
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 1

Revealing Smart Selective Jamming Attacks in
WirelessHART Networks
Xia Cheng, Junyang Shi, Mo Sha∗, and Linke Guo

Abstract—As a leading industrial wireless standard, Wire-
lessHART has been widely implemented to build wireless sensor-
actuator networks (WSANs) in industrial facilities, such as oil
refineries, chemical plants, and factories. For instance, 54,835
WSANs that implement the WirelessHART standard have been
deployed globally by Emerson process management, a Wire-
lessHART network supplier, to support process automation.
While the existing research to improve industrial WSANs focuses
mainly on enhancing network performance, the security aspects
have not been given enough attention. We have identified a
new threat to WirelessHART networks, namely smart selective
jamming attacks, where the attacker first cracks the channel
usage, routes, and parameter configuration of the victim network
and then jams the transmissions of interest on their specific
communication channels in their specific time slots, which makes
the attacks energy efficient and hardly detectable. In this paper,
we present this severe, stealthy threat by demonstrating the step-
by-step attack process on a 50-node network that runs a publicly
accessible WirelessHART implementation. Experimental results
show that the smart selective jamming attacks significantly re-
duce the network reliability without triggering network updates.

Index Terms—WirelessHART Networks, Selective Jamming,
Industrial Wireless Sensor-Actuator Networks, Denial-of-Service
Attack

I. INTRODUCTION

I
NDUSTRIAL Internet of Things (IoT) is revolutionizing

the process industries and promises to be one of the largest

potential economic effects in the future. According to the

McKinsey report on future disruptive technologies, industrial

IoT will contribute up to $47 trillion in added value globally by

2025 [2]. Industrial networks connect sensors and actuators in

industrial facilities, such as oil refineries, steel mills, and man-

ufacturing plants, and serve as the communication infrastruc-

tures for various industrial IoT applications. Most industrial

IoT applications have stringent demands for reliable and real-

time communication in harsh industrial environments. Failure

to meet such demands may lead to production inefficiency, fi-

nancial loss, and safety threats. Traditionally, specifically cho-

sen wired solutions, such as the highway addressable remote

Xia Cheng and Mo Sha are with the Knight Foundation School of Com-
puting and Information Sciences at Florida International University, Miami,
FL, 33199 USA (e-mail: xcheng@fiu.edu; msha@fiu.edu).

Junyang Shi is with Google. He contributed to this work while he was
advised by Mo Sha in the Department of Computer Science at State Uni-
versity of New York at Binghamton, Binghamton, NY, 13902 USA (e-mail:
jshi28@binghamton.edu).

Linke Guo is with the Department of Electrical and Computer Engineering,
Clemson University, Clemson, SC, 29634 USA (e-mail: linkeg@clemson.edu).

∗Corresponding author.
Part of this article was published in Proceedings of the INFOCOM [1].
Manuscript received Sep, 2021; revised Aug, 2022.

transducer (HART) communication protocol [3], have been

designed to meet those stringent demands. Cables connect

sensors and forward sensor readings to a control room where

a controller makes control decisions, then sends commands to

actuators. However, wired networks are often costly to deploy

and maintain in harsh environments and difficult to reconfigure

to accommodate new application requirements.

To reduce the cost and enhance the flexibility, industrial

wireless sensor-actuator network (WSAN) technology has

been developed and serves as a cost-effective way to con-

nect sensors, actuators, and controllers in industrial facilities.

Battery-powered wireless modules have been designed to

easily and inexpensively retrofit existing sensors and actuators

in industrial facilities without the need to run cables for

communication and power. To meet the stringent reliability,

real-time, and low-power requirements, the industrial WSAN

standards, such as WirelessHART [4], make a set of specific

design choices including employing the IEEE 802.15.4 physi-

cal layer, the time slotted channel hopping (TSCH) technology,

and reliable graph routing that distinguish themselves from

traditional wireless sensor networks (WSNs) designed for best-

effort services [5]. Over the last decade, a large number of

wireless networks that implement those standards have been

deployed in industrial facilities. For instance, Emerson process

management, one of the leading WirelessHART network sup-

pliers, has deployed 54,835 WirelessHART networks globally

and gathered 19.7 billion operating hours of experience [6].

A decade of real-world deployments has demonstrated the

feasibility of using WirelessHART networks to achieve reliable

low-power wireless communication in industrial facilities and

exposed many limitations such as poor scalability [5] and

error-prone configuration [7].

While the existing research to improve industrial WSANs

focuses mainly on enhancing network performance, the secu-

rity aspects have not been given enough attention. After careful

analysis of the WirelessHART standard and extensive experi-

mentation, we have identified a new threat to WirelessHART

networks, namely smart selective jamming attacks, where the

attacker first cracks the channel usage, routes, and parameter

configuration of the victim network and then jams the trans-

missions of interest on their specific communication channels

in their specific time slots. Compared to the constant jamming

and random jamming, the smart selective jamming attacks are

energy efficient and hardly detectable, and therefore pose a

more severe, stealthy threat to WirelessHART networks. In this

paper, we present this severe, stealthy threat by demonstrating

a step-by-step attack process. Specifically, this paper makes

the following contributions:

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 2

Fig. 1. A graph routing example. The solid lines represent the primary paths
and the dashed lines represent the backup paths.

• We investigate the security vulnerability of Wire-

lessHART networks and demonstrate how an attacker

cracks the updating period and the link selection threshold

used in a WirelessHART network;

• We model the effectiveness of smart selective jamming

attacks and present a step-by-step attack process;

• We implement the attack process and test it on a physical

testbed [8] with 50 devices that run the publicly accessible

WirelessHART implementation [9]; Experimental results

show that the smart selective jamming attacks can signif-

icantly compromise network reliability without triggering

any network updates;

• We provide a set of insights on how we may secure

WirelessHART networks against smart selective jamming

attacks.

The remainder of this paper is organized as follows. Sec-

tion II presents the background of WirelessHART networks.

Section III introduces our threat model. Section IV demon-

strates the step-by-step attack process. Section V describes

our experimental studies. Section VI reviews related work.

Section VII concludes the paper and discusses our future work.

II. BACKGROUND ON WIRELESSHART NETWORKS

A WirelessHART network is composed of a gateway, mul-

tiple access points, and a set of field devices (sensors and

actuators) that form a multi-hop mesh network. A centralized

network manager, a software module that runs on the gateway,

is responsible for the network management, such as collecting

link statistics, generating routes and transmission schedule,

and maintaining the network operation. WirelessHART adopts

the IEEE 802.15.4 physical layer and employs the TSCH

technology in the MAC layer. TSCH divides time into slices of

fixed length that are grouped into a slotframe. Channel hopping

is used to mitigate effects of multipath fading and improve

the robustness and the network capacity. Under TSCH, a

pair of communicating devices uses the following function to

determine their communication channel:

5 = � [(�(# + �B4C) mod (;4=], (1)

where �(# is the absolute slot number, defined as the total

number of slots elapsed since the network started, �B4C is

the channel offset, which maps to one of available physical

channels, � is the lookup table that maps each channel offset to

its corresponding channel, and (;4= is the length of a sequence

of available physical channels.

WirelessHART supports both source and graph routing. For

each data flow, source routing provides a single route between

Fig. 2. DLPDU specified in the WirelessHART standard.

source and destination, while graph routing provides a primary

path and a series of backup routes to enhance the network

reliability by taking advantage of route diversity. Figure 1

shows the example routes between the Source node and two

access points. A packet may take backup routes (through nodes

D, E, F, G, or H) to reach AP 1 or AP 2 if it fails on the primary

routing path (through nodes A, B, and C). A data-link protocol

data unit (DLPDU) is used to carry the routing information

and provides means for reliable communication in the data-

link layer (DLL). As Figure 2 shows, a DLPDU consists of

address specifier, network ID, DLL payload, message integrity

code (MIC), and other fields. DLPDU Specifier indicates the

priority and data type of the message. There are four priority

levels from high to low: Command, Process-Data, Normal, and

Alarm. A network protocol data unit (NPDU) is carried in the

DLL payload, which is composed of Graph ID, user data, and

other fields. WirelessHART does not require the devices to

encrypt the DLPDU and NPDU headers due to the overhead

concern. The source and destination addresses of a communi-

cating link are defined as link source/destination address, while

the address of the device that originally generated the packet

and the final destination address of the packet are defined as

route source/destination address.

Each network device generates a health report periodi-

cally (e.g., one every 15 minutes) and transmits it to the

network manager. The network manager can make use of

such information to determine whether it should regenerate

the routes and reschedule the transmissions. Although the

WirelessHART standard provides an example of the generation

interval of health reports (15 minutes), it leaves vendors to

decide the actual value used in their networks. WirelessHART

also leaves vendors to decide how to adjust routing based

on the statistic information gathered from health reports. For

instance, Emerson recommends that wireless field devices used

for control and high speed monitoring have a higher packet

reception ratio (PRR) threshold (70%) than general monitoring

devices (60%) [10]. In addition to health reports, each network

device maintains a PathFailureTimer for each routing path,

which is reset to a constant (PathFailInterval) when a DLPDU

from that neighbor is received. When the PathFailureTimer for

a neighbor reaches zero, a Path-Down alarm is generated and

sent to the network manager.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 3

Fig. 3. Overview of smart selective jamming.

III. THREAT MODEL

We consider a malicious device (attacker) in a Wire-

lessHART network which is deployed in an open field or

facility (e.g., an oil drilling plant) to support industrial wireless

monitor and control applications.

Attacker’s Objective. The intention of the attacker is to

reduce the network reliability (i.e., the packet delivery ratio

(PDR) of a target data flow) as much as possible by launching

selective jamming attacks without being detected. To achieve

this objective, the attacker must address the following four

challenges:

• Deployment-specific parameters: There exist several

important parameters including the link selection thresh-

old for routing and the network updating period, which

the WirelessHART standard allows vendors to decide.

Moreover, a vendor may use different values for the same

parameter in different deployments. The attacker must

derive those values by observing the network behavior

at runtime.

• Fluctuation of low-power wireless links: Unexpected

transmission failures caused by the normal low-power

link fluctuations may expose the attacker when per-

forming attacks. The attacker must consider the network

dynamics and adjust its attacks based on its runtime

observations on the network condition.

• Uncertainty of jamming effectiveness: Many factors

play an important role in the jamming effectiveness, such

as the locations of the attacker, benign transmitter, and

victim, the attacker’s signal strength at the victim, and

the timing when the jamming signal reaches the victim.

The attacker must profile its jamming effectiveness and

consider that when performing attacks.

• Limited power supply: The malicious device has limited

power supply and cannot perform computation-intensive

tasks, such as cracking information from data protected

by the Advanced Encryption Standard (AES) 128-bit

encryption.

Attacker’s Resource. The attacker is assumed to be a device

that has moderate computational capability and is capable of

monitoring the transmission activities on each channel (the

transmissions of DLPDU packets and their acknowledgments)

and generating signals on each channel in the 2.4 GHz ISM

band (e.g., a Raspberry Pi 3 Model B [11] that integrates

with a Wi-Spy USB Spectrum Analyzer [12]). The attacker

is powered by batteries or energy harvesting and deployed

or airdropped into the WirelessHART network. We assume

that the attacker does not have any prior knowledge on the

deployment-specific parameters used in the WirelessHART

TABLE I
PARAMETERS NEEDED FOR SMART SELECTIVE JAMMING.

Parameter Prerequisite Credit
Channel Usage None [13]

Routes Channel Usage [14]
Updating Period Channel Usage & Routes Section IV-C
Link Threshold Channel Usage & Routes & Period Section IV-D

network and can only gather information from the unencrypted

packet headers transmitted in the network.

IV. SMART SELECTIVE JAMMING ATTACKS

In this section, we provide a step-by-step presentation on

the attack process.

A. Overview

To achieve the attacker’s objective presented in Section III,

the smart selective jamming attack consists of two phases:

cracking phase and attacking phase. The attacker gathers the

needed information by eavesdropping on transmissions in the

network and performing exploratory jamming attacks in the

cracking phase and launches the attacks in the attacking phase.

Figure 3 shows the five steps in the cracking phase: (1)

The attacker cracks the TSCH channel hopping sequences by

silently observing the channel activities (see Section IV-B);

(2) With the cracked channel usage information, the attacker

cracks the routes by analyzing the eavesdropped transmis-

sions (see Section IV-B); (3) With the cracked channel usage

and routing information, the attacker launches exploratory

jamming attacks to crack the network updating period by

observing the time interval between two consecutive routing

changes (see Section IV-C); (4) In an updating period, the

attacker launches exploratory jamming attacks to identify

the link selection threshold for routing (see Section IV-D);

and (5) The attacker models its jamming effectiveness upon

the previous exploratory jamming attacks (see Section IV-E).

Table I summarizes the key parameters, which enable an

attacker to launch the smart selective jamming attacks. With

the information gathered in the cracking phase, the attacker

launches the smart selective jamming attacks to the target

data flow (see Section IV-F). To maximize the damage to the

network reliability, the attacker needs to carefully select a data

flow as its target (see Section IV-G).

B. Cracking the Channel Usage and Routes

The attacker can use the method presented in the paper [13]

to crack the channel usage. Here, we provide a brief summary

of that method. The channel hopping sequences generated by

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 4

Fig. 4. Example of cracking the primary routing path.

the network devices when using Eq. 1 show a strong cyclic

pattern. The attacker can identify the channel usage repetition

cycle by observing the channel usage of a link. After deriving

the channel usage repetition cycle, the attacker can identify

the time slots that are scheduled for transmissions in each

cycle and then create a table for each link. The table pairs

each slot with a scheduled transmission to a communicating

channel based on the observed channel activities. With those

tables, the attacker can predict the channel used by each link

in each time slot in the future. In addition, the attacker can

derive the number of time slots in a slotframe and the number

of active channels, and also synchronize its clock with the

victim network.

The attacker can use the method presented in the paper [14]

to derive both source and graph routes from the eavesdropped

packet headers. Here we present the method that cracks graph

routes. The attacker can follow the same method to crack

source routes by skipping the step of cracking backup routes.

To crack the graph routes, the attacker can follow the following

four steps:

1) Eavesdropping on the on-air packets: The attacker

eavesdrops on each packet and records its capture time;

2) Grouping and sorting the eavesdropped packets:

The attacker separates the eavesdropped packets into

different groups by the Graph IDs stored in their packet

headers and then sorts the packets in each group accord-

ing to their capture time;

3) Identifying the primary route: As each DLPDU header

stores the source and destination addresses of the com-

municating link, the attacker identifies all relay nodes

located on the primary routing path by checking the

sorted packets one by one until the link destination

address is the same as the route destination address;

4) Identifying the backup routes: The attacker identifies

the backup routes by selectively jamming each link on

the primary routing path.

Figure 4 shows an example on cracking the primary routing

path. We assume that six packets have been eavesdropped by

the attacker and three of them belongs to Graph 12 (the data

flow from node 023 to node 047). The attacker sorts the pack-

ets according to their capture time) + 4,) + 7, and) + 9, and

identifies three links 023 → 024, 024 → 007, and 007 → 047.

Thus, the primary routing path is 023 → 024 → 007 → 047.

The attacker identifies the backup routes of node 023 by

jamming the link 023 → 024 and repeats the process until

obtaining all backup routes.

C. Deriving the Network Updating Period

After obtaining the routing information, the next step is

to derive the network updating period *% . As discussed in

Section II, the network manager examines link statistics peri-

odically and generates new routes and transmission schedule

when needed. *% is the time interval between two consecutive

examinations. The network manager removes a link from rout-

ing if its PRR is below the preset PRR threshold %'') . *%

and %'') are deployment-specific parameters, which are not

transmitted over the network. Therefore, the attacker cannot

get them directly from the standard or information stored in

the packet headers. However, the attacker can detect *% by

measuring the time duration between two consecutive routing

changes. In a stable network, the attacker is likely to observe

an *% that is larger than its actual value because the network

manager may skip network updates if no change is needed.

To ensure the correctness of derived *% , the attacker must

perform exploratory jamming attacks on the most vulnerable

link located on the primary routing path to make sure of

routing changes. The most vulnerable link must be the first

hop of a data flow since the data source node always transmits

packets following its schedule and a relay node may skip

a transmission if it fails to receive the packet correctly. It

is beneficial for the attacker to select the weakest first-hop

link (with the lowest PRR) among all data flows because the

received signal strength (RSS) at the receiver of that link must

either be low or close to the interference-plus-noise floor.

When performing exploratory jamming, the attacker records

the time when the link is removed from routing. The attacker

repeats the above process again and obtains *% by measuring

the time duration between two consecutive routing changes.

Algorithm 1: Exploratory jamming to crack *%

Output: *%

1 Compute PRR of each first-hop link within its jamming

range and select the one with the lowest PRR;

2 for 8 = 1; ; 8 + + do

3 if i%m != 0 then

4 Jam the transmission over the selected link;

5 end

6 if Observe routing changes then

7 Record the time and break;

8 end

9 end

To reduce the chance of being detected, the attacker must

avoid destroying a link completely because a link failure

triggers the Path-Down alarm (presented in Section II), which

significantly increases the chance of exposing the attacker.

Algorithm 1 illustrates the algorithm of launching exploratory

jamming to crack *% . The attacker executes Algorithm 1 twice

when cracking *% . We set < to three in our implementation,

because attacking two-thirds of transmissions with a jamming

success ratio of 60% reduces the PRR of a link by at least 40%,

which is enough to trigger a routing update while keeping the

link alive. One of the primary design goals of the exploratory

jamming is to trigger the routing update only once, which

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 5

minimizes exposure to the network manager that manages the

victim network.

D. Deriving the Link Selection Threshold

As discussed in Section II, the network manager uses only

the links with the PRRs larger than %'') for routing. If a

route has a degraded link performance (%'' < %'')), it

will be removed from routes. To make the jamming attacks

stealthy, the attacker must crack %'') and attack the target

data flow without triggering network updates by keeping

the PRRs of all links above %'') . To crack %'') , the

attacker gradually reduces the PRR of a link by launching

exploratory jamming with a progressive increase in intensity

in a series of network updating periods. The attacker starts

from the lowest PRR observed in the routes and tests each

possible value of %'') in descending order until triggering

a network update. Ideally, the attacker should trigger the

network update only once when cracking %'') . However,

the fluctuation of low-power wireless link performance and

imperfect jamming effectiveness may in reality trigger more

network updates. Therefore, the attacker must use a carefully

designed method to launch exploratory jamming. To reduce the

chance of triggering additional network updates, the attacker

should launch exploratory jamming to the most stable link in

the network. Attacking a stable link also reduces the chance of

triggering the Path-Down alarm. Here, we illustrate a method

that cracks %'') without triggering more than one network

update (see Figure 13 for evaluation results).

Algorithm 2: Exploratory jamming to crack %'')

Input : %''C4BC , ' 90<,*% , !8=:

Output: %'')

1 Initialize 38E according to Eq. 5;

2 for 8 = 1; 8 ≤ *%; 8 + + do

3 if i == 38E then

4 Update the 38E according to Eq. 5;

5 end

6 if i > 38E then

7 Jam the current transmission on !8=: if there

are enough transmissions to compensate) 5 ;
8 end

9 end

10 if Observe the removal of target route from routing

then

11 %'') = %''C4BC , then break;

12 end

13 else

14 if A PRR lower than %''C4BC observed then

15 Set %''C4BC to it;

16 end

17 else

18 Reduce %''C4BC by a preset testing step;

19 end

20 end

Algorithm 2 shows the process of testing whether a possible

value of %'') (%''C4BC) is the actual value in an updating

period. Algorithm 2 has two modules: the Estimation module

and Examination module. The Estimation module divides a

network updating period into two sub-periods: observation

sub-period and jamming sub-period. In the observation sub-

period, the attacker silently observes the channel activities,

counts the number of transmission failures, and updates the

length of the jamming sub-period based on the runtime

observations. In the jamming sub-period, the Examination

module decides which transmissions should be jammed to

ensure the resulting PRR is equal to %''C4BC . The input of

Algorithm 2 consists of four parameters: the PRR value that is

currently in testing %''C4BC ; the jamming success ratio ' 90<;

the network updating period *%; and the target link (!8=:).

Algorithm 2 first computes the variable 38E that divides a

network updating period into the observation and jamming

sub-periods by using Eq. 5 (line 1) with the assumption that

there is no transmission failure caused by link fluctuation in

the observation sub-period. The loop (line 2 – 9) traverses

all slotframes in the updating period (from 1 to *%). In

the 38Eth iteration, Algorithm 2 adjusts the 38E based on

Eq. 5 if some transmission failures caused by link fluctuation

are observed in the observation sub-period (line 3 – 5).

Algorithm 2 keeps adjusting 38E until the newly computed 38E

is equal to the previous value, and then starts the jamming sub-

period. If the transmission failures caused by link fluctuation

are uniformly distributed in the updating period, the above

process of adjusting 38E based on runtime observations in the

observation sub-period is a guarantee that the PRR in this

network updating period is equal to %''C4BC . In reality, the

transmission failure caused by link fluctuation may not follow

the uniform distribution. If the transmission failures happen

more frequently in the jamming sub-period, the resulting PRR

will be smaller than %''C4BC , which makes the cracked %'')

inaccurate. To address this issue, the attacker can employ a

time series forecasting algorithm to estimate the transmission

failures which will happen in the jamming sub-period and keep

adjusting the estimation based on the actual observations in the

jamming sub-period to ensure there are enough transmissions

to compensate for unexpected failures. In our implementation,

we use the Holt-Winters method that is one of the most

effective time series forecasting algorithms [15]. The number

of estimated transmission failures () 5) can be expressed as

) 5 = �'?A4 ×)', (2)

where �'?A4 is the transmission failure ratio that is predicted

by the Holt-Winters method and)' is the number of the

transmissions left in the remaining updating period.

Algorithm 2 first assumes that the current transmission can

be jammed successfully and there will be) 5 transmission

failures caused by link fluctuation in the remaining network

updating period. Algorithm 2 decides to jam a transmission if

there are enough transmissions to compensate) 5 (the resulting

PRR is higher than %''C4BC) (line 6 – 8). If Algorithm 2

observes a route removal, it gets %'') (line 10 – 12). If not,

Algorithm 2 sets %''C4BC to the next value (line 17 – 19) or

a lower PRR which is owned by a route (line 14 – 16).

Figure 5 shows an example execution of Algorithm 2,

where %''C4BC is 0.5. In the example, we assume that the

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 6

Fig. 5. Example of verifying %''C4BC process, %''C4BC is 0.5, *% includes
8 slotframes and the jamming success ratio is 0.8.

network updating period includes eight slotframes and the

attacker has an 80% jamming success ratio. Algorithm 2 first

computes 38E and finds that the jamming sub-period should

have five slotframes. Let us assume that the attacker observes

one transmission failure in the first three iterations. Therefore,

Algorithm 2 adjusts the length of jamming sub-period to four

in the end of Iteration 3. In Iteration 4, the attacker observes a

transmission failure and adjusts the length of jamming sub-

period to three. In Iteration 5, because the updated 38E is

equal to the previous one (three), Algorithm 2 starts the

jamming sub-period. In Iteration 6, Algorithm 2 estimates

that there will be one possible transmission failure caused by

link fluctuation based on Eq. 2, therefore it decides to jam

the current transmission. In Iteration 7, Algorithm 2 decides

to skip the attack on the current transmission because if the

transmission failure happens in the last slotframe, the PRR

will be 0.375 which is lower than %''C4BC . In Iteration 8,

Algorithm 2 decides to jam again to ensure that the resulting

PRR is equal to %''C4BC .

E. Modeling the Jamming Effectiveness

The attacker can model the jamming effectiveness based on

the observations in the previous exploratory jamming attacks.

Our analysis is based on a publicly accessible WirelessHART

implementation, which employs three transmission attempts

for each packet [9]. The first two attempts go through the

primary route and the last attempt uses backup routes. To

analyze the upper bound of jamming effectiveness, we assume

that the primary routing path of the target data flow has

= links and the attacker always successfully jams the third

transmission attempt through the backup routes.

To simplify our explanation, we first assume that the at-

tacker has a 100% jamming success ratio and the target data

flow does not share routes with other data flows, and will

drop these two assumptions later. The attacker first estimates

Fig. 6. Example of links shared by multiple data flows.

the upper bound of the PDR degradation, which it can possibly

cause on the target data flow by jamming an individual link

8. Under graph routing, a packet uses the backup routes if the

first two attempts through the primary routing path fail. To

avoid triggering network updates, the attacker must keep the

PRR of the victim link not less than %'') . Thus,

%'' =

)8 − ��8 − �8

)8 + ��8 + �(8 + �8
≥ %'') , (3)

where ��8 denotes the number of packets that fail in both

two attempts on the primary routing path, �(8 denotes the

number of packets that fail on the first attempt but succeed on

the second attempt, �8 denotes the number of jammed packets

in the jamming sub-period, and)8 denotes the total number of

packets which are scheduled for transmission in the updating

period.

When the PRR is equal to %'') , �8 achieves the maximum

value. Accordingly, the upper bound of the PDR degradation

on the target data flow that is possibly caused by jamming an

individual link 8 (�8/)8) is

1 − %'') − (1 + %''))��8/)8 − %'') �(8/)8

1 + %'')

. (4)

In reality, the attacker cannot achieve a 100% jamming

success ratio. The attacker must reserve more slotframes in

the jamming sub-period to compensate jamming failures. The

number of packets (the length of the jamming sub-period)

scheduled for performing jamming is

(1 − %'')))8 − (1 + %''))��8 − %'') �(8

' 90< (' 90< + %''))
. (5)

The attacker can compute its jamming success ratio ' 90<

by comparing the number of scheduled transmissions and the

number of acknowledgments after jamming.

In most WirelessHART networks, multiple data flows exist

and share one or more routes. Figure 6 shows an example. The

data flows 147 → 121 (the target) and 149 → 121 share the

routes between node 113 and 103 and between node 103 and

121. To continue our analysis on the upper bound of jamming

performance, let us assume that all)(8 packets are transmitted

successfully on route 8 for all data flows except the target data

flow within the network updating period. Eq. 4 can be revised

as 5 (8) =

(1 − %'')) (1 +) (8
)8

) − (1 + %''))
��8

)8
− %'')

�(8
)8

1 + %'')

. (6)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 7

According to Eq. 6, the upper bound of the PDR degradation

is significantly increased if the target link is shared by multiple

data flows.
The upper bound of the PDR degradation on the target data

flow which is possibly caused by jamming all = links is

%�' =

=∑

8=1

5 (8). (7)

F. Launching Smart Selective Jamming Attacks

Algorithm 3: Smart Selective Jamming

Input : %'') , *% , ' 90<

1 Initialize 38E [] according to Eq. 6;

2 for : = 1; : ≤ *%; : + + do

3 if : ==

∑=
8=1

38E [] then

4 Update 38E [] according to Eq. 6;

5 end

6 if : >
∑=

8=1
38E [] then

7 Sort links by their PRRs in descending order;

8 for 9 = 1; 9 ≤ =; 9 + + do

9 if !8=: 9 is not jammed in last iteration

then

10 Update �'?A4 [9];

11 Jam the current transmission if there are

more transmissions to compensate) 5 ;
12 end

13 end

14 end

15 end

With the cracked information, the next step is to launch

the selective jamming attacks. Algorithm 3 presents how the

attacker selects the target links and their transmissions for jam-

ming by employing the Estimation module and Examination

module. The input includes %'') , *% and ' 90<. Algorithm 3

first creates an array 38E [] that stores the initialized value

of the dividing point of each link on the primary routing

path according to Eq. 6 without considering the transmission

failures caused by link fluctuation (line 1). The outside loop

(line 2 – 15) traverses all slotframes in the network updating

period (from 1 to *%). In the observation sub-period, the

program keeps monitoring the transmission activities and

adjusts the values of 38E [] (line 4) in the iteration that is

previously scheduled as 38E according to the sum of 38E []

(line 3), until the sum of the updated 38E [] is equal to the

previous one. Then, the PRRs of the links are updated and

sorted in descending order (line 7) during the jamming sub-

period. While traversing available links on the primary routing

path from the link with the highest PRR (line 8), the attacker

skips jamming a link if it was jammed in the last iteration

(line 9) to avoid triggering the Path-Down alarm. Otherwise,

Algorithm 3 makes the jamming decision by applying the

same Examination module used in Algorithm 2 (line 11). In

our implementation, we also use the Holt-Winters method to

predict �'?A4 for each link and adopt a conservative policy

to make sure the PRR of each link is always above %'') by

taking more than) 5 transmission failures into account.

G. Selecting the Target Data Flow

Algorithm 4: Target Data Flow Selection Method

Input : �;>F []

Output:)0A64C

1 for 9 = 1; 9 ≤ <; 9 + + do

2 for 8 = 1; 8 ≤ =; 8 + + do

3 Count the number of transmission failures

caused by link fluctuation;

4 Calculate the upper bound of the PDR

degradation on �;>F [9] caused by jamming

!8=:8 according to Eq.6;
5 end

6 Calculate the transmission failure ratio of �;>F [9];

7 Estimate the upper bound of the PDR degradation

on �;>F [9] according to Eq.7;
8 end

9 for : = 1; : ≤ *?; : + + do

10 for 9 = 1; 9 ≤ <; 9 + + do

11 if �;>F [9] is transmitting a packet with the

highest priority then

12 Select it as)0A64C and break;

13 end

14 end

15 if)0A64C is Null then

16 Sort �;>F [] by the upper bound of the PDR

degradation in descending order;

17 if A data flow with the highest PDR

degradation then

18 Select it as)0A64C;

19 end

20 else

21 Sort the flows with similar potential PDR

degradation values by the transmission

failure ratio in ascending order;

22 Select the data flow with the lowest

transmission failure ratio as)0A64C;
23 end

24 end

25 end

After modeling the jamming effectiveness, the attacker

begins to estimate the upper bound of the PDR degradation

it can cause on each data flow within its overhearing range

and selects the most important or most vulnerable one as its

target. The attacker first identifies the priority levels of the

packets that are transmitting over each data flow. If there exists

a single data flow whose messages have the highest priority

(e.g., packets indicated by “Command”), the attacker selects

it as its target. If two or more data flows share the same

priority, the attacker selects the data flow with the highest

upper bound of the PDR degradation possibly caused by the

smart selective jamming attacks as its target. If two or more

data flows share similar PDR degradations, the data flow with

the lowest transmission failure ratio is selected as the target.

Algorithm 4 illustrates the target data flow selection process.

The input of Algorithm 4 includes all data flows within the

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 8

Fig. 7. Example of the target data flow selection process.

attacker’s overhearing range �;>F []. Algorithm 4 first collects

the transmission statistics of each data flow in a two-level

nested loop (line 1 – 8). The outside loop traverses all data

flows (from �;>F [1] to �;>F [<]), while the inside loop

traverses the links of a data flow (from !8=:1 to !8=:=).

Algorithm 4 counts the number of transmission failures caused

by the link fluctuation (line 3) and calculates the upper bound

of the PDR degradation on this data flow caused by jamming

each link separately according to Eq 6 (line 4). By adding

up the transmission failures on each link, the transmission

failure ratio caused by the link fluctuation on each data flow

is calculated (line 6). Algorithm 4 then estimates the upper

bound of the PDR degradation on each data flow according

to Eq 7 (line 7). The outside loop (line 9 – 25) traverses all

slotframes in the network updating period (from 1 to *%). If a

data flow is transmitting data with the highest priority among

all data flows, this data flow is selected as the target to jam the

transmissions of high importance (line 10 – 14). Otherwise,

Algorithm 4 sorts all data flows by the upper bound of the

PDR degradation in descending order and selects the data

flow, which has the highest potential PDR degradation caused

by jamming attacks, as the target (line 16 – 19). To avoid

switching the target back and forth due to slight variations on

the upper bound of the PDR degradation, the difference of

the upper bound of the PDR degradation between the target

data flow and any other data flow should be larger than a

threshold. The threshold can be set equal to or larger than

the variation of the upper bound of the PDR degradation on

a data flow in two consecutive periods. We set this variation

threshold to 2% in our implementation. If no data flow is

selected because of those similar PDR degradation values,

Algorithm 4 sorts all data flows with similar PDR degradation

values by the transmission failure ratio in ascending order and

selects the data flow with the lowest transmission failure ratio

as the target (line 20 – 23). As discussed in Section IV-D,

when the transmission failures caused by link fluctuation

happen less frequently and more uniformly, the attacker is

more likely to achieve the desirable jamming effectiveness

by keeping the PRRs of all links equal or close to %'') .

The attacker executes Algorithm 4 periodically to handle the

network changes. We set the execution period to *% in our

implementation.

Figure 7 shows an example of the target data flow selection

process. In this example, we assume that there are three data

flows within the overhearing range of an attacker (Flow 1,

Flow 2, and Flow 3). The primary routing paths of those

Fig. 8. Testbed consisting of 50 TelosB motes placed throughout 22 office
and lab areas on the second floor of an office building. The device IDs range
from 000 to 049.

data flows consist of four hops, three hops, and four hops,

respectively. At the start of a network updating period, the

attacker calculates the transmission failure ratio of each data

flow (�'1, �'2, and �'3) and then estimates the upper bound

of the PDR degradation on each data flow (%�'1, %�'2,

and %�'3) according to Eq.6 and Eq.7. We assume that these

three data flows share the same priority level. Therefore, the

attacker begins to compare %�'1, %�'2, and %�'3. Both

%�'1 and %�'3 are greater than %�'2, because Flow 1 and

Flow 3 include one more hop on their primary routing paths.

The difference between %�'3 and %�'1 is 2.4%, larger than

the preset variation threshold (2%). Therefore, the attacker

selects Flow 3 as its target and performs smart selective

jamming attacks to the packet transmissions on Flow 3 in each

slotframe of the current updating period. However, when Flow

1 or Flow 2 is transmitting a message with a higher priority

level, the attacker changes its target temporarily and performs

smart selective jamming attacks to the most important packet

transmissions.

V. EVALUATION

To demonstrate the threat, we first perform a series of

microbenchmark experiments to measure the time consumed

to crack the routes, network updating period, and link selection

threshold, and examine the chance of triggering network

updates. We then perform microbenchmark experiments to

measure the time consumed by the target data flow selection

method to identify the new target data flow. Next, we evaluate

the jamming performance of the smart selective jamming

attacks without enabling the target data flow selection method

and compare it against five baselines. Finally, we evaluate the

jamming performance of attacking the data flow provided by

the target data flow selection method and compare it against

the performance achieved by attacking other data flows. We

perform all experiments on our testbed that consists of 50

TelosB motes [16] placed throughout 22 office and lab areas

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 9

TABLE II
DATA FLOWS SETUPS.

Flow Sensor Actuator Period Priority
1 044 046 640ms 1
2 047 008 640ms 2
3 036 004 1280ms 3
4 037 033 1280ms 4
5 027 035 1280ms 4

Fig. 9. Time consumed to crack the primary routing path under different
conditions.

on the second floor of an office building [8]. Figure 8 shows

the testbed deployment. We configure the network to have

two access points and 48 field devices that operate on five

different channels in all experiments. As Table II lists, we

set up five data flows with different sources, destinations, data

periods, and priorities for the experiments in Section V-A, V-B,

and V-D. Each time slot lasts 10<B. Our testbed runs a publicly

accessible WirelessHART implementation, which adopts the

IEEE 802.15.4 physical layer, TSCH, and graph routing that

employs three transmission attempts for each packet [9], while

the attacking program runs on a Raspberry Pi with a 1.2GHz

64-bit quad-core processor and 1.0 GB memory. To examine

the performance of the attacking program in different envi-

ronments, we create three different wireless conditions (i.e.,

low-interference, medium-interference, and high-interference)

by using JamLab [17] to generate controlled interference with

various strengths and disable JamLab to create the clean

environment where the averaged PRRs of all links on the

target data flow are above 98%. As a comparison, the averaged

PRRs of all links on the target data flow range from 89% to

91% in the low-interference environment, the averaged PRRs

vary between 80% and 83% under interference in the medium-

interference environment, and the averaged PRRs range from

73% to 75% in the high-interference environment. We repeat

experiments 100 times in each environment.

A. Cracking the Routes

In the first set of experiments, we configure the attacking

program to start cracking after eavesdropping on the transmis-

sions during a certain number of slotframes and measure the

number of eavesdropped slotframes consumed by the cracking

program to crack the routes. The primary path used by the

target (Flow 2) consists of seven nodes and six links. Our

attacking program first identifies the primary routing path

and then detects the backup routes by launching exploratory

jamming to each link located on the primary routing path.

Our attacking program achieves 100% success rate of cracking

the routes under all wireless conditions. Figure 9 plots the

(a) With exploratory jamming.

(b) Without exploratory jamming.

Fig. 10. Time consumed to crack the backup routes.

boxplots of the time consumed by the attacking program to

eavesdrop on the transmissions and then crack the primary

path. As Figure 9 shows, the attacker can gather enough

information to crack the primary routing path with a median

value of one slotframe in the clean, low-interference, and

medium-interference environments and up to four slotframes

in the high-interference environment. This is because there is

a high chance of using the primary routing path to deliver

packets when the interference is weak, which makes the

cracking easy. With the presence of strong interference, it takes

longer for the attacker to identify the entire primary routing

path because frequent failures on a link located on the primary

routing path prevent the exposure of the following links.

Figure 10(a) plots the cumulative distribution function

(CDF) of the time consumed by the attacker to crack the

backup routes by launching the exploratory jamming to the

links located on the primary routing path. The cracking process

finishes within 13 slotframes under all wireless conditions.

The cracking speed is slightly slower when the environment

is noisier, leading to an increase in the chance of transmission

failures on both primary and backup routes. Therefore, the

relay nodes fail to receive the packets more frequently in the

noisy environments, which prevents the following nodes from

being used. Under such scenarios, the attacker cannot perform

exploratory jamming to those unused relay nodes and has to

wait till the next slotframe. As a comparison, Figure 10(b)

plots the CDF of the time consumed by the attacker to crack

the backup routes without launching the exploratory jamming.

As Figure 10(b) shows, the time consumption decreases signif-

icantly when the interference increases. It takes at least 2,678

slotframes for the attacker to identify all backup routes in the

clean environment, while it takes up to only 106 slotframes in

the high-interference environment. This is because the backup

routes are heavily used when the ambient environment is

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 10

Fig. 11. Time consumed to crack the network updating period *% .

Fig. 12. Time consumed to crack the link selection threshold %'') .

noisy. The long tails indicate that it may take a long time for

the attacker to crack the routes if the attacker only observes

silently, which emphasizes the importance of launching the

exploratory jamming to speed up the cracking process.

B. Cracking *% and %'')

In the second set of experiments, we launch the attacking

program to crack the network updating period *% and link

selection threshold %'') and measure the time consumption

and the chance of being detected. We observe 100% crack-

ing accuracy for both *% and %'') in all environments.

Figure 11 plots the time consumption of cracking *% under

different wireless conditions when it is set to 51,200 time

slots. As Figure 11 shows, the attacking program needs at

least two updating periods (median value) to derive the value

of *% . It needs one more updating period in the clean and low-

interference environments because it is more difficult for the

attacker to trigger the routing updates by launching exploratory

jamming when the environment is clean.

We set %'') to 60%. The lowest PRR values observed

by the attacker in the clean, low-interference, medium-

interference, and high-interference environments are 92%,

85%, 78%, and 71%, respectively. The corresponding number

Fig. 13. Number of triggered network updates when cracking the link
selection threshold.

Fig. 14. Time consumption under different jamming success ratios.

TABLE III
DATA FLOWS SETUPS FOR TARGET DATA FLOW SELECTION.

Flow Sensor Actuator Period Priority
1 018 016 640ms 3
2 044 023 640ms 3
3 046 008 640ms 3
4 037 022 1280ms 3
5 027 035 1280ms 3
6 036 001 1280ms 3

of updating periods scheduled for exploratory jamming are 33,

26, 19, and 12, respectively. Figure 12 plots the time consumed

to crack %'') beyond the scheduled updating periods. The

attacker has a jamming success ratio of 0.87 and reduces the

testing PRR by 1% every time when launching exploratory

jamming. As Figure 12 shows, the time consumption decreases

when the interference increases. The median time consumption

is 6*% , 5*% , 4*% , and 2*% in the clean, low-interference,

medium-interference, and high-interference environments, re-

spectively. This is because the attacking program must use a

larger jamming sub-period in the cleaner environment, which

results in the increase of jamming failures and the difficulty

of keeping the PRR within the expected range.

Figure 13 plots the number of network updates triggered

by the exploratory jamming attack, which is one by design.

It is very difficult for the network manager to detect the

jamming attacks by observing an occasional network update.

As Figure 13 shows, the chance of triggering additional

network updates is very low under all wireless conditions.

Therefore, the exploratory jamming is hardly detectable.

To study the impact of the jamming success ratio, we repeat

the experiments when the attacking program has different

jamming success ratios by varying its transmission power.

Figure 14 plots the time consumed to crack %'') beyond

the scheduled updating periods in the low-interference envi-

ronment when the jamming success ratios are 0.60, 0.69, 0.78,

0.87, and 0.96, respectively. As Figure 14 shows, the median

time consumption of cracking %'') decreases significantly

when the jamming success ratio increases. The median time

consumption decreases from nine updating periods at 0.60, to

six updating periods at 0.78, and then to one updating period

at 0.96. These results show that the attacker can quickly crack

the threshold %'') if it has a high jamming success ratio.

C. Selecting the Target Data Flow

In this set of experiments, we evaluate our target data

flow selection method by measuring the time consumption of

selecting a new target when the network topology or condition

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 11

Fig. 15. Time consumption of selecting the new target data flow when we
configure Flow 4 to share different numbers of links (from one to five) on
its primary routing path with Flow 6’s in a randomly selected time slot of an
updating period. Flow 4 and 6 do not share any links on their primary routing
paths before we make changes.

Fig. 16. Time consumed to identify the new target when we decrease the
transmission failure ratio of Flow 6 from 31% 7%.

changes. We configure six data flows with the same priority

but different sources, destinations, and data periods on our

testbed, as Table III lists. We manually change the primary

routing paths of different data flows and measure the time

consumed by the attacker to identify new targets. Figure 15

plots the time consumption of identifying the new target flow

when we configure Flow 4 to share different numbers of links

(from one to five) on its primary routing path with Flow 6’s in

a randomly selected time slot of an updating period. We repeat

each experiment 100 times. As Figure 15 shows, the attacking

program spends less time on selecting the new target data

flow when the number of shared links between Flow 6 and

Flow 4 increases. For example, the median time consumption

is two updating periods while only one link is shared, while

the median values are one updating period while more links

are shared. This is because sharing one link on their primary

paths only introduces a very small change on the upper bound

of the PDR degradation on Flow 6. Therefore, the attacking

program needs more time to confirm that Flow 6 should be

the new target. When more links are shared, it is easier for the

attacking program to select the new target because the changes

on the upper bound of the PDR degradation are much larger

than than the preset threshold.

We also vary the transmission failure ratios of different data

flows and examine their impacts on the time consumption. For

instance, we use Jamlab to generate controlled interference

with different signal strengths, which decreases the transmis-

sion failure ratio of Flow 6 from 36% to 31%, 25%, 19%, 13%,

and 7%, respectively. Figure 16 plots the time consumption

of selecting the new target data flow. As Figure 16 shows,

Fig. 17. PDR degradation caused by different attacking methods: C – Constant
Jamming; R – Random Jamming; A – Smart Selective without Examination;
S – Smart Selective without Estimation; D – Smart Selective Jamming; O –
Optimal.

Fig. 18. Number of triggered network updates during attacks.

the attacking program needs one more updating period (the

median value) to select the new target when the transmission

failure ratio decreases from 36% to 31%. This is because it

is more difficult for the attacking program to confirm that the

increase of the upper bound of the PDR degradation is larger

than the preset threshold when the transmission failure ratio

caused by the link fluctuation varies in a small range. The

results plotted in Figure 15 and 16 demonstrate that the target

data flow selection method can efficiently select a new target

when observing the change on the upper bound of the PDR

degradation under different conditions

D. Jamming Performance without Target Data Flow Selection

In this set of experiments, we evaluate the overall perfor-

mance of the smart selective jamming attacks on a given

data flow and compare it against five baselines: constant

jamming; random jamming; smart selective jamming without

its Estimation module; smart selective jamming without its

Examination module; and the optimal method. Please note that

the optimal method is based on backward data analysis using

Eq. 7 and only for the purpose of comparison. We configure

the attacking program to attack Flow 3 with four links on its

the primary routing path and set *% to 51,200 time slots, and

%'') to 0.70.

Figure 17 plots the PDR degradation caused by different

jamming methods under different wireless conditions and Fig-

ure 18 shows the number of triggered network updates during

attacks. As Figure 17 shows, constant jamming introduces the

largest damage (77% PDR degradation). However, it has the

highest chance of being detected because it triggers 4X more

network updates. Random jamming triggers fewer network

updates, but it provides the smallest damage to the network.

Compared to constant and random jamming, the smart selec-

tive jamming is much harder to be detected by the network

manager, because the median value of triggered network up-

dates is zero. Meanwhile, the damage introduced by the smart

selective jamming is close to the one caused by the optimal

method. The median PDR degradations are 49%, 43%, 39%,

and 33% in the clean, low-interference, medium-interference,

and high-interference environments, respectively. These results

confirm the correctness of our analysis (Eq. 5). The upper

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 12

TABLE IV
COMPARISON OF ENERGY CONSUMPTION.

Method Degradation Packets Energy Consumption
Constant 77% 256,000 88.2J
Random 4% 51,200 17.6J
Selective 49% 1352 2.2J
Optimal 52% 1248 2.0J

Fig. 19. PDR degradation when multiple data flows share links (S-Sel: Smart
Selective Jamming, Opt: upper bound)

bound of the PDR degradation caused by jamming decreases,

while the transmission failure caused by link fluctuation due

to interference increases. By comparing the performance of

A, S, and D, the Examination module and Estimation module

of the smart selective jamming method effectively reduce the

chance of being detected in noisy environments.

We also evaluate the energy efficiency of the smart selective

jamming and compare it against other jamming methods.

Table IV lists the number of jamming packets and the energy

consumption within an updating period in the clean envi-

ronment. The smart selective jamming introduces 49% PDR

degradation by consuming only 2.2�, which is very close to

the one caused by the optimal method. As a comparison,

the constant jamming consumes 88.2� to generate 79% PDR

degradation, while the random jamming provides 4% PDR

degradation by consuming 17.6�. The results clearly show that

the smart selective jamming is much more energy efficient than

the traditional jamming methods.

To study the impact of shared links, we configure the

victim data flow to use links shared with other data flows

and repeat the experiments by varying the number of shared

links. Figure 19 presents the jamming performance achieved

by Smart Selective Jamming Algorithm in the low-interference

environment. As Figure 19 shows, while the target data flow

shares more links, the median value of the PDR degradation

increases significantly, from 43% (w/o sharing link) to 68%

(sharing three links). These increments accord with the results

Fig. 20. PDR degradation under different jamming success ratios.

Fig. 21. PDR Degradation when attacking different data flows. The numbers
of the links on the primary routes of six data flows are two, three, four, five,
six, and six, respectively.

computed according to Eq. 6. The successful transmissions of

other data flows compensate for the transmission failures due

to jamming and cover up the jamming attacks.

We also repeat the experiments when the attacking program

has different jamming success ratios. Figure 20 illustrates

the jamming performance in the low-interference environment

under different jamming success ratios. As Figure 20 shows,

the jamming performance experiences an increase while we

enhance the jamming success ratio. The median value of

the PDR degradation increases from 29% (0.60) to 41%

(0.78), reaches 46% (0.96). With a smaller chance of jamming

success, it is difficult for the attacking program to achieve

the expected number of jammed packets in the jamming sub-

period, even if we adjust the size of the jamming sub-period

according to the jamming success ratio.

E. Jamming Performance with Target Data Flow Selection

In this set of experiments, we evaluate the overall per-

formance of the smart selective jamming attacks when we

enable the target data flow selection method and compare it

against the performance when we randomly select a data flow

as the target. The PDR degradation caused by the attacking

program with the target data flow selection method is always

the greatest in all our experiments. For example, Figure 21

presents the measured PDR degradation when we launch the

smart selective jamming attacks to attack different data flows.

The target data flow selection method selects Flow 6 as its

target. As Figure 21 shows, the median PDR degradation

caused by jamming the transmissions on Flow 6 is 60.7%,

much higher than the damages caused when attacking other

data flows. For example, the median PDR degradation is only

24.3% if the attacking program attacks Flow 1, while the

median PDR degradation is 56.4% if the attacking program

attacks Flow 5. This is because the upper bound of the PDR

degradation on the target selected by the target data flow

selection method is the highest and the actual performance

achieved by launching the smart selective jamming attacks to

such a target is the greatest. The experimental results confirm

that the target data flow selection method can enhance the

jamming performance of the smart selective jamming attacks.

VI. RELATED WORK

Jamming attacks have been extensively studied in the liter-

ature of wireless mesh network and WSNs. Simply jamming a

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 13

channel or the whole spectrum continuously, namely constant

jamming, is energy inefficient and can be easily detected and

located [18], while random jamming aims to save energy but

is hardly effective [19]. Compared to constant and random

jamming, selective (reactive) jamming stays quiet when the

channel is idle but starts transmitting as soon as it senses

activity on the channel [18]; therefore it is more energy

efficient and more difficult to be detected [19]–[22]. For

instance, Zhang et al. presented a reinforcement learning

based algorithm that helps the attacker adapt its jamming

methods to dynamic environments to improve the jamming

performance [22]. On the other hand, many approaches have

been proposed in the literature to detect jamming attacks [23]–

[27] and many countermeasures have been developed to

mitigate the jamming effects [28]–[30]. For instance, Zou

et al. presented a jamming-resilient backbone construction

algorithm [31]. Lu et al. studied modeling, evaluation, and

detection of jamming attacks in wireless networks [26], [27].

D’Oro et al. proposed solutions to maximize the network

performance when reactive jamming attacks are ongoing [32].

Navda et al. [33] and Liu et al. [34] suggested using channel

hopping (frequency hopping) to increase resilience to jam-

ming attacks. There also exist defense solutions designed for

specific applications [35]–[38]. For instance, Proano et al.

proposed to defend against selective jamming attacks that

are launched by performing real-time packet classification

at the physical layer by combining cryptographic primitives

with physical-layer attributes [35]. Tiloca et al. developed a

method that randomly permutes the time slots and channel

utilization patterns for TSCH based wireless networks [36].

Samaddar et al. proposed a scheduling method that increase

the randomness of the TSCH channel hopping sequence [37].

Pirayesh et al. developed a jamming-resilient receiver that

mitigates the unknown interference using an optimized neural

network to secure ZigBee communications [38]. This paper

focuses on revealing the threat of smart selective jamming to

WirelessHART networks and motivating the developments of

new defense solutions, it is therefore complementary to the

existing work.

Jamming attacks have also been studied in the context

of Bluetooth, GPS, and cellular networks. For instance, Al-

bazrqaoe et al. developed a novel dual-radio architecture where

two Bluetooth-compliant radios coordinate with each other on

learning the hopping sequence of indiscoverable Bluetooth net-

works [39], [40]. Dr. Chien developed an adaptive notch filter

that is composed of a second-order infinite-impulse response

filter with a lattice structure to detect, estimate, and block

continuous jamming signals [41]. In recent years, the MIMO-

based jamming mitigation techniques are applied in cellular

networks [42]. For example, Akhlaghpasand et al. developed

a framework that consists of a linear estimator and a bilinear

equalizer to provide protection for massive MIMO systems in

spatially correlated channels [43]. Vinogradova et al. proposed

to employ the received signal projection onto the estimated

signal subspace to nullify the jamming signal [44]. However,

those anti-jamming methods are not directly applicable to

WirelessHART networks. In this paper, we present a specific

kind of selective jamming to WirelessHART networks, namely

smart selective jamming attack, which aims to reduce the

network reliability without being detected. This paper starts

by investigating the security vulnerability of WirelessHART

networks and then demonstrates that the attacker can crack

the channel usage, routes, and parameter configuration of

the victim network, and launch the smart selective jamming

attacks to the target data flow provided by the target data

flow selection method, which are energy efficient and hardly

detectable.

The WirelessHART standard offers multiple security fea-

tures that protect the network against such attacks as de-

nial of service (DoS), MAC spoofing, man in the middle

(MITM), and authentication and encryption cracking. For

instance, WirelessHART employs the AES 128-bit symmetric-

key cryptography to protect the packet payload and uses the

MIC and cyclic redundancy check (CRC) to detect errors. A

series of enhancements has been developed to enhance the

security of WirelessHART networks [45]–[48]. Unfortunately,

the existing designs cannot prevent the attacker from launching

the smart selective jamming attacks, which has been reported

as a new, realistic threat to WirelessHART networks in this

paper.

VII. CONCLUSIONS AND FUTURE WORK

Our studies show that the attacker can reverse engineer the

channel usage and graph routes of the victim WirelessHART

network by silently observing the transmission activities, crack

the victim network’s parameter configurations with exploratory

jamming attacks, and then perform smart selective jamming

attacks to the target provided by the target data flow selec-

tion method to degrade network performance without being

detected. Compared to the constant jamming attacks and the

random jamming attacks, the smart selective jamming attacks

are energy efficient and hardly detectable, thus pose a more

severe, stealthy threat to WirelessHART networks. In this

paper, we present this severe, stealthy threat by demonstrating

the step-by-step attack process on a 50-node network that

runs a publicly accessible WirelessHART implementation.

Experimental results show that the smart selective jamming

attacks significantly reduce the network reliability without

triggering network updates.

Our studies suggest two potential solutions to help Wire-

lessHart Networks defend against smart selective jamming

attacks. As discussed in Section IV-B, an attacker can de-

rive the routing information of the victim network from the

unencrypted fields stored in the packet headers. The attacker

can crack both primary and backup routes using a small

amount of time bounded by the data generation period, as

plotted in Figure 9 and 10(a). Among all information carried

by the packet header, Graph ID, original source address,

and final destination address are the key in the cracking

process. Without such information, it is very hard for an

attacker to classify the packets and crack the routes. With

the consideration of the encryption and decryption overhead,

it is beneficial to only encrypt those three fields instead of

all information in the packet header. Our studies also show

that the health reports specified in the WirelessHART standard

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 14

do not carry the information, which can be used to relate a

data flow’s performance degradation to the links that cause

it. This gives the attacker an opportunity to attack a data

flow without triggering any alarms in the link level. As

Figure 19 shows, the attacker introduces severe damages to

the target data flow while keeping the PRRs of all links above

their threshold %'') . Therefore, we suggest tagging the link

statistics with Graph IDs in the health reports to help the

network manager detect the selective jamming attacks. We

leave the development of new defense solutions to secure

WirelessHart networks based on the above-mentioned insights

as our future work.

ACKNOWLEDGMENT

The work of Xia Cheng, Junyang Shi, Mo Sha was partially

supported by the NSF through grants CNS-1657275, CNS-

2046538, and CNS-2150010. The work of Linke Guo was

partially supported by the NSF through grant IIS-1949640 and

CNS-2008049.

REFERENCES

[1] X. Cheng, J. Shi, M. Sha, and L. Guo, “Launching Smart Selective
Jamming Attacks in WirelessHART Networks,” in IEEE INFOCOM

2021 - IEEE Conference on Computer Communications. IEEE, 2021,
pp. 1–10.

[2] J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson, and A. Marrs.
(2013) Disruptive Technologies: Advances that will Transform
Life, Business, and the Global Economy. [Online]. Available:
http://www.mckinsey.com/

[3] HART. (2019) HART Communication Protocol and Foundation
(Now the FieldComm Group). [Online]. Available: https://www.
fieldcommgroup.org/technologies/hart

[4] WirelessHART, “WirelessHART,” 2019. [Online]. Available: https:
//www.fieldcommgroup.org/technologies/wirelesshart

[5] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen, “Real-Time Wireless Sensor-Actuator Networks for
Industrial Cyber-Physical Systems,” Proceedings of the IEEE, Special

Issue on Industrial Cyber Physical Systems, vol. 104, no. 5, pp. 1013–
1024, May 2016.

[6] Emerson. (2019) Emerson Wireless-technology. [On-
line]. Available: https://www.emerson.com/en-us/expertise/
automation/industrial-internet-things/pervasive-sensing-solutions/
wireless-technology

[7] J. Shi and M. Sha, “Parameter Self-Configuration and Self-Adaptation
in Industrial Wireless Sensor-Actuator Networks,” in IEEE INFOCOM

2019 - IEEE Conference on Computer Communications. IEEE, 2019,
pp. 658–666.

[8] M. Sha. (2016) Testbed at the State University of New York at
Binghamton. [Online]. Available: https://users.cs.fiu.edu/~msha/testbed.
htm

[9] WCPS. (2018) Wireless Cyber-Physical Simulator (WCPS). [On-
line]. Available: http://wsn.cse.wustl.edu/index.php/WCPS:_Wireless_
Cyber-Physical_Simulator

[10] Emerson. System Engineering Guidelines IEC 62591 WirelessHART.
[Online]. Available: https://www.emerson.com/

[11] Raspberry, “Raspberry Pi,” 2019. [Online]. Available: https://www.
raspberrypi.org/

[12] Wi-Spy, “Wi-Spy USB Spectrum Analyzer,” 2020. [Online]. Available:
http://www.wi-spy.co.uk/

[13] X. Cheng, J. Shi, and M. Sha, “Cracking the Channel Hopping
Sequences in IEEE 802.15.4e-Based Industrial TSCH Networks,” in
Internet of Things Design and Implementation (IoTDI). New York,
NY, USA: ACM, 2019.

[14] ——, “Cracking Channel Hopping Sequences and Graph Routes in
Industrial TSCH Networks,” ACM Transactions on Internet Technology,
vol. 20, no. 3, Jul. 2020.

[15] Holt-Winters Forecasting Method. [Online]. Available: https:
//www.ons.gov.uk/ons/guide-method/user-guidance/index-of-services/
index-of-services-annex-b--the-holt-winters-forecasting-method.pdf

[16] TelosB. (2013) TelosB Datasheet. [Online]. Available: https://insense.
cs.st-andrews.ac.uk/files/2013/04/tmote-sky-datasheet.pdf

[17] C. A. Boano, T. Voigt, C. Noda, K. Römer, and M. Zuniga, “Jamlab:
Augmenting sensornet testbeds with realistic and controlled interference
generation,” in Proceedings of the 10th ACM/IEEE International Con-

ference on Information Processing in Sensor Networks. IEEE, 04 2011,
pp. 175–186.

[18] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The Feasibility of
Launching and Detecting Jamming Attacks in Wireless Networks,” in
Proceedings of the 6th ACM international symposium on Mobile ad hoc

networking and computing, ser. MobiHoc ’05. New York, NY, USA:
ACM, 2005, pp. 46–57.

[19] K. Grover, A. Lim, and Q. Yang, “Jamming and Anti-jamming Tech-
niques in Wireless Networks: A Survey,” Int. J. Ad Hoc Ubiquitous

Comput., vol. 17, no. 4, pp. 197–215, Dec. 2014.

[20] S. Fang, Y. Liu, and P. Ning, “Wireless Communications under Broad-
band Reactive Jamming Attacks,” IEEE Transactions on Dependable

and Secure Computing, vol. 13, no. 3, pp. 394–408, May 2016.

[21] M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Short Paper:
Reactive Jamming in Wireless Networks How Realistic is the Threat?” in
Proceedings of the fourth ACM conference on Wireless network security,
ser. WiSec ’11. New York, NY, USA: ACM, 2011, pp. 47–52.

[22] L. Zhang, F. Restuccia, T. Melodia, and S. M. Pudlewski, “Jam Sessions:
Analysis and Experimental Evaluation of Advanced Jamming Attacks in
MIMO Networks,” in Proceedings of the Twentieth ACM International

Symposium on Mobile Ad Hoc Networking and Computing, ser. Mobihoc
’19, New York, NY, USA, 2019, p. 61–70.

[23] M. Spuhler, D. Giustiniano, V. Lenders, M. Wilhelm, and J. B. Schmitt,
“Detection of Reactive Jamming in DSSS-based Wireless Communica-
tions,” IEEE Transactions on Wireless Communications, vol. 13, no. 3,
pp. 1593–1603, Mar. 2014.

[24] M. Strasser, B. Danev, and S. Čapkun, “Detection of Reactive Jamming
in Sensor Networks,” ACM Transactions on Sensor Networks, vol. 7,
no. 2, pp. 16:1–16:29, Aug. 2010.

[25] M. K. Hanawal, D. N. Nguyen, and M. Krunz, “Jamming attack on
in-band full-duplex communications: Detection and countermeasures,”
in IEEE INFOCOM 2016 - The 35th Annual IEEE International

Conference on Computer Communications. IEEE, 2016, pp. 1–9.

[26] Z. Lu, W. Wang, and C. Wang, “Modeling, Evaluation and Detection
of Jamming Attacks in Time-Critical Wireless Applications,” IEEE

Transactions on Mobile Computing, vol. 13, no. 8, pp. 1746–1759, Aug.
2014.

[27] Z. Lu, W. Wang, and C. Wang, “From jammer to gambler: Modeling
and detection of jamming attacks against time-critical traffic,” in 2011

Proceedings IEEE INFOCOM. Piscataway, NJ, USA: IEEE, April
2011, pp. 1871–1879.

[28] A. Sheikholeslami, M. Ghaderi, H. Pishro-Nik, and D. Goeckel,
“Energy-Efficient Routing in Wireless Networks in the Presence of
Jamming,” IEEE Transactions on Wireless Communications, vol. 15,
no. 10, pp. 6828–6842, Oct 2016.

[29] K. Firouzbakht, G. Noubir, and M. Salehi, “On the Performance of
Adaptive Packetized Wireless Communication Links Under Jamming,”
IEEE Transactions on Wireless Communications, vol. 13, no. 7, pp.
3481–3495, July 2014.

[30] L. Zhang, Z. Guan, and T. Melodia, “Cooperative anti-jamming for
infrastructure-less wireless networks with stochastic relaying,” in IEEE

INFOCOM 2014 - IEEE Conference on Computer Communications,
2014, pp. 549–557.

[31] Y. Zou, D. Yu, L. Wu, J. Yu, Y. Wu, Q. Hua, and F. C. M. Lau,
“Fast Distributed Backbone Construction Despite Strong Adversarial
Jamming,” in IEEE INFOCOM 2019 - IEEE Conference on Computer

Communications, 2019, pp. 1027–1035.

[32] S. D’Oro, E. Ekici, and S. Palazzo, “Rate Maximization under Reactive
Jamming Attacks: Poster,” in Proceedings of the 17th ACM Interna-

tional Symposium on Mobile Ad Hoc Networking and Computing, ser.
MobiHoc ’16, New York, NY, USA, 2016, p. 367–368.

[33] V. Navda, A. Bohra, S. Ganguly, and D. Rubenstein, “Using Channel
Hopping to Increase 802.11 Resilience to Jamming Attacks,” in IEEE

INFOCOM 2007 - 26th IEEE International Conference on Computer

Communications. Piscataway, NJ, USA: IEEE, May 2007, pp. 2526–
2530.

[34] A. Liu, P. Ning, H. Dai, and Y. Liu, “USD-FH: Jamming-resistant
wireless communication using Frequency Hopping with Uncoordinated
Seed Disclosure,” in The 7th IEEE International Conference on Mobile

Ad-hoc and Sensor Systems (IEEE MASS 2010). Washington, DC,
USA: IEEE, Nov 2010, pp. 41–50.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, XXX 2023 15

[35] A. Proano and L. Lazos, “Packet-Hiding Methods for Preventing Selec-
tive Jamming Attacks,” IEEE Transactions on Dependable and Secure

Computing, vol. 9, no. 1, pp. 101–114, Jan 2012.
[36] M. Tiloca, D. D. Guglielmo, G. Dini, G. Anastasi, and S. K. Das,

“DISH: DIstributed SHuffling against Selective Jamming Attack in IEEE
802.15.4e TSCH Networks,” ACM Transactions on Sensor Networks

(TOSN), vol. 15, no. 1, Feb. 2019.
[37] A. Samaddar, A. Easwaran, and R. Tan, “SlotSwapper: A Schedule

Randomization Protocol for Real-Time WirelessHART Networks,” ACM

SIGBED Review, vol. 16, no. 4, pp. 32–37, 2020.
[38] H. Pirayesh, P. Kheirkhah Sangdeh, and H. Zeng, “Securing ZigBee

Communications Against Constant Jamming Attack Using Neural Net-
work,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4957–4968,
2021.

[39] W. Albazrqaoe, J. Huang, and G. Xing, “Practical Bluetooth Traffic
Sniffing: Systems and Privacy Implications,” in Proceedings of the 14th

Annual International Conference on Mobile Systems, Applications, and

Services, ser. MobiSys ’16, 2016, p. 333–345.
[40] ——, “A Practical Bluetooth Traffic Sniffing System: Design, Imple-

mentation, and Countermeasure,” IEEE/ACM Transactions on Network-

ing, vol. 27, no. 1, pp. 71–84, 2019.
[41] Y.-R. Chien, “Design of GPS Anti-Jamming Systems Using Adaptive

Notch Filters,” IEEE Systems Journal, vol. 9, no. 2, pp. 451–460, 2015.
[42] H. Pirayesh and H. Zeng, “Jamming Attacks and Anti-Jamming Strate-

gies in Wireless Networks: A Comprehensive Survey,” IEEE Communi-

cations Surveys & Tutorials, vol. 24, no. 2, pp. 767–809, 2022.
[43] H. Akhlaghpasand, E. Björnson, and S. M. Razavizadeh, “Jamming-

Robust Uplink Transmission for Spatially Correlated Massive MIMO
Systems,” IEEE Transactions on Communications, vol. 68, no. 6, pp.
3495–3504, 2020.

[44] J. Vinogradova, E. Björnson, and E. G. Larsson, “Detection and mit-
igation of jamming attacks in massive MIMO systems using random
matrix theory,” in 2016 IEEE 17th International Workshop on Signal

Processing Advances in Wireless Communications (SPAWC), 2016, pp.
1–5.

[45] S. Raza, A. Slabbert, T. Voigt, and K. Landernäs, “Security consid-
erations for the WirelessHART protocol,” in Proceedings of the 14th

IEEE International Conference on Emerging Technologies and Factory

Automation, ser. ETFA’09. Piscataway, NJ, USA: IEEE, 2009, pp.
242–249.

[46] L. Bayou, D. Espes, N. Cuppens-Boulahia, and F. Cuppens, “Security
Issue of WirelessHART Based SCADA Systems,” in Risks and Security

of Internet and Systems. Cham: Springer International Publishing, 07
2015.

[47] ——, “Security Analysis of WirelessHART Communication Scheme,”
in Foundations and Practice of Security, vol. 10128. Cham: Springer
International Publishing, 2017, pp. 223–238.

[48] C. Alcaraz and J. Lopez, “A Security Analysis for Wireless Sensor Mesh
Networks in Highly Critical Systems,” IEEE Transactions on Systems,

Man, and Cybernetics, vol. 40, no. 4, pp. 419–428, Jul. 2010.

Xia Cheng is a PhD student in the Knight Founda-
tion School of Computing and Information Sciences
at Florida International University. He received a
M.Phil. degree from Tsinghua University in 2011
and a B.Eng. degree in Automation Engineering
from Tsinghua University in 2006. His research
focuses on industrial wireless networks and network
security.

Junyang Shi is a software engineer at Google. He
received his Ph.D. in Computer Science from State
University of New York at Binghamton in 2021 and
his B.S. degree in Electrical and Electronic Engi-
neering from the Huazhong University of Science
and Technology in 2016. His research focuses on
industrial wireless networks and Internet of Things.

Mo Sha is an Associate Professor in the Knight
Foundation School of Computing and Information
Sciences at Florida International University (FIU).
Before joining FIU, he was an Assistant Professor
in the Department of Computer Science at State
University of New York at Binghamton. His research
interests include wireless networking, Internet of
Things, applied machine learning, network security,
and cyber-physical systems. He published more than
50 research papers, served on the technical program
committees of 19 premier conferences, and reviewed

paper for 22 journals. He received the NSF CAREER award in 2021, the
NSF CRII award in 2017, and the Educator of the Year in Computer Science
award and the Career Champion award at Binghamton University in 2018. He
received his Ph.D. degree in Computer Science from Washington University
in St. Louis in 2014, his M.Phil. degree from City University of Hong Kong
in 2009, and his B.Eng. degree from Beihang University in 2007. He is a
senior and lifetime member of ACM and a member of Sigma Xi.

Linke Guo is an Associate Professor in Holcombe
Department of Electrical and Computer Engineering
at Clemson University. He received his Ph.D. degree
from University of Florida in 2014. Prior to his PhD,
he received a M.S. degree from University of Florida
in 2011 and a B.E. degree from Beijing University of
Post and Telecommunications in 2008. His research
interests include security and privacy in wireless
network, Big Data, and Internet of Things.

