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Abstract

Compiler optimizations intend to transform a program into a semantic-
equivalent one with improved performance, but it is unclear how
these optimizations may impact the performance of dynamic sym-
bolic execution (DSE) on binary code. To systematically understand
the impact of compiler optimizations on two popular DSE tech-
niques (i.e., symbolic exploration and symbolic tracing), this paper
presents an empirical study that quantifies 209 GCC compilation
flags and 73 Clang compilation flags to reveal both positive and
negative optimizations to DSE. Our data set contains 992 unique
test cases, which are produced from 3,449 source files in the GCC
test suite. After analyzing 2,978,976 binary programs that we com-
piled with two compilers and various compilation flags, we found
that although some optimizations make DSE faster, most optimiza-
tions will actually slow down DSE. Our analysis further reveals
root causes behind these impacts. The most positive impacts that
optimizations have on DSE come from the reduction of the number
of instructions and program paths, whereas negative impacts are
caused by a series of unexpected behaviors, including increased
numbers of instructions or program paths, library function inlin-
ing preventing DSE engines from using function summaries, and
arithmetic optimizations leading to more sophisticated constraints.
Being the first in-depth analysis on why compiler flags influence
the performance of DSE, this project sheds light on program trans-
formations that can be applied before performing DSE tasks for
better performance.
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1 Introduction

Compiler optimizations are transformations that take a program
as input and produce a semantically equivalent executable, usually
with improved performance, such as lower memory usage, smaller
images, and most importantly, faster execution: An optimized C
executable may run twice as fast as its unoptimized counterpart [3].
Unfortunately, compiler optimizations often hamper key security
applications, such as binary code matching [38], function signature
recovery [28], and dynamic symbolic execution (DSE) [12, 16, 21].

Being a popular software testing technique, DSE symbolically
executes a program by simulating it in a software execution en-
gine where the program’s variables, registers, and memory data are
symbolic values [25, 39]. A key advantage of DSE is that it can rea-
son about input along a certain program path by solving collected
path predicates (also known as path constraints) in a constraint
solver. Theoretically, given enough time and computing resources,
DSE can systematically explore all paths (or states) of any program.
However, DSE techniques are extremely expensive, and even more
so when applied on binary programs [36].

Some compiler optimizations have been known to negatively
affect the performance of DSE [12, 16, 21]. Nevertheless, existing
studies are limited because: (a) they focus on combinations of opti-
mization flags (e.g., ~01 or -02, which are combinations of multiple
flags) or manually selected optimization flags, (b) they only study
the source-based DSE solution (KLEE) while DSE on binary code is
often used in security settings [6], and (c) they evaluate optimiza-
tion flags by performing DSE on large code bases (e.g., Coreutils),
which hides the performance impact of individual flags on code
with different properties. More importantly, existing studies leave
open a critical research question, which we seek to answer in this
paper: Why do compiler optimizations impact the performance of
DSE on binary code?

Instead of statistically measuring the impact of a few compiler
flags on DSE (as in existing work), in this paper, we study a com-
prehensive set of compiler options (including 209 GCC flags and 73
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Clang flags) and reveal why these optimizations affect the perfor-
mance of DSE by measuring their impact on low-level operations in
DSE engines. We create a framework to automatically and systemat-
ically Measure the impacts of compiler Optimizations On Symbolic
Execution (MOOSE). The high-level idea is to select a set of con-
cise and focused C programs and generate their variants with and
without each optimization flag!, and measure DSE performance on
these variants pairwise. If a program with an optimization enabled
achieves better (or worse) performance than its counterpart without
optimization, MOOSE knows that the optimization positively (or
negatively) impacts the performance of the DSE, as well as reasons
behind the impact.

We build our data set using the GCC test suite, which contains
3,449 C source files. Through filtering and editing, 992 were used for
the benchmark (we were unable to retrofit the rest of the programs
to insert symbolic variables, which means we cannot use them to
test symbolic execution), with which MOOSE produced 2,978,976 bi-
nary programs (including those produced by both Clang and GCC).
MOOSE found that a total of 209 GCC flags impact 176,546 binaries,
and 73 Clang flags impact 54,686 binaries. Due to the variance in
properties these programs have, a given flag may not have an im-
pact on every program. Therefore, we filtered out binaries that are
not affected by any compilation flags, and eventually only evaluated
7.76% binaries. We then measure two DSE techniques: symbolic
exploration [8, 23] and symbolic tracing [5, 41, 45] on produced pro-
gram variants. Since we have identified more optimization flags for
GCC (209) than for Clang (73), our analysis focuses mainly on the
GCC flags and uses Clang flags as a comparison. Our results show
that among the 209 GCC flags, 43 optimizations accelerate symbolic
exploration, and 9 optimizations accelerate symbolic tracing; 23
optimizations slow down symbolic exploration, and 21 slow down
symbolic tracing. Among the 73 Clang flags, we identified 14 that
accelerate symbolic exploration, and 24 that decelerate symbolic
exploration. Similarly, we identified 7 optimizations that accelerate
symbolic tracing, and 15 that decelerate symbolic tracing.

Most compiler optimizations were created to improve CPU exe-
cution performance. Nevertheless, DSE engines are different from
CPUs: Their performance is largely determined by the speed of
software emulation and constraint solving. We identify four main
reasons why some compiler optimizations (and flags) negatively im-
pact the performance of DSE engines: (i) some optimizations (e.g.,~
fstack-protector) generate more instructions, causing more time
spent during emulation; (ii) some optimizations (e.g., -fsplit-
stack) create additional conditional branches, which leads to more
program states; (iii) some optimizations (e.g., ~-fbuiltins) inline
library calls into binary code, which prevents DSE engines from
using optimized function summaries; (iv) some arithmetic optimiza-
tions (e.g., reciprocal optimization of divisions) destroy linearity in
arithmetic expressions, which makes DSE engines generate more
complex and harder-to-simplify symbolic constraints. In particular,
we obtained several key findings through our study, and we list
some of them below.

e There were no suitable test suites. We failed to find any
test suites of C programs that would both take symbolic input
'We use the term “optimization flags” loosely in this paper. Some flags are for purposes

unrelated to program optimization, such as hardening or instrumenting the program.
Enabling such flags may make the compiled executable larger or run slower.
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and expose the effects of all compiler optimizations during DSE.
Therefore, we created a new test suite for MOOSE by taking the
GCC test cases and modifying them to accept symbolic input.

Symbolic exploration and tracing have different perfor-
mance characteristics. DSE is a complex procedure with many
stages, such as emulation, constraint collection, constraint solv-
ing, and state forking. While symbolic exploration techniques
spend a lot of time on constraint solving and state forking, sym-
bolic tracing does not fork states and generally solves much
less. We measured the impact of optimizations on both symbolic
exploration and tracing, and find that most optimizations impact
exploration and tracing differently.

Many optimizations decelerate DSE. Optimized binaries are
not necessarily friendly to DSE engines. For example, on angr,
21 optimizations decelerate symbolic exploration and 7 opti-
mizations decelerate symbolic tracing. We observe a similar
impact on different compilers (GCC and Clang) and different
DSE engines (angr, Maat and SymQemu) that our study covers.
Previous research did not demonstrate this finding due to the
limited number of optimizations studied.

Compilers do not expose all optimizations as compiler
flags. We found that certain compiler optimizations, such as the
reciprocal optimization of divisions, are enabled even when all
optimizations are turned off (by specifying -00). Some of these
optimizations significantly impact DSE performance, but they
are completely ignored in prior works.

Our findings apply to real-world programs. We further
verified through experiments that our findings apply to real-
world programs: By applying DSE-accelerating optimizations
and disabling DSE-decelerating optimizations (or by intention-
ally transforming the optimized programs to non-optimized
ones), we observed an improvement of symbolic execution.

Contributions. This paper makes the following contributions:
e We designed a new framework, MOOSE, to (i) generate valid
test cases for DSE, and (ii) pinpoint, measure, and reason about
the impacts to DSE caused by compiler optimizations.

We studied the impact of a large number of optimization flags
through automated binary program generation and pairwise
comparison. Our study includes multiple compilers (GCC and
Clang) and DSE engines (angr and SymQemu).

We created a new data set using the GCC test suite with 992 test
cases (which are produced from the 3,449 programs) and evalu-
ated MOOSE with both GCC and Clang. Our analysis revealed
a large set of compilation flags that positively or negatively im-
pact DSE performance. We analyze their root causes and how
we can improve DSE performance on binary code.

We confirmed that our results help improve the performance
of DSE in real settings. Through recompiling real-world pro-
grams using a specific combination of flags (where we enabled
DSE-accelerating flags and disabled DSE-decelerating flags), we
observed improved DSE performance.
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2 Background

2.1 Dynamic Symbolic Execution

Dynamic symbolic execution (DSE) is a technique that system-
atically traverses some or all states of a program. DSE is commonly
used in software testing and vulnerability discovery [7, 25, 34, 35].
Based on its purpose, DSE can be further categorized to symbolic
exploration [8, 23] and symbolic tracing [5, 41, 45]. Symbolic ex-
ploration is mostly used for generating inputs that trigger a certain
state, where the DSE engine takes as input an initial state, explores
multiple execution paths until it reaches a specific state, and gen-
erates one or more input cases that can lead the execution into this
state. Unlike symbolic exploration, symbolic tracing only traverses
one path. In symbolic tracing mode, the DSE engine accepts a con-
crete input, and traverses the execution path as determined by the
given input until the program terminates. It is usually used in hybrid
fuzzing to find new seed input that would explore new branches
in a program. With the simple example program shown in Figure 1,
we next explain how symbolic tracing and exploration work.

Symbolic Tracing. During symbolic tracing, the DSE engine first
takes a concrete input (assuming 6 for pass and 3 for y) in main()
(Step @). Then it simulates the multiplication in bar () (3*2) and
gets the result 6 (Step ). Next, the simulation reaches the if
statement (line 7) and evaluates the Boolean condition z!=pass
(Step ). After comparing pass against z, the engine will follow
the branch determined by z==pass (line 13) and outputs “OK” (Step
®). Because the DSE engine tracks how each value is derived from
user input, we solve for new input assuming different conditions
hold (e.g., negating z==pass, or forcing z to be 10).

Symbolic Exploration. Unlike symbolic tracing, symbolic explo-
ration takes partial or no user input to begin with. In Step @, the
DSE engine assigns symbolic expressions instead of concrete inte-
gers to corresponding variables (pass=a and y=y where « and y are
unknown variables). Next, the engine simulates multiplication and
assigns 2y to z (Step ®). When the engine reaches the if statement
(line 7), it evaluates Boolean condition 2 * y != . Because y and
« are both symbolic, the solver determines that this condition can
be both satisfiable and unsatisfiable. The DSE engine then “forks”
the simulated program state into two states (where each follows a
different path) and adds the Boolean condition and its negation to
each state as path constraints (Step ©). The first state (where 2 * y
!= o holds) invokes exit() while the second state (where 2 * y
« holds) outputs “OK”. Optionally, for each final state, we may
use the solver to solve for a concrete initial input. For example, the
solver generates input y=3 and a=6, which leads the program to
print “OK”.

2.2 Taxonomy of DSE Engines for Binary Code

DSE engines works on either source code (e.g., KLEE [13] and
SymCC [34]) or binary code (e.g., angr, QSYM, and SymQemu).
This paper focuses on binary-only DSE engines. To better under-
stand how DSE engines work on binary programs, we inspect the
source code of several DES engines. At a high level, performing DSE
on a binary program involves three major phases: (a) Initialization,
where the DSE engine creates an simulated program state with a
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Figure 1: A simple example illustrating the difference be-
tween symbolic exploration and tracing. Red lines are sym-
bolic execution paths, and blue dashed lines show the sym-
bolic tracing path.

simulated environment; (b) Execution, where DSE engine simu-
lates the execution of instructions in its execution engine, forks
states when necessary, and collects path predicates; (c) Termination,
where DSE engine performs remaining tasks (e.g., final constraint
solving during tracing) and clean-ups. Next, we detail five key
operations and their most relevant phases (I, E, and T).

(I) Program Loading and Initial State Creation. This step is
where the DSE engine loads the binary executable and creates
the initial simulated state (including registers, stack, and heap)
with a simulated environment (including OS kernel, files, and file
descriptors). In symbolic tracing, concrete execution traces are
loaded during this step.

(E) Interpreting or JITing Instructions. When instructions use
symbolic data, DSE engines cannot execute them directly on the
CPU. As such, DSE engines generally fall into two categories accord-
ing to how they execute these instructions: some (angr, S2E [18],
and Maat [1]) interpret instructions in emulated CPUs that handle
symbolic data while others (QSYM and SymQemu) just-in-time
compile (JITs) handler functions into the main program. Option-
ally, DSE engines may first lift instructions into a side-effect-free
intermediate representation (IR), and then interpret IR statements
for the ease of implementation (e.g., angr uses VEX IR [4, 30], and
SymQemu uses TCG). QSYM does not use any IR but instruments
the binary dynamically using Pin.

(E) Accesses to Simulated Registers and Memory. DSE engines
translate memory and register accesses in each instruction into
accesses to their own simulated register and memory objects that
are associated with each simulated program state. These simulated
register and memory objects are sparse. They may support copy-
on-write to reduce RAM usage, especially for symbolic exploration
techniques, where many emulated states exist in memory.

(E,T) Constraint Creation and Solving. During symbolic ex-
ploration, at every conditional branch instruction, DSE engines

for

int a[l];
(int i

if (i>50) {

a[i]=¢

lelse(
ali]

C
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DSE  SExec.? STrac.? Style Concrete. Multi-Plat.? Lang. IR Solver
angr v v Inter. Unicorn v Python VEX 73
S2E v v Inter. Qemu w/ KVM v C++ LLVM Z3
Maat v v Inter. N/A v C++ P-Code Z3
QSYM v X Instr Pin X C++ N/A Z3
SymQemu v X JIT Qemu v C++ TCG Z3

Table 1: Qualitative comparison between major DSE engines
for binary code. SExec. refers to symbolic exploration, and
STrac. refers to symbolic tracing. Inter. is means Interpreta-
tion and Instr. means Instrumentation. Multi-Plat. refers to
if the engine supports analyzing binaries for more than one
operating system.

may determine if both branches are satisfiable. For each satisfiable
branch, the engine collects its corresponding path predicates (con-
straints) by creating new Boolean expressions and adding them to
the constraint store associated with program states. In symbolic
tracing, DSE engines do not need to test satisfiability at every condi-
tion branch because the satisfiability is determined by the concrete
input. Rather, the engines may negate certain branch conditions
to solve for new input that allows the traversal of a previously
unsatisfiable branch.

(E) State Forking. State forking only occurs during symbolic ex-
ploration when both branches of a conditional branch instruction
are satisfiable. Because we do not consider state merging in our
study, once a state is forked into two, they will never be merged
into one state. Note that symbolic-tracing-only solutions (QSYM
and SymQemu) do not fork states.

Table 1 shows a taxonomy of several popular DSE engines for binary
code. Our study covers two representative DSE engines, namely
angr (which interprets) and SymQemu (which JIT compiles). To
minimize discrepancies caused by solvers, we configure all engines
to use the Z3 solver [29].

2.3 Compiler Optimizations

Compiler optimizations are sequences of program transforma-
tions that convert a program into another semantically equivalent
but (usually) more efficient program. Compiler optimizations are
generally controlled by compilation flags. For example, the compiler
flag -funroll-loops enables the loop unrolling transformation
when compiling the program.

Optimization levels (e.g., -00, -01, and -02) are special compiler
flags that represent combinations of compiler optimizations. For
example, -Os enables the flags for decreasing executable sizes. Sur-
prisingly, optimization levels may impact other flags in unexpected
ways: Some flags only take effect under a specific optimization
level, and some optimizations are only controllable by optimization
levels. Typically, the order of compiler optimizations (as provided
to the compiler) does not impact the generated binary unless some
flags conflict (e.g., when -f1lto and -fno-1to are both specified).

3 Design of MOOSE

MOOSE automatically recognizes compilation flags that impact
DSE performance on binary programs. Figure 2 illustrates three
high-level components of MOOSE:
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e Test Case Generator (§3.1), which takes the source files from
the GCC test suite and produces transformed source files that
accept user inputs.

Binary Generator (§3.2), which takes generated source files as
input, compiles them, and identifies binary programs that are
affected by specific compilation flags.

Performance Evaluator (§3.3), which performs DSE (symbolic
exploration and symbolic tracing) on compiled binaries and
measures their performance.

3.1 Test Case Generator

To evaluate the performance impact of compiler optimizations on
dynamic symbolic execution (DSE), we require a dataset of various
source files. Two main challenges arise in this process, which are
that each test program must be small and simple and take user
input and use it in at least one branch condition. To address these
challenges, we synthesized a new dataset based on compiler test
suites, which are inherently concise and simple, and developed an
approach to automatically transform them into programs that take
user input. Our approach includes two steps:

(I) Scanning and replacing variables. For source files that con-
tain only concrete values, we must find all concrete variables and
replace them with variables that take user input. First, we scan the
source files and use regular expressions to find all variable-defining
statements (e.g., int a;) and assignments (e.g., a=1;). Next, we cre-
ate a new assignment statement that reads user input from stdin
(whose length is determined by the type of the original variable in
the statement). Finally, we insert the newly crafted statement after
the variable-defining statement or the assignment.

(II) Verification. Although our source modification does not cre-
ate new compilation errors, the resulting programs may still not
receive user input. Therefore, we perform symbolic exploration on
newly generated binaries to examine if it creates symbolic variables
and symbolic branch conditions as expected. We discard any pro-
grams that do not generate any symbolic branch conditions during
symbolic exploration and use the remaining programs for Binary
Generator.

3.2 Binary Generator

Binary Generator takes the source files generated in the previous
step as input and produces executables with different compiler
optimizations enabled. We detail our approach next.

(I) Selecting compilation flags. We collect a set of valid compiler
flags by parsing the official GCC and Clang documentation pages on
compiler flags and extracting all optimizations that the compilers
support. We exclude compiler flags that do not work for C code by
compiling a simple C program with each flag once. We remove a
flag from our collection if we observe any compilation errors.

(II) Compiling binaries and building the dataset. We then
pair each program with the optimizations that influence it. To test
whether an optimization has an effect on a source program, we
generate two programs for each source file, where one program
has the optimization enabled and the other has the optimization
disabled, and compare their bytes. If the metadata, code, and data
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Figure 2: Major components and the workflow of MOOSE.

sections of two binaries are equivalent at the byte level, then the
optimization has no effect on this program. Once this step finishes,
we curate a large set of programs with all compiler flags that have
an effect on each program.

(III) Generating seed input for symbolic tracing. Symbolic
tracing requires seed input, and different programs require input of
varying lengths. Because Test Case Generator generates all state-
ments that consume user input, we acquire from there the length
of input that each program expects and generate a seed input for
each test program.

3.3 Performance Evaluator

Because symbolic exploration and symbolic tracing have vastly
different natures in performance, we measure them separately. Us-
ing time as the only metric can be noisy (because solvers work in a
black-box and non-deterministic manner [21]) and does not help
us understand the root causes behind. Therefore, we measure the
raw numbers of several metrics for each key operation.

o Interpreting or JITing instructions. We record both the total
elapsed time and the number of executed instructions or IR
statements (if IRs are used).

o Accesses to simulated registers and memory. We record the
number and the total elapsed time of all accesses.

e Constraint creation and solving. We record the time elapsed
to solve symbolic constraints, the total number of solving at-
tempts, and the total number of constraints, as well as their
depths (which is an approximate factor for constraint complex-
ity).

o State forking. We record the number of dead ended paths
(i.e., terminated) and the time spent in forking states (only for
symbolic exploration).

Next, we introduce how we instrument each DSE engine.

angr. angr supports both symbolic exploration and tracing. For the
former, we use angr’s depth-first search (DFS) exploration, which
explores all possible paths of a program until reaching time or path
limits. For the latter, we use angr’s tracer exploration technique
(tracer.Tracer), which follows the execution traces using seed
input. angr does not support profiling, so we customized angr to
record profiling results.

Maat. Maat supports both symbolic exploration and symbolic trac-
ing, and provides rich interfaces for customization. For example, we
can collect the number of IO operations by implementing callbacks

for EVENT.REG_R and EVENT.REG_W, and the number of paths by
implementing the callback EVENT . PATH.

SymQemu. SymQemu only supports symbolic tracing. It uses
QSYM as its backend, which supports recording the solving and
execution time. We further customize its pintool component to
collect profiling results, e.g., number of IO operations. Additionally,
we modify SymQemu’s TCG translation component to record its
IR translation time.

4 Evaluation

4.1 Experiment Setup

Data set. We built a data set using 3,449 C source files from the
GCC test suite. This dataset was chosen to ascertain the effects of
each compiler flag. We consider this dataset representative, given
its purpose of evaluating compiler flags, aligning with our goal of
identifying flags impacting DSE. To demonstrate the applicability
of our findings to real-world programs, we created a secondary data
set comprising six programs and their seed input based on a bench-
mark used by Ferry [46]. We collected 218 compiler flags from the
GCC documentation, and 211 flags from the Clang documentation.
Our system generated 992 source files that use user input. We pro-
duced 2,978,976 binary programs under seven optimization levels
(-00,-01,-02,-03,-0s,-0g, and -Ofast), by compiling every flag-
file combination under all seven optimization levels, as some flags
only take effect when they are specified in tandem with certain op-
timization levels. Among all binaries produced by GCC, 176,546 are
affected by 209 optimizations. Additionally, 54, 686 clang-produced
binaries are affected by 73 flags.

Testing environment. We use GCC 9.3.0 and Clang 10.0.0. All
experiments were conducted on two servers, each equipped with
a 16-core Intel(R) Core(TM) i7-10700 CPU at 2.90GHz and 32 GB of
RAM, running Ubuntu 21.04. For symbolic execution, we set a time-
out of 15 minutes and terminated programs that did not complete
within this time frame. Results of timed-out runs were still recorded.

4.2 Experiment Results

RQ1. How do compiler optimizations impact the perfor-
mance of symbolic exploration and symbolic tracing?

Method. We run DSE using angr on all GCC-compiled binaries
and record their running time. For each GCC optimization, (i) we
run the experiments five times for each pair of the binaries (i.e., one
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Figure 3: Distribution of performance impacts of flags on
symbolic exploration (angr).

compiled with the flag and the other complied without) to reduce
the impact of noises. (ii) We filter out the optimizations that do
not affect symbolic execution. (iii) For each GCC optimization that
affects symbolic execution, we need to understand whether the
performance impact is positive or negative. Thus, for each pair of
binaries, we subtract the symbolic execution time of the binary with
the optimization enabled (T,) from the symbolic execution time
of the binary with the optimization disabled (Ty). The difference
(T —Te) is either positive (i.e., the optimization accelerates symbolic
execution) or negative (i.e., the optimization decelerates symbolic
execution); (iv) we then use the difference to divide the larger time
cost (T — T,) /max(Ty, T,)) to normalize the result to [-1, 1]. (v)
Finally, we take the mean value of all normalized differences as the
final result.

Results. Figure 3 and Figure 4 visualize the overall results. Overall,
43 (67.19%) optimizations accelerate symbolic exploration, while
21 (32.81%) optimizations decelerate symbolic exploration. Mean-
while, 9 (56.25%) optimizations accelerate symbolic tracing, while
7 (43.75%) optimizations decelerate symbolic tracing. We further
found that optimizations that accelerate symbolic exploration or
tracing generally produce smaller binaries or binaries with simpler
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logic. For example, -fcx-1imited-range (which accelerates all bi-
naries) avoids redundant type checking by removing certain instruc-
tions. Optimizations that decelerate symbolic exploration or tracing
usually introduce more instructions. For example, -finstrument-
functions (which decelerates all binaries) adds instructions for
instrumenting programs. We also observed that when compared
with the number of optimizations that affect symbolic exploration,
the number of optimizations that affect the symbolic tracing is
much smaller. This is because symbolic exploration explores many
paths of a program, while symbolic tracing only traverses one path
that the user input determines. During tracing, the given input has
a lower chance to trigger specific paths where the optimization
takes effect. If the program executes a path that is not impacted
by the optimization, it is likely that no differences can be observed
across multiple runs.

RQ2. Does each compiler optimization similarly impact
the performance of symbolic exploration and tracing?

Method. For each GCC optimization, we compare its performance
impacts on symbolic exploration and symbolic tracing. Then we
split all optimizations into seven groups: (i) optimizations that ac-
celerate both exploration and tracing (®); (ii) optimizations that
only accelerate exploration (@); (iii) optimizations that accelerate
exploration but decelerate tracing (®); (iv) optimizations that only
accelerate tracing (®); (v) optimizations that only decelerate trac-
ing (®); (vi) optimizations that decelerate tracing but accelerate
exploration (®); and (vii) optimizations that only decelerate explo-
ration (@). We do not observe any optimizations that decelerate
both execution and tracing (®).

Results. As shown in Table 2, only five optimizations accelerate
both symbolic exploration and tracing, while all other optimizations
have contradictory impacts on symbolic exploration and tracing.
We believe that this discrepancy of impacts is caused by the different
natures of exploration and tracing: As discussed, symbolic tracing
only traverses one path that the user input determines. Although
an optimization may accelerate or decelerate DSE on a binary, its
effect may not be prominent on all paths. Symbolic exploration
explores many paths of a program and has a higher chance to cover
paths that are actually affected by an optimization.
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@ -ftree-ccp @ -fearly-inlining @ -ftree-dce @ -faggressive-loop-optimizations @ -flive-range-shrinkage @ -ftree-sra

@ -ftree-pre @ -thosted @ -ftree-vrp @ -ftree-switch-conversion @ -ftree-loop-optimize @ -fgese-after-reload

@ -ftree-loop-vectorize @ -fmerge-all-constants @ -fpeel-loops @ -fipa-pta @ fsplit-loops @ -fgese-lm

@ -fprefetch-loop-arrays @ -fgese-sm @ -ftree-loop-if-convert @ -freciprocal-math @ -finline-small-functions @ -fexpensive-optimizations

@ -fbranch-probabilities @ -ftree-slsr @ -funroll-loops

@ -foptimize-strlen @ -ftree-copy-prop @ -fivopts @ -ftree-dse @ -finline-functions-called-once ~ @ -fdce
@ -funconstrained-commons @ -fselective-scheduling2 ~ @ -findirect-inlining @ -fisolate-erroneous-paths-attribute | @ -ftree-fre ® -ftree-vectorize
s N e N Lo et B L il e ® -fsection-anchors ® -floop-nest-optimize

T @ -fuse-linker-plugin @ -fkeep-inline-functions

exploration and symbolic tracing on the programs produced by
gcc, for each optimization, we compare its impacts on symbolic
exploration and symbolic tracing, and the way of our categorization
is the same as that introduced in RQ1 and RQ2.

Results. Figure 5 and Figure 6 show the results. We identified 14
optimizations (37.83%) that accelerate symbolic exploration and 23
optimizations (62.17%) that decelerate symbolic exploration. Sim-
ilarly, we have identified 7 optimizations (31.82%) that accelerate
symbolic tracing, and 15 optimizations (62.18%) that decelerate sym-
bolic tracing. Our results indicate that optimizations (which may
be implemented differently) provided by GCC and Clang generally

@ -ftree-loop-distribution
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Figure 6: Distribution of the impacts of flags on symbolic
tracing (Clang).

have a similar impact on the performance of DSE. For example, -
finline-functions (this optimization has the same name in both
Clang and GCC) makes all functions inline even if they are not
declared inline. This optimization accelerates symbolic exploration,
and the impacts are reflected by both Clang and GCC.

RQ4. Does each compiler optimization similarly impact
the performance of different DSE engines?

Method. To answer this research question, we include two DSE
engines, Maat and SymQemu, in addition to angr. We use the same
approach in RQ1 to measure the performance impact of optimiza-
tions on Maat for both symbolic exploration and tracing, and com-
pare the results with our findings in RQ1. Because SymQemu does
not support symbolic exploration, we evaluate symbolic tracing
using SymQemu and then compare our findings against symbolic
tracing results acquired using angr and Maat.

Symbolic Exploration (angr vs Maat). Figure 7 shows the im-
pacts of flags on symbolic exploration using Maat. We identified 43
optimizations that accelerate and 16 that decelerate symbolic explo-
ration. By comparing the results against Figure 3, we found 52 flags
similarly impact the performance of symbolic exploration for both
angr and Maat, and the orders of these flags in both figures are close.
Despite major differences between the designs and implementation
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(II) Interpreting or JITing Instruction
of instructions in a binary and the num

1 int i = 0;

ments are proportional. Some optimizat S e st
. . . . 4 a[i] =2 * x
of relatively complex arithmetic operatic gen
fewer instructions. For example, -freciy 63
reciprocal of a value to be used instead Ciso
int 1 = 0;

if this enables optimizations” [2]. Listing x = y+9;

codeof 3.0 / (x * 2.0) + 1.0. Listing
code of the same expression when -frec:
(the corresponding C representation is 3.

This optimization simplifies the divisio
the divisor (2.0) with its reciprocal (0.5), t
dividend. It reduces the number of instru
terpretation. Additionally, a set of compile:
DSE by removing redundant instructions.
removes unnecessary copy operations. Du
optimizations decelerate DSE by introducing redundant code. This
is because one optimization is usually enabled together with other
optimizations during compilation (e.g., -03 involves tens of flags).
While one optimization may create duplicated or redundant instruc-
tions, other optimizations that are usually enabled simultaneously
may become effective to remove the redundancy. Listing 2 shows an
example where -ftracer performs tail duplication that duplicates
branch tails. Other optimizations, e.g., -ftree-tail-merge, will
recognize these duplicated tails and re-merge or remove them if
possible. However, if we only enable -ftracer (without its peers),
it negatively impacts DSE performance.

a[i] = 2 * x;
+4i;
}

aU e WwN R

(III) State Forking. Symbolic exploration usually suffers from path
explosion. The root cause is that the number of feasible states in a
program grows exponentially. Compiler optimizations may create
or eliminate program paths, leading to fewer explored paths and
forked states. Some optimizations reduce the number of program
paths by removing conditional statements, which are commonly
used for checks. Examples of such optimizations include -ftree-
vrp and -fdelete-null-pointer-checks. -ftree-vrp removes
unnecessary range checks (e.g., array bound checks when an access
to the array is always in-bound). In Listing 3, the optimization
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while (i < 100) {

0010117f £2 0f 10 %MMO , qword ptr [DAT_00102008]

00101187

1, XMMO

{
{

printf ("OK") ;

i " 1
15 0010118b £2 0f 10 MOVSD ¥MMO, qword ptr [DAT_00102010] :
1 05 7d Oe i
Vo ______0000 '
00101193 £2 0f &
00101197 66 0f 2
0010119b £2 0f 1 1 int i = 0;
05 75 ¢ X .
00 00 2 while (i < 100) {
001011a3 £2 0f £ 3 x = y+9;
4 af[i] = 2 * x;
5 ++4i;
6}
0010117¢ £2 0f 1
05 81 ¢
00 00 1int i = 0;
2 x = y+9;
- 3 while (i < 100) {
int bar(int v) {
return 2*v;
}
void foo (int y)
int z = bar(y);
if (z != pass)
exit();
}lelse{

1int i = 0; }

2 while (i < 100) { }

3 x = y+9;

4 a[i]l =2 * x; static int pass;

5 ++i; int main() {

6} pass = get_input();
int y = get_input();
foo(y);

1int i =0; return 0;

2 x = y+9; }

3 while (i < 100) {

4 af[i] = 2 * x;

5 ++i;

6}

1 for (i = 4; i < 100; i+= 1){
2 if(i>3)
3 foo (i) ;
4}
; f°§f:; 1 for (i =4; i< 100; i+= 1){
3 fc 2 foo(i);
P 3}
1 for(d) (b) w -ftree-vrp
2 fooll . .
3}

Listing 3: The C code in (a) is transformed into the code in
(b) using compiler optimization -ftree-vrp, leading to fewer
basic blocks and program states during DSE.

removes Line 2, since the check on whether i is greater than 4 is
redundant. While this optimization does not decrease the number
of program paths (since i will never be less than or equal to 3), it
does lead to fewer program states being created, which accelerates
both symbolic exploration and symbolic tracing.

Some optimizations increase the number of program states dur-
ing DSE. For example, -fsplit-stack adds logic to automatically
grow the size of the stack as needed. Similarly, when -finstrument-
functions is enabled, GCC will instrument the binary with func-
tion calls at both the entries and exits of the functions in the binary.
The calls inserted will invoke profiling functions, which monitor
the execution frequency and duration of the instrumented func-
tions. The use of either optimization will result in an increase in
the number of program states, which decelerates both symbolic
exploration and tracing.

(IV) Constraint Creation and Solving. Some optimizations per-
form strength reduction, which essentially replaces arithmetic opera-
tions that are slower (on CPUs) with those that are faster (on CPUs)

int bar
retur

void fc
int z
if (z

laleae



TI
(i < 100)
=2 * x;

{

EMMEI

AT 00102018]

00101193 £2 0f 5e cl DIVSD XMMO , XMM1
00101197 66 0Of 28 c8 MOVAPD XMM1 , XMMO
0010119b £2 0f 10 MOVSD XMMO,qword ptr [DAT_00102018]
05 75 Oe
00 00
001011la3 f2 0f 58 cl ADDSD XMMO , XMM1
0010117f £2 0f 10 MOVSD XMMO, qword ptr [DAT_00102008]
05 81 Oe
00 00
00101193 £2 0f 5e cl DIVSD XMMO , XMM1
00101197 66 Of 28 c8 MOVAPD XMM1 , XMMO
0010119b £2 0f 10 MOVSD XMMO, qword ptr [DAT_00102018]
05 75 Oe
00 00
001011a3 £2 0f 58 cl ADDSD XMMO , XMM1
1 0040114d 89 c8 MOV EAX,ECX
2 00401152 6b c0 56 IMUL EAX,EAX,0x56
00401161 89 c8 MoV EAX,ECX 3 00401155 0f b7 c0O MOVZX EAX,AX
00401163 99 CDQ 4 00401158 89 cl MoV ECX,EAX
00401164 b9 03 00 Mov ECX,0x3 5 0040115a cl e9 Of SHR ECX, 0xf
00 00 6 0040115d cl e8 08 SHR EAX,0x8
00401169 £7 £9 IDIV ECX 7 00401160 00 c8 ADD AL,CL
8 00401162 48 0f be £8 MOVSX RDI,AL
9 00401166 31 cO XOR EAX,EAX

1lvarl;
*pbVar2;
*pbVar3;
in CF;
in_ZF;

1 long
2 byte
3 byte
4 bool
5 bool
6
7
8

lvarl = 5;

pbVar2 = * (byte **) (lParm2 + 8);
9 pbVar3 = &DAT_00102004; '
10 do {
11 if (lvarl == 0) break;
12 lvarl = 1lvarl + -1;
13 in_CF = *pbVar2 < *pbVar3;
14 in_2ZF = *pbVar2 == *pbVar3;

15 pbVar2 = pbVar2
16 pbVar3 = pbVar3
while (in_ZF);
18 if ((!'in_CF && !in_2F) == in CF) {
19 printf ("you win") ;

20 '}

+1;
+1;

"
<

(b) With -fbuilt-in.

Listing 5: Ghidra’s decompilation output for a C program,
with and without -fbuilt-in, affects strcmp symbolic string
length limits, impacting DSE performance.

without altering the semantics of the program. While the impact
of faster arithmetic operations is less evident in DSE engines than
on CPUs, sometimes strength reduction leads to fewer instructions,
which benefits DSE. For example, -ftree-slsr recognizes multi-
plications used in a program and replaces them with cheaper arith-
metic operations if possible. As shown in Listing 4, after optimiza-
tion, lines 2 and 3 reuse existing results, and two additions are elim-
inated. For DSE engines, fewer arithmetic operations usually result
in better performance. Note that in this case, when b is a symbolic
expression, the final symbolic expression in t3 remains unchanged.

Having fewer instructions does not always result in better perfor-
mance for dynamic symbolic execution (DSE). Some optimizations
can actually slow down DSE by generating less optimal symbolic
constraints. Modern DSE engines rely on function summaries to
handle missing library functions. These function summaries usu-
ally run faster than corresponding binary code in emulation, as
they skip the emulation loop completely, and implement semantics-
specific limits to give DSE engines more control over symbolic
data. For example, angr provides Python-based function summaries
(SimProcedures in angr) to replace library functions such as strlen
and strcmp.

When the optimization -fbuilt-in is enabled, GCC will rewrite
the program to inline these common functions, including strlen
and strcmp (see Listing 5). This inlining prevents DSE from using
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(b) Assembly with division optimization

Listing 6: Assembly code in (a) is transformed into the code
in (b) when division optimization is enabled.

the strcmp function summary that angr provides. When the data
passed to strcmp is symbolic, both symbolic exploration and sym-
bolic tracing will generate more complex constraints with inlined
strcmp, which slows down constraint solving. In our experiments,
the inlined version of strcmp is always much slower than its func-
tion summary.

Interestingly, during our study, we found that some optimizations
are enabled even in -00 but negatively impact DSE performance.
Listing 6 shows an example where the division optimization con-
verts a division instruction into multiple instructions involving
multiplications and bit shifting. This is faster for execution on
CPUs [43]. However, since this optimization breaks the linearity
of division (bit shifting is less optimizable in constraint solvers),
angr will generate more complex symbolic constraints, leading to
much longer solving time in Z3. In our experiment, we tested a
program with a simple if (a % 100 == 20) condition where a
was an int symbolic variable. The div-optimized version spent 20x
more time in solving than the non-optimized version (21 seconds
versus 1 second). This is an unexpected example where seemingly
unoptimized binaries are optimized for CPU-execution, which sig-
nificantly hampers their DSE performance.

RQ6. Do our findings apply to real-world programs for
accelerating symbolic exploration or symbolic tracing?

The ultimate goal of our project is to improve binary DSE per-
formance by taking advantage of compiler optimizations. Having
understood the impacts, we next explore how to apply our results
to real-world binaries. There are multiple ways to apply our results
to real-world programs: We can preemptively enable or disable
compiler optimizations on the source files. Or, we can retroactively
modify the binaries to optimize DSE performance. For example,
because division optimization decelerates DSE, we can recognize
such patterns (e.g., bit shifting) in binary code and transform the
binary back to its original, non-optimized form. We designed two
experiments to validate these two approaches accordingly.

Experiment (I) - Applying optimizations. We now directly en-
able or disable compiler optimizations when building source code

WOIOU A WN R

0040114d
00401152
00401155
00401158
0040115a
0040115d
00401160
00401162

00401166
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Figure 10: The performance impact on symbolic exploration
(a) and symbolic tracing (b), benchmarked on real-world pro-
grams. The upper parts of each bar are profiling results on
baseline binaries, while the lower parts are profiling results
on optimized binaries. Because symbolic tracing only in-
volves one path, we do not report forking time or numbers
of explored states.

4222

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

and observe the impacts on DSE performance. We used a data set
of real-world programs from Ferry [46]. Based on prior experiment
results, we identified two sets of GCC compiler flags: One set ac-
celerates both symbolic exploration and tracing, and the other set
decelerates symbolic exploration or tracing. Then we attempted to
build all the programs with these flags, and six programs were suc-
cessfully compiled (other programs were not able to be built). We
also built baseline versions of these six programs using their default
configurations. Then for each pair of (baseline-optimized) binaries,
we performed symbolic exploration and tracing on programs for
two hours before collecting results.

Results. We present the results in Figure 10 (a) and Figure 10 (b)
and normalize them in the range of 0 and 1 for better visualization.
Figure 10 (a) shows that our combinations of compilation flags
accelerate symbolic exploration by allowing DSE to execute more
statements and spend less time in forking states. Other metrics, such
as the number of explored states, the number of solving attempts,
and the solving time, are similar. It is also worth noting that some
optimizations, such as the division optimization, cannot be disabled
by compiler flags. Because running symbolic exploration on more
code may lead to discrepancies in other metrics (e.g., number of
register reads, constraints solved, etc.), it is difficult to make a
fair comparison. Therefore, we only use the number of executed
statements to quantify the improvement. On average, symbolic
exploration on optimized binaries executes 8.04% more statements
than on baseline binaries. For symbolic tracing, since DSE only
executes a single path determined by user input, the solving time
reliably reflects the improvement. On average, symbolic tracing on
optimized binaries spends 7.94% less time in constraint solving than
on baseline binaries. In conclusion, our experiment results indicate
that our findings do apply to real-world programs to accelerate DSE.

Experiment (II) - Transforming binaries. We now aim to trans-
form the optimized binaries to their non-optimized form and ob-
serve the impacts on symbolic execution. We selected the dataset
used in Ferry [46], but due to the manual modification required,
we only chose three small programs (less than 2 MB) for this
experiment. The optimizations selected for verification include -
finstrument-functions, -fstack-protector, -fkeep-inline-
functions and division optimizations. These optimizations are
known to slow down symbolic execution and were removed from
the binaries. Specifically, the first three optimizations add extra
instructions, which can be de-optimized by removing those added
instructions. Division optimization converts the division opcode
to bit shifting and multiplications, therefore, these instructions
were converted back to the division opcode. We also compiled
the baseline versions of these three programs using their default
configurations. For each pair of (baseline-optimized) binaries, we
collected results after performing symbolic exploration and tracing
on the program for two hours. Based on our previous experiment,
we determined that executed statements and solving time are good
metrics to evaluate the performance of symbolic execution. There-
fore, in this experiment, we only selected these two metrics to
demonstrate the impacts and used the same method to visualize.



CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Results. We present the results in Figure 11 (a) and Figure 11 (b).
For each pair of the program, the left part is the optimized pro-
gram, while the right part is the baseline. It can be observed that
for -finstrument-functions, symbolic exploration on optimized
binaries executes 12.97% more statements than on baseline bina-
ries. For -fstack-protector, the value becomes 7.12%, 5.27% for
-fkeep-inline-functions and 13.55% for the division optimiza-
tion. For symbolic tracing, for -finstrument-functions, symbolic
tracing on optimized binaries spends 1.78% less time solving con-
straints than in baseline binaries. 1.44% for -fstack-protector,
0.42% for -fkeep-inline-functions and 5.02% for division op-
timization. Our experiments confirmed that the findings can be
applied to real-world programs.

5 Flags with Negligible Impacts

We also observed that some optimizations have a minimal impact
on the performance of dynamic symbolic execution (DSE). These
optimizations do not affect symbolic execution when analyzing
the results of different runs. Some of the optimizations that have a
negligible impact on DSE include:

o Aliasing. Some optimizations increase or decrease the amount
of aliasing in assembly code. These optimizations typically have
minimal effects on performance. For example, the -frename-
registers flag causes the generated binary code to use a wider
range of registers (to avoid false dependencies in code schedul-
ing), but does not show any observable impact on performance
in our experiments.

Block or function reordering. Some compiler optimizations
reorder basic blocks or functions to improve code locality. Pro-
grams with better code locality generally run faster on real
CPUs due to caching. Similarly, some optimizations swap code
fragments to improve cache performance. For example, -floop-
interchange interchanges instructions within a loop. However,
this impact on CPU cache is typically eliminated when DSE
engines lift, instrument, or JIT new code for symbolic execution.

Value signedness. Some optimizations control how the com-
pilers handle signed numbers. For example, when -fsigned-
zeros is enabled, +0.0 and -0. @ are treated as distinct floating-
point values. As such, +0*x will be treated as a positive number,
while -0xx will be treated as a negative number. When some
branch conditions depend on the signs of these expressions, the
control flow of a program may change according to the optimiza-
tion value. A similar compiler optimization is -fsigned-chars.
Non-program transforming compiler flags. Some optimiza-
tions do not directly transform the program. Instead, these com-
piler optimizations perform compile-time checks, and may cause
the compiler to throw errors and terminate the compiling pro-
cess if certain checks fail. These compiler flags are not optimiza-
tions at all. For example, -fstrict-aliasing requires that if
a variable of one type is assigned to an address, variables of
different types cannot be reassigned to the same address.

6 Discussion

Threats to validity. Multiple issues could influence the conclusions
we draw in our study. First, we did not exhaust all optimizations
that are not controlled by optimization flags. For example, we use
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Figure 11: The performance on symbolic exploration (a) and
symbolic tracing (b), benchmarked on real-world programs.

division optimization in our paper, which has negative impacts on
DSE. This optimization is enabled by default, and is not controlled
by the optimization flags. We believe that there are some other opti-
mizations that are not controlled by the compiler flags. Second, our
data set is not large enough to cover all optimizations. For example,
there are at least 11 GCC flags that are not covered by this data set
of programs. We investigate the reason that why those flags are
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not covered. The reasons for this include non-compeatibility of op-
erating systems and languages, for example, certain flags may only
be intended for use with C++, and not for C. Third, in our experi-
ments, the impacts of some “less-impactful” optimizations may be
shadowed other “more-impactful” optimizations. Since those “more-
impactful” optimizations may not be controlled by the compiler
flags, their impacts may not be canceled by configurations.

Impact of our study. After understanding how the optimizations
affect the performance of DSE, we can use these findings to opti-
mize DSE. We can select the optimizations that negatively impact
(especially those that are widely used in real-world binaries) the
performance of DSE and then revert them. For example, because it
is known that division optimization has a negative impact on DSE,
we can recognize such patterns in binary code (e.g., bit shifting
and multiplications) and transform the binary back to its original,
non-optimized form. However, since there are more than 200 opti-
mizations in GCC alone, significant manual efforts may be required
to recognize all the patterns and create a one-to-one transforma-
tion relationship between them. Therefore, we leave this for future
work. Another direct impact of our findings is that the results can
be applied to accelerate source-code based symbolic execution (e.g.,
SymCC), where the optimizations can be configured when perform-
ing symbolic tracing.

7 Related Work

Compiler Optimizations and Security. Our study is unique, be-
ing the first to comprehensively measure the potential impact of
compiler flags on DSE. Our tool, MOOSE, assesses flag impact au-
tomatically, a novel approach. Despite a few prior attempts have
been made to study the impacts of compiler optimizations on DSE,
their solutions are subject to systematicness and their experimental
results lack of comprehensiveness. -Overify [44] investigated the
impacts of optimization levels on program verification including
DSE. However, it did not study the impacts of each optimization,
and therefore, their result could only provide limited information re-
garding how each optimization affect the performance of symbolic
execution. There are also works [12, 21] that attempt to evalu-
ate the impacts of each optimization, but since they checked the
impact manually, very limited optimizations were discussed (e.g.,
33 optimizations out of more than 200 flags). It is also not clear
why these optimizations are chosen in their experiments.More re-
cently, LEO[16] transformed the produced programs into semantic-
preserving programs using machine leaning, where the authors
trained model on the program produced with different optimiza-
tions, and used the learnt rules to guide their transformations. The
drawbacks of their methods are also obvious: the performance of
machine learning is highly related to the dataset (the produced
programs), and may fail to achieve similar efforts when the dataset
is changed. In addition to the impacts on DSE, the security commu-
nity also studied how compiler optimizations affect the function
signatures of programs [28], and the transformation caused by the
compiler optimizations may significantly influence results of simi-
larity analysis [15] and malware detection [20], so that efforts have
been made to recover the function signatures (e.g., [9, 19, 40]). Our
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work is symbolic execution specific, and their approaches cannot
be applied to solve our research problems.

Dynamic Symbolic Execution. While many dynamic symbolic
execution (DSE) engines exist and are actively used (e.g., KLEE [13],
angr [41], QSym [45], SymCC [34], SymQemu [35], and Maat [1]),
DSE is known for its sub-par performance and unsatisfactory scal-
ability. To improve the scalability of DSE, research has been con-
ducted on combining fuzz testing and DSE [10, 14, 22, 31, 42, 45]
by feeding heuristically mutated inputs based on the formulas pro-
duced by symbolic execution. This approach can achieve more code
coverage [11, 24]. However, symbolic execution guided fuzzing is
limited by the size of the input constraints produced by symbolic
execution. To address this limitation, VUzzer [37], FairFuzz [26],
Angora [17] and Steelix [27] have introduced program analysis
(e.g., static and dynamic program analysis) to guide input muta-
tion. For example, Angora [17] uses taint analysis to solve path
constraints, and Steelix [27] leverages observations made in the
comparison progress to drive effective mutation. Previous works
also have aimed to accelerate symbolic execution through code
transformation, such as T-Fuzz [32] and [33], which bypass time-
consuming paths for better performance. Our work is distinct as we
systematically study the impact of compiler optimizations on DSE
performance. Our results can inspire future research on semantic-
preserving binary transformations to improve DSE performance.

8 Conclusion

Compiler optimizations can affect the performance of Dynamic
Symbolic Execution (DSE), but current research does not systemat-
ically profile their impact on DSE. In this paper, we systematically
study the impact of compiler optimizations on the performance
of DSE, including both symbolic exploration and tracing, cover-
ing two compilers and three DSE engines. Our profiling results on
small unit test-style binaries as well as real-world binaries show
that significant performance gains can be achieved in binary-based
DSE tasks by applying or removing certain compiler optimizations.
We hope that our findings will provide insight into this research
problem and guide future research on accelerating DSE on binaries.
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