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A geometric model for blocks of Frobenius kernels

Pramod N. Achar and Simon Riche

Abstract. Building on a geometric counterpart of Steinberg’s tensor product formula
for simple representations of a connected reductive algebraic group G over a field of positive
characteristic proved in [AR3], and following an idea of Arkhipov—Bezrukavnikov—Braverman—
Gaitsgory—Mirkovié¢, we define and initiate the study of some categories of perverse sheaves on
the affine Grassmannian of the Langlands dual group to G that should provide geometric models
for blocks of representations of the Frobenius kernel G1 of G. In particular, we show that these
categories admit enough projective and injective objects, which are closely related to some tilt-

ing perverse sheaves, and that they are highest weight categories in an appropriate generalized

sense.
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1. Introduction
1.1. Overview
Let k be an algebraically closed field of characteristic £>0, and let G be a

connected reductive algebraic group over k. We also let G be a connected reductive
algebraic group over an algebraically closed field of characteristic p#/£ such that the
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Langlands dual group G}/ over k is the Frobenius twist G® of G. The Finkelberg—
Mirkovié¢ conjecture [FM] predicts(!) that when £ is larger than the Coxeter number

h for Cv}, the category of (étale) Iwahori-constructible perverse k-sheaves on the
affine Grassmannian Gr of G, denoted by Perv;, (Gr, k), should be equivalent to the
(extended) principal block of G. See [AR3, §1.2] for a precise statement and further
discussion. In anticipation of this conjecture, one might look for “representation-
theoretic phenomena” in Perv; (Gr,k), which might hold with milder assumptions
on £. The present paper and its companion paper [AR3] (where we established a
formula for convolution products of certain simple perverse sheaves, modeled on the
Steinberg tensor product formula for group representations, without any restriction
on ¢) both pursue this idea.

More specifically, the motivation for the present paper is as follows. Let él
denote the first Frobenius kernel of G. The representation theory of él is, of
course, closely related to that of G: indeed, as illustrated in, say, [Ja, Chap. I1.3],
it is essential to study G1 modules even if one is prlmarlly interested in provmg
results about G. It is often convenient to also study GlT—modules where TC G
is a maximal torus. Our goal in this paper is to construct and study two new
abelian categories, to be denoted by modI (R) and mody (R) that are related to
Pervy, (Gr,k) in the same way that G1 -representations and G T—representatlons
respectively, are related to G- representations.

1.2. Main results

For most of the paper, we can work with more general fields than those con-
sidered in §1.1. Let p and ¢ be distinct primes, and let k be a field of one of the
following kinds:

1. a finite extension of @, containing a nontrivial p-th root of unity;

2. an algebraic closure of Qy;

3. a finite extension of Fy containing a nontrivial p-th root of unity;

4. an algebraic closure of Fy.

We will fix a maximal torus T' and a Borel subgroup B in G such that T'C B. For
technical reasons, we will assume that the quotient of the character lattice of T' by
the root lattice is torsion-free. (This condition holds, for instance, if G is semisimple
of adjoint type.) Our constructions will make use of ind-objects in categories; we
recall in §5.1 the basic facts on this construction that we will use, with references
to [KS].

(1) When this paper first appeared in preprint form, the Finkelberg—Mirkovié conjecture was
open, but a proof has recently been obtained (under assumptions slightly stronger than ¢>h) by
Bezrukavnikov and the second author [BR2].
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Let Y be the cocharacter lattice of T'. The category mod}; (R) consists of cer-
tain Y-graded ind-objects in Pervy (Gr, k) equipped with an action of an algebra
ind-object denoted by R (on the right). Here R is the ind-object in the Satake
category Perv.+q(Gr, k) of perverse sheaves on Gr which are equivariant with re-
spect to the action of the positive loop group LG that corresponds to the regular
representation ¢(G®) under the geometric Satake equivalence discussed in §1.4
below; this category acts on Pervy (Gr,k) by convolution on the right, so that it
makes sense to consider R-modules in ind-objects in this category. The precise def-
inition will be given in Section 5. For now, we remark that there is an easy way to
take an ordinary perverse sheaf Fe€Pervy, (Gr,k) and produce an ind-perverse sheaf
(F )Emod{ (R) by taking the “free R-module on F.” This construction yields a
functor

®: Pervy, (Gr,k) — mod} (R).

Let W be the Weyl group of G, and let We;:=W XY be the extended affine
Weyl group. The following statement gathers some of the main results of this paper
(see Theorems 5.6 and 7.9 and Propositions 7.7, 9.5, 9.7 and 9.21). (The partial
order < appearing in (3) is Lusztig’s “periodic order” on Wey, whose definition
is recalled in §2.5. In (2), an element of Wey is called restricted if it sends the
fundamental alcove to an alcove in the restricted region; see [AR3, §2.4] for a precise
definition.)

Theorem 1.1. 1. The category mod}i (R) is a finite-length abelian cate-
gory.

2. For each weWeyy, there is a simple object ﬁwemod}: (R), and the assign-
ment wrs L, yields a bijection

Wext — {isomorphism classes of simple objects in mod}i (R)}.

If w is restricted then L., is the image under ® of the simple object in Pervy, (Gr, k)
labeled by w.

3. In the Serre subcategory of mod}i (R) generated by the objects ﬁy with y#w,
L., admits a projective cover §w and an injective hull 2;1

4. For each weWey, there is an object @w m HlOd}i (R) that is both the injec-
tive hull and projective cover of L. Moreover, @w admits a filtration with subquo-
tients of the form ZA’y, and a filtration with subquotients of the form 23’/

The objects Z,, and ZA{U appearing in (3) are geometric incarnations of baby
Verma and baby co-Verma G;T-modules. All of the properties in Theorem 1.1 are
geometric counterparts of standard results on G;T-modules using the dictionary

explained in §1.4 below. For instance, see [Ja, Proposition 11.9.6] for (2) and [Ja,
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Proposition 11.11.4 and §11.11.5] for (4). (Note that we do not impose any restriction
on / in this theorem, although the conjectural translation to Representation Theory
requires £ to be larger than the Coxeter number.)

We will also prove similar results for the category mody, (R) of non graded
R-modules that we do not state here, see Section 8.

1.3. Some comments on Theorem 1.1

In this subsection we make a few comments on Theorem 1.1, that are not used
in the rest of the introduction.

The broad form of Theorem 1.1 is motivated by the following observation: if
we replace “finitely generated Y-graded R-modules in ind-perverse sheaves on Gr”
by “finitely generated Y-graded modules over the coordinate ring of GO in ind-
finite-dimensional é—representations,” we arrive at a category that is equivalent to
the category of finite-dimensional (v}l’f—representationsz see Section 4 for a precise
statement.

In the body of the paper we will define two versions of the category mod}i (R),
based on two different approaches to interpreting the phrase “finitely generated” in
geometric terms. Proving that these two definitions in fact give rise to the same
category (see Theorem 7.9(1)) is what will require most of our efforts. The construc-
tion and study of projective and injective objects is essential to our approach to this
question. This study also proves in passing that mod}i (R) is a highest weight cat-
egory in a generalized sense recently formulated by Brundan—Stroppel [BS], which
implies the second sentence in Theorem 1.1(4).

We will actually prove a more general version of Theorem 1.1 that accommo-
dates “Whittaker perverse sheaves” on Gr, rather than just Iwahori-constructible
perverse sheaves. The Whittaker versions of this theorem are not merely general-
izations for their own sake: our proof of Theorem 1.1, even in the simplified case
stated above, makes crucial use of functors that allow us to pass to and from various
Whittaker versions.

Another key tool in the proof of part (4) is the “Iwahori-Whittaker model for
the Satake category” of [BGMRR]. The counterpart of mod{ (R) in the setting
of [BGMRR] turns out to be equivalent to the category of finite-dimensional repre-
sentations of the torus T: in particular, it is a semisimple category, and thus has
a rich supply of projective and injective objects, which give rise to projective and
injective objects in our other categories via appropriate averaging functors.

Remark 1.2. 1. In the case k=Qy, parts (1)—(3) of Theorem 1.1 were previ-
ously obtained by Arkhipov-Bezrukavnikov—Braverman—Gaitsgory—Mirkovié¢
[ABBGM]. (Indeed, our definitions of the category mod}; (R) and of the objects
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L, 2! and Z,, are essentially copied from [ABBGM].) Thus, for k=Qy, the main
new contribution of the present paper is the study of projective/injective objects in
mod}i (R).

2. Let us mention in passing that, in case k has characteristic 0, our methods
also provide a geometric proof that the abelian category Perv; (Gr,k) has enough
projectives and injectives, and that these two classes of objects coincide: see §7.1.
(In contrast, for k of positive characteristic, Pervy, (Gr,k) has no nonzero projective
or injective objects unless G is a torus.) This fact was previously known: it can be
deduced from a representation-theoretic result of Andersen—Polo-Wen [APW] via
intermediaries discussed in Remark 1.4 below. The problem of finding a geometric
proof of this property was in fact the starting point of this work. It finally allows
us to answer a question that we asked ourselves (and a few colleagues) more than
ten years ago.

1.4. A Finkelberg—Mirkovi¢ conjecture for the Frobenius kernel

In this subsection, we make precise the expected relationship between mod}: (R)
and the category of él’f[/‘—representations. (These considerations have obvious ana-
logues relating the “Whittaker” variants of mod}i (R) considered in the body of
the paper to singular blocks of él’i‘-representations; we leave it to the reader to
formulate these variants.) This subsection is for motivation only; it does not play
any logical role in the rest of the paper.

We assume in this subsection that k is an algebraic closure of F,. Let Rep(é),
resp. Rep(élrj[/‘), be the category of finite-dimensional rational é-, resp. él'f-,
representations. Then there is a forgetful functor

For : Rep(G) —» Rep(G,T).

Here is a brief review of the representation theory of (v;q'f, following, for instance [Ja,
Chap. 11.9-11]. For each M€Y, there is a baby Verma module 2()\) and a baby
co-Verma module Z'()\), both with highest weight A. The socle of Z'(\) can be
identified with the head of Z()), and this irreducible module is denoted by L()).
Every simple G;T-module is of this form (for a unique A€Y). The module L()\)
admits an injective hull Q()) that is also its projective cover. Moreover, Q(\) admits
filtrations by both baby Verma modules and baby co-Verma modules.

Assume now that £>h, where h is the Coxeter number for Cv}, and that the quo-
tient of the cocharacter lattice of T' by the coroot lattice has no ¢-torsion. (See [AR3,

~ ~

Remark 1.2(2)] for a discussion of this assumption.) Let Repp)(G)CRep(G) and
Rep[o](él'f)CRep(él’f) be the extended principal blocks of G and of él'i‘, re-
spectively, i.e. the Serre subcategories generated by simple modules whose highest
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weights lie in Wey-¢0, where -y denotes the “/-dilated dot action.” The Steinberg
tensor product formula implies that the forgetful functor For:Rep(G)—Rep(G1T)
restricts to a functor

Fory : Repyg (G)— Repyq (G, T).

Tensor product with the pullback of representations along the Frobenius morphism
Fr:G—G® induces actions of the category Rep((v}(l)) on both of these categories,
and Forg commutes with these actions.

N Consider now the Satake category Perv.+g(Gr,k), its convolution product
cta

* , and the geometric Satake equivalence

Sat: Perv+ ¢ (Gr, k) —= Rep(G™)

of [MV]. As mentioned in §1.2 there is a natural action of the monoidal category
Perv,+g(Gr,k) on Pervy (Gr,k) by convolution on the right; the corresponding
bifunctor will also be denoted £ €. Recall that the Finkelberg—Mirkovi¢ conjecture
asserts the existence of an equivalence of categories

FM: Pervy, (Gr, k) - Repyg (G)
together with a natural isomorphism
FM(F+£" ¢ G) = FM(F) @ Fr* (Sat(sw(G)))

for FePervy, (Gr, k) and GePerv o+ (Gr, k), where sw is a certain autoequivalence
of Perv.+g(Gr,k) induced by the inversion map in the loop group. We refer the
reader to [AR3, §1.2] for more precise definitions of the notation, and further dis-
cussion of this statement.

Since the convolution product in the Satake category is commutative, convolu-
tion on the right induces an action of the category Perv,.+g(Gr, k) on mod}{:1 (R); the
corresponding bifunctor will once again be denoted *£7G The following statement
is a consequence of the results of this paper.

Proposition 1.3. Assume k is an algebraic closure of Fy, and that the Finkel-
berg—Mirkovié conjecture holds for G. Then there exists an equivalence of categories

FMpwob : mod) (R) < Repyg; (G1T)

such that
FMFrob cdP=FMo FOI‘O,

which satisfies

FMFr0b<ﬁw>gE(w_l'20)a FMFrOb(éw)gQ(w_l'fo)v
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FMF\rOb(é\w)gz(w_l'ZOL FMF‘rob(é\i/u)gz/(w_l'ZO)
for any wEWeyt, and such that
FMpron (F#5 ¢ G) 2 FMpyp (F) @Fr* (Sat(sw*G))

functorially for any F in modz (R) and G in Pervo+g(Gr, k).

A Dbrief sketch of the proof is as follows: the equivalence Sat extends to an
equivalence on ind-objects, and this extension sends R to the G- representation
7z (G(l)) by construction. In Section 4, we will review how to describe the category
Rep[o](Gl ) in terms “finitely generated Y-graded 0(G ( (1)-modules on ind-objects

in Repyg (Gl). The transport of this description across FM is precisely the definition
of mod}: (R).

Remark 1.4. For k of characteristic 0, the categories Pervy, (Gr,k) and
mod}i (R) are not related to representations of G or Gy, but rather to their quantum
analogues. Specifically, the quantum counterpart of the Finkelberg-Mirkovi¢ conjec-
ture is a theorem of Arkhipov—Bezrukavnikov—Ginzburg [ABG] relating Pervy, (Gr, k)
to the principal block of a quantum group U¢(g) at a root of unity. As observed
in [ABBGM], a quantum analogue of Proposition 1.3 holds in this setting: for k=Q,
the category mod}‘(‘ (R) is equivalent to the principal block of graded representations
of the small quantum group uc(g).

Note that in [ABBGM] the authors provide a third incarnation of the same
category, in terms of perverse sheaves on a semi-infinite affine flag variety. It is likely
that a similar description can be obtained in our setting of positive-characteristic
coefficients; this question will be the subject of future work.

1.5. Tilting G-modules and projective G, T-modules

In view of the discussion in §1.4, the second sentence in Theorem 1.1(2) is a
geometric counterpart of the fact that simple G-modules with restricted highest
weight remain simple as G T-modules. There is another class of G-modules whose
behaviour upon restriction to GlT is remarkable, namely the tzlt’mg modules. The
geometric counterpart of tilting modules in the principal block of G are the tilting
perverse sheaves in Pervy (Gr, k).

In Propositions 7.11 and 9.26 we determine which indecomposable tilting per-
verse sheaves are sent to projective/injective R-modules by the functor ®, pro-
viding a geometric counterpart of [Ja, Lemma E.8]. Another very interesting
property of this operation (long known to hold if p>2h—2, recently improved to
p>2h—4 [BNPS2], and conjecturally in greater generality) is that some of these
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indecomposable tilting modules remain indecomposable as élf[/‘—modules. It is one
of our motivations for developing this theory to provide new tools to understand
this property. We study this question in §8.3, but we must admit that our progress
towards solving this question is very modest so far.

1.6. Contents of the paper

In Section 2 we prove a number of combinatorial results on the affine Weyl
group attached to a connected reductive algebraic group G. In Section 3 we collect
some facts on various categories of perverse sheaves on the affine Grassmannian
Gr and the affine flag variety FI of G. Most of these results are known to some
extent, but many proofs are not available in the literature in the generality we
require, so that we discuss some details of the proofs. In Section 4 we explain some
constructions that allow us to describe modules over the Frobenius kernel (or some
variants) of a connected reductive algebraic group G in terms of representations
of the whole group. These constructions will serve as guiding principles for many
constructions in the rest of the paper, and justify Proposition 1.3.

In Section 5 we introduce our main object of study, the category mod}i (R),
together with a variant Mod}i (R)fen. We show that the second of these cate-
gories is a finite-length abelian category, in which we classify the simple objects,
and define some geometric incarnations of baby co-Verma modules. (We also
treat some “Whittaker-type” analogues in parallel.) In Section 6, exploiting re-
sults from [BGMRR] we study some perverse sheaves on Gr arising from the “big
tilting perverse sheaf” on the flag variety of G, and derive some first applications to
the study of (geometric) baby co-Verma modules. In Section 7 we prove that the
categories mod}i (R) and Mod}; (R)fen coincide, that these categories have enough
injectives and enough projectives, and also that these classes of objects coincide and
are closely related to tilting perverse sheaves on Gr. (Again, all of these results are
proved also in the Whittaker setting). In the course of the proof of these results,
we show that these categories satisfy the “generalized highest weight” formalism of
Brundan—Stroppel [BS].

In Section 8 we study a variant of our formalism that omits part of the struc-
ture. Finally, in Section 9 we define a duality functor on mod}i (R), and use this
functor to define geometric counterparts of baby Verma modules. We also prove a
number of results regarding the combinatorics of the category mod}‘(‘ (R) that are
analogues of known results on representations of Frobenius kernels.
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1.7. Conventions on fields

The notation k is used in this paper as follows:

 In sections devoted to motivation from or analogies with algebraic groups,
k is an algebraically closed field of characteristic £. This applies to §1.1, §§1.4-1.5,
and all of Section 4.

o In all other parts of the paper, k may be any field satisfying the assumptions
from §1.2.
We will denote by s an algebraically closed field that will be the ground field
over which we define the affine Grassmannian and the affine flag variety. Starting
from §3.4, s is assumed to have positive characteristic. Finally, we will write K and
F for parts of an /-modular system in §9.3 and part of §9.6.

2. Combinatorics of the affine Weyl group
2.1. The extended affine affine Weyl group

Let ¢ be an algebraically closed field, and G be a connected reductive algebraic
group over . We fix a Borel subgroup BCG and a maximal torus T'C B. We will
denote by X:=X*(T) the character lattice of T, by RCX the root system of (G, T),
by Y:=X,(T) the coweight lattice, and by SRY CY the coroot system; the natural
bijection from R to R will be denoted a+a as usual.

We will denote by PRy CR the system of positive roots consisting of the
T-weights in Lie(G)/Lie(B), and by Rs the associated basis of S8. The correspond-
ing sets of dominant coweights and strictly dominant coweights will be denoted Y
and Y4 respectively. We will denote by W the Weyl group of (G,T). If we de-
note by SCW the subset consisting of the reflections s,v for a€Rg, then it is well
known that (W, S) is a Coxeter system. The longest element in this group will be
denoted w..

We will assume that X/ZR has no torsion, or in other words that the restriction
morphism

Y — Homgz(ZR, Z)
is surjective. (This is equivalent to requiring that the scheme-theoretic center of G
be a torus.) In particular, this condition ensures that there exists ¢€Y such that

(o, 6)=1 for all a€Rg; we fix such an element once and for all.
The affine Weyl group associated with G is the semidirect product

Waff ZZW[XZ%V,
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where ZRY CY is the lattice generated by JRY. For A€ ZRY, we will write ¢, for the
corresponding element of W,g. It is a standard fact that if we denote by S.g CWag
the subset consisting of S together with the elements tgvsgvy where Y €RY is
a maximal short coroot, then the pair (Wag, Sag) is a Coxeter system. Moreover,
classical results of Iwahori-Matsumoto [IM] show that the associated length function
on Wa,g can be described by the following formula for weW and A€ZRY:

(2.1) lwt )= > [ha)+ > [+ el

aER aER4
w(o) ER4 w(o)E—Ry
The formula on the right-hand side of (2.1) makes sense more generally for
A€Y, which lets one to extend the function ¢ to the larger group

Wext =W [><Yv7

in such a way that £(ww’) <l(w)+£(w’) for any w,w’ € Wey. The subgroup Wag C
Wexs is normal, and if we set

Q= {w € W | £(w) =0}

then Q is a finitely generated abelian group acting on W,g (via conjugation) by
Coxeter group automorphisms. Multiplication induces a group isomorphism

Qx Waff — Wex‘m

and f(ww)=0{ww)=0(w) for any wEWe and weQ. We can also “extend” the
Bruhat order < on Wz to Wy by declaring that for w,w’€Q and w,w' € Wog we
have ww<w'w’ iff w=w’ and w<w’. (The same rule will then also apply when
switching the order of w and w.) We define a reduced expression for an element
wEWeyt to be an expression of the form w=s;i...s,w or w=ws;...s, with weld,
8; € Sagr for any i€{1,...,r}, and r=~»(w).

Given a subset AC S,g, we will denote by W4 the subgroup of W,.g generated
by A. We will say that A is finitary if Wy is finite; in this case we will denote
by wa the longest element in Wy. If A is finitary, the theory of Coxeter systems
guarantees that for any w&Wey, the coset Waw, resp. wW,, admits a unique
maximal, resp. minimal, element with respect to the Bruhat order. In particular,
for A=S, we will denote by WS(tCWext the subset consisting of elements w which
are minimal in wW. The basic properties of minimal coset representatives recalled
above guarantee that the composition WeS t = Wext = Wext /W is a bijection.

X
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2.2. Geometry of alcoves and restricted elements

Consider the vector space V:=Y ®z;R, and the action of Wy given by
(trw)-v=w(v)+A

for weW and M€Y, where W acts on V via its natural action on Y. In V we have
the affine hyperplanes defined by

Hg,:={veV|{B,v)=n}

for R and neZ, which are permuted by the action of Weyxt. The connected
components of the complement of the union of these hyperplanes are called alcoves;
if we set

Wtuna :={v eV |VBERL, 0<(B,v) <1},

then Aguna is an alcove (called the fundamental alcove), and the assignment w—
w(Asuna) induces a bijection from Wey/Q (where Q is as in §2.1) to the set of
alcoves. If

C={veV|VBeRy, (8,v) >0},

then it is a standard fact that
(2.2) W ={w € Wt | ™" (Aguna) CC}-
For peY we set
I, ={veV|VaeR,, (o, pu)—1<(a,v) < (o, )}

our assumption on X/ZR ensures that each alcove is contained in a subset of this
form (sometimes called a boz). Of particular importance is the set

M. ={veV |VaeR;, 0<{a,v)<1}.

This set (which is evidently independent of the choice of ¢) contains RAg,,g and is
sometimes called the fundamental box. We define the subset of restricted elements
in Weyt by setting

ngi = {’U) € Wext | wil(glfund) C H(}-

Since any alcove belongs to a subset II,,, any element w of Wey, can be written as
a product w=yt, with ye W ¥ and A€Y. It is easy to see that

ext
(2.3) Weit:{xt/\ rwe WL, /\€—Y+},

see [AR3, §2.4] for details.
Let us also record the following property, proved in [AR3, Lemma 2.7], which
shows in particular that lengths always add in a decomposition given by (2.3).
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Lemma 2.1. For any weWs, and A€ =Y we have £(wty)=L(w)+L(t).

X

As explained above, given w€ Wy there exists u€Y such that w™! (Uguna) C

IT,,. We then set

A
W =wtwet_y,.

(Here p is unique only up to addition of a coweight v orthogonal to all roots; however
the product ¢,w.t_, is independent of the choice of y, so that this definition makes

sense.) This definition is chosen in such a way that wA(Qlfund):w(a;d), where
the operation on alcoves A A is as in [So, p. 98] (see also [RW, §2.2]). Tt is easily
seen from the definition that if we W3, then w® €Wz, and that for we Wy and
M€Y we have

(24) (wt)\)A:U)At)\.

Note that (w”®)~!(Asuna) CI,4c. Using this observation, we can write down
the inverse of the map w—w?®: it is given by

(2.5) v vt,_ w.tc_, where v_l(Qlfund) cII,.

2.3. A length computation

Lemma 2.2. If ze W% and y=t.w.x~!, then we have
Uz)+L(y) =L(tcw.).

Proof. Using (2.1) we see that £(tcw.)=(2p,¢)—£(w.). On the other hand,
write z=wt) with A€Y and weW. Then we have

lz)= > U N+ D [1+{a N

a€ERy a€ERy
w(o) ER 4 w(a)e—R4

By [AR3, Lemma 2.6], on the right-hand side we have (o, A\)<0 for any a€R,.
Moreover, if w(a)e—R, then at least one simple root v appearing in the decom-
position of « as a sum of simple roots must satisfy w(v)€—9R,; we therefore have
(o, \)<—1 in this case. We deduce that

Ux)=—(2p, \) —L(w).

)= > HewM=9l+ D [T+{aw ()=l

aERL aERL
ww. (o) ER 4 ww. () E—Ry

Similarly we have y=tcw.x ™' =t _,, (yw.w ™' =(ww.ty (\)—c) "', and hence



A geometric model for blocks of Frobenius kernels 229

Setting f=—w.(«) we obtain that

)= D IBA—w()+ Y =B, A=w.(o)].
BERL BERL
w(B)e—R4 w(B)ER 4

For the same reason as before, we have (3, A—w.(s)) >0 for any S€R, and (8, \—
w.(s))>1 if w(B)eR,. It follows that

U(y) =(2p,6)+(2p, \) —F#{BER, |w(B) €RL } =
(2p,6) +(2p, \) —L(w.w) = L(t;w.) —L(z),

as stated in the lemma. [

2.4. Coset representatives

Let ACS.g be a finitary subset. We will denote by AWeitCWext the sub-
set consisting of the elements w such that {(waww.)=~€(wa)+l(w)+{(w,). Other
characterizations of these elements are given in [AR3, Lemma 2.4]; in particular we
have
(2.6) wetWws

S <= wis minimal in W w and vw € W2, for any v € W.

(Of course, this shows that AWS, W53

ext ext*

) We set

AWres N AWS AT/ res

ext * T ext ext "

Then as explained in [AR3, §2.5] we have

(2.7) AWS, ={wty:we WIS, Ne -Y, }.

ext — extr

‘We now set
AWese = {wty :w € AW A€ Y}

We emphasize that AWt is not the set of elements w which are minimal in their
coset Waw. However, this subset is also a set of representatives for the quotient
Wa\Wext, as stated in the following lemma.

Lemma 2.3. The composition
Acht — cht — WA\cht

18 a bijection.



230 Pramod N. Achar and Simon Riche

Proof. We first prove surjectivity. Let w&Wey. Then there exists A€ Y such
that t\w ™ v(Ugunq) CC for any veWy4. If we fix such a A, by definition all the
elements vwt_y (vEW4) belong to WS, . If veWy is such that vwi_y is minimal

ext*
in Wawt_y, then vwt_y belongs to AW, by (2.6). By (2.7), there exist yc AW

ext
and p€—Y such that vwt_y=yt,. Then w:v_lyt)\ﬂb, proving surjectivity.

As for injectivity, we consider y,y' €AW and A\, N €Y such that
WAyt)\ = WAy/t)\/ .

Multiplying on the right by an antidominant element we can assume that A, \' €
~Y . Then yty and 3ty belong to AW, by (2.7); in particular these elements
are minimal in their respective cosets Wayty and Way'ty:, see (2.6). Since these

cosets coincide, this implies that yt)=vty:, as desired. [

2.5. The periodic order

In this subsection we introduce an order on Wey which is different from the
Bruhat order, and which will play a crucial role in our constructions. Recall that any
w€EWexs can be written as yt,, for some ye Wie and peY, see §2.2; in particular,
in view of (2.3), there exists A€ Y such that wty€WS5,. More generally, given any
finite collection wyq, ..., w, of elements of W, there exists A€Y such that w;t)

belongs to Wz, for any i€{1,...,r}.

Lemma 2.4. Let y,y' €Weyt. The following conditions are equivalent:
1. there exists N\€Y such that yty and y'ty belong to WS, and yty<y'ty in the
Bruhat order,

2. for any N€Y such that yty and y'ty belong to W2

X

. we have yty<y'ty in the
Bruhat order.

Proof. Of course (2) implies (1), since as explained above there exists A€Y
such that yt) and y't, belong to Wgct. Conversely, suppose that (1) holds, and
fix some A€Y which satisfies this condition. Let 4€Y be such that yt, and y't,
belong to W2,
a standard compatibility property of the Bruhat order with multiplication when
lengths add (see [AR3, Lemma 2.1]) and Lemma 2.1, from the fact that yt) <y'ty,

we deduce that yt, <y't,, and then that yt, <y't,, as desired. O

and choose r€Y such that v—\ and v—p are antidominant. Using

We define the periodic order < on Wey by saying that y <y’ iff y and 3’ satisfy
the equivalent conditions of Lemma 2.4. In other words, if A€Y is any element
such that yty and y'ty belong to W23, , we have y=vy’ iff yt)<y'ty.

The following lemma gathers some easy properties of the periodic order.
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Lemma 2.5. 1. If weWeyt and SESag, then we have either sw=w or
w=sw.

2. If y,y €EWexy and peY we have y=y' iff yt, <y't,.

3. If y,y' €W, we have y=y' iff y<y'.

4. If y,y' € Wexs satisfy y=3y', and if sS€Sag satisfies sy=y, then we have sy=y’
and sy=sy’.

5. If y, y' € Wy satisfy y=y’, and if s€ Sag satisfies y' <sy’, then we have y=<sy’
and sy=sy’.

Proof. (1) Fix A€Y such that yt) and syty belong to W2,. Then we have
either yt) <syt) or sytyx<ytx. In the first case we have y=<sy, and in the second
case we have sy=y.

(2) If A€ is such that yt, and y'ty belong to W3, then by definition we have
y=y' iff ytx <y'tx. On the other hand we have (yt,)tr_,=ytx and similarly for 3/,
so that this condition holds iff yt, <y't,.

(3) This property is obvious from the definition (taking A=0).

(4) Of course we have sy=y=y’, and if ¢y <sy’ then sy<y=<y'<sy’. Now
assume 3’ >=sy’, and choose A€Y such that yty, y'ty, sytn and sy'ty all belong
to W3,. Then we have syty<ytr<y'tx and sy't\<y'ty. By the last inequality,
there exists a reduced expression y'ty=ss1...s,w with each s; in S,g and we.
Then yt) admits a reduced expression obtained by omitting some of the simple
reflections in this expression. If s is not among the omitted simple reflections, then
clearly syty<si...s,w=sy'ty. If s is omitted then we also have syt)<sy't, by the
exchange condition. Hence sy=<sy’ in all cases.

(5) Of course we have y=<y' <sy/, and if sy=<y then sy<y=<y'<sy’. Now assume
sy>=y, and choose A€Y such that yty, y'ty, syty and sy'ty all belong to W,. Then
we have yt) <y'ty, ytr<syt and y'ty<sy't,. Fixing a reduced expression for y'ty,
an expression for yty can be obtained by omitting some reflections. Adding s on
the left we obtain a reduced expression for sy’ty, from which an expression for syt
can be obtained by omitting the same reflections. This shows that syt)<sy't,, and
hence that sy=<sy’, as desired. [

Remark 2.6. Now that we have introduced the order <, we can reinterpret
Lemma 2.3 (and its proof) as saying that AW consists of the elements w e Wy
which are minimal for the order < in the coset Waw (and that each such coset
contains a unique minimal element).

Lemma 2.7. Let y,y' € Wey. Then y=y' if and only if way=way’.

Proof. In view of (2.7), there exists A€Y such that yty and y'ty belong to
AWs

ext*

Then by definition y =y’ if and only if yt\<y't). By (2.6) the elements yty
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and 7ty are minimal in their respective cosets Wuyty and Way'ty, which implies
that

Llwayty) =Lwa)+L(yty), Llway'ty)=L(wa)+L(y'ty).
By the compatibility property of the Bruhat order with multiplication when lengths
add (as used in the proof of Lemma 2.4; cf. [AR3, Lemma 2.1]), this implies that
yta<y'ty if and only if wayty<way'ty. Finally, by (2.6) the elements w4yt and
way'ty belong to W23, : we therefore have wyty <way'ty if and only if way=<way’,

ext?
and the lemma follows. O

2.6. The Hecke algebra and the left spherical module

Let v be an indeterminate, and let H.yx; be the Hecke algebra of Wey over
Z[v,v~ Y. Recall that this is a Z[v,v~1]-algebra that is free as a Z[v,v~!]-module,
with a basis (called the standard basis) (Hy:w€Weyt), and with multiplication
determined by the following rules:

HyHy = Hy, if {(zy) =L(x)+L(y),
HE:He—k(v*l—v)Hs for all s € S,q.

(Here and below we will follow the notational conventions of [So].) The algebra
Hext is also equipped with a canonical basis [KL1], denoted by

(ﬂw Tw e Wext)7

and uniquely characterized as follows: H,, is fixed by a certain involution of Hext
(called the bar involution), and

H, € HQE—Q—Z vZ[v|H,.
y<x

Let us write each of these basis elements in terms of the standard basis:

H, = E hy,oHy;
YEWext

the polynomials hy ,€Z[v] are then known as the Kazhdan-Lusztig polynomials.
Their geometric interpretation (in terms of perverse sheaves) will be recalled in §3.5
below.

We will denote by M the left Hext-module obtained by taking the quotient

M :Hext/Hext'{Hs_v_l S S}
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This module is known as the left spherical module. (Note that much of the relevant
literature, including [So], [RW], treats a similarly defined right Hext-module instead;
however, the left version is better suited to the purposes of this paper. These two
modules can e.g. be related using the anti-involution of Wy given by w—w™!.)
This module remains free over Z[v, v~1]; specifically, if for we Wz, we let M, denote
the image of H,, in M, then

(M, :weWS,)

is a basis for M. This module also admits a canonical basis
(Mw we Wg{t)

characterized similarly to the canonical basis of Hext. In fact, the map h—hH,,
factors through a morphism of left Heyi-modules

<:M_>Hext7

and this module satisfies
C((M,)=H

WW,

for any we Ws

ot See [So]. Equivalently, if we define the polynomials m,, ,, by setting

Mw = § my,wMya
WS

ext

then for y, we WS, we have

€
(2.8) My =Ny ww. for any y' € yw.

We also introduce notation for the “inverse matrix” of (my,w)y,wewsg again
following [So]. Namely, we define the polynomials (m¥*:y,weW2,) by the condi-
tion that

(2.9) M, = Z (—1)£(y)+e(’”>m’”’yﬂy for any x € W2,.
yeWs

ext

The only property of Kazhdan—Lusztig polynomials that will be used below
and for which we do not have a geometric proof is the following.

S (w.)

A
Lemma 2.8. For any weWg, we have m* “'=v .

€

Proof. This equality can be obtained by translating [So, Theorem 5.1] (in the
special case B=A) in our present conventions. [
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3. Perverse sheaves on affine Grassmannians

3.1. The affine Grassmannian and the affine flag variety

We now denote by z an indeterminate, and consider the functor LG, resp. LG,
from s-algebras to groups, which sends R to G(R((z))), resp. G(R[z]). It is well
known that LG is represented by a group ind-scheme over s, and that LG is
represented by a group scheme over . Moreover, the fppf quotient (LG/LTG)gppr
is represented by an ind-projective ind-scheme, which is denoted Gr and called the
affine Grassmannian of G.

There is an obvious morphism of group schemes £7G—G induced by the as-
signment z—0. Let ICLTG and I,CI be the preimages of the Borel subgroup
BCG and its unipotent radical U C B, respectively, under this map. These are both
subgroup schemes of LTG. The group I is known as an Twahori subgroup, and I,
as its pro-unipotent radical.

We will consider also the affine flag variety Fl of G, defined as the fppf quotient
(LG/I)gpps. Again Fl is represented by an ind-projective ind-scheme, and the nat-
ural morphism 7:F1— Gr is a Zariski locally trivial fibration with fibers isomorphic
to G/B.

Let N¢/(T) be the normalizer of the maximal torus TC G, so that Ng(T')/T=W.
For each weW, choose a representative weNg(T'). More generally, if w€ Wy, say
w=uvty with veW and A€Y, we set

w=102" €LG(K).

For we Wy we will denote by Fl,, the I-orbit of the image of w; then it is
well known that Fl,, is also the I,-orbit of w, and is isomorphic to an affine space
of dimension ¢(w). Moreover we have

Flea= || Fl,, and (FL,CFl, <= w<y).
wWE Wext

Similarly, for we W2

X

. we will denote by Gr,, the I-orbit of the image of w in Gr. It
is well known that Gr,, is also the [-orbit of the image of w, that it is isomorphic
to an affine space of dimension ¢(w), and that we have

Glyeq = |_| Gr, and (Gr,CcGr, <= w<y).
wEWext
3.2. I -equivariant perverse sheaves

Let k be a field that is of one of the four kinds mentioned in §1.2. For such a
field, we can consider the Iy-equivariant derived categories D} (F1,k) and D} (Gr,k)
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of étale k-sheaves on Fl and Gr; see [AR3, §3.2] for details. These categories
have natural perverse t-structures, whose hearts will be denoted Pervy, (Gr,k) and
Pervy, (F1,k) respectively.

For any we& Wy we have a “standard perverse sheaf” 2,, in Pervy (F1 k), de-
fined as the -pushforward of the complex kg, [¢(w)] under the embedding F1,,—Fl,
and a “costandard perverse sheaf” .4, in Pervy (Fl k), defined as the *-pushforward
of the complex kg, [¢(w)] under the embedding Fl,, —FI. (These complexes are in-
deed perverse sheaves since this embedding is affine.) The image of the unique (up
to scalar) nonzero morphism Z,,— .4, is simple, and will be denoted .%,,; it is the
intersection cohomology complex associated with the constant local system on Fl,,.
Then the objects (£, :wEWex) are representatives for the isomorphism classes of
simple objects in the abelian category Perv;, (F1 k).

Similarly, for we€ Wz, we have a “standard perverse sheaf” A,, in Pervy, (Gr,k),
defined as the !-pushforward of the complex k¢, [/(w)] under the embedding Gr,, —
Gr, and a “costandard perverse sheaf” V,, in Pervy (Gr, k), defined as the #-push-
forward of the complex kg, [¢(w)] under the embedding Gr,,—Gr. (Once again
these complexes are indeed perverse sheaves since the embedding Gr,, — Gr is affine.)
The image of the unique (up to scalar) nonzero morphism A,,—V,, is simple, and
will be denoted L,,; it is the intersection cohomology complex associated with the
constant local system on Gr,,. Then the objects (L, :weWs5,
for the isomorphism classes of simple objects in the abelian category Pervy, (Gr, k).

Since the morphism 7:Fl— Gr is smooth with connected fibers, the functor

) are representatives

7= n*[dim(G/B)] = n'[— dim(G/B)] : D})u (Gr, k) — D}Du (F1, k)

is t-exact for the perverse t-structures, its restriction to perverse sheaves is fully
faithful, and it sends simple perverse sheaves to simple perverse sheaves, see [BBDG,
Proposition 4.2.5]; more explicitly, in this case we have

(3.1) T Ly = Lo,

for any weWz,.

The results of [BGS, §3.3] show that the category Pervy, (Gr, k) admits a natural
structure of a highest weight category (in the sense of [Ri, §7]) with weight poset
(W5, <); the standard objects are the standard perverse sheaves (A, :weWz,)
and the costandard objects are the costandard perverse sheaves (V,,:weWs,). In
particular, it makes sense to consider the tilting objects in this category, i.e. the
objects which admit both a filtration with standard subquotients and a filtration
with costandard subquotients. The indecomposable tilting objects are parametrized

by W5, ; the indecomposable object associated with w will be denoted T,,. Similar
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comments apply to the category the category Pervy, (Fl,k) (for the weight poset
(Wext, <)). The indecomposable tilting object attached to w will be denoted 7.

We will also occasionally consider the I-equivariant derived categories D?(FI, k)
and D?(Gr,k). We have forgetful functors

For] : D¥(Fl,k) — D% (FlL,k), For] : D}(Gr,k) — D} (Gr,k),

and the objects 2, 4, and A, V,, naturally “lift” to objects of D})(Fl,k) and
DY(Gr, k) respectively (and will be denoted by the same symbol in the equivariant
context). We also have “convolution” bifunctors

DP(F1,k)x DY(F1, k) — DY(F1,k), D®(F1,k)x D?(Gr,k) — D?(Cr,k),
D} (FLk)x DY(Fl, k) — D} (FLk), D} (FLk)xDY}(Gr, k) — D} (Gr,k),

which will all be denoted !, and are compatible with one another in the expected
ways.

The following lemma gathers some standard properties of convolutions of stan-
dard and costandard objects (see e.g. [ABG, §8.2]).

Lemma 3.1. 1. For w,y€Weyt such that L(wy)=~0(w)+L(y), there exist
canonical isomorphisms

I ~ I ~
Dw* Dy — Dy, Nk Ny —> Ny
2. For weWey, there exist canonical tsomorphisms
DK Noyor 2 D2 N r ¥ Dy,

3. For w,y€Wey, the objects Ny *! Py and .@w*l,/l/y are perverse.
4. For w,y€Wexy such that {(wy)=~L(w)+£(y) and both wy and y belong to
WS, there exist canonical isomorphisms

Dur Dy 5 Ny, Nk V5 Vi

5. For weWey and yeWs

St the objects Noyx' A, and P, %'V, are perverse.

3.3. Relation with the Satake category

Below we will also consider the £ G-equivariant derived category D%, ,(Gr, k).
Once again this category has a natural perverse t-structure, whose heart will be
denoted Perv,+q(Gr,k). For A€Y, we will denote by Ly the image of z* in Gr,
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and by Gr” its £TG-orbit; then Gr” is the union of the I -orbits labeled by the
minimal representatives of the elements (¢,:p€W (X)), and

Grmd: |_| GI‘)‘.

AEY

We will consider these orbits in particular when Ae Y. It is a classical fact that,
in this case, there exists a smooth £1G-equivariant morphism

pr:Gr* — G/B

sending Ly to the base point B/B, where LTG acts on G/B through the natu-
ral morphism £TG—G. Here G/B has the Bruhat stratification by orbits of B,
parametrized by W; its pullback to Gr” identifies with the decomposition into the
I-orbits given by

Gr' = |_| Grytyw, -

weWw

In particular, the unique open I-orbit in Gr™ is Gry, -

The simple objects in the category Perv .+ (Gr,k) are in natural bijection
with Y, via the operation sending A to the intersection cohomology complex zch
associated with the constant local system on Gr*. The forgetful functor

Forij : D2 o (Cr, k) — D}’u (Gr, k)

is t-exact, and restricts to a fully faithful functor on perverse sheaves; moreover we
have

N
Forf “(zc*) =L, ™

for any Ae€Y .
To each A€Y | one can also associate the “standard” and “costandard” objects
defined respectively by

I'# = pTZO(j!HkGr“ [<2p7 p’)])’ If = pTSO(jiLkGr“ [<2pa /.t>]),

where j*:Gr*<Gr is the inclusion and Pr=% Pr=0 are the perverse truncation func-

tors. (Note that j* is not an affine morphism in general, so unlike in the I,-
equivariant case, if we omit the perverse truncation functors, the resulting ob-
jects are not in general perverse.) With this notation there exists (up to scalar) a
unique nonzero morphism Z}' -7, and its image is ZC*. Once again the category
Perv .+ (Gr, k) has a natural highest weight structure with standard objects the per-
verse sheaves (ZI':p€Y ) and costandard objects the perverse sheaves (Z4':peY ),
see [BaR, Proposition 1.12.4]. In particular one can consider the tilting objects in
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this category, and the indecomposable such objects are parametrized by Y. For
any A€Y, we will denote by 7* the corresponding indecomposable tilting object.

As in the I-equivariant setting (see §3.2), we also have a canonical convolution
product

(3.2) #£7G Db L (Gr k) x D2 (Gr, k) — D2 (Gr, k)

which equips D2+ (Gr, k) with the structure of a monoidal category. In this case
it is known that this product is t-exact (in the sense that a product of perverse
sheaves is perverse), and hence induces a monoidal structure on the abelian category
Pervo+q(Gr,k); see [BaR, §1.6.3] for details. The geometric Satake equivalence
describes the monoidal category (Perv.+g(Gr,k), *£+G) in representation-theoretic
terms: more explicitly, in [MV] the authors construct a canonical affine k-group
scheme G} equipped with a split maximal torus 7,/ whose group of characters is Y
and a canonical equivalence of monoidal categories

Sat: (Perv o+ (Gr, k), «57 %) =5 (Rep(GY), ®).

They also show that G}/ is a split connected reductive group, and that the root
datum of (GY,T}) is dual to that of (G, T). Under this equivalence, Z{" corresponds
to the Weyl module of highest weight x, and Z] to the induced module of highest
weight p.

Below we will use the fact that the monoidal category

(Perve+g(Gr, k), *EJrG)

is rigid: every object F has a left and right dual FV. (This fact can either be
checked directly or deduced from the geometric Satake equivalence.) We will not
need an explicit description of this operation, but only that for p€Y; we have

(3.3) (I!M)V gI*—w»(H)’ (If)v gl'!—w:(#)’ (ICM)\/ EIC:W(M)~

Using the geometry of spherical orbits we prove the following property of the
periodic order, which will be required later.

Lemma 3.2. Let u,v€Y be such that u—v is a sum of positive roots, and let
yeW;fj: Then ytwa(y) jytw;(u)~

Proof. Choose n€Y such that n+v and n+pu are strictly dominant. Then it is
well known that our assumption implies that Gr”t” CGr""#, i.e. that Gri, 10y C
Gr and hence that t,, (4.,) <ty (y+u) in the Bruhat order. By [AR3, Lem-

tw,(ntu)?
mas 2.1 and 2.7], this implies that yt, (y4u) <Ytw (n4p). Since these elements

belong to W2,, by Lemma 2.5(3) this implies that Ytw. (n+v) ZYtw. (np)-  Using
Lemma 2.5(2) we deduce that yt,, ) Xyt (), as desired. [
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3.4. Whittaker categories

From now on we assume that » has characteristic p>0. Recall that by our
assumptions from §1.2; the field k contains a nontrivial p-th root of unity (which
we fix once and for all). Let ACS,g be a finitary subset, and let I{f‘::u')Aqu'J;‘l.
In [AR3, §3.4] we have explained the construction of a “generic” character 14 : I —
Ga; as in [AR3, §3.5] one can then consider the categories

Dia x,)(FLK) and  Dppa y,)(Gr,k)

of (I, X4)-equivariant k-sheaves on F1 and Gr, where X4 is the pullback along 14
of an Artin—Schreier local system on G,. In the case where A=, these categories
are just the ordinary I,-equivariant derived categories considered in §3.2; in this
case we will omit “A” from all notations introduced below.

These categories have natural perverse t-structures, whose hearts are denoted
Perv(ra x,)(Fl, k) and Perv(;a x,)(Gr, k) respectively. The isomorphism classes of
simple objects in Perv(sa x,) (F1,k) are in canonical bijection with the subset of Wy
consisting of elements w minimal in W w; for such w the corresponding simple ob-
ject is denoted by ,Zf. For any wé&Wey minimal in Ww we have a “standard”
perverse sheaf 274 and a “costandard” perverse sheaf 4,4 in Perv(a x . (FLk), ob-
tained by !- and *-pushforward respectively of a local system on the I*-orbit of the
image of w in F1. There exists a unique (up to scalar) nonzero morphism 74— 4.4,
whose image is .22, and these objects equip Perv([‘fx,XA)(Fl,k) with the structure
of a highest weight category with weight poset {w&Weyt|w minimal in W4w}, en-
dowed with the restriction of the Bruhat order.

Similarly, the isomorphism classes of simple objects in Perv(;a x,)(Gr,k) are
in canonical bijection with AWS3.: for wGAI/Vit the corresponding simple object

ext» €

is denoted by L#. For any weAWS, we have a “standard” perverse sheaf A2

and a “costandard” perverse sheaf V2 in Perv(I‘fxyXA)(Gr,k), obtained by !- and
x-pushforward respectively of a local system on the I2-orbit of the image of
4 vA whose

in Gr. There exists a unique (up to scalar) nonzero morphism A} o

image is L2, and these objects equip Perv(lf)XA)(Gr,k) with the structure of a
highest weight category with weight poset AWz, endowed with the restriction of

the Bruhat order. The indecomposable tilting objects in this category are then also
parametrized by AW2,; the object associated with w will be denoted Tﬁ. Below

ext?

we will also use the fact that for we AW

¢ We have

(3.4) T DA=AL A=A

see e.g. [ACR, Lemma A.1] for similar considerations.
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The same construction as in (3.2) yields a canonical bifunctor
e :DCra x ) (Gr, k) x D2y (Gr, k) — Diya x,(Gr, k)

Which defines a right action of the monoidal category (D'Z+G(Gr,k),*£+G) on
(IA X (Gr k). This bifunctor is t-exact in the sense that if 7 €Perv(;a x,)(Gr, k)

and gePerv[;Jrg(Gr7 k) then F+LTGG is perverse; see [AR3, §4.1] for references.

Remark 3.3. In order to use Verdier duality arguments, we will also have to
consider the local system X;l on I (i.e. the local system defined by the inverse of
the p-th root of unity fixed above); namely, Verdier duality induces anti-equivalences
of categories

DE’I§7XA)(F1,H<)—>DE’I x;(FLEK) and Dppa x,(Gr,k) = Dy

b 1y (G ),
which will both be denoted ID. None of our considerations below will depend on the
choice of root of unity; in particular, they are equally valid in both the (I}, X4)- and
(14, X;l)—equivariant settings. For this reason, we may write A# to indicate either
the (I}, Xa)-equivariant standard perverse sheaf, or the (I}, X ')-equivariant one:
this minor abuse of notation should not lead to any confusion.

With the comments above in mind, the behavior of D on the various objects
introduced above can be summarized as follows: for any we4W:5, we have

D(Ay) =V, D(Vy)=Ag, DLy =Ly, D(Ty) =Ty,

and similarly for the corresponding objects on FI.

3.5. Combinatorics of perverse sheaves

As explained in §3.4 the category Perv(;a x,)(Gr, k) has a natural structure
of a highest weight category. There are two kinds of numerical quantities one can
compute in this setting. First, given a perverse sheaf F in Perv(IL/\;,XA)(Gr, k), one
can consider the multiplicity of a simple object L? as a composition factor of F;
this number is denoted

[F: Lg].

Next, if we assume that F admits a standard filtration (i.e. a filtration whose
subquotients are standard perverse sheawes)7 one can consider the number of occur-

rences of a given standard object A4, which is denoted

w

(F:AZ).
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It is a standard fact that this number is well defined (i.e. does not depend on the
choice of filtration) and additive with respect to direct sums; in fact we have

(F: A2) =dimy Hom(F, V).

Similar comments apply to the multiplicity of a given costandard object in a co-
standard filtration of an object F (assumed to admit such a filtration), which will
be denoted

(F:V.

Let us now consider a triple (K,0,k) where K is a finite extension of Qp
containing a nontrivial p-th root of unity, Q is its ring of integers, and k is the residue
field of O. In this setting we can consider the categories Perv(;a x,)(Gr, k) and
Perv(za x,) (Gr,K). In both of these categories the indecomposable tilting perverse
sheaves are parametrized by Wesxt; to distinguish the two cases the objects associated
with w will be denoted T/+* and T2 respectively. We will use similar conventions
for standard objects.

Lemma 3.4. For any w,y€AWS5, we have
(Tf]’k : A?’k) > (Té’]K : A;"K).

Proof. In addition to the categories Perv(;a x,)(Gr, k) and Perv(;a x,)(Gr, K),
we can also consider the category Perv(sa x,)(Gr, Q) of (I, X 4)-equivariant Q-per-
verse sheaves on Gr. In this category we also have standard and costandard objects,
denoted A;j’@ and Vﬁ’@, respectively, and we can speak of tilting perverse sheaves.
As explained in [AR1, Appendix B], the indecomposable tilting objects are again
classified by AW5,. More specifically, given weA W, there exists an indecompos-

able tilting perverse sheaf T/+0 such that

L
k@oTa? =Tk,

where
L
k®o(-): D](OI‘;“,XA) (Gr,0) — D](OJL{&,XA) (Gr,k)

is the “modular reduction” functor. In particular, for any y€4W:S, the multiplicity
of A9 in a standard filtration of T4® is (T4*:AsM*). We can also consider the

tensor product functor
L
K®o (=) : D{ra x,)(Gr,0) — Dira y,(Gr, K);

the perverse sheaf K@é TA0 is tilting, supported on Gr,,, and satisfies (K@éTﬁ’@:
AANK)=1; it therefore admits TA¥ as a direct summand. We deduce that (TAK:
A‘;’K) is at most the multiplicity of Aﬁ’@ in a standard filtration of T4©, which

proves the desired inequality. [
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For the rest of this subsection, we assume that A= and k has characteristic
0. It is a classical fact going back to [KL2] that the Kazhdan-Lusztig polynomials
(hy,z:y€Wexs) encode the dimensions of stalks of the simple perverse sheaf .Z,.
Explicitly, we have

(35)  hya=) 1k (%*M)*i(zﬂmy)) ' =Y dim Hom(.%,, A;[i])-v'.

€L €L

Similarly, the spherical Kazhdan—Lusztig polynomials describe stalks of simple per-
verse sheaves on Gr: we have

My =1k (A7 L g,) ) v =Y dim Hom(Ly, ,[i])-0"

€L €L

(In fact, this equality easily follows from (3.5), comparing (2.8) and (3.1).)
Let us now work in the Grothendieck group [D}Du (Gr,k)] of the triangulated
category D} (Gr,k). Since the basis ([A,]:weWS,) is dual to the basis ([V,]:we

ext
W) for the natural Euler pairing, the preceding equality means that

Ll = mywjo——1[Au]

As a consequence, the polynomials (m¥":y, we W2,

for any we W5

ext*

) from (2.9)
have the following interpretation:

[Au]= Z(—l)e(y)+£(w)mw’y‘vz_1[Ly] for any w € W2 ;

€

in other words, for any y, we W2

*t We have

[Ay:Ly]= (71)£(y)+é(w)mw7y‘vz_1'
In particular, from Lemma 2.8 we deduce that for any w, y€ Wy we have
(3.6) [Aya:Ly]=1.

(Here we know a priori that the left-hand side is nonnegative; but the fact that
£(w)+L(w™)+£(w.) is even can also be seen directly from the computations in §6.3
below.)
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3.6. Averaging functors

We continue to consider a finitary subset ACS.g. As explained in [AR3,
§3.6-3.8], there is a t-exact “averaging functor”

AV$ : D})U(Gr, k) — D?[;‘,XA) (Gr, k)
with t-exact left and right adjoints, denoted by
Avi', AV : Dy, (Gr k) — DP (Gr, k),

respectively. By [AR3, Lemma 3.3(3)] the functor Avjz sends each standard object
either to 0 or to a standard object, and each costandard object either to 0 or
to a costandard object. As a consequence, it sends objects admitting a standard
filtration, resp. a costandard filtration, to objects admitting a standard filtration,
resp. a costandard filtration.

Remark 3.5. The functors AV,A and AV*A do not kill any nonzero perverse sheaf.

In fact, if F is a nonzero object in Perv(;a x,)(Gr, k) and weAWS, is such that L2

is a quotient of F, then by adjunction and [AR3, Lemma 3.3(4)] the object Av{*(F)
admits a nonzero morphism to L,,, hence is nonzero. A dual argument applies to
AvZ

Lemma 3.6. 1. The functor
Avit: Perv(ra x,)(Gr,k) — Pervy, (Gr, k)

sends objects admitting a standard filtration to objects admitting a standard filtra-
tion. More explicitly, for any we WS, and yeWs., we have

1 if yeWaw;
(avf(ag):a,) =t Toetan
0 otherwise.
2. The functor
Av: Perv(ra x,)(Gr, k) — Pervy, (Gr, k)

sends objects admitting a costandard filtration to objects admitting a costandard
filtration. More explicitly, for any weAWS, and ye WS, we have

1 if yeWaw;

0 otherwise.

<Avf<v3>:vy>:{
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Proof. (1) Recall that an object X in a highest-weight category has a stan-
dard filtration if and only if Ext!(X, —) vanishes on all costandard objects, see [Ri,
Proposition 7.12]. Let us apply this criterion to the categories Perv(IGq,XA)(Gr, k)
and Pervy, (Gr, k). Since Avjz is exact and sends costandard objects to objects ad-
mitting a costandard filtration, its exact left adjoint AV{4 preserves the property of
having a standard filtration. The description of multiplicities also follows from ad-
junction, together with the explicit description of images under AV;Z1 of the standard
objects in [AR3, Lemma 3.3(3)].

(2) The proof is similar to that of (1). O

Remark 3.7. The functor AV;?, also has *- and !-versions, which turn out to
be canonically isomorphic, see [AR3, Lemma 3.2]. (By definition, Av;?, is identified
with these two versions.) Similarly there exists a canonical morphism of functors

Av{4 — AV*A,

but this map is not an isomorphism in general. For instance, when A is a singleton
{s}, it is known that both Avi*(22) and AvZ(22) are isomorphic to .7;, but one
can check by direct calculation that the image of Av{'(24)— Av2(2.) is isomorphic
to Z..

Nevertheless, the philosophy of Koszul duality suggests that there should ex-
ist some natural isomorphism Av{*2~Av#. In more detail, the functor AV$ is the
counterpart under Koszul duality of push-forward along the projection 74 :F1—Fly4,
where Fly is a partial affine flag variety (depending on A). This map is proper and
smooth, so the left and right adjoints of (74 ).—namely, 7% and 7ri4—are isomorphic
up to a shift. Similarly, AV,A and Avf should be isomorphic (up to a Tate twist in
the setting of mixed sheaves). However, we were unable to find a direct proof of
this claim. (See Lemma 3.8 and Remark 3.11 below for related results.)

3.7. Wall-crossing functors
For a finitary subset ACS,g, we consider the functors

§i4 = AV!A o Avﬁ,

! * b b
, : D7 (Gr,k) — D7 (Gr,k) defined b
§A fA Iu( ) Iu( ) y §j:AvfoAv;2.

The results recalled in §3.6 imply that:

e each of these functors is t-exact with respect to the perverse t-structure;

. @1 sends perverse sheaves admitting a standard filtration to perverse sheaves
admitting a standard filtration;
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o £ sends perverse sheaves admitting a costandard filtration to perverse
sheaves admitting a costandard filtration;
o &4 is left-adjoint to £%.

Lemma 3.8. There exists an isomorphism of functors f!Agfj’j‘. As a conse-
quence, these functors send objects admitting a standard filtration to objects admit-
ting a standard filtration, and objects admitting a costandard filtration to objects
admitting a costandard filtration; in particular, they send tilting objects to tilting
objects.

Proof sketch. The proof requires a different realization of the functors ¢!, and £%.
Namely, following Yun (see [BY, Appendix A]; see also [BR1] for a review of this
construction, which explicitly allows more general coefficients) one can consider the
“free-monodromic completion” D” of the I,-equivariant derived category of sheaves
on LG/, constructible with respect to the stratification by I-orbits. In this cate-
gory we have a perverse t-structure, and a notion of tilting perverse sheaves, see [BY,
§A.7] or [BR1, §5.4]; the indecomposable tilting objects are parametrized (in terms
of their support) by Wex. This category also has a monoidal structure, and this
monoidal category acts in a natural way on the category D})u (Gr, k). Now it follows
from [BR1, Lemma 10.1] that both @1 and &% are both isomorphic to the functor
given by convolution with the indecomposable tilting object associated with the
element w 4. These functors are therefore isomorphic.

The second claim of the lemma is a consequence of this isomorphism and the
properties of SL\ and &% listed above. O

Remark 3.9. The considerations in the proof of Lemma 3.8 simplify in case
we apply the functors ¢* and ¢, to an object of the form Forfu (F) for some F in
DY(Gr, k). In this case we have

Ea(For] (F)) = T+ F = &4 (Fory (F))
where the convolution bifunctor ! is as in §3.2.

Thanks to Lemma 3.8, we will write £4 for @1%{;} when the choice among
these functors does not matter. In case A={s} for some s€S,g, we will simplify
this notation even further and write &, for {(;.

Corollary 3.10. The functors
Avit, Av2 Perv(ra x,)(Gr,k) — Pervy, (Gr, k)

send objects admitting a standard filtration to objects admitting a standard filtration,
and similarly for costandard filtrations. In particular, these functors send tilting
objects to tilting objects.
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Proof. We write the proof for AV,A; the other case is similar. What we have to
prove is that Av{*(A#) admits a standard filtration and Av{*(V:) admits a costan-
dard filtration for any weAW?,. The case of standard filtrations has already been

ext*
proved in Lemma 3.6. For costandard filtrations, we observe that

AV (V) 2 AV AV (V) = €4 (Vi) ZEL(Vw) ZAVIAVE (V) = AV (VD)

by [AR3, Lemma 3.3(3)] and Lemma 3.8. The right-hand side admits a costandard
filtration by Lemma 3.6, so we are done. [

Remark 3.11. If we denote by [Perv(;a x,)(Gr,k)] and [Pervy, (Gr,k)] the
Grothendieck groups of the categories Perv(;a x,)(Gr, k) and Pervy, (Gr, k) respec-
tively, and by [Av{'] and [AvZ] the morphisms induced by Avi{* and AvZ on Grothen-
dieck groups, then we have

[AviY) = [Av2].

Indeed, this follows from the observation that for any weAWs, we have
Avit (L) = AVE(LY).
by the same considerations as in the proof of Corollary 3.10.

We can in fact be more precise regarding the effect of the functors AV!A and
A . . . : [43
Av;’ on indecomposable tilting perverse sheaves by adapting the proof of a “Koszul
dual” statement in [Wi, Proposition 3.5], as follows.

Proposition 3.12. For any we WS, we have

AV (TA) 2Ty 0 Z AVE(TA),
A"w( wAw) = (Tg)@#WA-

Proof. We will prove the first isomorphism on the first line above, and the
isomorphism on the second line; the second isomorphism on the first line can be
obtained by similar arguments, or deduced using Verdier duality.

First, we note that

(3.7) AV (Av! (T3) 2 (Ti) ##1Va,

Indeed, by the comments in §3.6 and Corollary 3.10 the left-hand side is tilting.
A closer look at [AR3, Lemma 3.3(3)] and Lemma 3.6(1) shows that for any ye&
AWS . we have

(AV AV (T2)) s A = (#Wa) x (T Ay = (T)B#FWa ALY,
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Since a tilting object is determined (up to isomorphism) by its standard multiplic-
ities, this implies the desired isomorphism.

Now, as justified above Av{*(T#) is tilting. From the description of multiplic-
ities in Lemma 3.6 one sees that waw is maximal among the labels of standard
objects appearing in a standard filtration of this object; it follows that T, ., is a
direct summand in it. Let us write

A (T =Ty, w®T.

Then T is tilting, and the standard objects appearing in a standard filtration of
this object are of the form zy with x€W,4 and yEAI/VS(t (because this property
holds true for Av{}(T#)). We will show that AV:? (T)=0, which will imply that
T =0 (by exactness of Av;;1 and its effect on standard objects as described in [AR3,
Lemma 3.3(3)]), and thereby conclude the proof.

Using (3.7) we obtain that

(T E#FWA = AV (T o) DAV (T).

By the Krull-Schmidt property, this implies that Av;;} (Tw,w) and Avjz (T) are both
direct sums of copies of T, To determine the number of copies in Av;;}(Tw aw) 1t
suffices to compute (Avﬁ(Tw Lw) A2 we will show that this number is at least
#W 4, which will imply that AV;?, (T)=0, as desired. For that, using once again the
exactness of AV;Z1 and [AR3, Lemma 3.3(3)], it suffices to prove that for any x€Wy4

we have
(3.8) (Twaw: Azw) > 1.
However, the union
|| Grew
€W 4

is open in Gry 4, and is an affine space bundle over M4/Ba where My is the
reductive group attached to A as in [AR3, §3.4] and B, is its natural (negative)
Borel subgroup. The restriction of T,,,. to this union is again tilting, and it must
admit the indecomposable tilting object with label waw (i.e the pullback of the
indecomposable tilting object on M /B, attached to wy) as a direct summand. It
is a standard fact that the standard object with label xw appears with multiplicity
1 in the latter object for any « (see e.g. [BR1]), which implies (3.8) and finishes the
proof. [

Remark 3.13. 1. From the philosophy of the Finkelberg—Mirkovié¢ conjec-
ture and its “singular” variants, Proposition 3.12 can be considered a geometric
counterpart to [Ja, Proposition E.11].
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2. Alternatively, to prove (3.8) one can reduce the proof to the characteristic-0
setting using Lemma 3.4, and then use the formula for multiplicities of tilting per-
verse sheaves in terms of Kazhdan—Lusztig polynomials in this case proved in [Yu].

Below we will also consider some easier “wall-crossing functors” associated
with elements of 2. Note that if w€) we have wlw™!=1I,; as a consequence, left
multiplication by w induces an autoequivalence

&, Pervy, (Gr,k) — Pervy, (Gr, k)
which satisfies
(39) gw (Ay) = Awyv gw (vy) = va

for any yeWs

ext*

(310) fw(l-y) = Lwy’ gw (Ty) = Twya

again for any ye W2

ext*

From this we deduce that we also have

3.8. A support computation

The following two lemmas, which describe the effect of wall-crossing functors
on the support of perverse sheaves, will be needed in §6.2 below.

Lemma 3.14. Let ye W2, and s€Sag.
1. If sy<y, or if sy>y and sy¢Ws.,, then &(L,)=0.
2. If sy>y and syc W5, then &s(Ly) is supported on Grgy, and admits Ly as

X
a composition factor with multiplicity 1.

Proof. (1) According to (2.6), the condition that sy <y implies that y¢ =} W5, .
Similarly, if sy>y and sy¢ W2, then again we have y¢ &} WS, . In view of [AR3,
Lemma 3.3(4)], either of these conditions therefore implies that Av;{;}(Ly):(), and
hence a fortiori that &s(L,)=0.

(2) By Remark 3.9, there exists a perverse sheaf F in Pervy, (Fl, k), supported
on Fl, and satisfying Fipi_ =ky,_[1], such that &(L,)=F+'L,. It is easily seen that
the right-hand side is supported on Grg,, and that its restriction to Grs, is k[¢(sy)];
the multiplicity of L,, in this perverse sheaf is therefore 1. [J

Lemma 3.15. Let weWey, weS) and sy, ..., 8- ESag be such that
U wsy...spw) =L(w)+T

and wsy...s;w belongs to W5 .. Then:

ext*
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1. w belongs to WZ.,:

2. for any perverse sheaf F supported on Gry, &,&s,..-£s,.(F) is supported on
Grys,...s,w; moreover we have

[gwgsl'“gsr (-F) : stl...srw] = [-F Lw]

Proof. In view of (3.10), and since W2, is stable under left multiplication by
elements of €2, we can assume that w=e. Then we proceed by induction on r, the
case r=0 being obvious. If r>1, then [AR3, Lemma 2.2] ensures that s...s,weW5,,
so that by induction we W=, (establishing (1)).

Now let F be a perverse sheaf supported on Gr,,. By induction, &, ...&, (F)
is supported on Grg,. s, o that its composition factors are of the form L, with

yeWs, satisfying y<ss...s,w, and in case y=s,...s,w we have

[fsr--gsr (-F) : LSQ...STH)} = [-F I—w]-

By exactness of &, (see §3.7) the object &, ...&;, (F) is then an extension of perverse
sheaves &, (L) for such y’s. If s;y<y or if sy>y and s1yg W2, then &, (L,)=0 by
Lemma 3.14(1). If syy>y and s;y€WS, with y#ss...s,w then by Lemma 3.14(2)
&, (Ly) is supported on Gry,,; since s1y<si...s,w this perverse sheaf is therefore
supported on Grg,. s, but does not admit Ls, . 5., as a composition factor. Fi-
nally, for y=ss...s,w, again by Lemma 3.14(2) the perverse sheaf &;, (Ls,. s ) iS
supported on Grg, . 5.4, and

[681 (Lsz...srw) : I—slsz.“srw] =1.

We deduce statement (2), which finishes the induction. O

3.9. The geometric Steinberg formula

To finish this section we state the “geometric Steinberg formula” proved in [AR3,
Theorems 4.1 and 4.3]. This statement will be the starting point for all the main
constructions of the present paper.

Theorem 3.16. Let ACS,g be a finitary subset.
1. For any we W& and any p€Y . we have

LAxE Czer =14

Whap, () *
2. For any weAWS, the functor

LA*E"C (<) : Pervr g (Gr, k) — Perv(a v, (Gr. k)

18 fully faithful.
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Later we will also need the following corollary of Theorem 3.16.

Corollary 3.17. Let y,y' € W%, ucY, and ve-Y,.

1. If Hom(L;‘*L+GI{‘7 V;}tv)#(), then there exists A€Y orthogonal to all roots
such that y=y'ty.

2. If v£w.(p), then Hom(L;‘*L+GZ{L,VﬁtV):O.

3. The space Hom(L;‘*ﬁJrGI{’“,V;t
composition

is 1-dimensional, and spanned by the
wo (1)

A LTGrp A LYGrppua~ A A
Ly* 1 —»Ly* IC _Lytw:<u)<—>vytw5(“),

where the surjection is induced by the surjection I{'—-IC" and the isomorphism is
given by Theorem 3.16(1).

Proof. (1) By Theorem 3.16 and exactness of the bifunctor *LJrG, taking a
composition series of Z{' we obtain a composition series of L;‘*NGI!“ , all of whose
subquotients are of the form L‘yL‘th o for neY . If our Hom-space is nonzero, there
exists such an n which satisfies

Hom(Ly, - Vi) #0,

y'ty

i.e. such that yt,, ;) =¥'t,. By the definition of W[, this implies that v—w.(n) is

orthogonal to all roots, and then the desired claim.
(2) By [AR3, Lemma 3.3(4)] we have Avjz(Ly)%L‘;, SO

AV;?(Ly*L+GI!”) = L£*£+GI{L.
Using adjunction, we deduce that
Hom(L/ +27CT#, V4 )= Hom (L, O, AvA (V24 ).
Now by [AR3, Lemma 3.3(3)] and Remark 3.9 we have
AVA(TA )2 T s Vi,

It is a standard fact that there exists an embedding A.—.7,, whose cokernel ad-
mits a costandard filtration with subquotients of the form .4, with xeW4\{e},
each appearing once. Since yt, is minimal in Wuyt, (see §2.4), using Lemma 3.1(4)
we deduce an embedding V;, <7, V,;, whose cokernel admits a costandard
filtration with subquotients V,;, with x€W4\{e}. Since all the composition fac-
tors of Ly*£+GI!“ have their label in AW, (see the proof of (1) and (2.7)), for any
such x we have

Hom(Ly*L+GI!”7 Vayt,) =0.
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We deduce that Hom(Ly*£+GI!“, Vyty)%Hom(Ly*L+GI!“, Twa*x Vi), and hence
Hom (LA G T, V4 )= Hom(L,x“ O T}, V0, ).
Finally we have a surjection Ay —L,, which induces an embedding
Hom(L,+% T, V., )—Hom(A, 5 O T, V.. ).

By [AR3, Lemma 4.9] the right-hand side vanishes if v#w.(u), which implies the
desired claim.
(3) As in (2) we have an embedding
Hom(LA+2 G4, V4, e sHom(A %" OT, Ve,

wo (k) ~(u))'

By [AR3, Remark 4.10] the right-hand side is 1-dimensional, so that the left-hand
side has dimension 0 or 1. The nonzero morphism exhibited in the statement shows
that this space is nonzero; it must therefore be 1-dimensional. [

4. Background from representation theory

In the next section we will introduce our main object of study, a certain category
of ind-perverse sheaves which should be thought of as a geometric counterpart of
the category of él’\f‘-modules for a reductive group G (with maximal torus ’i‘)
such that G™) is Langlands dual to G. In order to motivate this construction, and
to justify our conventions, we explain in this section the representation-theoretic
version of this construction.

We fix an algebraically closed field k of characteristic p>0 and, for any affine
group scheme H over k, denote by Rep(H) the category of finite-dimensional
H-modules.

4.1. Representations of Frobenius kernels as representations of reductive
groups with additional structure

We fix a connected reductive algebraic group G over k, with a Borel subgroup
B and a maximal torus TCB. (We use this notation because, in practice, we want
to use the results below in the case G and G are related as in §1.1. But in the
present section G can be arbitrary.) We will denote by Y the lattice of characters
of ’i‘, andv by Y, CY the svubset of dominant weights, with the convention that the

nonzero T-weights in Lie(B) are the negative roots. (Of course, in general these sets
might differ from those denoted in the same way in §2.1, but they will coincide in the
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case we are interested in.) We have the Frobenius morphism Fr:(v}—>(v3‘r(1), which
restricts to the Frobenius morphisms of B and 'i‘; we will identify the character
lattice of T with Y in such a way that the morphism Fr*: X *(T(1)) Y identifies
with A—pA.

We will be mostly interested in representations of él’f::Fr_l (’i‘(l)). Following
the point of view of [AG], we consider the composition of equivalences

(4.1) Rep(GT) = Coh® T (pt) = CohS* T (G x TM) /Gy T),

where G1T is seen as a subgroup in GxT® via g—(g,Fr(g)). Now the map
(g9,t)—Fr(g)t~! induces an isomorphism

(GxTW)/G, TGO,

so that the category on the right-hand side of (4.1) identifies with the category of
GxTO. -equivariant coherent sheaves on G(l) or in other words with G- equivariant
Y-graded ¢(G™)-modules which are finitely generated over ¢(G(1)). Here ¢(GM)
is endowed with the left regular representation structure, and considered as Y-graded
with

O(GW), =md,) (-)),

and the equivalence sends a él’i‘—module M to the Y-graded module whose degree-\
component is

mdS 4 (M@F" (kg (—A)).-

In particular, in view of the tensor 1dent1ty (see []a Proposmon 1.3.6]), under this
equivalence the restriction functor Rep(G)— Rep(G1T) identifies with the functor
sending M to the Y-graded module whose degree-\ component is
M@dS . (Fr* (kgo (—A))) = Memd$,, (-\) = Mo o(GD)
G,T T1) T(1) -

The G-modules considered above are typically infinite-dimensional; however
the category of all (possibly infinite-dimensional) algebraic representations of an
algebraic group identifies with the category of ind-objects in the category of finite-
dimensional representations. (See §5.1 below for some comments and references
on ind-objects. The statement above can be deduced from [KS, Corollary 6.3.5].)
From this point of view, we therefore obtain an equivalence of categories between
Rep(él’i‘) and the category of Y-graded ind-objects in Rep(é) endowed with a
graded action of & (é(l)) (seen as an algebra object in the category of Y-graded
ind-objects in Rep(é)) and which are finitely generated with respect to this action
(i.e. isomorphic to a quotient of a finite direct sum of grading shifts of objects
M®0(GL) with M eRep(G)).



A geometric model for blocks of Frobenius kernels 253

Remark 4.1. 1. The same considerations show that the category of
Y-graded ind-objects in Rep(G()) endowed with a graded action of ¢(G()) iden-
tifies with the category of Y-graded k-vector spaces (i.e. algebraic—but not neces-
sarily finite dimensional—representations of ’T‘(l)).

2. One can also omit the torus T in this construction, i.e. consider the Frobenius
kernel Gi; instead of G1T, and deduce an equivalence of categories between Rep(G)
and the category of ind-objects in Rep(G) endowed with an action of ¢(G()) and
which are finitely generated with respect to this action.

4.2. The left regular representation as an ind-object

. . . . Pele) ..
In this subsection we explain how the object Ind%ll) (=) can be explicitly

represented as an ind-object in Rep(G(1)). (See the discussion in §5.1 below for
generalities on ind-objects.)

For A€Y ;, we will denote by M) ()), resp. N(*)()), the Weyl module, resp. in-
duced module, for G() of highest weight A; by definition we have M®(\)=
N (—w,(X))*. Tt is a standard fact that for A\, u€Y and n€Z we have

(4.2) Ext

(MO (), N () = {“‘ if A=p and n=0;

n
G .
Rep(G() 0 otherwise;

see [Ja, Proposition 11.4.13]. Given A, N €Y, there exists a unique morphism of
GM-modules

(4.3) NB N @ND (W) — ND(A+N)

sending the tensor product of the highest weight vectors in the left-hand side to
the highest weight vector in the right-hand side. By duality, we deduce for any
A, M€Y, a canonical morphism

(4.4) MO A4+X) — MO X)) @aMD ).

We will assume we are given, for any A€ Y, a nonzero morphism of G®_mod-
ules

px M) —NO ),

such that for A\, \’€Y the composition

MO (A1) L MO ()@ MO (V) L2297 N ()N (V) L2 NO (41
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coincides with ¢x4x. (See Remark 4.4 below for a discussion of this condition.) By
adjunction, ¢, determines a canonical morphism

(4.5) k — N (—, (V) @ND (\).

Below we will consider various (formal) inductive limits parametrized by some
subsets of Y ; in each case, this subset is endowed with the restriction of the partial
order on Y such that A is smaller than X iff A’— X\ is dominant. Given a weight
1€eY, we consider the ind-object

“lim”  N®(p—w. () aND ()
€Y N(w.(p)+Y4)

where given n€Y . the transition morphism
NG (—w. (X)) @ND (A) — ND (u—w,(A+n7)) @ND (A41)
is the composition

N (. ()N () — N (- (1) N (. () N () SN ()
— NO (p—w.(A+n)) @NH (A+n)

where the first map is induced by (4.5), and the second one by (4.3) (applied in the
first two and last two factors).

Lemma 4.2. For any n€Y, the functor represented by the ind-object
“lim” NO (p—w.(A)@ND ()

AEY  N(w. () +Y )

is given by Vi—Homgq, (V, Indg((ll; (1)).

Proof. By Frobenius reciprocity [Ja, Proposition I1.3.4], for any V in Rep((v}(l))
we have

aw .
Homg ) \% Indgu) () =V.)",

where V), is the u-weight space of V. Now we have a canonical morphism of
B®-modules N(l)(ufz\v/o()\))%kﬁ(l)(,ufwo(/\)), and the morphism ¢_,, (1) deter-
mines a morphism of BM-modules M) (—w.(\))—kga, (—w.(A)). In turn, this
morphism defines a highest weight vector in M®(—w,()\)), hence a lowest
weight vector in N('()), which determines a morphism of T®-modules NV (\)—»
ki1 (w.(A)). Tensoring these morphisms we obtain a morphism of T®-modules
N® (p—w. (X)) @ND (X) —ksq) (1), hence a morphism of G®-modules

N (0. () @ND () — dZ) (),
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and finally a morphism of functors

(1)
Homé(l) (_a N(l)(ﬂ_wD(/\))(@N(l)()‘)) — Homé(l) (_a Ind%l) (N))

We deduce a morphism of functors

. o)
lim Homgg,, (—, N (11— . (A) @NO () — Homeg o (—, G (1)),
A

and to conclude it suffices to prove that this morphism is an isomorphism.
On the other hand, for Ae Y N(w.(u)+Y ) we have

(4.6) Homg,, (V,N® (p—w.(A))@ND (X))

= Homg, (M(l)(—wo()\)), V*®N(1)(u—wo(/\))).
Assume now that A is large enough that v+ p—w.(\) is dominant for any weight v
of V*. Then, by the tensor identity [Ja, Proposition 1.3.6] and Kempf’s vanishing

theorem [Ja, Proposition I1.4.5], the module V*@N® (u—w.(\)) admits a finite
filtration with associated graded

@(V*)V®N(1)(u+u—wo(/\)).

v

In this case, in view of (4.2) the space in (4.6) identifies with
(V) Homeg s, (MO (=, (1)), NO (=0, (1)) 2 (V,,)",
which concludes the proof. [J

Remark 4.3. 1. Below we will also require a variant of Lemma 4.2, which
follows from similar arguments (using also Frobenius reciprocity for the induction
from B to G()). Consider, for a given u€Y, the ind-object

“Uim” kg (- w.(V)ONDR)
AEY N (w () +Y )

in Rep(]§(1)), where for €Y the transition morphism
ki (—w. () @ND (X) — kg (n—w. (A1) @ND (A+1n)
is the composition
kg (1= w.(A)OND () — kg (n=w.(\) @ND (=w. () @ND (n) eND ()
— kg (1—w.(\) @k, (—w. () OND () @ND (X)
—wW,

—r kg (p—w.(A 1)) @ND (A +1n)



256 Pramod N. Achar and Simon Riche

where the first map is induced by (4.5), the second one by the natural morphism
N® (—w.(n)) =k, (—w.(n)), and the third one by (4.3). Then the functor repre-
sented by this ind-object is given by

B(1)
V — Homg ) (V, Ind2, ) (1)).

2. Given a property depending on a coweight A living in a subset ACY, we will
say that this property holds when A is large enough if there exists v€Y such that
the property holds for any Aé AN(r+Y,). The proof of Lemma 4.2 shows that
given V, V' in Rep((v}(l)), the vector space

Homg o, (V, V' &N (i—1w.(\)) eND (1))
does not depend on A (up to canonical isomorphism) if A is large enough.

Since & ((v}(l)) is an algebra, we have multiplication morphisms

=(1)

el aw (
Ind%l) (u)@lnd%l) (v) — Indg(l) (n+v)

for any p,v€Y. Via the identification of Lemma 4.2, this morphism is induced by
the collection of natural morphisms

NG (p—w. (X)) @ND (A @ND (1 —w., (X)) @ND (\)
— NO (v —w. A+ X)) @ND (AN

(for A\, N dominant and sufficiently large) induced by (4.3).

Remark 4.4. The datum of a collection of morphisms (py:A€Y ) as above is
equivalent to the datum of a lift of the longest element w, of the Weyl group of
(GM,TMW) to N, (TW).

Indeed, assume we are given a collection of morphisms as above. For any n€Y,
setting N =p—w.(\) we obtain an isomorphism

“Uig” NG (w () oND ()
AEY N (w.(p)+Y 1)
— i NOw () —w. (V) eND ().
NEY LNt Y )

By Lemma 4.2, this identification provides, for any V e Rep(é(l))7 an isomorphism
Vi ng,,( u)- One can check that these isomorphisms provide a tensor automorphism
of the forgetful functor from Rep(é(l)) to finite-dimensional k-vector spaces hence,
by Tannakian formalism, an element in GO, The behaviour of this element with
respect to weight spaces shows that this element is a lift of w. to N (’T(l)).
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Conversely, recall that by construction the module N(*)()\) comes with a canon-
ical vector of weight A. Given a lift of w. to Ng (TM), we obtain a canonical vector
of weight w.()\) in each N(W()), and then a canonical vector of weight A in each
M@ (X). There exists then a unique morphism of G®-modules from M®()) to
N(l)(/\) sending the highest weight vector of the former to the highest weight vector
of the latter, which provides a construction of a morphism ¢, as above.

4.3. Baby co-Verma modules as ind-G-modules

We now consider the preimage El’f of TM under the Frobenius morphism
B— B, Following the conventions of [Ja, §11.9.1], for €Y we consider the baby
co-Verma module

2'(v) = Indgg(u),

where on the right-hand side v is seen as a character of ]é, and hence of B;T by
restriction. In order to describe the image of this G; T-module under the equivalence
of §4.1, we need to describe, for any A€Y, the representation

Indg (2 () @kgo (—A) =Indg 1(Z'(v—pA)).

For any u€Y,, we will denote by N(z) the induced G-module with highest
weight . Note that given u, ' €Yy, there exists a canonical morphism

(4.7) N(u')@ (Fr*N® (1)) — N(pp+pa')

sending the tensor product of the canonical highest weight vectors on the left-hand
side to the canonical highest weight vector on the right-hand side. Given pu€Y, we
consider the ind-object

“lig ™ N(u—pw.(\)@Fr* (ND (1))
AEY 1N (w.(u)+Y )

~

in Rep(G), where the transition morphisms are given by the compositions
N(a—pu () @Fr (N ()
s N(a—pro. (\) @ Fr* (ND (—aw. () @ Fr* (N () @ Fr* (NP ()
— N(p—pw.(A+n))@Fr* (ND (A+n))

for n€ Y., where the first map is induced by (4.5) and the second one by (4.3)
and (4.7).
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Lemma 4.5. For any p€Y, the functor represented by the ind-object
“lim”  N(a—pw. () @Er (N ()
AEY 4N (w.(u)+Y )
is given by Vi—Homg(V, Indgli(Z’(u))).

Proof. We will consider the functor (—)g of “coinvariants” for finite-dimen-

sional representations of the Frobenius kernel ]§1 of ]§, given by

Vg, = ((V*)B)".

It is easily seen that this functor is left adjoint to the inclusion functor from
finite-dimensional k-vector spaces to Rep(B1); it also induces a functor Rep(B)—
Rep(B(M) which is left adjoint to the functor Fr*:Rep(B(®))—Rep(B).

For V in Rep(é), we observe that by the tensor identity and Frobenius reci-
procity we have

Homg (V, N(u—pw.(A))@Fr* (N (X)) = Homg (V, kg (u—pw. (X)) @Fr* (NP (X))).
We deduce that this space identifies with

Hompy, (Vekg(—4)s, kgo (—w.(A)@ND ().
Using Remark 4.3(1), we deduce an isomorphism

liTn;Homé (V,N(u—pw.(\) ©Fr* (N (X)) = Homg ) (VOkg (—),, Ind2 ) (K)).

Now we have

(1) N B
Homg ) (V@kg(—p)g,, Ind2 ;) (k) = Homy (V @k (—p), Fr*(Indg,) (k)))

N B
=~ Homg (V, Fr*(Ind3,,, (k) @k (1)),
and o . .
Fr* (Ind?m (k) @kg (1) = Indgl,f(k) Rk (1) = Indgl,f(,u)
by the tensor identity; using Frobenius reciprocity and transitivity of induction
(see [Ja, §I1.3.5]) we deduce an isomorphism

ling Homgg (V, N(yu— pu. (A) @Fr* (N (X)) & Homg (V. 1nd§ 5 (1)).
A

Transitivity of induction also implies that Indgl,f(z’ (,u))glndgl,i,(u), so that this
provides the desired isomorphism. [l
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This lemma shows that for »€Y the image of Z/(v) under the equivalence
of §4.1 is the Y-graded ind-object with degree-A component given by

“limg "N (v —pA—pu. (1)) Fr* (N (1),

where the transition morphisms are as above. In these terms, and using the de-
scription of Lemma 4.2, the action of ¢(G™) is induced by the morphisms

N(v—pA—pw. (1)) @ND (1) @ND (=X —w. (1)) OND (')
— N =pA+X) —pw.(p+p') @ND (')

induced by (4.3) and (4.7) for A\, €Y and p, i’ €Y large enough (where we omit
the functor Fr* to lighten notation).

5. Modules over the regular perverse sheaf

We now come back to the setting of Sections 2-3.

In this section, for any finitary subset ACS,g we will define and initiate the
study of a certain category of ind-objects in Perv(;a x,)(Gr, k) equipped with ad-
ditional structures: namely, a grading indexed by Y, and the structure of a right
module over a certain algebra ind-object R in Perv.+g(Gr, k). After some prelim-
inaries in Section 6, in Section 7 we will see that this category is a finite-length
abelian category with enough injectives and projectives, and that it satisfies prop-
erties similar to those of the category Rep(él’i‘) where G is a connected reductive
algebraic group over k (with maximal torus ’f) whose Frobenius twist is G}/. One
can also omit the Y-grading, and obtain a similar theory that is analogous to that
of G1-modules. This theory will be reviewed in Section 8.

5.1. Ind-objects

Our constructions will make use of ind-objects in (locally small) categories; for
the generalities on this construction we refer to [KS, Chap. 6]. We will repeatedly use
the fact that any functor F':C—D extends in a canonical way to a functor Ind(C)—
Ind(D), which will be denoted by the same symbol, see [KS, Proposition 6.1.9]. In
view of [KS, Proposition 6.1.12], a similar comment applies to bifunctors. Recall
also that the category of ind-objects in a locally small abelian category is locally
small and abelian, see [KS, Lemma 6.1.2 and Theorem 8.6.5], and that the functor
on ind-objects induced by an exact functor is exact, see [KS, Corollary 8.6.8].
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Given a category A and a set X, by an X-graded object in A we will mean a
collection A=(A,:x€X) of objects in A. We will write informally

A= P A.,

zeX

but the symbol “@D” has no formal meaning here. In particular, we do not assume
that only finitely many objects A, are nonzero, nor that the (possibly infinite) direct
sum exists in A.

5.2. The regular perverse sheaf

Recall the objects 7 and Z{ (A€Y ) introduced in §3.3. For any A€ Y, the
natural morphisms for sheaf functors provide a canonical morphism

N —1T).
Since 7 has rigid dual 7™ (see (3.3)), this morphism induces a canonical
morphism
(5.1) ICO — TIETG TN,

Next, for A\, p€Y, since the perverse sheaf I,f‘*£+GIf is supported on the closure
of Gr*™ and has restriction to Gr** equal to kg s+ [dim(Gr***)], there exists a
canonical morphism

(5.2) TINETCTr A

Let us endow Y (and any of its subsets) with the preorder such that A is less
or equal to A" iff =\ is dominant. For p€Y we consider the ind-object

(5.3) Ru= « hg'l » I}kvf(u)%\*ﬁcz*—wn(/\)
Y N(—w (1)+Y )

in Perv.+g(Gr, k), where the transition maps are given by the morphisms
Iivc(u)+/\*£+GI;wo(A) _>I:’:(H)+>\*L+GI:*£+GI:1UC(V) *L+Gl-*—wc(>\)
. IEC(H)+)\+V*L+GI;w:(A+V)
for v€Y . Here, the first map comes from (5.1), and the second one from (5.2)

(applied to the first two and last two factors).
We have an obvious “unit map”

(5.4) n:IC° — Ry,
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and for p, i’ €Y we have a “multiplication map”
(5.5) R Ry — Ry
obtained as the limit (over suitable A, \') of the maps

(Iiua(u)+)\*£+cz*—wn(>\))*L‘*'G (I?a(lt’)-&-)\’*ﬁ*'GI;w:(/\'))

_}I}ﬁuo(u-i-u')—i-/\-&-)\/*£+GI*—w\,(>\+/\’)
provided by (5.2) and the commutativity constraint on the monoidal category
Perv.+q(Gr, k). The map (5.5) satisfies an obvious associativity property, as well as
an appropriate compatibility property with (5.4). Therefore, (5.4) and (5.5) make
the Y-graded ind-object

R:=EP R,

peEY

into an algebra object in the category of Y-graded ind-perverse sheaves. We call R
the regular perverse sheaf.

Recall the autoequivalence sw of the category Perv.+g(Gr, k) considered in
[AR3, §1.2]. Then for any A€ Y, we have a canonical isomorphism sw(Z}) =T, w),

These isomorphisms and Lemma 4.2(?) show that sw(R,,) corresponds, under (the

extension to ind-objects of) the equivalence Sat, to Ind%“@v (—p), seen as an ind-object
in Rep(G)/). (In this case, we choose as morphism ¢y from §4.2 the one induced
by the canonical morphism Z* —+77.) This justifies our choice of convention for the
definition of R, in view of the formulation of the Finkelberg—Mirkovi¢ conjecture
in [AR3, Conjecture 1.1].

5.3. Splitting the unit map in characteristic 0

For later use (in §9.6), in this subsection we show that when k has characteristic
0, the unit map (5.4) admits a left inverse, and hence that 7C° is a direct summand
of Rp. Recall that in this case the category Perv.+q(Gr,k) is semisimple, and
that the canonical morphism Z}' —Z{' is an isomorphism (and both objects can be
identified with ZC"). We can therefore rewrite the definition of Ry from (5.3) as

(56) Rozachg”z'c)\*ﬁ+(;'lcfw;()\).
ACY |

(?) In Section 4 we have assumed that k has positive characteristic; however Lemma 4.2 also
holds in characteristic 0, if GO s interpreted as an abstract reductive group, without reference
to another group G.
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Next, dual to (5.1), we have a “counit map” ex:ZC +£ ¢ZC~" M 57¢°. These
maps are not compatible with the transition maps in (5.6), so they do not define a
map Ro—ZCy.

However, in the present setting that char(k)=0 we can correct this failure of
compatibility by introducing the maps

1 1

E\= Ex= ey ICM LGN 70,
*T dimSat(ze*)  dimSat(ze ™)

Let ny:ZC° —ZC +£ G Z¢~ ™ be the map defined in (5.1). The composition eny :
7¢°—7C° is given by multiplication by dim Sat(IC)‘) (this can easily be seen by
considering the analogous unit and counit maps in the category Rep(G/)), so Exnr=
id.

We claim that the maps £, are compatible with the transition maps in (5.6),
i.e., that the bottom square in the following diagram commutes:

zC°

M+v
TIx

ICA*L+GIC_wJA)AAAH'ICA+V*£+GZC_W4A+W

EAJ/ \FM—V

zc° zc°

Since dim Hom(ZC*+£ GZC~"WM 7€%)=1, the commutativity of the bottom square
can be checked after composition with the unit maps in the top part of the diagram.
Commutativity follows from the observation that xnix=éext,nr+,=1id. Together,
the collection of maps €, define a map of ind-perverse sheaves

£:Ro—IC°

satisfying €on=id.

5.4. Graded R-modules

A Y-graded right R-module is, by definition, a Y-graded ind-object

F=Ep 7

AEY

in Perv(1§7XA)(Gr, k), along with a collection of maps

LTG
Fx 7€N'——%‘Fk+u
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for A\, n€Y, satisfying obvious unit and associativity axioms. Let
Y
MOd(IIf‘,XA) (R)

denote the category of Y-graded right R-modules. This is an abelian category. In
the special case where A=, we simplify this notation to Mod}i (R).
For any veY, there is a shift-of-grading functor on MOd(Y}A7XA)(R)7 denoted
by F—F(v) and defined by
(‘F<V>),u = f‘}i—ua
with the R-module structure unchanged. Of course we have (v)o(v')=(v+1'); in
particular, (v) is an autoequivalence with inverse (—v).

Given a perverse sheaf FePerv(ya x4)(Gr,k), we can construct a graded
R-module by the formula

4 (F)= D F+£ R,
neEY

called the free R-module on F. This construction defines an exact functor
o4 Perv(ra x,)(Gr,k) — MOdEf,XA)(R>'
In the case where A=, we usually omit it from the notation and write
@ : Pervy, (Gr, k) — Mod}. (R).

More generally, a free graded R-module of finite type is, by definition, a finite
direct sum of objects of the form ®4(F)(v), where F¢& Perv(a x,)(Gr k) and veY.
Note that ®4 is faithful; in fact by exactness this follows from the fact that it kills
no nonzero object, which itself follows from the observation that the morphism G—
®4(G)o induced by the unit morphism 7 (see (5.4)) is injective, since 7 is injective
and the functor Gx£ ¢ (=) is exact.

Morphisms from free modules can be easily computed using the following
lemma.

Lemma 5.1. For FePerv(a x,)(Gr, k) and MEModEf7XA)(R), there is a
natural isomorphism

I—IOHIModY (R)(q)A(f)7M)gHomPerv(IéYXA)(Gr,k)(faMO)'

(g xa)
Proof. Consider the unit map n:ICOHRO. Composition with

idxt G F—s F¥L T 9Ry = ®(F)o
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defines a map

HOInModY (R)((I)(‘F)vM)*)HomPerv(Iéq’XA)(Gr,k)(FvMO)'

(I x4)

On the other hand, given a map ¢:F— M, of (ind-)perverse sheaves, one can con-
sider for any u the following composition, which defines a map of graded R-modules:

Gl
(@A(F)) = FHE R, LT Mu T OR, 5 M,
(Here, the second map comes from the R-module structure on M.) It is straight-

forward to check that these two constructions are inverse to each other. O

An object of MOd([A Xa )(R) is said to be finitely generated if it is a quotient
of a free graded R-module of finite type. Let

Y ..
modgA B )(R) _ the full subcate?gory of MOd(]f,XA)(R) consisting
uo A of finitely generated modules.

At the moment, it is not clear that mod?gf’ x,)(R) is an abelian category. This will
be established later: see Theorem 7.9.

For any G)/-module V and A€ Y=X*(T}), we will denote by Vy the A-weight
space in V.

Lemma 5.2. For any F €Perv(;a x,)(Gr,k) and Ge€Pervo+c(Gr, k), the object
OA(F+LTCG) is isomorphic to a finite direct sum of objects of the form ®*(F)(v).
More specifically, we have a canonical isomorphism

PA(FALTCGG) > (P Sat(G)w (v) @2 (F)(—v).
veY

Proof. To prove the lemma it suffices to provide canonical isomorphisms

G+~ R, = P Sat(G) . () O Ryt

for any peY. Now if V=Sat(sw(G)), we have

V@Indg’kﬂc(— )NIndTV (V&key (~ EBV ®IndTV( [+v),

where on the right-hand side the action of G} is on each Indg“@ (—p+v). Applying
k

swoSat™ !, we deduce an isomorphism

GhE O, Pv.er, ..

Finally, by [F'S, Proposition VI.12.1] we have V,,=Sat(G)_,, () for any v€Y, which
finishes the proof. [
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5.5. Simple R-modules

Recall the subset AW CAW,y, introduced in §2.4, and that (by definition)

for any w€ AWy there exist y€ AW and A€Y such that w=yty. Choosing such
y and A we define a graded R-module EﬁEModEﬁ;’ x4)(R) by

L= (L) (=N).

Here the elements y and A are not unique, but if yty=y't\, then the pairs (y, \)
and (y', \') are related by the relations y'=yt,, A'=A—v, for some v€Y orthogonal
to all roots. Using the “componentwise” description

(L= L;;‘*LJrGR,\ﬂL for any pevY,

along with the fact that for v as above ZC” is the sky-scraper sheaf at L,, so
that we have LﬁV%L£*£+GIC” and IC”*NGR#%R,,_HL, we see that £2 is well
defined. To remedy this non-uniqueness issue, it is sometimes convenient to choose
a subset (AWIS) CAWIS of representatives for the (free) action of the subgroup
of Y consisting of elements orthogonal to all roots; then any element of AW et can
be written uniquely as a product yty with ye(AWre) and A€Y. It is clear from

ext

the definition that for weA Wy and A€Y we have
(5.7) LA, =LA(=N).

wty
We will see in Theorem 5.6 below that these are the simple objects in the abelian

category Modz‘f} X A)(R). Anticipating this, we define the category of R-modules of
finite length to be

the full subcategory of Mod?%y x4)(R)
Mod?§§7XA)(R)ﬂen = consisting of objects that admit a finite
filtration with subquotients of the form ﬁfj

Lemma 5.3. For any (ordinary) perverse sheaf F €Perv(ra x,)(Gr, k), the free
module ®(F) lies in Modz‘f’XA)(R)ﬁen.

Proof. Any composition series for F gives rise to a filtration of ®4(F) whose
subquotients are of the form ®4(L%) with z€4Ws,. By (2.7), Theorem 3.16(1)
and Lemma 5.2, each such ®#(L%) is a finite direct sum of objects of the form

®A(L) (v) with ye WS and veY. O

Lemma 5.4. Let w,v€AWey. We have

A A 1 if w=w;
dim Homy,, 4v LA LAY = '
MOd(1§>XA>(R)( w k) 0 otherwise.

In particular, any nonzero endomorphism of /Jf, is an automorphism.
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Proof. Let us choose a subset (AWI&)' CAWIE as above. By unwinding the
definitions and using Lemma 5.1, we see that this lemma is equivalent to the claim

that for z,y€ (AWI%) and peY, we have

ext

1 if =y and pu=0;
dim Homp,,, N LA,LA*E+GR = '
Pervirg, s (@ wllesby 2 0 otherwise.

To compute this Hom-group, we must study
@ Hom
A

%JligHom
A

(L;‘ﬁ L;;l*L+Gzive(u)+A*L+GI:w:(A))

(Lf*£+GIIA7 L;;x*ﬁaﬂu (M)+>\)

)

where the isomorphism uses (3.3). Here, by Theorem 3.16(1) and exactness of £ G,

we can obtain a composition series of L2 x% GIf‘ by choosing a composition series
o + ) A .
4 and likewise for Lﬁ*ﬁ GIf“(‘LH . From this

of Z} and then convolving with L4,
LAKLTC ) and L;‘*'UGIZ;U‘(”)H‘ have

description we see that if x#£y, the objects
no composition factor in common, so that

Hom(L;“*“GIf‘, Lﬁ*ﬁczfu(u)ﬂ) —0
for any A. Assume now that z=y. Then, by Theorem 3.16(2), the Hom-groups
above can be identified with

lig Hom(Z7, 22 19%2).
A

It is easily seen that this Hom-group is 1-dimensional if 4=0, and vanishes other-
wise. [

Corollary 5.5. Suppose MEMOd(\;‘f\,XA)(R)HCH. For any we Wey, any

nonzero morphism M— L% is surjective.

Proof. This follows from Lemma 5.4 by induction on the length of the given
filtration of M. [

We can now prove the properties of the objects ﬁﬁ announced above.

Theorem 5.6. For we4Wey, the object ﬁ;ﬁ is a simple object in the abelian
category MOdgA7XA)(R). Moreover, the assignment w— L4 gives a bijection

" ~ | isomorphism classes of simple
Wext — { objects in MOd?;‘f‘,XA)(R) ’



A geometric model for blocks of Frobenius kernels 267

Proof. We begin by showing that any object MEMOd(\;& x4)(R) admits a
nonzero morphism from a free R-module. Choose some nonzero graded compo-
nent M, in M. As an ind-perverse sheaf, M, is an inductive limit of ordinary
perverse sheaves, say M, = ligli ?F;. Choose some term F; in this limit such that
the natural map F;— M, is nonzero. Via Lemma 5.1, we obtain a nonzero map

(5-8) ¢ @ (F) () — M.

We will now show that each [Zﬁ is simple. If not, there is some nonzero proper
subobject M Cﬁf). Composing with a nonzero map as in (5.8), we obtain a nonzero,
nonsurjective map ®4(F;)(u)— LA, In view of Lemma 5.3, this contradicts Corol-
lary 5.5.

Next, we will show that every simple object in Modg‘f, x4)(R) is isomorphic
to some L,. Let MGModgf’XA)(R) be simple, and choose a nonzero map as
in (5.8); this map is necessarily surjective. But by Lemma 5.3, we already know
that ®4(F;)(u) has a composition series whose terms are of the form £ with
WEAWeyt, 50 M must be isomorphic to one of these composition factors, proving
the desired claim.

Finally, the fact that £A2 L4 if w#y is immediate from Lemma 5.4. O

As a consequence of Theorem 5.6, we see that ModEA’ XA)(R)ﬂe“ is stable
under subquotients in MOdEﬁ,‘, e A)(R). In particular, this category is abelian, and
by construction every object in this category has finite length. Using Lemma 5.3
we also see that

(5.9) mod 74 x,)(R) CModa v,y (R)™",

but we reiterate that for the moment, we do not yet know whether mod?{} 4.2,)(R)
is an abelian category, with one exception: when A=S, we have the following result.

Proposition 5.7. The category Modgfﬂs)(R) is canonically equivalent to
the category of (all) algebraic T, -modules; in particular, it is semisimple. The sub-
categories modgfﬂs)(R) and Mod?§§7xs)(72)ﬂe“ coincide, and are equivalent (via
the equivalence for ModXE)XS)(R)) to the category of finite-dimensional algebraic
T, -modules, i.e. to the category of finite-dimensional Y -graded k-vector spaces.

Proof. By the main result of [BGMRR], the category Perv(;s x)(Gr, k) is
equivalent to the Satake category Perv.+q(Gr, k), which is itself equivalent to the
category Rep(GY) via the geometric Satake equivalence, see §3.3. Via the latter
equivalence, R corresponds by definition to (the ind-object represented by) the al-
gebra O(G)/) (for the left regular representation structure), with the Y-grading
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coming from the action of 7} induced by multiplication on the right. In view of
Remark 4.1(1), the category Mod?{}s, x5)(R) therefore identifies with the category of

(all) algebraic 7,/ -modules, and both mOd(Y};i x5)(R) and Modgf, Xs) (R)fen identify
with the subcategory of finite-dimensional modules. [

We conclude this subsection with a few technical consequences of the results
above that will be required later.

Lemma 5.8. Let wedAW?S If 2E€AWoye is such that ﬁf 1S a composition

ext-
factor of ®A(LA), then z=w.

Proof. Write w as w=uwt,, (,) with r€AW?S and p€Y,. By Theorem 3.16(1),

ext
Lemma 5.2 and (5.7), ®4(L4) is a direct sum of objects ﬁfty where v is a weight of
Sat(ZC"). These weights are such that p—w.(v) is a sum of positive roots, so that
by Lemma 3.2 we have xt, Xwt,, (), i.e. vt, 2w, as desired. [

Lemma 5.9. For f,QEMod?{}‘?’XA)(R)ﬂen, we have

(g xa)
In particular, ModEA’XA)(’R)ﬂen is Krull-Schmidt in the sense of [CYZ, §A.1].

Proof. The first claim follows from Lemma 5.4. The second claim follows
by [CYZ, Remark A.2]. O

In the following statement we use the terminology introduced in Remark 4.3(2).

Lemma 5.10. Let F,GePerv(sa x,)(Gr,k), and let peY. If AeY N
(—w.(n)+Yy) is large enough, the natural map

+ + —w,
(510) HomPerv(IA‘XA>(Gr,]k) (J'_" g*ﬁ GI:L(H)"F)\*E GI* ()\))

— HomModEA’XA)(R)(q)A(‘F)<ﬂ>a >4(G))

s an isomorphism.

The map in this lemma comes from the identification of the right-hand side
with Hom(F, Q*E+GRM) (see Lemma 5.1), which in turn is identified with

li Hom(F, G+ G WA L7 G ey
AEY  N(—w.(n)+Yy)
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Proof. Any element of Hom(®4(F)(u), ®*(G)) lies in the image of (5.10) for
sufficiently large A. Since Hom(®*(F)(u), ®4(G)) is finite-dimensional by Lem-
ma 5.9, we deduce that (5.10) is surjective for sufficiently large A (depending on
F and G). Suppose now that 0—F —F—F"—0 is a short exact sequence in
Perv(sa x,)(Gr, k), and consider the diagram

Hom(F", G* Hom(F,G* Hom(F', G
I:)T(H)+)\*I;wq()\)) E— I:)f(u)Jr)\*I;wq()\)) — Ir)ﬁ(u)+)\*z*7wq()\))

| | |

0 » Hom(®4(F")(1),24(G)) + Hom(®4(F)(p),2*(G)) » Hom(®4(F'){1),2(G))

0—

If the first and last columns are isomorphisms and the middle column is surjective,
then the four lemma implies that the middle column is in fact also an isomorphism.
Thus, by induction on the length of F, we may reduce to the case where F is simple.
A similar argument applies to G. It therefore suffices to prove the claim in case F
and G are simple, which we assume from now on.

Choose a subset (AWI) CAWex as in the discussion above (5.7). Then we
may assume that

F=LA4

L1ty (v

=L eI, Py

Taty,, (vo

A LtG o
=L, TICT,

where 21,22 € (AWIS) and v, ,€Y,. As in the proof of Lemma 5.4, if 1 £z,
then Theorem 3.16(1) implies that F has no composition factors in common with
any GxE GO ITALTG TN g4 the left-hand side of (5.10) vanishes for all ),
and hence so does the right-hand side.

On the other hand, if 21 =24, then Theorem 3.16(2) lets us identify the left-

hand side of (5.10) with

Hompery ., . (Grk) (Zc, Icv *£+GI:1:(M)+>\*[:+GI;W(>\)).

By the geometric Satake equivalence, this is isomorphic to
Homgy (Sat(Z€"), Sat(Z€**) @N™ (w. (1) + A) @ND (—w. (X))

where N (v) is the induced G,/-module of highest weight v. As explained in
Remark 4.3(2), this group is independent of A for A large enough, as desired. O

Remark 5.11. If A\, N €Y are such that =A€Y, the morphism (5.10) factors
as a composition

Homperv(IA x4y (Grk) (F, g*£+GI:<UO(M)+/\*£+Gz*_w“()\))
&xa
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— HomPerV(IA x4)(Grk) (-/_"7 g*£+GI}<UC(#)+X*L+GI:w:(>\/))
XA

— HomModYA (R)(‘I’A(-F)</~L>a 24(9))
(Igh X 4)
where the second morphism is the analogue of (5.10) for A’. If A is large enough, this
composition and its second member are isomorphisms, hence so is its first member.

5.6. Baby co-Verma modules: definition and first properties

We now introduce geometric counterparts of the objects studied in §4.3.

For any peY, since Gry, . is open in Gr”, by adjunction there exists a

(n)
canonical map

(5.11) " — v,

we ()

Now let weAWs,. Then £(w)+L(ty, (u))=(wty ) by Lemma 2.1, which by
Lemma 3.1(4) implies that we have a canonical isomorphism . #;, ! Vi oo =Vut,
Applying AV:? and using [AR3, Lemma 3.3(1)—(3)] we deduce that

(n o(p)”

(5.12) NAIY, o =2ya

o (1) = wtw(,(p) :

Also, for any Fe D}’:Jr (Gr, k), we have canonical isomorphisms
N F (m, W)L CF VAL G F,

see [BGMRR, Lemma 2.5] and (3.4). Thus, applying .4,x! (=) to (5.11), we obtain
a canonical morphism

(5.13) VAL Gy yA

we(p)
For weAWey and HEY we set

*L+GI*—1U»(>\)7

Z1A : A
(Zs Ju=" @ 7 v“’tu+wo(>\)
A

where A runs over the elements of Y such that wt, 1, (n) belongs to w5,

(which
is automatic if X is sufficiently large, see §2.5) and where the transition morphisms
in the inductive limit are given by the compositions

A LTG7r—w.(N) A LYGrv LTGr—w.(v) £TG7—w.(N)
Wt 4w, (N) * L. v"Ut;L+w:()\) * I* * L. * L.
A LG +—w.(A+v
—V * T, (Atv)

Wy, 4w, (A )
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for veY, where the first morphism is induced by (5.1) and the second one is
induced by (5.13) (applied to the first two factors) and (5.2) (applied to the last
two factors). We endow the Y-graded ind-perverse sheaf

Z{uA = @ (Z;A)u
neyY

with the structure of a graded R-module by defining the action morphism

~ + ~
(Z{:‘)u*ﬁ “R,— (Z{uA)/H-V

(for p,v€Y) as induced by the morphisms

A LG r—w. O\  £TG (rw.(W)+N £t G—w.())
( TN i = )x= (T K£TCT, )
VA *,/;+GI—w.,(/\+/\’)

Wy tw, (A7)
induced by (5.13) and (5.2) (after application of the commutativity constraint for
*£1G t0 the second and third factors), for A, \' sufficiently dominant.

It is clear from definition that for any we4Wey; and v€Y we have

(5.14) Z4 = 2.

wt,

Lemma 5.12. For w7y€AWext, we have

JIPN 1 ifw=y;
dim Homy 4v LA ZI4) = '
MOd(I(,‘»XA)(R)( ) 0 otherwise.
Proof. Write y=zt,,, w=2't,, with 2,2’ €AW and v,/ €Y. From the defini-
tion of E;‘ and Lemma 5.1 we see that

FA ZIA A (ZIA
HomModP(IA x )(’R) (‘Cy ) Zw ) = HomPerv(IA XA)(Gr,]k)(Lz/7 (Zz/ )V’—V)'
u A u’

It follows that

LYGr—w. (X
2t * I* ( ))
(I8, X 4) v —vtw.(N)

I—IOInModY ( )(’CA;7 2711)14) = thom(Lfv VA
A

gn%ﬂom(L;“*ﬁ*GIﬁ, S i)
where the second step uses (3.3). By Corollary 3.17(1) the rightmost term vanishes
unless z and 2’ differ by multiplication by ¢, for some coweight 7 orthogonal to all
roots. In this case we can assume that z=2z'; then by Corollary 3.17(2) the Hom
spaces vanish unless v=v/. Finally, if z=2" and v=1/, by Corollary 3.17(3) each
space Hom(LA+£ G T, Vi o)
morphisms are isomorphisms, so that our inductive limit is isomorphic to k. [

is 1-dimensional. It is easily seen that all transition
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6. Averaging and wall-crossing functors

6.1. Averaging functors for R-modules

The averaging and wall-crossing functors defined in §§3.6-3.7 extend to exact
functors on ind-perverse sheaves. Moreover, for graded R-modules, these functors
respect the R-module structure, and the induced functors commute in the obvious
way with the functors ® and ®4, and with the shift-of-grading functors. The
properties of the functors constructed in this way, which follow directly from the
results of §§3.6-3.7, are recorded in the following lemma.

Lemma 6.1. The functors
Avit, Av i Mod {4 x,)(R) — Mod) (R),
Avy) :Mod) (R) — Mod(a x,)(R),
€4, &4 : Mod) (R) — ModY. (R)

are exact, and send finitely generated, resp. finite-length, R-modules to finitely gen-
erated, resp. finite-length, R-modules. Moreover, we have adjoint pairs

(Avi, AV, (Avih AV, and - (4,€4),
and an isomorphism &4 =2€%.

In view of the last claim in this lemma, we will sometimes write £4 for &4 or
&, and will write & for &4y (S€Sag)-

Remark 6.2. As in Remark 3.7, it is likely that the functors Avi' and AvZ are
isomorphic. At least, as in Remark 3.11, for any we“Wey we have

AV (L£3) = AV (L)

As a consequence, if we denote by [Modgf’XA)(R)ﬂe“] and [Mod}i (R)fen] the

flen

Grothendieck groups of the (abelian, finite length) categories Mod&i x4)(R)
and Mod}i (R)fen and by

[Av{'], [AvZ: [Moda x,)(R)™"] — [Mod}, (R)™"]
the maps induced by Av{* and Av? on Grothendieck groups, we have [Av{']=[Av%].
Lemma 6.3. 1. For any weWey, we have

[,Z‘) Zf we AWeXt s

0 otherwise.

Avjz (L) = {
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2. For any WEAWeyy and any vEW a4, we have
AvA(EL,) 2L,

3. Choose an enumeration 1, ..., x, of Wa which refines the Bruhat order (so
that necessarily x1=e and x,=w,). For we€Wey, the object AV*A(Z{UA) admits a
2 B 2]

. ) ) . ;
filtration with successive subquotients Z, .., Zy. s 25 -

Proof. The claims are consequences of the behavior of the functors Avjz and
Av? on simple and costandard perverse sheaves (see [AR3, Lemma 3.3] and the
proof of Corollary 3.17(2)) and the fact that for any A large enough, wt,_» is the

unique minimal element (for the Bruhat order) in Wawt,— (see Remark 2.6). [

6.2. Some perverse sheaves arising from the big tilting object on the
finite-dimensional flag variety

The considerations in this subsection are closely related to those in [BGMRR,
§4.1]; however, for the reader’s convenience we will repeat the required proofs.

The “big tilting object,” denoted by S, is defined to be the unique indecom-
posable tilting perverse sheaf in Pervy (G/B) with full support. (Here, “S” stands
for Soergel, who studied a representation-theoretic incarnation of this object.) We
will review one approach to constructing S (following [BY] in a characteristic-0 set-
ting, and [AR1] or [BR1, Lemma 10.1] for general coefficients) that shows that this
object is both the projective cover and the injective hull of the skyscraper sheaf at
B/BeG/B. Recall that 1g factors as a composition

5 — U+ 245G,

where U™ is the “positive” unipotent subgroup of G (see [AR3, §3.4]). We can then
set Xy =11 AS, and consider the equivariant derived category D?U‘*', X”(G /B,k).
The *- and !-pushforwards of the unique (U™", Xy )-equivariant rank-1 local system
on the orbit UTB/BCG/B are canonically isomorphic, and will be denoted A™.
We then have functors

AV : Dy 2, y(G/B,k) — Dy (G/B, k),

AVY: DUy, y(G/B,k) — Dy (G/ B, k)

defined as for AV!S and Av?, and we have

S=Av (AT = AvT(AT).
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Recall from [AR3, Lemma 2.5] that the elements we Wy, such that ww. has
minimal length in Www. are those of the form ¢)w. with A€ Y. For such A, we
have described the geometry of Gr’ in §3.3, and in particular considered a morphism

px:Gr* —=G/B. We set
Sy := p;S[dim(CGr*) —dim(G/B)].

This is an I,-equivariant perverse sheaf on Gr*. The following proposition describes
some calculations one can carry out with S.

Proposition 6.4. Let A€ Y.
1. We have
SN (ST
Moreover, this object has a standard filtration and a simple head, isomorphic to Ly, ..
2. We have
RSN (jS)R O

Moreover, this object has a costandard filtration and a simple socle, isomorphic
to thwo'
3. We have
JrSe =S =S
As a consequence, ifZ!)‘_<§Z>i‘_g, then
G SN 2SN,

and this object is an indecomposable tilting object, isomorphic to Ty, ..
In view of (3), the isomorphisms in (1) and (2) can also be written as

(6.1) ASNET,, KON and RS =T, #ETCTM

o (s)

we (s)

Note that if k has characteristic 0, then the condition in part (3) applies to all
M€Y, (by semisimplicity of the Satake category in this case).

Proof. (1) The functors Av and Av{ have a counterpart for sheaves on Gr?,
which will also be denoted Av;’; then we have

AvP ot 2o AvP, AV epl 2 pl o Avy .
Now consider the object AY , € Perv(ss xg)(Gr, k). From the definition we see that

AYw = i3 AT [dim(Gr?) —dim(G/B));
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we deduce that

(6.2) AV (AY

taw.

) 2 P pi AvY (AT)[dim (Gr) —dim(G/B)] = 5 S.

The claim that j*Sy admits a standard filtration is immediate from the fact that Sy
admits a standard filtration. Alternatively, it is a consequence of the isomorphism
above and Lemma 3.6(1).

Next, for any F in Pervy (Gr, k), by adjunction we have

(63) Hompervlu(gnk) (AV?S(AS (Gr,]k) (Atsxum AVi (]:))

taw.

)a ]:) = HomPerv(Iﬁgyxs)
In case F is simple, the explicit description of Avi(}' ) given in [AR3, Lemma 3.3(4)]
shows that

HOInPervIu (Gr,k) (AV'S (Ai\ w,

)a }-) =0
unless F=Ll;, ., in which case this space is 1-dimensional. We deduce that
Av!s(Afkwd)%jf‘SA has a simple head, isomorphic to Ly, ..

Finally, recall from [BGMRR, p. 723] that we have

Ai\wc = Aiwc *L+GI!)\_<‘
Since AV!S commutes with convolution on the right by objects of Perv,+q(Gr, k),
we see that

. + _ . + _
SN ZAVE(AS ) OIS 2 oS A TN,

which finishes the proof.

(2) The proof is very similar and will be omitted.

(3) Since tcw. is minimal in SWg,, we have A7, =LY . Using [AR3, Lem-
ma 3.3(4)] again, we deduce that

Aiw gAvi(Ltgw,)~
In view of (6.2), it follows that
FrS A (AF ) ZEs(Liw)-

Similar (dual) considerations show that jnggAVf(Vi w.)=€s(Liw.), and hence
that
IS = i8S
It is then clear that these objects are also isomorphic to j;,Sc.
Finally, let us assume that Z,'~*=272~¢. Then from parts (1) and (2) we deduce

that j?S,22j2 Sy, and that this object is tilting. Its support is clearly GrA:Grtwom,
and it is indecomposable because it has a simple head (and a simple socle). It must

therefore be isomorphic to Ty, ,,. U
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We extract the following observations from the calculations in the preceding
proof.

Proposition 6.5. Let A€ Y ..
1. If k has characteristic 0, then in Pervy, (Gr, k), the object

.]')\SA gji\S)\ = Ttw:o\)

is both projective and injective.
2. In Mod};(R), the object ®(j}Sy) is projective, and the object ®(j}Sy) is
injective.

Proof. (1) Under our assumption the category Perv(;s x.)(Gr,k) is semisimple
by [BGMRR, Corollary 3.6]. Then, since Avi is exact, so is the right-hand side
of (6.3) (as a functor of ). The left-hand side is therefore also exact, which shows
that Av{ (A7 ) =S, is projective. Dual arguments show that this object is also
injective.

(2) The proof is similar to that of (1), using the following R-module analogue
of (6.3):

Homygoqy (w) (P(AV] (A7

tyw(,

)); F) = Homygoqy (r) (Avy (25(AF ), F)
= Homyjoqv (R) (‘I’S(AS )s AVQOZ (F))-

t N
(18,xg) AW

By Lemma 6.1 and Proposition 5.7 the right-hand side is an exact functor of F,
so that the object ®(Avy (AS

7w )) =P (4Sy) is projective. Dual arguments apply to
B(j28)). O

6.3. Wall-crossing functors and objects arising from S

In the statement of the following lemma we use the fact that any element in

W&, can be written as a product xt_, where z€ WS and p€Y, see (2.3).

ext

Lemma 6.6. Let we WS, and write W=Tty (u—c) With EWE and peY 4.
Let y=t.w.x™', and choose a reduced expression y=wsi...s, with weQ and
81,y Sr € Saft

1. We have yw=t,w. and yws =t,, (w)» and moreover
Uyw) =L(y)+e(w), Lyw®)=Lw™)—L(y).

2. The object &, ..&5, &1 (§{'S,) is supported on Gry,a, and admits L,s as
a composition factor with multiplicity 1. Moreover, this object admits a standard
filtration in which A, occurs with multiplicity 1, and L, is a direct summand of its
head with multiplicity 1.
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3. The object &, ...85, 6,1 (34 Sy) is supported on Gr,a, and admits L,» as a
composition factor with multiplicity 1. Moreover, this object admits a costandard
filtration in which V., occurs with multiplicity 1, and Ly, is a direct summand of its
socle with multiplicity 1.

4. 1If jI'S, = gi'S,, then &, ..E,8u-1(3{'Sy) is tilting, and contains T,a as a
direct summand with multiplicity 1.

Proof. (1) The fact that yw=t,w. is immediate from the definitions, and then

Y M () = Tt b, (1) = Who, (g oy Wel—ctuw, () = WEo () ot () = W7

(Observe that w™! (Asuna) CII_, (,).) Using (2.1) for the first two equalities, then
Lemma 2.2, and finally [AR3, Lemma 2.7] and the fact that £(t,_¢)={(tw (u—c))
we see that

Uyw) =L(ty) = l(w.) = U(tu—c) +(tcw.) =L(tu—c)+L(x)+L(y) =(w)+L(y).
Finally, we have
g(wA) = g(mwotfﬁwq(,u)) = K(:cw(,t,g) +£(tw:(u)) = Z(y) +£(twq(,u)>7

where we use [AR3, Lemma 2.7] for the second equality, after noticing that zw.t_.€
WZes since tew.x ™ (Apna) Ctew. (I ) =11,

(2) Note that yweWS, (see e.g. [AR3, Lemma 2.5]). By Lemma 3.15, the
objects

gwgm "fsr (Lw) and gwgm "‘gsr (vw)

are supported on Gry,,, and have Ly, as a composition factor with multiplicity 1.
Now, Gy, in the unique closed I-orbit in Gr*; it follows that

gwgsl "'SST (Lw) |GrH = gwfsl "'£Sr (vw)|Gr“ = k(}rt”w: [’e(ty,wo)]-

By definition of S, and full faithfulness of pj,(—) [dim(Gr*) —dim(G/B)] on perverse
sheaves (since p,, is smooth with connected fibers), we deduce that

(6.4) dim Hom(j{'S,,, §u&s, ---&s,. (Lw)) = dim Hom(5{'S,, £ &, --&s,. (V) = 1.

By adjunction, it follows that
(6.5) dimHom(&s, .65, &1 (J1*Sy), L) = dim Hom (&, ...&s, §-1(4{'Sp), Vi) = 1.

Thus, L, occurs in the head of &, ..., &,-1 (j{*S,,) with multiplicity 1. By Proposi-
tion 6.4(1), j{'S, admits a standard filtration; in view of Lemma 3.8 and (3.9) this
implies that &, ...&s, &u—1(j{'S,) admits a standard filtration. The dimension calcu-
lation above shows that A, occurs in this standard filtration with multiplicity 1.
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Finally, invoke Lemma 3.15 again to conclude that our perverse sheaf is supported
on Gr,» and admits L, as a composition factor with multiplicity 1.

(3) The proof is similar (more specifically, dual) to that of part (2).

(4) If j/'S,=jLS,, then (2) and (3) imply that &, ...&s, Eu—1(J{'S,) is tilting,
and that this perverse sheaf is supported on Gr,,» and admits L,,» as a composition
factor with multiplicity 1. It follows that &, ...&, &,-1 (j{'S,) admits T4 as a direct
summand, with multiplicity 1. O

For later use we note the following corollary of Lemma 6.6.

Lemma 6.7. Let weW[s, and let p€Yy. The object T a *£TCTH admits a

ext? )
standard filtration, and the object T, a *£TCTH admits a costandard filtration.

Proof. We will prove the claim for Z{"; the other case is similar. Let y=tw. w1,
and choose a reduced expression y=wsj...s, as in Lemma 6.6. Let A=p+c€Y ;.
By Proposition 6.4(3) and Lemma 6.6(4) (applied with p=¢), T, is a direct sum-
mand of &, ...&s5,&,-1(Tt,, ., ); hence to prove the claim it is enough to show that
the object

557‘ "’55150.)—1 (Tt’(l7o(<) )*£+GI!H = gSr"'gslgw_l (Ttw.,<<> *£+GI!>\7C)
61 N
= fsr-"gﬂgw*l(]! SA)

admits a standard filtration. This claim holds by Proposition 6.4(1) together with
Lemma 3.8 and (3.9). O

6.4. Baby co-Verma modules are finitely generated

Our next task is to prove that each ZAI'UA is finitely generated, as stated in the
following proposition.

Proposition 6.8. The object ZA{DA belongs to mod?i;;’XA)(R).

Proof. By Lemma 6.3(2) and Lemma 6.1, it is enough prove this proposition in
the special case where A=2. We assume this from now on. Furthermore, in view
of (5.14), we may assume that weW. Using the formalism of the free-monodromic
completion from [BY], [BR1] one can construct a canonical triangulated functor

P * (=) : D} (Gr,k) — D} (Gr,k)
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such that the diagram

T (=
DY(Gr, k) 22 pb(Gr, k)

ForfuJ/ J{Forfu

DY (Gr,k) 225 pb (G k)

commutes. We consider the complex Z,, *j;,S;. Here j;, S admits a costandard
filtration (see Proposition 6.4). By Lemma 3.1 the convolution of a standard and
a costandard perverse sheaf is perverse; our complex is therefore a perverse sheaf.
We will construct a surjection

(6.6) ®(Z0 % 5. S) (w.(6)) — Z1,,

which will prove the proposition.
By Lemma 5.1 we have

Homygoqy (r) (P(Zuw * 1, Sc) (w-(5)), Z,,) = Hom(Z % j. 8., (21, (0))-

Now since jy S; is tilting and supported on Gry, (., there is a canonical surjection

jf*SC — Vt

we (§)

whose kernel admits a costandard filtration, and which therefore induces a surjection

I A ind ~Y I ~Y
-@w*j!g*sc ? @w*vtwn ):-@w* vtwn ):thw

(s (s o ()

in view of Lemma 3.1. (Note that £(wt,, ))={(ty ())—€(w).) There is also a
canonical morphism

73 NN LTGr—w.(N) _ (S
Vaut, o hﬂ Vot @rwm* L =(Z0)w ()
A

which provides the desired map (6.6).
Now for any u€Y we have

(®(Z % 2.8) (W (9))), = (P 5, S) % F Ry (o)

= “Tim "D % (j§, Sex CTY WA LG )
: |

73 NN ~ we ()4
hﬂ D *‘7:} 0+ S’wo(u)-‘r)\*
A

>~

c+GI—uu(A)
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by Proposition 6.4. As in the case of j;, S, for any A€ —w.(u)+Y 4 we have a
canonical surjection

(6.7) Do %5 S (wyix = D F Vs ~y

ptwe (A) Wty pw, (X))

and these morphisms induce (6.6). It follows that this morphism is surjective, as
desired. O

Corollary 6.9. For anyw€“ W,y the object ZA{UA has finite length and a simple
socle, isomorphic to Efj. In particular, Z{UA is indecomposable.

Proof. The finite-length property is immediate from Proposition 6.8 and (5.9).
The description of its socle follows from Lemma 5.12. [

6.5. Baby co-Verma filtrations

We will say that an object F in modZAKA)(R) admits a baby co-Verma fil-
tration if it admits a finite filtration whose subquotients are isomorphic to baby
co-Verma modules.

Lemma 6.10. The object ®(j;,Sc) admits a baby co-Verma ﬁltmtion with

Z’ ) at the bottom, Z’ o Ot the top, and other subquotients of the form Z

wzth wGW\{e w.}, each appearmg once.

wo ()

Proof. As in the proof of Proposition 6.8, for any €Y we have

,,j!g*sc*ﬁGI:u(u)Jw\*ﬁGI:w;(A)

BLS) = Iy

% hm 9 W (H)+>\+§S () +)\+§ L+GI;“)"(/\) .
By
Now the perverse sheaf j, w () At *Sy (1)+r+¢ admits a filtration with subquotients

of the form Voot s (4w o) With weW, each appearing once, with the case w=w.
(corresponding to the closed stratum on G/B) at the bottom and the case w=e
(corresponding to the open stratum on G/B) at the top. These filtrations are
compatible in a natural way with the transition morphisms in the inductive system,
and therefore provide a filtration of ®(j;,S¢), whose subquotients are isomorphic

to
£+Gz.*7w;()\) :( / )

Wiy, (¢) /T H

“ls ”
M "Vt 4,3y 40 *
x

(for weW). One can check that this collection of filtrations is also compatible with
the R-actions, and therefore provides a filtration of ®(j;,S.) with subquotients

2{0% © for weW; in particular, this object admits a baby co-Verma filtration. [
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Lemma 6.11. For any we Wy, we have

dim Hommod;[u(R)((I)(jf*Sg)7 Zq/u) =

1 if w=ytcw. for some ye W,
0 otherwise.

Proof. By Lemma 5.1 we have

‘ S e : G . (A
Homypoay (r) (R, S), 21,) 2 lim Homepery,, (e (7556 Vot ) *° “ZL Wy,
A

Now by (3.3) and Proposition 6.4, for any A€ Y such that wt,, () €W, we have

. + —w. (M
HomPervju(Gr,]k) (jf*sg, thwo(A)*L GI* w. ( ))

. +
= I_IornPerVIu (Gr,k) ((]‘g*SC)*ﬁ G:Zl)\a thwa()\))
= }IOInPervIu (Gr,k) (j!H_)\S(—&-)\a V'wtwq()\) )

Here jf+k8<+>\ admits a standard filtration, with subquotients Ay, . for yeW
(each appearing once). Hence our space is 1-dimensional if w is of the form yt.w, for
some y €W and vanishes otherwise. All the transition morphisms in our inductive
limit are isomorphisms. The lemma follows. O

We now study the behavior of wall-crossing functors with respect to baby co-
Verma filtrations.

Lemma 6.12. 1. For any s€Sag, the functor
& :mod) (R) — mod] (R)

sends objects admitting baby co-Verma filtrations to objects admitting baby co-Verma
filtrations. More specifically, if weWey, then if sw=w we have an exact sequence

2 —6:(2,) > 2y,
and if w=<sw we have an exact sequence
2, —8:(2) > 2oy
2. For any we, the functor
&t mod}i (R)— mod}i (R)
sends objects admitting baby co-Verma filtrations to objects admitting baby co-Verma
filtrations. More specifically, if we Wy, then
C(Z0) = 2
Proof. (1) By Lemma 2.5(1) and exactness of & (see Lemma 6.1) it suffices to

prove the second claim, which follows from Lemma 6.3(2)—(3).
(2) The proof is similar to that of (1), using (3.9). O
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7. Projectives and injectives

In this section, we will prove that mod?i;;’ ¥ A)(R) is an abelian category with
enough projectives and injectives, that the projective and injective objects coincide
and arise as direct summands of free R-modules associated with certain tilting per-
verse sheaves, and finally that the embedding modé‘q} X A)(R)CModE£7 e A)(R)ﬂe“
is an equality.

In the special case where k has characteristic 0, we will see (by nearly identical
arguments) that Perv(;a x,)(Gr, k) also has enough projectives and injectives, and
that these coincide with certain tilting objects.

7.1. Projective and injective perverse sheaves

We start with the case of Perv(a x,)(Gr,k) (for characteristic-0 coefficients).

Theorem 7.1. Assume that k has characteristic 0. The category
Perv(Ilf,XA)(Gr, k) has enough projectives and enough injectives. Specifically, for

any weAWS,, we have waw™€AWS,, and the projective cover and the injective
A

wawd "

hull of L2 in Perv(ra x,)(Gr,k) are both isomorphic to the tilting object T

Note that this statement implies that all projective objects in Perv(za x,)(Gr, k)
are also injective and tilting. Dually, all injective objects are projective and tilting.
(However, there may be tilting objects that are not projective nor injective.)

Proof. We break the proof up into two cases as follows.

Case 1. A=@. We wish to show that for weWz,, the object T, is both
the projective cover and the injective envelope of L. Write w=xt,, ,—) as in
Lemma 6.6. By Proposition 6.5(1), Ty, ,, is both projective and injective. Since
they have exact left and right adjoints, the functors &5, , ..., &5, , &, send projectives to
projectives, and injectives to injectives. Thus, the perverse sheaf &s, ...6s, §-1 (T4, ()
is both projective and injective. Lemma 6.6 then implies that Perv; (Gr,k) has
enough projectives and injectives.

More specifically, let P,, be the projective cover of L,,. By the construction
described above, this object is a direct summand of &, ...§s, §,-1 (T, (,,,)- The latter

object is tilting by Lemma 3.8 and (3.10), and its support is contained in Gr,a by
Lemma 6.6. Hence P,, is isomorphic to T, for some yeWS, such that y<w”, and

to show that P, =T, it is enough to show that (Py)q; , #0, which in turn is
equivalent to the claim that

Hom(P,,, V,a) #0.
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However the left-hand side has dimension [V,,a :Ly]=[A,a:L,], which is equal to
1 by (3.6); this proves that P, =T, 4.

Finally, the injective hull of L,, is the Verdier dual of P,,, which is isomorphic
to T,,» since every tilting object is Verdier self-dual.

Case 2. A#@. For any weWS5, we have AV;‘(Lw)%Lﬁ by [AR3, Lem-
ma 3.3(4)], and the functor AV;Z1 is exact (see §3.6). Hence from the surjection

T2 —L, and the embedding L,,~—T,~ obtained in Case 1 we deduce a surjection
and an embedding

AV)(Tya) > L, Lie—AV)(Tya).

Since Avjz has exact left and right adjoints (see §3.6), it sends projective, resp. in-
jective, objects to projective, resp. injective, objects. This already implies that
Perv(ra x,) (Gr, k) has enough projectives and enough injectives, and that an object
is projective if and only if it is injective; these objects are therefore tilting. Using
Verdier duality (see Remark 3.3) we see that for any we A W5, the projective cover
of L is also its injective envelope. We now need to determine the label of this
object (as an indecomposable tilting object). Fix weAWs,, and denote this label
by y.

By adjunction and [AR3, Lemma 3.3(4)], the object Avfl(T;;‘) is the projective
cover of L, so that we have

A TH 2T,

by Case 1. Now, by Proposition 3.12 the left-hand side is isomorphic to T, ,y, so
that way=w®, which finishes the proof. [

Remark 7.2. 1. In the course of the proof of Theorem 7.1 we have proved
that for any weAWS,, we have waw” €AWs,. By definition of AW (see §2.4)
and (2.4), it then follows that for any WEA Wyt we have w 4w €A Weys.

2. In case char(k)>0, and if G is not a torus, the category Perv(;a x,)(Gr, k)
does not have any nonzero projective or injective object. In fact, using Verdier
duality it suffices to prove this claim for projective objects, and using Remark 3.5
one can assume A=@. In this case, if P is a nonzero projective object and if L,, is a
simple quotient of P, if w, $1, ..., s, are as in Lemma 6.6, then P':=¢,&;, ...&s, . (P) is
a projective object surjecting to {,&s, -..&s, (Lw). Then AVi(’P’) is a projective object
in Perv(;s, xg)(Gr, k) surjecting to the object Avi(fwgsl...fsr(Lw)), which is nonzero
by Lemmas 6.6(1) and 3.15 combined with [AR3, Lemmas 2.5 and 3.3(4)]. Now
as explained in the proof of Proposition 5.7 we have Perv(lus,XS)(Gr,k)%Rep(Gﬂg);
the category Rep(G)/) therefore possesses a nonzero projective object. Using [Ja,
Lemma 1.4.17] one sees that this object is projective in the category of all algebraic
G,/-modules, which is impossible by the main result of [D3].
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We now drop the assumption that k has characteristic 0, and come back to the
setting of arbitrary coefficients.

Corollary 7.3. For any weAWIS, the object L2 occurs in both the head and
socle of TﬁAwA with multiplicity 1.

Proof. When k has characteristic 0, this claim is already part of Theorem 7.1.
We must now treat the case when k is finite. (This case will imply the case when k
is an algebraic closure of a finite field.)

First, assume that A=@, and continue with the notation from the proof
of Lemma 6.6 (for p=g, so that w=xz). Recall that T, is a direct summand
of &, s, €u-1(Te, (o)) The dimension calculation in (6.5) shows that
Eops1&o-1(Ty,, <<>) admits exactly one direct summand admitting a nonzero map
to V4, and that this map is unique up to scalar and factors through the socle L,,
of V,,. Hence to prove that L,, occurs in the head of T, it suffices to prove that

dim Hom(T 4, Vy) > 1,

then we will know that the multiplicity of L,, in the head of T,a is exactly one,
and since T~ is Verdier self-dual the claim about its socle will also follow. Of
course, dim Hom(T,,a,V,,) is the multiplicity of A,, in any standard filtration of
Tua, denoted by (T, a:A,); the statement we wish to prove is therefore equivalent
to the claim that

(Tywa 1 Ay)>1.

Let us consider a finite extension K of Q, whose ring of integers admits k as
residue field, and adopt the notation of Lemma 3.4. By that lemma we have

(The 1 A4) = (Tya 1 AF).

By the characteristic-0 version of the corollary (which, as explained above, is already
known) the right-hand side is at least 1, which proves the desired inequality.
For a general A, one observes that

Hom(T# ,»,L5)=Hom(T2 o, Av)(Ly)) 2 Hom(Av{ (T2 4), L)

wawd
by [AR3, Lemma 3.3(4)] and adjunction. Using Proposition 3.12 we deduce that

Hom(T# ., L4)~Hom(T,x,Ly,),

wAwW

and the right-hand side is of dimension 1 by the case A=@. (Note that weWrE.)
One shows similarly that Hom(Lﬁ,TﬁAwA) is 1-dimensional, which finishes the

proof. O
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7.2. Projective and injective R-modules

We now study projective and injective objects in mod?§§7XA)(R). In this set-
ting, the replacement of the property of admitting a costandard filtration will be
the existence of a baby co-Verma filtration. (The replacement for standard filtra-
tions will be introduced later, in Section 9.) We start by constructing an “explicit”
family of projective and injective objects, in the special case A=, based on Propo-
sition 6.5(2).

Proposition 7.4. For any x €Weyy, there exists an object in mod}i (R) with
the following properties:

1. It is both projective and injective as an object of Mod}i (R)

2. It admits L, as both a subobject and a quotient.

3. It admits a baby co-Verma filtration with 2; at the bottom, é\;A at the top,

and all other subquotients of the form 2; with x<z<x>.

flen

Proof. By periodicity (see in particular (5.7) and (5.14)), it suffices to prove
this proposition in the case where z€Wis. We assume this from now on. As in
Lemma 6.6, set y=t.w.x~!, and choose a reduced expression y=wsj...s, (with each

$; in Sue, and weN). Lemma 6.6(1) implies that

(7.1) <88 < Sp 18,0 < oo <818 =W MW,
and
(7.2) 22> 5,00 > 8,185,250 > > 518,00 :wfltwu(g).

All elements in these chains of inequalities belong to W5

ext

by [AR3, Lemma 2.2], so
by Lemma 2.5(3) we also have the same chains of inequalities when the symbols <
and > are replaced by < and >, respectively.

Since the functors &5, , ..., s, , &,—1 are exact and have exact left and right ad-
joints (see Lemma 6.1), they send projectives to projectives and injectives to injec-
tives. Applying Proposition 6.5(2) to

j 'g *Sc = Tt

w.(s)?

we see that the object

fsr "'§S1§w*1 ((I)(Ttw,,(g) )) = (b(fsr "'§S1§w*1 (Ttw, (<) ))

is both projective and injective. Referring to Lemma 6.6 once again, we see that the
perverse sheaf §Sr...£51£w—1(Ttw“(g)) contains L, in its head and socle, so applying
the (faithful) functor ® (see §5.4) yields nonzero maps

~

ﬁa: — (I)(gsr“'fﬁfw*l (Ttu,)@))a (I)@sr---gﬁfw*l (Ttwo(c)» — E:v’
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which must be injective and surjective respectively by simplicity of L.
Finally, by Lemma 6. 10, the obJect (57, Sc) admits a baby co-Verma filtration

with Z' at the bottom, Z e )—Z(1t w.)2 at the top, and the other subquotients

of the form z, with weW\{e,wU}. All the elements wt,, ) belong to W2

we () ext)

and they batlbfy tew. Swty, (< (tcw.)”, and hence
tow. S wty, (o) < (tw.)?

by Lemma 2.5(3). Combining these observations with Lemma 6.12 and the chains
of inequalities (7.1) and (7.2), we see that &s,...&,&u-1(®(Ty, ) admits a baby
co-Verma filtration with 2’ at the bottom, Q;A at the top, and with the other
iy With weW and y' € Wey such that v/ <y~ ! and

Y wtwo(g)gé{x,xA}. All these elements satisfy x=<y'wt,, (o) by Lemma 2.5(4), and
y'wty, (o) 22> by Lemma 2.5(5), as desired. [

subquotients of the form Z

Corollary 7.5. If w,x€*Wey satisfy [2{;‘:@]#0, we have r=w=wsz>
Moreover, we have [Z/4: L] =1 and [Z;‘th:Lz]gl.

Proof. We first treat the special case where A=@. In this case, we assume (by
periodicity) that x€Wr, and we retain the notation from the proof of Proposi-
tion 7.4. Since L, is a quotient of the projective object &, ...&6s, §u—1 (P (41, Sc)), we
have

21, £2] < dim Hom(&, . &, £ (R(,S0)), 21,).

By adjunction we have

Hom (&, ---&o, &1 (1. S0), 2,,) = Hom(D(j5, S, ), €ubiy s, (21,)).

By Lemma 6.12, the object &,&s,...&s, (ZA{U) has a baby co-Verma filtration, whose

subquotients have the form Z/, ~with 3’ <y; moreover Z;w appears once in this

y'w

filtration. By projectivity of <I>(],*S ) and Lemma 6.11, we deduce that the space
Hom(&;, ...s, £0-1 (47, Se), Z,) vanishes unless

(7.3) y'w=zt.w., for some z€ W and y’' € Wy such that 3’ <y.

Here, we have t.w.=<zt.w.=t, (), and as in the proof of Proposition 7.4 we obtain
using Lemma 2.5(4) that w=(y’) "2t w. satisfies

x :yiltcwo “w= (y/)ilzts‘wo = yiltwa(c) =z

We have shown that [2/,:£,]#0 implies that z<w=z%
Now let us take w=xz. Lemma 6.6(1) implies that y'z<yr=t.w. for any
y' <y, so condition (7.3) is satisfied only for y'=y and z=e. It follows that
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dim Hom (&, ...&s, -1 (41, Se ), Z!)=1, and hence that [Z:£,]<1. Since we know
that £, is the socle of 29’6 (see Corollary 6.9) this multiplicity is then equal to 1.
Finally, take w=x*. In this case, Lemma 6.6(1) implies that y'w>yz"=
tw, (o) =w.t;w. for any y' <y, so condition (7.3) is satisfied only for y'=y and z=w..
As in the previous paragraph, we conclude that [ZA; ~:L£,]<1. This concludes the
proof in the case where A=@.
Now suppose A#@, and let w, 2€4Wey. By Lemma 6.3(1)—(2), we have

ZIA,pAY _(Z! P (7 . P
(20 L= (20 Lal = (2440t La].
Using the A#@ case of the corollary, we see that [Z/2:£A4]£0 implies that z=<w
and waw=z>. Since war® lies in AWy, (see Remark 7.2(1)), Lemma 2.7 tells us
that the latter condition is equivalent to w=<wax®. The claims that [Z/4:£4]=1
and [Z;iwﬂ :E;‘} <1 likewise follow from the A=& case. O

Remark 7.6. 1. We will see in Proposition 9.24 below that, in fact, in the
setting of Corollary 7.5 we always have [ZZLIA L]=1.

2. The information on composition factors in Corollary 7.5 implies that the
family ([Z/4]:wE€AWex) in the Grothendieck group [Mod?§£7 Py A)(R)ﬂe“] is linearly
independent. (This family is not a basis, however.) This implies that if Me
Mod?§§7XA)(R)ﬂe“ admits a baby co-Verma filtration, then the number (M:Z/4) of
occurrences of a given baby co-Verma module Z, in such a filtration is independent
of the choice of filtration; in fact these numbers are determined by the equality

M= Y (M:2,)[Z)]
wWE Wext
in KO(ModEfVXA)(’R)ﬂe“). (Later, after we prove Theorem 7.9, we will be able to

apply these comments to [mod?i;;,XA)(R)] instead.)

Proposition 7.7. For any we* Wey, ZA{UA is the injective hull of ﬁf, in the
Serre subcategory of Mod5§7XA)(R)ﬂe“ generated by the simple objects of the form

A
Ly} with y#w.

Proof. Recall from Corollary 6.9 and Corollary 7.5 that z;ZUA is indecomposable;
its socle is ﬁﬁ; and it belongs to the Serre subcategory described in the statement
of the proposition. It remains to show that it is injective as an object of this
subcategory. In other words, we must show that

Exty g qv (R)fien (ﬁ;‘, 2{1}’4) =0 if y#w.

g, xa)
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Let us first treat the special case A=@. In this case, we can invoke Proposi-
tion 7.4 to find an injective object MEModX (R)fe™ such that there is an inclusion
Z! <M whose cokernel M’ admits a baby co-Verma filtration by various Z/, with
u>w. Since y¥ w by assumption, Lemma 5.12 tells us that Hom(ﬁy, ZA[J):O for any
u>=w. It follows that Hom(/:'y, M’)=0. The exact sequence

... — Hom(L,, M") — Ext'(L,, Z!,) — Ext!(L,, M) — ...

1 JUPS
then shows that ExtMOdX’(R)ﬂcn (Ly, Z!,)=0.
Now suppose that A#@. By Lemma 6.3(1) and adjunction we have

Ext! (L1, Z/) 2 Ext' (Av)(£,), Zi1) 2 Ext! (L, Av2 (Z14)).

On the right-hand side, by Lemma 6.3(3) the object AvZ(Z/4) admits a filtration
with successive subquotients the objects é\{;w with v€W 4. Using the A=2 case
proved above, we conclude that Exty,, dY (R)ften (,/jy7 Avf(z’f)) vanishes unless y>
vw for such a v. Now we have w=vw u(see Remark 2.6), so that this condition
implies that y>w. 0O

Remark 7.8. Combining the information in Corollary 7.5 and Proposition 7.7,
we obtain that Extl(ééA,Q{UA):O unless w~<y. This implies that if an object M
admits a baby co-Verma filtration, and if we choose a numbering wy, ..., w, of the
elements z such that (M:E?;);AO (counted with multiplicities) such that w; <w;=
1<j, then there exists a chain of embeddings

oO=MocMi;Cc..CM,_1CM, =M
such that Mi/Mi_l%ZA{U“: for any i€{1,...,n}.
We can finally state and prove the main result of this section.

Theorem 7.9. 1. The categories modgf’XA)(’R) and Modz‘f’XA)(R)ﬂe“
coincide, and this abelian category has enough projectives and enough injectives;
moreover, an object is injective iff it is projective.

2. For weAWeyy, let QZ‘) denote the injective hull of ff, Then @ﬁ admits a
baby co-Verma filtration with subquotients of the form E/Z\Z’JA with y€AWeyy which
satisfies w=y.

3. For weAWey, we have Avf(@ﬁ)géw.

Proof. (1) When A=, Proposition 7.4 tells us that every simple object in
Mod}i (R)fe" embeds in a finitely generated injective R-module that is also pro-
jective, and is a quotient of a finitely generated projective R-module that is also
injective. For general A, because Avjz is exact and has exact left and right adjoints,
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it sends prOJectlves to prOJectlves and 1nJectlves to injectives. Given we Wext,
apply Avw to a nonzero map LM or M—»L,,, where M is finitely generated,
projective, and injective; we conclude that every Eﬁ embeds in a finitely generated
injective R-module that is also projective, and is a quotient of a finitely generated
projective R-module that is also injective.

As a consequence, Mod?%y Xa) (R)fen has enough projectives and injectives, and
these classes coincide and consist of finitely generated R-modules. In particular,
every object of Modz A x4 (R)fen is a quotient of a finitely generated module, which

implies that mod?gf,XA)(R) MOd(IA XA)(R)ﬂe“.

(2) We will apply a kind of “highest weight” formalism developed in [BS]. (Note
that mod?glf;’ e A)(R) is not a highest weight category in the sense considered in, for
instance, [ACR], [AR1], [AR2], because the poset that governs it has no minimal
element.)

All objects in mOd?;(},XA)(R) have finite length, and by Lemma 5.9 all mor-
phism spaces in this category are finite-dimensional; by [BS, Lemma 2.1], this
category is therefore a “locally finite abelian category” in their terminology. By
part (1), this category has enough injective and projective objects; hence by [BS,
Corollary 2.20] it is an “essentially finite abelian category.” Next, we define a “strati-
fication” on this category in the sense of [BS, §3.1] with underlying poset (4 Wy, <),
and with the labeling of simple objects given by wn—>ﬁ$. (The function “p” of [BS,
Definition 3.1] is therefore the identity map for this stratification.) This stratlﬁca—
tion is “essentially finite” Comparing Corollary 7.5 and Proposition 7.7 with [BS,
Lemma 3.1] we see that for any w €4 W, the baby co-Verma module ZA{;“ is isomor-
phic to the objects denoted V(w) and V(w) in [BS]. In view of [BS, Lemma 3.4],
this implies that all the strata are “simple” in the terminology of [BS].

Next, we claim that condition (IV) of [BS, Remark 3.6] holds. Translated
into the language of the present paper, this condition says that for any w4 Wy,
there exists an injective object admitting a baby co-Verma filtration with ZAL}A at
the bottom, and all other subquotients of the form 2;‘4 with z>=w. For A=@, this
claim is part of Proposition 7.4. For general A, it follows from Proposition 7.4 by
applying AV;?) and using Lemma 6.3(2).

Applying [BS, Theorem 3.5], we see that mod?;§7XA)(R) is an essentially finite
highest weight category in the sense of [BS, Definition 3.7]. In more concrete terms,
this means that the injective envelope Q7 of £ admits a baby co-Verma filtration
whose subquotients Z’A satisfy y>=w.

(3 ) Since Av has an exact left adjoint, it sends injectives to injectives, so
(QA) is injective. To show that it is isomorphic to Qw, it is enough to show
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that its socle is isomorphic to ﬁw, or in other words that

. ~ 1 ify=
dimHom(cy,Av;:‘(Qg))—{ sy=

0 otherwise.
This claim holds by adjunction and Lemma 6.3(1). O

It is clear that for any wEA Wy, and A€Y we have
(7.4) Qi = Qo)

in particular, in order to understand all these objects it is enough to understand
those whose label belongs to AW

ext -

Remark 7.10. 1. The proof of Theorem 7.9 provides a slightly more precise
statement than the mere existence of enough projective and injective objects: it
implies that any object of mod?;AyxA)(R) is a quotient (resp. a subobject) of a
direct sum of objects of the form <I>A(AV;2 (T.)){(p) with zeWS5, and p€Y, these
objects being both projective and injective.

2. The proof of Theorem 7.9 also shows that each Q2 (hence each projective
object in modz 4,x,)(R)) remains projective in the largerAcategory Modg A2, (R).

3. Theorem 7.9 implies that the projective cover of £4 is also an indecompos-
able injective object. Define a map

(75) LAt AWext - AWext

by requiring that EAZAA (w) be the socle of the projective cover of ljﬁ (equivalently,

@i(w) is the projective cover of £4). We will see later (see Proposition 9.21(1))
that in fact ¢ 4 is the identity map; in other words, the projective cover and injective
envelope of £2 coincide.

7.3. Injective R-modules and tilting perverse sheaves

In this subsection we study the relation between injective objects in
modgA_’XA)(R) and tilting objects in Perv(;a x,)(Gr,k).

Proposition 7.11. 1. For any x€ W2,
injective and projective.

2. If x€ AW, then ‘I’A(TﬁAwA) contains Q2 resp. QZAA(w),
mand with multiplicity 1, and does not admit any direct summand of the form @ft“,
resp. Qi(muy with peY\{0}.

the object @A(T;ﬁ”A) is both

as a direct sum-
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A converse to part (1) will be proved in Proposition 9.26.

Proof. (1) First, assume that A= and x€W!%. In the proof of Proposi-
tion 7.4 we have constructed a projective and injective object admitting L, both as
a subobject and as a quotient. By Lemma 6.6(4) this object contains ®(T,») as a
direct summand; the latter object is therefore also projective and injective.

Now we continue to assume that A=@, but take a general weWz,.
write w=yty for some yeWrs and Ae—Y,, see (2.3), and then we have w
y“~ty, see (2.4). By Lemma 6.7 the object T, *K£TG TN g tilting, and support
considerations show that it contains T,a, as a direct summand. On the other

hand, using the formula in Lemma 5.2 and the fact that ®(T,») is projective and

We can
A =

injective we see that ®(T, s+~ T N) is also injective and projective. Hence so
is @(Twa).

Finally we consider a general subset A, and z€ AW, .
waz® €AWS, | and by Proposition 3.12 we know that Av{*(®4 (T4

waxd

By Theorem 7.1 we have
)) = (I)(TzA )
Since the functor AV!A has an exact right adjoint, and since ®(T,») is projective
(by the case already treated, and since z€W2,), this shows that @A(TﬁAzA) is
projective. A similar argument using AV;4 instead of Avf4 shows that this object
is also injective. (Alternatively, one can use the fact that projective objects are
automatically injective, see Theorem 7.9.)

(2) First, assume that A=@. Corollary 7.3 implies that ®(T,) admits £,
as both a subobject and a quotient. It follows that both @m and @L(z) are direct
summands in &(T,a).

To conclude the proof in this case, we will prove that the object constructed in
the proof of Proposition 7.4 admits @L(x) as a direct summand with multiplicity 1,
and no other direct summand of the form QL(H“). (A similar argument will apply for
the injective hulls; alternatively this case can be deduced using the Verdier duality
constructed in §9.1 below.) Set y=t.w.x~!, and consider a reduced expression
Yy=ws1...s,. Using adjunction, our claim will follow if we prove that

. 1 if u=0;
(7.6)  dimHom,,oqx (=) (2(Tw () P(Ewlsy-&s, (L)) (1)) = :
u 0 otherwise.
As a preparation, let us first prove that for v€ Y\ {0} we have
(7.7) Hom(T,, ). Eubs, s, (L) x5 CTV) =0,
or equivalently (by adjunction and (3.3))

(78) HOI’Il(Tt *CJFGIFWO(V%50.}581"'5&('-1)) =0.

wo (§)
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Proposition 6.4(1) tells us that T, (c)*£+GI.7w°(V) has a unique simple quotient,

isomorphic to Ly__,, , w.- Now we have yx:tgwo, and £(yz)={(x)+r by Lemma 2.2.

By Lemma 3.15, it follows that £,&s,...&s, (L;) is supported on Gry .. Now tow.
belongs to W2,, so that by [AR3, Lemma 2.7] we have

ext
Ut (ryw.) = (tcwet ) = L(tcw.) +L(t-0);

if v£0 the orbit Gry,_,, , w. 1s therefore not contained in Gry . , which implies that
te_ . vyw. 1S DOt a composition factor of {, s, ...&s, (Lz). This proves (7.8).

Now, let us prove (7.6) in case u#0. By Lemma 5.1, the space under consid-
eration equals

+
(7.9) Hom(Ttw,<<>7fwfsl~~fsr(Lz)*£ GR,N)
= hﬂ Hom(Ty, s &wés; s, (Lm)*£+GI*_“’0(#)+A*L+GI*—UA()\)).
A

(“)+>‘*£+GI;“J°()‘) admits a costandard filtration,

see [AR3, Proposition 4.8]; moreover, the object ZC°=Z° does not occur in such a

For any A the perverse sheaf T, "

filtration since

Hom(Z0, Z; WAL G 770Ny — Hom (7, 77 W+ =0
In view of (7.7) this implies that

Hom(Ttw,(g) , £w£SI ~~£sr (LI)*E+GI;wc(H)+)\*L+GI;w:(>\)) =0

for any A, which proves (7.6) in this case.
Finally, assume p=0. In this case the space we have to consider is

.
(7.10) Hom(Ty, ), &ubs, s, (La)x™ “Ro)
=lim Hom(Ty, ), s, s, (La) " CTIE GLI0 D),
A
IA*NGI;wo(/\)

Here again admits a costandard filtration, and in this case we have

an embedding ZC° —>I;\*£+GI; ) Whose cokernel is an extension of objects of
the form Z? with v50. We have obtained in the course of the proof of Lemma 6.6
that

(7-11) dim HomPervlu (Gr,k) (Ttwc(c) 5 fwfsl -~-§s,,. (La:)> = 1>

see (6.4). By the same considerations as above this implies that for any A we have

dimHom(Ty, ), &y bs, (Lo)xE CTETCT V) =1
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One can easily check that the transition morphisms in our inductive system are
nonzero, which finishes the proof of (7.6), and hence of the statement in case A=2.
To treat the case of a general subset A, one simply observes that for x€ AW

and €Y we have

Hom(®4(T 4), L7, ) =Hom(®*(T)  2), Avii (Lar,))

wpxd wpxd

~

=~ Hom(Avi (®(T2 ), Lar,) ZHom(®(T,a), Loy, )
by Lemma 6.3(1), adjunction and then Proposition 3.12. Then the claim follows
from the case A= since xeW?. 0O

ext

8. Ungraded R-modules

In this section we present a variant of the theory developed so far, which omits
the Y-grading. (From the representation-theoretic point of view, and using the
notation of Section 1, this means that we study a geometric model for blocks of
él—modules rather than él’f—modules.) The only part of this section that will be
used later in the paper is the statement given in Remark 8.11(1). This statement
does not involve ungraded modules, so a reader who is willing to accept this claim
can skip this section.

8.1. Definitions

We fix a finitary subset ACS,g. Up to now we have worked with Y-graded
ind-objects in the category Perv(1§7XA)(Gr, k); in particular, in §5.2 we have defined
R as a formal direct sum of ind-objects R,,. But in view of [KS, Theorem 8.6.5(v)]
the category of ind-objects in Perv(a x ) (Gr, k) admits arbitrary direct sums; in
particular, the “true” direct sum (i.e. coproduct) @H R, in this category makes
sense. For simplicity we will also denote this object R.

An ungraded R-module is, by definition, an ind-object F in Perv(;a x,)(Gr, k),
together with a map

FEOR—F

equipping it with the structure of a module over the algebra object R. Let
Mod(za,x4)(R)

denote the abelian category of ungraded R-modules. The theory of ungraded
R-modules is very similar to that of graded R-modules. In this subsection, we
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summarize the main facts about them. Most proofs are essentially identical to
those in the graded case, and will be omitted.
In a minor abuse of notation, we define the functor

% Perv(ra x,)(Gr, k) — Mod 74 x,)(R)

by &4 (}-)z}-*yrGR, where Fx£ G R is equipped with the obvious module struc-
ture. As in the graded case, ®4 is exact and faithful. Objects in the image of this
functor are called free (ungraded) R-modules of finite type. There is an ungraded
analogue of Lemma 5.1 that says that

(81) HomMOd(q\,xA) (R) (@A (.F), M) = Homper\, (Gr,lk) (.7:, M)

(g, x4)

for any Fe€Perv(ja x,)(Gr, k) and MeMod(;a x,)(R). There is also an ungraded
analogue of Lemma 5.2 that says that for any fGPerv(IJ;VXA)(Gr,k) and Ge
Perv o+ (Gr, k) we have

(8.2) dA(FxLTCG) 2 Sat(G) @ A (F).

The classification of simple objects in Mod(l‘fx’XA)(R) is given in Proposi-
tion 8.1. In this statement, we denote by ~ the equivalence relation on AW

given by
w~w' if there is a A €Y such that w=w'ty.

(In this case, A is necessarily orthogonal to all roots; in particular, if G is semisim-
ple this equivalence relation is trivial.) For weAW% we will denote by [w] its

equivalence class.

Proposition 8.1. For weAWIS, the object ®A(L2) is a simple object in the
abelian category Moda x,)(R). Moreover, the assignment w—®A(LA) induces a
bijection
, ~ [ hi l impl
Apyres o isomorphism classes of simple
objects in Mod(ra x,)(R)

For c€ AW!ES /~ we will denote by £f€Mod(1§7XA) (R) the corresponding sim-

ple object; for any weAWS we therefore have £ﬁv]%<I>A(L£).

The definitions of the categories
mod s x,)(R) CMod(za x,)(R)™" C Mod(s x,)(R)
are analogous to their graded counterparts. As in Lemma 5.9 we have

(8.3) dim Homyyoq Rr)(F,G) <00

(g, x4)

for all 7, GeMod (74 x,) (R)fen and Mod 7 x,) (R)fen is a Krull-Schmidt category.
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flen

Theorem 8.2. The category mod ra x,)(R) coincides with Mod 4 x,)(R)"",
and this abelian category has enough projectives and enough injectives, and these
classes of objects coincide.

For c€ AW! /~ we will denote by Q2 the injective hull of £2 in the category

mod(lfyXA)(R).
The following property is more specific to the ungraded setting.

Lemma 8.3. For any F,G in Perv(1§7XA)(Gr,k), the finite-dimensional vector
space
Hommoduﬁq,XA)('R) ((I)A (J:)a (I)A (g))

carries a canonical structure of an algebraic Gy -module, which is functorial in F
and G and compatible (in the natural way) with composition, and such that the map

HomPerv(I‘,lq’XA)(Gr,]k) (f7 g) — Hommod(lﬁq_’xA)(R) (q)A(]:)a @A(g))
identifies the left-hand side with the G) -invariants in the right-hand side.

Proof. Recall that if k is a field and C is a k-linear additive category which
admits arbitrary coproducts, then given a k-vector space V' and an object X in C
one defines the tensor product V ®; X as the object representing the functor

Y — Homy (V, Homc (X, Y));

any choice of basis (e;:4€1) in V provides an isomorphism V ®;, X = X®!. This con-
struction is functorial, in the sense that if D is another k-linear additive category
which admits arbitrary coproducts and F':C—D is a k-linear additive functor com-
muting with coproducts, then for any V and X as above there exists a canonical
isomorphism F(V®, X)=2V e, F(X).

We apply this construction first in the case where C is the category of all
G,/-modules, i.e. the category of ind-objects in Rep(G}). Here the comultiplication
in the Hopf algebra /(G ) composed with switching the factors provides a canonical
morphism

(8.4) 0(Gy) — 0(Gy)@x0(GY),

where the domain and the right-hand copy of €(G)/) in the codomain are equipped
with the left regular Gy -module structure, while the left-hand copy of €(G)/) in the
codomain is regarded just as a vector space. Next we apply the functor induced by
Sat on ind-objects; the properties recalled above imply that we have Sat(0(G)/) ®x
O(G)))=0(GY )@k R, so that we obtain a canonical morphism

(8.5) R — O(GY )@k R.
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(Here the functor on ind-objects induced by Sat commutes with coproducts by the
description of coproducts in [KS, Theorem 8.6.5(v)].) Note that we have an exact

sequence
0—k— O(GY)— OGY)2rO(GY),

where the rightmost arrow is the difference of (8.4) and the map f—1®f. We
deduce an exact sequence

(8.6) 0—1IC" —R— O(G))2R,

where the rightmost arrow is the difference of (8.5) and the map corresponding to
1®idgr under the canonical identification

Hom(R, O(GY)®xR) = O(G) )@ Hom(R, R).

We can at last use these constructions in the setting of the lemma. For F,G
as in the statement, by (8.1) we have

.
HommOd(IJ‘,XA)(R) ((I)A(]:)’ e (9))= Homper"(Il{‘,XA) (G (F) Gx© GR)'

Applying the considerations above to the functor Homperv(IA ) (Gr ) (J:jg*LJrG
u A

(=) (where here G+~ (=) means the canonical extension of the functor H—
G+ U to ind-objects, and we consider morphisms of ind-perverse sheaves; the
compatibility with coproducts is guaranteed by [KS, Comments in Notation 8.6.1])
we obtain a canonical isomorphism

Hompen, 4 (e (F, G5 9 (0(GY)@iR))
=0(GyY) ®kHomPerv(Iﬁ4,XA) (Grx) (F, Q*UGR)-
Hence, applying this functor to (8.5) we obtain a canonical morphism
Homm0d<1£1XA)(R)(<I>A(]—'), d4(G)) — ﬁ(GE\é)®kH0mm0dUG4,XA)(R)((I)A(-F% 34(Q))

which defines a structure of a (right) €(G})-comodule, i.e. of a G}/-module, on
the k-vector space HommoduA N )(R)(<I>A(]-"),<I>A(g)). Moreover, from the exact
u VA

sequence (8.6) we deduce an exact sequence

I(]“,XA)(Gr7k) (]:a g) — Hommod(l(]q,XA)(R)(q)A(‘F)a (I)A(g))
=) (@4 (F), 24(G))

0— HOHlperv(

— ﬁ(Gﬂ\(/ ) Ok Hommod

(I, xa)

which shows that Homper\,u 42y (Crk) (F,G) identifies the G)/-invariants in the
u ' tA
GY-module Hommod(IﬁXA)(R)(q)A(]:), d4(G)). O
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8.2. Forgetting the grading

We continue with the setting of §8.1. There is an obvious exact forget-the-
grading functor

(8.7) For: Mod?i;;,XA) (R) — Mod ;4 x,)(R),

which sends the “formal” direct sum @# F,. to the “true” direct sum EB# F,. in the
category of ind-objects in Perv(;a x,)(Gr, k). This functor is exact; and it satisfies
Fore(\)=For for any A€Y, commutes with the functors ®#, and sends simple
modules to simple modules. (In particular, it sends finitely generated modules to
finitely generated modules.) More specifically, for any we€4Wey;, we have

w

(8.8) For(£y)= L if w=aty with z€ WS and A€ Y.

Lemma 8.4. For ]-'Emodaf,XA)(R) and geMod?§§7XA)(R), the functor For
induces an isomorphism

@ HomModEA p® (F,G(\) — HomMod(IA’XA)(R)(For(]:)v For(G)).
ACY o "

Proof. By definition, every finitely generated graded R-module is a quotient
of a free graded R-module of finite type; using this, a routine five-lemma argument
shows that it is enough to prove the lemma in the case that F is free. In fact, we
may even assume that F=®4(F’) for some F'ePerv(ra x,)(Gr,k). In this case,
using Lemma 5.1 and its ungraded analogue (8.1), we see that the left-hand side is
given by

@ HomPerv(IéﬁxA)(Gr,]k) (‘7:/7 g)\)v
AEY

while the right-hand side is

HOmPerv(I§7XA)(Gr,k) (]-/7 @ g)\> .

AEY

The fact that these spaces coincide follows from [KS, Theorem 8.6.5(v)] and the
comments in [KS, Notation 8.6.1]. O

Remark 8.5. In case G belongs to modEA’XA)(R), in view of (8.3) the direct
sum appearing in Lemma 8.4 only has finitely many nonzero terms.

The following statement follows from the construction of projective and injec-
tive objects in the proof of Theorem 7.9, and the parallel construction that proves
Theorem 8.2.
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Proposition 8.6. The functor (8.7) sends projective (i.e. injective) objects in
modEA}XA)(’R) to projective (i.e. injective) objects in mod(ra x,)(R).

Using (8.8) one can make the statement of Proposition 8.6 more precise: for
any we A Wey, writing w=xty with a:eAWeﬂfE and A\€Y we have

For(éﬁ) = Qé].

In particular the functor For sends these indecomposable objects to indecomposable
objects. In fact this property holds for general indecomposable objects, as shown
in the next statement.

Corollary 8.7. Let }'Emod?;f’XA)(R). Then F is indecomposable (in the
category modEA)XA)(R)) iff For(F) is indecomposable (in moda x,)(R))-

Proof. Since the categories mod?§§7XA)(R) and  mod(sa x,)(R) are
Krull-Schmidt (see Lemma 5.9 and the comments after (8.3)), F, resp. For(F),
is indecomposable iff the ring

End,  qv (R)(}'), resp. End,,q For(F)),

(1A, xy) (IL’\"XA)(R)(

is local. Then the claim follows from Lemma 8.4 and the standard fact that a
finite-dimensional Y-graded k-algebra is local (as a nongraded ring) iff its degree-0
component is local, see e.g. [GG]. O

We conclude this subsection with a lemma relating indecomposable objects in
Perv(ra x ) (Gr, k) to indecomposable ungraded R-modules. The proof is based on
arguments found in [D1, §2].

Lemma 8.8. Assume that k is algebraically closed. Let F €Perv(sa x,)(Gr, k)
be an indecomposable perverse sheaf such that ®4(F) remains indecomposable in
mod(ra x,)(R). If GePerve+g(Gr,k) is also indecomposable, then FLTGge
Perv(ra x,)(Gr,k) is indecomposable.

Proof. By assumption, the object ®4(F) is indecomposable in the Krull-
Schmidt category mod;a x,)(R); the algebra Endmod“éy“)m)(qﬁ(}')) is there-
fore local. Since this algebra is also finite-dimensional (see (8.3)), its unique max-
imal ideal consists of nilpotent elements. Moreover, since k is algebraically closed,
the quotient of Endmod(l . )(R)(@A(}' )) by its unique maximal ideal is identified

u A
with k. We will denote by
q:End g ) (@4(F)) —k

(I-‘f‘=XA)(R



A geometric model for blocks of Frobenius kernels 299

the quotient map. By Lemma 8.3 there exists a canonical (algebraic) action of Gy
on Endmodu (,‘.XA)(R)((I)A(]: )) by algebra automorphisms; the unique maximal ideal
is necessarily stable under this action, so that ¢ is G)/-equivariant (for the trivial
action on k).

Next, let V=Sat(G). Then V is a finite-dimensional algebraic G}/-module, and
using (8.2) we see that

Endmod(IA x >(’R)((I)A( L Gg ) Endmod(IA x )(R)(q)A(f))@Endk(V)v
Endimod 4 . (R)(® 4(9)) =Endy(V),
EndPervL+G(Gr,k) (g) = EHdGn\(/ (V)

)
)

Here the first two isomorphisms are G}-equivariant for the actions provided by
Lemma 8.3 and the action on V.
Define a ring homomorphism

a:End,,oq (R) (@A(]-“*UG G)) — EndmOd(If,XA) (R) (@A(g))

g xa)

to be the map which corresponds to
q®id:Enduoq ,, , (R) (®4(F))@Endy (V) — Endy (V)

under the isomorphisms above. Since the kernel of ¢ is finite-dimensional and con-
sists of nilpotent elements, the kernel of a does as well. Since ¢ is Gy -equivariant,
a is also equivariant.

We claim that there is a unique ring homomorphism a that makes the following
diagram (of ring homomorphisms) commute:

EndPerv(I‘f X4) (Gr,]k) (]:*L+G g) ————— ‘}7,,,> Endpervc+G(Gr$k) (g)

(8.9) CDAl J‘I’A

Eﬂdmodu\/},“)(n)(‘I’A(]:*£+GQ)) —— Endmod(Ié,XA)(R)((I)A(g))'

In fact, this follows from the fact that a is G}/ -equivariant, and that in each column
the domain of the map identifies with the space of G)-invariants in its target (see
Lemma 8.3). Since the kernel of a consists of nilpotent elements, the same holds for
the kernel of a. In view of Lemma 8.9 below and the indecomposability of G, this
implies that the algebra Endpep, (Grx) (F *ﬁGg) is local, and hence that the

(g xa)
object F *£TGG s indecomposable. [

Lemma 8.9. Let k be an algebraically closed field, let A, A’ be finite-dimen-
sional k-algebras, and let a:A— A’ be an algebra homomorphism. Assume that
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1. ker(a) consists of nilpotent elements;
2. A’ is local.
Then A is local.

Proof. Let m’CA’ be the unique maximal ideal in A’, and set m=a"1(m’).
Since ker(a) and m’ consist of nilpotent elements (in A and A’ respectively), so
does m. On the other hand, A/m is a k-algebra which embeds in A’/m’, which is
isomorphic to k since this field is algebraically closed; it follows that m is a maximal
ideal and that A=k-1@&m. Since m consists of nilpotent elements this shows that
any element in A\m is invertible, and hence that any ideal of A is contained in m,
which finishes the proof. [

8.3. A geometric version of Donkin’s conjecture

A celebrated conjecture of Donkin [D2] asserts that certain indecomposable
tilting modules for reductive groups should remain indecomposable upon restriction
to the Frobenius kernel. (For recent developments on this question, see [BNPS1].) In
this subsection we study the analogue of this property in our geometric setting. We
show in particular that the geometric variant of this conjecture implies a “Steinberg-
type” formula for tilting perverse sheaves (as in the representation-theoretic context,
see [Ja, §ILE.9)).

Theorem 8.10. Let weAWES. The following conditions are equivalent:

1. The head of TﬁAwA is simple.

2. The socle of TZ‘;AwA s simple.

3. The object @A(TﬁAwA) is indecomposable (in the category modE:;VXA)(R)
or in moda x,)(R)).

4. For all N€Y, the object ®(T,,,wa)(—A) is both the projective cover and
injective hull of Lg,, in mod(Y}u,XA)(R).
If the conditions above hold, then we also have the following:

5. (Donkin formula for tilting sheaves) For all n€Y y, we have

A LTGau~TA
TwAwA* T _TwAwAtuh(p,).

Note that if the head or socle of Tf) » is simple, they must be isomorphic
AW

to L2 by Corollary 7.3. In (3), indecomposability in mod}i (R) or in mody, (R) are
equivalent in view of Corollary 8.7.

Proof. The equivalence of (1) and (2) follows from Verdier self-duality of
TA

wawh s See Remark 3.3.
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Let us now prove that (1) = (3). Suppose that Tf)AwA has a simple head, but
that @A(TﬁAwA) is decomposable. Proposition 7.11(2) and Lemma 8.4 imply that
), 2L =1,

dim HommoduA q )(R)(‘I’A(TwAwA

so there must be some element y €AW with yw (under the equivalence relation

considered in Proposition 8.1) such that
Hotmod 4 )(R)((I)A(TwAwA) AL #0.
y (8.1), both sides of the following isomorphism are then nonzero:
A A Lt
HomPerv(IA X, )(Gr k) (TwAwAa I—y *L‘ GR)

o @ lgnHom wAwA,LA*L+GIEJ°(’L)+)‘*L+GI;”‘(A)).
HEY

However, by Theorem 3.16 every composition factor of L;} KEFGT WA re e ()

is of the form LA for some v€—Y . The unique snnple quotient of TA wo » namely
LA (see Corollary 7.3), is not of this form, so

Hom (T2 o, LiwE OT (080 £ G om0y =g

waws

for any A, i, a contradiction.
We now show that (3) = (4). If @A(TgAwA) is indecomposable, then Propo-
sition 7.11(2) shows that

ANA ~ FA
Q = (TwAwA) QLA(U))

The claim in (4) follows using (7.4).

We next show that (4) = (1). Assume that (4) holds, and that the head of
TgAw ~ has more than one summand. By Corollary 7.3, there exists y€AWs, with
y#x such that LA is a quotient of Tw wa- Applying ®4 we deduce a surjection

<I>A(TA )—»<I)A(LA) Theorem 3.16, Lemma 5.2 and (5.7) show that ®(L;}) sur-

jects to EA so that <I>A(TA ~ ) has two different simple quotients. This contradicts
the fact that this object is a projective cover.
Finally we show that (4) = (5). First, note that the perverse sheaf T A Ay

TH is tilting. In fact T, 5 GT# is tilting by Lemma 6.7, hence
AVA(Tya x5 OTH) 2 AV (T 0 )25 O TH

is tilting too, see §3.6. By Proposition 3.12 this object is a direct sum of copies of
TA A*£+G7-“, so that the latter object is tilting.

wAwW
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Now that we know that this object is tilting, support considerations show that
TﬁAw A*£+G7'“ admits Tf}Aw Bty A5 direct summand; we therefore only need
to show that this object is indecomposable. A routine argument (cf. [AR1, Proposi-
tion B.3]) shows that this tilting perverse sheaf is indecomposable if and only if the
object obtained by extension of scalars to the algebraic closure of k is indecompos-
able. Thus, we may assume without loss of generality that k is algebraically closed.

Then the claim follows from Lemma 8.8. 0O

Remark 8.11. 1. In case k has characteristic 0, Theorem 7.1 says in par-
ticular that condition (1) in Theorem 8.10 holds for any weAWIe. Hence in this
case the injective hulls @;} (y€4Weys) can be described explicitly: if y=xty with
r€AWre and A€Y then

Q) = A (T] Lo )= ).

2. When k has positive characteristic, one instance in which the conditions
of Theorem 8.10 hold is for the element w=t.w.c Wi in case A=@. Indeed, by
Proposition 6.4, the object j; S =7J:S8:=Ty, ., has a simple head and socle. (Note

that w” =t,, ().) Thus, by Theorem 8.10, for any A€Y the object ®(T;, )(—A)

is both the injective hull and the projective cover of ﬁtgwatkg we thus have

étgwot)\ = (I)(Ttw(,k) )<_>‘>

9. Baby Verma and co-Verma modules

In this section we introduce objects of modZA, x A)(R) which are geometric

analogues of baby Verma modules (i.e. the objects denoted A (M) in [Ja, Chap. I1.9]).
These objects will be obtained from the baby co-Verma modules of §5.6 using a
“Verdier duality” autoequivalence. (In the representation-theoretic context, such a
relation is well known, see [Ja, Equation (5) in §9.3].)

9.1. Verdier duality

We now explain how to define Verdier duality in the categories mod?gA’ Xa) (R).
Recall the Verdier duality functor

D: D](OI(:;’XA)(Gr) — D?I&X;l)((}r)

considered in Remark 3.3. What we now want to do is to “extend” this functor to
the category modgA) x A)(R), i.e. to define an exact anti-equivalence

]D:mod?;f,XA)(R) %mod?;f, XA—l)(R)
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which satisfies
(9.1) D(®4(F)(A)) = &4 (D(F))(A)

for any F in Perv(;a x,)(Gr) and A€Y. (Here we are making an abuse of notation
similar to that of Remark 3.3, in the sense that the notation ®4 on either side of
this equation is used for two different functors: on the left-hand side the functor
is defined using the local system X4, while on the right-hand side it is defined
using X;l.) Note that a “naive” extension of D to ind-objects would send ind-
objects to pro-objects, and thus not give an endofunctor of R-modules. Instead, we
will use the fact that (9.1) prescribes the definition of D on free R-modules of finite
type, and that the category modgfyXA)(R) can be described in terms of these free
modules.

We start by making formal sense of this latter idea. For this, we define the
additive k-linear category Free?} A.x4) (R) whose objects are formal direct sums

DF )

jeJ
where J is a finite set, each Fj is in Perv(If,XA)(Gr, k), and each A; is in Y, and
such that the space of morphisms from @, ;(F;, Aj) to Dyex (G, px) is

Hom,,qv . (r) <@ 4 (F) (), P ‘1>A(gk)(uk>>

(I x )
A jeJ keK

=P Homypoay )(R)(CI)A(]:j)v 4 (Gr) (r—A;))-
& o

By definition ®4 factors as a composition of additive k-linear functor

A A
Perv(ra x,)(Gr,k) o, Free2§§7XA)(R) LI>2—>rnodzgaqﬁ/m)(’R),

where ®4' is fully faithful. Moreover, the objects in the essential image of ®4' are
exactly the free R-modules of finite type.
We now consider the homotopy category K (Free?if’ x,4)(R)), and the triangu-

lated subcategory K (Freez‘f\’ Py A)(R))b of complexes whose image under K (®3') has
bounded cohomology. (This subcategory is not the bounded homotopy category of
FreeES*’XA) (R).) Since DbmodEfﬂA)(R) identifies with the full subcategory of the
unbounded derived category D(mod(\;?7 x A)(R)) whose objects have bounded coho-
mology, the composition of K (®4') with the canonical functor K(modgf,XA)(R))%
D(modgf’XA)(R)) restricts to a functor

(9.2) K(Freegé’XA)(R))b—>Db(m0d2§§7XA)(R)).
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Next, let D(Freezl,‘q,XA)(’R))b be the Verdier quotient of K(Free?§§7XA)(R))b
by the kernel of (9.2). Then, by the universal property of the Verdier quotient, the
functor (9.2) factors through a triangulated functor

(9.3) D(®3'): D(Free(7a x,)(R))” — D" (mod 4 x,y(R))-
Lemma 9.1. The functor (9.3) is an equivalence of categories.

Proof. Essential surjectivity follows from Remark 7.10(1). More precisely, any
object in Db(modgf’XA)(R)) is isomorphic to a bounded complex of objects in
modEA, x4)(R). Given such a complex F, this remark implies that there exists a
bounded above complex G of free R-modules of finite type which are projective and
a quasi-isomorphism G—F. Then G belongs to the essential image of our functor,
and is isomorphic to F in Db(mod?%,XA)(R)).

Next we prove that the functor is full. Fix objects F,G in D(FreeEAXA) (R))b.
A morphism f:D(®4)(F)—D(®4)(G) is represented by a diagram

K(94)(F) += H " K(24)(G)

where H is a complex of objects in modzé’XA)(’R), and g, h are morphisms of
complexes with ¢ a quasi-isomorphism (which implies that H has bounded coho-
mology). Using a truncation functor we can assume that H is bounded above.
Then, as above there exists a complex K of objects of Free??;;’ x A)(R) and a quasi-
isomorphism k: K (®4)(K)—H. The object K belongs to K(FreegfﬂA)(R))b, and
f is also represented by the diagram

K(®4)(F) <22 K (5)(K0) 15 K (24)(G)

where gok is a quasi-isomorphism, and thus is the image of a morphism from F to
G in D(Free?i;;,XA)(R))b.

Finally we prove faithfulness. Fix again objects F,G in D(Free?if,XA)(R))b,
and consider a morphism f:F—G such that D(®4)(f)=0. Here f is represented
by a diagram

Flnlsg
where H is in K (Freezlﬂ Py A)(R))b, g and h are morphisms of complexes, and
K(®4)(g) is a quasi-isomorphism. Once again there exists a bounded above com-
plex K of projective free R-modules of finite type and a quasi-isomorphism K—
K(®5)(H). Then there exists £ in K(Freez‘?’XA)(R))b and an isomorphism of
complexes K(®45)(L£) =K, and f is represented by a diagram

Flrlg
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where K (®4)(g’) is a quasi-isomorphism, i.e. D(®5')(g') is an isomorphism. Then
D(®4")(h')=0. Since K is a bounded above complex of projective objects, this
implies that K (®4')(h’)=0, and hence that h’ is homotopic to 0, and finally that
f=0. O

Now we address the question of defining D on free R-modules of finite type.

More precisely, we define an additive contravariant equivalence
Dy, : Free?§§7XA)(R) — Free?;li,,X;l)(R)
as follows. On objects, this functors sends @, ;(Fj, Aj) to @, ;(D(F;), A;). By
additivity, to define this functor on morphisms it suffices to consider the case of
objects of the form (F,\). We therefore consider F,G in Perv(;a x,)(Gr, k), and
A, €Y. Then by definition
Homgeex (R) ((}—a )‘)v (gv N)) =Homy,,qv (R)((I)A (’F)a o4 (g)<ﬂi>‘>)

(I8, x ) (I8, x 4)

By Lemma 5.1 and the definition of ®4, the right-hand side identifies with

+
HomPerv Ij‘,XA)(Gr’k) <]:7g*£ GR)\fu)

(

. + w, (A— v ot —w. (v
:h_n>1H0mPerv (Gr,k)(f7g*£ GI* A=)+ *[, GI* ( ))

v

(CE )
By (3.3), for any veY N(—w.(A—pn)+Y) we have

Homperv(IA 2, (GEB) (F, g*L',"'GI;U:()\—H)JFV*E‘FGI*—’LUQ(V))
utA

+ —A—w.(v + v
gHOInPerv (Gr,ﬂ«)(]:*[: GI!M g ( )*L GI! ’g)

(g, xa)

We next use the fact that D commutes with convolution and sends Z," to Z! for any
n€Y ;+ to identify this space with

+ —A—w.(v + v
Hompep, 71)(Gr)k)(D(g), ]D)(]:)*E GIil ( )*l: GI* )
A

A
Ig,x

Following this series of identifications we have constructed a natural isomorphism
from HomFreeYA (R)((‘F7 >‘>7 (ga ,LL)) to
(1§ X4)

u

. + —A—w.(v + v
h_H)lHOmpeN(Ifﬁ)(;l)(Gnk) (]D)(g)7D(f)*£ GIiL ( )*[, GI*)

v

Setting v/ =—w,(u—A)+v we see that this inductive limit identifies with

Hompe,, 1 (Grk) (D(g),D(}_)*C+GRM_)\)
A

g, x
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= HOmFreeuA X71 (R)((D(g)7 ,U,), (]D)(]:)7 )\))a

we have therefore completed the definition of the functor Dy,.
In order to “extend” this functor to the appropriate derived categories we will
use the following lemma.

Lemma 9.2. Let
My L My L5 M

be a sequence of objects and morphisms of FreeEA’XA)(R) such that the sequence

2 (f) L)
DY (M) —=5 BF (M) ——5 @5 (M)
is exact at ®4§(My). Then the sequence

)) ‘I’;(Dfr(g))

pA A 2L Da(f) ~a
5 (D (M3 05 (D (M2)) ——— @5 (D (M)

is exact at @4 (Dg(Ms)).

Proof. Suppose the latter sequence is not exact, or in other words that

m(®3 (Dr(9))) & ker(®3' (Dr(f))).

By Remark 7.10(1), there exists an object P in FreeEAXA)(R) which is a direct
sum of objects of the form (F,\) with A€Y and F such that D(F)=F and ®4(F)

projective and injective, and a morphism ¢:P—Dg(Ms) such that the image of
4 (q) is ker(®4 (Dg(f))). Then ¢ does not factor through Dy (g):

does not exist_ Prag p Dy (f)oq=0

D (f)

ID)fr (M3) fr(g) Dfr(M2) Dfr(Ml)

The object ®4 (Dg(P)) is injective. Applying Dy, to the diagram above we obtain
a diagram

g M3

Dy
Dy, (q J\t l f (q)/ does not exist
]D)fr

)

This diagram implies that the image under ®4' of the top row is not exact at M,
a contradiction. [J
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Lemma 9.2 implies that the functor

K (D) : K (Freefa x,)(R)) — K(Freezﬁ){gl) (R))

restricts to an endofunctor of K (Free?iA) X4) (R))P that preserves the kernel of (9.2)
(in the sense that it sends the kernel of the version for X4 to the kernel of the
version for X;l). It therefore induces a contravariant triangulated functor

D(Free?;(},/m) (R)> — D(Free?§§7xg1) (R))".

Conjugating this functor with the equivalence (9.3) (more precisely, the version for
X4 and that for X;l) we obtain a contravariant triangulated functor

D: D’mod 4 x,)(R) — Dbmodgmgl) (R).

It is clear from this construction that ID is involutive, in the sense that the com-
position of the version for X4 and that for Xgl is the identity and vice versa (in
particular, D is an equivalence of categories), and that (9.1) holds for any F in
Perv(If}XA)(Gr, k) and A€Y. In particular, for any w€4We,; we have

(9.4) D(LAY= LA,

Since any simple object in modz‘ﬁ x,4)(R) is of this form (see Theorem 5.6), we de-
duce that D is exact for the natural t-structures on the categories Dbmod?i& Xa) (R)
and Dbmod5§7xgl)(
sesses all the required properties.

R). The restriction of this functor to R-modules therefore pos-

Remark 9.3. 1. The construction of the anti-autoequivalence D given here
follows the one suggested in [ABBGM, Top of p. 297]. Note however that in
loc. cit. the authors do not justify that this construction does not depend on the
choices one has to make, and defines a functor. Our study of projective objects
exactly fills this gap.

2. Note that the isomorphisms (9.4) show that for any F in mod(\;fﬂA)(R)
and we AW,y we have

(F: L) = [D(F): £2).
In particular, the endomorphism induced by D on the Grothendieck group
[mod?;§7XA) (R)] is trivial.

Recall the map t4 from (7.5), which is defined so that @i (w) 18 the projec-
tive cover of £2. The properties of I stated above imply that ]D)(Qf,) is also the
projective cover of £2; it follows that

w?

(9.5) D(@fj) = @i(w) for any w € Wext.
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9.2. Baby Verma modules

Given weA Wy, we define the baby Verma module with label w to be the

R-module ZA£ given by
Z5=D(Z) €moda x,)(R).

We will say that an object F in mOdE{,*,XA)(R) admits a baby Verma filtration if it
admits a finite filtration whose subquotients are isomorphic to baby Verma modules.
It is clear from the definition that F admits a baby Verma filtration iff D(F) admits
a baby co-Verma filtration.

The following properties of baby Verma modules are immediate consequences
of the corresponding facts for baby co-Verma modules (see §5.6 and §7.2), together
with the properties of Verdier duality stated in §9.1.

Lemma 9.4. 1. For we*Wey and A€Y we have

ZA
Zth

>~ ZA(_\).

2. For weA Wy, ZA;;‘ has a simple head, isomorphic to fﬁ,

3. For w,y€* Wy, we have [Z;:Eﬁ]:[Z;A:EQ].

Proposition 9.5. 1. If w,x €AWy satisfy [2;3:[:;4]7&0, we have x <w=
waz®. Moreover, we have [Z2: L] =1 and [ZSMA:,CJC]SL

2. For any weA Wy, 2{2‘ is the projective cover of EAﬂ in the Serre subcategory
of modgf’XA)(R) generated by the simple objects E;‘ with y#w.

Remark 9.6. As in Remark 7.6, Proposition 9.5 implies that if Me
modZA,XA)(R) admits a baby Verma filtration, then the number (M:Z2) of oc-

currences of a given baby Verma module ZA;;‘ in such a filtration is independent of
the choice of filtration; in fact these numbers are determined by the equality

M= > (M:25)[2]]
WEA Wext
in [modzf’XA) (R)] .
Suppose now that M admits both a baby Verma filtration and baby co-Verma

filtration. By Remark 9.3(2), we have [Z2]=[Z/4] for all wEAWey, so comparing
the equation above with that in Remark 7.6, we deduce that

(9.6) (M:Z8=(M:Z'4) for all w € A Wey.
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Recall that in the proof of Theorem 7.9, we showed that mod(\;f7 x,4)(R) is an
“essentially finite highest weight category” in the sense of [BS, Definition 3.7]. In
that setting, comparing Proposition 9.5 with [BS, Lemma 3.1], we see that for any
wEAWey the baby Verma module 2{3 is isomorphic to the objects denoted A(w)
and A(w) in [BS]. Now that these objects are identified, we can state property
“(PA;)” from [BS] in our setting, which does hold by [BS, Theorem 3.5].

Proposition 9.7. For any weWey, the object Q\fj admits a baby Verma
filtration.

The following lemma is a restatment of [BS, Theorems 3.11 and 3.14] in our
context.

Lemma 9.8. Let MEmodEAKA)(R).
1. The object M admits a baby co-Verma filtration if and only if it satisfies
Extrlnody (R )(Z£7M)=O for any weAWey. Moreover, in this case, for any

(I8 x )
wEA Wy, we have

Exty, qv (R) (ZA;}, M)=0 foranyn>1

(Ig,x4)
and
dim Hom,, 4v (R)(ZA M)=(M:Z4).
(18, %4)
2. The object M admits a baby Verma filtration if and only if it satisfies
Extl v (R) (M, ZIM=0 for any wEAWey,. Moreover, in this case, for any

(Ig,x4)
weAW we have
EXtmodYA (R) (M7 27{0‘4) fOT’ anyn Z 1
IA X )

and
dlmHommOdy Ry (M, ZIA = (M:ZD).

1 x )

Lemma 9.8 implies in particular that the property of admitting a baby Verma
filtration is stable under direct summands, and similarly for baby co-Verma filtra-
tions. It also implies that we have a “reciprocity formula” (see [BS, Corollaries 3.12
and 3.15)): for w,y€4Wey; we have

(9.7) (Qh:ZM =12 L), (O 20 =124 L),

where ¢4(w) is defined in (7.5). (Here, the numbers on both sides of the first
equation are equal to dim Hom(Z{l“, 94, and those in the second equation are
equal to dim Hom(@i(w)’ Z\;A))
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Remark 9.9. The first equality in (9.7) and Proposition 9.5 show that (94 'ZA’A)
vanishes unless w=y, and is equal to 1 if y=w. In particular, given an indecom-
posable injective object Q in mod(If’XA)(R) to determine the socle of Q (i.e. its
label) it suffices to determine the smallest element w (for the order <) such that
(Q:Z/4)2£0. Since the classes ([Z/4]:weAWey) in [mod(;a x,)(R)] are linearly in-
dependent (see Remark 7.6), this also implies that the classes ([@1‘2] WEAW eyt ) are
linearly independent.

Corollary 9.10. Let M,N'€moda y,)(R). If M admits a baby Verma fil-
tration and N admits a baby co-Verma filtration, then

dim Hommody LR (M,N)= Z (M: 2;4)(./\/'Z/,7\LA)

YEA Wex

Proof. We proceed by induction on the number of steps in a baby co-Verma
filtration of . If A is itself a baby co-Verma module, say N :é\’L/UA’ then the
lemma reduces to the claim that dimHom(M, Z/4)= (M: Z4), which is part of
Lemma 9.8. Otherwise, choose a short exact sequence O—)Z' A SN —=N'—0, where
N’ has a baby co-Verma filtration with fewer steps. Since Ext!(M, Z,’,j“) 0 by

Lemma 9.8, we get a short exact sequence
0 —s Hom(M, Z/4) — Hom(M, N') —s Hom(M,N") — 0

and hence

dim Hom(M, N') = (M : Z2)+dim Hom(M, N”).
The lemma follows by induction. [

Corollary 9.11. Let we(, and let sq,...,5-€Sag. The integer

dim End(®(&s,....&s, £w-1(41,S5)))
1s independent of the field k.

Proof. As in the proof of Proposition 7.4 the object ®(&,....&s, -1 (1, Sc)) is
both injective and projective, so it admits both a baby Verma filtration and a baby
co-Verma filtration (see Theorem 7.9(2) and Proposition 9.7). By Corollary 9.10, it
is therefore enough to show that the baby (co-)Verma multiplicities are independent
of the field of coefficients k. The baby co-Verma multiplicities in ®(j;,Sc) are
given explicitly in Lemma 6.10 (and are manifestly independent of k). Then, the
baby co-Verma multiplicities in ®(&s,....6,&u-1(41,Sc)) can be computed by the
combinatorial rules from Lemma 6.12, from which we see that these multiplicities are
again independent of k. We deduce the same property for baby Verma multiplicities
using (9.6). O
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9.3. Integral R-modules

In order to prove some further properties of baby Verma and co-Verma modules,
we need to make a detour through a version of our categories over the ring of integers
O of a finite extension of Q. (Our understanding of this theory is quite limited,
and the results obtained below are clearly not fully satisfactory. They will still be
sufficient for the applications we have in mind.) For clarity, in this subsection we
will sometimes add the coefficients in parentheses to various notations introduced
above.

Let O be the ring of integers in a finite extension K of Q; containing a nontrivial
p-th root of unity, and let F be its residue field. Then we can consider the categories
DE’I‘f’XA)(Gr,]E) and D2, -(Gr,E) for any E€{K,O,F}, and we have change-of-
scalars functors

L
K:=K®0(=): D x,)(Gr,0) — Diya x,)(Gr,K),

L
F:=F&0(=): D{ra x,)(Gr,0) — D{ra x,(Gr, F),

and similarly for the £ G-equivariant categories. (Here the symbol (12,

Xa) refers
to the Whittaker condition over @, F or K depending on the coefficients appearing
elsewhere in the notation.)

The definition of the ind-perverse sheaf R with coefficients in O (denoted R(Q)
below) can be copied verbatim from §5.2. Note that the geometric Satake equiva-
lence is also known over Q; however, in that setting the definition of the convolution
product on Perv,+g(Gr, Q) involves a perverse truncation, see [MV, Equation (4.2)].
Here we continue to define the bifunctors

#£7G Db, (Gr,0) x D%, o(Gr, @) —s DY, (Gr, 0),
TG Dl x,) (G, 0)x Dy (G, Q) — Dy, (Gr, 0)
as in (3.2) or §3.4, i.e. without incorporating the perverse truncation; with this

notation, the convolution product on Perv,+g(Gr,Q) used in the construction of
the geometric Satake equivalence is therefore given by

(F,G) —PHO (FAGG).

Lemma 9.12. For any F in Perv(ra x,)(Gr,Q) and any GePervo+c(Gr, Q)
such that F(G) is perverse, the complex FET9G s perverse. In particular, for any
F in Perv(ra x,)(Gr,0) and A€Y 4, the complex .7:*£+GIi‘ 18 perverse.
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Proof. To prove this lemma we will use the description of the product age
in terms of nearby cycles first made explicit by Gaitsgory [Ga]; see [AR4, Proposi-
tion 3.3.1] for more details. By t-exactness of nearby cycles, this description shows
that to prove the first statement in the lemma it suffices to prove that the complex
FXEG on Grx Gr is perverse. By right exactness of the derived tensor product, this
complex belongs to the nonpositive part of the perverse t-structure. To check that
it belongs to the nonnegative part, we have to check that for any I'-orbit X C Gr
and any £+ G-orbit Y CGr, the corestriction of our complex FX5G to X xY is con-
centrated in nonnegative perverse degrees. Now the embedding of X XY in Grx Gr
can be written as a composition

X><Y<—>X><Grﬂ>erGr,

where i: X —Gr is the embedding. It therefore suffices to show that the complex

(i xid)’(fé@g) = (i'F) é@g

is concentrated in nonnegative perverse degrees. Now i'F is an extension of con-
stant sheaves M y[n] with M a finitely generated O-module and n<dim(X). Our
assumption on G ensures that each M y[n] &ég is in nonnegative perverse degrees,
which implies our claim.

The second assertion of the lemma follows from the first one, since 7' satisfies
the required assumption by [MV, Proposition 8.1]. O

Lemma 9.12 shows that for any F in Perv(;a x,)(Gr,0) and any A, u€Y ap-
pearing in (5.3) the convolution f*£+GI:j°(”)+}‘*L+GI;w°(>‘) is perverse. For any
ind-object F in Perv(ra x )(Gr,0) and any p€Y we can therefore consider the
ind-object ]-'*L+GRM in Perv(za x,)(Gr,0), and then make sense of the abelian

category Mod?}f’XA)(R(@)) as in §5.4. The functor
4 :Perv(za, x,)(Gr, 0) — Moda v,y (R(0)),

and the notions of free R(Q)-module of finite type and finitely generated R(Q)-
module can also be copied. Lemma 5.1 holds unchanged. The definitions of the
various averaging functors from §6.1 carry over to this setting, and one can show
that these functors are still exact; in particular, there is an exact functor

€4 :Mody (R(0)) — Mod}. (R(0))

that sends finitely generated R(Q)-modules to finitely generated R(Q)-modules.
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Remark 9.13. As with field coefficients, it is not immediately obvious that
the category of finitely generated R(Q)-modules, which one may denote
modEA,XA)(R((O))), is abelian. We will not address this question in this paper,

as working in the category MOdEA7XA)(R(©)) will be sufficient for our purposes.

The change-of-scalars functor F induces a right-exact functor
FO: Moda ) (R(0)) — Mod {4 x,) (R(F))

defined as follows. If MeModE{?y x4)(R(Q)), the underlying graded ind-perverse
sheaf of FO(M) is PHO(F(M)), with the obvious grading. The morphisms

PHO(F(M))+E " C R, (F) — PHO(F(Miip))

are obtained from the morphisms M,\*£+GRH(©)—>M>\+H by application of the
functor PH°(F(—)), using the fact that for any F in Perv(;a x,)(Gr,Q) we have

340 (F(]:*l:+ G (w)+A (0) *£+GI*—wo(>\) (0)))
2 PHO(F(F)) &L C T WA E)RET G N ()

by commutation of F with convolution, the fact that F(Z%(Q))=ZY(F) for any v
(see the proof of Lemma 9.12), and exactness of convolution over F. Similar con-
siderations show that the functor K induces in the natural way an exact functor

K: Modz‘?’&) (R(0)) — Modgé’XA) (R(K)).

(Here there is no perverse cohomology involved in the construction since K is t-exact;
we therefore do not add any superscript in the notation.) It is clear from this
definition that for F in Perv(;a x ,)(Gr,0) we have canonical isomorphisms

FOo 4 (F) =04 (PHO(F(F))), Kod4(F)=dA(K(F)).

The functors K and F° also commute in the natural way with the averaging functors.
We will now analyze the effect of the functors K and F° on morphisms. We
start with the much easier case of K.

Lemma 9.14. Let .F,QEPerv(IS;’XA)(Gr,@). For any veY, the functor K
induces an isomorphism
K@oHomygeqy (r(0)) (®(F), 2(G){))
(IghX4)

—rHomypoqx () (PK(F)), 2(K(G))(v)).

(I, x4)



314 Pramod N. Achar and Simon Riche

Proof. By (the analogue of) Lemma 5.1 we have

HomModEAVXA)(R((D)))((I)(]:)a ®(G)(v))

. + w, (v + —w,
s h&l Homper\,uA XA)(Gr’@)) (./_‘.7 g*ﬁ GI* ( )+>\(@)*£ GI* (M) (@))7
A v

and similarly over K. The claim follows, using the fact that inductive limits com-
mute with tensor product, and that for H, Ha in Perv(za x,)(Gr, Q) the morphism

(9.8) K®@Hompe”’(1§,xm((}r7®) (7‘[1, Hg) — Hompe'V(ILf‘,XA)(Gr’K) (K(H1)7 K(Hz))
induced by K is an isomorphism. [

We now consider the more delicate case of FO. Recall that a perverse sheaf
F in Perv(a x,)(Gr,0) or Perv+g(Gr,0) is called torsion-free if multiplication
by a uniformizer of O is injective on F, or equivalently if F(F) is perverse. Using
this characterization and t-exactness of convolution over IF, one easily sees that if F
in Perv(za x,)(Gr,0) or Pervo+(Gr, Q) and G in Pervo+g(Gr, Q) are torsion-free,
then Fx£ GG is torsion-free. Recall also that the O-module of morphisms between
two torsion-free perverse sheaves is finitely generated and torsion-free, hence free of
finite rank. The following lemma comprises an analogue of Lemma 5.10 over O.

Lemma 9.15. Let F,GEPerv(ia x,)(Gr,0) be torsion-free, and let vEY.
1L IfAeY o n(w.(v)+Yy) is sufficiently large, the natural map

Hom(F, G+ ¢ 7, T2 (0) £ 77N (0)) — Hom(®(F), B(G) ()

is an isomorphism. In particular, Hom(®(F), ®(G){v)) is a free O-module of finite
rank.
2. The functor FO induces an injection

FooHom,,qy (r(0) (P(F), ®(G)(v))—Homy,oqy (rew)) (P(F(F)), ®(F(G)) (),
which is an isomorphism if and only if

dimg Hommod}(u (R(K)) (®(K(F)), 2(K(G)){v))
= dimg Hommyoqx (1)) (B(F(F)), 2(F(G)) ().

Proof. (1) Recall that if H; and Hs are torsion-free perverse sheaves, then
there is a natural injective map

L L
(9.9) F®@HOIH(H1,Hg)"—)Hom(FQ@@Hl,F@@Hz),
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whose cokernel identifies with Tor? (F, Ext! (#, Hz)).

Let Ae Y N(w.(v)+Y4), let n€Yy, and set A':=A+p. In the following dia-
gram, the vertical maps come from the morphisms (9.8) and (9.9), and the horizontal
maps are defined by the considerations in §5.2. Note that the second row consists of
free @-modules, while the top and bottom rows consist of K- and F-vector spaces,
respectively.

Hom(K(F), K(G)«Z. %27 My U Hom(K(F), K(G)«Z O sz )

] J

Hom(F, G+Z. W%z W gom(F, gozy ¢ sz )

l |

FoHom(F, G+Z, “ %z Ny “ 9 poHom(F, Gozy @ w2 M))

l [

Hom (F(F), F(G)«Z; %z Ny ™ Hom(F(F), F(G)+ Ty O w2 ),

Our goal is to prove that when A is large enough, arrow (ii) is an isomorphism.
Lemma 5.10 and Remark 5.11 show that when A is large enough, arrows (i) and (iv)
are both isomorphisms. The topmost and bottommost commutative squares then
show that arrows (ii) and (iii) are both injective.

The free @-modules in the second row must have equal (finite) ranks, because
the K-vector spaces they give rise to in the first row have equal dimensions. It
then follows that the F-vector spaces in the third row also have equal dimensions.
Since arrow (iii) is an injective map between F-vector spaces of equal dimension, it
is actually an isomorphism. In view of this, Nakayama’s lemma implies that the
middle one is surjective, which finishes the proof.

(2) If X is large enough, by (1) and Lemma 5.10 we have identifications

Hom(F, G+ ¢ T, T2 (0) £ C 77N (@) =5 Hom(B(F), B(G) (v))
and

Hom (E(F), E(g)*L+GI;w,,(V)+)\ (E)*L+Gz;wo()\) (E))
— Hom(®(E(F)), ®(E(G))(v))

for E=K or F. Via these identifications, the morphism under consideration identifies
with the morphism

Hom(F, G+~ 7, M )+£ ¢, M (0))
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— Hom(F(F), F(G)+~ O A (1) «£ G2 M ()

induced by F. The latter morphism is injective, as noted in (9.9). It is an isomor-
phism if and only if these vector spaces have equal dimension, which in view of the
identifications above and the isomorphism (9.8) is equivalent to the condition in the
statement. [J

Remark 9.16. For later use, let us record a special case in which the condition
in Lemma 9.15(2) is satisfied. We assume that A=, and fix some simple reflections
81, .., Sr € Safr and some we). For Ee{K, Q,F} we set

P(E) :=Es, -85, 80(Ty,, ., (E)).

(See §3.5 for generalities on tilting O-perverse sheaves.) Here we have T, _ (0)
JrSc(0)=7:5.(0). In particular we have

]F(Ttwa(c) (©)) = Ttwa(i) (F)7 K(Tt

12

(©)) = Ttwq(q (K)7

we(s)

which implies that
K(P(0)=ZP(K) and F(P(O))XP(F).

In particular, this shows that F(P(Q)) is tilting, which by standard arguments
implies that P(0) is tilting.

If FePervy, (Gr,0) is tilting, then the condition in Lemma 9.15(2) is satisfied
for the pairs of objects (F, P(0)) and (P(0), F) and any v€Y. Indeed, for Ae Y N
(w.(v)+Y ) the object I;w’(VH)‘(F)*LJrGI;w’(/\) (F) has a costandard filtration (in
Perv,+g(Gr,F)) by [AR3, Proposition 4.8], hence

P(F)+L CI; W)L G N (F)
> F(P(0)~ CL, TN 0)+£ TV (0))

admits a costandard filtration (in Pervy (Gr,F)) by Lemma 6.7 and the consid-
erations in §3.7. By standard arguments, this implies that the perverse sheaf
PO)+ETC T I« E TN (0) admits a costandard filtration in the cat-
egory Pervy, (Gr,0). We deduce the equality
dim HOD’I(F(.F), P(F)*E+GI*—1UO(V)+)\ (]F)*L',JrGI*—wc(A) (F))
= dim Hom (K(F), P(K)+£ 7, N K)£ TGN (K))
by the usual formula calculating dimensions of morphism spaces from a standardly-

filtered object to a costandardly-filtered object in terms of multiplicities. Similar
arguments apply in the second setting, using the isomorphism

Hom(P(E), E(F)+£ 7, N E) LT C N (E))
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= Hom(P(E)+* ¢y~ W (E)+£ O T} (E), E(F))

for E=K or F.
We finally come to the main result of this subsection.

Theorem 9.17. For each we Wy, there exists an indecomposable finitely gen-
erated R(Q)-module Q.,(Q) with the following properties:

L. it is a direct summand of an object ®(&s,...&s, 8w (Te,, (., (Q)))(v) for some
S1y -y Sp €S, WEQ, VEY

2. we have FO(Q,,(0))2Q,, (F);

3. the R(K)-module K(Q,(Q)) is projective and injective, and contains the
indecomposable object éw(K) as a direct summand with multiplicity 1.

Proof. By periodicity, it is enough to prove this claim when we W, Assume
this from now on. Choose si, ..., $,€S,g and weS) as in Lemma 6.6, and for E€
{K,0,F}, let

P(]E) = gsr"'gmgw_l (Ttw,<§) (]E))

(See Remark 9.16 for comments on this definition.)

When E=K or F, the proof of Proposition 7.4 shows that ®(P(E)) is injective
and projective, and that it contains the injective envelope Qu(E) of £, (E) as a
direct summand. More precisely, considering the baby co-Verma multiplicities de-
scribed in that proposition and comparing with Theorem 7.9, we see that in this
case:

« ®(P(E)) contains O, (E) as a direct summand with multiplicity 1;

e for any other indecomposable injective object @y(E) occuring as a direct
summand of ®(P(E)), we have y>w.
The first item above implies that we then have

(9.10) dim Hom (®(L,,(E)), ®(P(E))) = 1.

We now consider the case E=0. Let L,(0) be the intersection cohomology
complex associated with the constant O-local system on Gr,,. It is well known that
K(Ly,(0))=L,(K), so that (9.10) implies that

(9.11) dim Hom (®(K(L, (D)), ®(P(K))) = 1.

Next, let us study the analogous problem over F. The modular reduction F(L,,(O))
is a perverse sheaf which is not simple in general; instead, there is a short exact
sequence

0—K—F(Ly(0)) —Ly(F)—0
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where K is a perverse sheaf with composition factors of the form L, (F) with ze Wz,

such that z<w (and hence z<w by Lemma 2.5(3)). By Lemma 5.8, the R(F)-

module ®(K) has all of its composition factors of the form £..(F) with 2’ <w.
Apply the exact functor Hom(®(—), ®(P(F))) to the exact sequence above to

get a short exact sequence

0 — Hom(®(Ly(F)), ®(P(F))) — Hom(F(®(L.,(0))), 2(P(F)))
— Hom(®(K), ®(P(F))) — 0.

By (9.10), the first term has dimension 1. The claim above on the composition
factors of ®(K) and the description of the summands Q,(F) that can occur in
O(P(F)) imply that Hom(®(K), (P (F)))=0. We conclude that

(9.12) dim Hom(®(F(L,,(0))), P(F)) =1.

Combining (9.11), (9.12), and Lemma 9.15, we see that the functor F* induces
an isomorphism

(9.13) F®ooHom(® (L, (0)), ®(P(0))) — Hom(®(F(L,(0Q))), D(P(F))).

Similarly, according to Corollary 9.11, the rings End(®(P(K))) and End(®(P(F)))
have equal dimensions, so by Lemma 9.15 again, the functor F° induces an isomor-
phism

(9.14) FooEnd(®(P(0))) = End(®(P(F))).

Of course, analogues of both of these isomorphisms hold if ®(P(Q)) is replaced by
some direct summand.

Let us now study the direct summands of ®(P(0)). Because O is a com-
plete noetherian local ring, the finite O-algebra End(®(P(0))) is a semiperfect ring
by [La, Example 23.3], and similarly for direct sums of copies of ®(P(Q)) or di-
rect summands of such objects. Then, by [Kr, Corollary 4.4] applied to the full
subcategory of Mod}i (R(Q)) generated by ®(P(0Q)) under direct sums and direct
summands, the Krull-Schmidt theorem applies to ®(P(Q)): this object has a unique
(up to isomorphism and reordering) decomposition into indecomposable summands

(P(D) =M &...0M,

where each M; has a local endomorphism ring. As explained above, for any i we
have a natural isomorphism

F@oEnd(M;) 5 End(F(M,)).
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In particular, End(IF(M;)) is again a local ring. In other words, each R(F)-module
F(M;) is indecomposable, and these are all the indecomposable summands of
®(P(F)). Exactly one of these summands is isomorphic to Oy, (F); we can therefore
assume without loss of generality that O, (F)=F(M;). We define

0, (0) :=M;.

Parts (1) and (2) of the theorem hold by construction. It remains to prove
part (3). This is equivalent to showing that

dim Hom(£,,(K), K(Q.,(0))) =1.

To see this, observe first that since K(L,,(Q))=L,,(K), by Lemmas 9.14 and 9.15
and the construction of Q,,(0), we have

~

dim Hom (L, (K), K(@w (0))) =dimF®gHom (® (L, (0)), Q. (0)).

Next, it follows from (9.13) that

~

dim F®gHom(® (L, (0)), Q. (0)) =dim Hom(®(F(L,,(0))), Q. (F)),
and the right-hand side is equal to 1 by (9.12). O

Remark 9.18. 1. It is possible to adapt the reasoning of Propositions 5.7,
6.5, and 7.4 to the setting of R(Q)-modules, to show that the object P(Q) appear-
ing in the preceding proof is a projective object in Mod}i (R(Q)). Therefore, its
direct summand Qw(@)) is also projective. (Of course, it would also be projective in
mod}i (R(0)) if one knew that the latter category was abelian; see Remark 9.13.)
Note, however, that @w(@) is not injective, unlike its field counterparts; this essen-
tially comes down to the fact that O is not an injective @-module.

2. For any y, w€ Weyt, the O-module Hom(@y(@), 0,,(0)) is free of finite rank,
and the functors K and F° induce isomorphisms

~

K®oHom(Q,(0), 0,(0)) = Hom(K(Q,(0)), K(Q.,(0)))
and
FegHom(Q,(0), Qu(0)) > Hom(Q, (F), Qu(F)).

In fact this follows from part (1) in Theorem 9.17, combined with Lemmas 9.14
and 9.15 and Remark 9.16.

Corollary 9.19. Let F be a tilting object in Pervy (Gr,Q). If M is a direct
summand of ®(F) which satisfies F*(M)=0, we have K(M)=0.
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Proof. Let y€Weyt. By part (1) in Theorem 9.17 and by Lemma 9.15 and
Remark 9.16, the O-module Hom(M, Q,(0)) is free of finite rank, and the functor
FO induces an isomorphism

F@oHom(M, O, (0)) —s Hom(F(M), O, (F)).

Since the right-hand side vanishes, this implies that we have Hom (M, @y(@))zo.
Using Lemma 9.14, we deduce that Hom(K(MLK(@y(@))):O, and hence that
Hom (K (M), O, (K))=0 by part (3) in Theorem 9.17.

Since K(M) is finitely generated, what we have shown implies that this object
has no composition factor, i.e. is trivial. [

The following application of Theorem 9.17 will be needed in §9.4 (where we
will show that, in fact, the dimension in question is equal to 1).

Proposition 9.20. Ifk is any field satisfying the assumptions of §1.2, then for
any wEWexy the dimension of the k-vector space Hom,oqy (1)) (Qu(k), Qua (k))
is at least 1. '

Proof. By periodicity (see (2.4)), it is enough to prove this property when
weWrr. We assume this from now on.

Suppose first that k is a field of characteristic 0. In this case, according to
Remark 8.11(1) we have Q,2~®(T,2). The object L,a occurs as a composition
factor of T,a, so ®(L,) is a subquotient of @w. It follows from Theorem 3.16
and Lemma 5.2 that £, is a direct summand of ®(L,, ), and hence a composition
factor of @w. The result follows.

We now consider the case where k has positive characteristic. We can assume
that k is finite. Let K be a finite extension of Q, whose ring of integers O has k as
residue field. Since K(Q,,(Q)) contains O, (K) as a direct summand, and likewise
for w® (part (3) in Theorem 9.17), the previous paragraph and Remark 9.18(2)
imply that the free O-module Hom(Q,(0), Q2 (0)) has rank>1. Using again

AN

Remark 9.18(2), we deduce that dim Hom(Q,,(k), Q,a (k))>1 as well. [

9.4. Application: multiplicities and projective covers

We now return to the setting of field coefficients. In the following proposition we
gather the main properties of the objects Qﬁ, some of which have already appeared
in earlier statements.

Proposition 9.21. Let w,xEAWext.

1. The object @f is both the injective envelope and the projective cover of EA?
2. We have D(Q4)=2 0.
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3. We have Av*(04)~0, and Av{*(04)~0,.
4. The multiplicities in baby Verma and baby co-Verma filtrations of Qﬁ satisfy
the following “reciprocity laws”:

Q4 ZM =28 LA =214 LA = (02 2.

A

Moreover, these numbers are zero unless x Sw=wax=, and they are equal to 1 when

w=x or w:waA.

Recall the map ¢4 defined in (7.5), characterized by the property that @fA (@)

is the projective cover of £2. In view of (9.5), parts (1) and (2) are both equivalent
to the claim that

(9.15) ta(z)=x for all € " Weyy.

Proof. Let us start with part (4). The first equality has already been noted
in (9.7). The second one is part of Lemma 9.4. Finally, since @j;‘ admits both
a baby Verma filtration and a baby co-Verma filtration (see Theorem 7.9(2) and
Proposition 9.7), the equality (94:Z/4)=(04:ZA4) holds by Remark 9.6. Most of
the last assertion of this part has already been established in Corollary 7.5; it only
remains to show that

(9.16) (214 ot L2]=1 for all & € A Wiy

We will return to this later in the proof.
We will now prove parts (1) and (2). Observe that by applying D, we have

(D(Q7): 214 = (97 : 22

for all ze4Wey,. Now Remark 9.9 and the equalities from part (4) show that there
exists a unique minimal element z (with respect to <) such that the right-hand side
is nonzero, namely x. Since D(@;“) is an indecomposable injective object, in view of
Remark 9.9 again this implies that D(@ﬁ)Qéﬁ, proving part (2). As noted above,
this claim is equivalent to that in (1).

For part (3), the first isomorphism was already established in Theorem 7.9(3).
The second one follows by Verdier duality; alternatively, since we now know that
Qw is the projective cover of ﬁw, one can repeat the argument from the proof of
Theorem 7.9(3) to show that Av{*(Q4)=Q, .

It remains to prove (9.16). By Corollary 7.5, we at least know that [ZA:D ‘t e
ﬁf]gl. Suppose in fact that this multiplicity is 0 for some x. By the portion of
part (4) that is already proved, we see that the baby co-Verma modules 2;‘4 appear-

ing in a baby co-Verma filtration of Qf all satisfy z<y<wax®. Using Corollary 7.5
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again, we see that the composition factors of @f are of the form £2 with z<waz?;
in particular, [Q;“:LﬁMA]:O, and hence Hom(Q4, QSMA):O. If A=, this con-
tradicts Proposition 9.20, and we are done. Before passing to the case where A+ @,
let us note that once we know that (Q,:2! . )=1, then by Remark 7.8 we know that
ZA; ~ 1s actually a quotient of Q..

Let us now finish the proof of (9.16) in the case where A#@. Since EﬁAIA is
the socle of ZA:D‘tzA, the equation [Q4 :ﬁﬁAxA]:O implies that Hom(Q4, E;Uﬁxa)zo.
We have

0=Hom(Q7, 2\ .») =Hom(Q;, Avi}(Z].))

= Hom(Av{*(Q1), Z,4) = Hom(Q,, Z,.4),

where the second equality uses Lemma 6.3(2), the third one follows from adjunction,
and the last one uses part (3). This contradicts the previous paragraph, and thus
finishes the proof. [

9.5. Further properties of baby Verma and baby co-Verma modules

In this subsection, we prove a number of statements exhibiting a symmetry
between baby Verma modules and baby co-Verma modules.
We start with the following corollary of Proposition 9.21.

Lemma 9.22. For any WEAWeys, the object é\;ﬁwé has a simple head, and

the object é’;ﬁAwA has a simple socle, both isomorphic to ﬁﬂ

Proof. Proposition 9.21(4) and Remark 7.8 imply that Z/4 . is a quotient

wAwW
of Q4 so like Q4 it has a simple head, isomorphic to £:. The claim for Z{Z‘Aw -

w

follows by Verdier duality. O

Below we will require the following combinatorial lemma.

Lemma 9.23. The map AW — A Wexe given by w—waw?™ is a bijection.

Note that waw® at least lies in AW,y by Remark 7.2(1). This lemma may
have a purely combinatorial or alcove-geometric proof, but we will give an argument
that relies on properties of R-modules and is intertwined with the proofs of the next
two statements in the following way:

Lemma 9.23  Prop. 9.24 Prop. 9.25 Lemma 9.23 _ Prop. 9.24  Prop. 9.25
for A= for A= for A=2 for any A forany A ~ forany A’

Proof of Lemma 9.23 for A=&. The inverse map is given by (2.5). O



A geometric model for blocks of Frobenius kernels 323

Proposition 9.24. Let weAWy.

1. The object Z\:UﬁwA is the projective cover of ﬁf) in the Serre subcategory of

modgé‘q)XA)(R) generated by the simple objects ﬁ;‘ with w Y™ Awaw?.

2. The object ZAwAwA is the injective hull of ff) in the Serre subcategory of
modgﬁ\,XA)(’R) generated by the simple objects E; with way® Awsw®.

Proof assuming that Lemma 9.23 holds for A. We will prove the claims for
Z{U"; wo- Those for Z;}‘Aw » follow by Verdier duality.

We have already seen in Lemma 9.22 that ZA{U ‘; wo has a unique simple quotient,

isomorphic to fﬁ Next, we must show that é\zﬁ; wo lies in the Serre subcategory
described in the statement. This is a consequence of Corollary 7.5, which tells us
that

[éfu‘iwA : ﬁf] £0 implies wav™ = waw”.
Finally, to show that ZALJ ‘t wo 18 the projective cover of ﬁﬁ in this Serre subcat-
egory, we must show that

Ext!(Z/4 EA;;‘) =0 if way® Awaw®.

wawd

As noted in the proof of Lemma 9.22 there is a surjective map @ﬁ%éﬁ’uﬁ wa Whose

kernel I admits a baby co-Verma filtration. Since @ﬁ is projective, we have a
surjective map Hom (K, Eﬁ)%Extl(Zl’i‘wA , E;j). So it is enough to show that

(9.17) Hom(KC, ﬁ‘;) =0 if way® Awaw®.

By Proposition 9.21(4), the baby co-Verma modules which occur in a baby co-
Verma filtration of IC have their labels that lie between w and w w® in the period
order. More precisely, by Lemma 9.23, the terms of the baby co-Verma filtration can
be written as é\l’u‘izA with w=<w422> <wa w?®. By Lemma 9.22, the unique simple
quotient of 27’;:% is £4, so Hom(ZA;iZA,EA;‘):O if y#£z, i.e. if way®#waz>. This
implies (9.17). O

Proposition 9.25. For w,w’GAWCXt, we have

~, -~ 4 o k if w=w' and n=0,
Extioav (R) (20, 200 2Bt qx (R) (20, 20)= { /

(g, x4) g xs 0 otherwise.

Proof assuming that Proposition 9.24 holds for A.
2, Z!4) are contained in Lemma 9.8. Recall that this lemma

The claims for Ext"™(Z;},
comes from the general theory developed in [BS]; it is available here because, as
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shown in the proof of Theorem 7.9, mod?z/‘;’ x4)(R) is an essentially finite highest
weight category with respect to the poset (4Weyg, <).

Define a new order <0 on AWy by declaring that w<y if waw? twAyA. Using
Proposition 9.24, one can show that mod?&x, x A)(R) admits a second structure as
an essentially finite highest weight category, this time with respect to the poset
(“Wexs, <). In this context, baby co-Verma modules are standard objects, while
baby Verma modules are costandard objects. We omit the details, as they are very
similar to those in the proof of Theorem 7.9.

The claims in the proposition for Ext”(é{j,‘, Zf}) then follow from the analogue
of Lemma 9.8 for this new highest weight structure. O

Proof of Lemma 9.23 for A#@. In view of (2.5), the rule w—w w® gives a
bijection Wey; —Wexs, so the induced map AWy — AWy (see Remark 7.2(1)) is
at least injective. We must prove that it is also surjective.

Let v€4W,y, and choose a simple quotient of Z'A

v o

say L2, Since £A is the
socle of Z£ ~ by Lemma 9.22, the following groups are all nonzero:
AW

Hom(Z, Z24 )= Hom(Avi(Z]), AV (Z,,0a))
gHom(gA(Z\qu)vé\wAwA) gHom(AV*A(é\;;A) 2 A)a

s AW AW

where the isomorphisms follow from Lemma 6.3(2) and adjunction. The description
of the baby co-Verma filtration of Av2(Z/4) in Lemma 6.3(3), together with the
“@” case of Proposition 9.25, imply that

dim Hom(Av2(Z2/4), 2, we ) =

y Awaw

1 if waw® eWyv,
0 otherwise.

So we must have W v=Ww®. Since both v and waw” belong to A Wey, using
Lemma 2.3 we conclude that v=ww?”, as desired. [

9.6. More on injective R-modules and tilting perverse sheaves

We conclude with a complement to Proposition 7.11(1). The following state-
ment can be regarded as a geometric counterpart of [Ja, Lemma E.§].

Proposition 9.26. Let weAWS5,. The object ®4(T2) is a projective (equiv-

alently, injective) R-module if and only if w=wx> for some x€ W5,

Proof. The “if” direction is Proposition 7.11(1); we need only prove the “only
if” direction.
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First we treat the case when k has characteristic 0. Assume that ®4(T2) is
injective. Then the functor

A ATAN ~ A LTG
HommOd(\;f,XA)(R) ((P (_)7 ¢ (Tu))) = Homperv(Ié«,’){A)(Gr,k)(_v Tw* RO)
(where the identification follows from Lemma 5.1) is exact. As explained in §5.3,
since k has characteristic 0, the skyscraper sheaf 7¢° is a direct summand of R, so
Hom(—, Tﬁ*LJrGICO)%Hom(—, T24) is an exact functor. That is, T is an injective

object in Perv(l\/];’XA)(Gr, k). This object is also indecomposable. From the classifi-

A

cation of indecomposable injective objects in Theorem 7.1, we see that TﬁE’Twm A

for some z€4W 3, ; we then have w=wz>.

Now suppose k has positive characteristic, but that A=@. We may assume
that k is finite. Choose a ring @ as in §9.3 that has k as its residue field, and let
K be its fraction field. Let weWS,, and assume that ®(T,,(k))=®(k(T,(0))) is

extr
injective. Then there exist wy, ..., wx € Wext and an isomorphism

(9.18) (T (k)= Qu, (K) B Dy (K) ... D, (K).

In view of part (1) in Theorem 9.17, Lemma 9.15 and Remark 9.16 imply that the
morphisms
k&0 Hom(®(T,,(0)), Qu, (0)®...5 O, (V)
— Hom (B (T (K)), Ou, (K) ... 5y (K))

and

k®oHom(Qy, (0)&...® 0y, (0), ®(T,,(0)))
— Hom(Qy, (k) ®...® Oy, (k), D(To (K)))
induced by k° are isomorphisms. Using (9.18), we deduce that there exist mor-
phisms
[:®(Ty(0)) — Qu, (0)®... 0y, (0)
and
9: 01, (0)&...0 0, (0) — &(T,,(0))

such that k°(f) and k%(g) are mutually inverse isomorphisms. Similarly, by Re-
mark 9.18(2), End(Q., (0)®...®Q,, (0)) has finite rank over O, and the functor
k induces an isomorphism

k®oEnd(Qy, (0)®...0 Oy, (0)) — End(Qy, (k) ... Quy (K)).
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In view of Lemma 9.27 below, this implies that fog is an isomorphism, and hence
that Qu, (0)®...® Qy, (0) is a direct summand in (T, (0)). In other words, there
exists M in Mod}: (R(0O)) and an isomorphism

(Tu(0) 2 (00, (0)8...6 0y, (0) BM.

We have k°(M)=0, so by Corollary 9.19 we have K(M)=0 as well. This implies
that the object ®(K(T,,(0))) is also injective. This object contains ®(T,,(K)) as a
direct summand, so ®(T,,(K)) is injective. The field K has characteristic 0, so by
the previous paragraph, we conclude that w=z* for some reWS,,
the proof in this case.

Finally, we consider the case where k has positive characteristic, but A#
@. Let weAW3,, and suppose that ®4(TA) is injective. Then AvZ(d4(TA))=
d(Av(TA)) is also injective. By Proposition 3.12, the latter is isomorphic to
®(Ty,w). By the previous paragraph, we must have w w=1x%, or w=wsz*, for
some xEWGit. On the other hand, Lemma 9.23 implies that there exists €4 Wey

such that w=way®. The injectivity of the map zr»2z2 implies that 2=y, so that
this element belongs to WitﬂAWext:AWS which finishes the proof. [

e ext’

which completes

Lemma 9.27. Let Q be the ring of integers in a finite extension of Qq, let F
be its residue field and let A be a finite O-algebra. If a€ A is such that its image in
F®pA is invertible, then a is invertible.

Proof. Let w be a uniformizer in @. Then by completeness it suffices to prove
that the image of @ in each A/@w™A (n>1) is invertible. This is checked by induction,
the case n=1 being true by assumption. If we know that a is invertible in A/w™A,
and if b€ A has image in A/@w"A the inverse of a, then ab=1+w"c for some c€ A.
If de A has image in A/wA the inverse of a, then adel+wA, hence a(b—w"dc) €
1+t A, which shows that a is invertible in A/w" 1A, as desired. [0
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