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Abstract—The heterogeneity-complexity tradeoff in federated
learning (FL) is a key challenge facing the deployment of FL
in the real world. While learning on heterogeneous data is key
to required performance improvement in many applications,
training with state-of-the-art uncoordinated FL methods in the
presence of substantial heterogeneity can lead to prohibitively
large communication complexity. Most state-of-the-art techniques
designed to deal with heterogeneity employ sampling across
the client pool, inducing low aggregation or coverage in
the datasets of the out-of-sample clients. In this paper, we
challenge the common wisdom of learning a single global
model across multi-distribution data and propose a federated
learning mechanism (without money) that partitions the pool
of clients into a minimal number of subsets of clients and
then learns a global model for each subset of the clients.
This leads to a reduced degree of heterogeneity across each
subset of clients while ensuring positive aggregation across all
client datasets. In particular, we pose the problem of federated
learning as a repeated multi-agent basic utility game and use
no-regret algorithms find approximate solutions. Experiments
on multi-distribution datasets show that the proposed method
outperforms the key benchmarks in terms of both communication
complexity and global accuracy.

Index Terms—Fairness, Multi-distribution learning,
heterogeneity, federated clustering, communication complexity,
aggregation, coverage, no-regret learning, mechanism without
money.

I. INTRODUCTION

Due to its effectiveness in addressing challenges like data

security, privacy, and access to heterogeneous data, federated

learning has been increasingly popular in recent years.

Examples of typical applications include smart manufacturing,

digital health, and vehicular communications, etc. One of the

main obstacles in the adoption of federated learning is the

long training time. In many federated learning scenarios the

clients are only online for a short time, therefore having

long training time or high communication complexity leads

to higher training errors. At the same time long training times

are unavoidable when training on multiple distributions. Thus

there is still a need for a more efficient training paradigm that

can learn from the history of the past rounds to adjust its

current behavior.

The most prominent method of dealing with

heterogeneity-communication trade-offs is known as client

sampling. While this line of work has been extensively

explored by researchers, these methods still have the major

drawback of being inherently unfair in terms of aggregation
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across the clients. The outcome of the sampling methods

differ based on the author’s preference over different

objectives. For example, methods such as [1], [2] favor

convergence speed and communication complexity at the

cost of aggregation, while the papers [3] favor aggregation

more. A more comprehensive list of sampling techniques

can be found in [4]. Different from the sampling techniques,

our work proposes periodic clustering across the client pool.

Recently there have been some other works [5]–[7] in the

literature that also consider clustering for federated learning.

Although these papers consider dividing the data into different

clusters as a prepossessing step, our work considers an online

clustering technique that keeps assigning clients to the correct

clusters as they keep joining in.

A more comprehensive approach to solving multiple

trade-offs in the FL process is considered in the

FL-Mechanism literature. This literature can be broadly

categorized into two classes: mechanisms with money and

mechanisms without money. In the former category, the

clients are paid monetary rewards for joining the FL training

and in the second category only intrinsic motivations such

as global accuracy, local accuracy, statistical utility, system

utility, etc. are considered. While most FL mechanisms

such as [8] and [9] involve either full or partial monetary

rewards to the clients, our proposed mechanism is completely

intrinsically motivated. A more comprehensive description of

the FL mechanisms can be found in [10].

Finally, we summarize the main contributions of the

proposed work in this section. i) while the state-of-the-art

techniques for mitigating the heterogeneity-complexity

trade-off by sampling a subset of clients at each round and

learning a single averaged model across the entire pool of

clients. This creates a trade-off between the desired coverage

gains of the clients and the achievable communication

complexity of the algorithm. In our work, we replace the

sampling step with a periodic clustering step, that allows

us to learn a different averaged model for each cluster and

therefore improve the heterogeneity-complexity trade-off

without hurting the coverage gains of certain clients in

the pool. ii) The proposed clustering method is an online

clustering therefore any newcomer client can be readily

assigned a cluster and no pre-processing step is required.

Overall the larger goal of our current and future work on

this topic is to identify a suitable solution concept for the

FL framework, that can help us build a mechanism that can

address the trade-off of interest more predictably. While in



this paper, we focus on the aggregation-complexity trade-off,

a well-suited solution concept can be extended to handle

other related trade-offs between competing objectives such as

fairness and robustness with a minimum shift of perspective.

Notation: For a natural number N ∈ N, [N ] denotes the set

of all natural numbers from 1 to N , i.e. [N ] = {1, 2, 3, ...., N}.

For all i ∈ [N ], θi ∈ R
p denotes a p−dimensional vector,

and θ = {θi ∈ R
p}i∈[N ] denotes a collection of N ,

p−dimensional vectors θi.

II. SETUP

A. Federated Learning in Heterogeneous Setting

In federated learning, a large number of clients (let N be

the number of the clients), each with heterogeneous datasets

Di ∼ Pi collaborate to learn a single model that will achieve

high training and testing accuracy across all datasets. These

clients are heterogeneous in the sense that the data samples

(Xm, Ym)m∈[Ni] ∈ Di in their respective datasets follow

different distributions Pi on the dataspace X × Y , where

X and Y are the input and output domains of the task of

interest. Thus each client has access to a different expected loss

function li : R
p → R, where li(θi) = E(X,Y )∼Pi

[

l(X,Y,θi)
]

parameterized its local model weights θi. Here l : X × Y ×
R

p → R is the per-sample common task loss. The clients are

interested in minimizing the global loss function L : Rp → R,

where L(θ) = 1
N

∑

i∈[N ] li(θ), and finding a single global

model, θ∗
a ∈ R

p that satisfies the accuracy requirements for

all clients in [N ]:







θ∗
a ∈ argmin

θ∈Rp

L

li(θ
∗
a) ≤ ϵ∗ , ∀i ∈ [N ] .

(1)

Due to privacy concerns, the optimization task in (1) is

decomposed into a minimization over the model parameters

space, R
p at the client side and an optimization over the

probability simplex ∆N−1 at the server side:

At each client: minimize
θk
i
∈Rp

li(θ
k
i ) ,

At the server: minimize
pk∈∆N−1

⊕

i∈[N ]

li(
N
∑

i=1

pki θ
k
i ) . (2)

At each round k ∈ N, the clients present a set of vectors

{θi
k ∈ dom(li)}i∈[N ] and the server is required to choose a

probability vector pk ∈ ∆N−1 such that the combined model,

θk
a =

∑N

i=1 pi
kθk

i satisfies (1).

However, with a high degree of heterogeneity among

the clients the above setting is known to increase the

communication complexity, i.e. it requires a very large number

of the model combining steps at the server before converging

to an acceptable loss value, or the loss never drops below the

desired threshold (in this case the communication complexity

is almost infinity). To improve the communication complexity,

the state-of-the-art methods rely on sampling the most useful

clients from the pool, based on various metrics of client utility.

This in turn introduces aggregation or coverage deficiency

and gives rise to fairness issues [11] in federated learning.

In this paper, we improve the achievable complexity-coverage

tradeoff by employing an online clustering method that

partitions the client pool into subsets of clients with a

smaller degree of intra-cluster heterogeneity. In the following

subsections, we provide a more precise characterization of

the communication complexity and coverage gain in federated

learning.

B. Characterization of Communication Complexity in FL

In the literature [3] the convergence rate of an arbitrary

real-valued function g : Rp → R under any iterative method

θk+1 = Φ(θk) is defined as an upper bound on the difference

between the value of the function at round-k, g(θk) and the

desired optimal value ϵg: g(θk)− ϵg ≤ O(f(k)). Similarly, if

the desired communication complexity in federated learning

is O(f(k)) then we need to ensure the following upper bound

on the global loss:

{

1
N

∑

i∈[N ] li(θ
∗
a) ≤ ϵ∗ ,

1
N

∑

i∈[N ]

[

li(θ
k
a)− li(θ

∗
a)
]

≤ O(f(k)) .
(3)

C. Characterization of Coverage Gain in FL

The coverage gain of a client participating in federated

learning is measured by a net decrease in the loss incurred

by the client on the local and non-local datasets. Let the

optimal local model parameter for a client-w ∈ [N ] be θ∗
w,

and let the FL global model under the choice of combining

vector, p ∈ ∆N−1, be θa. Then we define the local gain

of client-w, glw(θa; p) and the non-local gain local gain of

client-w, gnw(θa; p) as the relative changes in the loss incurred

induced by the combination vector, p, respectively on the

datasets Dw and Di, ∀i ̸= w :

{

glw(θa; p) = lw(θ
∗
w)− lw(θa; p)

gnw(θa, p) =
∑

i∈[N ]:i̸=w

[

li(θ
∗
w)− li(θa, p)

]

.
(4)

Thus the net gain or utility uw(θa; p) = glw(θa, p) +
gnw(θa, p) that the client-w derives from the model

combination induced by the vector p, is defined as below:

uw(θa, p) =
∑

i∈[N ]

[

li(θ
∗
w)− li(θa, p)

]

(5)

In order to maximize the total coverage we require that all

clients in [N ] derive positive utility from the FL process

inf
w∈[N ]

∑

i∈[N ]

[

li(θ
∗
w)− li(θa)

]

≥ δ ∈ R
++ . (6)

Combining (6) and (3) the complete optimization problem

characterizing the complexity-coverage tradeoff can be given

as below:





















min
pk∈∆N−1

∑

i∈[N ]

[

li(θ
k
a; p

k)− li(θ
∗
a)
]

−

infw∈[N ]

∑

i∈[N ]

[

li(θ
∗
w)− li(θ

k
a)
]

where
1
N

∑

i∈[N ] li(θ
∗
a) ≤ ϵ∗ .

(7)

Recognizing the necessity of multiple global models

and multiple combination vectors in improving the

complexity-coverage tradeoff, we formulate the problem

in a way such that the history of the past FL rounds can be

used to assess pairwise compatibility of the clients in the

pool, which then dictates the choice of the model combining

vector. We identify that no-regret learning in a multi-player

(each client is a player with its own utility function and

action set) repeated game framework lets us capture the

desired properties of the federated learning process. In the

next section we describe our alternative framework.

III. FEDERATED LEARNING AS A REPEATED CONVEX

GAME:

In order to address the coverage-complexity trade-off in

the heterogeneous setting we pose the problem of federated

learning as that of no-regret learning in a repeated multi-agent

convex game [12]–[14]. Similar to the communication or

model averaging step in the FL process, a repeated game

is played in a sequence of rounds. The game is described

as the tuple
[

i ∈ [N ],Λi, ui(Λ,λ)
]

where each client is a

player with an action set Λi ∈ ∆N−1, and utility function

ui :
⊗

i∈[N ] Λi → R described as below

ui(Λ,λ) =
∑

i∈[N ]

[

λili

(

∑

j∈[N ]

Λi,jθj

)

− lj(θ
∗
i )

]

, (8)

where Λi,j represents the preference of client-i to combine

models with client-j, and Λi,j is a mixed strategy over the

set of the client model θj , ∀j ∈ [N ]. ui(Λ,λ) is the same

utility function defined in (5) with p ∈ ∆N−1, replaced by

a stochastic matrix Λ ∈ ∆N−1 × ∆N−1 and a probability

vector λ ∈ ∆N−1 and λ is a distribution over the set of

convex loss functions L = {li : R
p → R, ∀i ∈ [N ]} of all the

clients. Upon receiving the set of local model parameters θki
from all the clients the server first computes or updates the

stochastic matrix Λ associated with preference vectors Λi,

and then computes the final model combination vector λk ∈
∆N−1, that produces the averaged model θka as below:

θka =
∑

i∈[N ]

λkθki ,

λk = λk
Λ

k . (9)

The above game when solved leads to a correlated equilibrium,

however, due to computational intractability we approximately

solve the game by employing the regret matching methods

in III-A and III-B. The goal of the clients and the server is

to learn a sequence of {λk}k∈[K] and {Λk}k∈[K] that will

minimize the cumulative global loss below:

min
λk∈∆N−1,Λk∈(∆N−1)2

∑

k∈[K]

⊕

i∈[N ]

λk
i li

( N
∑

j=1

Λ
k
i,jθ

k
j

)

, (10)

Intuitively, we can interpret λi = P(l = li) as the relative

size of the dataset Di, compared to the size of the union of

all the disjoint sets
⋃N

i=1 Di. Similarly, the (i, j) -element of

the stochastic matrix Λ can be interpreted as the conditional

probability of selecting action θj , given we have already

chosen li, i.e. Λ(i, j) = P(θ = θj |l = li).

A. External Regret Procedure for Reducing Complexity

Now we establish the connection between the external regret

of each client against their local model θki and the upper bound

on the local losses related to the communication complexity in

(3). It is easy to check that after some simple manipulation, the

desired FL-convergence properties of (3) can be summarized

as follows :











∑T

k=1 li(θ
k
a)−

∑T

k=1 li(θ
k
i ) ≤ O(f(T )) + ϵ(T ), ∀i ∈ [N ] ,

∑T

k=1

[

li(θ
k
i )− ϵ∗

]

≤
∑T

k=1 ϵ(k) = ϵ(T ), ∀i ∈ [N ] ,

supi∈[N ] li(θ
∗
a) ≤ ϵ∗ ,

(11)

where ϵ(k) and ϵ(T ) are upper bounds on the local error

of client-i at round-k and T respectively. In order to reduce

the communication complexity of FL we need to minimize the

upper bounds on (11). In a regret learning framework [15], the

learner optimizes the cumulative loss LT (θ
k
a) =

∑k=T

k=1 li(θ
k
a)

over the sequence of actions θk
a. Below we consider client-i

regret for using θk
a at each round-k, instead of the pure action

θk
i , towards minimization of LT (θ

k
a) =

∑k=T

k=1 li(θ
k
a):

Algorithm 1 External Regret Minimization

1: procedure RegEXT(Λ
ν(t)
k ,W

ν(t)
k ,θ

ν(t)
k+1, li(θ

ν(t)
k+1,i), li(θ

ν(t)
a,k ))

2: η ∈ (0, 1) —- decay parameter

3: Estimate local gradient: ∇θ l̂i(θ
k
i ) =

li(θ
k
i )−li(θ

k
a)

||θk
i
−θ

k−1
a ||

(θk
i −

θ
k−1
a )

4:

5: Estimate cross error: l̂i(θ
k
j ) = li(θ

K
i ) +

⟨∇θ l̂i(θ
k
i ),θ

k
j − θ

k
i ⟩

6: W
ν(t)
k+1 (i, j) = W νt

k (i, j)[1− ηl̂i(θ
k
j )]

7: Λ
ν(t)
k+1(i, j) =

W
ν(t)
k+1

(i,j)
∑

j∈Cν
W

ν(t)
k+1

(i,j)

return Λ
ν(t)
k+1

RExt
i (T ) =

T
∑

k=1

li(θ
k
a)−

T
∑

k=1

li(θ
k
i ) (12)

Comparing (11) and (12) reveals that minimizing external

regret RExt
i (T ) of each client-i in [N] is equivalent

to minimizing the communication complexity. Intuitively

RExt
i (k) can be understood as the increase in client-i local

error beyond li(θ
k
i ), due to combining models with other

clients in [N ] with the combining distribution of Λk
i instead of



sticking to the fixed distribution, Λi where Λi,i = 1,Λi,j =
0, ∀j ̸= i.

Algorithm: In Algo. 1, we describe a procedure called

RegEXT that updates the stochastic matrix Λ
k using a

polynomial weights algorithm [16]. Using the upper bound

on convex function li(θ
k
a) ≤

∑N

j=1 Λ
k
i,j li(θ

k
j ) we get the

following upper bound on RExt
i (k):

RExt
i (k) ≤

N
∑

j=1

Λ
k
i,j

[

li(θ
k
j )− li(θ

k
i )
]

(13)

Based on (18), the server reduces Λ
k
i,j by a fraction of

(1 − η)l̂i(θ
k
j ), whenever the estimated loss l̂i(θ

k
j ) ≥ 0. At

each communication round-k, the server asks each client to

share their losses li(θ
k
i ) and li(θ

k−1
a ) along with the model

parameters θk
i , and uses the information from all clients

together to estimate the quantity l̂i(θ
k
j ). Since the losses are

just one-dimensional real numbers, they do not lead to any

considerable increase in the size of the data shared on the

client’s side.

B. Swap Regret Procedure for Maximizing Client Utility

The condition in (6) can be stated in a per-round cumulative

manner as follows:
{

supw∈[N ]

∑T

k=1

∑

i∈[N ]

[

li(θ
k
a)− li(θ

k
w)

]

≤ 0 .
∑T

k=1

[

li(θ
k
w)− li(θ

∗
w)

]

≤
∑T

k=1 Λi,wϵ(k) + li(θ
∗
w) .

(14)

Having computed the stochastic matrix, Λk, we now solve for

the final model combination vector λk in (9) by minimizing

the largest utility regret of a client in the given cluster [N ]
or the swap utility regret within the cluster. We define the

per-round swap regret of client-w in the pool [N ] as follows:

RSwp,w

[N ] (k) = sup
w∈[N ]

∑

i∈[N ]

[

li(θ
k
a;λ

k)− li(θ
k
w)

]

(15)

Our goal is to find a sequence of probability vectors λk, ∀k ∈
[T ] that minimizes the cumulative swap regret RSwp,w

[N ] (T ):

min
λk∈∆N−1

T
∑

k=1

RSwp,w

[N ] (λk,θk) . (16)

Reducing external regret to swap regret: we now follow a

reduction technique [17] to leverage the existing external regret

minimization procedure and the resulting distributions Λii∈[N ]

to obtain a solution to the coverage maximization problem.

Using Jensen’s inequality, the swap regret can be bounded

above as below:

T
∑

k=1

RSwp,w

[N ] (k) ≤
T
∑

k=1

N
∑

i=1

N
∑

j=1

λk
j

[

li(θ
k
j )− li(θ

k
w)

]

(17)

Comparing (17) to the following upper bound on total

external regret obtained from (18)

T
∑

k=1

N
∑

i=1

λk
iR

Ext
i (k) ≤

T
∑

k=1

N
∑

i=1

N
∑

j=1

λk
iΛ

k
i,j

[

li(θ
k
j )− li(θ

k
i )
]

,

(18)

we see that if λk
j =

∑N

i=1 λ
k
iΛ

k
i,j , ∀j ∈ [N ], then the losses

incurred by the external and swap regret minimizers coincide

and we obtain a swap regret of at most ϵ(T ), after playing

λk for T rounds. Moreover, it is well known that setting

the swap regret minimizing distribution, λk
sw ∈ ∆N−1 as the

invariant probability vector of the stochastic matrix, Λ obtains

the minimum swap regret. Therefore given a choice of Λ that

minimizes the external regret, we set the maximum-coverage

combination vector as its invariant probability vector. From

Perron–Frobenius [18] theorem of non-negative matrices we

know that such a unique probability vector always exists for

any non-negative stochastic matrices.

λk
swΛ

k = λk
sw (19)

IV. CLUSTERING IN HETEROGENEOUS FL

A. Clustering Objective

From the external and swap regret guarantees we know

that at the end of T communication steps the sum of the

negative client utility and the total global loss will be bounded

by the min achievable ϵ(T ) in (11), which is the maximum

of the local losses across the clients, and therefore depends

on properties such as diameter or maximum subgradient in

the global solution set Sglobal =
⊗

i∈[N ] dom(li). While

optimization over Λ and λ lets us get close to the minima in

the convex hull conv({θi}i∈[N ]) the global loss
∑

i∈[N ] li(θa)
will still be higher than desired if the degree of heterogeneity

(as measured by the negative utility of the clients) between

the clients is very high. Thus the purpose of the clustering

algorithm here is to partition the global solution set Sglobal into

smaller solution sets Sν per cluster such that the maximum

local loss value falls below the desired global loss threshold

ϵ∗ in (3).

{

⊗

i∈[N ] dom(li) =
⋃

ν∈2[N]

⊗

i∈[ν] dom(lν) such that,

supSν∈Sglobal
supi∈Sν

li(Sν) ≤ ϵ∗ .

(20)

We achieve this by running the regret minimization

algorithm for a couple of FL rounds and removing the clients

with low (or negative) utility or high external regret from the

pool into a different cluster. That is we try to assign each client

to a subset Cν ⊂ [N ] of the pool [N ] that maximizes its utility.

Let C ∈ 2[N ] be a partition of [N ], i.e.
⋃

ν∈|C| Cν = [N ], and

Cν and Cν′ two elements in C and therefore Cν ∩ Cν′ = ø. By

Λν ∈
(

∆|Cν |−1
)2

we denote the |Cν | × |Cν | stochastic matrix

that has been extracted from the N×N root stochastic matrix,

Λ ∈
(

∆N−1
)2

. We say that C is a successful partitioning of

the client pool, if:

ui(Λν) ≥ ui(Λν′), ∀i ∈ Cν , ∀(Cν , Cν′) ∈ C2 . (21)

Following the same argument we state the clustering

objective function as below:



max
C∈2[N]

∑

(ν,ν′)∈C2

inf
i∈Cν

[

ui(Λν)− ui(Λν′)
]

. (22)

B. The Overall FL Mechanism

In Procedure. 2 we put the regret minimizing subroutines

with clustering subroutines within the generic flow of a

federated learning scheme. We use t ∈ N to indicate the

clustering steps, k ∈ N to indicate communication steps in FL.

At t = 1, the total number of clusters is |Ct| = 1. After running

K rounds of FL method, where the model combination vectors

of each cluster Λ
Cν(t)

K is computed using the swap regret

minimization method, we check if the total external R
ν(t)
ext for

any cluster Cν(t) is still beyond the desired complexity bound,

δf(Kt) (as shown in line-12 of Procedure. 2), where δ ∈ R
++

is a proportionality constant that can be tuned. If yes, then we

decompose this cluster using the method shown in Algorithm.

3.

Here we apply the clustering principle stated in (22). i.e.

expel the smallest subset of minimum-weight clients needed

to meet the desired upper bound on regret at a given round,

where the weight of a client is proportional to its utility

in the cluster (based on pointwise approximation of utility

[19]). In order to check if client-w ∈ Cν(t) is the lowest

utility client in cluster Cν(t), we check if w has the least

preference Λ
ν(t),K
j,w from the other clients j ∈ Cν(t), j ̸= w

.i.e. if w = argminj∈Cν(t)

∑

i∈Cv
Λ

K,ν(t)
i,j (as shown in line-1

of Algorithm.3). After refining the clusters in this way then

compute their averaged model using the updated stochastic

matrices for the clusters, which will be sent to the clients in

the next round of federated learning.

Algorithm 2 Clustering-based Federated Learning Mechanism

1: procedure FLCL(S: Server, C: N Clients)
2: for t = 1 → T do
3: Init: W t,1 = IN×N , Λt,1 = 1

N
IN×N

4: for v = 1 → |Ct| do (in each cluster Cv)
5: for k = 1 → K do (FL-rounds begin)

6: S: send θ
a,ν(t)
k to C

7: C: send Lt
k = {θ

i,ν(t)
k+1 , li(θ

i,ν(t)
k+1 ), li(θ

a,ν(t)
k )} to

S

8: S: Λ
ν(t)

k+1 = RegExt(Λ
ν(t)
k , Lt,k)

9: S: λ
ν(t+1)
k+1 = λ

ν(t)
k+1Λ

ν(t)
k+1

10: S: θ
ν(t)
a,k+1 = λ

ν(t)
k+1,θ

t
t

11: Rν(t) =
∑

i∈Cν(t)
R

ν(t)
i,K

12: while Rv(t) ≥ δf(Kt) do

13: Cν(t+1),θ
ν(t+1)
a =DecompCL(Λ

ν(t)
K ,θ

ν(t)
K )

return Cν ,θν
a, ∀ν ∈ [C(t)]

14:

15:

V. NUMERICAL ANALYSIS

We evaluate our training mechanism in the context of a

binary classification task where the data D ⊂ X × {+1,−1}
is distributed according to a joint distribution, P(X,Y ) on

X × {+1,−1}. In particular, we consider a mixture model

Algorithm 3 Hierarchical Decomposition-based Clustering

procedure DecompCL(Λ
ν(t)
K ,θ

ν(t)
K )

w = argminj∈Cv

∑
i∈Cv

Λ
K,t
i,j

λ
ν(t+1)
w = 0

Et+1 = Et ∪ w
Cν(t+1) = Et

Λν(t+1) = Λν(t)(i, j ∈ Et
2)

λν(t+1) = λ : λΛν(t+1) = p

θ
ν(t+1)
a =

∑
i∈Cν(t+1)

λ
ν(t+1)
i θ

ν(t+1)
i,K

return Cν(t+1),θ
ν(t+1)
a

=0

setting, and our assumptions about the data distribution

resemble the setup used in [20], [21]. Although the focus

of these works (impact of gradient descent on homogeneous

data on margin and overfitting of resulting models) is quite

different from ours, we extend this setup to generate multiple

related but heterogeneous distributions. More precisely for

client-i, we consider positive examples are distributed as

Pi(X|Y = +1) ∼ N (µi, σ
2
i Id×d) and the negative examples

are distributed as Pi(X|Y = −1) ∼ N (−µi, σ
2
i Id×d).

Moreover we consider the hinge loss l(z) = max(0, 1−z) and

then generate the loss function of client-i, li : R
p → R, where

li(θ) = P(Y = +1)EX∼N (µi,σ
2
i
Id×d)

[

max
(

0, 1 − θTx
)]

+

P(Y = −1)EX∼N (−µi,σ
2
i
Id×d)

[

max
(

0, 1 + θTx
)]

. Next,

in order to introduce heterogeneity, we create a collection

of distinct distribution parameters {µi, σ
2
i Id×d}i∈[N ]. We

sample σ2
i uniformly from an interval [0.1, 1]. For the mean

parameters, we select a µi ∈ R
d randomly and then select

a set of transformations Φ = {ϕi : R
d → R

d, ϕi(µi) =
ri exp(−jψi)}, that can be used to create the mean of each

client’s distribution, µi = ϕi(µi). The magnitude ri ∼
U [1, 10] and the rotation ψi ∼ U [0, π] are chosen from the

said uniform distributions.

We compare our results against two sampling techniques

from the literature, namely FedCS [3], and FedPNS [1]. In

FedCS, the focus is on maximizing the aggregation or the

coverage even at the expense of communication complexity,

and therefore clients with a higher degree of heterogeneity.

FedPNS on the other hand rejects clients with a higher degree

of heterogeneity to minimize the communication complexity.

In Fig. 1 and Fig. 2 we plot the number of communications

rounds, k, in the x-axis, and the global loss, lg(θ
k
a) at these

rounds on the y-axis. Please note that for FLCL we plot

lg(θ
k
a) =

∑

ν∈Ct

1
|Cν |

∑

i∈Cν
li(θ

k,ν
a ), i.e. the average global

loss across the clusters on the y-axis, and for FedCS and

FedPNS we plot the global loss of the averaged model, θk
a on

both in-sample (S ⊂ [N ]) and out-of-sample S̃ ⊂ [N ], S̃∩S =
Ø) client datasets, i.e. we plot lg(θ

k
a) = 1

|S|

∑

i∈S li(θ
k
a) +

1
|S̃|

∑

i∈S̃ li(θ
k
a). Therefore in the case of FLCL lg(θ

k
a) is

the training loss, but in case of FedCS and FedPNS, lg(θ
k
a)

is more than the training error, 1
|S|

∑

i∈S li(θ
k
a), i.e. it helps

us capture the impact of reduced coverage due to sampling

process. The rate of decay of these curves indicates the

communication complexity and the error level at the terminal
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(a) Global training loss of averaged model vs the number FL
communication round in presence of input heterogeneity.

Fig. 1: Accuracy-complexity trade-off in the presence of input

heterogeneity

rounds indicates the minimum global error achieved by the the

averaged models.

In Fig. 1, we consider a pool of clients where <

µi
+
i |µi

+
j >≤ 0 are drawn with zero probability. I.e. the

models in this case are still heterogeneous enough to slow

down the learning process and increase global error, but the

degree of heterogeneity is not at a detrimental level. Fig.

1 shows that in this case, the FedCS achieves the smaller

global loss in the final round but the rate of decay is higher

for FedPNS in the initial rounds. While this is the expected

behavior for the benchmark methods, we see that in the lower

error regime, i.e. for all rounds where the global loss is

below 0.28, the proposed method FLCL achieves the best

communication complexity compared to the others, and in the

terminal rounds achieves the smallest global loss compared to

the others as well, illustrating the benefits of learning multiple

models for both the communication complexity and global loss

value.

In Fig. 2, we consider a pool of clients where <

µi
+
i |µi

+
j >≤ 0 and < µi

+
i |µi

+
j >= −1 are drawn with

non-zero probability. The case of < µi
+
i |µi

+
j >= −1 could

indicate the presence of clients with poor labeling or even

clients that are maleficent attackers wanting to stop the FL

training from succeeding. In this case, we see that the proposed

method FLCL outperforms both the benchmarks by large

margins both in terms of communication complexity and

value of global loss. The reason for such drastic gain of the

FLCL is that in the presence of data that is similar in the

input domain but opposite in the output domain is akin to

adversarial samples, and therefore by clustering we prevent

large distortion in the function being learned.

VI. CONCLUSION

In this paper we propose an intrinsically motivated

federated learning mechanism that achieves improved

coverage-complexity tradeoff by partitioning the client pool
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(a) Global training loss of averaged model vs FL round in presence of
output heterogeneity.

Fig. 2: Accuracy-complexity trade-off in the presence of output

heterogeneity.

into a set of clusters and then learning a global model for each

of these clusters. While we consider the clients to have convex

loss functions in the future we will look into the possibility

of designing a similar mechanism for clients with non-convex

losses.
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