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ABSTRACT 

Wildfire spread simulation simulates the dynamic spread of wildfires by modeling fire spread behavior 
under various fuel, terrain, and weather conditions. To achieve real-time fire spread prediction using 
wildfire spread simulation models, it is essential to assimilate real-time observation data from active fires 
into the simulation models. Unmanned Aerial Vehicles (UAVs) has been increasingly used to collect data 
from wildfires. This paper presents a data assimilation method that assimilates UAV-based observation data 
for wildfire spread simulation. We formulate a data assimilation problem that works with a discrete event 
wildfire spread simulation model and UAV-based observation  data. A particle filter-based data assimilation 
algorithm is developed to carry out the data assimilation task. Experiment results show the effectiveness of 
the developed data assimilation method for assimilating UAV-based data for wildfire spread simulation. 
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1 INTRODUCTION 

Wildfires are a serious natural hazard that causes severe impacts on the environment and human society. 
According to the National Interagency Fire Center (NIFC) [1], since 2000 an average of 72400 wildfires 
have burned approximately 7 million acres of land each year. Wildfire spread simulation has been used to 
help researchers and practitioners to study wildfire behavior and analyze wildfire risk. It also holds the 
potential to simulate and predict real-time wildfire spread for supporting real-time decision making in 
wildfire management. To achieve real-time simulation and prediction of wildfire spread, it is essential to 
assimilate real-time observation data into the simulation models. The real-time data carries information 
about the real-time conditions of active fires. This allows a simulation to be aligned with the real fires to 
achieve more accurate simulation results.  

Collecting real-time wildfire data is a challenging task. Traditional wildfire data collection methods include 
satellite systems, manned aircrafts, and ground fire sensors. Each of them has their own limitations. For 
example, satellite data typically has a low time frequency and a coarse spatial resolution. Manned aircrafts 
have limitations in terms of mission duration, mission safety, and cost. Additionally, ground fire sensors 
are difficult to deploy on-demand and can be damaged by fires. In contrast, Unmanned Aerial Vehicle 
(UAV) technologies have advanced rapidly in recent years and show great potential for wildfire monitoring 
and data collection. The advantage of UAVs include, but are not limited to: flexible deployment that can 
be dynamically adjusted based on wildfire spread, data collection in high spatial and temporal resolution 
compared to satellite systems, and are safe and cost-effective compared to manned aircrafts.  

The increasing availability of real-time data collected from UAV requires effective methods to assimilate 
UAV-based observation data for wildfire spread simulation. Data assimilation is a statistical technique used 
for state estimation. It integrates observation data with a dynamic model and offers effective adjustment to 
the model to revise model error and generate more accurate simulation results. While a UAV brings many 
advantages in wildfire data collection, UAV-based observation data also has several limitations that make 
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assimilating them for wildfire spread simulation a challenging task. First, a UAV typically has limited fields 
of view that cover relatively small areas on the ground. This results in partial observations of large wildfires 
because at any time a UAV can only observe a portion of the wildfire area. As a wildfire dynamically 
spreads, there is a need to estimate the whole fire perimeter based on the partial observations from UAV 
data. Second, UAV data typically has a lot of noise due to the challenging operating environments and 
limited sensor capabilities. For example, the oscillation of a UAV’s body caused by turbulence makes the 
thermal camera mounted on the UAV have unstable viewing angles, which leads to noisy sensor data. 

This paper presents a data assimilation method to effectively assimilate UAV-based observation data for 
wildfire spread simulation. We define and formulate the data assimilation problem that works with a 
discrete event wildfire spread simulation model and the UAV-based observation  data. The data assimilation 
provides state estimation of the dynamically evolving fire front of an active fire based on partial and noisy 
UAV data. The state space formulation of the data assimilation problem includes a state transition model 
that is based on the wildfire spread simulation using the DEVS-FIRE model [2, 3], and a measurement 
model  that is based on fire front sensing using a UAV’s thermal camera. A particle filter-based data 
assimilation algorithm is developed to carry out the data assimilation task. To work with UAV-based 
observation data that provides partial observations and has a lot of noise, special treatments are developed 
to add process noises during state transition and to compute particles’ weights using the UAV data. These 
special treatments exploit the spatial dependency and locality features of UAV-based observation data to 
effectively support data assimilation. Multiple experiments are designed to evaluate the effectiveness of the 
developed data assimilation method. 

The remainder of this paper is as followed: Section 2 describes the related work, Section 3 presents the data 
assimilation problem for assimilating UAV-based observation data into DEVS-FIRE-based wildfire spread 
simulation, Section 4 describes the particle filter algorithm for carrying out the data assimilation task, 
Section 5 presents some experiment results, and Section 6 concludes this work. 

2 RELATED WORK 

Wildfire spread modeling and simulation are widely used for studying wildfire behavior. Multiple wildfire 
simulation models have been developed, such as FARSITE [4], BEHAVE-Plus [5], and DEVS-FIRE [2,3]. 
These models all use Rothermel’s model [6] as the underlying fire behavior model. A comprehensive 
review of the various fire spread simulation models can be found in [7, 8]. 

Remote sensing techniques are effective tools in wildfire monitoring and data retrieving. Satellite sensing 
as a traditional technique has been commonly used in wildfire detection and tracking [9, 10, 11]. UAV as 
a novel sensing technique has great potential to improve wildfire monitoring. A review of UAV based 
wildfire remote sensing can be found in [12]. UAVs have the advantage of being maneuverable, automatic, 
easy  to deploy, and cost friendly which makes UAV a promising tool in wildfire management [13]. The 
easy deployment and low cost of UAV comes with the benefit that fire data collection becomes convenient 
and fast. For example, UAV equipped with visible and infrared cameras are applied in real fire monitoring, 
using the captured data for image fusion [14]. UAV with a thermal camera is applied for both real-world 
wildfire monitoring [15, 16] and prescribed fire monitoring [17]. Infrared UAV images are used in LSTM 
model to predict forest fire spread rate [18]. On the other hand, UAV sensors also have some limitations. 
Recent studies show that a UAV’s camera has a limited scope of view and thus only a portion of fire data 
could be retrieved [17, 19]. This means the sensor data needs to be stitched and filtered in order to 
reconstruct the full fire map. 

Data assimilation has been popular in system state analysis with noisy observation data. The Particle Filter 
(PF) [20] is one of the popular data assimilation algorithms, which works for systems with non-Gaussian 
non-linear behavior. Much research has been done combining data assimilation techniques and wildfire 
modeling. For example, a PF-based data assimilation method is developed to assimilate temperature sensor 
data into  fire spread simulation based on the DEVS-FIRE model[21]. A spatial partition-based PF 
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framework is developed and applied to wildfire spread simulation [22]. A new paradigm of Dynamic Data-
Driven Simulation (DDDS) is developed that uses PF-based data assimilation to combine simulation models 
with observation data to support real-time prediction of dynamic systems [23, 24, 25]. Besides particle 
filters, Kalman Filter and its extensions are used to develop data assimilation for systems with linear and 
gaussian behavior. For example, Ensemble Kalman Filter is used to support wildfire forecasting based on 
a reaction-diffusion model and a semi-empirical fire propagation model [26]. Other work has also applied 
Ensemble Kalman Filter to wildfire data assimilation using the FARSITE model [27]. 

3 THE DATA ASSIMILATION PROBLEM 

3.1 The state space formulation 
Data assimilation typically uses a state space formulation that includes a state transition model and a 
measurement model. To carry out data assimilation using UAV-based observation data for wildfire spread 
simulation, we formulate the data assimilation problem using the state space formulation as shown below:  

State transition model: 𝑓𝑖𝑟𝑒!"# = 𝐷𝐸𝑉𝑆_𝐹𝐼𝑅𝐸(𝑓𝑖𝑟𝑒!) + 𝛾!,    (1) 

Measurement model: 𝑚!	 = 𝑈𝐴𝑉_𝑆𝑒𝑛𝑠𝑖𝑛𝑔(𝑓𝑖𝑟𝑒! , 𝑃) + 𝜁!.    (2) 

The state transition model (1) describes how the system state (i.e., the fire state) evolves over time, where 
𝑓𝑖𝑟𝑒! and 𝑓𝑖𝑟𝑒!"# are the fire states at data assimilation step t and t+1, respectively. The 𝐷𝐸𝑉𝑆_𝐹𝐼𝑅𝐸() 
represents the DEVS-FIRE simulation model that captures how the fire state evolves over time, and 𝛾! is 
the process noise. The DEVS-FIRE model will be discussed in the next section. The process noise is 
necessary to capture the model error and the uncertainty that exists in fire spread. The measurement model 
(2) describes the mapping from the system state to the observation data. In this work, the observation data 
𝑚! includes the observed fire front locations. The fire state is mapped to the observation data 𝑚!, based on 
how the UAV senses the fire state, denoted by 𝑈𝐴𝑉_𝑆𝑒𝑛𝑠𝑖𝑛𝑔(), which takes the fire state 𝑓𝑖𝑟𝑒! and UAV’s 
position P as inputs. The 𝜁! is the measurement noise that captures the noise involved in the UAV-based 
sensing. Details about the UAV-based sensing and the associated noise are described in Section 3.3.  

3.2 The state transition model 
The state transition model is defined by the DEVS-FIRE [2] wildfire spread simulation model plus process 
noise. DEVS-FIRE is a discrete event simulation model based on the Discrete Event System Specification 
(DEVS) formalism. The fire cell space in DEVS-FIRE is two-dimensional, in which each fire cell is the 
most basic element and is coupled with other fire cells to form the cell space. DEVS-FIRE uses Rothermel’s 
model as the fire behavior model. Environment data such as GIS data, fuel data and weather data also 
become necessary system input to support the simulation. 

There are three possible fire cell states based on the cells’ burning conditions: {unburned, burning, burned}. 
Figure 1 (a) shows an example of a screen shot from the DEVS-FIRE-based wildfire simulation. Green 
shows the unburned cells under a different fuel bed condition; red shows the burning cells; black shows the 
burned cells. Each fire cell is surrounded by other 8 cells in directions of {north-west, north, north-east, 
east, south-east, south, south-west, west} unless it hits the cell space boundary, which might be less than 8. 
Once the simulation is triggered, {unburned}cells that receive an igniting signal change the fire states to 
{burning}; burning cells calculate the spread direction and speed, and send igniting signals to their neighbor 
cells. After a period of burning time they change the states to {burned}; burned cells are always passive for 
the rest of the simulation time and their state no longer changes.  
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Figure 1: (a) DEVS-FIRE visualization; (b) Process noise illustration. 

An important component of the state transition model is the process noise 𝛾!, which captures the model 
error or uncertainty that exists in the state transition.  In our work, state noise (or process noise) treatment 
is defined as additional segments of fire cells added to the original fire state, which replace the original fire 
states. The state noise is a consistent segment, and it forms an enclosed shape with the original fire shape 
to form the new “noise fire shape” representing the processed fire states. The purpose of generating noise 
fire states is to make adjustment on the imprecise fire states caused by DEVS-FIRE model when the system 
contains error. Compared to the fire states directly generated by DEVS-FIRE model, noise fire states hold 
the potential to more accurately express the fire states. 

The process noise is applied by referring to observation data. The detailed steps of adding state noise to the 
fire states are introduced in a prior work [21]. Considering the UAV observation data holds special 
properties, we apply similar steps of adding state noise, but considering the local-spatial property of UAV 
observation data and applying gaussian-distributed noise. We extract the fire front, the outmost layer of the 
burning cells, out of the fire states and divide the fire front into different segments for processing state 
noise. We apply local-spatial process noise. In this way, only the fire states in the segments with observation 
data detected will be adjusted by adding states noise to accommodate the error caused by the system. An 
appropriate utilization of UAV observation data is important to be established. In our work UAV 
observation data might be detected at any direction of the simulation cell space. We utilize its “angle-based 
division” on the fire front, which is defined as the angles that are evenly divided starting at the centroid of 
the fire front shape and forms 𝑛 angle scopes. The direction converted to degrees are defined as: north – 0 
degrees; east – 90 degrees; south – 180 degrees; west – 270 degrees. To process state noise, a special 
treatment we apply is that we only add the states noise on the fire front segments at the angle scopes have 
pieces of UAV observation data detected. For example in Figure 1 (b), ∆𝜃# … ∆𝜃$ represent 𝑛 different 
angle scopes, in which only ∆𝜃# and ∆𝜃$ detect UAV observation data pieces (shown in red lines). Thus, 
we only process states noise for the fire front segments that fall in angle scope ∆𝜃# and ∆𝜃$ to form the 
noise fire segments (shown in blue lines) and the original fire segments (shown in the green lines) are 
replaced by the noise fire segments. In this way, the state transitions are in reasonable control. The fire front 
segments with no state noise applied are fully driven by the DEVS-FIRE model until any observation data 
is detected in the later steps. The segments processed with states noise can potentially adjust the fire front 
shape.  

3.3 The measurement model 
The measurement model describes how the UAV-based sensing works. To develop the measurement model, 
it is important to understand how the UAV-based observation data is obtained. In this work, we consider 
fire front sensing using UAV’s thermal camera, and thus the observation data is the fire front location data. 
The thermal camera of a UAV takes thermal images that use different colors to represent different relative 
temperatures of objects. For the wildfire application, fire fronts are the locations where the fire is actively 
burning and thus have higher temperatures. These high temperature locations are reflected in the thermal 
images as brighter colors. Thus, given a thermal image, one can identify the bright pixels in the thermal 
images that correspond to the fire front locations.   
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An important feature of the UAV-based sensing is that the thermal camera has limited field of view, and 
thus can cover only a relatively small region of a large wildfire. This means when the UAV flies around the 
fire area, the thermal images from the UAV at different time instants cover different parts of the fire area. 
Our work uses a position-based approach to compute the location of the fire area covered by the UAV’s 
thermal images. Figure 2(a) illustrates this approach, where the light blue area represents the area covered 
by a thermal image taken by the UAV’s thermal camera. This approach assumes the fire area is a flat area 
on the ground. It also assumes the UAV’s position (𝑥%&' , 𝑦%&' , 𝑧%&') and the orientation angle of the 
thermal camera at any time instant is known, where 𝑧%&' is the flying height of the UAV. The position 
(𝑥%&', 𝑦%&', 𝑧%&') can be obtained from the UAV’s GPS sensor; the orientation angle of the thermal camera 
can be derived from the Roll, Pitch, and Yaw angles of the UAV as well as the mount angle of the thermal 
camera on the UAV’s body. For simplicity, Figure 2(a) only illustrates the computation on the x-z plane, 
where 𝜃 is the corresponding angle of the thermal camera’s orientation on the x-z plane. Let 𝑥()' be the x 
coordinate of the center of the UAV’s field of view on the ground. Then 𝑥()' = 𝑥%&' + 𝑧%&' ∗ 𝑡𝑎𝑛𝜃.  
Similarly, the 𝑦()' can be computed. The computed (𝑥()', 𝑦()') represents the center of the field of view 
on the ground that is covered by the thermal image. We note that in order to obtain high quality observation 
data it is better to make the orientation angle 𝜃 small, i.e., making the thermal camera face downward. 

       

Figure 2: (a) UAV field of view’s location; (b) UAV’s observation data at different time. 

After the location of the area covered by a thermal image is known, using the relative positions of the 
identified fire front pixels on the thermal image, one can then extract the specific locations the fire fronts 
captured by the thermal image. When a UAV flies around the fire area, its thermal camera takes thermal 
images in a certain frequency (e.g., every 1 second). Based on these thermal images, using the approach 
described above, the corresponding observation data are then computed.  

The above description assumes perfect knowledge about the UAV’s position and the facing angle of the 
thermal camera. In reality, GPS sensor has noise and the sensors measuring UAV’s Roll, Pitch, and Yaw 
angles are not perfect either. This is especially true in a wildfire environment as there exist constant 
turbulence and updraft that brings challenges to UAV’s flight. This imperfect knowledge brings inaccuracy 
to the computed fire front locations. For example, when 𝑥%&' is inaccurate, the computed 𝑥()' would be 
inaccurate, which cause the extracted fire front locations to be shifted from the actual locations of the fire 
front. Similarly, the orientation angle errors of the thermal camera cause the extracted fire front locations 
to have a rotation error from the actual locations of the fire front. These errors need to be modeled by using 
the measurement noise.  

Based on the above descriptions, we develop the measurement model (a) as a mapping function from the 
fire state to fire front locations that includes three steps. Step 1 is to compute the location of the thermal 
camera’s field of view based on the UAV’s position and the orientation angle of its thermal camera. In this 
work, we assume the orientation angle is facing down all the time, and uses the measurement noise 
(described in Step 3) to account for inaccuracy of the orientation angle. Step 2 is to extract the fire front 
segments within the field of view based on the fire state. Step 3 is to add measurement noise 𝜁!. Specifically, 
we model 𝜁! as a Gaussian noise with two terms: 1) a Gaussian-based shift noise that shifts the extracted 
fire front locations with a Gaussian-based distance; and 2) a Gaussian-based rotation noise that rotates the 
fire front locations (around the center of the field of view) with a Gaussian-based angle.  
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Figure 2(b) illustrates the UAV’s observation data at three different time instances as the UAV flies in the 
fire area. In the figure, the red line represents the fire front; the dotted circles represent the UAV’s field of 
view on the ground, and the fire front measurement data are shown by the fire segments below the red 
arrows. When the UAV is at location p1, its field of view covers a continuous segment of the fire front. 
When the UAV is at location p2, its field of view covers two segments of the fire front due to the limited 
field of view. When the UAV is at location p3, its field view cover no fire front. We note that due to the 
noise factors, the observation data at each position is not the same as the fire segment within the 
corresponding field of view due to the measurement noise that are added. Also note that at location p3, the 
observation data has no fire front data.  

4 PARTICLE FILTER-BASED DATA ASSIMILATION  

Particle filter (PF) is utilized as the data assimilation method in our work. The PF algorithm is a sample-
based data assimilation method used on non-linear system calibration based on Bayesian inference and 
stochastic sampling techniques. The purpose of using PF is to estimate posterior density for all particles 
based on system states and observation data then make the best selection on the particles. PF includes 
sampling, weight calculation function, resampling as the main steps. In our work, sampling, weight 
calculation functions, and resampling are all related to wildfire simulation and UAV observation data. In 
the sampling phase, system transition model is applied for transiting the fire states with process noise to 
generate diversity of fire states. The weight calculation function is applied for calculating and assigning the 
importance weights based on the fire states and UAV observation data. PF proceeds resampling based on 
the importance weights to select and keep offspring of particles of the sampled fire states.  

PF is processed by steps based on a specific time interval. In every PF time interval, PF uses all sensor data 
within the time interval to process the data assimilation. If sensor data is retrieved constantly, the longer 
the time interval is, the more sensor data is within the time interval. However, this comes an issue that the 
sensor data within a time interval does not belong to the same time snapshot. Thus, the existence of time 
lag issue in the sensor data impacts the PF performance. To properly utilize the UAV observation data, a 
special treatment on the PF time interval is approached by significantly reducing the PF step time interval 
that the PF model has a much higher frequent adjustment of the fire shapes. The UAV observation data in 
a very short PF time interval could be considered approximately within the same time snapshot. Therefore, 
the PF model works more reasonably on the UAV observation data and reduces the impact of time lag issue. 

The weight calculation function in PF is utilized to compare the system states with the observation data and 
provides importance weights for particles. Trajectory similarity methods, which are used to measure the 
overlap of two geography paths, are effective to assess the difference between UAV observation data and 
the fire front. One Way Distance (OWD) trajectory similarity algorithm is utilized in the weight calculation 
function. The OWD is defined as the integral of the distance from discrete points of a trajectory T1 to 
another trajectory T2 [28], which is equivalent to the area shaped by the discrete points of T1 to T2. Figure 
3 illustrates how the OWD works. In the figure, the black line represents the trajectory T1; red points p1, …, 
p5 represent the discrete points that are averagely sampled from T1. Area s1, …, s5 represents the area that 
shaped by the discrete points of T1 with trajectory T2 in different segments (represented in different colors), 
which are averagely divided to the same number with the discrete points in trajectory T1. The OWD 
trajectory similarity from T1 to T2 is the summation of area 𝐷)*+(𝑇#, 𝑇,) = ∑ 𝑠-.

- . 

  
Figure 3: Illustration of OWD trajectory similarity. 
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Similar to the process noise, the weight calculation function is also applied the special treatment due to 
local-spatial property of UAV observation data. Angle-based division of the fire shape can also be applied 
on calculating the trajectory similarity. Due to the UAV observation has a property of being shifted, there 
might be pieces of UAV observation exist and forms a cluster within an angle scope. For example, in Figure 
4, red lines represent UAV observation data, and in angle scope ∆𝜃#  there are several pieces of UAV 
observation being captured. Therefore, we sample the centroid of the clusters of UAV observation in each 
angle scope. The trajectory similarity 𝐷)*+ in each angle scope is the area that formed by the centroids of 
UAV observation clusters and the corresponding fire front segments. In each valid angle scope ∆𝜃- , 
trajectory similarity 𝐷- is calculated as area 𝑠-. Figure 4 as an example, in angle scope ∆𝜃#  the sampled 
centroid point of UAV observation cluster is 𝑐#; trajectory similarity 𝐷# is calculated as area 𝑠#. Similarly 
in ∆𝜃$ the sampled centroid is 𝑐$ and trajectory similarity 𝐷$ is calculated as area 𝑠$. For each particle 𝑖, 
the fire front shape is divided by 𝑛  angle scopes 𝜽𝒊 = [∆𝜃#…	∆𝜃$], the trajectory similarity 𝑫𝒐𝒘𝒅𝒊 =
[𝑠#…𝑠$] represents a set of areas that calculated in each angle scope and it is utilized to generate OWD-
based independent weights 𝒘𝜽

𝒊 = M𝑤4! …𝑤4"O based on gaussian distribution. The particle’s importance 
weight is calculated as a cumulative multiplication weight 𝑤- = ∏ 𝑤4"

$
5 . 

 
Figure 4: Illustration on the OWD calculation based on UAV observation data. 

The description of the proposed PF algorithm is provided in the Table 1. 

Table 1: Implementation of PF algorithm. 

Algorithm 1: Particle filter in wildfire simulation using UAV observation data 

1. Initialization, time step 𝑘 = 0 
• For 𝑖 = 1,…	, 𝑁	, sample 𝑓𝑖𝑟𝑒5

(-) from DEVS-FIRE as the initial fire states. 
• Increment the time step by setting 𝑘 = 1 

2. Sampling: 
• For each fire state in {𝑓𝑖𝑟𝑒89#

(-) }-:#; , draw a sample using the system transition model described 
in section 3 including DEVS-FIRE model and process noise model, and generate noise fire 
states, donated by {𝑓𝚤𝑟𝑒XXXXXX

89#
(-) }-:#; . 

3. Importance weight calculation: 
• For each noise fire states {𝑓𝚤𝑟𝑒XXXXXX

89#
(-) }-:#; , calculate its importance weight {𝑤Y8

(-)}-:#; , according 
to UAV observation data using OWD. 

• Normalize the importance weights: 𝑤8
(-) = *<#

(%)

∑ *<#
(')(

')!
 

4. Resampling 
• Resample noise fire states {𝑓𝚤𝑟𝑒XXXXXX

89#
(-) }-:#;  according to {𝑤8

(-)}-:#; . 
5. Update the time step and loop the previous steps (except initialization step): 

• Set time step 𝑘 to 𝑘 + 1, then go to step 2. 
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5 EXPERIMENT DESIGN AND EXPERIMENT RESULTS 

To evaluate the performance of PF, identical twin experiment [25] is applied in our work. Identical twin 
experiment is a methodology testing the simulation outputs between a perfect system and a system with 
imperfect data. An identical twin experiment includes a set of two experiments:  a real experiment and a 
twin experiment. These two experiments run under different system parameters and generate different 
system states. A data assimilation process is applied only on the twin experiment to process states 
adjustment and generates filtered states. In our work, true states, twin states, and filtered states indicate real 
fire states, twin fire states, and PF fire states respectively. PF is aimed to integrates the UAV observation 
data to adjust and re-predict the fire states to improve the simulation results when system error appears.  

To validate the effectiveness of the PF-based data assimilation using UAV observation data on wildfire 
simulation, we design the experiments such that the twin weather data is different from the real weather 
data. The experiment results demonstrate the effectiveness of the proposed PF approach in aspects of 
dealing with both UAV observation noise and system error. In the two sets of experiments, we used DEVS-
FIRE-based UAV sensing model to simulate and generate the UAV observation data. We applied 
coordinated single UAV path planning that the UAV always follows the fire front to retrieve the fire front 
information. The experiments are deployed on a 200*200 cell space with each cell is in size of 30m. The 
cell space is filled up with 3 different types of fuel which are evenly distributed in strips that the fire 
spreading rate are different on the 3 fuels. 

In the first set of experiments, we validate that the proposed PF approach has great effect when the UAV 
observation data contains noise. The fire is ignited at cell (150, 170) for 13000 seconds of simulation time. 
Having the north direction as 0 degree, the real wind data is in speed of 22 ± 5 m/s and in direction of 43 
± 25 degree, and the twin wind data is in speed of 20 ± 5 m/s and in direction of 57 ± 25 degree. Figure 5 
(a) and (b) show the real fire front (green) and the twin fire front (yellow). The UAV starts being deployed 
at 240s after the fire is ignited and data retrieving range is at 3 cells radius with a 1 second reporting rate.  

       
Figure 5: Experiment set 1 (a) Fire front shapes for UAV data with small noise; (b) Fire front shapes for 
UAV data with large noise.  (Green: Real fire front; Yellow: Twin fire front; Red: PF fire front). 

The experiment is designed to demonstrate effectiveness of the proposed PF approach on various UAV 
observation noise. We validated two sets of UAV observation data in small observation noise and big 
observation noise, which are shown in pink cells in Figure 6 (a) (b) respectively. We applied a gaussian 
noise with smaller standard deviation and a small rotation on the UAV for small noise observation; while 
a larger gaussian standard deviation and rotation for big noise observation. We applied 200 particles with 
a 30s PF time interval on the twin experiments. The visualized experiment results are provided in Figure 5 
that the PF filtered fire fronts are shown in red. The results shows that in both experiments, the twin fire 
front shapes are properly adjusted and the PF filtered fire front shapes have a good match with the real fire 
front shape. However, due to the larger noise variance, the PF filtered fire shape based on large UAV sensor 
noise is less accurate and has more mismatched fire segments on the real fire shape.  
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Figure 6: Experiment set 1: (a) UAV observation data with small noise; (b) UAV observation data with big 
noise. (Green: Real fire front shape; Pink: UAV observation data ). 

A quantitative result is provided to analyze the performance of PF over time in Figure 7. As a comparison, 
we applied convex hull algorithm as a base method. Without system or states information, convex hull 
straightforwardly connects the centroid of UAV observation data within PF time intervals and reconstructs 
the fire front. For both PF and convex hull, after a fire front is reconstructed, the fire front is assigned 
{burning} states and the cells within the fire front are assigned {burned} states. Mismatched cell rate is used 
as the error metric after the fire front is reconstructed to describe the number of mismatched 
{burning/burned} cells divided by the real fire’s {burning/burned} cells. Figure 7 (a) shows that PF is 
effective dealing both small and big observation noise that the two experiment results have similar 
decreasing trends. The mismatched cell rates constantly decrease over time and eventually reduce to around 
10%. Figure 7 (b) shows that with the simulation time increases, the number of mismatched cells increase 
at the beginning as the fire are spreads larger but eventually become convergent. Comparing PF and convex 
hull, when the observation noise is small, convex hull performs better but shows an unstable behavior with 
the time increases. When the observation noise is large, PF shows an obvious advantage on the stable 
performance and accuracy. Plus, PF can show stable performances in both noise scenarios. Since convex 
hull simply just takes the maximum coverage of the observation data as the fire shape, the more precise the 
observation data is, the more accurate convex hull can reconstruct the fire shape. However, if the 
observation data gives more noise information, convex hull no longer well estimates the coverage of fire 
shape; while PF can still consistently and stably outperform in adjusting the fire states during time. 

         

Figure 7: Experiment 1 quantitative results: (a) Mismatched cell rate; (b) Number of Mismatched cells. 

In the second sets of experiments, we validate the effectiveness of the proposed PF approach on different 
system error. In our experiments, the weather difference between real fire and twin fire is considered to be 
the system error. In experiment 2, we increase the weather difference between real fire and twin in order to 
generate larger system errors. We design 3 sets of experiment to demonstrate that the proposed PF approach 
is effective in small, middle and large weather data error incorporating noise UAV observation data. In the 
3 sets of experiments, the fire is ignited at cell (150, 50) for 12000 seconds. The real wind data is set up in 
speed of 22 ± 7 m/s and in direction of 132 ± 25 degree. For the twin wind speeds, small, middle, large 
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weather error is set in speed of 20 ± 5 m/s, 18 ± 5 m/s and 16 ± 5 m/s respectively. The twin wind 
directions are all set to be the same in 147 ± 25 degree. The real fire front and the twin fire shapes are 
shown in Figure 8 (a). A single UAV is deployed at 300s after the fire is ignited the UAV observation range 
is also at 3 cells radius with also a 1 second reporting rate. The UAV observation noise we applied as the 
big noise corresponding to experiment 1 and is shown in Figure 8 (b). 

    

Figure 8: Experiment set 2: (a) Fire front shapes in different weather conditions. Green: Real weather; 
Yellow: Small weather error; Blue: Middle weather error; Black: Big weather  error. (b) UAV observation 
data with noise (Green: Real fire front; Pink: UAV observation data ). 

We also applied 200 particles with 30s PF time interval for each twin experiment. The visualized results of 
each PF fire front are shown in Figure 9 in red. The results shows that PF is effective adjusting the fire front 
in all 3 twin weather conditions but with the weather error increases the PF fire front shows in more unstable 
shapes. The quantitative results are shown in Figure 10. From Figure 10 (a) and (b) we can see that the PF 
has great performance of reducing the mismatch cell rate over time in all weather conditions. However, due 
to the reason that when the weather error increases, PF needs to process larger state noise for the noise fire 
states to accommodate the weather difference then have a potential to reduce the state-to-observation 
difference. Thus, results of small weather error and middle weather error are both good since these two 
weather errors are considered relatively small. The results for big weather error shows that a big weather 
error has impact on reducing the PF performance.  

            

Figure 9: Experiment set 2 PF fire front: (a) Twin small weather error; (b) Twin middle weather error (c) 
Twin big weather error. (Green: Real fire front; Red: PF fire front; Other: Twin fire fronts). 

     
Figure 10: Experiment 2 quantitative results: (a) Mismatched cell rate; (b) Number of Mismatched cells. 
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6 CONCLUSION 

This paper formulates the wildfire data assimilation problem with state transition and UAV-based 
observation, and proposes a particle filtering approach to effectively assimilate the UAV based observation 
data. The proposed particle filter approach deals with the noisy and partial UAV observation data to 
effectively work with a discrete event wildfire spread simulation model. Future work will be carried out in 
several directions. First, we will further improve the PF-based data assimilation method for assimilating 
UAV observation data. In particular, when there is sparse observation data from UAV (e.g., when it takes 
a long time for a UAV to revisit a specific fire area), there is a need to improve the accuracy of the data 
assimilation results. Second, we will carry out more experiments under various fire spreading scenarios to 
comprehensively evaluate the robustness of the data assimilation method. Third, we will investigate how 
more advanced PF algorithms may be developed to help improve the data assimilation performance to lead 
to more accurate and more stable experiment results. 
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