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Abstract—The heterogeneity-complexity tradeoff in federated
learning (FL) is a key challenge facing the deployment of FL
in the real world. While learning on heterogeneous data is key
to required performance improvement in many applications,
training with state-of-the-art uncoordinated FL methods in the
presence of substantial heterogeneity can lead to prohibitively
large communication complexity. Most state-of-the-art techniques
designed to deal with heterogeneity employ sampling across
the client pool, inducing low aggregation or coverage in
the datasets of the out-of-sample clients. In this paper, we
challenge the common wisdom of learning a single global
model across multi-distribution data and propose a federated
learning mechanism (without money) that partitions the pool
of clients into a minimal number of subsets of clients and
then learns a global model for each subset of the clients.
This leads to a reduced degree of heterogeneity across each
subset of clients while ensuring positive aggregation across all
client datasets. In particular, we pose the problem of federated
learning as a repeated multi-agent basic utility game and use
no-regret algorithms find approximate solutions. Experiments
on multi-distribution datasets show that the proposed method
outperforms the key benchmarks in terms of both communication
complexity and global accuracy.

Index Terms—TFairness, Multi-distribution learning,
heterogeneity, federated clustering, communication complexity,
aggregation, coverage, no-regret learning, mechanism without
money.

I. INTRODUCTION

Due to its effectiveness in addressing challenges like data
security, privacy, and access to heterogeneous data, federated
learning has been increasingly popular in recent years.
Examples of typical applications include smart manufacturing,
digital health, and vehicular communications, etc. One of the
main obstacles in the adoption of federated learning is the
long training time. In many federated learning scenarios the
clients are only online for a short time, therefore having
long training time or high communication complexity leads
to higher training errors. At the same time long training times
are unavoidable when training on multiple distributions. Thus
there is still a need for a more efficient training paradigm that
can learn from the history of the past rounds to adjust its
current behavior.

The most prominent method of dealing with
heterogeneity-communication trade-offs is known as client
sampling. While this line of work has been extensively
explored by researchers, these methods still have the major
drawback of being inherently unfair in terms of aggregation
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across the clients. The outcome of the sampling methods
differ based on the author’s preference over different
objectives. For example, methods such as [1], [2] favor
convergence speed and communication complexity at the
cost of aggregation, while the papers [3] favor aggregation
more. A more comprehensive list of sampling techniques
can be found in [4]. Different from the sampling techniques,
our work proposes periodic clustering across the client pool.
Recently there have been some other works [5]-[7] in the
literature that also consider clustering for federated learning.
Although these papers consider dividing the data into different
clusters as a prepossessing step, our work considers an online
clustering technique that keeps assigning clients to the correct
clusters as they keep joining in.

A more comprehensive approach to solving multiple
trade-offs in the FL process is considered in the
FL-Mechanism literature. This literature can be broadly
categorized into two classes: mechanisms with money and
mechanisms without money. In the former category, the
clients are paid monetary rewards for joining the FL training
and in the second category only intrinsic motivations such
as global accuracy, local accuracy, statistical utility, system
utility, etc. are considered. While most FL mechanisms
such as [8] and [9] involve either full or partial monetary
rewards to the clients, our proposed mechanism is completely
intrinsically motivated. A more comprehensive description of
the FL mechanisms can be found in [10].

Finally, we summarize the main contributions of the
proposed work in this section. i) while the state-of-the-art
techniques for mitigating the heterogeneity-complexity
trade-off by sampling a subset of clients at each round and
learning a single averaged model across the entire pool of
clients. This creates a trade-off between the desired coverage
gains of the clients and the achievable communication
complexity of the algorithm. In our work, we replace the
sampling step with a periodic clustering step, that allows
us to learn a different averaged model for each cluster and
therefore improve the heterogeneity-complexity trade-off
without hurting the coverage gains of certain clients in
the pool. ii) The proposed clustering method is an online
clustering therefore any newcomer client can be readily
assigned a cluster and no pre-processing step is required.
Overall the larger goal of our current and future work on
this topic is to identify a suitable solution concept for the
FL framework, that can help us build a mechanism that can
address the trade-off of interest more predictably. While in



this paper, we focus on the aggregation-complexity trade-off,
a well-suited solution concept can be extended to handle
other related trade-offs between competing objectives such as
fairness and robustness with a minimum shift of perspective.

Notation: For a natural number N € N, [N] denotes the set
of all natural numbers from 1to N, i.e. [N] ={1,2,3,....,N}.
For all i € [N], 8; € RP denotes a p—dimensional vector,
and & = {6; € RP},cy] denotes a collection of N,
p—dimensional vectors 6;.

II. SETUP
A. Federated Learning in Heterogeneous Setting

In federated learning, a large number of clients (let N be
the number of the clients), each with heterogeneous datasets
D; ~ P; collaborate to learn a single model that will achieve
high training and testing accuracy across all datasets. These
clients are heterogeneous in the sense that the data samples
(Xms Yim)me[n,) € Dy in their respective datasets follow
different distributions P; on the dataspace X x ), where
X and Y are the input and output domains of the task of
interest. Thus each client has access to a different expected loss
{RP — R, where [;(8;) = E(xyyp, [I(X,Y, ai)}
parameterized its local model weights 8;. Here [ : X x ) X
RP — R is the per-sample common task loss. The clients are
interested in minimizing the global loss function L : R? — R,
where L(0) = + > icv li(8), and finding a single global
model, 0. € RP that satisfies the accuracy requirements for
all clients in [N]:

function [;

0, € argmin L
cRry (1)
1;(0;) < e ,Vie[N].

Due to privacy concerns, the optimization task in (1) is
decomposed into a minimization over the model parameters
space, RP at the client side and an optimization over the
probability simplex AN~ at the server side:

At each client: minimizel;(6) ,

6k cRp
At the server: mimmlze Z pkOk 2)
pkeAN
1€[N] =1

At each round k£ € N, the clients present a set of vectors
{6;" € dom(1 i) }ie;n) and the server is required to choose a
probabilit Ay vector p¥ € AN~ such that the combined model,
05 Yo 139/%91-c satisfies (1).

However, with a high degree of heterogeneity among
the clients the above setting is known to increase the
communication complexity, i.e. it requires a very large number
of the model combining steps at the server before converging
to an acceptable loss value, or the loss never drops below the
desired threshold (in this case the communication complexity
is almost infinity). To improve the communication complexity,
the state-of-the-art methods rely on sampling the most useful
clients from the pool, based on various metrics of client utility.

This in turn introduces aggregation or coverage deficiency
and gives rise to fairness issues [11] in federated learning.
In this paper, we improve the achievable complexity-coverage
tradeoff by employing an online clustering method that
partitions the client pool into subsets of clients with a
smaller degree of intra-cluster heterogeneity. In the following
subsections, we provide a more precise characterization of
the communication complexity and coverage gain in federated
learning.

B. Characterization of Communication Complexity in FL

In the literature [3] the convergence rate of an arbitrary
real-valued function g : RP — R under any iterative method
0r1 = D(6y) is defined as an upper bound on the difference
between the value of the function at round-k, g(0y) and the
desired optimal value €,: g(0x) — €, < O(f(k)). Similarly, if
the desired communication complexity in federated learning
is O(f(k)) then we need to ensure the following upper bound
on the global loss:

{11/ ZiE[N] 1:(6,) < €, 3)

A Diepv [i(0%) = 1:(67)] < O(f(k)) -

C. Characterization of Coverage Gain in FL

The coverage gain of a client participating in federated
learning is measured by a net decrease in the loss incurred
by the client on the local and non-local datasets. Let the
optimal local model parameter for a client-w € [N] be 6},
and let the FL global model under the choice of combining
vector, p € AN~ be 0,. Then we define the local gain
of client-w, g! (0,;p) and the non-local gain local gain of
client-w, g7 (0,; p) as the relative changes in the loss incurred
induced by the combination vector, p, respectively on the
datasets D,, and D;, Vi # w :

gfy(alﬁp) = lw(ejt) - lw(ga;p) (4)
Thus the net gain or utility u,(84;p) = g (04,p) +
g (04,p) that the client-w derives from the model

combination induced by the vector p, is defined as below:

S [uey) -

i€[N]

uw(eavp) = li(eaap)} @)
In order to maximize the total coverage we require that all
clients in [IN] derive positive utility from the FL process

inf
wE[N]

[1:(67,) —

€[N]

1(8,)] > 6 € R* . (6)

Combining (6) and (3) the complete optimization problem
characterizing the complexity-coverage tradeoff can be given
as below:



S [0k ") — 1(03)] -
i€[N] 7
inwa[N] EiE[N] [ll(BfU) — ZZ(OE)] where ( )
N D Li(07) <€
Recognizing the necessity of multiple global models
and multiple combination vectors in improving the
complexity-coverage tradeoff, we formulate the problem
in a way such that the history of the past FL rounds can be
used to assess pairwise compatibility of the clients in the
pool, which then dictates the choice of the model combining
vector. We identify that no-regret learning in a multi-player
(each client is a player with its own utility function and
action set) repeated game framework lets us capture the
desired properties of the federated learning process. In the
next section we describe our alternative framework.

min
pFEAN-1

III. FEDERATED LEARNING AS A REPEATED CONVEX
GAME:

In order to address the coverage-complexity trade-off in
the heterogeneous setting we pose the problem of federated
learning as that of no-regret learning in a repeated multi-agent
convex game [12]-[14]. Similar to the communication or
model averaging step in the FL process, a repeated game
is played in a sequence of rounds. The game is described
as the tuple [i € [N], A;,u;(A, )| where each client is a
player with an action set A; € AN~1 and utility function
w; ®z‘e[ N] A; — R described as below

wi(A,N) =Y [/\ili< > Ai’j9j> —zj(aj)} . (8
i€[N] JE[N]

where A; ; represents the preference of client- to combine
models with client-j, and A; ; is a mixed strategy over the
set of the client model 8;,Vj € [N]. u;(A,X) is the same
utility function defined in (5) with p € AN~1, replaced by
a stochastic matrix A € AN~1 x AN~ and a probability
vector A € AN~ and X is a distribution over the set of
convex loss functions L = {l; : RP — R, Vi € [N]} of all the
clients. Upon receiving the set of local model parameters 6%
from all the clients the server first computes or updates the
stochastic matrix A associated with preference vectors A,
and then computes the final model combination vector A e
AN=1 that produces the averaged model 6% as below:

0o = D AL,
i€[N]

A= AFAR )
The above game when solved leads to a correlated equilibrium,
however, due to computational intractability we approximately
solve the game by employing the regret matching methods
in III-A and III-B. The goal of the clients and the server is
to learn a sequence of {)\k}ke[K] and {Ak}ke[K] that will
minimize the cumulative global loss below:

N
. k k pk

)\keAN—IIBxllgle(ANfl)2 kg(] igi] Ails < ng Awaj> , (10)

Intuitively, we can interpret A; = P(I = ;) as the relative
size of the dataset D;, compared to the size of the union of
all the disjoint sets Uf\il D;. Similarly, the (7, ) -element of
the stochastic matrix A can be interpreted as the conditional
probability of selecting action 8;, given we have already

chosen l;, i.e. A(4,5) =P(0 =0,|l =1,).

A. External Regret Procedure for Reducing Complexity

Now we establish the connection between the external regret
of each client against their local model 6¥ and the upper bound
on the local losses related to the communication complexity in
(3). It is easy to check that after some simple manipulation, the
desired FL-convergence properties of (3) can be summarized
as follows :

et i(05) = oy L(67) < O(F(T) +(T), ¥i € [N]

et [1(0F) = €] < Ty e(k) = €(T), Vi € [N]

sup;e(n) li(0) < €,

(1)

where ¢(k) and €(T") are upper bounds on the local error
of client-i at round-k and T respectively. In order to reduce
the communication complexity of FL. we need to minimize the
upper bounds on (11). In a regret learning framework [15], the
learner optimizes the cumulative loss Ly (8%) = Zip 1;(6%)
over the sequence of actions 0’;. Below we consider client-¢
regret for using 0’; at each round-k, instead of the pure action
6%, towards minimization of Ly (6%) = IZ;T 1;(0%):

Algorithm 1 External Regret Minimization

1: procedure RegEXT(A}" W™ 07" 1,071 ), 1:(02%)))
2: n € (0,1) —- decay parameter

. (0F)_1, (9F
3: Estimate local gradient: Vol;(8%) = M(OéC —

lloF—65 "Il
05" ’
4: R
5: Estimate  cross  error:  1;(0%) = 1(65%) +
(Voli(67), 65 — 07)
6 W) = WG, It - nik(65)]
V() ;- W3 (9)
7 AN G) =

Siee, Wil )
v(t)
return Ak+1

T T
REHT) = 1:(05) =Y 1:(6F) (12)
k=1 k=1
Comparing (11) and (12) reveals that minimizing external
regret REY(T) of each client-i in [N] is equivalent
to minimizing the communication complexity. Intuitively
RE** (k) can be understood as the increase in client-i local
error beyond [;(0¥), due to combining models with other
clients in [N] with the combining distribution of A¥ instead of



sticking to the fixed distribution, A; where A,;; = 1, A; ; =
0,Vj # 1.

Algorithm: In Algo. 1, we describe a procedure called
RegEXT that updates the stochastic matrix AF using a
polynomial weights algorithm [16]. Using the upper bound
on convex function I;(8%) < Zj\;l Aﬁjli(ef) we get the
following upper bound on REwt(k)

<ZA

Based on (18), the server reduces Ai)j by a fraction of
(1- n)l}-(@?), whenever the estimated loss l}(@f) > 0. At
each communication round-k, the server asks each client to
share their losses 1;(6%) and 1;(6%~") along with the model
parameters 0?, and uses the information from all clients
together to estimate the quantity ZAZ(O;“) Since the losses are
just one-dimensional real numbers, they do not lead to any
considerable increase in the size of the data shared on the

client’s side.

RE™(k —1:(67)] (13)

B. Swap Regret Procedure for Maximizing Client Utility

The condition in (6) can be stated in a per-round cumulative
manner as follows:

{Supwe[N]Zz_1Zze ) [1:(05) — 1:(67,)] <

S [1(05) = 1(0)] < S0, Avwe(k) +1:(65) -

(14)

Having computed the stochastic matrix, Ak, we now solve for
the final model combination vector A\* in (9) by minimizing
the largest utility regret of a client in the given cluster [NV]
or the swap utility regret within the cluster. We define the
per-round swap regret of client-w in the pool [N] as follows:

Rt (k) = i > (L0 N — 1(65)] (15)
ZE[N

Our goal is to find a sequence of probability vectors \g, Vk €
[T] that minimizes the cumulative swap regret ’R[Wﬁ’ (T):

. Swp,w vk pk

i 1272 PNk gk (16)

Reducing external regret to swap regret: we now follow a

reduction technique [17] to leverage the existing external regret

minimization procedure and the resulting distributions A;;c|n

to obtain a solution to the coverage maximization problem.

Using Jensen’s inequality, the swap regret can be bounded

above as below:

T T N N
Swp,w
STRE <3250 u6))
k=1 k=1i=1 j=1
Comparing (17) to the following upper bound on total
external regret obtained from (18)

T N T N N
WIS 9) ) SEOLAL

k=11i=1 k=11i=1 j=1

wkﬂ (17)

1:(0%) — 1;(6)]

(18)

we see that if A} = Z )\kAfJNj € [N], then the losses
incurred by the external and swap regret minimizers coincide
and we obtain a swap regret of at most ¢(7'), after playing
AF for T rounds. Moreover, it is well known that setting
the swap regret minimizing distribution, \*, € AN~! as the
invariant probability vector of the stochastic matrix, A obtains
the minimum swap regret. Therefore given a choice of A that
minimizes the external regret, we set the maximum-coverage
combination vector as its invariant probability vector. From
Perron—Frobenius [18] theorem of non-negative matrices we
know that such a unique probability vector always exists for
any non-negative stochastic matrices.

AEL AR =L, (19)

IV. CLUSTERING IN HETEROGENEOUS FL

A. Clustering Objective

From the external and swap regret guarantees we know
that at the end of 7' communication steps the sum of the
negative client utility and the total global loss will be bounded
by the min achievable ¢(7) in (11), which is the maximum
of the local losses across the clients, and therefore depends
on properties such as diameter or maximum subgradient in
the global solution set Sgopa = ®i€[ N] dom(l;). While
optimization over A and \ lets us get close to the minima in
the convex hull conv({6; };c(n)) the global loss 3,y 1i(6a)
will still be higher than de51red if the degree of heterogeneity
(as measured by the negative utility of the clients) between
the clients is very high. Thus the purpose of the clustering
algorithm here is to partition the global solution set Syjopal into
smaller solution sets S, per cluster such that the maximum
local loss value falls below the desired global loss threshold
€* in (3).

Riciny dom(li) = U, cami @epy dom(ly) such that,
SupSuESglobul SUP;eg, ll(SV) <e€
(20)
We achieve this by running the regret minimization
algorithm for a couple of FL rounds and removing the clients
with low (or negative) utility or high external regret from the
pool into a different cluster. That is we try to assign each client
to a subset C,, C [N] of the pool [N] that maximizes its utility.
Let C € 2!Vl be a partition of [N], i.e. Useje; Cv = [V], and
C, and C,/ two elements in C and therefore C, NC,» = ¢. By
A, € (Ale]= 1) we denote the |C,| x |C,| stochastic matrix
that has been extracted from the /N x N root stochastic matrix,
A e (AN _1)2. We say that C is a successful partitioning of
the client pool, if:

ui(A,) > ui(A,),Vi € C,,V¥(C,,Cr) €C? . 1)

Following the same argument we state the clustering
objective function as below:



>

(v,v')ec?
B. The Overall FL Mechanism

In Procedure. 2 we put the regret minimizing subroutines
with clustering subroutines within the generic flow of a
federated learning scheme. We use ¢ € N to indicate the
clustering steps, k € N to indicate communication steps in FL.
Att = 1, the total number of clusters is |C;| = 1. After running
K rounds of FL me(tjhod, where the model combination vectors
of each cluster AK”“') is computed using the swap regret
minimization method, we check if the total external R:,f[t) for
any cluster C,, () is still beyond the desired complexity bound,
df(Kt) (as shown in line-12 of Procedure. 2), where § € R+
is a proportionality constant that can be tuned. If yes, then we
decompose this cluster using the method shown in Algorithm.
3.

Here we apply the clustering principle stated in (22). i.e.
expel the smallest subset of minimum-weight clients needed
to meet the desired upper bound on regret at a given round,
where the weight of a client is proportional to its utility
in the cluster (based on pointwise approximation of utility
[19]). In order to check if client-w € C ) is the lowest

utility client in cluster C’l,(t), we check if w has the least
(t),K

inf [ui(Ay) —ui(Ay)] .

i€C,

max

cealN] @2)

preference A; from the other clients j € Cyy),j # w

de.if w = argminjec, Ziec,, Affu(t) (as shown in line-1
of Algorithm.3). After refining the clusters in this way then
compute their averaged model using the updated stochastic
matrices for the clusters, which will be sent to the clients in
the next round of federated learning.

Algorithm 2 Clustering-based Federated Learning Mechanism

1: procedure FLCL(S: Server, C: N Clients)

2 fort=1—1T do

3: Init: Wh1 = InxnN, AbY = %INXN

4: for v =1 — |C¢| do (in each cluster Cy)
5
6
7

for k =1 — K do (FL-rounds begin)
S: send HZ’V(t) to C _
: C: send L}, = {0};1@,li(egiﬁ”),li(eﬁ”“))} to
S

8: S: A:(j)l = RegExt(A", L; 1)
VD) () Av(t)
9: S: )\k?ﬁ —)\,C(#A]€+1
10: S: 0, =Xy, 0t
. v(t) _ v(t)
11 R™Y = Ziecu(t) Rix
12: while R*(t) > 5f(Kt) do
. v v(t+1) _ v(t) pv(t)
13: ct+) g4 —pecompCL(AY" | 64")
return C”, 07 Vv € [C(t)]
14:
15:

V. NUMERICAL ANALYSIS

We evaluate our training mechanism in the context of a
binary classification task where the data D C X x {+1,—1}
is distributed according to a joint distribution, P(X,Y’) on
X x {+1,—1}. In particular, we consider a mixture model

Algorithm 3 Hierarchical Decomposition-based Clustering

procedure DecompCL(AZét), 0;((”)
w = argminjec, Y_;cc, Afjt

A =0
Et+1 = Et Uw
Cu(t+l) = E

AYHD = AV (5 € By?)
)\D(t+1) =\ /\AV(Z+1) —

v(t+1) _ v(t+1) gr(t+1)
04 - Ziecv(wrl) i Oi,K
return O (1 g4+

=0

setting, and our assumptions about the data distribution
resemble the setup used in [20], [21]. Although the focus
of these works (impact of gradient descent on homogeneous
data on margin and overfitting of resulting models) is quite
different from ours, we extend this setup to generate multiple
related but heterogeneous distributions. More precisely for
client-2, we consider positive examples are distributed as
Pi(X|Y = +1) ~ N (i, 021 454) and the negative examples
are distributed as P;(X|Y = —1) ~ N(—pi,021ixaq).
Moreover we consider the hinge loss {(z) = max(0,1—2) and
then generate the loss function of client-i, [; : R? — R, where
1:(8) = P(Y = +1)Ex n(us,0210,0) | max (0,1 — 072)] +
PY = —DExn(—pio?Iixa) [max (0,1 + GT:E)]. Next,
in order to introduce heterogeneity, we create a collection
of distinct distribution parameters {Hi,UiQI dxd}ie[N]. We
sample o7 uniformly from an interval [0.1,1]. For the mean
parameters, we select a p; € RY randomly and then select
a set of transformations ® = {¢; : R — RY ¢;(u;) =
r;exp(—ji;)}, that can be used to create the mean of each
client’s distribution, p; = ¢;(p;). The magnitude r; ~
U[1,10] and the rotation v; ~ U[0, 7] are chosen from the
said uniform distributions.

We compare our results against two sampling techniques
from the literature, namely FedCS [3], and FedPNS [1]. In
FedCS, the focus is on maximizing the aggregation or the
coverage even at the expense of communication complexity,
and therefore clients with a higher degree of heterogeneity.
FedPNS on the other hand rejects clients with a higher degree
of heterogeneity to minimize the communication complexity.
In Fig. 1 and Fig. 2 we plot the number of communications
rounds, k, in the z-axis, and the global loss, [, (0’;) at these
rounds on the y-axis. Please note that for FLCL we plot
14(00) =3 cc, o] Liec, 1;(8%"), i.e. the average global
loss across the ciusters on the y-axis, and for FedCS and
FedPNS we plot the global loss of the averaged model, 02 on
both in-sample (S C [N]) and out-of-sample S C [N],SNS =
@) client datasets, i.e. we plot [,(6%) = ﬁ Ziesli(eﬁ) +
fé‘ZieS‘li(gs)- Therefore in the case of FLCL 1,(6%) is

the training loss, but in case of FedCS and FedPNS, 1,(6%)
is more than th.e training error, ﬁ Yics 1;(0%), ie. it he.lps
us capture the impact of reduced coverage due to sampling
process. The rate of decay of these curves indicates the
communication complexity and the error level at the terminal
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(a) Global training loss of averaged model vs the number FL
communication round in presence of input heterogeneity.

Fig. 1: Accuracy-complexity trade-off in the presence of input
heterogeneity

rounds indicates the minimum global error achieved by the the
averaged models.

In Fig. 1, we consider a pool of clients where <
pij |pif >< 0 are drawn with zero probability. Le. the
models in this case are still heterogeneous enough to slow
down the learning process and increase global error, but the
degree of heterogeneity is not at a detrimental level. Fig.
1 shows that in this case, the FedCS achieves the smaller
global loss in the final round but the rate of decay is higher
for FedPNS in the initial rounds. While this is the expected
behavior for the benchmark methods, we see that in the lower
error regime, i.e. for all rounds where the global loss is
below 0.28, the proposed method FLCL achieves the best
communication complexity compared to the others, and in the
terminal rounds achieves the smallest global loss compared to
the others as well, illustrating the benefits of learning multiple
models for both the communication complexity and global loss
value.

In Fig. 2, we consider a pool of clients where <
uzj\uzj >< 0 and < u,ﬂu,f >= —1 are drawn with
non-zero probability. The case of < Hij_ |sz >= —1 could
indicate the presence of clients with poor labeling or even
clients that are maleficent attackers wanting to stop the FL
training from succeeding. In this case, we see that the proposed
method FLCL outperforms both the benchmarks by large
margins both in terms of communication complexity and
value of global loss. The reason for such drastic gain of the
FLCL is that in the presence of data that is similar in the
input domain but opposite in the output domain is akin to
adversarial samples, and therefore by clustering we prevent
large distortion in the function being learned.

VI. CONCLUSION

In this paper we propose an intrinsically motivated
federated learning mechanism that achieves improved
coverage-complexity tradeoff by partitioning the client pool

0.45
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(a) Global training loss of averaged model vs FL round in presence of
output heterogeneity.

Fig. 2: Accuracy-complexity trade-off in the presence of output
heterogeneity.

into a set of clusters and then learning a global model for each
of these clusters. While we consider the clients to have convex
loss functions in the future we will look into the possibility
of designing a similar mechanism for clients with non-convex
losses.
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