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Abstract—Environmental sensing is essential for many appli-
cations. Many existing efforts rely on the readings provided
by the weather stations maintained by federal, regional, or
local government agencies. While the accuracy of the read-
ings provided by those weather stations is high, the ability of
such data to reflect the temperature variability experienced by
urban populations is generally low. Therefore, recent studies
have proposed to deploy new infrastructures with low-power
communication and energy harvesting capabilities to provide
fine-scale measurements. Recently, there has been an increasing
interest in deploying environmental sensing systems with LoRa
radios and solar panels. However, there have been very few
studies looking into the reliability of solar power in the LoRa-
based environmental sensing settings. In this paper, we present
an empirical study that investigates how well solar energy powers
an environmental sensing platform. Our study shows that solar
energy generation forecasting plays an important role in the
performance of the sensing platform. To address the challenges,
we develop a novel solution that leverages LoRa, energy har-
vesting, and domain adaptation to enable reliable environmental
sensing. Experimental results show that our solution outperforms
the baselines and effectively supports end devices to perform
environmental sensing operations without interruptions.

Index Terms—Environmental sensing, LoRa,
harvesting, domain adaptation

energy-

I. INTRODUCTION

Environmental sensing is essential for many applications.
Many existing efforts rely on the readings, such as temperature
and humidity, provided by the weather stations maintained
by federal, regional, or local government agencies. For in-
stance, Zhang et al. used the temperature readings provided
by the weather stations to conduct research on predicting
heat-related mortality in urban environments [1]. While the
accuracy of the readings provided by those weather stations
is high, the ability of such data to reflect the temperature
variability experienced by urban populations is generally low
because the measurements are collected at the mesoscale
(3,000—100,000m). In addition, the weather stations are often
located in open areas to ensure no interference from shading,
therefore they do not reflect the distribution of populations,
nor of built environments that can generate urban heat island
effects. In reality, the temperature varies at the microscale
(<100m) and the local scale (100—3,000m), and the health
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risks associated with extremely hot weather are assumed to
vary with the exposure. To overcome such limitations, recent
studies have proposed to deploy new infrastructures with low-
power communication and energy harvesting capabilities to
provide fine-scale measurements [2].

Recent years have witnessed rapid deployments of LoRa
networks to support environmental sensing applications. As
an emerging Low-Power Wide-Area Networks (LPWAN) tech-
nology, LoRa provides a low-cost wireless solution that sup-
ports long-range data collection for low data rate applica-
tions [3]. Over the past decade, LoRa networks have been
deployed in 153 countries to support various applications, such
as smart agriculture [2], smart city [4], and smart energy [5].
On the other hand, solar power harvesting is appealing for use
in environmental sensing applications, because solar panels are
relatively inexpensive and easy to deploy, and they provide
a renewable power source to operate sensing platforms in
locations that are remote, hard to reach, or simply difficult
or expensive to run electrical wires or replace batteries.
Therefore, there has been an increasing interest recently in
deploying environmental sensing systems with LoRa radios
and solar panels.

However, there have been very few studies looking into the
reliability of solar power in the LoRa-based environmental
sensing settings. In this paper, we present an empirical study
that investigates how well solar energy powers a LoRa-based
sensing platform. Our study shows that solar energy generation
forecasting plays an important role in the performance of a
sensing platform. However, accurately forecasting the amount
of generated solar energy is challenging due to the location-
specific gap. Weather variations, including cloud cover, tem-
perature, and atmospheric conditions, significantly affect solar
energy output. The models trained in one location may not
work well in another because of different weather patterns.
Deep learning techniques can improve forecasting accuracy
but require extensive datasets for training and refinement.
However, collecting sufficient labeled data for an accurate
model is time-consuming and demands much human effort.
Based on the insights gathered from our empirical study,
we develop a solution that leverages a teacher-student neural
network to train a precise solar energy generation forecasting
model with a few labeled data and a new time-slot-based cycle



assignment method to enable reliable environmental sensing.
Specifically, we make the following contributions in this paper:

o We perform an empirical study that identifies the chal-
lenges of using solar energy to power a LoRa-based
sensing platform;

o We formulate the solar power forecasting as a machine
learning problem and reveal the location-specified gap,
which prevents the model trained using publicly accessi-
ble data from providing good forecasting performance in
real-world deployments;

o We develop a domain adaptation-based method to close
the gap and train a good solar power forecasting model
using publicly accessible data and a small number of local
measurements;

o We develop a method that schedules the duty cycle of an
end device to maximize the number of samples it collects
in each time period without running out of battery;

o We implement our methods and test our solution in a
real-world environment. Experimental results show that
our solution outperforms the baselines and effectively
supports end devices to perform environmental sensing
operations without interruptions.

Our paper is organized into the following sections. Sec-
tion II introduces our environmental sensing platform. Sec-
tion III introduces our empirical study. Section IV and V
present the designs of our solar power forecasting and time-
slot-based cycle assignment methods. Section VI evaluates our
methods. Section VII reviews the related work. Section VIII
concludes this paper.

II. ENVIRONMENTAL SENSING SYSTEM

In this section, we introduce the hardware and software
architecture of our environmental sensing platform.

A. Hardware
r | Module | Price |
o Raspberry Pi 4B $55

TemperHum $32
LoRa HAT $32
PiJuice HAT $69
PiJuice solar panel | $112
PiJuice battery $35
Tektyte LogdUSB | $171

Fig. 1. Hardware Module

Fig. 2. Retail prices

Figure 1 shows the hardware of our environmental sensing
platform, which is built by integrating several commercial
off-the-shelf hardware modules. Figure 2 lists all hardware
modules and their retail prices. Our sensing platform uses
a Raspberry Pi 4 Model B as its central processing unit,
which controls all sensing and communication peripherals.
The TemperHum hygrometer [6] has temperature and humidity
sensors and forwards sensor readings to the Raspberry Pi
through its USB port. The Dragino LoRa GPS Hardware
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Fig. 3. Software architecture of our platform and base station.
Attached on Top (HAT) [7] with a Semtech SX1276/SX1278
LoRa transceiver [8] is integrated with the Raspberry Pi
to support LoRa communication. The PiJuice HAT [9] and
PiJuice solar panel [10] are integrated with the Raspberry Pi
to harvest solar energy. The excess energy is stored in the
PiJuice battery [11]. Tektyte LogdUSB multi-meter connects
the PiJuice HAT and the PiJuice solar panel to measure the
power generated by the solar panel [12]. Using those PiJuice
modules allows us to put the Raspberry Pi into sleep model,
which reduces the energy consumption from seven watts to
almost zero. The cost of the sensing platform is around $506
in total.

B. Software Architecture

Figure 3 plots the software architecture of our environmental
sensing system. The software that runs on the end device has
four units: Sensing Unit, Power Management Unit, Com-
munication Unit, and Duty Cycle Execution Unit. The
Sensing Unit is responsible for managing the temperature and
humidity sensors. The Power Management Unit is responsible
for measuring the State of Charge (SOC), which represents
the percentage of the remaining energy in the battery, and the
electric current generated by the solar panel. The temperature,
humidity, SOC, and electric current readings are collected by
the Communication Unit and transmitted to the base station.
Duty Cycle Execution Unit periodically puts the platform into
sleep mode to reduce energy consumption. In each cycle, the
end device wakes up from the sleep mode, performs a set of
activities (e.g., generates and transmits sensor readings), and
then goes back to sleep. Each end device follows the schedule
(i.e., how many cycles each end device can have each day)
generated by the base station to perform activities.

The software that runs on the base station consists of four
units: Sensor Data Manager, Web Data Manager, Com-
munication Unit, and Duty Cycle Control Unit. The Sensor
Data Manager collects temperature and humidity readings
from the Communication Unit and forwards them to the
cloud. The Web Data Manager is responsible for gathering
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Fig. 4. SOC and energy harvested from the solar panel

weather and solar information from the National Solar Radia-
tion Database (NSRDB) provided by the National Renewable
Energy Laboratory (NREL) [13] and forwarding it to the Duty
Cycle Control Unit. The Duty Cycle Control Unit leverages the
NSRDB data, temperature, and humidity readings to determine
the schedule for each end device.

III. EMPIRICAL STUDY

In this section, we present our empirical study that investi-
gates how well solar energy powers the LoRa-based sensing
platform by examining the performance of two classic cycle
assignment algorithms.

A. Using a Fixed Number of Cycles

Algorithm 1: Cycle Assignment Algorithm

Input: Power consumption of the device (P°), battery
capacity (C'), and the total number of cycles in one day
(Nae)

Output: Number of cycles (V,)

1: for each day ¢ in m days do

2: Measure SOC (S?) at the beginning of the day and
keep the end device operating without sleep;

3:  Measure SOC (SY) after 24 hours;

4:  Compute the energy generated during the last 24
hours by calculating F; = 24 x P¢ — C % (S? — S¢);

50 ifi==1orS¢> 5>, —S¢, then

6: i++;

7 else

8 Break;

9:  end if

10: end for

11: Output N = Nge * D00, Ej/(m+ 24 % P€);

Our empirical study starts with running Algorithm 1, which
determines the number of cycles during a 24-hour window
based on the end device’s power consumption (P¢) and
battery capacity (C'). The key idea is to measure the average
energy generated by the solar panel over a few days and then
calculate the number of cycles by dividing the average energy
by the total consumption if the end device keeps operating
without sleep. We run Algorithm 1 on the end device and

get N. = 240. We then configure the end device to perform
240 cycles during each 24-hour window and continue our
experiment. Unfortunately, the end device runs out of battery
after experiencing a cloudy day. Figure 4(a) plots SOC and
the amount of energy generated by the solar panel over the 40
hours before the end device ran out of battery. As Figure 4(a)
shows, SOC keeps decreasing from 80% until the sun rises
in the morning (around the 15¢h hour) as expected. However,
the amount of energy generated by the solar panel fluctuates
between 0 and 0.64Wh during a cloudy day. The solar panel
only charged the battery to 48% before sunset, which is not
enough to power the device for another day. The end device’s
battery runs out at the 40¢h hour. The results demonstrate that
using a fixed number of duty cycles over the entire day cannot
work well due to the fluctuations of the generated energy.

B. Assigning Different Number of Cycles at Different Time

Algorithm 2: Time-Slot based Cycle Assignment Al-
gorithm

Input: Power consumption of the device (P€), battery
capacity (C), number of time slots during 24 hours (1V,),
and the total number of cycles in one time slot (V)

Output: Number of cycles (/V;) during time slot ¢

1: for each day j in m days do

2:  for each time slot 7 in day j do

3: Measure SOC (S;?i) at the beginning of the time
slot ¢ on day j and keep the end device operating
without sleep;

4: Measure SOC (S5;) at the end of the time slot ¢ on
day j;

5: Compute the energy generated during time slot 7 on
day j by Ej; = 24 % P¢/N; — C % (5% — S5,);

6: end for

7. ifi==1orS¢>S" —S¢, then

8: i+

9: else

10: Break;

11:  end if

12: end for

13: Output N; = Ny, * Z;"Zl Eji « N /(m 24 % P¢);

Our empirical study then examines the effectiveness of as-
signing different numbers of cycles at different times through-
out the day. The key idea is to divide 24 hours into a set of
time slots, calculate the average generated energy during each
time slot, and then assign a different number of cycles (/V;)
to the different time slots. Algorithm 2 shows the method we
used to achieve this. We divide 24 hours into 48 time slots,
run Algorithm 2 on the end device, and obtain the 48 cycle
assignments. Figure 4(b) plots SOC and the amount of energy
generated by the solar panel over the 64 hours before the end
device runs out of battery. As Figure 4(b) shows, SOC stays the
same as the device sleeps before the sun rises at the 15¢h hour
and when the solar panel produced enough energy between the



43rd and 45th hour. SOC decreases to 34% when the solar
panel fails to produce enough energy during a cloudy day. SOC
remains at 33% until the next day and then gradually reduces
to 3%. The end device runs out of battery at the 64th hour.
As Figure 4(a) and 4(b) show, assigning different numbers of
cycles at different times allows the end device to operate more
reliably compared to the solution that uses a fixed cycle for
the entire day. However, none of them can effectively prevent
the end device from running out of battery. Therefore, it is
crucial to consider the energy produced during the next day
when assigning the number of cycles to the end device. This
motivates us to develop a new method for accurate solar power
forecasting.

IV. SOLAR POWER GENERATION FORECASTING

In this section, we formulate the solar power generation
forecasting problem, present the location-specified gap, and
introduce our solution to close the gap.

A. Solar Power Generation Prediction

The primary task in solar power generation prediction is
to predict the power generated by the solar panel during the
next day based on historical data and real-time environmental
measurements. We consider three metrics: temperature mea-
surements 7T'emp, humidity readings Hum, and the power
generation data Power. The input during each time period @
is x; = concatenation(Temp, Hum, Power, Timestamp).
We formulate the solar power generation forecasting task
as a multivariate time series forecasting problem. Let
X = (x1,Xz2, ..., Xm) denote the sequence of historical feature
vectors, and y; denote the solar power generation in the future
time period j. Our goal is to predict future solar power gener-
ation for n time periods, represented as Y = (y1,y2, .., ¥n)-
We aim to establish a nonlinear mapping fo(-) : X — Y,
which translates our input sequence X to the output sequence
Y, where 6 symbolizes the parameters of our model. Those
parameters are optimized in a data-driven fashion. Given the
continuous nature of solar power generation predictions, fy
serves as a predictive model. It leverages the concatenated
features from the input sequence to forecast the solar power
generation of future days.

B. Location-Specified Gap

Our primary objective is to train a model tailored for time
series data to predict solar power generation on each end de-
vice. We can train the model using either local measurements
or publicly accessible data such as NSRDB. We perform an
empirical study to investigate the efficiency and effectiveness
of both solutions. We create the dataset D! with seven days
of temperature, humidity, and power generation measurements
collected by our end device, and the dataset D" by collecting
720 days of temperature, humidity, and power generation
readings from NSRDB. We create the two testing datasets,
D and D', with another two days of measurements: one
collected by our end device and the other from NSRDB.

30
= Test on D™
25 = Test on DY

05- .
0.
Fig. 5. MAE when using different Fig. 6. MAE on web testing data

amounts of data in D! for training. (D) and local testing data (Dt
using web training data (DY).

1 2 3 4 5 E . 7
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Using only local measurements (D') for training: We first
leverage D! and Multi-layer Perceptron (MLP) [14] to train
the forecasting model. The input to the models is temperature,
humidity, and generated power readings with timestamps. The
output is a sequence of the power generated by the solar
panel in the next 48 time slots (24 hours). We normalize the
training data (D') into the [0, 1] range. Figure 5 shows the
Mean Absolute Error (MAE) when using one to seven days
of local measurements to train the model and evaluating the
testing data D!, As Figure 5 shows, MAE decreases from 1.28
to 0.55 as the training data increases from using one to seven
days. The results show that a week of measurements can effec-
tively train a good solar power generation forecasting model.
However, there exists a significant challenge to leverage the
end device to collect enough training data. As Figure 4(a)
and 4(b) show, the end device may run out of battery when
experiencing a cloudy day without good cycle assignments.
Our end device can only collect data for two days without
energy harvesting. However, MAE is high (1.13) when using
two days of data from training. In our experiments, we had
to install power cables to power our end device to create the
training data (D') with seven days of measurements. However,
deploying dedicated power supplies for environmental sensors
incurs significant costs, even infeasible in many cases.

Using only web data (D") for training: We then leverage D"
and MLP to train the forecasting model. The NSRDB dataset
contains environmental measurements and solar irradiance
data for our region. We divide the data based on 30-minute
time intervals and convert the Global Horizontal Irradiance
(GHI) in our region to the amount of generated power in
terms of Watts using the linear equation P = GHI x A * q,
where « is the efficiency factor specified by the solar panel
manufacturer and A is the surface area of the solar panel.
Figure 6 plots MAE of the model trained with D and tested
on two different testing datasets D and D'. As Figure 6
shows, the MLP model trained using the web data (Dv)
provides high modeling accuracy when we test the model on
the web testing data D' (MAE = 0.54), as the blue bar
shows. However, the modeling accuracy drops significantly
when we test the models on the local testing data D as shown
in the red bar (M AE = 2.46). The differences in the modeling
accuracy clearly show the effect of the location-specified gap,
a subtle but important discrepancy between the measurements
collected by NREL and the ones gathered by our end device,
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that prevents the forecasting knowledge learned from the web
data from enabling effective performance in the area where our
end device locates. The location-specified gap exists because
the web data cannot provide fine-scale solar information that
can be applied to our local area. Because of the location-
specific gap, the machine learning models trained using the
web data for solar forecasting, no matter how large the data
volume is, may not generalize well to a local dataset.

C. Close the Gap by Domain Adaptation

The location-specific gap found between D™ and D' moti-
vates us to explore the feasibility of using the extensive web
data together with a small number of local measurements to
train a good model for future solar power forecasting. To this
end, our objective narrows down from solving a regression
problem to using domain adaptation to address the domain
discrepancy issue. Specifically, we first gather N* data tuples
from the publicly accessible web data (source domain) and
then acquire N' data tuples by collecting data samples from
the local device (target domain). We assume N > Nt
due to the significant data collection overhead on local data
collection. We assume that the source and target domains
are characterized by different probability distributions ¢; and
q2, respectively. Our goal is to construct a deep learning
model that can learn transferable features that bridge the cross-
domain discrepancy and build a regression y = fy(x), which
can maximize the target domain accuracy (f,, — f;) by using
a small amount of local data (D).

Figure 7 shows our teacher-student neural network for
domain adaptation. We first train our teacher neural network
with web data (D"). To keep our model lightweight, we
employ MLP with three layers: 4 and 128 neurons in the
first two hidden layers and one neuron in the output layer to
forecast the solar power generation in each time slot. Rectified
Linear Unit (ReLU) and softmax activate the hidden and
output layers, respectively. The teacher’s parameters (61) are
learned by minimizing the Mean Squared Error (MSE) loss:

Lyse(b) =

S|

> (i — )%, (1)
=1

where n is the number of the training data samples, y; is the
power generation ground truth at the time slot ¢, and ; is the
power generation prediction at the time slot 7.

Similarly, we can train our student neural network with our
local dataset (D'). To bridge the gap between the teacher and
the student, we use the Maximum Mean Discrepancy (MMD)
loss criterion. MMD loss measures the distances in probability
using a Hilbert Matrix. To do so we first must calculate the
kernel base matrix as an approximation to the Hilbert Matrix
given the two inputs y', and 4! to obtain our matrices K,
K =k(y',9"), Ko =k(y", "), Kiw = k(y',y"), where K
can be defined by equation 2:

_llx=w)|?

KX, Y)=¢ 202 2)
where X and Y serve as inputs, K is the output kernel
matrix, and o is the kernel bandwidth factor. The kernel
bandwidth o represents the width of the Gaussian kernel used
for matrix estimation. By varying the size of o, we can impact
the smoothness in the kernel of our data. In particular, by
increasing o, the kernel becomes wider and smoother. We then
use the kernels Kj,,, K, and K, calculated from the previous
equation to find the MMD loss described by equation 3:

1
Lymp = W(Z diag(K.,) + Y Ku)
2
—m(z Krw) (3)

1 .
+W(Z diag(K;) + Z K;)

We use the respective lengths of our Kernel matrix and our
diagonals to calculate the MMD loss required for our solution
according to existing literature [15]. After obtaining both
the model-specific MSE loss and the MMD loss, we can
calculate our combined loss £(f), which we use to optimize
the parameters of our teacher-student neural network.

L(0) = Lryse+ Lymp 4)

L rse represents our individual model loss, and Ly p rep-
resents our combined model loss calculated using MMD, and
0 denotes the parameters learned by our model. The teacher-
student neural network allows our solar power generation fore-
casting method to produce a forecasting model with extensive
web data and a smaller amount of local measurements.

V. TIME-SLOT BASED CYCLE ASSIGNMENT

In this section, we present our method that leverages our
solar power forecasting model to assign cycles on each end
device to maximize the number of samples it collects in each
time slot without running out of battery.

A. Overview

Our time slot-based cycle assignment method takes the solar
power forecasting model fy(x), the temperature, humidity,
and SOC measurements collected during the last 24 hours
as input and performs four processing steps including Solar
Power Prediction, Power Distribution Calculation, Power



Solar Power Prediction
Temperature Humidity Power

Duty Cycle Calculation

Prediction Model

v

Solar | ULUL ﬂhﬂi[;fi] Time slot
o0 eeeeooo
Power| (0§, sREsNC +
Time Slot
[ 000010
Snlar U008 eeEal
L Power | §gg8 _Sunangg
Y0000 meeeOcy: T .
'S:’olar V00 ’:I “";75}: & Time Slot
ower | inng _ gnennn! 0000 SR
e . Solar | i~ §HARLL
Time Slot Power 08 _sesanic
Mo Time Slot

Power Distribution Calculation Power Assignment Calculation

Fig. 8. Four-step time slot-based cycle assignment.

Assignment Calculation, and Duty Cycle Calculation, as
Figure 8 shows. Solar Power Prediction takes the temperature,
humidity, and power with a timestamp in the previous day as
input to predict the solar power generation in the upcoming
day. It forwards the prediction to Power Distribution Calcu-
lation, which computes the number of time slots with zero
and non-zero power generation. Leveraging the solar power
prediction and the distribution of solar power in different
time slots provided by Power Distribution Calculation, Power
Assignment Calculation rebalances the energy distribution for
zero and non-zero power time slots. Duty Cycle Calculation
then uses the rebalanced energy distribution to generate the
assignments on the number of cycles for each time slot in the
next 24 hours. In this section, we present those four steps in
detail.

B. Solar Power Prediction

Algorithm 3: Solar Power Generation Prediction Al-
gorithm

Input: Power consumption of the device (P°), battery
capacity (C), length of time slot (7), solar power
generation prediction model (fy)

Output: Solar power generation prediction (P)

1: for each time slot ¢ over previous day do
2:  Collect temperature (T'emp;), humidity (Hum,), and
timestamp (Timestamp;) at time slot 4;

3:  Measure SOC (S?) at the beginning of time slot i;

4:  Measure SOC (SY) at the end of time slot 7;

5:  Measure uptime of the end device (¢}') in time slot 4;

6:  Compute the power generated during time slot ¢ by
Py = (t% % P — C % (S? — 89))/T;

7: end for

8: P < fy(Temp, Hum, P, Timestamp)

9: Output P

Algorithm 3 takes the end device’s power consumption
(P°) and battery capacity (C') as input and predicts the solar
energy generation in the next 24 hours (P) by harnessing the
temperature, humidity, and SOC readings and the forecasting
model (fy) presented in Section IV. Specifically, Algorithm 3
first gathers the temperature (T'emp;) and humidity (Hum;)
readings with timestamps (Timestamp;) for each time slot
from the preceding day (line 2). It then measures SOC (Sf-’)
at the beginning of time slot ¢ (line 3) and records SOC (SY)
at the end of that time slot (line 4). Algorithm 3 measures the
active operational duration, or uptime (t*), within the time
slot (line 5). The power generated by the solar panel (P) is
calculated by dividing the difference between the energy flux
from (or to) the battery (C * (S? — S¢)) and the cumulative
energy expended over uptime during that time slot (¢"* P¢) by
the time slot cycle (7)) during time slot ¢ (line 6). Iterations
continue until reaching the end of that day (line 7). Finally,
leveraging the collated data consisting of temperature (Temp),
humidity (Hum), solar power output (P), and respective times-
tamps (Timestamp) from every time slot of the preceding day,
Algorithm 3 determines the anticipated solar power generation
(P) based on the solar power generation prediction model (fp)
(line 8).

C. Power Distribution Calculation

Algorithm 4: Power Distribution Calculation Algo-
rithm
Input: The solar power prediction (P), number of time slots
during 24 hours (Vy)
Output: Number of time slots with zero power generation
(no),
Number of time slots with non-zero power generation

(n1)

ny = Ny — no;
output ng, N

1: Initialize ng = 0;

2: for time slot 7 in IV; time slots do
3: if P, == 0 then

4: ng + +;

5. end if

6:  1++;

7: end for

8:

9:

Power Distribution Calculation takes the predicted solar
power generation (P) as input and then discerns the number of
time slots characterized by zero solar energy generation (ng)
versus those exhibiting non-zero solar energy generation (n1).
Algorithm 4 shows the algorithm. The key idea is to perform
a methodical examination of each time slot within the solar
power forecast (P) to tally time slots with either the absence or
presence of solar power generation. Specifically, Algorithm 4
initializes the zero time slot counter (ng) at O (line 1) and then
sequentially inspects each power prediction at time slot ¢ (FP;)
within the set of IN; time slots (line 2). For each time slot,



if P; is zero, the counter ng is incremented (lines 3-5). The
algorithm repeats this process until it reaches the last time slot
(Ny) (lines 6-7). After this, Algorithm 4 ascertains the count
of time slots exhibiting non-zero solar power (n) (line 8).

D. Power Assignment Calculation

Algorithm 5: Power Assignment Algorithm

Input: The solar power generation prediction (P), the
number of time slots with zero power generation (ng),

the solar energy generated during the current time slot falls
below the threshold ( Ey,, + E,s) (line 5), the adjusted power
distribution (Ez-) is set to F,s (line 6). Otherwise, E,,, is
subtracted from the current forecast value (F;) (lines 7-8).
This process is repeated for every time slot in E (lines 9-11).
Finally, Algorithm 1 generates a rebalanced energy distribution
(E) (line 12).

E. Duty Cycle Calculation
Duty Cycle Calculation is the last step in our method. It

determines the duty cycle (IV;) for a specific time slot. Distinct
from prior steps, Duty Cycle Calculation operates at the
runtime of each time slot, which enables dynamic optimization

the number of time slots with non-zero power generation
(n1), number of time slots during 24 hours (/Vy), length
of time slot (7), the night-time ratio parameter used for

assigning the power distribution (o)
Output: Energy distribution after reassignment (F)

1: Calculate the Energy distribution (2 = P *T,) according

to the power forecasting;

2: Calculate the Energy assigned to zero solar power
generation time slot by F,s = Zf\il P; « T, % 09 /ng;

3: Calculate the Energy taken from non-zero solar power
generation time slot by F,,,, = Zf\gl P« T. % 0g/n1;

4: for time slot 7 in IV; time slots for £ do

5 if £, < E,,, + E,s then

6: E1 = Fys;

7. else

8 Ez = E;i — Eams

9:  end if

10: i++;

11: end for

12: return F

Power Assignment Calculation takes the solar power gen-
eration prediction (P), the number of time slots with zero
(np), and non-zero (ny) power generation to rebalance the
power distribution. Algorithm 5 shows our power rebalance
policy, which distributes energy based on the predicted power
generation (P) across the time slots characterized by zero
(np) and nonzero (n;) energy generation while considering the
night time ratio (og). The ratio oy represents the proportion
of the total solar energy designated for time slots with zero
power generation, typically occurring at night. The key idea
is to reallocate a fraction of energy from the time slots with
nonzero power generation to those with zero energy generation
and produce a new energy prediction (B).

Specifically, Algorithm 5 first finds the predicted energy
generated (E) by evaluating the predicted power generations
(P) through the entire time slot (/Vy) (line 1). Algorithm 5
then finds the energy assigned to close to zero energy time
slots (F,s) by aggregating the values of F, factoring in the
ratio og, and then dividing by ng (line 2). It then calculates
the energy derived from the time slots with nonzero solar
energy generation (F,,,), achieved by aggregating the values
of P, considering the o ratio, and then dividing by n; (line
3). Algorithm 5 then examines each time slot ¢ within the
total set of N; time slots from the forecast (P) (line 4). If

tailored to each interval. With the distributed energy (E;)
during time slot ¢, Duty Cycle Calculation calculates the
number of cycles (/V;) for each time slot ¢ as follows:

N; = Ny Ny # E; /(P€ % 24) (5)

Where NV; denotes the total number of time slots within a 24-
hour window, Ej is the energy distribution post-rebalancing
for time slot 7, Ny is the total number of cycles in one
time slot, and P¢ denotes the device’s power consumption.
Consequently, we can ascertain the number of duty cycles (V;)
for each time slot dynamically.

VI. EVALUATION

We perform a series of experiments to validate the effi-
ciency of our solution to provide continuous operations to the
end device. We first evaluate the capability of our domain
adaptation-based method to produce a good solar power gener-
ation forecasting model. We then apply the forecasting model
trained by our method in our time slot-based cycle assignment
method to examine the performance of our solution.

A. Performance of Our Solar Power Generation Forecasting
Method

=Using D" only
mmUsing D' only
mmOur method using D* and D'
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Fig. 9. MAE of our model and
models trained on D* and D' over
a 7 day period.

Fig. 10. MAE of our model given
different kernel space widths.

We first evaluate the capability of our domain adaptation
method to produce good solar power generation forecasting
models. We use two days of temperature, humidity, and power
generation measurements collected by our end device (D') and
the 720 days of readings from the NSRDB dataset (D") to
train the forecasting model. Figure 9 plots the MAE values of
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Fig. 11. Performance of our solution over seven days
our forecasting model over the seven testing days. As com-
parisons, Figure 9 also plots the MAE values of two baseline
models: one trained on only D" and the other trained on only
D!. As Figure 9 shows, the forecasting model produced by
our method consistently provides the best performance. For
example, the MAE value offered by our method is 0.85 on
Day 1, while the MAE values provided by our baselines are
1.31 (using D') and 2.88 (using D%), respectively. Similarly,
the MAE value offered by our method is 0.38 on Day 5,
while the MAE values provided by our baselines are 0.59
and 2.01, respectively. The results show that our domain
adaptation method effectively closes the location-specified gap
and produces good solar power generation prediction with the
web data and only two days of local measurements.

We then evaluate the effects of the Gaussian kernel band-
width o, on the performance of our method. The selection of o
value affects the width of our Gaussian distribution kernel. A
smaller bandwidth can lead to kernel estimation under smooth-
ing. Figure 10 plots the MAE values of the forecasting model
trained with our method when it uses different o values. As
Figure 10 shows, the forecasting performance slightly changes
(ranging from 0.48 to 0.53) when using different o values. The
forecasting model offers the best performance (M AE = 0.48)
when our method sets o to 2.5. The results show that the solar
power generation forecasting model produced by our method
is resilient to changes in the bandwidth factor.

B. Performance of Our Solution

We then evaluate the performance of our time slot-based
cycle assignment method combined with our solar forecasting
method, comparing it against four baselines: Algorithm 1,
Algorithm 2, our method with the forecasting model trained
with D, and our method with the forecasting model trained
with D!. We deploy the base station and four end devices
in an outdoor environment and measure their performance
when they use four different solutions. Figure 11(a) plots the
minimum SOC achieved during each of the seven testing days.
As Figure 11(a) shows, only our solution can prevent the end
device from running out of battery. The SOC values under
our solution vary from 17% to 39%. As comparisons, the end
devices that employ the forecasting models trained with D
or D! run out of battery during its first day. The end devices
that use Algorithm 1 or Algorithm 2 to assign cycles run out
of battery during the second or third day.

TABLE 1
NUMBER OF TIME SLOTS WITHOUT ANY SAMPLES IN EVERY TESTING DAY
BECAUSE OF THE DEAD BATTERY. HERE, W D% MEANS MODEL WITH
WEB DATA, W D! MEANS MODEL WITH LOCAL DATA.

Day Algl [ Alg2 [ wD¥ [ wD' | Ours |

1 0 26 9 19 0

2 0 26 31 31 0

3 26 31 32 33 0

4 27 29 30 30 0

5 15 27 28 29 0

6 2 28 28 28 0

7 14 28 27 27 0
[Overall | 84 [ 195 [ 185 | 197 | 0 |

Figure 11(b) plots the minimum number of samples col-
lected by the end devices in any time slot during each day.
By running our solution, the end device can collect at least
75 samples during each 30-minute window. In comparison,
the end devices that run all the baselines cannot perform
environmental sensing cycles without interrupts.

Table I lists the number of time slots without any samples
collected. As Table I lists, our solution is the only one that
allows the end device to carry out data collection without
interruptions during the entire seven days.

VII. RELATED WORKS

Solar forecasting has been studied in the literature of Wire-
less Sensor Networks (WSNs) [16], [17]. For example, nu-
merical weather prediction is a physics-based prediction model
widely used with machine learning post-processing [18]. Selvi
et al. demonstrated the benefits of using regressive and Deep
Neural Network (DNN) models for solar forecasting [19].
Solar energy generation is highly dependent on weather con-
ditions, including cloud cover, temperature, and atmospheric
conditions. The inherent variability and unpredictability of
weather make it challenging to accurately forecast the amount
of generated solar energy, especially for short-term or intra-
day forecasts [20]. While machine learning models offer
promising improvements in solar forecasting accuracy, they
require large datasets for training and validation. Developing
and refining these models to improve their predictive accuracy
and generalizability across different geographical locations and
conditions is an ongoing challenge. In contrast to the existing
efforts, our work focuses on closing the location-specified gap
by leveraging the correlation between temperature, humidity,
and solar power generation to train a solar power generation
forecasting model with publicly accessible data and a small
number of local measurements.

Many approaches have been developed in the literature to
balance the power consumption of an end device by scheduling
its workloads. For instance, Caruso et al. proposed a method
that schedules a list of tasks by solving an optimization
problem with the current allotted energy available on the
device as input [21]. Audet et al. developed an algorithm that
schedules recurring tasks based on the harvested energy and
the cost of each task [22]. Compared to the existing work, this
paper focuses on investigating how to leverage solar power
forecasting to schedule the duty cycle of an end device to



maximize the number of samples it collects in each time
period without running out of battery. Our work is therefore
orthogonal and complementary.

Domain Adaptation aims to learn from one or multiple
source domains and produce a model that performs well
on a related target domain and has been successfully used
in computer vision [23], natural language processing [24],
industrial network configuration [25], and building occupancy
estimation [26]. Recent work has focused on transferring
DNN representations from a labeled source dataset to a target
domain where labeled data is sparse or non-existent. The main
strategy is to guide feature learning by minimizing the differ-
ence between the source and target feature distributions. MMD
has been successfully used for domain adaptation, which
computes the norm of the difference between two domain
means (the expectations of the source and target domain) [27].
For example, Tzeng et al. used MMD in addition to the regular
classification loss on the source to learn a representation that
is both discriminative and domain invariant [28]. Despite the
extensive literature on domain adaptation, little work has been
done to investigate whether it can be applied to close the
location-specified gap in solar energy generation forecasting
with the teacher-student neural network. To our knowledge,
our work is the first that leverages the teacher-student neural
network to adapt the solar energy generation forecasting model
trained from one location to another using publicly accessible
data and a small number of local measurements.

VIII. CONCLUSIONS

In this paper, we show that solar energy generation fore-
casting plays an important role in the performance of an envi-
ronmental sensing platform, formulate solar power generation
forecasting as a machine learning problem, and develop a
novel domain adaptation-based method to train the solar power
generation forecasting model using publicly accessible data
and a small number of local measurements. In addition, we
develop a new method that schedules the duty cycles of an
end device to maximize the number of samples it collects in
each time period without running out of battery. Experimental
results show that our solution outperforms the baselines and
effectively supports end devices to perform environmental
sensing operations without interruptions.
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