows a Gaussian distribution. In this special
case, the mean and covariance of the Gaussian posterior pdf
f(x|z) can be calculated in closed form by the Kalman update
step [51].

If the measurement model is nonlinear, e.g., z = h(x) + v,
a popular approach is to approximate the posterior pdf f(x|z)
by a set of N, weighted particles {(z(®, (")}, . Note that
the weights are normalized to one, i.e., Ef\é’l w® =1 and can
be computed based on the importance sampling principle [25]
as follows

w® o f(w(i))f(ﬂw(i)).

d@0]z) W

Here, the proposal pdf ¢(x|z) is used to sample the par-
ticles {w(i)}ﬁvz"l. It is an arbitrary pdf that has the same
support as f(x|z). Importance sampling is asymptotically
optimal if ¢(x|z) is “heavier tailed”, i.e., less informative, than
f(x|z) [24]. In particular, importance sampling can provide

2More details on the application of the proposed method to the problem of
tracking multiple whales underwater by performing TDOA measurements of
their echolocation clicks, is presented in the companion paper [50].



2040

an approximation of f(x|z) that can be made arbitrarily good
by choosing N, sufficiently large [25]. For N, fixed, if the
proposal ¢(x|z) is “more similar” to the posterior f(x|z) [24],
importance sampling is “more accurate”.

A simple choice for the proposal pdf used in the update step
of the conventional “bootstrap” particle filter [23], [25] is the
prior pdf f(x). However, for a feasible number of particles
N, and most choices of the proposal pdf, importance sampling
can suffer from particle degeneracy [26]. Particle degeneracy
is especially severe if the state « is high-dimensional and the
measurement z is informative (i.e., the likelihood function has
narrow and sharp peaks).

A. Particle Flow (PFL)

PFL [37], [38], [39], [40] is an approach that aims at avoiding
particle degeneracy. Here, particles are smoothly migrated in
the state space from a representation of the prior pdf to a
representation of the posterior pdf by solving a PDE. Let us
introduce the homotopy function 7y (x) = f(z)I*(x) where
A€[0,1] is the pseudo time of the flow process and [(x) =
f(z]z) is the likelihood function. Note that for A =1, the
homotopy function is equal to the unnormalized posterior pdf,
ie., m(x) £ 71 (x) = f(x)l(x). The log-homotopy function is
then given by [37], [38],

d(z, A) =log f(x) + Aogl(x). 2)

The log-homotopy function is a pseudo posterior pdf in the
log domain that defines a smooth and continuous deformation
from ¢(x,0) = log f(x) to ¢(x, 1) =log 7(x). This deforma-
tion describes the PFL process.

It can be shown that the stochastic process defined by homo-
topy function 7 () satisfies the Fokker-Planck equation [39],
[40], [41]. Combining the Fokker-Planck equation for the zero-
diffusion case with (2) results in the following PDE [39], [40]

op(x, \) ¢ (x, )\))

TC(:B, A) +logi(z) = —Tr(T

where ¢(x, \) = 92 describes particle velocity (samples of x)
as the pseudo time A increases from 0 to 1, i.e., as the homotopy
function is deformed from the prior pdf to the posterior pdf. This
migration is referred to as the PFL.

3

B. PFL Update Step

If f(«) and [(x) are Gaussians or in another exponential fam-
ily, then an exact and closed form solution for (3) is available.
The EDH filter [39], [52] makes use of this closed-form solution
in its update step. More precisely, let f(x) = N (x; zf, P) and
z = Hx + v be a linear measurement model with measurement
noise v ~ N (v; 0, R). The exact flow solution [39], [52] now
reads ¢(x, \) = A(N)x + b(\) where we introduce

AN = —%PHT()\HPHT +R)'H %)

and

b(A\) = (I +2 AN)[(I + XAN)PH "R 'z + A(\)zj].
(%)
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Algorithm 1: PFL Update Step

1 [{wi” }jvzpl, {AL};\Q‘I] = ParlicleFlow({wéi)}f’:pl, x5, P, z)
2 Define pseudo time steps 0 = Ao < A1 < ... <Ay, =15
3 forl=1:N, do

4 Calculate the linearized measurement model H; according to (9);
5 Compute A; and b; according to (7) and (8);
6 for i =1: N, do
%o (1) A=A (i) b
7 C(mszf 1) = Ty, tos
s al) =2} +C@) A - o
9 CmX, M) = A, +bi
10 w’;l :mj\lil +C(m§l71,kl)()\l —Ai—1);

i)y IV i N N
11 Output: {m(l >}i:pl = {z&;v)\ b2 and {A L2

Note that in (5), z is the observed and thus fixed
measurement.

This solution is extended to the nonlinear measurement
model z = h(x) + v by performing a suboptimal linearization
step. In particular, in a first-order approximation, a Jacobian

Oh(x)

matrix is computed, i.e. H(\) = —5_ where x} is the

approximated mean of x at pseudo time .
In a practical implementation, we calculate ¢(x, \) at Ny
discrete values of A, i.e., 0 =Xg < A\ <... < Ay, =1, to per-

form the PFL. Here, we first sample /V;, particles {m(()i) }jvzplé

{ wgfg}iv:pl from f(x). Next, at each discrete pseudo time step

le{l,..., Ny}, particles are migrated according to
o) =2l 4@l A=) ©
for all i€ {1,...,Np,}. Here, the linearized flow solution
C(a:gbl)il, Al = Am:&?fl + b, is computed based on A; and b;

given by (cf. (4) and (5))
1

A = fiPHlT(AZHZPHlT +R)"'H, (7
b = (I + QAIAZ)[(I + )\IAZ)PHZTRil(Z — el) + Alw(";]
3)

Note that e; = h(z}, ,0) — H;z}, | is the error of linear-
ization and that the linearized measurement model, H, is com-
puted based on the mean of the last step [ — 1, i.e.,

_ Oh(x)
H. = ox

)

*
r=x
Al—1

The mean at which the measurement model is linearized is
typically ~propagated in parallel to the particles, i.e., 3, =
x3, , FC@y, )N = N

After the last discrete pseudo time step, [ = N, particles
{:1:57‘) }ivz"l = {mgf])v }fi"l that approximately represent the unnor-
malized posterior })df m(x) are finally obtained. Pseudocode for
the PFL update step is provided in Algorithm 1. PFL based on a
linearized model has no optimality guarantees. However, it has
been demonstrated numerically to typically provide an accurate
representation of the posterior pdf f(x|z) [37], [38], [39], [40],
[41], [42]. In what follows, the PFL related to the measurement
z as defined by (6)—(8), is denoted as xo — z — x; or for
notational convenience in future derivations as xo — z — X.
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As an alternative to EDH PFL as discussed above, LEDH
PFL has been introduced in [42], [53]. Here, a linearization is
performed for each particle location individually instead of only
at the mean partiqle location, i.e., individual flow parameters
H l(z), Al(z) ,and bl(’) are computed to migrate the particles along
their individual flows. Although the LEDH flow usually outper-
forms the EDH flow, it suffers from considerable computational
complexity since the main computational burden is related to
calculating the flow parameters.

In Fig. 2, it is depicted how PFL actively move particles
representing a prior or predicted pdfs to locations of high
likelihood. Active motion of particles leads to a significantly
improved approximation of the posterior pdf compared to con-
ventional importance sampling shown in Fig. 1.

C. Importance Sampling With Invertible Flow

PFL can be used to compute a measurement-driven proposal
pdf g(x|z) for importance sampling (cf. (1)) to perform asymp-
totically optimal estimation [42]. Here, the mapping as per-
formed by PFL xy — z — x is invertible, i.e., there exists an in-
vertible mapping of the particles after the flow {x(*) }jvz"l to the

particles {w((f’) }j\f:pl if certain constraints on the differences of
consecutive discrete pseudo times A\; — A\;_1, L € {1,..., Ny}
are satisfied [42].

By exploiting the invertible mapping, the proposal pdf result-
ing from PFL can be evaluated at the particles as [42]

(4)
; T
gerL(z?|z) = ¥' (19)
Here, the “mapping factor” 6 is defined as
N
0 =] |det[I+ (N —N-1)A]]. (11

=1

By plugging (10) into (1) the weight of the particle (¥ is
obtained as

0f(z|z®) f(x)
Fla)

The resulting particle set {z("), w(i)}fipl is an asymptotically
optimal sample representation of the posterior pdf f(x|z) that
can often provide accurate estimation results in nonlinear and
high-dimensional estimation problems even if the number of
particles is moderate [42]. Pseudocode for importance sampling
with invertible PFL is provided in Algorithm 2. Note that
since the PFL used for the measurement-driven proposal pdf is
typically based on the EDH filter update step, a Gaussian prior
pdf is assumed.

An approximate Gaussian representation of this posterior
distribution can be subsequently obtained by applying Algo-
rithm 3 which calculates a mean ] and a covariance matrix
P from the unnormalized weighted particles {wgl), mne }?21.
Note that in Algorithm 2, the same mapping factor 6 is used
to calculate all particle weights. If Algorithm 3 is applied after
Algorithm 2, this factor is irrelevant since all weights are nor-
malized in Algorithm 3. However, making use of  is important

12)

w® o
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Algorithm 2: Importance Sampling with Invertible Flow

1 {{ac(li)7w§i>}ﬁ>l] = InvertibleFlow (z*, P, z)
2 fori=1: N, do
3 L Draw m(()i) ~N(z;z* P);
4 Perform PF according
[{w&” }5\2’1, {Al}i\]:)‘l} = ParticleFlow({wgi)}{\g’l, z*, P, z);
5 // see Alg. 1

6 Compute the mapping factor 6 from {A; 5\2‘1 following (11);
7 for i =1: N, do
8 L Perform weight update according to (12), i.e.,

o 92{ein ) ¥ (ol ).
9 Output: {a{?, w(" }5\2’1

N(m(()i);m*,P)

Algorithm 3: Computation of Gaussian Representation

1 [z*, P] = GaussianRepresentation({w("’),w("’) }f\,:pl)
2 Normalize particles, i.e.,
3 fori=1:Nj do

(i) — W@ .
4 w =N - H

L T2y ("
5 Compute mean and covariance matrix from particles, i.e.,
6 ¥ = ZNPI w® g (®
=

;P = Zﬁ\’zpl w® gD (DT _ x o T

8 Output: ™, P

if multiple flows are performed in parallel, as will be discussed
in Section III.

Note that instead of a particle-based covariance matrix com-
putation as performed in Line 7 of Algorithm 3, an extended
or unscented Kalman update step can be used [42]. For a large
number of particles Ny, a particle-based computation is more
accurate than a computation based on the extended or unscented
Kalman update step.

III. GAUSSIAN MIXTURE REPRESENTATION FOR NONLINEAR
ESTIMATION IN HIGH-DIMENSIONS

In this section, we use GMM representations [54], [55], [56]
for nonlinear estimation in high dimensions. In particular, we
developed methods for updating the parameters of GMMs based
on PFL. This approach is suitable for high-dimensional pdfs
that are multimodal and thus relevant for estimation problems
in MOT and SLAM [19].

A. GMM Importance Sampling With Invertible Flow

As discussed in the previous Section II, for the evaluations
of particle weights, invertible particle flow relies on a Gaus-
sian representation of the prior pdf at the onset of the flow.
In challenging multisensor MOT problems, the complicated
multimodal shapes of prior and posterior pdfs (see, e.g., the
hyperboloid-shaped posterior pdf in Fig. 2(c)) can often not
be approximated accurately by a single Gaussian. A GMM
aims at representing multimodal distributions based on an ad-
ditively weighted combination of multiple Gaussian compo-
nents. Each Gaussian component is typically referred to as
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Algorithm 4: GMM Importance Samp. with Invertible Flow

1 {{wi(h), P$L> }hN§1] = lnvenibleFlowGMM({w*(h’), pM }ivil, z)
2 for h=1: Ny do

3 [{2l"" w{™"} 12 | = InvertibleFlow (2, P™, 2 )

4 // see Alg. 2

5 [N P(h)] = GaussmnRepresentatlon({w(l ) Y’h)}i\fJ

6 // see Alg. 3
4

7 {{:cj_(h'), PE:L)};:E ] Resamphng({P(h) {z] (k) (1 h)} } )

8 // see Alg. 5

* N/
9 Output: {a} ™), P}k

Algorithm 5: Resampling

#(h") p(r") Ni
! {{“ﬂ P
2 for h=1: N do

] = Resampling({PEh)7 {mﬁi’h), wgi’h) }fvp

1)

3 for i =1: N, do
) (i h)
4 wi™" = N Np WD ;
Eh’ 1Z
5 for b’ =1: Ny do
; N
6 Sample index (', /) using {{wY"h)}?fl} K
7 Set m*(hl> = ('il‘m and PE:L/) =p{";

8 Output: {w*(h )P(h )}h,_l

a “kernel”. Let Ny be the total number of kernels and let
he{1,..., Nx} be the kernel index. A multimodal prior pdf
that follows a GMM representation can then be written as
flx)=§- N N (25 2™ PM). The corresponding mul-
timodal posterior pdf f(x|z) can be computed by perform-
ing Algorithm 2 and Algorithm 3 Ny times in parallel, i.e.,
one instance of both algorithms is performed for each kernel
N (z; 2, P(h)), he{l,..., N¢}. To obtain a GMM rep-
resentation composed of an arbitrary number Ny, of kernels, a
resampling step is then performed, i.e., IV} particles are drawn
from the overall Ny V,, particles based on their weights w( 2
The resampled particles represent the mean of N, new ker—
nels. The covariance of the new kernels is inherited from the
original kernel the mean was sampled from. Pseudocode for
GMM importance sampling with invertible PFL is provided in
Algorithm 4. Importance sampling with invertible PFL. makes
use of resampling as presented in Algorithm S.

For Ny =1 and N;, > 1, this importance sampling approach
is equivalent to invertible PFL based on the EDH update step.
Furthermore, if N, = 1, Ny > 1, this importance sampling ap-
proach is equivalent to invertible PFL based on the LEDH
update step. Note that for N, = 1, as performed by the LEDH,
an additional extended or unscented Kalman update step needs
to be used to calculate an approximate covariance matrix [42].

B. Measurement-Origin Uncertainty (MOU)

In a variety of estimation problems, the measurement model
suffers from a deficiency beyond measurement noise referred
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to as MOU [3]. Here, there is a single object but multiple
measurements and it is not known which measurement was gen-
erated by the object. Consider a single object with state x and
measurements z(™), m € {1,..., M}.If m/ is the measurement
that was generated by the object, the corresponding measure-
ment model is given by z(™') = h(x) + v. Based on this model,
the conditional pdf of the object-originated measurement z(m")
reads fo( m’) |ac) All the other measurements are false pos-
itives (FPs) that follow the FP pdf fg, (2(™")). It is assumed
that at most one measurement originates from the object. The
probability that the object generates a measurement is pq4, and
the mean number of FPs is Poisson distributed with mean
pp. Since it is unknown which measurement was generated
by the object, a discrete and random association variable a €
{0,1,..., M} is introduced. Here, a = 0 describes the event
where no measurement originated from the object and a =m
m € {1,..., M} describes the event where measurement z("™)
was originated from the object. Let z = [z)7T ... zM)T]T pe
the joint measurement vector. Following common assumptions
[3], conditioned on x, the joint pdf of z and a is given by

paf(z"™|z) _
(2 al) o e a=me{l,...,M} (13)
1 — Pd, CL:O.

For z fixed, one can use this conditional pdf to directly compute
the MOU likelihood function

f(z|x) Zf (z,a|x)
paf(z'|z)
o<1l —pq+ — 14)
Pd Z ,Ufp.ffp z(a)
and the marginal probability mass function (pmf)
plalz) o f(a, 2)
/f (z,a|x)f(x)dx (15)

The values of the pmf p(a|z) are also referred to as marginal
association probabilities [3], i.e., they represent the probability
of a particular association event a € {0, ..., M} conditioned on
an observed z.

C. Importance Sampling With Invertible PFL for Problems
With MOU

In principle, the MOU likelihood function in (14) can be
directly used for importance sampling as in (1). However, in
problems with MOU, importance sampling based on invertible
PFL is complicated by the fact that there are multiple mea-
surements, and it is thus not clear which measurement should
be used to compute PFL parameters (7) and (8), i.e., the PFL
proposal pdf qPFL(ml |z) in (10) cannot be directly used. To
address this problem, we propose the combined proposal pdf

q(x|z) = p(a =0|z) f(x)
M
+ p(a=m|z)QPFL($|Z(m))

m=1

(16)
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where we used the marginal association probabilities p(a|z) to
weight the proposal pdfs gprr, (m|z(m)) related to PFL based
on measurements z(™), m e {1,...,M} (cf. (10)) and the
Gaussian prior pdf f(x) =N (zx;z{, P). In particular, recall
that the proposal distribution gpgr, (m|z(m)) related to the PFL
Xg — 2(m) 5 x(m)can be evaluated as

N(ag™; @5, P)

g(m)

gerr (2™ 2(M) = (17)

where #(™) is the mapping factor.

A total of (M + 1) N, particles representing the proposal pdf
in (16) is obtained by drawing IV, particles for each of the M +
1 components in (16) and calculating corresponding marginal
association probabilities and weights. For the first component
related to association event a =0, N, particles {m(ivo)}jv:"l
are directly drawn from f(«), the corresponding marginal as-
sociation probability is obtained by using (13) in (15), i.e.,
p(a=0|z) x 1 —pq, and the corresponding combined pro-
posal weights are set to w'(*0) = p(a = 0|2)N (z{""; z, P)
(cf. (16)). For each other component related to association event
a=m, me{l,...,M}, first N, particles {:c(”n }f\i’l are
drawn from f(x). Next the PFL xo — z("™) — x("™) is applied
to the particles {az(z ™) } " and new particles {m m) }jv_pl are
obtained for each m € {17 , M}. An approximation of each
marginal association probablhty pla=m|z),me{l,...,M}
is finally calculated from these particles by using (13) in (15)
and performing Monte Carlo integration [24] based on the
proposal pdf gppr, (w(i’m)|z(i’m)) in (17), i.e.,

N, . .
Bla=mz) o 3 PO I )N @, P)
i=1 Np/f“fpffp( )N(xél s s, P)

(18)

The corresponding combined proposal weights are set accord-
ing to (cf. (16) and (17))

w/(z,m) :ﬁ(a:m‘z>'/\/'(m0 mO’ ) (19)

f(m)
Finally, we reindex the resulting particles and weights { (w'®),
z(49) }Z 1»a€40,..., M} to obtain {(w®, 2®) }l where

l=i(a+1)and L= Np(M+ 1).

Following the importance samlzlmg principle, we next aim to
compute particles { (w, &)} " that represent the posterior
pdf f(a:\z) In particular, by plugglng (14) into (1) and by using
{(w(l l))} (cf. (19)) to represent ¢(x|z) in (1), we obtain

W), g _ M pdf<z<m>|w<”)f<a:<”>)
w(l)oc./\/(:c 25 P) (1 Pat 2=y T, GO
w® '

(20)

The resulting set of particles { (w(l), w(l)) }lel is an asymptoti-
cally optimal representation of f(x|z) for scenarios with MOU.
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Algorithm 6: GMM Importance Sampling with Invert-
ible Flow and DA

1 {{w:(h), P:L)}ﬁi ] lnvembleF]owGMMwnhDA({m*“” P(h)}} l,z)

) {{{{w(i,h,,a,)7w(i‘h,,a)}j\;pvO(h,,a)}h=1’5(a)}a=0 } _
Evalluation({:n*(h)7 P }hNil, 1, z)
3 { ] // see Alg. 7
{ *(h) P(h)} 71,,\, —
({15002 011

< // see Alg. 8
6 Output: {wi<h'), P$L>}gi1

IS

Algorithm 7: GMM Importance Sampling with Invert-
ible Flow and DA — Measurement Evaluation

1 {{{m(z,),a) (zha)}Np e(h,a)}Nk 8(‘1)}A —
(=1 h=1 a=0
Evaluatio ({1? (h),l (l>}g,]7P,Z)

2 Initialize association variables as 8(°) = (1 — pa)p + (1 — p):
3 for h=1: Ni do

4 for i =1: N, do

5 L Draw m(z,h) NN( (h) *(h) P(h>);

6 Initialize particles as {m(” h,0) }NP {méi’h) }f\g’ ;
7 Initialize proposal weights according to

s | w(i,h,,o):N(m(i‘h,,O);m*(h)’ P(h')),izl,-.-,Np;

9 Initialized mapping factor (0 =1
10 form=1:M do

11 for h =1: Ny do
12 Perform PFL, i.e.,
i h,m) AV (hym) N
13 [{m( n>}i=pl7{AI, }lle]
14 = ParticleFlow({mgi’h)}:v:pl, =M, ph) z(m)
15 // see Alg. 1
16 Compute mapping factor ™) from {A(h ™) }L \ as in (11);
17 Precompute weights (cf. (19) and (20)), i.e.,
. (i,h,0). ,*(h) p(h)

(i h,m) _ N(m i P ) . .
R = N (@O h e gt ) gy~ =k N
19 Compute approximate association variables following (18), i.e.,

(m)| ., (i, h,m)
(m) _ __PPq N ~Np (= i .
B = i1 Tp (0 ) (i)

Np Ny figp 2~h=1

. (ih,a) (ha) 1D g(h,a) Ve g(a) 1M
Output.{{{m W b0 }h,:17ﬁ }aZO

)
S

D. GMM Importance Sampling With Invertible Flow for
Problems With MOU

For problems where the prior distribution is non-Gaussian
and potentially multimodal, GMM PFL with invertible flow dis-
cussed in Section III-A can be directly applied to problems with
MOU. Pseudocode for GMM importance sampling with the
invertible flow for MOU problems is provided in Algorithm 6.
Algorithm 6 relies on the measurement evaluation presented
in Algorithm 7 and the measurement update presented in
Algorithm 8. Note that in Algorithm 8, for future reference,
we have also introduced extrinsic DA information denoted as
x(®, a€{0,...,M}. In the single object tracking considered
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Algorithm 8: GMM Importance Sampling with Invert-
ible Flow and DA — Measurement Update

{{m*(h) p(h)} 1,p+]

N,
Update({{{m(r,h‘a)’w(z,h,,a,)}ivzplﬁ e(h,,a,)} k (a,)’ K

C - babilities 7 3(2) (a) 0 M
2 Compute association probabilities p(a|z) = W, a=0,...,
3 for h=1: Ny do

4 for a =0: M do

5 Update proposal weights (cf. (16)—(20)), i.e.,

6 w'(”h”“):ﬁ(a\z)w“"h’a), i=1,..., Np:

7 Reindex particles and proposal weights using I = i(a + 1) to obtain
{(w(lh (lh))} fr()m {(w/(i,h,a) (i,h, a))}L ”
a€{0,.

s Compute final particle weights according to (cf. (20))

9 for | =1:L do

W) 1 7 (2] (1R
(N<0><1—pd>+z£‘r{:1 ra (,Jn) ) )
" wbh) — /"fpffp(z )
(LR
1 [ ~, P(h)] = GaussianRe];)resentaticm({:E(l‘h)7 w® }lel)
1z // see Alg. 3

wh)

=1 El*
(1*P)ﬁ(a=0\z)+w

N
15 {{wi(h)’ P$L> }hNil] :Resampling({P(h)7 {m(l‘h), wth) }lel }hil)
16 // see Alg. 5

17 Output: {:c*(h) P(h>} k. pr

13 w:NkLZ

14 pt

here, we have k(@) = 1. Note that for later use in Section V-D,
Algorithm 7 performs measurements evaluation by also taking a
probability of existence, p, into account. Similarly, Algorithm 8
also updates p. By using p =1 as input for Algorithm 7 (see
Algorithm 6, line 2), Algorithm 6 is equivalent to the estimation
method discussed in Sections III-B and III-C. Furthermore,
note that for consistency with Section V-D, we introduced the
notation 3(*) o j(a|z), a € {0,..., M} in Algorithm 6, Algo-
rithm 7, and Algorithm 8.

IV. REVIEW OF GRAPH-BASED MULTISENSOR MOT

We will first discuss the concept of potential object (PO)
states and then review the SPA messages that will later be
calculated based on PFL. A summary of the system model and
corresponding factor graph can be found in the supplemen-
tary material [57]. Graph-based MOT will be combined with
a Gaussian mixture representation and PFL-based processing
in Section V.

A. PO States

As in [9], [10], we consider MOT for an unknown, time-
varying number of objects by introducing PO states. The num-
ber of POs J;_; at discrete time k£ — 1 > 0 is the maximum
possible number of objects that have generated a measurement
up to time k — 1. At time k, a new PO is introduced for each of
the M}, observed measurements, and the total number of POs is
updated as J;, = Jix—1 + My. All POs that have been introduced
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at previous time steps are referred to as legacy POs, i.e., at time
k, there are J;_1 legacy POs and My, new POs.

The augmented state of PO j e {1,...,Ji} is given by
yg) £ [x; (@T (3)] , where the state X’ 9) of PO ;j consists of
the position and possibly further parameters of the object rep-
resented by the PO. Furthermore, the existence variable r,(j) IS
{0, 1} models the existence/nonexistence of PO j in the sense
that PO j exists at time k if and only if r(

POs, i.e., r(J) =0, the state x(J)

= 1. For nonexistent
is obviously irrelevant. Thus,

all pdfs of augmented PO states f(y\) = f(z),rV )2 can
be expressed as f () @ o 0) = f,gj)fp(:n,(c )) where fp(z;/ )) is

€[0,1] is a constant. To

an arbitrary “dummy pdf” and fk e
(4)

distinguish between legacy and new POs, we denote by y;

and by y( ") the augmented state of a legacy PO and a new PO
states, respectively.

The concept of legacy and new POs can be extended to
scenarios with S sensors as follows. Let M;, ; be the number
of measurements at time k and sensor s € (1,...,.5), where
(1,...,5) is an arbitrary processing order of the sensors. The
maximum possible number of objects that generated a measure-
ment up to time k and sensor s is Ji s = Ji, s—1 + My, s, with
Jro0 = Jp—1.

B. Problem Formulation and Selected Messages of the SPA

At each time step k£ > 1, we consider the tracking of an un-
known number of objects based on measurements z1.;. Object
detection is performed by comparing the existence probability
p(ri=1|21.,) with a threshold Py, i.e., PO j € {1,..., Ji}
is declared to exist if p( J)— 1|z1.4) > Ppn. Note that

p(ry ) _ =1|z1) = ff(ac,C ,rk = 1|z, )dw(J) For existent
POs state estimation is performed by calculating the minimum
mean- square error (MMSE) estimate [58] as ) 2 [ 27
FE|r =1,z )da:éj), where f(z[r?) =1,214) =
f(a:,(cj),r,(C ) = 1|z1 k)/p(rk = 1‘,21 k)

Both object detection and estrmatlon requlre the
marginal posterior pdfs f(:cl(f),rk ’z f(yk |z1;c
j€{1,...,Jx}. However, calculating f(x EC) )‘zl k) by

direct marginalization is infeasible due to the large number
parameters in the joint posterior distribution in [57, Eq. (1)].

As in [9], [10], we consider approximate calculation by
performing the loopy SPA on the factor graph in Fig. 1
of [57] and passing messages only forward in time. This
makes it poss1b1e to efﬁciently calculate so-called beliefs
f(a:,(j), r,(g)) f( (J)) j€{1,...,Jx} which accurately ap-
proximate the marginal posterior pdfs f(a:k ,r,(f )|z1;k), je
{1,...,Jx} needed for object detection and estimation. To
keep computational complexity feasible, at the end of each
time k& with all sensors processed, a suboptimal pruning step
has to be performed. Here, POs with probability of existence
pgj )4 —p(r](f ) =1|z1.;;) below a threshold P, are removed from
the state space.

Next, we review the SPA messages that will later be calcu-
lated based on PFL. We will limit our discussion to messages
and beliefs related to legacy PO states. Messages and beliefs
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related to new PO states are obtained by performing similar
steps. (A complete description of message passing for MOT is
provided in [10, Section IX-A].)

We consider sequential sensor processing, where the SPA in-
corporates sensor measurements sequentially and in an arbitrary
processing order at each time step. The part of the factor graph
that represents the processing of the measurements of one sen-
sor at one time step is shown in Fig. 1 of [57]. At the processing
step related to time k and sensor s, the “prior messages > of
legacy PO states are denoted as O‘l(cj,) (mgi, 7,?1) =y l(ygc l)
At time k and sensor s = 1, these message are computed by a
prediction step [10, Section IX-Al], i.e.,

>

ri?) e{0,1}

(J)( (4) (J))

o) (z), 1) f( @) ,.00),.0) (J))

Lp1r Tk 1’“"1@ vk

Tl )iel?, 1

that makes use of the state-transition function
f(2in i ey ) 2 £ [ul?y). At the time

k and sensor s>1, the “prior message” is the same
as the belief after the previous sensor update, i.e.,

oz,(cl(zc,(fl, gi)—f(mgi 1,7",(32 1)- For future reference,
)d:c( ) as the

we also introduce p\/) = [ a(] ) (:c,(fi, ,(C)S
predicted probablllty of existence for each legacy PO. Note
that p(]) + [al () e ](jl) (J) — O)dxl(ji -1

After the prlor messages have been computed, a “measure-
ment evaluation” step for each legacy and each new PO is
performed. Here, we denote by afﬁ) the association variable
related to POy at the update step related to sensor s at time
k and by b,(:;) the association variable related to measure-
ment m at the update step related to sensor s at time k (see
[57, Sec. 1.2] for details). The SPA messages that are passed

from the factor nodes q(:r:,~c l,rgi, a,(ji, zi.s) in [57, Eq. (2)]

and v(a:é";), r,(C v, bg?, z,(c”z)) in [57, Eq. (3)] to the adjacent
variables nodes agj l and bk";), respectively, are computed. For
legacy POs, these messages are given by (see [10, Section I1X])

) = [alel1ali ol 1)dal)

+1(a) (1= p). (22)

For new POs, the corresponding messages are denoted as
(":) (b(m)), me{l,..., My} and are calculated similarly
(see [10, Section IX]).
Next, probabilistic DA is performed by means of itera-

tive SPA message passing with input messages ﬁ](jz (a,(: l)
je{l,...,Jxs—1} and f(m) (b(m)), me{l,..., Mg} (see

[10, Sectlon IX-A3] for detalls) After convergence, corre-
sponding output messages Iiéj)g (a,(j)g) je{l,...,Jis—1} and
L}(:;) (b,(gz)), m € {1,..., My} are available for legacy POs
and new POs, respectively. Probabilistic DA is followed by a
“measurement update” step. Here, for legacy POs, messages
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Y (@) i) passed fromq (), i) 0 ) 21 ) oyl are
calculated as
My,
W)=Y al@l)nal)z) s () @3)
o9 —o
k,s

and as vl(j ) (:cfj )0) = o = n,(j ) (0). Measurement update for

new POs is performed by followmg similar steps [10, Section
IX-A].

Finally, beliefs are calculated to approx1mate the posterior
pdfs of POs. For legacy POs, beliefs f (w . r](C l) approximat-

ing f(a:,(:i, s S|z1 k) are obtained as

1
—orens @l Dyl @ 1)

~k,s

and as f(a:kS7 0) = f(J fD(:cffi) with f(j) =(1- (J))
)/C’ The constant C’,(ji is given by C’(J) =
P a2 12 e s+ (1~
Calculating the beliefs f(m,(:z), réﬂz)), me{l,..., My}
for new POs is performed by followmg similar steps [10, Sec-
tion IX-A]. Note that this calculation of new POs involves the
messages L;C )(b,i V) and ¢\ (ygC Y, me{1,..., My} also
shown in Flg 1of [57]. The resultmg beliefs for legacy and new
POs are used as the prior messages for measurement update of

: ; (9) (4) (@ ya
sensor s + 1 as discussed above, i.e., oy, (&) 1,704 )

f(mgji,r,(j;) j€{1,...,Jis}. When the measurements of
the last sensor in the sequence have been processed, i.e., s = S,
the resulting beliefs are used in the prediction steps (21) of the
next time step k + 1.

flz) 1) = 24)

V. GRAPH-BASED MULTISENSOR MOT WITH
INVERTIBLE PFL

In nonlinear MOT scenarios, calculation of 3 ,(f ) (afj ') in(22)
and f (mgi,r,(j )} in (24) related to legacy PO states as well
as their counterparts &\ (b(m ) and f(Z (ﬁ),r,anz)) related to
new PO states cannot be performed in closed form. We propose
a particle-based implementation where a proposal pdf is estab-
lished using invertible PFL as introduced in Section II-B. This
makes it possible to implement multisensor MOT with high
dimensional states and nonlinear measurement models. A sin-
gle time step of the proposed particle-based implementation is
discussed next. At first, we assume a single Gaussian kernel
as the prior knowledge for each PO. An extension to GMM is
also presented. In what follows, we consider a single time step,
remove the time index k, and use the index — short for & — 1.

A. Prediction

It is assumed that the beliefs of legacy POs at time
k — 1 are represented by a single Gaussian distribution, i.e.,
f(ac(_j),r(_]) =1) =pIN (@D "D PY jef1, ... J_}.
In MOT problems, the state transition function underlying the
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state transition model f( ’w(J )) discussed in [10, Section

VIII C] is %lplcally linear W1th additive Gaussian noise, i.e.,

+ ul) where G is the state transition matrix and
u(J) is an addltlve Gaussian noise vector with mean u* and
covariance matrix P,. Consequently, the messages computed
in the prediction step are also represented by a Gaussian dis-
tribution, i.e., 045 )( “),55“) :pgj)/\/'(zgj) g}k(]),ﬂgj)), j€
{1,...,J_} with mean covariance matrix, and existence prob-
ab111ty given by z; =Gz + u*, P( ) =aPYGT +
P,, and p() Ps p( ), respectively. Here, py, is the sur-
vival probablhty, i.e., the probability that an object that exists
at time step k — 1, still exists at time step k. Here, if the
state transition function is not linear with additive Gaussian
noise, for each je{1,...,J_}, N, particles are drawn from
NP,z pU )) the predlctlon step of a conventional par-
ticle ﬁlter is performed [25], and a predicted Gaussian repre-
sentation N (z{"); 2}, P{)) is computed from the resulting
particles using Algonthm 3.

B. Measurement Evaluation

The following
each sensor s=1,.

steps are performed sequentially for

,S. First, a particle representation

{(a:(()? Sj)’o.)(()@,sj))}i:pl is obtalned by drawing particles :1;((] SJ),

ie{l,...,Np} from N(xzs @), g ,PY)) and setting the
correspondlng weights to w( 7 ) = p(J ) /Np. Next, we compute

an extended set { { (zs (h.a.3), (“”))}1 1}a 0,thatcon51stsof

N, particles and weights for each value of a(g 7 ¢ {0,..., M }
and je{l,...,Js_1}. (Note that measurement gatlng [3]
can be employed to reduce the number of measurements
used for PFL:) For a()—() we perferm no flow, i.e.,
ve st {(a M) —{(h 2 ) o
(4) MY,

as’ =me{l,. the PFL x§) — 2{™ — x{™
applied to obtain new particles {m(l med )}
particles {w b, J)}l

principle (cf. (10)) [42], the weights gg 9) corresponding to

the migrated particles gg’m’] ) are obtained as

— Xg is

by migrating the
. By making use of the invertible PFL

A (),
N (@éﬁ!);

(J)* P( ))g(j) (i)
—S -—m,s 2, 1 N
@g) ’ng)) gOs: 726{ P}

(i,m,j) —
Wy’ =

with mapping factor Hgf,)g (cf. (11)). Note that the sets of

weighted particles {w(l m J) (1 m’])}l » ME {1,...,
M}, despite all being based on a different proposal
pdf  gprrL (ggj)\zgm)), me{l,..., M,}, still represent
ol (@S ), 1). The result of this particle migration along the
flow defined by a measurement 2™, me {1,..., M}, is
that the particles are now at locations where the evaluation
of the corresponding likelihood function f (zgm)@gj )) will
produce a significant particle weight. The migrated particles
can thus approximate message-passing operations accurately

even if the dimension of the state is high [9].
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The measurement evaluation step can now be performed on
weighted particles {{(zs (i,a.9) ggz’“’])) }Z 1}a ", by calculat-
ing an approximation By )( ) of the messages By )( ) in (22)

forall je{l,...,Js_1},a€{0,..., M} as
NP
ng)(agj) =) :Zq(m(lw) 1,a; 24 )w(»®7)
i=1
+1(a) (1 - pW).

For the computation of a particle representation of new PO
states, we first draw particles f((i)s, ie{l,...,Np} from f (E)
as introduced in [Sec. 1.1] [57]. Next, for each new PO j =
Js—1+m, me{l,..., M}, new particles and corresponding
weights {z{™" E(sm 1)}],\[" are obtained from {f(i) }Np by

1=1 0,5 Ji=1

performing the invertible PFL X, s — 2m %™ Note that
this flow relies on the mean &, and covariance matrix P}, of
fo (). Finally, for each m € {1,..., M,} approximate mes-
sages ég’”) (b(m)) are calculated from {f(m %) *(m’i)}N" by
performmg the same steps as described above for the calculation
of B(] )(a¥?). These messages are used as an input for the
1terat1ve SPA for DA [9], [10], [59] performed next (see [10,
Sec. VI] for details).

C. Measurement Update and Belief Calculation

After the iterative loopy SPA for DA has been converged,
the messages /4:])( (J)) je{l,..., Je_1} and it™ (bﬁ”“),
me{l,...,Ms} are available. These messages are used
to obtain an approximation 54 )(ggj ),1) of the messages

(j)( W ,1), je{l,...,Js—1} in (23) as well as an approx-
imation <§m>( (m) 1) of the messages clm )( (m) 1), me
{1,...,Ms}in [ 10 Section IX].

Beliefs approximating the posterior pdf of POs are now
computed by means of importance sampling. As in Sec-

tion III-C, we use the marginal association probabilities

p(agj) |z5) to weight the proposal pdfs ¢prr (Z ( 2 \z(m)) related
to PFL based on measurements z\™, m € {1,..., M,}. Note

that in MOT scenarlos accurate approx1mat10ns of p(a(] ) |zs)
can be obtained as p(al’’|z,) o 5 (as G )) (J)( ) (see [10,
Section IX] for detalls) Consequently, we obtain a new set
of reindex particles and weights {(g(l 9 w9 )}lel from
{(g(i’“"j), w(B@d)) }ﬁ’l,_a €{0,..., M} by using [ =i(a +
1), ! = a9 /j(al = a|z,), and Ly = Ny(M, + 1).

Next, based on (24), we update the particle weights of the
legacy POs je{1,...,Js_1} by first computing

le{l,..., L}
and then calculating normalized weights as

/(l,j)

/(lu) + (

w/ G = 50 (gD 1))

whi) =

75

le{l,...,Ls}.
(25)

i w -p)3

Note that denominator of (25) is a particle-based approxi-
mation of ng ) in (24). The resulting particles and weights
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Algorithm 9: Gaussian Mixture Implementation of
Multisensor MOT - Single Sensor Update Step

H{w*w D, PN (j)}:;]z

SingleSensorUpdate ({ {z* (h.5) p(h.3) } f:]

@) ) Ts-1
=17£] }jzl ,Zs)
) H{Ejr(h,)m)’ﬁsrh,m)}ijﬁpg(m)}fil} = NewObjects (z)

3 // see Alg. 10

4 forj=1:J5-1 do

H{{z(””‘” wlima)} Ve g(haj)} (aw}Mb]
h=1

Evaluatlon({g*(h’”,B(h"” }hil,g(j), zs)

wn

6 // see Alg. 7
a, Js— 1 a

. {{{,{( )} Ms (@} Ms ]

8 DataAssoaatlon({{5(a J)}MS {5(“)}M* )

9 // see [10, Sec. VI]
(m) _ _(e(m)_1),(m)

10 Computep = D T me{l,..., M}

1u forj=1:Js_1 do

2 {{ *(h,j) P(}L~j)}Nk (J)] :Update({{{m“'h*a’j)
() Np (h,a,5) Blad) | glad) p)

3 N N )

14 // see Alg. 8

15 For j=1,..., Js—1, reindex legacy object state information according to

w(h,f RN w(h,j Ry N i i
{m+( J)’P(Jr ])}hil _ {£+< J)7B(+ ])}hé1 and p(i) ZBSJF)'

6 For j=Js_1+1,..
*(hoj) plh )y N _

{z+ J7P+ Pk =
Js—1 and Jg —Jb 1+M

. J, reindex new object state information following
{ *(h,m) P(h 7n)}1\7k1 and p(]) 7('rn)
using m = j —

* Js
7 Output: {{w () P(hj)} =P Si)}
= =1

—-

{(ggl’j),ygl’j))}li represent the belief f(a:(J) 1) of legacy
PO je{1,...,Js_1}. These particles can be used to cal-
culate an approximation of the existence probability as

ﬁgj) = Z(l LW (l’] ). A Gaussian representation of the belief
f( N )) f( g ) (J )) is furthermore obtained by apply-

ing Algorithm 3, Wthh calculates a mean w(J )* and a covari-
ance matrix P\ from {(gs B ’J)/N(J)) }1=51'

Fornew POs j € {Js;_1 + 1, ..., Js}, approximate existence
probabilities p(J ) and a Gaussian representation of the beliefs
f(z ) gj)) —f(igm)jgm)), for m=j — Js_, are calcu-
lated by performing similar steps as discussed above for legacy
POs. Existence probabilities and Gaussian representations of
the beliefs related to PO that have not been pruned are then
used as input for processing measurements of the next sensor
s+ 1 or, in case s = S, for processing at the next time step.

For POs that have been declared to exist after the last sensor
update, i.e., ﬁgj) > Py, an approximate MMSE state estimate is

directly given by the mean of the Gaussian representation, i.e.,
20) a:g(j ).

D. The Proposed Multisensor MOT Method

In multisensor MOT problems with nonlinear measurement
models, object beliefs are non-Gaussian and potentially

Algorithm 10: Gaussian Mixture Implementation of
Multisensor MOT — Generation of New POs

=™ P e €)™ | v (o)
2 Draw m*(m h=1,..., N from fy,(Z);
3 Compute covariance matrix Py from fi, ();
4 form=1: M, do
5 for h =1 : Ny do

LT e ey n) -
7 nvertibleFlow (@, "), Py, 2(™));
8 // see Alg. 4
9 [N.ﬁ“"«m)] -
GaussianRepresentation({5(’i”hm) o (ihm) }Np )

10 L // see Alg. 3

m) — Kb Np wli-hm)
1 &M =1+ DOHEID DR

NkNpufPffp( (M)) h=1

—x(h,m) 5(h,m) -

= {{m+ Py }h:1:| =
_ ) ] N
13 Resampling<{P(hvm)7 {E(z,h,"ﬂ)7w(l,h,’ln)}&1} Kk );
=1 h=1

" // see Alg. 5

15 Output: {{Ei(h’m),ﬁgrh’m)}gﬁu5("")}::1

multimodal. Here, graph-based multisensor MOT with
invertible PFL has to be combined with a GMM discussed in
Section III-A. Pseudocode for a single time step of the resulting
multisensor MOT method is provided in Algorithm 11.
Algorithm 11 relies on the single sensor update step provided
in Algorithm 9 which, in turn, relies on the introduction of
new POs presented in Algorithm 10, measurement evaluation
presented in Algorithm 7 and measurement update presented
in Algorithm 8. Note that at time k=0, Algorithm 11 is
typically initialized by setting J_ = 0. However, if prior
information is available, it can be 1n001})0rated in the form

of the set {{;L-*(h’ﬂ phin me (J)}

GMM, an approximate MMSE est1mateJ can be obtained as
o0~ 1%, 2
k

Note that for the execution of the proposed method, for
each time step and each object, we need to update each par-
ticle per kernel, pseudo-time, measurement, and sensor. The
asymptotic complexity with respect to these parameters per
object and time step, thus reads O(NyNi N, (Z M;)).
The complexity of a conventional bootstrap 1mplementatlon per
object and time step is (’)(Nb(z M )) where Ny, is the
number of particles. The improved runtlme -complexity tradeoff
of the proposed method is due to the fact that, in challenging
problems as the one considered in Section VI, for Ny NN, =
Ny, the proposed method strongly outperforms graph-based
MOT that relies on conventional particle filtering. Since mem-
ory requirements per time step and object are NN, for the
proposed method, and IVy, for bootstrap particle filtering, and
since Ny > 1, for Ny Ny N, = Ny, the memory requirements
of the proposed method are significantly lower compared to
conventional particle filtering.

. Note that in a
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Algorithm 11: Single Time Step of Multisensor MOT
with GMM and Invertible Flow
«(hg) pri 1N OV ]2
1 H{m P ]}h=1’1.j]}j=.1j|7 -
MultisensorMOT H{mi(h"”, P(f“]) }ivil , p(f) } i 71 s z}
§=
2 Perform prediction step according to

3 forj=1:J_do
4 for h =1: Ny do

5 Q;(M) :Gwi(h”) Fut
6 th,]‘) — GP(lLvJ)GT +P,
7| 9 =peup?

8 Perform single sensor update steps sequentially, i.e.,
9 for s=1:5do
. . Y Is
N CH N N
) ) NS
SingleSensorUpdate H{Q:(h”]),ﬂgh”])};:jfl,p(])} ) 1,z5]
== j=1

1 // see Alg. 9

1 Sen{{m*(hﬂ PN m}
where J = Jg
13 Output: {{m*(h .7)’P(hw.7‘)}f:]§1’p(]’)}v

_{{mgw ), P(h J)}h LD (SJ) -

VI. NUMERICAL RESULTS

Next, we report simulation results assessing the performance
of our method and comparing it with that of two reference
methods for multisensor MOT.

A. Tracking Scenario and Reference Methods

We consider an underwater 3-D surveillance scenario where
eight objects are tracked by two static sonar hydrophone
arrays. 200 time steps are considered. The hydrophones
are deployed about 1300 m below sea level. The object
states at time k consist of 3 D position and velocity, i.e.,

(]) [xgjgc ><(2J,)C xé],)c xgjl)c xé],)C X5 ,)C]T, j=1,...,8 and evolve
accordlng to a constant- veloc1ty model [60, Sec. 6.3.2],
where the dynamic noise has the physical interpretation as an
acceleration with variance o2. The region of interest (ROI) is
[-1000m, 1000m] x [—1000m, 1000m] x [—1500m, —500m)].
Objects appear at k€ {1,10,20, 30,40, 50,60,70} and
disappear at k € {130,140, 150, 160, 170, 180, 190, 200}. To
simulate a tracking scenario with challenging DA, we generate
the initial state of the objects as follows. The initial state of the
first object is randomly generated by setting its position at a
circle centered at the origin with a radius of 50 m and a depth
of 1000 m, i.e., for its position, we have x% + (1()) =50
m and xgg = —1000 m. The velocity is obtained by setting
the vertical speed to zero and the horizontal velocity vector

pointing to the circle center with \:xglgf + 2132 = 0.3m/s. For
the appearance of each further object j =2,...,8, an initial
position is randomly generated near the initial position of the
previously appeared obgect i.e., around a circle with radius 50
m centered at [xgj . 1)332 X )xéj V1. The initial velocity vector

is set with respect to the center circle, as discussed above. As
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a result of this initialization procedure, tracks start in close
proximity in time and space. This makes it challenging to
perform DA and declare the existence of newborn objects. The
times when objects appear and disappear, as well as the states
of appearing objects, are unknown to all simulated tracking
methods. All methods aim to detect the presence of a new
object and sequentially estimate its state across time merely
based on TDOA measurements and the statistical model. The
prior intensity of object birth is modeled at each timestep by a
Poisson point process with mean p, = 0.05. The prior pdf for
newborn object, f,(Zy), is uniform on the ROI for the 3-D
position and Gaussian with zero mean and covariance matrix
5m?/s2I3 for the 3-D velocity. The survival probability is
Psu = 0.95. The object declaration threshold is set to P, = 0.5
and the pruning threshold to P, = 107%.

The two hydrophone arrays have the geometry of the array
described in [61] and are located at [519m 137m — 1300 m]|T
and [-519m — 137m — 1300 m] T, respectively. Each hydro-
phone array consists of 4 receivers. Hence, there are six
receiver pairs at each array. Each receiver pair generates TDOA
measurements and is considered a sensor for MOT. This means
that multisensor measurements z,(:z), me{1,...,My,} and
s€{1,...,12} are obtained by the two arrays at time k.

At each sensor s, a random number of My , measurements

are generated. In particular, the TDOA measurement z( )

(4) (m )

of a detected object with state x;’” is modeled as z; ' =

LI = p | - I R

Where p,, and p, are the paired receiver positions of sensor
s, ¢ =1500m/s is the propagation speed, and v( ) is additive
zero-mean Gaussian noise with standard dev1at10n o, that
is assumed statistically independent across s, k, and m.

The pdf of FP measurements, ffp(z,(€ é)), is uniform on

% [ - ||psL - psRH? ||psL — Dy H] .

We compare the proposed SPA-based MOT with the em-
bedded particle flow sampling strategy (“SPA-PF”) with two
reference sampling strategies. The first (“SPA-PM”) follows
the sampling strategy of the bootstrap particle filter [23], [25]
and uses predicted beliefs as proposal pdf [9]. The second (yet
unpublished) (“SPA-UT”) follows the sampling strategy of the
unscented particle filter [35], i.e., it uses a Gaussian mixture
representation and the unscented transformation to calculate
an informative proposal pdfs. For SPA-PM, we use N}, = 10°
particles for newborn POs and Ny, = 6 - 10* particles for legacy
POs. For all other simulated methods, we use N, = 100 kernels.
For each kernel representing a newborn PO, we set N, = 500
for SPA-UT and SPA-PF and for each kernel representing a
legacy PO, we set N, = 30 for SPA-UT and SPA-PF. Since
Ny, /Ny Ny = 20 the memory requirements of SPA-PM are 20
times higher compared to SPA-PF and SPA-UT.

We also simulate two variants of the second reference
method to obtain a similar runtime for SPA-PF. In particular,
for “SPA-UT-1”, we set N, =4000 for kernels representing
newborn POs and N, = 250 for kernels representing legacy
POs. Furthermore, for “SPA-UT-2”, we set N, = 6000 for ker-
nels representing newborn PO and N, = 30 for kernels rep-
resenting legacy PO. Note that the memory requirements of

)
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Fig. 3. MOSPA performance for high uncertainty of prior with ow =1

m/s2. Other parameters are set as g, = 5, oy = 106, pa =0.9.

SPA-UT-1 and SPA-UT-2 are higher than the ones of SPA-UT
and SPA-PF due to their higher values of IV,,. Finally, we also
simulate a method (“SPA-PF-H”) that uses the sampling strat-
egy of SPA-PF for kernels representing newborn POs and the
sampling strategy of SPA-PM for kernels representing legacy
POs. Using fewer samples for the kernels representing legacy
PO, or even using the strategy of SPA-PF, is motivated by
the fact that the beliefs of legacy POs are typically unimodal
and quite informative. We set N, = 20 for SPA-PF. For all
considered methods, 100 simulation runs are performed. All
methods are implemented in MATLAB, and each simulation
run is processed on a single core of a 2.6GHz Intel Xeon Gold
6240 processor.

The performance of the six MOT methods is evaluated w.r.t.
to changes in four system parameters (i) object driving noise
standard deviation oy, (ii) mean number of FPs jis,, (iii) detec-
tion probability pg and (iv) measurement noise standard devia-
tion oy. Note that for the setting o, = 5% 10~7s, the number of
samples N, was doubled for all methods to yield high tracking
performance. The tracking accuracy of the various methods is
measured by the Euclidean distance-based OSPA metric with
cutoff parameter C'=>50 [62].

B. Performance Comparison

In what follows, we discuss two scenarios where particle
degeneracy is particularly pronounced. Particle degeneracy can
be caused by uninformative prior information or a very infor-
mative likelihood function. To obtain a scenario with uninfor-
mative prior information, we consider the case o, =1 m/s2.
In addition, to obtain a scenario with an informative likelihood
function, we consider the case o, =5x10~"s. Fig. 3 and
Fig. 4 show the mean (MOSPA) error—averaged over 100
simulation runs—of all methods versus time k for these two
scenarios. It can be seen that all methods yield error peaks
at time steps where the objects appear. This is because the
MOT methods do not know when a new object appears and
often need a few time steps after the appearance of an object
to declare its existence based on TDOA measurements and the
statistical model. However, the proposed methods, i.e., SPA-PF
and SPA-PF-H, have lower error peaks at the time steps when
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Fig. 4. MOSPA performance for informative measurement model with
oy =5x10"7 s. Other parameters are set as g, =95, ow =0.1 m/s2,
pa =0.9.

objects appear, i.e., SPA-PF and SPA-PF-H can often declare
the existence of an object faster. In addition, SPA-PF and SPA-
PF-H can outperform the other reference methods at almost all
time steps. SPA-PM, in particular performs very poorly due to
particle degeneracy. It can be noted that SPA-UT-1 and SPA-
UT-2 have improved performance compared to SPA-UT but are
still outperformed by SPA-PF and SPA-PF-H despite their more
extensive memory requirements.

Furthermore, the MOSPA error and the runtime per time
step of the six methods for different system parameter values
are shown in Table I. The default value of the four parameters
are o, = 0.1 m/s2, o, = 1x107 %, e, = 5 and pg = 0.9. For
each row corresponding to a particular system parameter value,
the value of the other three parameters is set to the default
value. For each system parameter value corresponding to one
row, the MOSPA and runtime are averaged over 100 simulation
runs and 200 time steps. The best and the second best MOSPA
value corresponding to each system parameter value is marked
by an underline and dashed underline, respectively. As can
be noted, the performance of SPA-PM significantly degrades
when measurement noise standard deviation is reduced to o, =
5x10~7s. This unwanted and counterintuitive behavior is a
clear indicator of particle degeneracy in SPA-PM. Only with
the proposed method is it possible to yield improved tracking
performance as measurement noise variance is reduced.

It can be seen that for almost all system parameter values,
the proposed SPA-PF and SPA-PF-H outperform the refer-
ence methods. At the same time, their runtime is comparable
with SPA-UT-1 and SPA-UT-2, which yield higher memory
requirements. The only scenario where SPA-PF and SPA-PF-
H do not result in the lowest MOSPA is when o, =2x10"%s.
In this case, since measurements are not very informative,
SPA-PM does not suffer from particle degeneracy. It can also
be seen that SPA-PF-H outperforms SPA-PF both in terms
of MOSPA and runtime, while both SPA-PF and SPA-PF-H
typically outperform SPA-UT. We can thus conclude that the
main challenge for the sampling method is the initial time step
after a new object appears in the scene. Here, beliefs of new
POs are highly uninformative and have complicated shapes. At
later time steps, beliefs become informative and unimodal and
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MOSPA AND RUNTIME PER TIME STEP OF DIFFERENT ALGORITHMEAF};EET}IIE CONSIDERED TRACKING SCENARIO W.R.T RELATED PARAMETERS
SPA-PM SPA-UT SPA-UT-1 SPA-UT-2 SPA-PF SPA-PF-H
Parameter Value OSPA  Runtime| OSPA  Runtime| OSPA  Runtime| OSPA  Runtime| OSPA  Runtime| OSPA  Runtime
(s) (s) (s) (s) (s) (s)
1 m/s? 11.38 20.94 7.02 3.22 6.06 19.98 6.45 25.84 5.31 21.66 4.64 13.19
Ow 0.5 m/s? 9.13 23.54 5.84 3.35 4.50 21.42 5.11 28.10 3.80 22.54 3.45 13.90
01m/is® | 7.61 2399 | 482 335 | 345 2159 | 435 2910 | 296 2248 | 2.67  13.68
2x107 65 4.51 21.69 5.25 3.19 4.78 19.85 5.31 25.64 5.37 22.53 5.13 14.43
Ov 1x1076s 7.61 20.77 4.69 3.05 3.44 19.33 4.45 25.95 3.02 20.64 2.69 12.62
5x1077s | 18.60  42.83 | 5.10 5.06 359  37.94 | 428  51.82 | 261 3172 | 240  21.26
10 7.79 33.88 5.85 5.29 4.89 33.13 6.74 41.76 4.30 41.21 4.10 29.48
Hip 5 7.61 22.66 4.78 3.15 3.48 20.20 4.38 27.02 3.28 21.58 2.82 13.21
2 9.70 1566 | 5.03  2.40 2.36 1420 | 4.23 1922 | 267 1342 | 233  7.27
0.85 11.78 20.72 8.52 3.27 4.89 20.15 8.00 26.36 4.32 22.31 5.02 14.89
Pd 0.9 7.61 22.15 5.01 3.02 3.29 18.98 4.65 24.97 3.09 21.15 2.66 12.50
0.95 8.06 21.80 3.90 3.26 2.58 20.77 3.01 27.83 2.56 21.10 2.35 12.40
50 12.72s for Ny = 1,Ny =5, N = 10, Ny = 50, and Ny = 100,
respectively, as well as 22.66 s for SPA-PM.
40
Y } '"_;,'Liﬁjiﬁy_ﬂ _ 2l C. Real Data E)fperiment: Echolocation in Ocear.zogmphy
= i : We further validate our proposed MOT method in an under-
S 20 —& SPA-PE.H (N, — 50) Wat‘er acoustic trackipg scenario. The acoustic signals “clicks”
—— SPA-PF-H (Vi = 100) emitted by two Cuvier’s beaked whales are recorded by two
ol high-frequency acoustic recording package (HARP) [61], each
of which is equipped with four hydrophones. HARPs are de-
0 ‘ Y . ployed at a depth of 13.30 m apd appr.oxim'ately 1 km apar.t.
0 50 100 150 200 Preprocessing of acoustic data is described in [50]. Each pair
time steps & of hydrophones on each HARP acts as a sensor that provides
Fig. 5. MOSPA performance of SPA-PM and SPA-PF-H for different TDOA measurements every 7s. Since there are 6 pairs of hy-

number of kernels, Np.

can thus be computed accurately with fewer samples and the
sampling strategy of the bootstrap particle filter. For real-time
processing, it is expected that an adaptation of the proposed
method for execution on GPUs, can strongly reduce runtimes
by exploiting the highly parallelizable nature of PFL.

In what follows, we numerically investigate the effect of the
number of kernels Nj on system performance. In particular,
we set the number of kernels as Ny € {1,5,10,50,100} in
SPA-PF-H and compare SPA-PF-H for these different values
of Ny with SPA-PM. The parameters oy, fif,, 0w, and py are
set as dicussed above. For comparable runtimes of all SPA-
PF-H variants, we set N, € {100000, 20000, 8000, 1300, 500}
for newborn object and N, € {15000, 1000, 400, 70,30} for
legacy objects. As expected, it can be seen in Fig. 5 that
the accuracy of SPA-PF-H improves with increasing V.. While
SPA-PF-H performs very poorly for Ny = 1, notably, it can al-
ready outperform SPA-PM for Ny, = 5. The average runtime per
time step of SPA-PF-H is 27.14 s, 15.06s, 10.85s, 11.35's, and

drophones on each HARP, there are a total of S = 12 sensors
providing TDOA measurements. We use a dataset that consists
of 172 time steps and has a total duration of roughly 20 min-
utes. It was recorded on July 1st, 2018, in Southern California.
Tracking results are shown in Fig. 6. The red solid lines show
the estimated tracks of two whales provided by SPA-PF-H. The
two whales were initially detected at depths of about 450 m and
then kept diving until a depth of 1300 m. For obvious reasons,
no ground truth information exists for this scenario. However,
we have added reference tracks of the two whales that are
the result of a trained operator hand-annotating preprocessed
acoustic data.

In Fig. 7, we show the estimate tracks of SPA-PF-H com-
pared with SPA-PM in 2-D. SPA-PM does break and merge
tracks, which makes it very difficult to determine how many
whales are actually there. Most importantly SPA-PF-H can
potentially replace the human operator, while SPA-PM cannot.
The overall number of particles of SPA-PM is 20 times that
of SPA-PF-H. The runtime per time step of SPA-PM is 4.65 s
while 2.35 s of SPA-PF-H, i.e., SPA-PF-H is faster than SPA-
PM. Since the measurement interval is 7 s, both SPA-PF-H and
SPA-PM can be used in real-time. For larger scenarios with
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information-seeking control [67]. We also aim to demonstrate
real-time processing capabilities of the proposed approach by
execution on GPUs, exploiting the highly parallelizable nature
of PFL.
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more than two whales, a GPU implementation is required for
real-time processing.

VII. CONCLUSION

We presented a graph-based Bayesian method for multisen-
sor MOT with high-dimensional object states. Particle degen-
eracy is avoided by performing operations on the graph using
PFL. Our numerical results indicate that the main challenge
for sampling is representing the posterior distribution at the
initial time step after a new object appears in the scene. Com-
pared to state-of-the-art reference methods, we show favorable
tracking performance in a 3-D MOT scenario. The introduced
approach is expected to be particularly appealing for passive
surveillance problems [63]. Future research avenues include
graph-based processing with embedded stochastic PFL [64],
[65] and applications including extended object tracking [13],
[66], simultaneous localization and object tracking [16], and
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