SILTING COMPLEXES OF COHERENT SHEAVES
AND THE HUMPHREYS CONJECTURE
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Abstract

Let G be a connected reductive algebraic group over an algebraically closed field
k of characteristic p > 0, and let N be its nilpotent cone. Under mild hypotheses,
we construct for each nilpotent G-orbit C and each indecomposable tilting vector
bundle T on C a certain complex §(C,T) € DPCoh%*Cn (N). We prove that these
objects are (up to shift) precisely the indecomposable objects in the coheart of a
certain co-t-structure.

We then show that if p is larger than the Coxeter number, then the hypercoho-
mology H*(N,8(C,T)) is identified with the cohomology of a tilting module for G.
This confirms a conjecture of Humphreys on the support of the cohomology of tilting
modules.

1. Introduction

1.1. The Humphreys conjecture

Let G be a connected reductive group over an algebraically closed field k of charac-
teristic p. Assume that p is larger than the Coxeter number 4 for G. Let G; be its
first Frobenius kernel, and let G = G/G be its Frobenius twist. Let N be the nilpo-
tent variety in the Lie algebra of G. It is well known that the algebra Extg; (k. k) is
(G -equivariantly) isomorphic to the coordinate ring k[.N]. As a consequence, for any
G-module M, the G;-cohomology

H*(Gy, M) = Extg,, (k, M)

has the structure of a G-equivariant graded k[.V]-module, or equivalently, a G X G-
equivariant (quasi)coherent sheaf on N .

The main goal of this paper is to give a new description of this cohomology in
the case where M is an indecomposable tilting G-module. This cohomology vanishes,
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except for tilting modules of the form M = T(wy,, - 0) (see Section 8 for this notation),
where A is a dominant weight. Using the results of [11], one can refine this problem
as follows: for each A, there is an object

S, € D’Coh%*Cn ()
equipped with a canonical isomorphism (see [12, Propositions 9.4 and 9.5])
R°T(N,G,) = H'(GI,T(wA -O)).

The relative Humphreys conjecture is a conjectural description of the support of
H*(G1,T(wy - 0)) (or, equivalently, the support of &), in terms of the combina-
torics of Kazhdan-Lusztig cells. Here is a brief summary of previous results on this
conjecture:

Quantum case In [15], Bezrukavnikov gave a description of the complex ver-
sion Gg, and thereby proved the quantum-group analogue of the relative
Humphreys conjecture.

Reductive groups for p > 0 In [6], the authors and S. Riche proved that the relative
Humphreys conjecture is true when p is “large enough,” that is, larger than
some unknown bound depending on G. The proof involves a reduction to the
quantum case studied by Bezrukavnikov.

GL,, for p > h =n + 1 The relative Humphreys conjecture for GL,, follows from
work of the second author [18], as explained in [6, Remark 9.4(1)]. A second
and rather different proof was obtained by the authors in [4].

In this paper, we prove the relative Humphreys conjecture in full generality, for
all reductive groups and all p > h. The proof, which is based on a new description of
the G, in terms of “silting complexes,” is independent of the main arguments in [6]
and [15]. A side effect of the proof is an explicit description of the coherent sheaf
H* (G, T(wy -0)) over the open orbit in its support, conjectured in [9].

We remark on two other problems that are not addressed in this paper:

(1) Humphreys originally proposed a description of Ext:;1 (M, M) rather than of
Ext&1 (k, M) (see [20]). The original Humphreys conjecture has been proved
for GL,, in [18], and for any G when p >> 0 in [6]. See [6, Lemma 8.11 and
Remark 9.4] for the relationship between the original and relative Humphreys
conjectures.

(2) In [4], the authors proposed a scheme-theoretic Humphreys conjecture, assert-
ing that the scheme-theoretic support of G, is reduced, and they proved this
conjecture for G = GL,,.

For general G and p > h, the original and scheme-theoretic Humphreys conjectures

both remain open.
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1.2. Silting complexes on the nilpotent cone

The main geometric arguments in the paper involve only G and N (and not G), and
are valid under much milder assumptions on the characteristic p of k. From now on,
we assume only that p is “pretty good” for G (see Section 3).

A silting subcategory of a triangulated category is an additive subcategory whose
objects enjoy certain strong Ext-vanishing conditions (see Definition A.2). In [4], the
authors showed that the category of direct sums of objects of the form &y [n](—n)
is a silting subcategory of D°Coh®*® (), called the supportive silting subcate-
gory.

In this paper, we construct a new silting subcategory of DPCoh®*€m (A7), which
we call the orbitwise silting subcategory, because it has a geometric description that
proceeds “one nilpotent orbit at a time.” This description involves the notion of a
tilting vector bundle on a nilpotent orbit, defined in Section 3.2 below. We show
that for any nilpotent orbit C C N and any indecomposable tilting vector bundle
T e TiIt(COhGXGrm (C)), there is a unique way to extend 7 to an indecomposable
object

8(C,T) € D"Coh%*Cn ()

that is supported on C and satisfies certain Ext-vanishing conditions with tilting
vector bundles on smaller orbits. Objects of the form & (C, 7 )[n](—n) are precisely
the indecomposable objects in the orbitwise silting subcategory.

The main geometric theorem of the paper states that the supportive and orbitwise
silting subcategories actually coincide. Thus, for each pair (C, 7') as above, there is a
unique dominant weight A such that

8(C,T)~6,.

We also prove that this correspondence is given by the Lusztig—Vogan bijection.
If we now assume that p > h, then we have

H*(Gy, T(w; -0)) = R°T (M, 8(C, T)).

The relative Humphreys conjecture is essentially a corollary of this formula.

1.3. Application to the p-canonical basis

The silting complexes introduced in this paper can be thought of as a coherent coun-
terpart to the p-canonical basis of the affine Hecke algebra (see [23]) and the theory
of parity sheaves (see [25]), both of which play prominent roles in recent devel-
opments in modular representation theory. These parallels are summarized Table
1.
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Table 1. Some analogies in modular representation theory

Bases for the Constructible sheaves Coherent sheaves on
affine Hecke algebra on flag varieties the nilpotent cone
Char. 0 | Kazhdan-Lusztig basis perverse sheaves perverse-coherent sheaves
Char. p p-canonical basis parity sheaves silting complexes

In fact, one can make a more precise statement: it turns out that the Grothendieck
group K (DbCOhGXGm (V)) is naturally a quotient of the affine Hecke algebra, and
this quotient map sends the Kazhdan—Lusztig basis to the basis of simple perverse-
coherent sheaves. We will see at the end of this paper that this map also sends the
p-canonical basis to the basis of silting complexes. This observation implies a certain
positivity property for the p-canonical basis, and it suggests conjectural avenues for
further study around the themes of (p-)Kazhdan—Lusztig cells, truncated convolution
of perverse sheaves, and vector bundles on nilpotent orbits.

1.4. Notation and terminology

IfvV =6 jez Vi is a graded vector space, we define V{n) to be the graded vec-
tor space given by (V(n)); = V,4;. Equivalently, if we think of V as a Gp-
representation, then V (n) = V ® k_,,, where k_, is the 1-dimensional representation
where G, acts with weight —n. Similar notation is used for coherent sheaves.

The notion of a silting subcategory and the closely related notion of a co-z-
structure play a central role throughout this paper. See the appendix for a brief review
of these notions, and see [4, Section 2] for additional background and references. In
this paper, as in [4], we use the term silting object to mean any object in a silting
subcategory, not just a generator (see [4, Remark 2.2] for context).

1.5. Contents of the paper
We begin in Section 2 with a “toy example” (needed later in the paper) of a co-¢-
structure on representations of certain nonreductive groups. Section 3 contains pre-
liminaries and notation related to the nilpotent cone, and Sections 4, 5, and 6 are
devoted to constructing co-z-structures on coherent sheaves in increasingly difficult
settings, culminating with the orbitwise co-¢-structure on DPCoh®*Cnm (N), obtained
in Theorem 6.8. These constructions are cumulative: in each of Sections 4-0, the
construction of the co-¢-structure relies on the co-¢-structures from earlier sections
as input. Along the way, we keep track of how these co-f-structures interact with
Serre—Grothendieck duality (denoted by D) and with the twist by an opposition of G
(denoted by o).

In Section 7, we prove that the orbitwise co-¢-structure coincides with the sup-
portive co-t-structure from [4], and we describe the combinatorics of the relationship
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between the two. The behavior of both co-¢-structures under D and o plays a key role
in the arguments in this section.

Section 8 contains the proof of the relative Humphreys conjecture, and Section 9
discusses potential applications to the study of the p-canonical basis. Finally, the
appendix contains a brief review of co-¢-structures, as well as a technical lemma that
is needed in Section 7.

2. Group representations

For an algebraic group H over an algebraically closed field k, let Rep(H ) be the cate-
gory of finite-dimensional algebraic representations. If H is connected and reductive,
then (as observed in, say, [4, Remark 2.6]), the category Tilt(H) C Rep(H) is the
coheart of a co-t-structure. If H is disconnected, and if the characteristic of k does
not divide |H/H°|, then Rep(H) is again a highest-weight category (see [7, Theo-
rem 3.7]), and Tilt(H ) is again the coheart of a co-¢-structure. The goal of this section
is to extend these observations to certain nonreductive groups.

From now on, let H be a (possibly disconnected) algebraic group over k, which
is equipped with a Levi decomposition H = Hieq X Huyip, where Hy,p is a connected
unipotent group, and H.q is a possibly disconnected group whose identity component
H?, is reductive. Suppose we are given an action of G, on H by group automor-
phisms so that it makes sense to form the group G, x H. We impose the following
assumptions:

(1 The characteristic of k does not divide | Hreq/H |-

2) G, acts trivially on Hieq.

(3)  The induced action of G, on Lie(Hyyip) has strictly positive weights.

We will construct a co-¢-structure on Rep(G,, X H). Thanks to the first assumption,
the highest-weight theory of [7, Theorem 3.7] is available for Hy.4. Let Irr( Hy.q) be the
set of isomorphism classes of irreducible H;.q-modules. (An explicit parameterization
of this set in terms of weights for H_; is given in [7, Theorem 2.16].) For each w €
Irr(Hyeq), let My, N, and T,, denote the corresponding standard, costandard, and
indecomposable tilting module, respectively.

LEMMA 2.1
Let w,v € Irr(H,eq), and regard My, and Ny, as G, x H -modules with trivial G,-
action. In D°Rep(Gy, x H), we have Hom(M,,, Ny, [n]{k)) = 0 whenever n + k > 0.

Proof
If H is connected and H.yp is trivial (i.e., if Gy, x H is a connected reductive group),
then this is a standard result in the representation theory of reductive groups (see,
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e.g., [21, Sections 11.4.9-11.4.13]). That proof can be adapted to the case where Hyyp
is nontrivial as well. We briefly indicate the main steps below.

Assume for now that H is connected. Choose a maximal torus and a Borel sub-
group T C B C Hyeq. Then G, x T is a maximal torus of G, X H. Let ® be the root
system of H,.q, and let ®* be the set of positive roots corresponding to the opposite
of B.Let B= B x H nip; this is a Borel subgroup of H .

Choose a cocharacter p : G, — T such that (o, p) > 0 for all « € ®T. Next,
choose a positive integer m such that for every T-weight 8 on Lie(Hnip), we have
(B, p) <m, and then let p : Gy, &> Gy, x T be the map p(z) = (z7™, p(z)). Then the
pairing of p with every G, x T-weight on Lie(B) is strictly negative.

By a minor variant on the proof of [21, Lemma I1.4.9], one can show that the
trivial B-module k admits an injective resolution

0>k—>I1">T1'—...

such that for any G, x T-weight y occurring in 1", we have (p,y) > n. Now let v
be a dominant weight for H,.q. Using the injective resolution above, the proof of [21,
Proposition I1.4.10(b)] shows that

Exty(kko(k)) #0  implies  —mk —(p,v) =n.

or equivalently, n +k < —(m — 1)k — (p, v). Since v is dominant, this in turn implies
that n + k < 0. In other words, if n + k > 0, then the group

Ext’% (k, ky (k)) = Ext} (k,ind ¥k, (k) = Hom(k, Ny [n] (k)

vanishes. This immediately implies, more generally, that if N is any H,.q-representa-
tion with a good filtration, then Hom(k, N[n](k)) = 0 whenever n + k > 0. In partic-
ular, we have

Hom(M,,. Ny [n](k)) = Hom(k, M}, ® Ny[n](k)) = 0.

We have completed the proof in the case where H is connected.
If H is disconnected, then, thanks to our assumption that the characteristic of k
does not divide the order of H/H °, we have a natural isomorphism

H/H®

Homp (Mo, Ny [n](k)) = (Hompge (Mg, Ny [n](k))) .1)

(See, e.g., [7, Lemma 2.18] for more explanation.) As an HJ ;-module, M,, (resp., Ny)
is a direct sum of Weyl (resp., dual Weyl) modules, so the right-hand side vanishes by
the case of connected groups considered above. O
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PROPOSITION 2.2
There is a unique co-t-structure on D?Rep(Gy, x H) whose indecomposable silting
objects are precisely the objects of the form T, [n](—n) for w € Irr(Hyeq) and n € Z.

Proof

Let & C D’Rep(G,, x H) be the full additive subcategory consisting of direct sums
of objects of the form T, [n](—n). It is immediate from Lemma 2.1 that for S, S’ € &,
we have Hom(S, S’[k]) = O for all k > 0. Since & generates D°Rep(G,, x H) as
a triangulated category, it is a silting subcategory, and hence the coheart of a unique
co-¢-structure (cf. Proposition A.3). O

We denote the coheart of the co-z-structure from Proposition 2.2 by

Silt(G,, x H) := D°Rep(Gy, x H)so N D°Rep(Gy, x H)<o.

Remark 2.3
With a little bit of extra work, one can show that the co-¢-structure from Proposi-
tion 2.2 has the following description:

the full subcategory of D®Rep(G,, x H) generated

DbR m H >0 = . 1
ep(Gm x H)zo under extensions by M, [n](k) with n + k < 0;

the full subcategory of D®Rep(G,, x H) generated
D Rep(Gy x H)<o = . .
PG < H)<o under extensions by Ny, [n]{k) withn + k > 0.
We will need a lemma about the co-z-structure defined above in terms of the
following notion.

Definition 2.4

For a module N of a (possibly disconnected) reductive group H,.q4, the good filtration
dimension of N is the smallest integer k such that for all j > k 4+ 1 and any Weyl
module M, Ext}; (M.N)=0.

For other characterizations of good filtration dimension, see [17, Proposition 3.4].
(That paper assumes that H..q is connected, and it imposes some restrictions on the
characteristic of k, depending on the type of H,.q, because it was not known at the
time that tensor product preserves the property of having a good filtration in full gener-
ality. In fact, [ 17, Proposition 3.4] holds in general for possibly disconnected reductive
groups Heq, as long as the characteristic of k does not divide | Heq/H2l.)
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LEMMA 2.5
Let N be an H,.q-module with good filtration dimension < i, regarded as a Gy, x H -
module with trivial Gy-action. Then, for any j € Z, we have

N{j) e D’Rep(Gy x H)<i—;.

Proof

We proceed by induction on i. If i = 0, that is, if N has a good filtration, then
Lemma 2.1 implies that Hom(T,[n + j — 1]{—n), N{j)) = 0 for any j. In other
words, N (j) € D’Rep(Gy x H)<—;.

Now suppose i > 1, and that the result holds for any module with the good fil-
tration dimension <i — 1. Given N with good filtration dimension < i, let £ be a
module with a good filtration such that there is an embedding N < E (such modules
always exist since the rationally injective H,.q-modules have good filtrations). This
gives a short exact sequence

0O—>N—-FE—K-—QO,

where the cokernel K has good filtration dimension < i — 1. Rotating this triangle
gives

K[-1]{j) > N{j) = E{j) —.

By induction, the first term lies in D°Rep(G,, x H)<;_;, and the last term lies in
D°Rep(Gy, x H)<—j, so we must have that M € Rep(Gy, x H)<; as well. O

3. Preliminaries on nilpotent orbits
Let G be a connected reductive group over an algebraically closed field k, and let g
be its Lie algebra. We assume throughout the paper that

The characteristic p of k is pretty good for G.

For the definition of “pretty good,” see [19, Definition 2.11]. This condition is equiv-

alent to requiring G to be “standard” in the sense of [29, Section 4]. According to [8,

Lemma 2.3], [19, Lemma 2.12], and [28, Proposition 12], this assumption implies the

following commonly used conditions on G:

(1)  There exists a separable isogeny G — G, where the derived subgroup of G is
simply connected.

2) The characteristic of k is good for G.

3) There exists a nondegenerate G -invariant bilinear form on g.

In this section, we establish notation and review some relevant results about the nilpo-

tent cone N C g.
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3.1. Coherent sheaves on the Lie algebra and the nilpotent cone

If X is any G x Gy,-variety, we denote by Coh&*Cm (X) the category of G x Gp,-
equivariant coherent sheaves on X. If Z C X is a G x Gy,-stable closed subset, we
denote by

D% Coh%*¢m(x) c DPCoh®*®m(x)

the full triangulated subcategory of DPCoh¢>Cn (X) consisting of objects supported
set-theoretically on Z.

We make g into a G x Gy-variety by letting G, act with weight —2. Next, let
N C g be the nilpotent cone, and let C C g be a nilpotent orbit. Let 3C = C ~ C,
and then let

gc =g~ 0C, Ne =N N 0dC.

Thus, gc and N¢ are open subsets of g and N, respectively, in which C embeds as a
closed subvariety. Let

Jjc:C—=gc

be the inclusion map. All of these spaces are preserved by the Gy-action, so we can
regard them as G x Gp,-subvarieties of g.

Choose a point xc € C and an associated cocharacter ¢, : G, — G. The stabi-
lizer G*¢ admits a Levi decomposition

G*¢ =G5 x GXS

red unip’

where Gr’ég is the centralizer of ¢, in G*C. The group Grﬁg may be disconnected,

but the assumptions from the beginning of the section imply that the characteristic of
k does not divide |G.S /(G$)°I.

Recall that for a closed (possibly disconnected) reductive subgroup H of G, we
call (G, H) a Donkin pair if for any G-module V' with a good filtration, the restriction
resf, (V) has a good filtration for H (see [21, Section 11.4.24]). This condition implies,
more generally, that if V' has good filtration dimension < i for G, then res?,(V) has
good filtration dimension < i for H.

The following result from [5, Corollary 1.2] will play a crucial role in Section 4.

THEOREM 3.1 ([5])

For xc as above, the pair (G,G§

“eq ) is a Donkin pair.

3.2. The co-t-structure on a nilpotent orbit
We have an isomorphism
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Gm X G¥€ 5 (G x Gy)*C  givenby 1 X g > (¢ (1), 1), (3.1)

where the semidirect product G, X G*C is defined by having G, act by z - g =
Pxe (2)g¢x (2)7". This action is trivial on G..§ and has strictly positive weights on
Lie(anfp .

The action of G x G, on C induces an isomorphism (G X Gy,)/(G X Gy)*¢ = C
(see [22, Section 2.9]). It follows that there are equivalences of categories

CthXGm (C) ~ Rep((G % Gm)XC) o~ Rep(Gm X GxC). (32)

Thanks to these equivalences, we can transfer results from Section 2 to
Coh%®n(C). In particular, Proposition 2.2 gives us a co-¢-structure on
DPCoh% € (C) whose coheart is denoted by

Silt(C) = D"Coh%*Cn(C)5 o N DPCoh%*Cn(C) . (3.3)

Let us introduce some notation to label the indecomposable objects in Silt(C). An
object T € Coh%*Cn(C) is called a tilting vector bundle if it corresponds under (3.2)

to a tilting module for Gy, x G;c§ (with trivial action of G, ). Let

Q¢ = the set of isomorphism classes of irreducible G,.§ -representations,

and forw € Qc, let T, € CohG*Cm (C) be the corresponding indecomposable tilting
vector bundle. Then the indecomposable objects in Silt(C) are precisely those of the
form T, [n]{—n) forw € Q¢ and n € Z.

3.3. Serre—Grothendieck duality
The Serre—Grothendieck duality functor on V is the functor

D =D, : D’Coh®*Cn(A)P — DPCoh®*Cm( )

given by Dy = RFHom(—, O ). This definition involves a choice (see [3, Section
3.2] for a discussion). Other variants of these functors that we will need include

D¢ = R¥Hom(—,Oc[codim C](codim C)) on D*Coh®m(C),
Dy = RHom(—, Oq[rank G](—rank G)) on D*Coh®*®n(g).

Here, C is a nilpotent orbit, and codim C is defined to be its codimension in N .
For compatibilities among these functors, let j : N < g and ic : C < N be the
inclusion maps. Then we have

j'Oglrank G]{(—rank G) = O, it O = Oc[—codim C]{codim C).
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(For a proof of the latter, see [3, Corollary 2.5]; very similar reasoning yields the
former isomorphism as well.) It follows that

Do j.2jsoD and j*oDzx=Do ' (3.4)
One can also define D on open subsets of g or N . For instance, on g¢, we have
Do jcx = jcxoD  and  jloDx=Do ji. (3.5)

Now let U C N be a G-stable open subset, and let C be a nilpotent orbit that is closed
inU.If weletic : C < U be the inclusion map, then

Doicy icsoD. (3.6)

There are also statements involving i/ and i (!;, but because U is usually not smooth,
these functors take values in D~Coh®*®"(C) or D*Coh®*®n(C), rather than
DPCoh%*En(C). We will mostly avoid unbounded derived categories in this paper.

3.4. Opposition

Recall that an opposition is an involutive automorphism o : G — G that preserves
some maximal torus 7 C G and satisfies o(t) = ¢t~! for all # € T. The existence
of an opposition follows from [21, Corollary II.1.16]. Given a G-module V, let V¢
denote the representation obtained by twisting the G-action by o. See [3, Section 4]
for a discussion of how to extend this construction to a functor

(=)° : DPCoh®*Cn (A7) — DPCoh®*Cm(N).

According to [3, Corollary 4.2], this functor preserves supports. Moreover, its action
on coherent sheaves on an orbit can be described explicitly using [3, Lemma 4.3],
which yields for each nilpotent orbit C C N an involutive automorphism

idxoc: Gy X G¢ - Gy x G*C.

Let F € Coh%*Cn (N) be such that F |y, is supported scheme-theoretically on
C. Thus, we can regard ¥ |¢ as an object of Rep(G,, X G*C) via (3.2). Then [3,
Lemma 4.3] implies that

(F)c = (F|c)eoc. (3.7)

LEMMA 3.2
Let T be a tilting G:eg -module, regarded as a Gy, X G*€ -module with trivial Gy,-
action. Then T'99C ~ T*,
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Proof

The analogous statement for irreducible representations of Gy, x G*C is shown in the
proof of [3, Theorem 4.5] (see also [3, Remark 4.6]). From this, one sees that if V' is
the costandard Grﬁg -module with simple socle L, then V9%9C has simple socle L*,
and furthermore it has the same composition factors as the appropriate costandard
module. It follows easily from this that 119%9C is in fact isomorphic to the costandard
module with simple socle L*. Dually, if V' is a standard module with simple quotient
L, then V9%9¢ g the standard module with simple quotient L*. The claim for tilting
modules follows from these observations. O

LEMMA 3.3
(1 The category Silt(C) C DPCoh&*Cn (C) is preserved by the Serre—Grothendieck
duality functor. Specifically, we have

D(T,[n](—n)) = T [ codim C — n]{codim C + n).

(2)  The category Silt(C) C DPCoh&*Cm (C) is preserved by the opposition func-
tor (—)19xoc : DPCoh&*Cm (C)— DPCohG*Cm (C). Specifically, we have

(Tolnl{=n))7C = TF[n)(—n).

Proof
Part (1) follows from the observation that under the equivalence (3.2), D¢ corre-
sponds to the functor

R Hom(—,k[—codim C](codim C})) :
D°Rep(Gm X G*€)° — D°Rep(Gp X G*€).

Part (2) is an immediate consequence of Lemma 3.2. U

4. Nilpotent orbits embedded in the Lie algebra

The goal of this section is to extend the co-z-structure (3.3) on a nilpotent orbit C to
a co-t-structure on infinitesimal neighborhoods of C in g¢. More precisely, consider
the derived category DbCCOhGXGm (g¢) of complexes of coherent sheaves on gc with
set-theoretic support on C. The main result of this section equips Dg CohG*Cm (ac)
with a co-z-structure such that

jcx : D’Coh*Cn(C) — D2Coh® " (g¢)

is co-f-exact.
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4.1. Tangent and normal spaces

We begin with a series of calculations involving the tangent and normal spaces to C C
g at the point xc € C, denoted by Ty C and V., respectively. There are G, x G*€ -
equivariant isomorphisms

TxcC=lxc 0], Vie =9/[xc. 0]
These spaces fit into the short exact sequence of Gy, x G*€ -modules
0—[xc.g] = g—9g/[xc.g] = 0. (4.1)

LEMMA 4.1

(D As a Gy X G*C -module, Vi hqs Gm-weights < —2.

2) Leti > 1. Asa Gr);dc -module, )\' Vx. has good filtration dimension <i — 1.
Proof

The cocharacter ¢ induces a grading g = €P,, 9i- The adjoint action of Grﬁg

preserves this grading, and the map ad(x) : g — g sends each g; to g;4>. Thus, (4.1)

XC

+oq -modules

is the direct sum of short exact sequences of G
0— [xc.8i—2] = gi = gi/[xc,g9i—2] = 0.

According to the proof of [22, Proposition 5.8], the operator ad(xc) : gi—2 — g; is
surjective for i > 0, so taking the sum over all i < 0, we obtain

0— @[xc,gi_z] — @gi — Vie = 0. “4.2)

i<0 i<0

Under the isomorphism (3.1), we see that t € G, actson v € g; by 1 - v = (¢« (7),1) -
V= ¢ (1)t 720 = t'2v. Thus, (4.2) shows that Vy. has G,,-weights < —2.

By [22, Proposition 5.8] again, ad(xc) : g;—» — g; is injective for i —2 < 0, so
we can rewrite (4.2) as short exact sequence of Gég -modules

ad(xc)
0—=g<——g<0— Vo =0, “4.3)

where we introduce the notation
9<n = @ gi.
i<n

(Note that the passage from (4.2) to (4.3) does not respect the Gn-action on the first
term.) This sequence implies that any exterior power A\’ g<o admits a Gr’ég -stable
filtration



2410 ACHAR and HARDESTY

j
0=Mm! cM{cMc M =<0

such that

j—k k
MM = N (9=-2) ® /\ Vae-

Asa G § -module, g<, is a direct summand of g, and so /\j (g9<n) is a direct
summand of /\’ g. Using Theorem 3.1 and Lemma 4.2 below, we conclude that

J
/\(gfn) has good filtration dimension < j — 1. (4.4)

We will now show by induction on j (for j > 1) that every step M ,! of the filtra-
tion described above has good filtration dimension < j — 1. We will simultaneously
prove that /\” Vy,. has good filtration dimension < j — 1. If j = 1, then the modules

Mo1 =0<—2 and M11 =g<o0

have good filtrations by (4.4), and then the short exact sequence (4.3) shows that V.
has a good filtration.

Now suppose that j > 1. We start by observing that M, J = /\j g<—mand M ]j =
/\j g<o both have good filtration dimension < j — 1 by (4.4). We treat the remaining
M,g by induction on k. Suppose 0 < k < j, and that M,f_l is known to have good
filtration dimension < j — 1. Consider the short exact sequence

j—k k
0—>M{_, - M/~ /\(95—2) ® /\ Vie = 0.

Since k < j, by induction, /\k Ve has good filtration dimension <k — 1, so by [17,
Proposition 3.4(c)], A’ ¥ (g<—2) ® A* Vi, has good filtration dimension < j —
2. The short exact sequence above then implies that M ,f also has good filtration
dimension < j — 1.

It remains to show that /\j Vxc has good filtration dimension < j — 1. This fol-
lows from the short exact sequence

J
O—>M‘;_1—>M;—>/\ch—>0. O

LEMMA 4.2
Leti > 1. As a G-representation, the i th exterior power /\' g of the adjoint represen-
tation has good filtration dimension <i — 1.
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Proof

According to [13, Proposition 4.4], under our assumptions on G, the symmet-
ric algebra Sym(g) has a good filtration. Recall that /\i g can be identified with
Torl.sym(g) (k,k). The latter can be computed using the bar resolution of the trivial
Sym(g)-module. Explicitly, if we let

Bi= B Sym“(9)®-®Sym¥ (g),
AYyeees a;>1
ay+-ta;=i

then there is an exact sequence

1
O—>/\g—>Bii—>Bii_1—>---—>B{—>O.

(See, e.g., [32, (1.7)] for a formula for the maps in this complex.) Since each B;'.

has a good filtration, this sequence shows that /\i g has good filtration dimension <
i—1. O

LEMMA 4.3
Let jc : C < g¢ be the inclusion map. For all k > 0, we have 8xtk(jC*(9c,
Jjc+xOc) = je« /\k Ve, where V¢ is the normal bundle on C.

Proof
Observe first that each Exr* (jc+Oc, jc+0Oc) is scheme-theoretically supported on
C, as shown by the following calculation:

Ext*(jcxOc, jesOc) = H* (R Hom(jcxOc, jc+Oc))
= jexd* (R Hom(j¢ jesOc, Oc)).

Let €K € Coh®*®n(C) be the object such that Sxtk(jc,k@c, jexOc) = jexEX.

For k =0, it is clear that Hom(jc+«Oc, jc+Oc) = jc+Oc. Next, let J C Oy,
be the ideal sheaf corresponding to C, so that we have a short exact sequence 0 —
d — Oy — jcxOc — 0. This gives rise to a long exact sequence

0 — Hom(jcxOc. jexOc) = jexOc — Hom(d, jcxO)
— 8xt'(jcxOc, jcsOc) — Ext' (Og, jexOc) — -+ .

Since the last term vanishes and the first two terms are isomorphic, we have

Ext' (jesOc. jexOc) = Hom(d, jexO) = jou Hom(jEd. Oc).
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The sheaf j%d = J /42 is the conormal sheaf, so #om(j2d, Oc) is the normal sheaf
Ve . So far we have shown that

0 1

8";(9C=/\vc and elg'vc=/\'vc. 4.5)

To proceed further, we will exploit the fact that P, &xt* (jc«Oc, jc«Oc) is a
sheaf of algebras. It follows that (P, & k is also a sheaf of algebras; it corresponds
under (3.2) to a graded ring with a compatible (G x G,)*€ -action.

We will now compute this ring. Let S be a ¢y -stable linear complement to
[xc,g]in g. (In general, S will not be stable under G*€.) Then x¢ + S is a transverse
slice to C in g: it does not meet dC, and the map

m:GxS8 —gc givenby (g,s)— Ad(g)(xc + )
is smooth. It is also G x G,-equivariant, where we let G x G,;, acton G x S by
(g.2) - (h.5) = (ghd: (2). 272 Ad(hxc (2))(5)).
Consider the following diagram:

{0} — G x {0} = C

i| i ch

S GxS—"=gc

Since m and m are smooth, by smooth base change, we have natural isomorphisms
m* Ext*(jesOc. jexOc) = Ext*(ju0g. j«Oc) = JumEEX.

Moreover, the direct sum @, m* Ext* (jc+Oc, jc+Oc) is again a sheaf of algebras.
These sheaves live in Coh%*®n (G x S). Now consider the group {(¢x.(z),z):z €
Gm} C G x Gy,. This group is isomorphic to Gy, and it stabilizes {e} x S C G x §,
so we obtain equivalences of categories

Coh®Cn(G x §) =~ Coh®(S) and  Coh®*®"(G) =~ Coh®(s),

analogous to (3.2). Thus, computing m* ext® (jc+Oc, jc«Oc) is equivalent to com-
puting the sheaves Ext* (ix 0103, 1+ O40)) =2 i Ext* (. O40y,ixOy0y). Since S is a vec-
tor space, it is well known that

P Ext* (1. 040y 14 O00p) = A\ S.

k>0
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Let us summarize: the sheaf of rings @, & k corresponds under (3.2) to a graded
Gm X G*C-equivariant ring. The computation above shows that the underlying
graded ring is an exterior algebra (the G*C -action is lost in this computation). In
view of (4.5), we must have £ ~ /\k V forall k > 0. O

COROLLARY 4.4
Forany ¥ € Coh®*®n(C), we have

—i i
Hi(jEjexF)=F @ \VE,  H'(jéiexF)=F & [\ Ve.

Proof
We have

JjcsRHom(j¢ jexOc,0Oc) = RHom(jc«Oc. jc+Oc),

and hence, by Lemma 4.3,

i
Jex X (R Hom(jé jexOc.Oc)) = Ext' (jexOc. jexOc) = jeu J\ Ve

The functor #Hom(—,O¢c) on CthXG‘“(C) is exact; it corresponds via (3.2) to
taking the contragredient of a (G x Gp)*C -represesentation. We conclude that
Hom(H ' (j&jc«Oc). Oc) = \' Ve, and therefore

—i
H'(jEjes0c) = [\ VE.

Now let & € Coh®*Cm (C). It is enough to prove that the isomorphisms in the

statement of the corollary hold after applying jc«. The projection formula implies
that

L L L
jexicicx¥ = jex(Oc ® jejexF) = je«Oc ® jexF = jex(jcjcxOc ® F).
Since ® on Coh®*®n (C) is exact, we deduce that
—i
HE(EjeF) = H((jEjcOc)®F = \VE®F.
The formula for j!C Jjc«F follows by a similar calculation using

JexicjcsF = jexRHom(Oc. jéjexF) = jexRIHom(j jcsOc. F). O
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4.2. Construction of the co-t-structure
We are now ready to put the calculations above to use.

LEMMA 4.5
(D) The functor

j&jcx 1 DPCoh®Em(C) — DPCoh®*Cm(C)

is left co-t-exact. Moreover, for ¥ € DbCOhGXG“‘(C)SO, the cone of the
adjunction map ¥ — j' j. F lies in DPCoh%>Cnm (C)<—1.
2) The functor

J&jcx: DPCoh®*m(C) — DPCoh®*m(C)

is right co-t-exact. Moreover, for ¥ € DbCOhGXG"‘(C)ZO, the cocone of the
adjunction map j* j.F — F lies in DPCoh&*Cm (C)>1.

Proof

We will prove the first assertion; the second one is similar. We must show that if ¥ €
DPCoh®*En(C) <, then jl jcsF € DPCoh® " (C)<y. Since DPCoh®m(C)
is generated under extensions by objects of the form T, [n]{(k) with n + k > 0, it
is enough to consider the special case ¥ = T,[n](k). The adjunction map ¥ —
j’c Jjc«¥F induces an isomorphism & = Jfo(j(!j Jjc«F). Thus, to prove the lemma, it
is enough to show that the higher cohomology sheaves # ( jé JjoxF)[—i] withi > 1
lie in D*Coh%*®(C)~_,. By Corollary 4.4, we have

HIT(j JexTulnlik) = Totk) @ /\ Ve.

Thus, the lemma comes down to showing that

To(k) ® /\ Vac[n —i] € D'Rep(Gr x G*C) <y fori > 1. (4.6)

We will now prove (4.6). By Lemma 4.1(1), the (Gm-aqtion on /\i Vyc has
weights < —2i. Therefore, as a Gy, X Gr)f:g -representation, /\’ Vxc can be decom-
posed as

i
/\ Vie = @ Nij{j),
Jj=2i

where each N;; is some G -module, regarded as a Gy, x G.§ -module with trivial
Gpy-action.
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By Lemma 4.1(2), each N;; has good filtration dimension <i — 1, and hence
so does T, ® N;j (cf. [17, Proposition 3.4]). By Lemma 2.5, we have T, (k) ®
Nij(j)in —i] € D’Rep(Gm X G*C)<i_1_(j+k)—(n—i)- Since j >2i and n + k >0,
this object lies in D’Rep(G,, x G¥C)<_y, as desired. O

PROPOSITION 4.6

. . . . b GxXGp,
For any nilpotent orbit C C g, there is a unique co-t-structure on D Coh (gc)
such that

jex : DPCoh®*Cn(C) — DECoh%*Cm(gc)

is co-t-exact. The indecomposable silting objects in D%COhGX(G’m (gc) are precisely
those of the form jc«T,[n]{(—n) with w € Q¢ and n € Z.

Proof

We wish to show that objects of the form jc«7 with 7 € Silt(C) form a silting
subcategory of D'é Coh&*Cn (gc)- These objects clearly remain indecomposable and
generate DbCCOhGX(G’rn (gc), so it remains to show that for any 7,7’ € Silt(C), we
have

Hom(jc+7 . jc«T'[n]) =0 whenever n > 0.

This follows by adjunction and Lemma 4.5. O

By construction, the co-z-structure obtained in Proposition 4.6 has the following
explicit description:

the full subcategory of D%Coh®*®"(gc) generated

DY.Coh®*Cm -
¢ (8c)=0 under extensions by jc« Ty [n]{k) withn + k <0;
the full subcat f Db.Coh®*Cn ted
D%COhGXGm(Qc)go _ the full subcategory of Dy, (g¢) generate

under extensions by jc« T, [n]{k) withn + k > 0.
The coheart of this co-¢-structure is denoted by
Siltc (gc) = DECOh® " (gc)=0 N DECoh ¥ (gc) <o.

One can also describe this co-7-structure using vector bundles corresponding to Weyl
or dual Weyl modules for G§ , in analogy with Remark 2.3.

red °

Remark 4.7
We will see in Lemma 5.5 below that the functor jc« : Silt(C) — Siltc (g¢) is full.
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LEMMA 4.8
The category Siltc (gc) C D2 Coh
duality functor. Specifically, we have

GG (gc¢) is preserved by the Serre—Grothendieck

D(jcxTolnl{—n)) = jc+ T, [—codim C —n]{codim C + n).

Proof
This is immediate from (3.5) and Lemma 3.3. U

5. Nilpotent orbits embedded in the nilpotent cone

Let C C gbe anilpotent orbit, and let U C N be a G-stable open subset such that C is

closed as a subset of U. The goal of this section is to show that the co-z-structure (3.3)

on C extends to a co-¢-structure on infinitesimal neighborhoods of C in U'.
Throughout this section, we let

ic:C—=U and j:U<—>gc

be the inclusion maps. Here, ic is a closed immersion, and j is a locally closed
immersion. In general, j. takes values in the derived category DTQCoh%*Cn (g¢) of
quasicoherent sheaves on gc . However, in the important special case where U = N,
j is a closed immersion, and j, sends D°Coh®*®m(N¢) to DPCoh®*Cm (gc).

LEMMA 5.1

There is a collection of positive integers ni,...,n, such that for any
F € Coh®Cn(U), we have

HE*juF)

I

@ 37(—2(}1,-1 +---+n,-k)),

{i1seig }C{1,...r}

HE(G ) = F2i, + -+ ny)).

Proof

Since any ¥ € COhGXG“‘(U ) can be obtained as the restriction of an object of
Coh&*Cm (N), it is enough to prove the lemma in the special case where C is the
zero orbit, so that U = N . We will work on N from now on, and let j : N <> g be
the inclusion map.

The Gp,-action on g equips its coordinate ring k[g] = Sym(g*) with a grading in
nonnegative, even degrees. As in [22, Section 7.13], let f1,..., f denote a minimal
set of homogeneous generators of the k-subalgebra Sym(g*)©
strictly positive, even degrees. By [22, Proposition 7.13], we have r = codimg(N)
and

. These generators have
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k[N] = Sym(g")/ Sym(g*)(f1..... fr)

as a G x Gy-equivariant algebra. As a consequence, N is a complete intersection.
Let V = (f1,..., fr) denote their k-span, and note that V' is trivial as a G-module
and has strictly positive Gp,-weights; thus, as a G X Gy,-module,

Ve @ k(-2n),

j=1,..,r

where n; = %deg fj>O0forall j.
There is a G x Gy-equivariant Koszul resolution

r 2
00,0 N(V) = —>0,8 \(V) >0 ®V >0y — juOx —0. (5.1)

As in the proof of Corollary 4.4, to prove the present lemma, it is enough to
compute the cohomology sheaves of the objects

L
Jei¥ixF = jsOn @ jxF  and  juj'juF = RHom(jxOn, jx F).

Both of these can be computed using the resolution (5.1). The differentials in that
resolution are defined in terms of multiplication by one of the f;’s, which vanish on
N . Thus, after applying (—) ® j«F or Hom(—, j«F), the differentials become zero.
We conclude that

—i i
K Gui*jxF) = \V @ juF . K Guj T = NV ® T
and the result follows. U

PROPOSITION 5.2

Let U C N be a G-stable open subset, and letic : C < U be the inclusion of a nilpo-
tent orbit that is closed in U. There is a unique co-t-structure on DgCOhGXG‘“(U)
such that

icx : DPCOh®*Cm(C) — DL.Coh% Cm (1)

is co-t-exact. The indecomposable silting objects in Dbc Coh*Cn (U) are precisely
those of the form ic Ty [n]{—n) with w € Q¢ and n € Z.

Proof
As in the proof of Proposition 4.6, we will be done if we can show that for any w,
vEQc,
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Hom(ic«To.icxTo(k)[n]) =0 ifn > —k. (5.2)

We have the maps ic : C — U, j:U — gc,and jc = joic : C — gc. We can
already deduce from Proposition 4.6 that

Hom(j*j*ic*Tw,ic*%(k)[l’l]) = Hom(jC*Twy JcxTy (k)[l’l]) =0 (5.3)

ifn>—k.Let X =15"1j*j,ic«T,. Since H°(j* juic«Te) = icxTw, We have a
truncation distinguished triangle

K — j*jsicsTo = icsTo — . (5.4)

Lemma 5.1 implies that for 1 <i <r,

()
HHI) = ¥ jricxTo) = P icsTo(—nij), (5.5)
j=1

where n;; > 2i forall i, j.

To prove (5.2), suppose instead that this Hom-group is nonzero for some integers
k, n with n > —k. Moreover, assume that our pair (k,n) is chosen with n mini-
mal. (This is possible since this Hom-group automatically vanishes for n < 0.) Apply
Hom(—, ic« Ty (k)[n]) to (5.4) to obtain a long exact sequence

o Hom(K . icx Ty (k) — 1) L Hom(ic s Tor.ic s T (k) [1])
- Hom(j*j*iC*Twin*Tv (k)[n]) o

The last term vanishes by (5.3), so f is surjective, and we deduce that Hom(X,
icxTu(k)n—1]) # 0.

On the other hand, fori =1,...,r, we have
| )
Hom(# ™ (K)[i]. ic«To (k) n — 1]) = @) Hom(icx Ty ic+ T (k + nij)ln — 1= 1i]).
j=1

Since n;; > 2i > i + 1 for every term here, we have (n — 1 —i) > —(k + n;;). If
one of the Hom-groups above is nonzero, that would contradict the minimality of n
in our pair (k,n). So we must have Hom(H# ~ (K)[i],ic« Ty (k)[n — 1]) = 0 for all i.
From this, it is easily deduced that Hom(K,ic« Ty (k)[n — 1]) = 0, contradicting the
previous paragraph. O

As usual, the co-z-structure obtained above can be described as follows:
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the full subcategory of D%Coh®*®"(U) generated

D§.Coh®*Em(U)5g =
c U)=o under extensions by ic« Ty [n](k) withn + k < 0;

the full subcategory of D%Coh®*®(U) generated

D.Coh®*Em (U)o =
¢ U<o under extensions by i¢« T, [n]{k) withn + k > 0.

The coheart of this co-¢-structure is denoted by

Siltc (U) = D%.Coh% ¢ (U)5o N DLCoh®*Em (1) .

LEMMA 5.3
The category Siltc (U) C D%COhGXG“‘ (U) is preserved by the Serre—Grothendieck
duality functor. Specifically, we have

D(ic+Tw[n](—n)) = ic«T, [—codimC —n]{codimC + n).

Proof
This is immediate from (3.6) and Lemma 3.3. O

We can extract the following corollary from the proof of Proposition 5.2.

COROLLARY 5.4

(1) If¥ e Dg Coh¢>Cn (U) <o, then the cone of the adjunction map ¥ — j' jF
lies in DY Coh®®m(U)_,.

2 If¥ e D% Coh¢>Cn (U) >0, then the cocone of the adjunction map j* j. ¥ —
F lies in D%Coh%*®m (V).

Proof

We will prove the second assertion; the first one is similar. It is enough to consider
the special case ¥ = ic«Tp[n]{k) with n + k < 0. We most show that the object KX
in (5.4) lies in D%CthXG‘“(U)Z]. This follows from (5.5) and the fact that —i —
nij <—lforalli > 1. O

The next two statements involve the special case U = N¢, where j is a closed
immersion.

LEMMA 5.5
If¥ e DgCOhGXG"‘ (Nc)soand § € DzCOhGXGm (Nc) <o, then the natural map

Hom(¥,9) — Hom(j. ¥, j«§)

is surjective. Thus, j restricts to a full functor Siltc (Nc) — Silte (gc).
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Proof
Let ¢ be the cone of the adjunction map § — j';j.§ — ¢ —. We have a long exact
sequence

... — Hom(¥,§) — Hom(¥ , j' j+§) - Hom(F, ) — --- .

By Corollary 5.4, we have § € D%Coh® " (N )<_1, so the last term vanishes. The
lemma follows. O

COROLLARY 5.6
The functor

Ju : D2CO®*Cm (N ) — D2.Coh®*Cn(gc)
is co-t-exact. The functors
Jj*.j': DECoh®*En(gc) — D Coh®*En (M)

are right and left co-t-exact, respectively.

Proof
The claim about j is obvious from the description of silting objects in the two cate-
gories. The claims for j* and j' follow by adjunction. O

6. The nilpotent cone
This section contains the main geometric result of the paper: the construction of a
co-¢-structure on DPCoh®*Cn (N). We will build this co-¢-structure using the co-
t-structures on infinitesimal neighborhoods of nilpotent orbits from Proposition 5.2.
More generally, we obtain a co-¢-structure on DPCoh®*€m (U) for any G-stable open
subset U C N.

As a technical tool, we will use the following full subcategories of wac (gc):

L DL.Coh® " (gc)<n

for § € D2.Coh®*Cn(gc)
= {7 € D} Coh®®n(gc)| ¢ =nt
{ € Pwe (8c) we have Hom(¥,8) =0

D2 Coh®*®r(gc)t,

b GxGp,
- {? € leA/CCthX(G’"‘(QlC)‘for % € D Coh (gC)Z"’} )

we have Hom(§, %) =0

Note that objects of J-DgCthXG‘“ (9¢)<n OF DgCthX(Grm (9¢)2, are not required
to have set-theoretic support on C': they can be supported on all of Nc.
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Similarly, for any G-stable open subset U C N that contains C as a closed sub-
set, we define
we have Hom(¥,8) =0

b GXGpy
+Dg.Coh ()<, = {3: E DbCthXGm(U))forg o (U)f”’} ,

b GXGpy
DgCOhGXGm(U)JZ-n — {:’P‘ c DbCthXGm(U)’fOrg € DCCOh (U)zn,} )

we have Hom(§, %) =0

An important special case of these categories is that in which U = N¢.

LEMMA 6.1

Let ¥ € D%COhGXG"‘ (Nc), and let U C N¢ be a G-stable open subset containing
C. We have that ¥ lies in J‘D%COhGXG’m (Nc)<n (resp., D"CCOhGXGm (JVC)JZ‘,,) if
and only if |y lies in LD'&COhGX(Gm (U)<n (resp., D%CthX(Gm ()L,

Proof
If § e D'E.COhGXG'“(,Nc), then the support of § is contained in C C U, so
Hom(¥,9) =~ Hom(¥ |y, &|y) and Hom(§, ) =~ Hom(% |y, F |v). O

For the next lemma, assume that U = N¢. The proof is identical to that of
Lemma 5.5 and will be omitted.

LEMMA 6.2
If ¥ e lD%COhGXGm (Nc)<—1 and § € DgCOhGXG‘“ (Nc)<o, then the natural
map Hom(F ,9) — Hom(j«F , j« &) is surjective.

LEMMA 6.3
(1) Foral ¥ € DBVC Coh¢*Cm (a¢), there exist integers a < b such that

F € DECoh % " (gc) <o N DECON T (gc) .

(2)  For ¥ € D*Coh®*®(N¢), we have F € D¢ CohG*Cm (e/\/c)i‘b if and only
if j«F € DECOhGXGm(QC)JZ_b-

(3)  For ¥ € DCoh®*®(AN¢), we have F € 1DY CohG*Cm (Nc)<q if and only
if jF € DgCoh” " (gc) <a.

Proof

(1) Given ¥ € DY Coh®*®n(ge), any map F — jcTo[n](k) factors through
F — jcxj&F . The object jcx jiF lives in D‘éCOhGX(Grm (g¢). With respect to the
bounded co-z-structure on that category, we have
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. . b GXxG
jexjc¥ € DECoh” ™ ™(gc)zat1

for some integer a. It follows that Hom(¥, jc« T [n]{k)) = 0 if n + k > —a, and
hence that ¥ € J-DléCthX(G’rn (gc)<a- The proof of the existence of an integer b
such that ¥ € D% Coh®*®n (8c)3, is similar, using JexjoF = F.

) If ¥ € DE.Coh®*Cm(Ne)L,, then /i F € DE.Coh%*®(g¢)L, by adjunc-
tion and the right co-f-exactness of the functor j* : D"CCOhGXGm (gc) —
DgCthXG‘“(eNC) (see Corollary 5.6). For the opposite implication, suppose we
have jF € D& Coh%*Cn (9¢)L, but F ¢ DL CohG*Cn (Nc)Z,. For simplicity, let
us assume without loss of generality that » = 0. Then there is some nonzero mor-
phism ic« T, — F [n]{k) with n + k > 0. Choose such a morphism with » minimal.
We will now follow the pattern of the proof of Proposition 5.2. We consider the
distinguished triangle (5.4), which gives rise to a long exact sequence

-+ — Hom(X[1], F[n](k)) — Hom(ic«Ts. F [n](k))
— Hom(j* jcxTo. F [n](k)) — -+

The last term vanishes by adjunction and the fact that j.F belongs to
DgCthXGm(gc)éO, so the first term must be nonzero. By the same reasoning
as in Proposition 5.2, this implies that

Hom(iC*Tw,?’(k +n)n—1 —i]) #0

for some integers i > 1 and n;; > i + 1, but this contradicts the minimality of n.
(3) The proof of this statement is very similar to that of part (2). We omit the
details. O

By adjunction, for ¥ € Dl(’jCthX(Gm (ac), we have

F €+DLCohCm(gc)<,  if and only if
JjoF € DbCOhGXGm(C)zaH,
(6.1)
F € DECoh% " (gc)t,  if and only if

J&F € DPCoh® Cm(C) oy ;.

LEMMA 6.4
Let U C N be a G-stable open subset that contains C as a closed subset. For all
¥ € D’Coh®*Cnm (U), there exist integers a < b such that

F € D2 Coh%*“"(U) <, N DECoh®*Em(U),.
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Proof
Choose some F' € D?Coh®*®m(N¢) such that F'|y =~ F. According to Lem-
ma 0.1, it is enough to show that there exist integers @ < b such that

F' € 2D2Coh% " (Ng)<q N DECONT*En (N )L,

This claim is immediate from Lemma 6.3. O

PROPOSITION 6.5

Let U C N be a G-stable open subset that contains C as a closed subset.
Let V.=U \C, and let ¥ € DbCOhGXG"‘(V). Then there exists an object
¥ € DPCoh®*Cm (U) such that

Fly=F and F eLtD2Coh" " (U)~_, N DLCOhT*Em(U)2,.

Moreover, if ¥ is indecomposable, then F can be chosen to be indecomposable as
well.

Proof
For the existence of ¥, Lemma 6.1 implies that it is enough to work in the special
case where U = Nc. We will assume that U = N¢ until the last paragraph of the
proof. Under this assumption, Corollary 5.6 and Lemma 6.2 are available.

Choose some object /' € D?Coh®*®m (W) such that /|y = ¥, and leta < b
be integers

F' € 2D Coh% " (Ng)<q N DECON T Em (N )L, 6.2)

Of course, a may be replaced by any smaller integer, and b by any larger integer. We
may therefore assume that ¢ < —1 and b > 1.

Suppose for now that @ < —1. By (6.1), the object jij«F  lies in
DPCoh@*Cn (C)sa+1, so by the axioms for a co-¢-structure, there is a distinguished
triangle

61— joixF =8 —,
where §; € DPCoh®*®"(C)~44,, and
9, € D°Coh®*®"(C) 411 N DPCOhY ™ (C) <41
By the co-f-exactness of jc and the assumption that a + 2 < b, we have
Jjo«%a[—1] € DgCOhGXGm (9c)sa+2 N D%CthXGm (9)<a+2
C D2.Coh%* " (gc)sasn N DECONT M (gc) ey (6.3)

C*+D2Coh %" (gc)<a41 N DECOT*En (9¢) %
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where the last step follows from the axioms for a co-z-structure. Applying Lemma 6.3
to joxGa2[—1] = jxic+82[—1], we find that

icx92[~1] € “DE.COh ™ (Nc) <at1 N DECOT En (W)L, (64)
Now let ¢ : j. F’ — jiic+§ be the composition

F = ]C*Jg‘]*?/ — jcx$2 = jxicx52,

where the first map is an adjunction map. We claim that if n + k = —a — 1, then the
map
Hom(jc«%2. joxTonl(k)) = Hom(j« F', jc«To(n]{k)) (6.5)

induced by ¢ is surjective. Indeed, any map j.F' — jc«To[n](k) factors through
J«F" = jcxj& j«F' by adjunction, and then the long exact sequence

- > Hom(jc+%2. joxTonlik)) = Hom(jcx jé& j« F'\ joxTunlik))
— Hom(jC*gl7jC*Tw[”]<k>) o

proves the claim, because the last term vanishes.
By Lemma 6.2, the map ¢ is obtained by applying j. to some (not necessarily
unique) morphism q~5 : ¥ — ic+«G>. Complete this map to a distinguished triangle

F o7 Yic
Using (6.4), we see that

Flly=F'ly =7,
F" €L DECohEn(Nc) < N DECONT ™ (Ne)L,.
We will now prove the stronger claim that
F" €L DE.Coh*Em (M) <ar1 N DECOh*Em(Ne)L,. (6.6)
By Lemma 6.3, it is enough to show that
JjxF" €D Cohg ™ (gc) <a1.
Since we already know that j,F” € £ D’ Coh& %™ (g¢)<q, it is enough to show that
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The distinguished triangle j.F" — j.F’ s, Jjc«82 — gives rise to a long exact
sequence

.- > Hom(jcs %, jox Toln] (k) = Hom(juF', josTuln](k))
— Hom(j«F". jexTo[n](k)) = Hom(jc«52[—1]. jox T [n](k)) — -+

Here, the first map is surjective (see (6.5)), and the last term vanishes by (6.3). We
have now proved (6.7), and hence (6.6).

The construction carried out above shows how to modify the object £’ in such
a way that the integer a in (6.2) can be replaced by a + 1. The proof relies on the
assumption that a + 1 < b — 1. A similar (but “dual”) construction lets us replace b
by b — 1 (again assuming that @ + 1 < b — 1). Since we began with the assumption
that a < —1 and b > 1, these two constructions can be repeated until we arrive at an
object # as in the statement of the proposition.

It remains to prove the last assertion in the proposition. For this, we return
to allowing U to be any G-stable open subset. Suppose ¥ is indecomposable.
The object ¥ obtained by the construction above is not necessarily indecompos-
able, but any direct summand of it still lies in the category J-DgCOhGXG‘“ U)<—1N
D‘é CohG*Cm (U)Z,, and it must have some indecomposable summand whose restric-
tion to U is isomo;phic to . O

LEMMA 6.6
Let U C N be a G-stable open subset that contains C as a closed subset, and let
V=U~NC.If¥ etDLCoh"®(U)<_; and § € DL.Coh®*C™(U)L,; then the

>
map

Hom(% ,§[n]) — Hom(F |y, §|y[n])
is surjective for n = 0, and an isomorphism for n > 0.
Proof

Leth : V — U be the inclusion map. In the derived category of quasicoherent sheaves
DTQCoh% (1), we have a distinguished triangle

RTc(§8) - § — hh*§ — .

From the long exact sequence obtained by applying Hom(¥ , —) to this triangle, we
see that it is enough to prove that
Hom(#,RTc(§)[n]) =0 ifn>0.

Suppose we have a morphism ¢ : ¥ — RT¢ (§)[n]. We will work with this map
at the level of chain complexes as follows: First replace § by an injective resolution.
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Then, since I'c sends injective sheaves to injective sheaves, RI'c (§) is a bounded-
below complex of injective quasicoherent sheaves supported set-theoretically on C.
Since ¥ is a bounded complex of coherent sheaves, the image of the chain map
¢ : F — RT¢(¥)[n] is contained in some bounded subcomplex of coherent sheaves
& C RT'c (9)[n]. Of course, the terms of & are also supported set-theoretically on C,
so & belongs to D'éCthXG'“ (U). Using the co-¢-structure on that category, we can
find a distinguished triangle

Ki—E — Ky —

with K € DbCCOhGXGm(U)ZO and K, € Dt(’:COhGXG‘“(U)S_l. Since ¥ belongs
to J-D‘(’j Coh®*Cn (U)<-1, we have Hom(¥, K,) = 0, and any map ¥ — & factors
through K.

To summarize, our map ¢ factors as a composition

F — Ky —> & — RIc(8)[n]. (6.8)
Since K is set-theoretically supported on C, the map

Hom(X, RTc (§)[n]) — Hom(K;[-n], %)

is an isomorphism. But since § € Dl(’jCthXG‘n (U)Z,, both of these Hom-groups are

>1
0. We conclude that the composition of maps in (6.8) is zero, as desired. O

LEMMA 6.7

Let U C N be a G-stable open subset, and let C C U be a nilpotent orbit. For
w € Q¢, there is (up to isomorphism) a unique object 8y (C,T,) € DbCOhGXG‘“(U)
with the following properties:

(1) 8y (C,Ty) is indecomposable.

(2) 8u(C,Ty) is supported set-theoretically on C N U.

3) Ific : C = N¢ NU denotes the inclusion map, then

1 1
Bu(C,T0) wenu ZicsTo [—5 codimC](E codimC>.
(4)  Foreach orbit C' C dC NU, we have
e jx8u (C, Tyy) € DPCoh®*Cm(C7) <,
Jj& jx8u(C,T,) € DPCoh®*Cn(C")s.

Moreover, this object has the following additional properties:
(5) IfV CU is asmaller G-stable open subset that contains C, then
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6) If Cy is a nilpotent orbit that is closed in U, and if C # Cy, then

8u(C.T,) € £ DE, ConCm(U) < N DY Coh®*“m(U)L,.

Proof

We proceed by induction on the number of orbits in U . If U is empty, there is nothing
to prove. Otherwise, assume that the lemma is already known to hold when U is
replaced by any smaller open subset.

We will prove the existence of uniqueness of 8y (C,T,) satisfying (1)—(4).
Before doing this, let us show if 8y (C, 7,,) exists, it automatically satisfies proper-
ties (5) and (6) as well. Indeed, property (6) follows from property (4) by Lemma 6.3
and (6.1). For property (5), by induction, it is enough prove it in the special case
where V' is the complement of a single closed G-orbit in U. Let Cy be such a closed
orbit, and let V = U ~. Cy. Of course, property (5) is vacuous if C = Cy. If C # Cy,
then by Lemma 6.6, restriction to V' induces a surjective ring homomorphism

End($y (C, 7o) — End(8y(C, 7o) |v).

Since 8y (C, Ty) is indecomposable, the left-hand side above is a local ring, and so
the right-hand side is as well. We have shown that 8§y (C, 75,)|y is indecomposable.
It is easy to see that 8y (C, T, )|y satisfies properties (2)—(4) on V. Property (5) then
follows by the uniqueness of 8y (C, 7,) (which holds by induction).

Let us now prove the existence of 8y (C, T7,) satisfying (1)—(4). Choose a closed
G-orbit Cy C U, and let V =U ~ Cy as above. If C = C, it is obvious that

80(Co.To) = icyTw [—% codim CO]G codim C0> 6.9)

has the required properties. Otherwise, for C # Cy, we define

Su(C.T,) = an indecomposable extension of 8y (C, 7,) that
satisfies (6), obtained from Proposition 6.5.

This object obviously satisfies properties (1)—(3), as well as property (4) for C’ # Cy.

Property (4) for C' = Cy follows from property (6) via Lemma 6.3 and (6.1). This

completes the proof of existence.

Finally, we must prove uniqueness. For C = C, this is obvious. Suppose now
that C # Cy. If we had two objects 8((]1)(C, T) and 8((12)(C, T ) both satisfying (1)-
(4), then they would both satisfy properties (5) and (6) as well. By Lemma 6.6, restric-
tion to V induces a surjective map

Hom(8(C, 7), 85 (C, 7)) — End(8y (C, To,)).
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In particular, there exists a map ¢ : 8((]1)(C, Tw) — 8[(12)(C, Tw) such that ¢q|y =
ids, (c,7,,). Similarly, there is a map ¢, : 8[(]2)(C, Tw) = 8[(]1)(C, To) that also sat-
isfies ¢»|y = id. The composition ¢,¢; is an endomorphism of 5((]1)(C, J%) whose
image under the surjective ring homomorphism

End(8{"(C,7,)) = End(8y(C, 7,,))

is the identity map. Because this is a homomorphism of local rings, we deduce that
¢2¢ is invertible. Likewise, ¢; ¢, is invertible. It follows that ¢ and ¢, are them-
selves isomorphisms. This completes the proof of uniqueness. ([

THEOREM 6.8
Let U C N be a G-stable open subset. The full additive subcategory of
DPCohG*Cnm (U) consisting of direct sums of objects of the form

Su(C,Ty)[n]{(—n) withC CU,weQc,andn e’

is a silting subcategory.

Proof

It is easy to see that the collection of objects {8y (C,T,)[n]{(—n)} generates
DPCoh®*Cm(U) as a triangulated category. Thus, as in Propositions 4.6 and 5.2, the
result comes down to showing that

Hom($y (C, 7)), 8u(C’, To)[n](k)) =0 if n+k > 0. (6.10)

To prove this, we proceed by induction on the number of orbits in U. If U is empty,

there is nothing to prove. Otherwise, let Cp be an orbit that is closed in U, and let

U’ = U ~. Cy. We consider various cases as follows:

. If C = C’ = Cy, then, in view of (6.9), the claim (6.10) is just part of Propo-
sition 5.2.

. If C = Cy but C’ C U’, then (6.10) holds because 8y (C’, T,,) satisfies prop-
erty (6) from Lemma 6.7.

. If C C U’ but C' = Cy, then (6.10) holds because 8y (C, T,,) satisfies prop-
erty (6) from Lemma 6.7.

. Finally, if both C and C’ are contained in U’, then Lemma 6.7(6) and
Lemma 6.6 together tell us that restriction to U’ gives an isomorphism

Hom(/SU (C,T),8u(C’, Tw/)[n](k))
= Hom(/SU/(C, 7o), /SU’(Clv Tw/)[n“k))

whenever n + k > 0. The right-hand side vanishes by induction. O
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The silting subcategory described by the preceding theorem is denoted by
Silt(U) c D*Coh®*Cm(U).

Note that for any G-stable closed subset Z C U, the collection of objects {8y (C,
To)[n]{(—n) | C C Z} generates D'%CthX(Gm (U) as a triangulated category. It fol-
lows immediately that the category

Siltz (U) = Silt(U) N D% Coh® ¢ (U)

. s GxXGp
is a silting subcategory of D5 Coh “Co ().

LEMMA 6.9
Let V. C U C N be two G-stable open subsets, and let Z C U be a G-stable subset
that is closed in U. The restriction functor

D% Coh®®m(U) — DY ,,Coh®*Cm(V)  givenby ¥ > F |y
is co-t-exact. If ¥ € D%COhGXGm (U)soand § € DbZCOhGXG‘“ (U) <o, then the map
Hom(¥,9%) — Hom(¥ |y.8|v) (6.11)

is surjective.

Proof

The co-t-exactness of the restriction functor is an immediate consequence of
Lemma 6.7(5). For the surjectivity of (6.11), by induction on the number of orbits in
U .V, we can reduce to the case where V' is the complement of a single closed orbit
Co. In this case, by Lemma 6.7(6), the assumption that & € D%Coh® " (U)5,
implies that & € L D, Coh®*®»(U)~_,. Similarly, § lies in D, Coh®*®m(U)L,.
By Lemma 6.6, we are done. O

LEMMA 6.10

Let U C N be a G-stable open subset, and let Z C U be a G-stable subset that is

closedinU. For ¥ € D’Coh®*n (U), the following three conditions are equivalent:

(1) Foreach orbit C' C Z, we have j{, j+F € DPCoh®*Cm(C") .

(2)  We have Hom(§,¥) =0 forall § € DbZCOhGXG‘“(U)zl.

(3)  We have Hom(8y (C', T,)[n]{k),F)=0for C' C Z, w € Q¢c, andn + k <
—1.

Similarly, the following three conditions are equivalent:

(1) Foreach orbit C' C Z, we have j, j+F € DPCoh¢*Cm (C")>o-

(2)  We have Hom(¥ ,€) = 0 for all § € D% Coh“ ™ (U)_,.
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(3)  We have Hom(¥F , 8y (C',T,)[nl{k)) =0for C' C Z, w € Qc, andn + k >
1.

Proof

We will prove the equivalence of the first set of three statements. The proof for
the second set of three statements is similar. In the induced co-¢-structure on
D%CthXG‘“ (U), the category D%COhGXGm (U)>1 is generated under extensions by
objects of the form 8y (C’, T,)[n]{k) with C’ C Z and n + k < —1. This observation
yields the equivalence of statements (2) and (3).

To prove the equivalence of (1) with the other two conditions, we proceed by
induction on the number of orbits in Z. If Z consists of a single closed orbit Cy, then
condition (2) just says that ¥ € DtéOCthX(G’m (U)él. Using Lemmas 6.1 and 6.3
together with (6.1), we see that this condition is equivalent to (1).

If Z contains more than one orbit, choose a closed orbit Co C Z, and let V =
U ~ Cy. Then, by induction, condition (1) is equivalent to
(4)  The object ¥ lies in D%O CthXGm(U )JZ-I, and furthermore we have

Hom(8y (C’, 7)) [n](k), Fly) =0forC'C ZNV,w € Q¢c,andn+k < —1.
By Lemma 6.6, the map

Hom(8y (C”, T)[n)(k), F) — Hom(8y (C”, T)[n)(k), F |

is an isomorphism when n 4+ k < —1. It follows that condition (4) is equivalent to (3).
O

LEMMA 6.11
(1)  Forany G-stable open subset U C N, the category Silt(U) C DPCoh%*Cm U)
is preserved by the Serre—Grothendieck duality functor. Specifically, we have

D(8y (C, To)[n]{~n)) = 8u (C.T)[-n]{n).

) The category Silt(N) C DPCoh%*Cm (N) is preserved by the opposition func-
tor (—)° : DPCoh%*Cnm (N) —> DPCoh¢*Cm (N). Specifically, we have

(8(C.T0)[n)(=n))” = 8(C.T,)[n)(~n).

Proof
It is enough to prove these statements in the special case n = 0.

(1) It is clear that D8y (C, T,,) is indecomposable and supported on C N U. By
Lemma 5.3, we have

D8y (C.T0)) | werv = D(iC*’J‘w[—% codimC](% codimC))
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12

1 1
icxT,) [—5 codimC](E codimC>.

Finally, if C’ C dC N U, then by (3.4), (3.5), and Lemma 3.3, we find that
JérjsD(8u(C.T,)) € D°Coh®*En(CY) <,
Jj&r jxD(8u(C, 7)) € D’Coh®*Em(C")5y.

We have shown that D8y (C,7,,) satisfies the conditions from Lemma 6.7 that
uniquely characterize 8y (C, 7). Part (1) of the lemma follows.

(2) It is clear that 8(C, 7,)° is indecomposable, and [3, Corollary 4.2] implies
that it is supported on C. The claim that

(8(C. 7)) e =ic«T) [—% codimC](% codimC>

follows from (3.7) applied to the coherent sheaf J2<4mC (§(C, T,)), along with
Lemma 3.2. We have shown that §(C, 7,,)¢ satisfies the first three conditions from
Lemma 6.7 characterizing §(C, 7).

We will now prove that §(C, 7,)? = &§(C,T,) by induction on C with respect
to the closure partial order on nilpotent orbits. In view of the preceding paragraph,
it is enough to check condition (4) from Lemma 6.7 for C’ C dC. If C is the zero
nilpotent orbit, then dC is empty, and there is nothing to prove. Now suppose C is
not the zero orbit. By induction and the fact that (—)? is an equivalence of categories,
we have

Hom(8(C. )%, 8(C’, To)° [n](k)) = Hom(8(C. T,,). $(C'. Ty)[n) (k)
~ Hom(8(C,7,)°. 8(C', T5)[n](k)).

w/

If n + k > 1, the second expression above vanishes. As w varies over X g/, the object
8(C’,T;) varies over all silting objects whose support is C’. By Lemma 6.10, the
vanishing of the third expression above implies that

Jj&rjs(8(C,7,)%) € DPCoh*Cm(C")5q forall C’ C AC.
A similar argument shows that
Jj&rjs(8(C,T,)%) € DPCoh%*Em(C')<o forall C’ CAC,

and thus §(C, 7,)? satisfies condition (4) from Lemma 6.7. O
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7. Silting objects and the Lusztig—Vogan bijection

In Theorem 6.8, we have defined a co-¢-structure on D?Coh®*®m (), which we
will call the orbitwise co-t-structure. On the other hand, in [4], the authors defined
another co-z-structure on D°Coh®>Cn (N), called the supportive co-t-structure. In
this section, we will briefly review the definition of the supportive co-z-structure, and
then we will prove that these two co-¢-structures coincide.

7.1. Review of the Lusztig—Vogan bijection

Let PCoh®" () be the category of G x Gp,-equivariant perverse-coherent sheaves
on N (see [1], [14]). Recall that this is the heart of a 7-structure on D?Coh®*Cm ().
Furthermore, every object in this abelian category has finite length. The simple objects
can be described in terms of irreducible vector bundles on nilpotent orbits. Specifi-
cally, for w € Q¢, let £, € Coh%*®n(C) be the corresponding irreducible vector
bundle. Then, for each nilpotent orbit C C N and each w € Qc¢, there is a unique
simple object

J€(C, £y) € PCOh®m ()

that is supported on C and satisfies
1
JE(C, Lo)|lwe ZicsLo [—5 codlmC]<5 codimC>.

Moreover, every simple object is isomorphic to some J€(C, L) {(n).

This ¢-structure also admits a descrlptlon in terms of pushforwards of line bundles
along the Springer resoluion 7 : N — N, where N = T*(G/B) is the cotangent
bundle of the flag variety of G. Let X be the weight lattice of G, and let X* C X be
the set of dominant weights. Any weight A € X determines a line bundle O 3(A) €
D*Coh%*®n (). Now assume that A € X*. Let 8 denote the length of the shortest
element w € W such that wA € —XT, and then set

By =107 (1), Vi =mO5(0)(—55).

According to [1] and [14], these objects lie in PCOhG“‘(N ). Moreover, for each A €
X1, there is a canonical map

U Ay >V, (7.1)

whose image (in the abelian category PCoh®™ (')) is a simple object. That is, there
is a unique pair (C, w) € Q2 such that ¢, factors as

Ay JE(C, L) > V.
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(A priori, the image might have been of the form 4 €(C, £, )(n) for some n € Z; this
integer was determined to be 0 in [3].) The resulting map

@LV:X+:>Q

is in fact a bijection, known as the Lusztig—Vogan bijection.

The usual partial order < on X1 (given by declaring that A < p if g — A is
a sum of positive roots) is related to the Lusztig—Vogan bijection as follows: if
JE(C’, £4)(n) occurs as a composition factor of A, (or V), then the pair (C’, )
corresponds under the Lusztig—Vogan bijection to a weight p < A.

Now let

the full triangulated subcategory of D’Coh%*®m ()

D </X = —
=4 generated by A, (n) with u <A andn € Z.

__the full triangulated subcategory of D*Coh®*®m (')
~ generated by VM (n) with u <A and n € Z.

(The fact that this category can be defined either in terms of the A,’s or the V,’s
comes from the theory of quasi-exceptional sets, developed in [1], [4], [14].) The
preceding paragraph can be reformulated as follows: for ¥ € DPCohG*Cm (N), we
have

every composition factor 4€(C, £,){(n) of every

FeD(EA -
€D(=A) = P J*'(F) corresponds to a weight p < A under Ory.

(7.2)

Here, ? #' (—) denotes cohomology with respect to the perverse-coherent ¢-structure.

7.2. The supportive co-t-structure

According to [4, Proposition 4.3] and the remarks following it, the objects A, and
V,, also determine a co--structure on DPCoh%*Cn (N), known as the supportive
co-t-structure, and given by

DPCohG*Cm (AP — the full subcategory generated under extensions and direct
=0 "~ summands by the A [n]{k) for A € XT and n + k <0,
the full subcategory generated under extensions and direct
DbCthXG“‘(eN)S;gP _ gory g

summands by the V [n](k) for A € X* and n + k > 0.

Moreover, [4, Proposition 2.22] gives a classification of the indecomposable silting
objects for this category: for each A € X¥, there is a unique (up to isomorphism)
indecomposable silting object

GA c DbCOthGm (CN)SEU(I;P o) DbCOhGXGm (W-)SSUSP
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that is characterized by the following two properties: the object & lies in D(< 1),
and the canonical map (7.1) factors as

ZA —>6,\ —)V,\.

Every indecomposable silting object is isomorphic to &, [n](—n) for some A € X*
andn € Z.

LEMMA 7.1
(1) The supportive co-t-structure is preserved by Serre—Grothendieck duality.
Specifically, we have

D(&2[n])(—n)) = S_yoal-n](n).

2) The supportive co-t-structure is preserved by the opposition functor (—)° :
DPCoh%*Cm(N) — DPCoh®*Cm (). Specifically, we have

(Salnl(—n))” = &_ugalnl(—n).

Proof
According to [3, (3.6) and Proposition 4.1], we have

D(A3) = V_yoa., (A7 = A_ya,
D(V,) = Ay, (V)7 = V_yga.

The lemma follows immediately. (In the case of DD, these isomorphisms have been
known for much longer: see [1], [14].) |

THEOREM 7.2
The orbitwise and supportive co-t-structures coincide. More precisely, we have

G, =8(C.T,).

where A corresponds to (C, w) under the Lusztig—Vogan bijection.

Proof

Both the orbitwise and supportive co-f-structures are preserved by the functor
[1](—1). Next, let § : D*Coh®*Em(N)P — DPCoh®*Cm () be the functor given
by §(F) = D(F)°. By Lemmas 6.11 and 7.1, both co-z-structures are preserved
by §; moreover, for each indecomposable silting object ¥ (with respect to either
co-t-structure), there is a unique integer n such that §(F [n](—n)) = & . Therefore,
by Lemma A.4, the two co-¢-structures coincide.
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In particular, for each A € X, the object &} is also an indecomposable silting
object in the orbitwise co--structure, so it is isomorphic to 8 (C, T, ) [n](—n) for some
(C,w) € Q and some n € Z. Since G is preserved by §, we must in fact have n = 0.
The isomorphisms &) = 8(C, 7,) determine a bijection

e:xt 5 Q.

To finish the proof, it remains to show that ® = Opy.

Suppose ®(1) = (C,w). The description of §(C,T,) from Lemma 6.7 shows
that the object &(C,7,)|w. 1is a perverse-coherent sheaf, and that
iC*éﬁw[—% codim C ](% codimC) occurs as a composition factor therein. The
restriction from N to Nc is f-exact for the perverse-coherent 7-structure, and it
sends any simple object to either 0 or a simple object. It follows that 4€(C, £,)
occurs as a composition factor of 2. #°(8(C, T,,)). Now let A’ = O} (C, ). Since
8(C,T,) = 6, lives in D(< A), we see from (7.2) that A’ < A, or in other words,
that

O (O()) = A. (7.3)

This holds for all A € XT. In particular, if A is minimal with respect to <, then
O (O(L)) = A. For any A € X, the set {i € X* | u < A} is finite, so by induc-
tion with respect to the partial order <, we see that (7.3) implies that @E\} BMR) =41
for all A, as desired. O

When k has characteristic 0, the representation theory of G:ég is semisim-
ple. In particular, each indecomposable tilting vector bundle 7, coincides with the
irreducible vector bundle £,,. In this situation, we obtain the following alternative
description of §(C, £,).

COROLLARY 7.3

Ifk has characteristic 0, then for every nilpotent orbit C C N and every w € Qc, we
have 8(C,£y) = dC€(C, £,).

The following proof is short, but it requires some notions that are not used else-
where in this paper. We refer the reader to [2], [4], and [6] for the relevant background.

Proof sketch

Let A = O} (C, w) so that §(C, £,) = &;. According to [4, Theorem 4.5], &, is
isomorphic to 6“,0,1, where 77 : N — N is the Springer resolution, and gwo)» isa
certain silting object on N, By [6, Theorem 3.9] (along with [4, Lemma 3.4]), éwo A
coincides with the simple exotic sheaf £,,,;. Finally, by [2, Proposition 2.6], 7+« £y,
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is the simple perverse-coherent sheaf corresponding to A under the Lusztig—Vogan
bijection, that is, J€(C, £,). O

Remark 7.4

The J€ construction is defined for arbitrary equivariant vector bundles on an orbit,
not just irreducible ones, so one may ask whether Corollary 7.3 generalizes to positive
characteristic with a statement of the form

8(C,T) = JE(C, To). (7.4)

This turns out to be false: the calculations in [3] yield counterexamples when G =
PGL3, and C is the subregular nilpotent orbit.

However, (7.4) is (trivially) true when C is the zero nilpotent orbit. It is also true
when C is the regular nilpotent orbit. In this case, by [2, Proposition 4.8], (C,w)
corresponds to a minuscule weight A € XT. The weight woA € X, which is “antimi-
nuscule” in the terminology of [2], is minimal with respect to the partial order on
X used to define both the exotic ¢-structure and the supportive co-z-structure. One
can then deduce from the construction in [4] that gw() A = Lyoa, and then the claim
follows by the reasoning in the proof of Corollary 7.3.

8. Proof of the relative Humphreys conjecture

In this section, we assume that the characteristic p of k is larger than the Coxeter
number /4 for G. Let G be a reductive group whose first Frobenius twist G() is
identified with G. (Of course, this implies that G and G are isomorphic, but we do
not identify them, as they play different roles in the discussion below.) Let G be the
first Frobenius kernel of G. The G;-cohomology of a G-module M is defined by

H*(G1. M) = Extg, (k, M).

A classical result (see [13], [17], and also [6, Lemma 8.1]) states that there is a G-
equivariant isomorphism of graded rings

Ext, (k. k) 2 k[V].

Thus, for any G-module M, its Gj-cohomology has the structure of a graded G-
equivariant module over k[N], or equivalently, an object of Coh%*®n (). The goal
of this section is to describe this module in the case where M is a tilting G-module.
For A € X*, let T(1) be the indecomposable tilting G-module of highest weight A.
Let W be the Weyl group of G, and let W, = W x X be its extended affine Weyl
group. For A € X, let ; denote the corresponding element of W,y. For A € X, let

__the unique element of minimal length

wr = in the double coset Wiy W C Wey.
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Recall the “p-dilated dot action” of W, on X: for w = v X ) € Wy and pu € X, we
set

w-p=v(n+pr+p)—p,

where, as usual, p is one-half the sum of the positive roots. It is well known (see,
e.g., [6, Lemma 8.7]) that

H*(G1,T(1)) =0 unless 4 = wy - 0 for some A € X*.

The following theorem describes H*(Gp, T(i)) in the case where u = w, - 0 for
some A € X*. It confirms a relative version of a conjecture due to Humphreys [20]
(cf. [6, Conjecture 8.10]), as well as part of a refinement of this conjecture proposed
by the authors and S. Riche in [9, Conjecture 5.7].

THEOREM 8.1 (Relative Humphreys conjecture)
For } € =X7, we have

H*(G1.T(wy-0)) = € R'T(N.8(C.7)) (8.1)

i+j=k

jv

where (C,T) corresponds to wol under the Lusztig—Vogan bijection. In particular,
as a coherent sheafon N, H*(Gy,T(w;, - 0)) is supported on C, and

H.(Gl,T(wk -0))|C ~7.

In this statement, the notation R'T (N, 8(C,T)) j denotes the jth graded com-
ponent of the grading coming from the G,-action.

Remark 8.2

The statement in [6, Conjecture 8.10] describes the support of the cohomology groups
H*(G1,T(wy - 0)) in terms of the two-sided Kazhdan—Lusztig cell containing w,,
not in terms of the Lusztig—Vogan bijection. However, it follows from [16, Remark 6]
combined with the main result of [8] that the nilpotent orbit appearing in [6, Conjec-
ture 8.10] is the same as the one in Theorem 8.1.

Proof
An equation similar to (8.1), but with §(C, 7) replaced by &, is an immediate con-
sequence of [6, Proposition 9.1] (see also [4, Lemma 6.3] and [12, Proposition 9.4]).
We obtain (8.1) by combining these results with Theorem 7.2.

Regarding H*(G1, T(wy - 0)) as a coherent sheaf, we can rewrite (8.1) as

H*(G1.T(wy-0)) =P R'T(N.8(C.T))(~i).
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The description of the support of H*(Gy,T(wy - 0)) and its restriction to C then
follow from the properties of §(C, ) listed in Lemma 6.7. O

9. Applications to the p-canonical basis

In this section, we return to allowing p to be pretty good for G. Let € denote the
Grothendieck group of DPCoh®>Cnm (N). This is a module over the ring of Laurent
polynomials Z[v, v™!] under the rule [ (1)] = —v~![F]. In [31], Ostrik defined a
certain Z[v, v~ !]-basis for €, denoted by

{CrlrexTy,

and called the canonical basis. This basis is closely related to the Kazhdan—Lusztig
basis of the extended affine Hecke algebra #.. Specifically, according to the proof
of [31, Lemma 2.6], there is a Z[v, v~!]-linear map st : H.,, — €, whose behavior on
the Kazhdan—Lusztig basis {H ,, | w € Wey} is given by

C, if w has minimal length in the coset Wi, W C Wy,

st(H,,) = { ©.1)

0 otherwise.

(Note that € is not an Hex-module. It is, however, a module over the center Z (Hey()
of Hexi, and the map St is a Z(Hex)-module homomorphism.) Ostrik conjectured,
and Bezrukavikov later proved in [15] and [16], that

C)=[JE(C.L0)]. 9.2)

where (C, w) corresponds to A under the Lusztig—Vogan bijection.

In recent years, the p-canonical basis for Hex (see [23]), denoted by {* H,, |
w € Wex}, has come to prominence (see, e.g., [10], [12], [33]). It is natural to ask
whether € has some basis that should be called “p-canonical.” One approach is to
generalize (9.1) by defining

PC, :=st(’ H,).where w is the element of minimal length in W, W.  (9.3)

(It can be deduced from [6] that st( H ) = 0 if w is not minimal in some double
coset for W.) On the other hand, in view of Corollary 7.3, (9.2) suggests defining

PC, :=[8(C.7)] (9.4)

via the Lusztig—Vogan bijection. In fact, Theorem 7.2 (combined with [4], [6]) implies
that these two definitions coincide.
In general, the p-canonical basis for Hey, satisfies

PH, €Hy+ Y Zzo[v.v"'|Hy.

v<w
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where “<” denotes the Bruhat order on W,y. From (9.3) we deduce that

PC,eCh+ Y Zsolv,v7'IC,,
U<A

where “<” now denotes the usual partial order on weights. But (9.4) imposes a much
stronger constraint: if A corresponds to (C, w) via Ory, then

rCeCit( Y Z20C) (X Y ZeolvvIC,). ©9)

n<A c’caC <A
Oy (Wece OLv(L)E s
Note that the first sum has integer coefficients, rather than Laurent polynomials.

The extended affine Hecke algebra H.y is categorified by the monoidal cate-
gory of Iwahori-equivariant parity sheaves on the dual affine flag variety, denoted by
Parity; (F1). For w € Wy, let &,, € Parity; (Fl) denote the corresponding indecom-
posable parity sheaf. Given a G-stable closed subset Z C N, let

the full additive subcategory generated by & [n], where n € Z
Parity; (F1)z = and w is either not minimal in any double coset W, W, or w is
minimal in some Wty W such that supp S, C Z.

Roughly, (9.5) says that if w € W, is minimal in the double coset W, W, then the
parity sheaf &,, should be “perverse modulo Parity; (F1)3c.” Given a nilpotent orbit
C C N, we now define

sAc = Parity; (Fl)&/Parity; (Fl)sc.
This category inherits from Parity; (F1) the shift operation [1]. Let

AC the full subcategory of 4A¢ generated by the
€ "™ images of &, € Parity, (Fl)& (without shifts).

9 66

We expect that /¢, can be made into a monoidal category using Lusztig’s “trun-
cated convolution” operation © (see [27]), defined as follows: for #,§ € A, let

Fog= pe}’f%c‘)dimc(}: +»'€) mod Parity; (F)sc,

where ¥ and ¢ are lifts of # and § to Parity; (FI)&. Moreover, we conjecture that
there is an equivalence of monoidal categories

(Ag. 0) = (TiK(GLS). ®).
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Appendix. A lemma on co-7-structures

In this appendix, we review the notions of co-¢-structures and silting subcategories
and the relationship between them, following [24], [26], and [30]. See [4, Section 2]
for additional references and discussion. We also prove a technical lemma on co-¢-
structures preserved by a duality.

Definition A.1
Let © be a triangulated category, and let D¢, <o C D be two full additive subcat-
egories. For any n € Z, set

@Zn :@Z()[—n] and gsn 2950[_}1]

The pair (D9, D<) is said to be a co-t-structure on ® if the following conditions

hold:

(1)  Both ®: and D < are closed under direct summands.

2) We have D51 C Dsp and D<_; C D<p.

3) For A € ®>¢ and B € ®<_1, we have Hom(4, B) = 0.

(4) For any X € D, there is a distinguished triangle A — X — B — with 4 €
@20 and B € @S_l.

Furthermore, the co-z-structure is said to be bounded if the following holds:

%) For any X €, there are integers n and m such that X € >, N D,,.

If (®>0,D <) is a co-¢-structure, then the additive category D¢ N D<o is called its

coheart. If ®’ is another triangulated category equipped with a co-z-structure, then a

triangulated functor F : ® — @’ is said to be co-t-exact if it sends the coheart of D

to the coheart of ©’.

Definition A.2

Let © be a triangulated category. A strictly full additive subcategory & C ® is said

to be a silting subcategory if the following conditions hold:

(D G is closed under direct summands.

(2)  For any two objects S, S’ € &, we have Hom(S, S’[k]) = 0 for all k > 0.

3) The smallest strictly full triangulated subcategory of © that contains & and is
closed under direct summands is ® itself.

The following statement is proved in [30, Corollary 5.9]

PROPOSITION A.3

Let ® be a triangulated category. For any bounded co-t-structure (D0, <o)
on ®, the coheart ®>o N D<g is a silting subcategory. Moreover, the assignment
(D50,D<0) = V>0 N D<o gives a bijection between the set of bounded co-t-
structures on ® and the set of silting subcategories of .
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As in [4, Section 2.2], we define a Tate twist on a triangulated category to be an
autoequivalence

U0 -29
with the property that for an object X € ®, we have
X 1§ = Xif and only ifX =0.

The following uniqueness result is used in the proof of Theorem 7.2.

LEMMA A.4

Let © be a triangulated category equipped with a Tate twist [1§: D — D and an
anti-autoequivalence § : ©® = D such that § o 1§ = |—1 0 8. There is at most one
silting subcategory & C ® with the following properties:

(1) & is stable under 1§ and §.

(2) G is a Krull-Schmidt category.

3) For each indecomposable object S € G, there is a unique integer n such that

8(Snf) = Snf.

Proof
Suppose we have two silting subcategories &, &’ C D satisfying these properties. Let
(D50, <o) be the bounded co-¢-structure on ® corresponding to S.

Suppose there exists an object S’ € &’ such that S’ ¢ ©¢. We will derive a
contradiction from this. Let n be the largest integer such that S’ € ©,, so that S’[n] €
D>0. (We necessarily have n < 0.) Then it is possible to find a distinguished triangle

AL 55 B with A€o, and B € &. (A6)

Choose such a distinguished triangle in which the number of indecomposable direct
summands of B is minimized. This number is well defined because G is Krull-
Schmidt, and it is nonzero because S’[n] ¢ D>.

Next, choose an indecomposable summand 7 of B.Leti : T — B and p: B —
T be the inclusion and projection maps, so that pi = idr, and i p is idempotent.

By applying a suitable Tate twist, we may assume without loss of generality that
8(T) = T. Fix an identification of these two objects. Then T is a direct summand
of 8(B), and §(p) : T — 6(B) and 6(i) : 6(B) — T are the inclusion and projection
maps, respectively.

Consider the diagram below, in which the rows are distinguished triangles. (The
dotted arrows will be explained later.)
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T
i
Sn] —2 By gy U
, o
(ﬁ/, T ?// i“

k// p)\L k// \L
S(A)-1] 2 5(B) 22y 5(57)[—n] L
156)

T

Because &' is a silting subcategory, we have Hom(S’[n], §(S")[—n]) = 0. In particu-
lar, §(g)8(p)pg =0, so 6(g)S(p) p factors through /: there exists a map ¥ : A[1] —
8(S")[—n] such that

vh=248(g)8(p)p.

Since A[l] € ®5¢ and §(A) € D<_1, we have Hom(A[1],8(4)) =0, so §(f)y = 0.
Therefore, there is a map ¢ : A[1] — §(B) such that

3(g)p=1y.

We now have 6(g)ph = 6(g)8(p) p, or §(g)(¢ph —5(p) p) = 0. Therefore, there exists
amap ¢’ : B — §(A)[—1] such that §(h)¢’ = ¢h — (p) p, or

8(p)p = ph—35(h)¢'. (A7)

By the nine lemma, there exist objects B’ and A" such that the rows and columns
of the following diagram are distinguished triangles:

The rightmost column shows that A’ € ©5;. Now consider the map 8(i)phi €
End(T). If this were an isomorphism, then the middle column above would split (by
the map i (§(i)phi)~' : T — B), and B’ would be a direct summand of B, and hence
an object of & with fewer indecomposable summands than B. But then the top row
would contradict the minimality in the choice of (A.6). We conclude that §(i )@hi is
not invertible.
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Similar reasoning shows that —§(i)3(h)¢’i € End(T) is also not invertible. Since
End(T') is a local ring, the sum of two nonunits is again a nonunit, and thus 6(i )¢hi —
8(i)8(h)¢’i is not invertible. But by (A.7), we have

8(i)phi —8(i)3(h)¢'i = 8(i)8(p) pi =idr,

a contradiction.

We conclude that S’ € D¢, and hence that &’ C D 5. Applying §, we also have
&' C D<p, so & C S. Reversing the roles of the two categories, we also obtain
&’ D 6, and hence & = &'. O
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