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The “sample amplification” problem formalizes the following question:
Given n i.i.d. samples drawn from an unknown distribution P , when is it pos-
sible to produce a larger set of n + m samples which cannot be distinguished
from n + m i.i.d. samples drawn from P ? In this work, we provide a firm
statistical foundation for this problem by deriving generally applicable am-
plification procedures, lower bound techniques and connections to existing
statistical notions. Our techniques apply to a large class of distributions in-
cluding the exponential family, and establish a rigorous connection between
sample amplification and distribution learning.

1. Introduction. Consider the following problem of manufacturing more data: an am-
plifier is given n samples drawn i.i.d. from an unknown distribution P , and the goal is to
generate a larger set of n + m samples which are indistinguishable from n + m i.i.d. samples
from P . How large can m be as a function of n and the distribution class in question? Are
there sound and systematic ways to generate a larger set of samples? Is this task strictly easier
than the learning task, in the sense that the number of samples required for generating n + 1
samples is smaller than that required for learning P ?

In our preliminary work [3], we formalized this problem as the sample amplification prob-
lem, considering total variation (TV) as the measure for indistinguishability.

DEFINITION 1.1 (Sample amplification). Let P be a class of probability distributions
over a domain X . We say that P admits an (n,n + m, ε) sample amplification procedure if
there exists a (possibly randomized) map TP,n,m,ε : X n → X n+m such that

sup
P∈P

∥∥P ⊗n ◦ T −1
P,n,m,ε − P ⊗(n+m)

∥∥
TV ≤ ε.(1.1)

An equivalent formulation to view Definition 1.1 is as a game between two parties: an am-
plifier and a verifier. The amplifier gets n samples drawn i.i.d. from the unknown distribution
P in the class P , and her goal is to generate a larger dataset of n + m samples which must be
accepted with good probability by any verifier that also accepts a real dataset of n + m i.i.d.
samples from P with good probability. Here, the verifier is computationally unbounded and
knows the distribution P , but does not observe the amplifier’s original set of n samples.

Along with being a natural statistical task, the sample amplification framework is also
relevant from a practical standpoint. Currently, there is an enormous trend in the machine
learning community to train models on datasets that have been enlarged in various ways.
There are relatively transparent and classical approaches to achieve this, such as leveraging
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known invariances such as rotation or translation invariance to augment the dataset by includ-
ing transformed versions of each original datapoint [23, 24, 30, 45, 46]. More recently, deep
generative models have been used to both directly enlarge training data and construct larger
datasets consisting of samples with properties that are rare in naturally occurring datasets
[1, 4, 19–22, 26, 27, 37, 38, 40, 44, 54, 55]. More opaque approaches such as MixUp [57]
and related techniques [29, 48, 51, 56] which add a significant fraction of new datapoints
that are explicitly not supported in the true data distribution are also very popular since they
seem to improve the performance of the trained models. Given this current zoo of widely
implemented approaches to enlarging datasets, there is a clear motivation for bringing a more
principled statistical understanding to such approaches. One natural starting point is the sta-
tistical setting we consider that asks the extent to which datasets can be enlarged in a perfect
sense—where it is not possible to distinguish the enlarged dataset from a set of i.i.d. draws.
Moreover, this work lays a foundation for the ambitious broader goal of understanding how
various amplification techniques interact with downstream learning algorithms and statistical
estimators, and developing amplification techniques that are optimal for certain classes of
such algorithms and estimators.

In [3], a subset of the authors introduced the sample amplification problem, and studied
two classes of distributions: the Gaussian location model and discrete distribution model. For
these examples, they characterized the statistical complexity of sample amplification and
showed that it is strictly smaller than that of learning. In this paper, we work towards a
general understanding of the statistical complexity of the sample amplification problem, and
its relationship with learning. The main contributions of this paper are as follows:

1. Amplification via sufficiency. Our first contribution is a simple yet powerful procedure
for sample amplification, that is, apply the sample amplification map only to sufficient statis-
tics. Specifically, the learner computes a sufficient statistic Tn from Xn, maps Tn properly
to some Tn+m, and generates new samples X̂n+m from some conditional distribution condi-
tioned on Tn+m. Surprisingly, this simple idea leads to a much cleaner procedure than [3]
under Gaussian location models which is also exactly optimal (cf. Theorem 6.2). The range
of applicability also extends to general exponential families, with rate-optimal sample am-
plification performances. Specifically, for general d-dimensional exponential families with a
mild moment condition, the sufficiency-based procedure achieves an (n,n + O(nε/

√
d), ε)

sample amplification for large enough n, which by our matching lower bounds in Section 6
is asymptotically minimax rate-optimal.

2. Amplification via learning. Our second contribution is another general sample am-
plification procedure that does not require the existence of a sufficient statistic, and also
sheds light on the relationship between learning and sample amplification. This procedure
essentially draws new samples from a rate-optimal estimate of the true distribution, and
outputs a random permutation of the old and new samples. The procedure achieves an
(n,n + O(ε

√
n/rχ2(P, n)), ε) sample amplification, where rχ2(P, n) denotes the minimax

risk for learning P ∈ P under the expected χ2 divergence given n samples. This shows that
learning P to χ2 divergence O(n/ε2) is sufficient for nontrivial sample amplification.

In addition, we show that for the special case of product distributions, it is important that
the permutation step be applied coordinatewise to achieve the optimal sample amplification.
Specifically, if P = ∏d

j=1 Pj , this procedure achieves a better sample amplification
(
n,n + O

(
ε

√
n

∑d
j=1 rχ2(Pj , n)

)
, ε

)
.

We have summarized several examples in Table 1 where the sufficiency and/or learning based
sample amplification procedures are optimal. Note that there is no golden rule for choosing
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TABLE 1
Sample amplification achieved by the presented procedures. Results include matching upper bounds (UB) and

lower bounds (LB), with appropriate pointers to specific examples or theorems for details

Distribution class Amplification Procedure

Gaussian with unknown mean and fixed covariance (n,n + #(nε/
√

d)) Sufficiency/Learning
(UB: Example 4.1, 4.2, A.8; LB: Theorem 6.2, 6.5)

Gaussian with unknown mean and covariance (n,n + #(nε/d)) Sufficiency
(UB: Example A.1, A.3; LB: Example A.20)

Gaussian with s-sparse mean and identity covariance (n,n + #(nε/
√

s logd)) Learning
(UB: Example A.12; LB: Example A.18)

Discrete distributions with support size at most k (n,n + #(nε/
√

k)) Learning
(UB: Example A.9; LB: [3], Theorem 1)

Poissonized discrete distributions with support at most k (n, n + #(
√

nε + nε/
√

k)) Learning
(UB: Example A.16; LB: Example A.16)

d-dim. product of Exponential distributions (n,n + #(nε/
√

d)) Sufficiency/Learning
(UB: Example A.5, A.11; LB: Theorem 6.5)

Uniform distribution on d-dim. rectangle (n,n + #(nε/
√

d)) Sufficiency/Learning
(UB: Example A.6, A.10; LB: Theorem 6.5)

d-dim. product of Poisson distributions (n,n + #(nε/
√

d)) Sufficiency+Learning
(UB: Example A.14; LB: Theorem 6.5)

one idea over the other, and there exists an example where the above two ideas must be
combined.

3. Minimax lower bounds. Complementing our sample amplification procedures, we pro-
vide a general recipe for proving lower bounds for sample amplification. This recipe is intrin-
sically different from the standard techniques of proving lower bounds for hypothesis testing,
for the sample amplification problem differs significantly from an estimation problem. In par-
ticular, specializing our recipe to product models shows that, for essentially all d-dimensional
product models, an (n,n+Cnε/

√
d, ε) sample amplification is impossible for some absolute

constant C < ∞ independent of the product model.
For non-product models, the above powerful result does not directly apply, but proper ap-

plications of the general recipe could still lead to tight lower bounds for sample amplification.
Specifically, we obtain matching lower bounds for all examples listed in Table 1, including
the non-product examples.

We now provide several numerical simulations to suggest the potential utility of sample
amplification. Recall that a practical motivation of sample amplification is to produce an
enlarged dataset that can be fed into a distribution-agnostic algorithm in downstream appli-
cations. Here, we consider the following basic experiments in that vein:

• Fourth moment estimation for one-dimensional Gaussian: here we observe X1, . . . ,Xn ∼
N (µ,1) with n = 100 and µ = 1, and we consider three estimators. The empirical estima-
tor operates in a distribution-agnostic fashion and is simply the empirical fourth moment
n−1 ∑n

i=1 X4
i . The plug-in estimator uses the knowledge of Gaussianity: it first estimates

µ̂ = X̄ and then uses EX∼N (µ̂,1)[X4] = µ̂4 + 6µ̂2 + 3. The amplified estimator first ampli-
fies the sample Xn into Yn+m via sufficiency (cf. Example 4.1), and then uses the empirical
estimator (n + m)−1 ∑n+m

j=1 Y 4
j based on the enlarged sample Yn+m. The plots of the mean

absolute errors (MAEs) are displayed in Figure 1a. We observe that although the empirical
estimator based on the original sample Xn has a large MAE, its performance is improved
based on the amplified sample Yn+m.
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FIG. 1. Sample amplification experiments. The x-axis corresponds to the amount of amplification, m, and the
shaded area depicts the 95% confidence interval based on 5000 simulations.
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• Squared L2 norm estimation for high-dimensional Gaussian: here we observe X1, . . . ,
Xn ∼ N (µ, Id) with n = 50, d = 100 and µ = 1/

√
d , and we again consider three es-

timators for E[‖X‖2
2]. As before, the empirical estimator is simply n−1 ∑n

i=1 ‖Xi‖2
2, and

the plug-in estimator uses the knowledge EX∼N (µ̂,Id )[‖X‖2
2] = ‖µ̂‖2

2 + d and estimates
µ̂ = X̄. As for the amplified estimator, it first amplifies the sample Xn into Yn+m via
sufficiency (cf. Example 4.1), and then uses the empirical estimator based on Yn+m. The
plots of the mean absolute errors are displayed in Figure 1b. Here the empirical estimator
outperforms the plug-in estimator due to a smaller bias, while the sample amplification
further reduces the MAE as long as the size of amplification m is not too large. This could
be explained by the bias-variance tradeoff, where the amplified estimator interpolates be-
tween the empirical estimator (with no bias) and the plug-in estimator (with the smallest
asymptotic variance).

• Binary classification: here we observe two clusters of covariates X1, . . . ,Xn/2 ∼ N (e1, Id)
(with label 1) and Xn/2+1, . . . ,Xn ∼ N (−e1, Id) (with label −1), with n = 50, d = 10 and
e1 being the first basis vector. The target is to train a classifier with a high classification
accuracy on the test data with the same distribution. The standard classifier is via logistic
regression, which does not use the knowledge of Gaussianity. To apply sample amplifi-
cation, we first amplify the sample in each class via either sufficiency (cf. Example 4.1)
or learning (cf. Example A.8), and then run logistic regression on the amplified datasets.
Figure 1c displays the classification errors of all three approaches, and shows that both
amplification procedures help reduce the classification error even for small values of m.

The above experiments demonstrate the potential for sample amplification to leverage
knowledge of the data distribution to produce a larger dataset that is then fed into downstream
distribution-agnostic algorithms. Some experiments (e.g., Figure 1b) also suggest a limit be-
yond which the amplification procedure alters the data distribution too much. We believe that
rigorously examining amplification through the lens of the performance of downstream esti-
mators and algorithms, including those illustrated in our numerical simulations, would be a
fruitful direction for future work.

2. Connections, limitations and future work. As discussed above, it is commonplace
in machine learning to increase the size of datasets using various heuristics, often resulting in
large gains in downstream learning performance. However, a clear statistical understanding
of when this is possible and what techniques are useful for this is missing. A natural starting
point to get a better understanding is the formulation we consider that asks the extent to
which datasets can be amplified in a perfect sense—where any verifier who knows the true
distribution is not able to distinguish the amplified dataset from a set of i.i.d. draws.

A limitation of the sample amplification formulation described above is that the additive
amplification factor m is rather small (e.g., O(nε/

√
d) for d-dimensional exponential fam-

ilies). Moreover, we show matching lower bounds demonstrating that this factor cannot be
improved even when n is large enough to learn the distribution to nontrivial accuracy. How-
ever, it might be possible to achieve larger amplification factors with restricted verifiers, for
instance, the class of verifiers corresponding to learning algorithms used for downstream
tasks (see [3] for other possible classes of verifiers). Investigating the sample amplification
problem with such restricted verifiers may be a practically fruitful future direction.

Despite this limitation, the sample amplification formulation does yield high-level insights
that can inform the way datasets are amplified in practice. For instance, from the results in this
paper, we know that sample amplification is possible for a broad class of distributions even
when learning is not possible. Moreover, both our sufficiency or learning based approaches
modify the original data points in general, conforming to the lower bound in [3] that optimal
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amplification may be impossible if the amplifier returns a superset of the input dataset. These
observations show that the folklore way of enlarging datasets by learning the data distribution
and adding more samples from the learned distribution can be far from optimal.

Connections with other statistical notions. An equivalent view of Definition 1.1 is through
Le Cam’s distance [32], a classical concept in statistics. The formal definition of Le Cam’s
distance $(M,N ) is summarized in Definition 3.1; roughly speaking, it measures the fun-
damental difference in power in the statistical models M and N , without resorting to spe-
cific estimation procedures. The sample amplification problem is equivalent to the study
of Le Cam’s distance $(P⊗n,P⊗(n+m)) between product models, where (1.1) is precisely
equivalent to $(P⊗n,P⊗(n+m)) ≤ ε. However, in the statistics literature, Le Cam’s distance
was mainly used to study the asymptotic equivalence, where a typical target is to show that
limn→∞ $(Mn,Nn) = 0 for certain sequences of statistical models. For example, showing
that localized regular statistical models converge to Gaussian location models is the funda-
mental idea behind the Hájek–Le Cam asymptotic statistics; see [32–34] and [50], Chap-
ter 9. In nonparametric statistics, there is also a rich line of research [16–18, 43] establishing
asymptotic (non-)equivalences, based on Le Cam’s distance, between density models, regres-
sion models, and Gaussian white noise models. In the above lines of work, only asymptotic
results were typically obtained with a fixed dimension and possibly slow convergence rate. In
contrast, we aim to obtain a nonasymptotic characterization of $(P⊗n,P⊗(n+m)) in (n,m)
and the dimension of the problem, a task which is largely underexplored in the literature.

Another related angle is from reductions between statistical models. Over the past decade
there has been a growing interest in constructing polynomial-time reductions between various
statistical models (typically from the planted clique) to prove statistical-computational gaps,
see, for example, [11, 14, 15, 39]. The sample amplification falls into the reduction frame-
work, and aims to perform reductions from a product model P⊗n to another product model
P⊗(n+m). While previous reduction techniques were mainly constructive and employed to
prove computational lower bounds, in this paper we also develop general tools to prove limi-
tations of all possible reductions purely from the statistical perspective.

Organization. The rest of this paper is organized as follows. Section 3 lists some nota-
tions and preliminaries for this paper, and in particular introduces the concept of Le Cam’s
distance. Section 4 introduces a sufficiency-based procedure for sample amplification, with
asymptotic properties for general exponential families and nonasymptotic performances in
several specific examples. Section 5 is devoted to a learning-based procedure for sample am-
plification, with a general relationship between sample amplification and the χ2 estimation
error, as well as its applications in several examples. Section 6 presents the general idea of
establishing lower bounds for sample amplification, with a universal result specializing to
product models. Section 7 discusses more examples in sample amplification and learning,
and shows that these tasks are in general noncomparable. More concrete examples of both
the upper and lower bounds, auxiliary lemmas and proofs are relegated to the appendices in
the Supplementary Material [2].

3. Preliminaries. We use the following notations throughout this paper. For a random
variable X, let L(X) be the law (i.e., probability distribution) of X. For a probability distribu-
tion P on a probability space % and a measurable map T : % → %′, let P ◦ T −1 denotes the
pushforward probability measure, that is, L(T (X)) with L(X) = P . For a probability mea-
sure P , let P ⊗n be the n-fold product measure. For a positive integer n, let [n] ! {1, . . . , n},
and xn ! (x1, . . . , xn). We adopt the following asymptotic notations: for two nonnega-
tive sequences (an) and (bn), we use an = O(bn) to denote that lim supn→∞ an/bn < ∞,
and an = %(bn) to denote bn = O(an), and an = #(bn) to denote both an = O(bn) and
bn = O(an). We also use the notations Oc, %c, #c to denote the respective meanings with
hidden constants depending on c. For probability measures P , Q defined on the same prob-
ability space, the total variation (TV) distance, Hellinger distance, Kullback–Leibler (KL)
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divergence and the chi-squared divergence are defined as follows:

‖P − Q‖TV = 1
2

∫
|dP − dQ|, H(P,Q) =

(1
2

∫
(
√

dP −
√

dQ)2
) 1

2
,

DKL(P‖Q) =
∫

dP log
dP

dQ
, χ2(P‖Q) =

∫
(dP − dQ)2

dQ
.

We will frequently use the following inequalities between the above quantities [49], Chap-
ter 2:

H 2(P,Q) ≤ ‖P − Q‖TV ≤ H(P,Q)
√

2 − H 2(P,Q),(3.1)

‖P − Q‖TV ≤
√

1
2
DKL(P‖Q) ≤

√
1
2

log
(
1 + χ2(P‖Q)

)
.(3.2)

Next, we define several quantities related to Definition 1.1. For a given distribution class
P and sample sizes n and m, the minimax error of sample amplification is defined as

ε&(P, n,m)! inf
T

sup
P∈P

∥∥P ⊗(n+m) − P ⊗n ◦ T −1∥∥
TV,(3.3)

where the infimum is over all (possibly randomized) measurable mappings T : X n → X n+m.
For a given error level ε, the maximum size of sample amplification is the largest m such that
there exists an (n,n + m, ε) sample amplification, that is,

m&(P, n, ε)! max
{
m ∈ N : ε&(P, n,m) ≤ ε

}
.(3.4)

For the ease of presentation, we often choose ε to be a small constant (say 0.1) and abbreviate
the above quantity as m&(P, n); we remark that all our results work for a generic ε ∈ (0,1).
Finally, we also define the sample amplification complexity as the smallest n such that an
amplification from n to n + 1 samples is possible:

n&(P)! min
{
n ∈ N : m&(P, n) ≥ 1

}
.(3.5)

Note that all the above notions are instance-wise in the distribution class P .
The minimax error of sample amplification (3.3) is precisely known as the Le Cam’s dis-

tance in the statistics literature. We adopt the standard framework of statistical decision the-
ory [52]. A statistical model (or experiment) M is a tuple (X , (Pθ )θ∈#) where an observation
X ∼ Pθ is drawn for some θ ∈ #. A decision rule δ is a regular conditional probability kernel
from X to the family of probability distributions on a general action space A, and there is a
(measurable) loss function L : # × A → R+. The risk function of a given decision rule δ is
defined as

RM(θ, δ,L)! Eθ
[
L

(
θ, δ(X)

)] =
∫

X

∫

A
L(θ, a)δ(da | x)Pθ (dx).(3.6)

Based on the definition of risk functions, we are ready to define a metric, known as Le
Cam’s distance, between statistical models.

DEFINITION 3.1 (Le Cam’s distance; see [32–34]). For two statistical models M =
(X , (Pθ )θ∈#) and N = (Y, (Qθ )θ∈#), Le Cam’s distance $(M,N ) is defined as

$(M,N ) = max
{
sup
L

sup
δN

inf
δM

sup
θ∈#

∣∣RM(θ, δM,L) − RN (θ, δN ,L)
∣∣,

sup
L

sup
δM

inf
δN

sup
θ∈#

∣∣RM(θ, δM,L) − RN (θ, δN ,L)
∣∣
}

= max
{
inf
T1

sup
θ

∥∥Pθ ◦ T −1
1 − Qθ

∥∥
TV, inf

T2
sup
θ

∥∥Qθ ◦ T −1
2 − Pθ

∥∥
TV

}
,

where the loss function is taken over all measurable functions L : # × A → [0,1].
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In the language of model deficiency introduced in [31], Le Cam’s distance is the smallest
ε > 0 such that the model M is ε-deficient to the model N , and N is also ε-deficient to M.
In the sample amplification problem, (Pθ )θ∈# = {P ⊗n : P ∈ P}, (Qθ )θ∈# = {P ⊗(n+m) : P ∈
P}. Here, choosing T2(x

n+m) = xn in Definition 3.1 shows that N is 0-deficient to M, and
the remaining quantity involving T1 exactly reduces to the minimax error of sample ampli-
fication in (3.3). Therefore, studying the complexity of sample amplification is equivalent to
the characterization of the quantity $(P⊗n,P⊗(n+m)).

4. Sample amplification via sufficient statistics. The first idea we present for sample
amplification is the classical idea of reduction by sufficiency. Albeit simple, the sufficiency-
based idea reduces the problem of generating multiple random vectors to a simpler problem
of generating only a few vectors, achieves the optimal complexity of sample amplification in
many examples, and is easy to implement.

4.1. The general idea. We first recall the definition of sufficient statistics: in a statistical
model M = (X , (Pθ )θ∈#) and X ∼ Pθ , a statistic T = T (X) ∈ T is sufficient if and only if
both θ − X − T and θ − T − X are Markov chains. A classical result in statistical decision
theory is reduction by sufficiency, that is, only the sufficient statistic needs to be maintained
to perform statistical tasks as PX|T ,θ does not depend on the unknown parameter θ . In terms
of Le Cam’s distance, let M ◦ T −1 = (T , (Pθ ◦ T −1)θ∈#) be the statistical experiment as-
sociated with T , then sufficiency of T implies that $(M,M ◦ T −1) = 0. Hereafter, we will
call M ◦ T −1 the T -reduced model, or simply reduced model in short.

Reduction by sufficiency could be applied to sample amplification in a simple way, with
a general algorithm displayed in Algorithm 1. Suppose that both models P⊗n and P⊗(n+m)

admit sufficient statistics Tn = Tn(X
n) and Tn+m = Tn+m(Xn+m), respectively. Algorithm 1

claims that it suffices to perform sample amplification on the reduced models P⊗n ◦T −1
n and

P⊗(n+m) ◦ T −1
n+m, that is, construct a randomization map f from Tn to Tn+m. Concretely, the

algorithm decomposes into three steps:

1. Step I: map Xn to Tn. This step is straightforward: we simply compute Tn =
Tn(X1, . . . ,Xn).

2. Step II: apply a randomization map in the reduced model. Upon choosing the map f , we
simply compute T̂n+m = f (Tn) with the target that the TV distance ‖L(T̂n+m)−L(Tn+m)‖TV
is uniformly small. The concrete choice of f depends on specific models.

3. Step III: map Tn+m to Xn+m. By sufficiency of Tn+m, the conditional distribution
PXn+m|Tn+m

does not depend on the unknown model. Therefore, after replacing the true statis-
tic Tn+m by T̂n+m, it is feasible to generate X̂n+m ∼ PXn+m|Tn+m

(· | T̂n+m). To simulate this

random vector, it suffices to choose any distribution P0 ∈ P and generate X̂n+m ∼ (P
⊗(n+m)
0 |

Tn+m(X̂n+m) = T̂n+m). This step may suffer from computational issues which will be dis-
cussed in Section 4.2.

The validity of this idea simply follows from

$
(
P⊗n,P⊗(n+m)) = $

(
P⊗n ◦ T −1

n ,P⊗(n+m) ◦ T −1
n+m

)
,

Algorithm 1 SAMPLE AMPLIFICATION VIA SUFFICIENCY

1: Input: samples X1, . . . ,Xn, a given transformation f between sufficient statistics
2: Compute the sufficient statistic Tn = Tn(X1, . . . ,Xn).
3: Apply f to the sufficient statistic and compute T̂n+m = f (Tn).
4: Generate (X̂1, . . . , X̂n+m) ∼ PXn+m|Tn+m

(· | T̂n+m).
5: Output: amplified samples (X̂1, . . . , X̂n+m).
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or equivalently, under each P ∈ P ,
∥∥L

(
X̂n+m) − L

(
Xn+m)∥∥

TV = ∥∥L(T̂n+m) × PXn+m|Tn+m
− L(Tn+m) × PXn+m|Tn+m

∥∥
TV

(a)= ∥∥L(T̂n+m) − L(Tn+m)
∥∥

TV = ∥∥L
(
f (Tn)

) − L(Tn+m)
∥∥

TV,

where (a) is due to the identity ‖PXPY |X − QXPY |X‖TV = ‖PX − QX‖TV. In other words, it
suffices to work on reduced models and find the map f between sufficient statistics.

This idea of reduction by sufficiency simplifies the design of sample amplification pro-
cedures. Unlike in original models where Xn and Xn+m typically take values in spaces of
different dimensions, in reduced models the sufficient statistics Tn and Tn+m are usually
drawn from the same space. A simple example is as follows.

EXAMPLE 4.1 (Gaussian location model with known covariance). Consider the observa-
tions X1, . . . ,Xn from the Gaussian location model Pθ = N (θ,)) with an unknown mean
θ ∈ Rd and a known covariance ) ∈ Rd×d . To amplify to n+m samples, note that the sample
mean vector is a sufficient statistic here, with

Tn(X1, . . . ,Xn) = 1
n

n∑

i=1

Xi ∼ N (θ,)/n).

Now consider the identity map between sufficient statistics T̂n+m = Tn used with Algo-
rithm 1. The amplified samples (X̂1, . . . , X̂n+m) are drawn from N (0,)) conditioned on
the event that Tn+m(X̂n+m) = T̂n+m = Tn(X

n). For every mean vector θ ∈ Rd we can upper
bound the amplification error of this approach:

∥∥L(T̂n+m) − L(Tn+m)
∥∥

TV = ∥∥L(Tn) − L(Tn+m)
∥∥

TV

= ∥∥N (θ,)/n) − N
(
θ,)/(n + m)

)∥∥
TV

(a)≤
√

1
2
DKL

(
N (θ,)/n)‖N

(
θ,)/(n + m)

))

=
√

d

4

(
m

n
− log

(
1 + m

n

))
= O

(
m

√
d

n

)
,

where (a) is due to (3.2), and the last step holds whenever m = O(n). Therefore, we could
amplify %(n/

√
d) additional samples based on n observations, and the complexity of sample

amplification in (3.5) is n& = O(
√

d). In contrast, learning this distribution within a small TV
distance requires n = %(d) samples, which is strictly harder than sample amplification. This
example recovers the upper bound of [3] with a much simpler analysis, and in later sections
we will show that this approach is exactly minimax optimal.

We make two remarks for the above example. First, the amplified samples X̂n+m are no
longer independent, either marginally or conditioned on Xn. Therefore, the above approach is
fundamentally different from first estimating the distribution and then generating independent
samples from the estimated distribution. Second, the amplified samples do not contain the
original samples as a subset. In contrast, a tempting approach for sample amplification is to
add m fake samples to the original n observations. However, [3] showed that any sample
amplification approach containing the original samples cannot succeed if n = o(d/ logd) in
the above model, and our approach conforms to this result. More examples will be presented
in Appendix A.1.
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4.2. Computational issues. A natural computational question in Algorithm 1 is how to
sample X̂n+m ∼ PXn+m|Tn+m

(· | T̂n+m) in a computationally efficient way. With an additional
mild assumption that the sufficient statistic T is also complete (which is easy to find in expo-
nential families), the conditional distribution PX|T could be efficiently sampled if we could
find a statistic S = S(X) with the following two properties:

1. S is ancillary, that is, L(S) is independent of the model parameter θ ;
2. There is a (measurable) bijection g between (T , S) and X, that is, X = g(T ,S) almost

surely.

In fact, if such an S exists, then under any θ ∈ #,

L(X | T = t)
(a)= L

(
g(T ,S) | T = t

) (b)= L
(
g(t, S)

)
,

where (a) is due to the assumed bijection g between (T , S) and X, and (b) is due to a classical
result of Basu [8, 9] that S and T are independent. Therefore, by the ancillarity of S, we could
sample X ∼ Pθ0 with any θ0 ∈ # and compute the statistic S from X, then g(t, S) follows the
desired conditional distribution PX|T =t . An example of this procedure is illustrated below.

EXAMPLE 4.2 (Computation in Gaussian location model). Consider the setting of Ex-
ample 4.1 where Pθ = N (θ,))⊗(n+m), Tn+m = (n + m)−1 ∑n+m

i=1 Xi , and the target is to
sample from the distribution PXn+m|Tn+m

. In this model, Tn+m is complete and sufficient, and
we choose S = S(Xn+m) = (S1, . . . , Sn+m−1) with Si = Xi+1 − X1 for all i. Clearly S is
ancillary, and Xn+m could be recovered from (Tn+m,S) via

X1 = Tn+m −
∑n+m−1

i=1 Si

n + m
, Xi+1 = X1 + Si, i ∈ [n + m − 1].

Therefore, the choice of S satisfies both conditions. Consequently, we can draw Zn+m ∼
N (0,))⊗(n+m), compute S = S(Zn+m) (where Si = Zi+1 − Z1), and recover Xn+m from
(Tn+m,S).

The proper choice of S depends on specific models and may require some effort to find;
we refer to Appendix A.1 for more examples. We remark that in general there is no golden
rule to find S. One tempting approach is to find a maximal ancillary statistic S such that any
other ancillary statistic S′ must be a function of S. This idea is motivated by the existence of
the minimal sufficient statistic under mild conditions and a known computationally efficient
approach to compute it. However, for ancillary statistics there is typically no such a maximal
one in the above sense, and there may exist uncountably many “maximal” ancillary statistics
which are not equivalent to each other. From the measure theoretic perspective, this is due to
the fact that the family of all ancillary sets is not closed under intersection and thus not a σ -
algebra. In addition, even if a proper notion of “maximal” or “essentially maximal” could be
defined, there is no guarantee that such an ancillary statistic satisfies the bijection condition,
and it is hard to determine whether a given ancillary statistic is maximal or not. We refer to
[10, 35] for detailed discussions on ancillarity from mathematical statistics.

There is also another sampling procedure of PXn|Tn in the conditional inference literature
[53]. Specifically, for each i ∈ [n], this approach sequentially generates the observation Xi

from the one-dimensional distribution PXi |Xi−1,Tn
, which is a simple task as long as we know

its CDF. Although this works in simple models such as the Gaussian location model above,
in more complicated models exact computation of the CDF is typically not feasible.
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4.3. General theory for exponential families. In this section, we show that a general
(n,n+%(nε/

√
d), ε) sample amplification phenomenon holds for a rich class of exponential

families, and is achieved by the sufficiency-based procedure in Algorithm 1. Specifically, we
consider the following natural exponential family.

DEFINITION 4.3 (Exponential family). The exponential family (X , (Pθ )θ∈#) of proba-
bility measures is determined by

dPθ (x) = exp
(
θ.T (x) − A(θ)

)
dµ(x),

where θ ∈ # is the natural parameter with # = {θ ∈ Rd : A(θ) < ∞}, T (x) is the sufficient
statistic, A(θ) is the log-partition function, and µ is the base measure.

The exponential family includes many widely used probability distributions such as Gaus-
sian, Gamma, Poisson, Exponential, Beta, etc. In the exponential family, the statistic T (x) is
sufficient and complete, and several well-known identities include Eθ [T (X)] = ∇A(θ), and
Covθ [T (X)] = ∇2A(θ). We refer to [25] for a mathematical theory of the exponential family.

To establish a general theory of sample amplification for exponential families, we shall
make the following assumptions on the exponential family.

ASSUMPTION 1 (Continuity). The parameter set # has a nonempty interior. Under each
θ ∈ #, the probability distribution L(T (X)) is absolutely continuous with respect to the
Lebesgue measure.

ASSUMPTION 2 (Moment condition Mk). For a given integer k > 0, it holds that

sup
θ∈#

Eθ
[∥∥(∇2A(θ)

)−1/2(
T (X) − ∇A(θ)

)∥∥k
2
]
< ∞.

We call it the moment condition Mk .

Assumption 1 requires an exponential family of continuous distributions. The motivation
is that for continuous exponential family, the sufficient statistics Tn(X) and Tn+m(X) for dif-
ferent sample sizes take continuous values in the same space, and it is easier to construct a
general transformation. We will propose a different sample amplification approach for dis-
crete statistical models in Section 5. Assumption 2 is a moment condition on the normalized
statistic (∇2A(θ))−1/2(T (X) − ∇A(θ)), whose moments always exist as the moment gener-
ating function of T (X) exists around the origin. The moment condition Mk claims that the
above normalized statistic has a uniformly bounded kth moment for all θ ∈ #, which holds in
several examples (such as Gaussian, exponential, Pareto) or by considering a slightly smaller
#0 ⊆ # bounded away from the boundary. The following lemma presents a sufficient crite-
rion for the moment condition Mk .

LEMMA 4.4. If the log-partition function A(θ) satisfies

sup
θ∈#

sup
u∈Rd\{0}

|∇3A(θ)[u;u;u]|
(∇2A(θ)[u;u])3/2 ≤ M < ∞,

then the exponential family satisfies the moment condition Mk for all k ∈ N. Here for a k-
tensor T and vectors u1, . . . , uk , T [u1; . . . ;uk] denotes the value of 〈T ,u1 ⊗ · · · ⊗ uk〉.
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The condition in Lemma 4.4 is called the self-concordant condition, which is a key concept
in the interior point method for convex optimization [41]. For example, all quadratic functions
and logarithmic functions are self-concordant (which correspond to Gaussian, exponential,
and Pareto distributions), and the self-concordance is always fulfilled when # is compact.

Given any exponential family P satisfying Assumptions 1 and 2, we will show that a
simple sample amplification procedure gives a size %(n/

√
d) of sample amplification. Let

X1, . . . ,Xn be i.i.d. samples drawn from Pθ taking a general form in Definition 4.3, then it is
clear that the sample average

Tn
(
Xn) ! 1

n

n∑

i=1

T (Xi)

is a sufficient statistic by the factorization theorem. We will apply the general Algorithm 1
with an identity map between sufficient statistics, that is, T̂n+m = Tn. The next theorem shows
the performance of this approach.

THEOREM 4.5. If the exponential family P satisfies Assumptions 1 and 2 with k = 3,
then for θ ∈ #, it holds that

ε&(P, n,m) ≤ ∥∥L(Tn) − L(Tn+m)
∥∥

TV ≤ C√
n

+ m
√

d

n
,

where C < ∞ is an absolute constant depending only on d and the moment upper bound in
Assumption 2. In particular, for sufficiently large n, a sample amplification of size %(n/

√
d)

is achievable.

Theorem 4.5 shows that the above simple procedure could achieve a sample amplification
from n to n + %(n/

√
d) samples in general continuous exponential families, provided that n

is large enough. The main idea behind the proof of Theorem 4.5 is also simple. We show that
the distribution of Tn is approximately Gn ∼ N (∇A(θ),∇2A(θ)/n) by CLT, apply the same
CLT for Tn+m, and then compute the TV distance between two Gaussians as in Example 4.1.
Theorem 4.5 is then a direct consequence of the triangle inequality:

∥∥L(Tn) − L(Tn+m)
∥∥

TV

≤ ∥∥L(Tn) − L(Gn)
∥∥

TV + ∥∥L(Gn) − L(Gn+m)
∥∥

TV + ∥∥L(Tn+m) − L(Gn+m)
∥∥

TV.

Note that Assumption 1 ensures a vanishing TV distance for the Gaussian approximation,
and Assumption 2 enables us to apply Berry–Esseen type arguments and obtain an O(1/

√
n)

convergence rate for the Gaussian approximation.
The main drawback of Theorem 4.5 is that there is a hidden constant C depending on the

dimension d , thus it does not mean that an (n,n + 1, ε) sample amplification is possible as
long as n = %(

√
d/ε). To tackle this issue, we need to improve the first term in Theorem 4.5

and find the best possible dependence of the constant C on d . We remark that this is a chal-
lenging task in probability theory: although the convergence rates of both TV [5, 6, 42, 47]
and KL [7, 13] in the CLT result were studied, almost all of them solely focused on the conver-
gence rate on n, leaving the tight dependence on d still open. Moreover, direct computation
of the quantity ‖L(Tn)−L(Gn)‖TV shows that even if the random vector Tn has independent
components, this quantity is typically at least %(

√
d/n). Therefore, C = %(

√
d) under this

proof technique, and a vanishing first term in Theorem 4.5 requires that n = %(d), which is
already larger than the anticipated sample amplification complexity n = O(

√
d).

To overcome the above difficulties, we make the following changes to both the assumption
and analysis. First, to avoid the unknown dependence on d , we additionally assume a product
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exponential family, that is, Pθ (dx) = ∏d
i=1 pθi (dxi), where each pθi (xi) is a one-dimensional

exponential family. Exploiting the product structure enables to find a constant C depending
linearly on d . Second, we improve the O(1/

√
n) dependence on n by applying a higher-

order CLT result to Tn and Tn+m, known as the Edgeworth expansion [12]. For any k ≥ 2 and
n ∈ N, the signed measure of the Edgeworth expansion on Rd is

+n,k(dx) = γ (x)

(

1 +
3k/34∑

-=1

K-(x)

n-/2

)

dx,(4.1)

where γ (x) is the density of a standard normal random variable on Rd , and Km(x) is a
polynomial of degree 3m which depends only on the first 3m moments of the distribution.
We note that unlike CLT, the general Edgeworth expansion is a signed measure with possibly
negative densities; however, it is close to Gaussian with an O(n−1/2) approximation error.
Such a higher-order expansion enables us to have better Berry-Esseen type bounds, but upper
bounding ‖+n,k −+n+m,k‖TV becomes more complicated and requires to handle the Gaussian
part and the correction part separately; see Appendix B.2 for details. In particular, we could
improve the error dependence on n from O(1/

√
n) to O(1/n2).

Formally, the next theorem shows a better sample amplification performance for product
exponential families.

THEOREM 4.6. Let (X ,P = (Pθ )θ∈#) be a product exponential family, where each one-
dimensional component satisfies Assumptions 1 and 2 with k = 10. Then for θ ∈ #, it holds
that

ε&(P, n,m) ≤ ∥∥L(Tn) − L(Tn+m)
∥∥

TV ≤ C

(
d

n2 + m
√

d

n

)
,

where C < ∞ is an absolute constant independent of (n, d). In particular, as long as n =
%(

√
d/ε), an (n,n + m, ε) sample amplification of size m = %(nε/

√
d) is achievable.

Theorem 4.6 shows that for product exponential family, we not only achieve the amplifi-
cation size m = %(nε/

√
d), but also attain a sample complexity n = O(

√
d/ε) for sample

amplification. This additional result on sample complexity is important in the sense that, even
if distribution learning is impossible, it is possible to perform sample amplification. Although
the independence or even the exponential family assumption could be strong practically, in
Appendix A.1 we show that both phenomena m = %(nε/

√
d) and n = O(

√
d/ε) hold in

many natural models.

5. Sample amplification via learning. The sufficiency-based approach of sample am-
plification is not always desirable. First, models outside the exponential family typically do
not admit nontrivial sufficient statistics, and therefore the reduction by sufficiency may not
be very helpful. Second, the identity map applied to the sufficient statistics only works for
continuous models, and incurs a too large TV distance when the underlying model is dis-
crete. Third, previous approaches are not directly related to learning the model, so a general
relationship between learning and sample amplification is largely missing. In this section, we
propose another sample amplification approach, and show that how a good learner helps to
obtain a good sample amplifier.

5.1. The general result. For a class of distribution P and n i.i.d. observations drawn from
an unknown P ∈ P , we define the following notion of the χ2-estimation error.
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DEFINITION 5.1 (χ2-estimation error). For a class of distributions P and sample size n,
the χ2-estimation error rχ2(P, n) is defined to be the minimax estimation error under the
expected χ2-divergence:

rχ2(P, n)! inf
P̂n

sup
P∈P

EP
[
χ2(P̂n,P )

]
,

where the infimum is taken over all possible distribution estimators P̂n based on n samples.

Roughly speaking, the χ2-estimation error in the above definition characterizes the com-
plexity of the distribution class P in terms of distribution learning under the χ2-divergence.
The main result of this section is to show that, the error of sample amplification in (3.3) could
be upper bounded by using the χ2-estimation error.

THEOREM 5.2. For general P and n,m ≥ 0, it holds that

ε&(P, n,m) ≤
√

m2

n
· rχ2(P, n/2).

The following corollary is immediate from Theorem 5.2.

COROLLARY 5.3. An (n,n + m, ε) sample amplification is possible if m =
O(ε

√
n/rχ2(P, n/2)). Moreover, the sample complexity of amplification in (3.5) satisfies

n&(P) = O
(
min

{
n ∈ N : rχ2(P, n/2) ≤ n

})
.

REMARK 5.4. Although the error of sample amplification in (3.3) is measured under the
TV distance, the same result holds for the squared root of the KL divergence (which by (3.2)
is no smaller than the TV distance).

The above result provides a quantitative guarantee that the sample amplification is easier
than learning (under the χ2-divergence). Specifically, the sample complexity of learning is
the smallest n ∈ N such that rχ2(P, n) = O(1), while Corollary 5.3 shows that the complexity
for amplification is at most the smallest n ∈ N such that rχ2(P, n/2) = O(n). As rχ2(P, n)
is nonincreasing in n, this means that the learning complexity is in general larger.

When the distribution class P has a product structure P = ∏d
j=1 Pj , the next theorem

shows a better relationship between the amplification error and the learning error.

THEOREM 5.5. For P = ∏d
j=1 Pj and n,m ≥ 0, it holds that

ε&(P, n,m) ≤

√√√√√
m2

n

d∑

j=1

rχ2(Pj , n/2).

COROLLARY 5.6. For product models, an (n,n + m, ε) sample amplification is achiev-
able if

m = O

(
ε

√
n

∑d
j=1 rχ2(Pj , n/2)

)
.

Moreover, the sample complexity of amplification in (3.5) satisfies

n&(P) = O

(

min

{

n ∈ N :
d∑

j=1

rχ2(Pj , n/2) ≤ n

})

.
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We observe that the result of Theorem 5.5 typically improves over Theorem 5.2 for product
models. In fact, since

χ2

(
d∏

j=1

Pj ,
d∏

j=1

Qj

)

=
d∏

j=1

(
1 + χ2(Pj ,Qj )

) − 1 ≥
d∑

j=1

χ2(Pj ,Qj ),

the inequality
∑d

j=1 rχ2(Pj , n/2) ≤ rχ2(P, n/2) typically holds. Moreover, there are scenar-
ios where we have

∑d
j=1 rχ2(Pj , n/2) 5 rχ2(P, n/2), thus Theorem 5.5 provides a substan-

tial improvement over Theorem 5.2. For example, when P = (N (θ, Id))θ∈Rd , it could be ver-
ified that rχ2(Pj , n/2) = O(1/n) for each j ∈ [d], while rχ2(P, n/2) = exp(%(d/n)) − 1.
Hence, in the important regime

√
d 5 n 5 d where learning is impossible but the sample

amplification is possible, Theorem 5.5 is strictly stronger than Theorem 5.2.

REMARK 5.7. In the above Gaussian location model, there is an alternative way to con-
clude that Theorem 5.5 is strictly stronger than Theorem 5.2. We will see that the shuffling
approach achieving the bound in Theorem 5.2 keeps all the observed samples, whereas [3]
shows that all such approaches must incur a sample complexity n = %(d/ logd) for the Gaus-
sian model. In contrast, Theorem 5.5 and Corollary 5.6 give a sample complexity n = O(

√
d)

of amplification in the Gaussian location model.

5.2. The shuffling approach. This section presents the sample amplification approaches
to achieve Theorems 5.2 and 5.5. The idea is simple: we find a good distribution learner P̂n

which attains the rate-optimal χ2-estimation error, draw additional m samples Y1, . . . , Ym

from P̂n, and shuffle them with the original samples X1, . . . ,Xn uniformly at random. This
approach suffices to achieve the sample amplification error in Theorem 5.2, while for The-
orem 5.5 an additional trick is applied: instead of shuffling the whole vectors, we indepen-
dently shuffle each coordinate instead. For technical reasons, in both approaches we apply
the sample splitting: the first n/2 samples are used for the estimation of P̂n, while the second
n/2 samples are used for shuffling. The algorithms are summarized in Algorithms 2 and 3.

The following lemma is the key to analyze the performance of the shuffling approach.

LEMMA 5.8. Let X1, . . . ,Xn be i.i.d. drawn from P , and Y1, . . . , Ym be i.i.d. drawn
from Q independent of (X1, . . . ,Xn). Let (Z1, . . . ,Zn+m) be a uniformly random permu-
tation of (X1, . . . ,Xn,Y1, . . . , Ym), and Pmix be the distribution of the random mixture
(Z1, . . . ,Zn+m). Then

χ2(
Pmix,P

⊗(n+m)) ≤
(

1 + m

n + m
χ2(Q,P )

)m

− 1.

Algorithm 2 SAMPLE AMPLIFICATION VIA SHUFFLING: GENERAL MODEL

1: Input: samples X1, . . . ,Xn, a given class of distributions P .
2: Based on samples X1, . . . ,Xn/2, find an estimator P̂n such that

sup
P∈P

EP
[
χ2(P̂n,P )

] ≤ C · rχ2(P, n/2).

3: Draw m additional samples Y1, . . . , Ym from P̂n.
4: Uniformly at random, shuffle the pool of Xn/2+1, . . . ,Xn,Y1, . . . , Ym to obtain

(Z1, . . . ,Zn/2+m).
5: Output: amplified samples (X1, . . . ,Xn/2,Z1, . . . ,Zn/2+m).
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Algorithm 3 SAMPLE AMPLIFICATION VIA SHUFFLING: PRODUCT MODEL

1: Input: samples X1, . . . ,Xn, a given class of product distributions P = ∏d
j=1 Pj

2: for j = 1,2, . . . , d do
3: Based on samples X1,j , . . . ,Xn/2,j , find an estimator P̂n,j such that

sup
Pj∈Pj

EPj

[
χ2(P̂n,j ,Pj )

] ≤ C · rχ2(Pj , n/2).

4: Draw m additional samples Y1,j , . . . , Ym,j from P̂n,j .
5: Uniformly at random, shuffle Xn/2+1,j , . . . ,Xn,j , Y1,j , . . . , Ym,j to obtain (Z1,j , . . . ,

Zn/2+m,j ).
6: end for
7: For each i ∈ [n/2 + m], form the vector Zi = (Zi,1, . . . ,Zi,d).
8: Output: amplified samples (X1, . . . ,Xn/2,Z1, . . . ,Zn/2+m).

Based on Lemma 5.8, the advantage of random shuffling is clear: if we simply append
Y1, . . . , Ym to the end of the original sequence X1, . . . ,Xn, then the χ2-divergence is exactly
(1 + χ2(Q,P ))m − 1. By comparing with the upper bound in Lemma 5.8, we observe that
a smaller coefficient m/(n + m) is applied to the individual χ2-divergence after a random
shuffle. The proofs of Theorems 5.2 and 5.5 are then clear, where we simply take Q = P̂n

and apply the above lemma. Note that the statement of Lemma 5.8 requires that Y1, . . . , Ym

be independent of X1, . . . ,Xn, which is exactly the reason why we apply sample splitting
in Algorithms 2 and 3. The proof of Lemma 5.8 is presented in Appendix C, and the com-
plete proofs of Theorems 5.2 and 5.5 are relegated to Appendix B. We also include concrete
examples of the shuffling approach in Appendix A.2.

6. Minimax lower bounds. In this section, we establish minimax lower bounds for sam-
ple amplification in different statistical models. Section 6.1 presents a general and tight ap-
proach for establishing the lower bound, which leads to an exact sample amplification re-
sult for the Gaussian location model. Based on this result, we show that for d-dimensional
continuous exponential families, the sample amplification size cannot exceed ω(nε/

√
d) for

sufficiently large sample size n. Section 6.2 provides a specialized criterion for product mod-
els, where we show that n = %(

√
d/ε) and m = O(nε/

√
d) are always valid lower bounds,

with hidden constants independent of all parameters. Appendix A.3 lists several concrete ex-
amples where our general idea could be properly applied to provide tight and nonasymptotic
results.

6.1. General idea. The main tool to establish the lower bound is the first equality in the
Definition 3.1 of Le Cam’s distance. Specifically, for a class of distributions P = (Pθ )θ∈#,
let µ be a given prior distribution on #, and L : # × A → [0,1] be a given nonnegative loss
function upper bounded by one. Given n i.i.d. samples from an unknown distribution in P ,
define the following Bayes risk and minimax risk:

rB(P, n,L,µ) = inf
θ̂

∫

#
Eθ

[
L

(
θ, θ̂

(
Xn))]

µ(dθ),

r(P, n,L) = inf
θ̂

sup
θ∈#

Eθ
[
L

(
θ, θ̂

(
Xn))]

,

where the infimum is over all possible estimators θ̂(·) taking value in A. The following result
is a direct consequence of Definition 3.1.
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LEMMA 6.1. For any integer n,m > 0, any class of distributions P = (Pθ )θ∈#, any prior
µ on #, and any loss function L : #×A → [0,1], the minimax error of sample amplification
ε&(P, n,m) in (3.3) satisfies that

ε&(P, n,m) ≥ rB(P, n,L,µ) − rB(P, n + m,L,µ),

ε&(P, n,m) ≥ r(P, n,L) − r(P, n + m,L).

Based on Lemma 6.1, it suffices to find an appropriate prior distribution µ and a loss func-
tion L, and then compute (or lower bound) the difference between the Bayes or minimax
risks with different sample sizes. We note that the lower bound technique in [3], albeit seem-
ingly different, is a special case of Lemma 6.1. Specifically, the authors of [3] designed a
set-valued mapping An : θ → P(X n) for each n ∈ N such that Pθ (X

n+m ∈ An+m(θ)) ≥ 0.99
for all θ ∈ #, while there is a prior distribution µ on # such that

EXn

[
sup

xn∈X n
Pθ |Xn

(
xn ∈ An(θ)

)] ≤ 0.5.(6.1)

If the above conditions hold, then an (n,n+m) sample amplification is impossible. Note that
the probability term in (6.1) is the maximum coverage probability of the sets An(θ) where θ
follows the posterior distribution Pθ |Xn , which is a well-defined geometric object when both
An(θ) and the posterior are known. To see that the above approach falls into our framework,
consider the loss function L : # × ⋃

n≥1 X n → [0,1] with L(θ,Xn) = 1(Xn /∈ An(θ)). Then
the first condition ensures that rB(P, n + m,L,ν) ≤ 0.01 for each prior ν, and the second
condition (6.1) exactly states that rB(P, n,L,µ) ≥ 0.5 for the chosen prior µ.

A first application of Lemma 6.1 is an exact lower bound in Gaussian location models.

THEOREM 6.2. For the Gaussian location model P = {N (θ,))}θ∈Rd with a fixed co-
variance ) ∈ Rd×d , the minimax error of sample amplification in (3.3) is exactly

ε&(P, n,m) =
∥∥∥∥N

(
0,

Id

n

)
− N

(
0,

Id

n + m

)∥∥∥∥
TV

.

In particular, the sufficiency-based approach in Example 4.1 is exactly minimax optimal.

Theorem 6.2 shows that an exact error characterization for the Gaussian location model is
possible through the general lower bound approach in Lemma 6.1. This result is also asymp-
totically useful to a rich family of models: note that by CLT, the sufficient statistic in a con-
tinuous exponential family follows a Gaussian distribution asymptotically, with a vanishing
TV distance. This idea was used in Section 4.3 to establish the O(nε/

√
d) upper bound,

and the same observation could lead to an %(nε/
√

d) lower bound as well, under slightly
different assumptions. Specifically, we drop Assumption 2 while introducing an additional
assumption.

ASSUMPTION 3 (Linear independence). The components of sufficient statistic T (x) are
linearly independent, that is, a.T (x) = 0 for µ-almost all x ∈ X implies a = 0.

Assumption 3 ensures that the true dimension of the exponential family is indeed d . When-
ever Assumption 3 does not hold, we could transform it into a minimal exponential family
with a lower dimension fulfilling this assumption. Note that when Assumptions 1 and 3 hold,
the mean mapping θ 6→ ∇A(θ) is a diffeomorphism between # and ∇A(θ); see, for example,
[36], Theorem 1.22. Therefore, ∇A(·) is an open map, and the set {∇A(θ) : θ ∈ #} contains
a d-dimensional ball. This fact enables us to obtain a d-dimensional Gaussian location model
after we apply the CLT.

The following theorem characterizes an asymptotic lower bound for every exponential
family satisfying Assumptions 1 and 3.
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THEOREM 6.3. Given a d-dimensional exponential family P satisfying Assumptions 1
and 3, for every n,m ∈ N, the minimax error of sample amplification satisfies

ε&(P, n,m) ≥ c ·
(

m
√

d

n
∧ 1

)
− C ·

( logn

n

) 1
3
,

where c > 0 is an absolute constant independent of (n,m,d,P), and constant C > 0 depends
only on the exponential family (and thus on d).

Theorem 6.3 shows that there exists some n0 > 0 depending only on the exponential fam-
ily, such that sample amplification from n to n + ω(nε/

√
d) samples is impossible for all

n > n0. However, similar to the nature of the upper bound in Theorem 4.5, this asymptotic re-
sult does not imply that the sample amplification is impossible if n = o(

√
d/ε). Nevertheless,

in the following sections we show that the sample complexity lower bound n = %(
√

d/ε) in-
deed holds in product families, as well as several other concrete examples.

6.2. Product models. Although Lemma 6.1 presents a lower bound argument in general,
the computation of exact Bayes or minimax risks could be very challenging, and the usual
rate-optimal analysis (i.e., bounding the risks within a multiplicative constant) will not lead
to meaningful results. In addition, choosing the right prior and loss is a difficult task which
may change from instance to instance. Therefore, it is helpful to propose specialized versions
of Lemma 6.1 which are easier to work with. Surprisingly, such a simple version exists for
product models, which is summarized in the following theorem.

THEOREM 6.4. Let ε ∈ (0,1) and Pθ = ∏d
j=1 pθj be a product model with (θ1, . . . , θd) ∈

∏d
j=1 #j . Suppose for each j ∈ [d], there exist two points θj,+, θj,− ∈ #j such that

∥∥p⊗n
θj,+ − p⊗n

θj,−

∥∥
TV ≤ αj − ε√

d
,(6.2)

∥∥p⊗(n+m)
θj,+ − p

⊗(n+m)
θj,−

∥∥
TV ≥ αj + ε√

d
,(6.3)

with αj ∈ (α,α), where α,α ∈ (0,1) are absolute constants. Then there exists an absolute
constant c = c(α,α) > 0 such that

ε&(P, n,m) ≥ cε.

Theorem 6.4 leaves the choices of the prior and loss function in Lemma 6.1 implicit, and
provides a simple criterion for product models. The usual routine of applying Theorem 6.4 is
as follows: fix any constant α and a target error ε, find for each j ∈ [d] two points θj,+, θj,− ∈
#j such that the condition (6.2) holds for a given sample size n. Then the condition (6.3)
becomes an inequality solely for m, from which we could solve the smallest mj ∈ N such
that (6.3) holds along the j th coordinate. Finally, the sample amplification from n to n + m
samples is impossible by the above theorem, where m = maxj∈[d] mj . Although Theorem 6.5
is only for product models, similar ideas could also be applied to non-product models; we
refer to Appendix A.3 for concrete examples.

Theorem 6.4 also provides some intuition on why the sample complexity lower bound for
amplification is typically smaller than that of learning. Specifically, for learning under the TV
distance, a small TV distance ‖∏d

j=1 p⊗n
θj,+ −∏d

j=1 p⊗n
θj,−‖TV between product distributions is

required. This requirement typically leads to a much smaller individual TV distance ‖p⊗n
θj,+ −

p⊗n
θj,−‖TV, for example, O(1/

√
d) for many regular models. In contrast, the conditions (6.2)
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and (6.3) only require a constant individual TV distance, which leads to a smaller sample
complexity n in the sample amplification lower bound. To understand why a larger individual
TV distance works for sample amplification, in the proof of Theorem 6.4 we consider the
uniform prior on 2d points

∏d
j=1{θj,+, θj,−}. Under this prior, the test accuracy for each

dimension is precisely (1+TVj )/2, which is slightly smaller than (1+α)/2 with n samples,
and slightly larger than (1 + α)/2 with n + m samples (assuming αj ≡ α). Therefore, if
a unit loss is incurred when the fraction of correct tests does not exceed (1 + α)/2, the
current scaling in (6.2), (6.3) shows that there is an %(ε) difference in the expected loss
under different sample sizes. In other words, such an aggregate voting test helps to have a
larger individual TV distance. The details of the proof are deferred to Appendix B.

Theorem 6.4 has a far-reaching consequence: with almost no assumption on the product
model P , for any c > 0 it always holds that ε&(P, n, 9cεn/

√
d:) ≥ c′ε for some absolute con-

stant c′ > 0 independent of the product model P . The only assumption (besides the product
structure) we make on P is as follows (here n ∈ N is a given sample size):

ASSUMPTION 4. Let P possess the product structure as in Theorem 6.4. For each j ∈ [d],
there exists two points θj,+, θj,− ∈ #j such that 1/(10n) ≤ H 2(pθj,+,pθj,−) ≤ 1/(5n).

Assumption 4 is a mild assumption that requires that for each coordinate, the map θj 6→
pθj is continuous under the Hellinger distance. This assumption is satisfied for almost all
practical models, either discrete or continuous, and is invariant with model reparametrizations
or bijective transformation of observations. We note that the coefficients 1/10 and 1/5 are
not essential, and could be replaced by any smaller constants. The next theorem states that if
Assumption 4 holds, we always have a lower bound n = %(

√
d) for the sample complexity

and an upper bound m = O(n/
√

d) for the size of sample amplification.

THEOREM 6.5. Let P be a product model satisfying Assumption 4. Then for any c > 0,
there is some c′ > 0 depending only on c (thus independent of n, d , ε, P) such that

ε&
(
P, n,

⌈
cεn√

d

⌉)
≥ c′ε.

Theorem 6.5 is a general lower bound for sample amplification in product models, with
intriguing properties that it is instance-wise in the model P , while the constants c and c′

are independent of P . As a result, the sample complexity is uniformly %(
√

d/ε), and the
maximum size of sample amplification is uniformly O(nε/

√
d) for all product models. In

comparison, the matching upper bound in Theorem 4.6 for product models has a hidden
constant depending on the statistical model. We note that it is indeed natural to have sam-
ple amplification results independent of the underlying statistical model. For example, it is
clear by definition that sample amplifications are invariant with bijective transformation of
observations. However, Assumption 2 depends on such transformations, so it possibly con-
tains some redundancy. In contrast, Assumption 4 remains invariant, which is therefore more
natural.

The proof idea of Theorem 6.5 is best illustrated for the case d = 1. Using the two points
θ+, θ− in Assumption 4, one could show that the TV distance between n copies of pθ+
and pθ− is bounded from above by a small constant. Similarly, for a large C > 0, the TV
distance between Cn copies of them is lower bounded by a large constant. Consequently, if
m = (C − 1)n, Theorem 6.4 applied with d = 1 gives an %(1) lower bound on ε&(P, n,m).
What happens if m = cεn with a small c? The idea is to consider the TV distances between
n,n + cεn,n + 2cεn, . . . ,Cn copies of pθ+ and pθ− , which is an increasing sequence. Now
by the pigeonhole principle, there must be two adjacent TV distances differing by at least
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%(cε/C) = %(ε), and Theorem 6.4 could be applied to this pair of sample sizes. This idea
is easily generalized to any dimensions, with the full proof in Appendix B.

We note that the lower bounds in Theorem 6.3 (as well as 6.2) and Theorem 6.5 are on
two different ends of the spectrum. In Theorems 6.2 and 6.3, an asymptotic setting (i.e.,
d fixed and n → ∞) is essentially considered, and a Gaussian limit is crucially used as
long as there is local asymptotic normality. In comparison, Theorem 6.5 deals with a high-
dimensional scenario (n, d can grow together) but restricts to a product model. However,
looking at product submodels and/or exploiting its proof techniques could still lead to tight
lower bounds for several non-product models, as shown in the examples in Appendix A.3.

7. Discussions on sample amplification versus learning. In all the examples, we have
seen in the previous sections, there is always a squared root relationship between the statisti-
cal complexities of sample amplification and learning. Specifically, when the dimensionality
of the problem is d , the complexity of learning the distribution (under a small TV distance) is
typically n = #(d), whereas that of the sample amplification is typically n = #(

√
d). In this

section, we give examples where this relationship could break down in either direction, thus
show that there is no universal scaling between the sample complexities of amplification and
learning.

7.1. An example where the complexity of sample amplification is o(
√

d). We first provide
an example where the distribution learning is hard, but an (n,n+1,0.1) sample amplification
is easy. Consider the following class Pd,t of discrete distributions:

Pd,t =
{

(p0, . . . , pd) : pi ≥ 0,
d∑

i=0

pi = 1,p0 = t

}

,

where it is the same as the class of all discrete distributions over d + 1 points, except that
the learner has the perfect knowledge of p0 = t for some known t ∈ [1/(2

√
d),1/2]. It is a

classical result (see, e.g., [28]) that the sample complexity of learning the distribution over
Pd,t with a small TV distance is still n = #(d), regardless of t . However, the next theorem
shows that the complexity of sample amplification is much smaller.

THEOREM 7.1. For the class Pd,t with t ∈ [1/(2
√

d),1/2], an (n,n + 1,0.1) sample
amplification is possible if and only if

n = %

(1
t

)
.

Note that for the choice of t = #(d−α) with α ∈ [0,1/2], the complexity of sample ampli-
fication could possibly be n = #(dα) for every α ∈ [0,1/2], showing that it could be o(

√
d)

with an arbitrary polynomial scale in d . Moreover, if t = o(1/
√

d), the complexity of sample
amplification reduces to n = #(

√
d), the case without the knowledge of t . The main reason

why sample amplification is easier here is that the additional fake sample could be chosen as
the first symbol, which has a large probability. In contrast, learning the distribution requires
the estimation of all other probability masses, so the existence of a probable symbol does not
help much in learning.

7.2. An example where the complexity of sample amplification is ω(
√

d). Next, we pro-
vide an example where the complexity of sample amplification is the same as that of learning.
Consider a low-rank covariance estimation model: X1, . . . ,Xn ∼ N (0,)), where ) ∈ Rp×p

could be written as ) = UU. with U ∈ Rp×d and U.U = Id . In other words, the covari-
ance matrix ) is isotropic on some d-dimensional subspace. Here n ≥ d samples suffice to
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estimate ) and thus the whole distribution perfectly, for the d-dimensional subspace could
be recovered using d i.i.d. samples with probability one. Therefore, the complexity of learn-
ing the distribution is n = d . The following theorem states that this is also the complexity of
sample amplification.

THEOREM 7.2. For the above low-rank covariance estimation model with p ≥ d + 1, an
(n,n + 1,0.1) sample amplification is possible if and only if n ≥ d .

Theorem 7.2 shows that as opposed to learning, sample amplification fails to exploit the
low-rank structure in the covariance estimation problem. As a result, the complexity of sam-
ple amplification coincides with that of learning in this example. Note that sample amplifi-
cation is always no harder than learning: the learner could always estimate the distribution,
generate one observation from the distribution and append it to the original samples. There-
fore, Theorem 7.2 provides an example where the relationship between sample amplification
and learning is the worst possible.

7.3. An example where the TV distance is not the right metric. Finally, we provide an
example showing that the TV distance is not the right metric for the learning-based approach
in Section 5, and thereby partially illustrate the necessity of using the χ2 divergence. This
example also goes beyond parametric families for sample amplification. Let P be the class of
all L-Lipschitz densities supported on [0,1], that is, the density f satisfies |f (x) − f (y)| ≤
L|x −y| for all x, y ∈ [0,1]. For c ∈ (0,1), also let Pc ⊆ P be the subclass of densities lower
bounded by c everywhere, that is, f (x) ≥ c for all x ∈ [0,1]. It is a classical result (see, e.g.,
[49]) that the minimax density estimation error under TV distance is #(n−1/3) for both P
and Pc. The next theorem shows that the sample complexities for amplification are actually
different.

THEOREM 7.3. Let L ≥ 8 and c ∈ (0,1) be fixed. It holds that

m&(Pc, n) ; n5/6 while m&(P, n)" n3/4.

Theorem 7.3 shows that, although assuming a density lower bound does not alter the TV
estimation error, it boosts the size of amplified samples from O(n3/4) to #(n5/6). In fact, the
χ2-estimation error is also reduced from P to Pc: in the proof of Theorem 7.3 we show that
rχ2(Pc, n) " n−2/3, but m&(P, n) " n3/4 together with Theorem 5.2 imply that rχ2(P, n) #
n−1/2. Therefore, this is an example suggesting that measuring the estimation error under the
χ2 divergence might be a better indicator for the complexity of sample amplification than the
TV distance.
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SUPPLEMENTARY MATERIAL

Supplement to “On the statistical complexity of sample amplification” (DOI: 10.1214/
24-AOS2444SUPP; .pdf). We provide proofs of main theorems (Theorems 4.5, 4.6, 5.2, 5.5,
6.2, 6.3, 6.4, 6.5, 7.1, 7.2, 7.3) and lemmas (Lemmas 4.4, 5.8).
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