
SILTING COMPLEXES OF COHERENT SHEAVES
AND THE HUMPHREYS CONJECTURE

PRAMOD N. ACHAR and WILLIAM HARDESTY

Abstract
Let G be a connected reductive algebraic group over an algebraically closed field
k of characteristic p ! 0, and let N be its nilpotent cone. Under mild hypotheses,
we construct for each nilpotent G-orbit C and each indecomposable tilting vector
bundle T on C a certain complex S.C;T / 2DbCohG!Gm.N /. We prove that these
objects are (up to shift) precisely the indecomposable objects in the coheart of a
certain co-t -structure.

We then show that if p is larger than the Coxeter number, then the hypercoho-
mology H ".N ;S.C;T // is identified with the cohomology of a tilting module for G.
This confirms a conjecture of Humphreys on the support of the cohomology of tilting
modules.

1. Introduction

1.1. The Humphreys conjecture
Let G be a connected reductive group over an algebraically closed field k of charac-
teristic p. Assume that p is larger than the Coxeter number h for G. Let G1 be its
first Frobenius kernel, and let G DG=G1 be its Frobenius twist. Let N be the nilpo-
tent variety in the Lie algebra of G. It is well known that the algebra Ext"G1.k;k/ is
(G-equivariantly) isomorphic to the coordinate ring kŒN !. As a consequence, for any
G-module M , the G1-cohomology

H ".G1;M/D Ext"G1.k;M/

has the structure of a G-equivariant graded kŒN !-module, or equivalently, a G "Gm-
equivariant (quasi)coherent sheaf on N .

The main goal of this paper is to give a new description of this cohomology in
the case whereM is an indecomposable tilting G-module. This cohomology vanishes,
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except for tilting modules of the formM D T.w! #0/ (see Section 8 for this notation),
where " is a dominant weight. Using the results of [11], one can refine this problem
as follows: for each ", there is an object

S! 2DbCohG!Gm.N /

equipped with a canonical isomorphism (see [12, Propositions 9.4 and 9.5])

R"#.N ;S!/ŠH "
!
G1;T.w! # 0/

"
:

The relative Humphreys conjecture is a conjectural description of the support of
H ".G1;T.w! # 0// (or, equivalently, the support of S!), in terms of the combina-
torics of Kazhdan–Lusztig cells. Here is a brief summary of previous results on this
conjecture:
Quantum case In [15], Bezrukavnikov gave a description of the complex ver-

sion SC
! , and thereby proved the quantum-group analogue of the relative

Humphreys conjecture.
Reductive groups for p% 0 In [6], the authors and S. Riche proved that the relative

Humphreys conjecture is true when p is “large enough,” that is, larger than
some unknown bound depending on G. The proof involves a reduction to the
quantum case studied by Bezrukavnikov.

GLn for p > hD nC 1 The relative Humphreys conjecture for GLn follows from
work of the second author [18], as explained in [6, Remark 9.4(1)]. A second
and rather different proof was obtained by the authors in [4].

In this paper, we prove the relative Humphreys conjecture in full generality, for
all reductive groups and all p > h. The proof, which is based on a new description of
the S! in terms of “silting complexes,” is independent of the main arguments in [6]
and [15]. A side effect of the proof is an explicit description of the coherent sheaf
H ".G1;T.w! # 0// over the open orbit in its support, conjectured in [9].

We remark on two other problems that are not addressed in this paper:
(1) Humphreys originally proposed a description of Ext"G1.M;M/ rather than of

Ext"G1.k;M/ (see [20]). The original Humphreys conjecture has been proved
for GLn in [18], and for any G when p% 0 in [6]. See [6, Lemma 8.11 and
Remark 9.4] for the relationship between the original and relative Humphreys
conjectures.

(2) In [4], the authors proposed a scheme-theoretic Humphreys conjecture, assert-
ing that the scheme-theoretic support of S! is reduced, and they proved this
conjecture for GDGLn.

For general G and p > h, the original and scheme-theoretic Humphreys conjectures
both remain open.
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1.2. Silting complexes on the nilpotent cone
The main geometric arguments in the paper involve only G and N (and not G), and
are valid under much milder assumptions on the characteristic p of k. From now on,
we assume only that p is “pretty good” for G (see Section 3).

A silting subcategory of a triangulated category is an additive subcategory whose
objects enjoy certain strong Ext-vanishing conditions (see Definition A.2). In [4], the
authors showed that the category of direct sums of objects of the form S!Œn!h&ni
is a silting subcategory of DbCohG!Gm.N /, called the supportive silting subcate-
gory.

In this paper, we construct a new silting subcategory of DbCohG!Gm.N /, which
we call the orbitwise silting subcategory, because it has a geometric description that
proceeds “one nilpotent orbit at a time.” This description involves the notion of a
tilting vector bundle on a nilpotent orbit, defined in Section 3.2 below. We show
that for any nilpotent orbit C ' N and any indecomposable tilting vector bundle
T 2 Tilt.CohG!Gm.C //, there is a unique way to extend T to an indecomposable
object

S.C;T / 2DbCohG!Gm.N /

that is supported on C and satisfies certain Ext-vanishing conditions with tilting
vector bundles on smaller orbits. Objects of the form S.C;T /Œn!h&ni are precisely
the indecomposable objects in the orbitwise silting subcategory.

The main geometric theorem of the paper states that the supportive and orbitwise
silting subcategories actually coincide. Thus, for each pair .C;T / as above, there is a
unique dominant weight " such that

S.C;T /ŠS!:

We also prove that this correspondence is given by the Lusztig–Vogan bijection.
If we now assume that p > h, then we have

H "
!
G1;T.w! # 0/

"
ŠR"#

!
N ;S.C;T /

"
:

The relative Humphreys conjecture is essentially a corollary of this formula.

1.3. Application to the p-canonical basis
The silting complexes introduced in this paper can be thought of as a coherent coun-
terpart to the p-canonical basis of the affine Hecke algebra (see [23]) and the theory
of parity sheaves (see [25]), both of which play prominent roles in recent devel-
opments in modular representation theory. These parallels are summarized Table
1.
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Table 1. Some analogies in modular representation theory

Bases for the Constructible sheaves Coherent sheaves on
affine Hecke algebra on flag varieties the nilpotent cone

Char. 0 Kazhdan–Lusztig basis perverse sheaves perverse-coherent sheaves
Char. p p-canonical basis parity sheaves silting complexes

In fact, one can make a more precise statement: it turns out that the Grothendieck
group K.DbCohG!Gm.N // is naturally a quotient of the affine Hecke algebra, and
this quotient map sends the Kazhdan–Lusztig basis to the basis of simple perverse-
coherent sheaves. We will see at the end of this paper that this map also sends the
p-canonical basis to the basis of silting complexes. This observation implies a certain
positivity property for the p-canonical basis, and it suggests conjectural avenues for
further study around the themes of (p-)Kazhdan–Lusztig cells, truncated convolution
of perverse sheaves, and vector bundles on nilpotent orbits.

1.4. Notation and terminology
If V DLj2Z Vj is a graded vector space, we define V hni to be the graded vec-
tor space given by .V hni/j D VnCj . Equivalently, if we think of V as a Gm-
representation, then V hni D V ˝k#n, where k#n is the 1-dimensional representation
where Gm acts with weight &n. Similar notation is used for coherent sheaves.

The notion of a silting subcategory and the closely related notion of a co-t -
structure play a central role throughout this paper. See the appendix for a brief review
of these notions, and see [4, Section 2] for additional background and references. In
this paper, as in [4], we use the term silting object to mean any object in a silting
subcategory, not just a generator (see [4, Remark 2.2] for context).

1.5. Contents of the paper
We begin in Section 2 with a “toy example” (needed later in the paper) of a co-t -
structure on representations of certain nonreductive groups. Section 3 contains pre-
liminaries and notation related to the nilpotent cone, and Sections 4, 5, and 6 are
devoted to constructing co-t -structures on coherent sheaves in increasingly difficult
settings, culminating with the orbitwise co-t -structure onDbCohG!Gm.N /, obtained
in Theorem 6.8. These constructions are cumulative: in each of Sections 4–6, the
construction of the co-t -structure relies on the co-t -structures from earlier sections
as input. Along the way, we keep track of how these co-t -structures interact with
Serre–Grothendieck duality (denoted by D) and with the twist by an opposition of G
(denoted by $ ).

In Section 7, we prove that the orbitwise co-t -structure coincides with the sup-
portive co-t -structure from [4], and we describe the combinatorics of the relationship
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between the two. The behavior of both co-t -structures under D and $ plays a key role
in the arguments in this section.

Section 8 contains the proof of the relative Humphreys conjecture, and Section 9
discusses potential applications to the study of the p-canonical basis. Finally, the
appendix contains a brief review of co-t -structures, as well as a technical lemma that
is needed in Section 7.

2. Group representations
For an algebraic groupH over an algebraically closed field k, let Rep.H/ be the cate-
gory of finite-dimensional algebraic representations. IfH is connected and reductive,
then (as observed in, say, [4, Remark 2.6]), the category Tilt.H/ ' Rep.H/ is the
coheart of a co-t -structure. If H is disconnected, and if the characteristic of k does
not divide jH=H ıj, then Rep.H/ is again a highest-weight category (see [7, Theo-
rem 3.7]), and Tilt.H/ is again the coheart of a co-t -structure. The goal of this section
is to extend these observations to certain nonreductive groups.

From now on, let H be a (possibly disconnected) algebraic group over k, which
is equipped with a Levi decompositionH DHred !Hunip, whereHunip is a connected
unipotent group, andHred is a possibly disconnected group whose identity component
H ıred is reductive. Suppose we are given an action of Gm on H by group automor-
phisms so that it makes sense to form the group Gm !H . We impose the following
assumptions:
(1) The characteristic of k does not divide jHred=H

ı
redj.

(2) Gm acts trivially on Hred.
(3) The induced action of Gm on Lie.Hunip/ has strictly positive weights.
We will construct a co-t -structure on Rep.Gm !H/. Thanks to the first assumption,
the highest-weight theory of [7, Theorem 3.7] is available forHred. Let Irr.Hred/ be the
set of isomorphism classes of irreducibleHred-modules. (An explicit parameterization
of this set in terms of weights for H ıred is given in [7, Theorem 2.16].) For each ! 2
Irr.Hred/, let M! , N! , and T! denote the corresponding standard, costandard, and
indecomposable tilting module, respectively.

LEMMA 2.1
Let !;% 2 Irr.Hred/, and regard M! and N" as Gm !H -modules with trivial Gm-
action. In DbRep.Gm !H/, we have Hom.M! ;N" Œn!hki/D 0 whenever nC k > 0.

Proof
IfH is connected andHunip is trivial (i.e., if Gm !H is a connected reductive group),
then this is a standard result in the representation theory of reductive groups (see,
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e.g., [21, Sections II.4.9–II.4.13]). That proof can be adapted to the case where Hunip

is nontrivial as well. We briefly indicate the main steps below.
Assume for now that H is connected. Choose a maximal torus and a Borel sub-

group T 'B 'Hred. Then Gm "T is a maximal torus of Gm !H . Let ˆ be the root
system of Hred, and let ˆC be the set of positive roots corresponding to the opposite
of B . Let QB DB !Hunip; this is a Borel subgroup of H .

Choose a cocharacter & W Gm ! T such that h˛;&i > 0 for all ˛ 2 ˆC. Next,
choose a positive integer m such that for every T -weight ˇ on Lie.Hunip/, we have
hˇ;&i<m, and then let Q& WGm!Gm " T be the map Q&.z/D .z#m;&.z//. Then the
pairing of Q& with every Gm " T -weight on Lie. QB/ is strictly negative.

By a minor variant on the proof of [21, Lemma II.4.9], one can show that the
trivial QB-module k admits an injective resolution

0! k! I 0! I 1! # # #

such that for any Gm " T -weight ' occurring in I n, we have h Q&;'i ! n. Now let %
be a dominant weight for Hred. Using the injective resolution above, the proof of [21,
Proposition II.4.10(b)] shows that

ExtnQB
!
k;k"hki

"
¤ 0 implies &mk & h&;%i! n;

or equivalently, nCk (&.m&1/k& h&;%i. Since % is dominant, this in turn implies
that nC k ( 0. In other words, if nC k > 0, then the group

ExtnQB
!
k;k"hki

"
Š ExtnH

!
k; indHQB k"hki

"
DHom.k;N" Œn!hki

vanishes. This immediately implies, more generally, that if N is any Hred-representa-
tion with a good filtration, then Hom.k;NŒn!hki/D 0 whenever nC k > 0. In partic-
ular, we have

Hom
!
M! ;N" Œn!hki

"
ŠHom

!
k;M$! ˝N" Œn!hki

"
D 0:

We have completed the proof in the case where H is connected.
If H is disconnected, then, thanks to our assumption that the characteristic of k

does not divide the order of H=H ı, we have a natural isomorphism

HomH

!
M! ;N" Œn!hki

"
Š
!
HomHı

!
M! ;N" Œn!hki

""H=Hı
: (2.1)

(See, e.g., [7, Lemma 2.18] for more explanation.) As anH ıred-module, M! (resp., N" )
is a direct sum of Weyl (resp., dual Weyl) modules, so the right-hand side vanishes by
the case of connected groups considered above.
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PROPOSITION 2.2
There is a unique co-t -structure on DbRep.Gm !H/ whose indecomposable silting
objects are precisely the objects of the form T! Œn!h&ni for ! 2 Irr.Hred/ and n 2 Z.

Proof
Let S'DbRep.Gm !H/ be the full additive subcategory consisting of direct sums
of objects of the form T! Œn!h&ni. It is immediate from Lemma 2.1 that for S;S 0 2S,
we have Hom.S;S 0Œk!/D 0 for all k > 0. Since S generates DbRep.Gm !H/ as
a triangulated category, it is a silting subcategory, and hence the coheart of a unique
co-t -structure (cf. Proposition A.3).

We denote the coheart of the co-t -structure from Proposition 2.2 by

Silt.Gm !H/ WDDbRep.Gm !H/%0 \DbRep.Gm !H/&0:

Remark 2.3
With a little bit of extra work, one can show that the co-t -structure from Proposi-
tion 2.2 has the following description:

DbRep.Gm !H/%0 D
the full subcategory of DbRep.Gm !H/ generated
under extensions by M! Œn!hki with nC k ( 0;

DbRep.Gm !H/&0 D
the full subcategory of DbRep.Gm !H/ generated
under extensions by N! Œn!hki with nC k ! 0:

We will need a lemma about the co-t -structure defined above in terms of the
following notion.

Definition 2.4
For a module N of a (possibly disconnected) reductive groupHred, the good filtration
dimension of N is the smallest integer k such that for all j ! k C 1 and any Weyl
module M , ExtjHred

.M;N /D 0.

For other characterizations of good filtration dimension, see [17, Proposition 3.4].
(That paper assumes that Hred is connected, and it imposes some restrictions on the
characteristic of k, depending on the type of Hred, because it was not known at the
time that tensor product preserves the property of having a good filtration in full gener-
ality. In fact, [17, Proposition 3.4] holds in general for possibly disconnected reductive
groups Hred, as long as the characteristic of k does not divide jHred=H

ı
redj.)
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LEMMA 2.5
Let N be an Hred-module with good filtration dimension ( i , regarded as a Gm !H -
module with trivial Gm-action. Then, for any j 2 Z, we have

N hj i 2DbRep.Gm !H/&i#j :

Proof
We proceed by induction on i . If i D 0, that is, if N has a good filtration, then
Lemma 2.1 implies that Hom.T! Œn C j & 1!h&ni;N hj i/ D 0 for any j . In other
words, N hj i 2DbRep.Gm !H/&#j .

Now suppose i ! 1, and that the result holds for any module with the good fil-
tration dimension ( i & 1. Given N with good filtration dimension ( i , let E be a
module with a good filtration such that there is an embedding N ,!E (such modules
always exist since the rationally injective Hred-modules have good filtrations). This
gives a short exact sequence

0!N !E!K! 0;

where the cokernel K has good filtration dimension ( i & 1. Rotating this triangle
gives

KŒ&1!hj i!N hj i!Ehj i! :

By induction, the first term lies in DbRep.Gm !H/&i#j , and the last term lies in
DbRep.Gm !H/&#j , so we must have that M 2Rep.Gm "H/&i as well.

3. Preliminaries on nilpotent orbits
Let G be a connected reductive group over an algebraically closed field k, and let g
be its Lie algebra. We assume throughout the paper that

The characteristic p of k is pretty good for G.

For the definition of “pretty good,” see [19, Definition 2.11]. This condition is equiv-
alent to requiring G to be “standard” in the sense of [29, Section 4]. According to [8,
Lemma 2.3], [19, Lemma 2.12], and [28, Proposition 12], this assumption implies the
following commonly used conditions on G:
(1) There exists a separable isogeny QG!G, where the derived subgroup of QG is

simply connected.
(2) The characteristic of k is good for G.
(3) There exists a nondegenerate G-invariant bilinear form on g.
In this section, we establish notation and review some relevant results about the nilpo-
tent cone N ' g.
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3.1. Coherent sheaves on the Lie algebra and the nilpotent cone
If X is any G " Gm-variety, we denote by CohG!Gm.X/ the category of G " Gm-
equivariant coherent sheaves on X . If Z ' X is a G "Gm-stable closed subset, we
denote by

Db
ZCohG!Gm.X/'DbCohG!Gm.X/

the full triangulated subcategory of DbCohG!Gm.X/ consisting of objects supported
set-theoretically on Z.

We make g into a G "Gm-variety by letting Gm act with weight &2. Next, let
N ' g be the nilpotent cone, and let C ' g be a nilpotent orbit. Let @C D C " C ,
and then let

gC D g" @C; NC DN " @C:

Thus, gC and NC are open subsets of g and N , respectively, in which C embeds as a
closed subvariety. Let

jC W C ,! gC

be the inclusion map. All of these spaces are preserved by the Gm-action, so we can
regard them as G "Gm-subvarieties of g.

Choose a point xC 2 C and an associated cocharacter (xC WGm!G. The stabi-
lizer GxC admits a Levi decomposition

GxC DGxCred !GxCunip;

where GxCred is the centralizer of (xC in GxC . The group GxCred may be disconnected,
but the assumptions from the beginning of the section imply that the characteristic of
k does not divide jGxCred =.G

xC
red /
ıj.

Recall that for a closed (possibly disconnected) reductive subgroup H of G, we
call .G;H/ a Donkin pair if for anyG-module V with a good filtration, the restriction
resGH .V / has a good filtration forH (see [21, Section II.4.24]). This condition implies,
more generally, that if V has good filtration dimension ( i for G, then resGH .V / has
good filtration dimension( i for H .

The following result from [5, Corollary 1.2] will play a crucial role in Section 4.

THEOREM 3.1 ([5])
For xC as above, the pair .G;GxCred / is a Donkin pair.

3.2. The co-t -structure on a nilpotent orbit
We have an isomorphism
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Gm !GxC '&! .G "Gm/
xC given by t ! g 7!

!
(xC .t/g; t

"
; (3.1)

where the semidirect product Gm ! GxC is defined by having Gm act by z # g D
(xC .z/g(xC .z/

#1. This action is trivial on GxCred and has strictly positive weights on
Lie.GxCunip/.

The action ofG"Gm on C induces an isomorphism .G"Gm/=.G"Gm/
xC Š C

(see [22, Section 2.9]). It follows that there are equivalences of categories

CohG!Gm.C /ŠRep
!
.G "Gm/

xC
"
ŠRep.Gm !GxC /: (3.2)

Thanks to these equivalences, we can transfer results from Section 2 to
CohG!Gm.C /. In particular, Proposition 2.2 gives us a co-t -structure on
DbCohG!Gm.C / whose coheart is denoted by

Silt.C /DDbCohG!Gm.C /%0 \DbCohG!Gm.C /&0: (3.3)

Let us introduce some notation to label the indecomposable objects in Silt.C /. An
object T 2CohG!Gm.C / is called a tilting vector bundle if it corresponds under (3.2)
to a tilting module for Gm "GxCred (with trivial action of GxCunip). Let

)C D the set of isomorphism classes of irreducible GxCred -representations,

and for ! 2)C , let T! 2CohG!Gm.C / be the corresponding indecomposable tilting
vector bundle. Then the indecomposable objects in Silt.C / are precisely those of the
form T! Œn!h&ni for ! 2)C and n 2 Z.

3.3. Serre–Grothendieck duality
The Serre–Grothendieck duality functor on N is the functor

DDDN WDbCohG!Gm.N /op!DbCohG!Gm.N /

given by DN D RHom.&;ON /. This definition involves a choice (see [3, Section
3.2] for a discussion). Other variants of these functors that we will need include

DC DRHom
!
&;OC Œ& codimC !hcodimC i

"
on DbCohG!Gm.C /,

Dg DRHom
!
&;OgŒrankG!h& rankGi

"
on DbCohG!Gm.g/.

Here, C is a nilpotent orbit, and codimC is defined to be its codimension in N .
For compatibilities among these functors, let j WN ,! g and iC W C ,!N be the

inclusion maps. Then we have

j ŠOgŒrankG!h& rankGiŠON ; i ŠCON ŠOC Œ& codimC !hcodimC i:
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(For a proof of the latter, see [3, Corollary 2.5]; very similar reasoning yields the
former isomorphism as well.) It follows that

D ı j$ Š j$ ıD and j $ ıDŠD ı j Š: (3.4)

One can also define D on open subsets of g or N . For instance, on gC , we have

D ı jC$ Š jC$ ıD and j $C ıDŠD ı j ŠC : (3.5)

Now let U 'N be aG-stable open subset, and let C be a nilpotent orbit that is closed
in U . If we let iC W C ,! U be the inclusion map, then

D ı iC$ Š iC$ ıD: (3.6)

There are also statements involving i$C and i ŠC , but because U is usually not smooth,
these functors take values in D#CohG!Gm.C / or DCCohG!Gm.C /, rather than
DbCohG!Gm.C /. We will mostly avoid unbounded derived categories in this paper.

3.4. Opposition
Recall that an opposition is an involutive automorphism $ W G ! G that preserves
some maximal torus T ' G and satisfies $.t/ D t#1 for all t 2 T . The existence
of an opposition follows from [21, Corollary II.1.16]. Given a G-module V , let V $

denote the representation obtained by twisting the G-action by $ . See [3, Section 4]
for a discussion of how to extend this construction to a functor

.&/$ WDbCohG!Gm.N /!DbCohG!Gm.N /:

According to [3, Corollary 4.2], this functor preserves supports. Moreover, its action
on coherent sheaves on an orbit can be described explicitly using [3, Lemma 4.3],
which yields for each nilpotent orbit C 'N an involutive automorphism

id" $C WGm !GxC !Gm !GxC :

Let F 2 CohG!Gm.N / be such that F jNC is supported scheme-theoretically on
C . Thus, we can regard F jC as an object of Rep.Gm ! GxC / via (3.2). Then [3,
Lemma 4.3] implies that

.F $ /jC Š .F jC /id!$C : (3.7)

LEMMA 3.2
Let T be a tilting GxCred -module, regarded as a Gm ! GxC -module with trivial Gm-
action. Then T id!$C Š T $.
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Proof
The analogous statement for irreducible representations of Gm !GxC is shown in the
proof of [3, Theorem 4.5] (see also [3, Remark 4.6]). From this, one sees that if V is
the costandard GxCred -module with simple socle L, then V id!$C has simple socle L$,
and furthermore it has the same composition factors as the appropriate costandard
module. It follows easily from this that V id!$C is in fact isomorphic to the costandard
module with simple socle L$. Dually, if V is a standard module with simple quotient
L, then V id!$C is the standard module with simple quotient L$. The claim for tilting
modules follows from these observations.

LEMMA 3.3
(1) The category Silt.C /'DbCohG!Gm.C / is preserved by the Serre–Grothendieck

duality functor. Specifically, we have

D
!
T! Œn!h&ni

"
Š T $! Œ& codimC & n!hcodimC C ni:

(2) The category Silt.C /'DbCohG!Gm.C / is preserved by the opposition func-
tor .&/id!$C WDbCohG!Gm.C /!DbCohG!Gm.C /. Specifically, we have

!
T! Œn!h&ni

"id!$C Š T $! Œn!h&ni:

Proof
Part (1) follows from the observation that under the equivalence (3.2), DC corre-
sponds to the functor

RHom
!
&;kŒ& codimC !hcodimC i

"
W

DbRep.Gm !GxC /op!DbRep.Gm !GxC /:

Part (2) is an immediate consequence of Lemma 3.2.

4. Nilpotent orbits embedded in the Lie algebra
The goal of this section is to extend the co-t -structure (3.3) on a nilpotent orbit C to
a co-t -structure on infinitesimal neighborhoods of C in gC . More precisely, consider
the derived categoryDb

CCohG!Gm.gC / of complexes of coherent sheaves on gC with
set-theoretic support on C . The main result of this section equips Db

CCohG!Gm.gC /
with a co-t -structure such that

jC$ WDbCohG!Gm.C /!Db
CCohG!Gm.gC /

is co-t -exact.
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4.1. Tangent and normal spaces
We begin with a series of calculations involving the tangent and normal spaces to C '
g at the point xC 2 C , denoted by TxCC and VxC , respectively. There are Gm"GxC -
equivariant isomorphisms

TxCC Š ŒxC ;g!; VxC Š g=ŒxC ;g!:

These spaces fit into the short exact sequence of Gm "GxC -modules

0! ŒxC ;g!! g! g=ŒxC ;g!! 0: (4.1)

LEMMA 4.1
(1) As a Gm !GxC -module, VxC has Gm-weights(&2.
(2) Let i ! 1. As a GxCred -module,

Vi VxC has good filtration dimension( i & 1.

Proof
The cocharacter (xC induces a grading g DLi2Z gi . The adjoint action of GxCred
preserves this grading, and the map ad.x/ W g! g sends each gi to giC2. Thus, (4.1)
is the direct sum of short exact sequences of GxCred -modules

0! ŒxC ;gi#2!! gi ! gi=ŒxC ;gi#2!! 0:

According to the proof of [22, Proposition 5.8], the operator ad.xC / W gi#2! gi is
surjective for i > 0, so taking the sum over all i ( 0, we obtain

0!
M
i&0
ŒxC ;gi#2!!

M
i&0

gi ! VxC ! 0: (4.2)

Under the isomorphism (3.1), we see that t 2Gm acts on v 2 gi by t #vD .(xC .t/; t/ #
vD (xC .t/t#2vD t i#2v. Thus, (4.2) shows that VxC has Gm-weights(&2.

By [22, Proposition 5.8] again, ad.xC / W gi#2! gi is injective for i & 2 < 0, so
we can rewrite (4.2) as short exact sequence of GxCred -modules

0! g&#2
ad.xC /&&&&! g&0! VxC ! 0; (4.3)

where we introduce the notation

g&n D
M
i&n

gi :

(Note that the passage from (4.2) to (4.3) does not respect the Gm-action on the first
term.) This sequence implies that any exterior power

Vj g&0 admits a GxCred -stable
filtration
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0DM j
#1 'M

j
0 'M

j
1 ' # # #M

j
j D

ĵ

.g&0/

such that

M
j
k
=M

j
k#1 Š

j#k̂
.g&#2/˝

k̂

VxC :

As a GxCred -module, g&n is a direct summand of g, and so
Vj .g&n/ is a direct

summand of
Vj g. Using Theorem 3.1 and Lemma 4.2 below, we conclude that

ĵ

.g&n/ has good filtration dimension( j & 1. (4.4)

We will now show by induction on j (for j ! 1) that every step M j
k

of the filtra-
tion described above has good filtration dimension ( j & 1. We will simultaneously
prove that

Vj VxC has good filtration dimension( j & 1. If j D 1, then the modules

M 1
0 D g&#2 and M 1

1 D g&0

have good filtrations by (4.4), and then the short exact sequence (4.3) shows that VxC
has a good filtration.

Now suppose that j > 1. We start by observing that M j
0 D

Vj g&#2 and M j
j DVj g&0 both have good filtration dimension( j & 1 by (4.4). We treat the remaining

M
j
k

by induction on k. Suppose 0 < k < j , and that M j
k#1 is known to have good

filtration dimension( j & 1. Consider the short exact sequence

0!M
j
k#1!M

j
k !

j#k̂
.g&#2/˝

k̂

VxC ! 0:

Since k < j , by induction,
Vk VxC has good filtration dimension( k & 1, so by [17,

Proposition 3.4(c)],
Vj#k.g&#2/ ˝

Vk VxC has good filtration dimension ( j &
2. The short exact sequence above then implies that M j

k also has good filtration
dimension( j & 1.

It remains to show that
Vj VxC has good filtration dimension( j & 1. This fol-

lows from the short exact sequence

0!M
j
j#1!M

j
j !

ĵ

VxC ! 0:

LEMMA 4.2
Let i ! 1. As a G-representation, the i th exterior power

Vi g of the adjoint represen-
tation has good filtration dimension( i & 1.
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Proof
According to [13, Proposition 4.4], under our assumptions on G, the symmet-
ric algebra Sym.g/ has a good filtration. Recall that

Vi g can be identified with
TorSym.g/

i .k;k/. The latter can be computed using the bar resolution of the trivial
Sym.g/-module. Explicitly, if we let

B ij D
M

a1;:::;aj%1
a1C(((CajDi

Syma1.g/˝ # # #˝ Symaj .g/;

then there is an exact sequence

0!
î

g!B ii !B ii#1! # # #!B i1! 0:

(See, e.g., [32, (1.7)] for a formula for the maps in this complex.) Since each B ij
has a good filtration, this sequence shows that

Vi g has good filtration dimension (
i & 1.

LEMMA 4.3
Let jC W C ,! gC be the inclusion map. For all k ! 0, we have Extk.jC$OC ;
jC$OC /Š jC$

Vk VC , where VC is the normal bundle on C .

Proof
Observe first that each Extk.jC$OC ; jC$OC / is scheme-theoretically supported on
C , as shown by the following calculation:

Extk.jC$OC ; jC$OC /ŠHk
!
RHom.jC$OC ; jC$OC /

"

Š jC$Hk
!
RHom.j $C jC$OC ;OC /

"
:

Let Ek 2CohG!Gm.C / be the object such that Extk.jC$OC ; jC$OC /Š jC$Ek .
For k D 0, it is clear that Hom.jC$OC ; jC$OC /Š jC$OC . Next, let I ' OgC

be the ideal sheaf corresponding to C , so that we have a short exact sequence 0!
I!OgC ! jC$OC ! 0. This gives rise to a long exact sequence

0!Hom.jC$OC ; jC$OC /
'&! jC$OC !Hom.I; jC$O/

! Ext1.jC$OC ; jC$OC /! Ext1.OgC ; jC$OC /! # # # :

Since the last term vanishes and the first two terms are isomorphic, we have

Ext1.jC$OC ; jC$OC /ŠHom.I; jC$O/Š jC$Hom.j $CI;OC /:
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The sheaf j $CIŠ I=I2 is the conormal sheaf, so Hom.j $CI;OC / is the normal sheaf
VC . So far we have shown that

E0 ŠOC D
0̂

VC and E1 Š VC D
1̂

VC : (4.5)

To proceed further, we will exploit the fact that
L
k Extk.jC$OC ; jC$OC / is a

sheaf of algebras. It follows that
L
k Ek is also a sheaf of algebras; it corresponds

under (3.2) to a graded ring with a compatible .G "Gm/
xC -action.

We will now compute this ring. Let S be a (xC -stable linear complement to
ŒxC ;g! in g. (In general, S will not be stable underGxC .) Then xC CS is a transverse
slice to C in g: it does not meet @C , and the map

m WG " S! gC given by .g; s/ 7!Ad.g/.xC C s/

is smooth. It is also G "Gm-equivariant, where we let G "Gm act on G " S by

.g; z/ # .h; s/D
!
gh(#1xC .z/; z

#2Ad
!
(xC .z/

"
.s/
"
:

Consider the following diagram:

Since m and m0 are smooth, by smooth base change, we have natural isomorphisms

m$ Extk.jC$OC ; jC$OC /Š Extk. Q|$OG ; Q|$OG/Š Q|$m$0Ek :

Moreover, the direct sum
L
km
$ Extk.jC$OC ; jC$OC / is again a sheaf of algebras.

These sheaves live in CohG!Gm.G " S/. Now consider the group ¹.(xC .z/; z/ W z 2
Gmº'G "Gm. This group is isomorphic to Gm, and it stabilizes ¹eº " S 'G " S ,
so we obtain equivalences of categories

CohG!Gm.G " S/ŠCohGm.S/ and CohG!Gm.G/ŠCohGm.S/;

analogous to (3.2). Thus, computing m$ Extk.jC$OC ; jC$OC / is equivalent to com-
puting the sheaves Extk.i$O¹0º; i$O¹0º/Š i$ Extk.i$O¹0º; i$O¹0º/. Since S is a vec-
tor space, it is well known that

M
k%0

Extk.i$O¹0º; i$O¹0º/Š
"̂
S:
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Let us summarize: the sheaf of rings
L
k Ek corresponds under (3.2) to a graded

Gm ! GxC -equivariant ring. The computation above shows that the underlying
graded ring is an exterior algebra (the GxC -action is lost in this computation). In
view of (4.5), we must have Ek ŠVk V for all k ! 0.

COROLLARY 4.4
For any F 2CohG!Gm.C /, we have

H i .j $C jC$F /ŠF ˝
#î

V$C ; H i .j ŠC jC$F /Š F ˝
î

VC :

Proof
We have

jC$RHom.j $C jC$OC ;OC /ŠRHom.jC$OC ; jC$OC /;

and hence, by Lemma 4.3,

jC$H i
!
RHom.j $C jC$OC ;OC /

"
Š Exti .jC$OC ; jC$OC /Š jC$

î

VC :

The functor Hom.&;OC / on CohG!Gm.C / is exact; it corresponds via (3.2) to
taking the contragredient of a .G " Gm/

xC -represesentation. We conclude that
Hom.H#i .j $C jC$OC /;OC /Š

Vi VC , and therefore

H i .j $C jC$OC /Š
#î

V$C :

Now let F 2 CohG!Gm.C /. It is enough to prove that the isomorphisms in the
statement of the corollary hold after applying jC$. The projection formula implies
that

jC$j $C jC$F Š jC$.OC
L
˝ j $C jC$F /Š jC$OC

L
˝ jC$F Š jC$.j $C jC$OC

L
˝F /:

Since ˝ on CohG!Gm.C / is exact, we deduce that

H i .j $C jC$F /ŠH i ..j $C jC$OC /˝F Š
#î

V$C ˝F :

The formula for j ŠC jC$F follows by a similar calculation using

jC$j ŠC jC$F Š jC$RHom.OC ; j ŠC jC$F /Š jC$RHom.j $C jC$OC ;F /:
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4.2. Construction of the co-t -structure
We are now ready to put the calculations above to use.

LEMMA 4.5
(1) The functor

j ŠC jC$ WDbCohG!Gm.C /!DbCohG!Gm.C /

is left co-t -exact. Moreover, for F 2 DbCohG!Gm.C /&0, the cone of the
adjunction map F ! j Šj$F lies in DbCohG!Gm.C /&#1.

(2) The functor

j $C jC$ WDbCohG!Gm.C /!DbCohG!Gm.C /

is right co-t -exact. Moreover, for F 2DbCohG!Gm.C /%0, the cocone of the
adjunction map j $j$F !F lies in DbCohG!Gm.C /%1.

Proof
We will prove the first assertion; the second one is similar. We must show that if F 2
DbCohG!Gm.C /&0, then j ŠC jC$F 2 DbCohG!Gm.C /&0. Since DbCohG!Gm.C /

is generated under extensions by objects of the form T! Œn!hki with n C k ! 0, it
is enough to consider the special case F D T! Œn!hki. The adjunction map F !
j ŠC jC$F induces an isomorphism F

'&!H0.j ŠC jC$F /. Thus, to prove the lemma, it
is enough to show that the higher cohomology sheaves H i .j ŠC jC$F /Œ&i ! with i ! 1
lie in DbCohG!Gm.C /&#1. By Corollary 4.4, we have

H i#n!j ŠC jC$T! Œn!hki
"
Š T!hki ˝

î

VC :

Thus, the lemma comes down to showing that

T!hki ˝
î

VxC Œn& i ! 2DbRep.Gm !GxC /&#1 for i ! 1. (4.6)

We will now prove (4.6). By Lemma 4.1(1), the Gm-action on
Vi VxC has

weights ( &2i . Therefore, as a Gm " GxCred -representation,
Vi VxC can be decom-

posed as

î

VxC D
M
j%2i

Nij hj i;

where each Nij is some GxCred -module, regarded as a Gm "GxCred -module with trivial
Gm-action.
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By Lemma 4.1(2), each Nij has good filtration dimension ( i & 1, and hence
so does T! ˝ Nij (cf. [17, Proposition 3.4]). By Lemma 2.5, we have T!hki ˝
Nij hj iŒn& i ! 2DbRep.Gm !GxC /&i#1#.jCk/#.n#i/. Since j ! 2i and nC k ! 0,
this object lies in DbRep.Gm !GxC /&#1, as desired.

PROPOSITION 4.6
For any nilpotent orbit C ' g, there is a unique co-t -structure on Db

CCohG!Gm.gC /
such that

jC$ WDbCohG!Gm.C /!Db
CCohG!Gm.gC /

is co-t -exact. The indecomposable silting objects in Db
CCohG!Gm.gC / are precisely

those of the form jC$T! Œn!h&ni with ! 2)C and n 2 Z.

Proof
We wish to show that objects of the form jC$T with T 2 Silt.C / form a silting
subcategory ofDb

CCohG!Gm.gC /. These objects clearly remain indecomposable and
generate Db

CCohG!Gm.gC /, so it remains to show that for any T ;T 0 2 Silt.C /, we
have

Hom
!
jC$T ; jC$T 0Œn!

"
D 0 whenever n > 0.

This follows by adjunction and Lemma 4.5.

By construction, the co-t -structure obtained in Proposition 4.6 has the following
explicit description:

Db
CCohG!Gm.gC /%0 D

the full subcategory of Db
CCohG!Gm.gC / generated

under extensions by jC$T! Œn!hki with nC k ( 0;

Db
CCohG!Gm.gC /&0 D

the full subcategory of Db
CCohG!Gm.gC / generated

under extensions by jC$T! Œn!hki with nC k ! 0:

The coheart of this co-t -structure is denoted by

SiltC .gC /DDb
CCohG!Gm.gC /%0 \Db

CCohG!Gm.gC /&0:

One can also describe this co-t -structure using vector bundles corresponding to Weyl
or dual Weyl modules for GxCred , in analogy with Remark 2.3.

Remark 4.7
We will see in Lemma 5.5 below that the functor jC$ W Silt.C /! SiltC .gC / is full.
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LEMMA 4.8
The category SiltC .gC /'Db

CCohG!Gm.gC / is preserved by the Serre–Grothendieck
duality functor. Specifically, we have

D
!
jC$T! Œn!h&ni

"
Š jC$T $! Œ& codimC & n!hcodimC C ni:

Proof
This is immediate from (3.5) and Lemma 3.3.

5. Nilpotent orbits embedded in the nilpotent cone
LetC ' g be a nilpotent orbit, and letU 'N be aG-stable open subset such thatC is
closed as a subset of U . The goal of this section is to show that the co-t -structure (3.3)
on C extends to a co-t -structure on infinitesimal neighborhoods of C in U .

Throughout this section, we let

iC W C ,! U and j W U ,! gC

be the inclusion maps. Here, iC is a closed immersion, and j is a locally closed
immersion. In general, j$ takes values in the derived categoryDCQCohG!Gm.gC / of
quasicoherent sheaves on gC . However, in the important special case where U DNC ,
j is a closed immersion, and j$ sends DbCohG!Gm.NC / to DbCohG!Gm.gC /.

LEMMA 5.1
There is a collection of positive integers n1; : : : ; nr such that for any
F 2CohG!Gm.U /, we have

Hk.j $j$F /Š
M

¹i1;:::;ikº*¹1;:::;rº
F
˝
&2.ni1 C # # #C nik /

˛
;

Hk.j Šj$F /Š
M

¹i1;:::;ikº*¹1;:::;rº
F
˝
2.ni1 C # # #C nik /

˛
:

Proof
Since any F 2 CohG!Gm.U / can be obtained as the restriction of an object of
CohG!Gm.N /, it is enough to prove the lemma in the special case where C is the
zero orbit, so that U DN . We will work on N from now on, and let j WN ,! g be
the inclusion map.

The Gm-action on g equips its coordinate ring kŒg!D Sym.g$/ with a grading in
nonnegative, even degrees. As in [22, Section 7.13], let f1; : : : ; fr denote a minimal
set of homogeneous generators of the k-subalgebra Sym.g$/G . These generators have
strictly positive, even degrees. By [22, Proposition 7.13], we have r D codimg.N /

and
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kŒN !Š Sym.g$/=Sym.g$/hf1; : : : ; fri

as a G " Gm-equivariant algebra. As a consequence, N is a complete intersection.
Let V D hf1; : : : ; fri denote their k-span, and note that V is trivial as a G-module
and has strictly positive Gm-weights; thus, as a G "Gm-module,

V Š
M

jD1;:::;r
kh&2nj i;

where nj D 1
2 degfj > 0 for all j .

There is a G "Gm-equivariant Koszul resolution

0!Og˝
r̂

.V /! # # #!Og˝
2̂

.V /!Og˝ V !Og! j$ON ! 0: (5.1)

As in the proof of Corollary 4.4, to prove the present lemma, it is enough to
compute the cohomology sheaves of the objects

j$j $j$F Š j$ON

L
˝ j$F and j$j Šj$F ŠRHom.j$ON ; j$F /:

Both of these can be computed using the resolution (5.1). The differentials in that
resolution are defined in terms of multiplication by one of the fi ’s, which vanish on
N . Thus, after applying .&/˝ j$F or Hom.&; j$F /, the differentials become zero.
We conclude that

H i .j$j $j$F /Š
#î
V ˝ j$F ; H i .j$j Šj$F /Š

î

V $˝ j$F ;

and the result follows.

PROPOSITION 5.2
LetU 'N be aG-stable open subset, and let iC W C ,! U be the inclusion of a nilpo-
tent orbit that is closed in U . There is a unique co-t -structure on Db

CCohG!Gm.U /

such that

iC$ WDbCohG!Gm.C /!Db
CCohG!Gm.U /

is co-t -exact. The indecomposable silting objects in Db
CCohG!Gm.U / are precisely

those of the form iC$T! Œn!h&ni with ! 2)C and n 2 Z.

Proof
As in the proof of Proposition 4.6, we will be done if we can show that for any !,
% 2)C ,
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Hom
!
iC$T! ; iC$T"hkiŒn!

"
D 0 if n >&k. (5.2)

We have the maps iC W C ,! U , j W U ,! gC , and jC D j ı iC W C ,! gC . We can
already deduce from Proposition 4.6 that

Hom
!
j $j$iC$T! ; iC$T"hkiŒn!

"
DHom

!
jC$T! ; jC$T"hkiŒn!

"
D 0 (5.3)

if n > &k. Let K D *&#1j $j$iC$T! . Since H0.j $j$iC$T!/Š iC$T! , we have a
truncation distinguished triangle

K! j $j$iC$T!! iC$T!! : (5.4)

Lemma 5.1 implies that for 1( i ( r ,

H#i .K/DH#i .j $j$iC$T!/Š
.ri/M
jD1

iC$T!h&nij i; (5.5)

where nij ! 2i for all i , j .
To prove (5.2), suppose instead that this Hom-group is nonzero for some integers

k, n with n > &k. Moreover, assume that our pair .k; n/ is chosen with n mini-
mal. (This is possible since this Hom-group automatically vanishes for n < 0.) Apply
Hom.&; iC$T"hkiŒn!/ to (5.4) to obtain a long exact sequence

# # #!Hom
!
K; iC$T"hkiŒn& 1!

" f&!Hom
!
iC$T! ; iC$T"hkiŒn!

"

!Hom
!
j $j$iC$T! ; iC$T"hkiŒn!

"
! # # # :

The last term vanishes by (5.3), so f is surjective, and we deduce that Hom.K;

iC$T"hkiŒn& 1!/¤ 0.
On the other hand, for i D 1; : : : ; r , we have

Hom
!
H#i .K/Œi !; iC$T"hkiŒn& 1!

"
Š
.ri/M
jD1

Hom
!
iC$T! ; iC$T"hkC nij iŒn& 1& i !

"
:

Since nij ! 2i ! i C 1 for every term here, we have .n & 1 & i/ > &.k C nij /. If
one of the Hom-groups above is nonzero, that would contradict the minimality of n
in our pair .k; n/. So we must have Hom.H#i .K/Œi !; iC$T"hkiŒn& 1!/D 0 for all i .
From this, it is easily deduced that Hom.K; iC$T"hkiŒn& 1!/D 0, contradicting the
previous paragraph.

As usual, the co-t -structure obtained above can be described as follows:
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Db
CCohG!Gm.U /%0 D

the full subcategory of Db
CCohG!Gm.U / generated

under extensions by iC$T! Œn!hki with nC k ( 0I

Db
CCohG!Gm.U /&0 D

the full subcategory of Db
CCohG!Gm.U / generated

under extensions by iC$T! Œn!hki with nC k ! 0:

The coheart of this co-t -structure is denoted by

SiltC .U /DDb
CCohG!Gm.U /%0 \Db

CCohG!Gm.U /&0:

LEMMA 5.3
The category SiltC .U / 'Db

CCohG!Gm.U / is preserved by the Serre–Grothendieck
duality functor. Specifically, we have

D
!
iC$T! Œn!h&ni

"
Š iC$T $! Œ& codimC & n!hcodimC C ni:

Proof
This is immediate from (3.6) and Lemma 3.3.

We can extract the following corollary from the proof of Proposition 5.2.

COROLLARY 5.4
(1) If F 2Db

CCohG!Gm.U /&0, then the cone of the adjunction map F ! j Šj$F
lies in Db

CCohG!Gm.U /&#1.
(2) If F 2Db

CCohG!Gm.U /%0, then the cocone of the adjunction map j $j$F !
F lies in Db

CCohG!Gm.U /%1.

Proof
We will prove the second assertion; the first one is similar. It is enough to consider
the special case F D iC$T! Œn!hki with nC k ( 0. We most show that the object K

in (5.4) lies in Db
CCohG!Gm.U /%1. This follows from (5.5) and the fact that &i &

nij (&1 for all i ! 1.

The next two statements involve the special case U DNC , where j is a closed
immersion.

LEMMA 5.5
If F 2Db

CCohG!Gm.NC /%0 and G 2Db
CCohG!Gm.NC /&0, then the natural map

Hom.F ;G /!Hom.j$F ; j$G /

is surjective. Thus, j$ restricts to a full functor SiltC .NC /! SiltC .gC /.
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Proof
Let J be the cone of the adjunction map G ! j Šj$G ! J!. We have a long exact
sequence

# # #!Hom.F ;G /!Hom.F ; j Šj$G /!Hom.F ;J/! # # # :

By Corollary 5.4, we have J 2Db
CCohG!Gm.NC /&#1, so the last term vanishes. The

lemma follows.

COROLLARY 5.6
The functor

j$ WDb
CCohG!Gm.NC /!Db

CCohG!Gm.gC /

is co-t -exact. The functors

j $; j Š WDb
CCohG!Gm.gC /!Db

CCohG!Gm.NC /

are right and left co-t -exact, respectively.

Proof
The claim about j$ is obvious from the description of silting objects in the two cate-
gories. The claims for j $ and j Š follow by adjunction.

6. The nilpotent cone
This section contains the main geometric result of the paper: the construction of a
co-t -structure on DbCohG!Gm.N /. We will build this co-t -structure using the co-
t -structures on infinitesimal neighborhoods of nilpotent orbits from Proposition 5.2.
More generally, we obtain a co-t -structure onDbCohG!Gm.U / for anyG-stable open
subset U 'N .

As a technical tool, we will use the following full subcategories of Db
NC
.gC /:

?Db
CCohG!Gm.gC /&n

D
´

F 2Db
NC

CohG!Gm.gC /
ˇ̌
ˇfor G 2Db

CCohG!Gm.gC /&n,
we have Hom.F ;G /D 0

µ
;

Db
CCohG!Gm.gC /

?
%n

D
´

F 2Db
NC

CohG!Gm.gC /
ˇ̌
ˇfor G 2Db

CCohG!Gm.gC /%n,
we have Hom.G ;F /D 0

µ
:

Note that objects of ?Db
CCohG!Gm.gC /&n or Db

CCohG!Gm.gC /?%n are not required
to have set-theoretic support on C : they can be supported on all of NC .
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Similarly, for any G-stable open subset U 'N that contains C as a closed sub-
set, we define

?Db
CCohG!Gm.U /&n D

´
F 2DbCohG!Gm.U /

ˇ̌
ˇfor G 2Db

CCohG!Gm.U /&n,
we have Hom.F ;G /D 0

µ
;

Db
CCohG!Gm.U /?%n D

´
F 2DbCohG!Gm.U /

ˇ̌
ˇfor G 2Db

CCohG!Gm.U /%n,
we have Hom.G ;F /D 0

µ
:

An important special case of these categories is that in which U DNC .

LEMMA 6.1
Let F 2Db

CCohG!Gm.NC /, and let U 'NC be a G-stable open subset containing
C . We have that F lies in ?Db

CCohG!Gm.NC /&n (resp., Db
CCohG!Gm.NC /

?
%n) if

and only if F jU lies in ?Db
CCohG!Gm.U /&n (resp., Db

CCohG!Gm.U /?%n).

Proof
If G 2 Db

CCohG!Gm.NC /, then the support of G is contained in C ' U , so
Hom.F ;G /ŠHom.F jU ;G jU / and Hom.G ;F /ŠHom.G jU ;F jU /.

For the next lemma, assume that U D NC . The proof is identical to that of
Lemma 5.5 and will be omitted.

LEMMA 6.2
If F 2 ?Db

CCohG!Gm.NC /&#1 and G 2 Db
CCohG!Gm.NC /&0, then the natural

map Hom.F ;G /!Hom.j$F ; j$G / is surjective.

LEMMA 6.3
(1) For all F 2Db

NC
CohG!Gm.gC /, there exist integers a < b such that

F 2 ?Db
CCohG!Gm.gC /&a \Db

CCohG!Gm.gC /
?
%b:

(2) For F 2DbCohG!Gm.NC /, we have F 2Db
CCohG!Gm.NC /

?
%b if and only

if j$F 2Db
CCohG!Gm.gC /?%b .

(3) For F 2DbCohG!Gm.NC /, we have F 2 ?Db
CCohG!Gm.NC /&a if and only

if j$F 2 ?Db
CCohG!Gm.gC /&a.

Proof
(1) Given F 2 Db

NC
CohG!Gm.gC /, any map F ! jC$T! Œn!hki factors through

F ! jC$j $CF . The object jC$j $CF lives in Db
CCohG!Gm.gC /. With respect to the

bounded co-t -structure on that category, we have
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jC$j $CF 2Db
CCohG!Gm.gC /%aC1

for some integer a. It follows that Hom.F ; jC$T! Œn!hki/ D 0 if nC k ! &a, and
hence that F 2 ?Db

CCohG!Gm.gC /&a. The proof of the existence of an integer b
such that F 2Db

CCohG!Gm.gC /?%b is similar, using jC$j ŠCF ! F .

(2) If F 2Db
CCohG!Gm.NC /

?
%b , then j$F 2Db

CCohG!Gm.gC /?%b by adjunc-

tion and the right co-t -exactness of the functor j $ W Db
CCohG!Gm.gC / !

Db
CCohG!Gm.NC / (see Corollary 5.6). For the opposite implication, suppose we

have j$F 2Db
CCohG!Gm.gC /?%b but F …Db

CCohG!Gm.NC /
?
%b . For simplicity, let

us assume without loss of generality that b D 0. Then there is some nonzero mor-
phism iC$T!! F Œn!hki with nC k > 0. Choose such a morphism with n minimal.
We will now follow the pattern of the proof of Proposition 5.2. We consider the
distinguished triangle (5.4), which gives rise to a long exact sequence

# # #!Hom
!
KŒ1!;F Œn!hki

"
!Hom

!
iC$T! ;F Œn!hki

"

!Hom
!
j $jC$T! ;F Œn!hki

"
! # # # :

The last term vanishes by adjunction and the fact that j$F belongs to
Db
CCohG!Gm.gC /?%0, so the first term must be nonzero. By the same reasoning

as in Proposition 5.2, this implies that

Hom
!
iC$T! ;F hkC nij iŒn& 1& i !

"
¤ 0

for some integers i ! 1 and nij ! i C 1, but this contradicts the minimality of n.
(3) The proof of this statement is very similar to that of part (2). We omit the

details.

By adjunction, for F 2Db
CCohG!Gm.gC /, we have

F 2 ?Db
CCohG!Gm.gC /&a if and only if

j $CF 2DbCohG!Gm.C /%aC1;

F 2Db
CCohG!Gm.gC /

?
%b if and only if

j ŠCF 2DbCohG!Gm.C /&b#1:

(6.1)

LEMMA 6.4
Let U ' N be a G-stable open subset that contains C as a closed subset. For all
F 2DbCohG!Gm.U /, there exist integers a < b such that

F 2 ?Db
CCohG!Gm.U /&a \Db

CCohG!Gm.U /?%b:
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Proof
Choose some F 0 2 DbCohG!Gm.NC / such that F 0jU Š F . According to Lem-
ma 6.1, it is enough to show that there exist integers a < b such that

F 0 2 ?Db
CCohG!Gm.NC /&a \Db

CCohG!Gm.NC /
?
%b:

This claim is immediate from Lemma 6.3.

PROPOSITION 6.5
Let U ' N be a G-stable open subset that contains C as a closed subset.
Let V D U " C , and let F 2 DbCohG!Gm.V /. Then there exists an object
QF 2DbCohG!Gm.U / such that

QF jV ŠF and QF 2 ?Db
CCohG!Gm.U /&#1 \Db

CCohG!Gm.U /?%1:

Moreover, if F is indecomposable, then QF can be chosen to be indecomposable as
well.

Proof
For the existence of QF , Lemma 6.1 implies that it is enough to work in the special
case where U D NC . We will assume that U D NC until the last paragraph of the
proof. Under this assumption, Corollary 5.6 and Lemma 6.2 are available.

Choose some object F 0 2DbCohG!Gm.NC / such that F 0jV Š F , and let a ( b
be integers

F 0 2 ?Db
CCohG!Gm.NC /&a \Db

CCohG!Gm.NC /
?
%b: (6.2)

Of course, a may be replaced by any smaller integer, and b by any larger integer. We
may therefore assume that a (&1 and b ! 1.

Suppose for now that a < &1. By (6.1), the object j $C j$F
0 lies in

DbCohG!Gm.C /%aC1, so by the axioms for a co-t -structure, there is a distinguished
triangle

G1! j $C j$F
0! G2!;

where G1 2DbCohG!Gm.C /%aC2, and

G2 2DbCohG!Gm.C /%aC1 \DbCohG!Gm.C /&aC1:

By the co-t -exactness of jC$ and the assumption that aC 2 < b, we have

jC$G2Œ&1! 2Db
CCohG!Gm.gC /%aC2 \Db

CCohG!Gm.g/&aC2

'Db
CCohG!Gm.gC /%aC2 \Db

CCohG!Gm.gC /&b#1 (6.3)

' ?Db
CCohG!Gm.gC /&aC1 \Db

CCohG!Gm.gC /
?
%b;
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where the last step follows from the axioms for a co-t -structure. Applying Lemma 6.3
to jC$G2Œ&1!D j$iC$G2Œ&1!, we find that

iC$G2Œ&1! 2 ?Db
CCohG!Gm.NC /&aC1 \Db

CCohG!Gm.NC /
?
%b: (6.4)

Now let ( W j$F 0! j$iC$G2 be the composition

j$F 0! jC$j $C j$F
0! jC$G2 D j$iC$G2;

where the first map is an adjunction map. We claim that if nC k D &a & 1, then the
map

Hom
!
jC$G2; jC$T! Œn!hki

"
!Hom

!
j$F 0; jC$T! Œn!hki

"
(6.5)

induced by ( is surjective. Indeed, any map j$F 0! jC$T! Œn!hki factors through
j$F 0! jC$j $C j$F

0 by adjunction, and then the long exact sequence

# # #!Hom
!
jC$G2; jC$T! Œn!hki

"
!Hom

!
jC$j $C j$F

0; jC$T! Œn!hki
"

!Hom
!
jC$G1; jC$T! Œn!hki

"
! # # #

proves the claim, because the last term vanishes.
By Lemma 6.2, the map ( is obtained by applying j$ to some (not necessarily

unique) morphism Q( W F 0! iC$G2. Complete this map to a distinguished triangle

F 00! F 0
Q%&! iC$G2! :

Using (6.4), we see that

F 00jV ŠF 0jV ŠF ;

F 00 2 ?Db
CCohG!Gm.NC /&a \Db

CCohG!Gm.NC /
?
%b:

We will now prove the stronger claim that

F 00 2 ?Db
CCohG!Gm.NC /&aC1 \Db

CCohG!Gm.NC /
?
%b: (6.6)

By Lemma 6.3, it is enough to show that

j$F 00 2 ?DbCohG!Gm
C .gC /&aC1:

Since we already know that j$F 00 2 ?DbCohG!Gm
C .gC /&a, it is enough to show that

Hom
!
j$F 00; jC$T! Œn!hki

"
D 0 if nC k D&a& 1. (6.7)
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The distinguished triangle j$F 00 ! j$F 0
%&! jC$G2 ! gives rise to a long exact

sequence

# # #!Hom
!
jC$G2; jC$T! Œn!hki

"
!Hom

!
j$F 0; jC$T! Œn!hki

"

!Hom
!
j$F 00; jC$T! Œn!hki

"
!Hom

!
jC$G2Œ&1!; jC$T! Œn!hki

"
! # # #

Here, the first map is surjective (see (6.5)), and the last term vanishes by (6.3). We
have now proved (6.7), and hence (6.6).

The construction carried out above shows how to modify the object F 0 in such
a way that the integer a in (6.2) can be replaced by a C 1. The proof relies on the
assumption that aC 1 < b & 1. A similar (but “dual”) construction lets us replace b
by b & 1 (again assuming that aC 1 < b & 1). Since we began with the assumption
that a ( &1 and b ! 1, these two constructions can be repeated until we arrive at an
object QF as in the statement of the proposition.

It remains to prove the last assertion in the proposition. For this, we return
to allowing U to be any G-stable open subset. Suppose F is indecomposable.
The object QF obtained by the construction above is not necessarily indecompos-
able, but any direct summand of it still lies in the category ?Db

CCohG!Gm.U /&#1 \
Db
CCohG!Gm.U /?%1, and it must have some indecomposable summand whose restric-

tion to U is isomorphic to F .

LEMMA 6.6
Let U ' N be a G-stable open subset that contains C as a closed subset, and let
V D U " C . If F 2 ?Db

CCohG!Gm.U /&#1 and G 2Db
CCohG!Gm.U /?%1; then the

map

Hom
!
F ;G Œn!

"
!Hom

!
F jV ;G jV Œn!

"

is surjective for nD 0, and an isomorphism for n > 0.

Proof
Let h W V ,! U be the inclusion map. In the derived category of quasicoherent sheaves
DCQCohG!Gm.U /, we have a distinguished triangle

R#C .G /! G ! h$h$G ! :

From the long exact sequence obtained by applying Hom.F ;&/ to this triangle, we
see that it is enough to prove that

Hom
!
F ;R#C .G /Œn!

"
D 0 if n > 0.

Suppose we have a morphism ( W F !R#C .G /Œn!. We will work with this map
at the level of chain complexes as follows: First replace G by an injective resolution.
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Then, since #C sends injective sheaves to injective sheaves, R#C .G / is a bounded-
below complex of injective quasicoherent sheaves supported set-theoretically on C .
Since F is a bounded complex of coherent sheaves, the image of the chain map
( W F !R#C .G /Œn! is contained in some bounded subcomplex of coherent sheaves
E 'R#C .G /Œn!. Of course, the terms of E are also supported set-theoretically on C ,
so E belongs to Db

CCohG!Gm.U /. Using the co-t -structure on that category, we can
find a distinguished triangle

K1! E!K2!

with K1 2 Db
CCohG!Gm.U /%0 and K2 2 Db

CCohG!Gm.U /&#1. Since F belongs
to ?Db

CCohG!Gm.U /&#1, we have Hom.F ;K2/D 0, and any map F ! E factors
through K1.

To summarize, our map ( factors as a composition

F !K1! E!R#C .G /Œn!: (6.8)

Since K1 is set-theoretically supported on C , the map

Hom
!
K1;R#C .G /Œn!

" '&!Hom
!
K1Œ&n!;G

"

is an isomorphism. But since G 2Db
CCohG!Gm.U /?%1, both of these Hom-groups are

0. We conclude that the composition of maps in (6.8) is zero, as desired.

LEMMA 6.7
Let U ' N be a G-stable open subset, and let C ' U be a nilpotent orbit. For
! 2)C , there is (up to isomorphism) a unique object SU .C;T!/ 2DbCohG!Gm.U /

with the following properties:
(1) SU .C;T!/ is indecomposable.
(2) SU .C;T!/ is supported set-theoretically on C \U .
(3) If iC W C ,!NC \U denotes the inclusion map, then

SU .C;T!/jNC\U Š iC$T!
h
&1
2

codimC
iD1
2

codimC
E
:

(4) For each orbit C 0 ' @C \U , we have

j ŠC 0j$SU .C;T!/ 2DbCohG!Gm.C 0/&0;

j $C 0j$SU .C;T!/ 2DbCohG!Gm.C 0/%0:

Moreover, this object has the following additional properties:
(5) If V ' U is a smaller G-stable open subset that contains C , then

SU .C;T!/jV Š SV .C;T!/:
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(6) If C0 is a nilpotent orbit that is closed in U , and if C ¤ C0, then

SU .C;T!/ 2 ?Db
C0

CohG!Gm.U /&#1 \Db
C0

CohG!Gm.U /?%1:

Proof
We proceed by induction on the number of orbits in U . If U is empty, there is nothing
to prove. Otherwise, assume that the lemma is already known to hold when U is
replaced by any smaller open subset.

We will prove the existence of uniqueness of SU .C;T!/ satisfying (1)–(4).
Before doing this, let us show if SU .C;T!/ exists, it automatically satisfies proper-
ties (5) and (6) as well. Indeed, property (6) follows from property (4) by Lemma 6.3
and (6.1). For property (5), by induction, it is enough prove it in the special case
where V is the complement of a single closed G-orbit in U . Let C0 be such a closed
orbit, and let V D U "C0. Of course, property (5) is vacuous if C D C0. If C ¤ C0,
then by Lemma 6.6, restriction to V induces a surjective ring homomorphism

End
!
SU .C;T!/

"
! End

!
SU .C;T!/jV

"
:

Since SU .C;T!/ is indecomposable, the left-hand side above is a local ring, and so
the right-hand side is as well. We have shown that SU .C;T!/jV is indecomposable.
It is easy to see that SU .C;T!/jV satisfies properties (2)–(4) on V . Property (5) then
follows by the uniqueness of SV .C;T!/ (which holds by induction).

Let us now prove the existence of SU .C;T!/ satisfying (1)–(4). Choose a closed
G-orbit C0 ' U , and let V DU "C0 as above. If C D C0, it is obvious that

SU .C0;T!/D iC0$T!
h
&1
2

codimC0
iD1
2

codimC0
E

(6.9)

has the required properties. Otherwise, for C ¤ C0, we define

SU .C;T!/D
an indecomposable extension of SV .C;T!/ that
satisfies (6), obtained from Proposition 6.5.

This object obviously satisfies properties (1)–(3), as well as property (4) for C 0 ¤ C0.
Property (4) for C 0 D C0 follows from property (6) via Lemma 6.3 and (6.1). This
completes the proof of existence.

Finally, we must prove uniqueness. For C D C0, this is obvious. Suppose now
that C ¤ C0. If we had two objects S .1/U .C;T!/ and S .2/U .C;T!/ both satisfying (1)–
(4), then they would both satisfy properties (5) and (6) as well. By Lemma 6.6, restric-
tion to V induces a surjective map

Hom
!
S .1/U .C;T!/;S

.2/
U .C;T!/

"
! End

!
SV .C;T!/

"
:
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In particular, there exists a map (1 W S .1/U .C;T!/! S .2/U .C;T!/ such that (1jV D
idSV .C;T!/. Similarly, there is a map (2 W S .2/U .C;T!/! S .1/U .C;T!/ that also sat-
isfies (2jV D id. The composition (2(1 is an endomorphism of S .1/U .C;T!/ whose
image under the surjective ring homomorphism

End
!
S .1/U .C;T!/

"
! End

!
SV .C;T!/

"

is the identity map. Because this is a homomorphism of local rings, we deduce that
(2(1 is invertible. Likewise, (1(2 is invertible. It follows that (1 and (2 are them-
selves isomorphisms. This completes the proof of uniqueness.

THEOREM 6.8
Let U ' N be a G-stable open subset. The full additive subcategory of
DbCohG!Gm.U / consisting of direct sums of objects of the form

SU .C;T!/Œn!h&ni with C 'U , ! 2)C , and n 2 Z

is a silting subcategory.

Proof
It is easy to see that the collection of objects ¹SU .C;T!/Œn!h&niº generates
DbCohG!Gm.U / as a triangulated category. Thus, as in Propositions 4.6 and 5.2, the
result comes down to showing that

Hom
!
SU .C;T!/;SU .C

0;T!0/Œn!hki
"
D 0 if nC k > 0. (6.10)

To prove this, we proceed by induction on the number of orbits in U . If U is empty,
there is nothing to prove. Otherwise, let C0 be an orbit that is closed in U , and let
U 0 DU "C0. We consider various cases as follows:
" If C D C 0 D C0, then, in view of (6.9), the claim (6.10) is just part of Propo-

sition 5.2.
" If C D C0 but C 0 ' U 0, then (6.10) holds because SU .C

0;T!0/ satisfies prop-
erty (6) from Lemma 6.7.

" If C ' U 0 but C 0 D C0, then (6.10) holds because SU .C;T!/ satisfies prop-
erty (6) from Lemma 6.7.

" Finally, if both C and C 0 are contained in U 0, then Lemma 6.7(6) and
Lemma 6.6 together tell us that restriction to U 0 gives an isomorphism

Hom
!
SU .C;T!/;SU .C

0;T!0/Œn!hki
"

'&!Hom
!
SU 0.C;T!/;SU 0.C

0;T!0/Œn!hki
"

whenever nC k > 0. The right-hand side vanishes by induction.
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The silting subcategory described by the preceding theorem is denoted by

Silt.U /'DbCohG!Gm.U /:

Note that for any G-stable closed subset Z ' U , the collection of objects ¹SU .C;
T!/Œn!h&ni j C ' Zº generates Db

ZCohG!Gm.U / as a triangulated category. It fol-
lows immediately that the category

SiltZ.U /D Silt.U /\Db
ZCohG!Gm.U /

is a silting subcategory of Db
ZCohG!Gm.U /.

LEMMA 6.9
Let V ' U 'N be two G-stable open subsets, and let Z ' U be a G-stable subset
that is closed in U . The restriction functor

Db
ZCohG!Gm.U /!Db

Z\VCohG!Gm.V / given by F 7! F jV

is co-t -exact. If F 2Db
ZCohG!Gm.U /%0 and G 2Db

ZCohG!Gm.U /&0, then the map

Hom.F ;G /!Hom.F jV ;G jV / (6.11)

is surjective.

Proof
The co-t -exactness of the restriction functor is an immediate consequence of
Lemma 6.7(5). For the surjectivity of (6.11), by induction on the number of orbits in
U "V , we can reduce to the case where V is the complement of a single closed orbit
C0. In this case, by Lemma 6.7(6), the assumption that F 2 Db

ZCohG!Gm.U /%0
implies that F 2 ?Db

C0
CohG!Gm.U /&#1. Similarly, G lies in Db

C0
CohG!Gm.U /?%1.

By Lemma 6.6, we are done.

LEMMA 6.10
Let U ' N be a G-stable open subset, and let Z ' U be a G-stable subset that is
closed inU . For F 2DbCohG!Gm.U /, the following three conditions are equivalent:
(1) For each orbit C 0 'Z, we have j ŠC 0j$F 2DbCohG!Gm.C 0/&0.
(2) We have Hom.G ;F /D 0 for all G 2Db

ZCohG!Gm.U /%1.
(3) We have Hom.SU .C 0;T!/Œn!hki;F /D 0 for C 0 'Z, ! 2)C , and nC k (

&1.
Similarly, the following three conditions are equivalent:
(1) For each orbit C 0 'Z, we have j $C 0j$F 2DbCohG!Gm.C 0/%0.
(2) We have Hom.F ;G /D 0 for all G 2Db

ZCohG!Gm.U /&#1.
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(3) We have Hom.F ;SU .C 0;T!/Œn!hki/D 0 for C 0 'Z, ! 2)C , and nC k !
1.

Proof
We will prove the equivalence of the first set of three statements. The proof for
the second set of three statements is similar. In the induced co-t -structure on
Db
ZCohG!Gm.U /, the categoryDb

ZCohG!Gm.U /%1 is generated under extensions by
objects of the form SU .C

0;T!/Œn!hki with C 0 'Z and nCk (&1. This observation
yields the equivalence of statements (2) and (3).

To prove the equivalence of (1) with the other two conditions, we proceed by
induction on the number of orbits in Z. If Z consists of a single closed orbit C0, then
condition (2) just says that F 2 Db

C0
CohG!Gm.U /?%1. Using Lemmas 6.1 and 6.3

together with (6.1), we see that this condition is equivalent to (1).
If Z contains more than one orbit, choose a closed orbit C0 ' Z, and let V D

U "C0. Then, by induction, condition (1) is equivalent to
(4) The object F lies in Db

C0
CohG!Gm.U /?%1, and furthermore we have

Hom.SV .C 0;T!/Œn!hki;F jV /D 0 for C 0 'Z\V , ! 2)C , and nCk (&1.
By Lemma 6.6, the map

Hom
!
SU .C

0;T!/Œn!hki;F
"
!Hom

!
SV .C

0;T!/Œn!hki;F jV
"

is an isomorphism when nCk (&1. It follows that condition (4) is equivalent to (3).

LEMMA 6.11
(1) For anyG-stable open subsetU 'N , the category Silt.U /'DbCohG!Gm.U /

is preserved by the Serre–Grothendieck duality functor. Specifically, we have

D
!
SU .C;T!/Œn!h&ni

"
Š SU .C;T

$
! /Œ&n!hni:

(2) The category Silt.N /'DbCohG!Gm.N / is preserved by the opposition func-
tor .&/$ WDbCohG!Gm.N /!DbCohG!Gm.N /. Specifically, we have

!
S.C;T!/Œn!h&ni

"$ Š S.C;T $! /Œn!h&ni:

Proof
It is enough to prove these statements in the special case nD 0.

(1) It is clear that DSU .C;T!/ is indecomposable and supported on C \ U . By
Lemma 5.3, we have

!
DSU .C;T!/

"
jNC\U ŠD

#
iC$T!

h
&1
2

codimC
iD1
2

codimC
E$
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Š iC$T $!
h
&1
2

codimC
iD1
2

codimC
E
:

Finally, if C 0 ' @C \U , then by (3.4), (3.5), and Lemma 3.3, we find that

j ŠC 0j$D
!
SU .C;T!/

"
2DbCohG!Gm.C 0/&0;

j $C 0j$D
!
SU .C;T!/

"
2DbCohG!Gm.C 0/%0:

We have shown that DSU .C;T!/ satisfies the conditions from Lemma 6.7 that
uniquely characterize SU .C;T

$
! /. Part (1) of the lemma follows.

(2) It is clear that S.C;T!/
$ is indecomposable, and [3, Corollary 4.2] implies

that it is supported on C . The claim that

!
S.C;T!/

"
jNC Š iC$T $!

h
&1
2

codimC
iD1
2

codimC
E

follows from (3.7) applied to the coherent sheaf H
1
2 codimC .S.C;T!//, along with

Lemma 3.2. We have shown that S.C;T!/
$ satisfies the first three conditions from

Lemma 6.7 characterizing S.C;T $! /.
We will now prove that S.C;T!/

$ Š S.C;T $! / by induction on C with respect
to the closure partial order on nilpotent orbits. In view of the preceding paragraph,
it is enough to check condition (4) from Lemma 6.7 for C 0 ' @C . If C is the zero
nilpotent orbit, then @C is empty, and there is nothing to prove. Now suppose C is
not the zero orbit. By induction and the fact that .&/$ is an equivalence of categories,
we have

Hom
!
S.C;T!/

$ ;S.C 0;T!0/$ Œn!hki
"
ŠHom

!
S.C;T!/;S.C

0;T!0/Œn!hki
"

ŠHom
!
S.C;T!/

$ ;S.C 0;T $!0/Œn!hki
"
:

If nC k ! 1, the second expression above vanishes. As ! varies over XCC 0 , the object
S.C 0;T $!0/ varies over all silting objects whose support is C 0. By Lemma 6.10, the
vanishing of the third expression above implies that

j $C 0j$
!
S.C;T!/

$
"
2DbCohG!Gm.C 0/%0 for all C 0 ' @C :

A similar argument shows that

j ŠC 0j$
!
S.C;T!/

$
"
2DbCohG!Gm.C 0/&0 for all C 0 ' @C ;

and thus S.C;T!/
$ satisfies condition (4) from Lemma 6.7.
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7. Silting objects and the Lusztig–Vogan bijection
In Theorem 6.8, we have defined a co-t -structure on DbCohG!Gm.N /, which we
will call the orbitwise co-t -structure. On the other hand, in [4], the authors defined
another co-t -structure on DbCohG!Gm.N /, called the supportive co-t -structure. In
this section, we will briefly review the definition of the supportive co-t -structure, and
then we will prove that these two co-t -structures coincide.

7.1. Review of the Lusztig–Vogan bijection
Let PCohGm.N / be the category of G "Gm-equivariant perverse-coherent sheaves
on N (see [1], [14]). Recall that this is the heart of a t -structure onDbCohG!Gm.N /.
Furthermore, every object in this abelian category has finite length. The simple objects
can be described in terms of irreducible vector bundles on nilpotent orbits. Specifi-
cally, for ! 2 )C , let L! 2 CohG!Gm.C / be the corresponding irreducible vector
bundle. Then, for each nilpotent orbit C ' N and each ! 2 )C , there is a unique
simple object

IC.C;L!/ 2 PCohGm.N /

that is supported on C and satisfies

IC.C;L!/jNC Š iC$L!

h
&1
2

codimC
iD1
2

codimC
E
:

Moreover, every simple object is isomorphic to some IC.C;L!/hni.
This t -structure also admits a description in terms of pushforwards of line bundles

along the Springer resoluion + W eN ! N , where eN D T $.G=B/ is the cotangent
bundle of the flag variety of G. Let X be the weight lattice of G, and let XC ' X be
the set of dominant weights. Any weight " 2 X determines a line bundle OfN ."/ 2
DbCohG!Gm. eN /. Now assume that " 2XC. Let ı$! denote the length of the shortest
element w 2W such that w" 2&XC, and then set

,! D +$OfN .w0"/hı$!i; r! D +$OfN ."/h&ı$!i:

According to [1] and [14], these objects lie in PCohGm.N /. Moreover, for each " 2
XC, there is a canonical map

-! W,!!r! (7.1)

whose image (in the abelian category PCohGm.N /) is a simple object. That is, there
is a unique pair .C;!/ 2) such that -! factors as

,!! IC.C;L!/ ,!r!:
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(A priori, the image might have been of the form IC.C;L!/hni for some n 2 Z; this
integer was determined to be 0 in [3].) The resulting map

‚LV WXC
'&!)

is in fact a bijection, known as the Lusztig–Vogan bijection.
The usual partial order ( on XC (given by declaring that " ( . if . & " is

a sum of positive roots) is related to the Lusztig–Vogan bijection as follows: if
IC.C 0;L!0/hni occurs as a composition factor of ,! (or r!), then the pair .C 0;!0/
corresponds under the Lusztig–Vogan bijection to a weight .( ".

Now let

D.( "/D the full triangulated subcategory of DbCohG!Gm.N /

generated by ,&hni with .( " and n 2 Z.

D the full triangulated subcategory of DbCohG!Gm.N /

generated by r&hni with .( " and n 2 Z.

(The fact that this category can be defined either in terms of the ,&’s or the r&’s
comes from the theory of quasi-exceptional sets, developed in [1], [4], [14].) The
preceding paragraph can be reformulated as follows: for F 2DbCohG!Gm.N /, we
have

F 2D.( "/() every composition factor IC.C;L!/hni of every
pH i .F / corresponds to a weight .( " under ‚LV:

(7.2)

Here, pH i .&/ denotes cohomology with respect to the perverse-coherent t -structure.

7.2. The supportive co-t -structure
According to [4, Proposition 4.3] and the remarks following it, the objects ,! and
r! also determine a co-t -structure on DbCohG!Gm.N /, known as the supportive
co-t -structure, and given by

DbCohG!Gm.N /
supp
%0 D

the full subcategory generated under extensions and direct
summands by the ,!Œn!hki for " 2XC and nC k ( 0;

DbCohG!Gm.N /
supp
&0 D

the full subcategory generated under extensions and direct
summands by the r!Œn!hki for " 2XC and nC k ! 0:

Moreover, [4, Proposition 2.22] gives a classification of the indecomposable silting
objects for this category: for each " 2 XC, there is a unique (up to isomorphism)
indecomposable silting object

S! 2DbCohG!Gm.N /
supp
%0 \DbCohG!Gm.N /

supp
&0
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that is characterized by the following two properties: the object S! lies in D.( "/,
and the canonical map (7.1) factors as

,!!S!!r!:

Every indecomposable silting object is isomorphic to S!Œn!h&ni for some " 2 XC

and n 2 Z.

LEMMA 7.1
(1) The supportive co-t -structure is preserved by Serre–Grothendieck duality.

Specifically, we have

D
!
S!Œn!h&ni

"
ŠS#w0!Œ&n!hni:

(2) The supportive co-t -structure is preserved by the opposition functor .&/$ W
DbCohG!Gm.N /!DbCohG!Gm.N /. Specifically, we have

!
S!Œn!h&ni

"$ ŠS#w0!Œn!h&ni:

Proof
According to [3, (3.6) and Proposition 4.1], we have

D.,!/Šr#w0!; .,!/
$ Š,#w0!;

D.r!/Š,#w0!; .r!/$ Šr#w0!:

The lemma follows immediately. (In the case of D, these isomorphisms have been
known for much longer: see [1], [14].)

THEOREM 7.2
The orbitwise and supportive co-t -structures coincide. More precisely, we have

S! Š S.C;T!/;

where " corresponds to .C;!/ under the Lusztig–Vogan bijection.

Proof
Both the orbitwise and supportive co-t -structures are preserved by the functor
Œ1!h&1i. Next, let ı W DbCohG!Gm.N /op ! DbCohG!Gm.N / be the functor given
by ı.F / D D.F /$ . By Lemmas 6.11 and 7.1, both co-t -structures are preserved
by ı; moreover, for each indecomposable silting object F (with respect to either
co-t -structure), there is a unique integer n such that ı.F Œn!h&ni/Š F . Therefore,
by Lemma A.4, the two co-t -structures coincide.
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In particular, for each " 2 XC, the object S! is also an indecomposable silting
object in the orbitwise co-t -structure, so it is isomorphic to S.C;T!/Œn!h&ni for some
.C;!/ 2) and some n 2 Z. Since S! is preserved by ı, we must in fact have nD 0.
The isomorphisms S! Š S.C;T!/ determine a bijection

‚ WXC '&!):

To finish the proof, it remains to show that ‚D‚LV.
Suppose ‚."/ D .C;!/. The description of S.C;T!/ from Lemma 6.7 shows

that the object S.C;T!/jNC is a perverse-coherent sheaf, and that
iC$L! Œ&12 codimC !h12 codimC i occurs as a composition factor therein. The
restriction from N to NC is t -exact for the perverse-coherent t -structure, and it
sends any simple object to either 0 or a simple object. It follows that IC.C;L!/

occurs as a composition factor of pH0.S.C;T!//. Now let "0 D ‚#1LV .C;!/. Since
S.C;T!/ D S! lives in D.( "/, we see from (7.2) that "0 ( ", or in other words,
that

‚#1LV

!
‚."/

"
( ": (7.3)

This holds for all " 2 XC. In particular, if " is minimal with respect to (, then
‚#1LV .‚."// D ". For any " 2 XC, the set ¹. 2 XC j . ( "º is finite, so by induc-
tion with respect to the partial order (, we see that (7.3) implies that ‚#1LV .‚."//D "
for all ", as desired.

When k has characteristic 0, the representation theory of GxCred is semisim-
ple. In particular, each indecomposable tilting vector bundle T! coincides with the
irreducible vector bundle L! . In this situation, we obtain the following alternative
description of S.C;L!/.

COROLLARY 7.3
If k has characteristic 0, then for every nilpotent orbit C 'N and every ! 2)C , we
have S.C;L!/Š IC.C;L!/.

The following proof is short, but it requires some notions that are not used else-
where in this paper. We refer the reader to [2], [4], and [6] for the relevant background.

Proof sketch
Let "D‚#1LV .C;!/ so that S.C;L!/ŠS!. According to [4, Theorem 4.5], S! is
isomorphic to +$eSw0!, where + W eN !N is the Springer resolution, and eSw0! is a
certain silting object on eN . By [6, Theorem 3.9] (along with [4, Lemma 3.4]), eSw0!

coincides with the simple exotic sheaf Lw0!. Finally, by [2, Proposition 2.6], +$Lw0!
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is the simple perverse-coherent sheaf corresponding to " under the Lusztig–Vogan
bijection, that is, IC.C;L!/.

Remark 7.4
The IC construction is defined for arbitrary equivariant vector bundles on an orbit,
not just irreducible ones, so one may ask whether Corollary 7.3 generalizes to positive
characteristic with a statement of the form

S.C;T!/Š IC.C;T!/: (7.4)

This turns out to be false: the calculations in [3] yield counterexamples when G D
PGL3, and C is the subregular nilpotent orbit.

However, (7.4) is (trivially) true when C is the zero nilpotent orbit. It is also true
when C is the regular nilpotent orbit. In this case, by [2, Proposition 4.8], .C;!/
corresponds to a minuscule weight " 2 XC. The weight w0" 2 X, which is “antimi-
nuscule” in the terminology of [2], is minimal with respect to the partial order on
X used to define both the exotic t -structure and the supportive co-t -structure. One
can then deduce from the construction in [4] that eSw0! Š Lw0!, and then the claim
follows by the reasoning in the proof of Corollary 7.3.

8. Proof of the relative Humphreys conjecture
In this section, we assume that the characteristic p of k is larger than the Coxeter
number h for G. Let G be a reductive group whose first Frobenius twist G.1/ is
identified with G. (Of course, this implies that G and G are isomorphic, but we do
not identify them, as they play different roles in the discussion below.) Let G1 be the
first Frobenius kernel of G. The G1-cohomology of a G-module M is defined by

H ".G1;M/D Ext"G1.k;M/:

A classical result (see [13], [17], and also [6, Lemma 8.1]) states that there is a G-
equivariant isomorphism of graded rings

Ext"G1.k;k/Š kŒN !:

Thus, for any G-module M , its G1-cohomology has the structure of a graded G-
equivariant module over kŒN !, or equivalently, an object of CohG!Gm.N /. The goal
of this section is to describe this module in the case where M is a tilting G-module.
For " 2XC, let T."/ be the indecomposable tilting G-module of highest weight ".

LetW be the Weyl group of G, and letWext DW !X be its extended affine Weyl
group. For " 2X, let t! denote the corresponding element of Wext. For " 2XC, let

w! D
the unique element of minimal length
in the double coset W t!W 'Wext.
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Recall the “p-dilated dot action” of Wext on X: for w D v ! t! 2Wext and . 2X, we
set

w #.D v..C p"C &/& &;

where, as usual, & is one-half the sum of the positive roots. It is well known (see,
e.g., [6, Lemma 8.7]) that

H "
!
G1;T../

"
D 0 unless .Dw! # 0 for some " 2XC.

The following theorem describes H ".G1;T..// in the case where . D w! # 0 for
some " 2 XC. It confirms a relative version of a conjecture due to Humphreys [20]
(cf. [6, Conjecture 8.10]), as well as part of a refinement of this conjecture proposed
by the authors and S. Riche in [9, Conjecture 5.7].

THEOREM 8.1 (Relative Humphreys conjecture)
For " 2&XC, we have

H k
!
G1;T.w! # 0/

"
Š

M
iCjDk

Ri#
!
N ;S.C;T /

"
j
; (8.1)

where .C;T / corresponds to w0" under the Lusztig–Vogan bijection. In particular,
as a coherent sheaf on N , H ".G1;T.w! # 0// is supported on C , and

H "
!
G1;T.w! # 0/

"
jC Š T :

In this statement, the notation Ri#.N ;S.C;T //j denotes the j th graded com-
ponent of the grading coming from the Gm-action.

Remark 8.2
The statement in [6, Conjecture 8.10] describes the support of the cohomology groups
H ".G1;T.w! # 0// in terms of the two-sided Kazhdan–Lusztig cell containing w!,
not in terms of the Lusztig–Vogan bijection. However, it follows from [16, Remark 6]
combined with the main result of [8] that the nilpotent orbit appearing in [6, Conjec-
ture 8.10] is the same as the one in Theorem 8.1.

Proof
An equation similar to (8.1), but with S.C;T / replaced by S!, is an immediate con-
sequence of [6, Proposition 9.1] (see also [4, Lemma 6.3] and [12, Proposition 9.4]).
We obtain (8.1) by combining these results with Theorem 7.2.

Regarding H ".G1;T.w! # 0// as a coherent sheaf, we can rewrite (8.1) as

H "
!
G1;T.w! # 0/

"
Š
M
i

Ri#
!
N ;S.C;T /

"
h&ii:
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The description of the support of H ".G1;T.w! # 0// and its restriction to C then
follow from the properties of S.C;T / listed in Lemma 6.7.

9. Applications to the p-canonical basis
In this section, we return to allowing p to be pretty good for G. Let C denote the
Grothendieck group of DbCohG!Gm.N /. This is a module over the ring of Laurent
polynomials ZŒv; v#1! under the rule ŒF h1i! D &v#1ŒF !. In [31], Ostrik defined a
certain ZŒv; v#1!-basis for C , denoted by

¹C ! j " 2XCº;

and called the canonical basis. This basis is closely related to the Kazhdan–Lusztig
basis of the extended affine Hecke algebra Hext. Specifically, according to the proof
of [31, Lemma 2.6], there is a ZŒv; v#1!-linear map st WHext! C , whose behavior on
the Kazhdan–Lusztig basis ¹Hw jw 2Wextº is given by

st.Hw/D
´
C ! if w has minimal length in the coset W t!W 'Wext,

0 otherwise.
(9.1)

(Note that C is not an Hext-module. It is, however, a module over the center Z.Hext/

of Hext, and the map st is a Z.Hext/-module homomorphism.) Ostrik conjectured,
and Bezrukavikov later proved in [15] and [16], that

C ! D
%
IC.C;L!/

&
; (9.2)

where .C;!/ corresponds to " under the Lusztig–Vogan bijection.
In recent years, the p-canonical basis for Hext (see [23]), denoted by ¹pHw j

w 2 Wextº, has come to prominence (see, e.g., [10], [12], [33]). It is natural to ask
whether C has some basis that should be called “p-canonical.” One approach is to
generalize (9.1) by defining

pC ! WD st.pHw/;where w is the element of minimal length in W t!W . (9.3)

(It can be deduced from [6] that st.pHw/D 0 if w is not minimal in some double
coset for W .) On the other hand, in view of Corollary 7.3, (9.2) suggests defining

pC ! WD
%
S.C;T!/

&
(9.4)

via the Lusztig–Vogan bijection. In fact, Theorem 7.2 (combined with [4], [6]) implies
that these two definitions coincide.

In general, the p-canonical basis for Hext satisfies

pHw 2Hw C
X
v<w

Z%0Œv; v#1!Hv;
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where “<” denotes the Bruhat order on Wext. From (9.3) we deduce that

pC ! 2 C !C
X
&<!

Z%0Œv; v#1!C&;

where “<” now denotes the usual partial order on weights. But (9.4) imposes a much
stronger constraint: if " corresponds to .C;!/ via ‚LV, then

pC ! 2 C !C
# X

&<!
‚LV.&/2'C

Z%0C&
$
C
# X
C 0*@C

X
&<!

‚LV.&/2'C 0

Z%0Œv; v#1!C&
$
: (9.5)

Note that the first sum has integer coefficients, rather than Laurent polynomials.
The extended affine Hecke algebra Hext is categorified by the monoidal cate-

gory of Iwahori-equivariant parity sheaves on the dual affine flag variety, denoted by
ParityI .Fl/. For w 2 Wext, let Ew 2 ParityI .Fl/ denote the corresponding indecom-
posable parity sheaf. Given a G-stable closed subset Z 'N , let

ParityI .Fl/Z D
the full additive subcategory generated by Ew Œn!, where n 2 Z
and w is either not minimal in any double coset W t!W , or w is
minimal in some W t!W such that suppS! 'Z.

Roughly, (9.5) says that if w 2Wext is minimal in the double coset W t!W , then the
parity sheaf Ew should be “perverse modulo ParityI .Fl/@C .” Given a nilpotent orbit
C 'N , we now define

AC WD ParityI .Fl/C=ParityI .Fl/@C :

This category inherits from ParityI .Fl/ the shift operation Œ1!. Let

AıC WD
the full subcategory of AC generated by the
images of Ew 2 ParityI .Fl/C (without shifts).

We expect that AıC can be made into a monoidal category using Lusztig’s “trun-
cated convolution” operation ˇ (see [27]), defined as follows: for F ;G 2AıC , let

F ˇ G D pH
1
2 codimC . QF ?I QG / mod ParityI .Fl/@C ;

where QF and QG are lifts of F and G to ParityI .Fl/C . Moreover, we conjecture that
there is an equivalence of monoidal categories

.AıC ;ˇ/Š
!
Tilt.GxCred /;˝

"
:
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Appendix. A lemma on co-t -structures
In this appendix, we review the notions of co-t -structures and silting subcategories
and the relationship between them, following [24], [26], and [30]. See [4, Section 2]
for additional references and discussion. We also prove a technical lemma on co-t -
structures preserved by a duality.

Definition A.1
Let D be a triangulated category, and let D%0;D&0 'D be two full additive subcat-
egories. For any n 2 Z, set

D%n DD%0Œ&n! and D&n DD&0Œ&n!:

The pair .D%0;D&0/ is said to be a co-t -structure on D if the following conditions
hold:
(1) Both D%0 and D&0 are closed under direct summands.
(2) We have D%1 'D%0 and D&#1 'D&0.
(3) For A 2D%0 and B 2D&#1, we have Hom.A;B/D 0.
(4) For any X 2 D, there is a distinguished triangle A! X ! B ! with A 2

D%0 and B 2D&#1.
Furthermore, the co-t -structure is said to be bounded if the following holds:
(5) For any X 2D, there are integers n and m such that X 2D%n \D&m.
If .D%0;D&0/ is a co-t -structure, then the additive category D%0 \D&0 is called its
coheart. If D0 is another triangulated category equipped with a co-t -structure, then a
triangulated functor F WD!D0 is said to be co-t -exact if it sends the coheart of D
to the coheart of D0.

Definition A.2
Let D be a triangulated category. A strictly full additive subcategory S 'D is said
to be a silting subcategory if the following conditions hold:
(1) S is closed under direct summands.
(2) For any two objects S;S 0 2S, we have Hom.S;S 0Œk!/D 0 for all k > 0.
(3) The smallest strictly full triangulated subcategory of D that contains S and is

closed under direct summands is D itself.

The following statement is proved in [30, Corollary 5.9]

PROPOSITION A.3
Let D be a triangulated category. For any bounded co-t -structure .D%0;D&0/
on D, the coheart D%0 \ D&0 is a silting subcategory. Moreover, the assignment
.D%0;D&0/ 7! D%0 \ D&0 gives a bijection between the set of bounded co-t -
structures on D and the set of silting subcategories of D.



SILTING COMPLEXES AND THE HUMPHREYS CONJECTURE 2441

As in [4, Section 2.2], we define a Tate twist on a triangulated category to be an
autoequivalence

!1" WD!D

with the property that for an object X 2D, we have

X!1"ŠX if and only ifX D 0:

The following uniqueness result is used in the proof of Theorem 7.2.

LEMMA A.4
Let D be a triangulated category equipped with a Tate twist !1" W D! D and an
anti-autoequivalence ı WDop '&!D such that ı ı !1"Š !&1" ı ı. There is at most one
silting subcategory S'D with the following properties:
(1) S is stable under !1" and ı.
(2) S is a Krull–Schmidt category.
(3) For each indecomposable object S 2S, there is a unique integer n such that

ı.S!n"/Š S!n".

Proof
Suppose we have two silting subcategories S;S0 'D satisfying these properties. Let
.D%0;D&0/ be the bounded co-t -structure on D corresponding to S.

Suppose there exists an object S 0 2 S0 such that S 0 … D%0. We will derive a
contradiction from this. Let n be the largest integer such that S 0 2D%n, so that S 0Œn! 2
D%0. (We necessarily have n < 0.) Then it is possible to find a distinguished triangle

A
f&! S 0Œn!

g&!B
h&! with A 2D%1 and B 2S. (A.6)

Choose such a distinguished triangle in which the number of indecomposable direct
summands of B is minimized. This number is well defined because S is Krull–
Schmidt, and it is nonzero because S 0Œn! …D%1.

Next, choose an indecomposable summand T of B . Let i W T !B and p W B!
T be the inclusion and projection maps, so that pi D idT , and ip is idempotent.

By applying a suitable Tate twist, we may assume without loss of generality that
ı.T / Š T . Fix an identification of these two objects. Then T is a direct summand
of ı.B/, and ı.p/ W T ! ı.B/ and ı.i/ W ı.B/! T are the inclusion and projection
maps, respectively.

Consider the diagram below, in which the rows are distinguished triangles. (The
dotted arrows will be explained later.)
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Because S0 is a silting subcategory, we have Hom.S 0Œn!; ı.S 0/Œ&n!/D 0. In particu-
lar, ı.g/ı.p/pgD 0, so ı.g/ı.p/p factors through h: there exists a map  WAŒ1!!
ı.S 0/Œ&n! such that

 hD ı.g/ı.p/p:

Since AŒ1! 2D%0 and ı.A/ 2D&#1, we have Hom.AŒ1!; ı.A//D 0, so ı.f / D 0.
Therefore, there is a map ( WAŒ1!! ı.B/ such that

ı.g/( D :

We now have ı.g/(hD ı.g/ı.p/p, or ı.g/.(h& ı.p/p/D 0. Therefore, there exists
a map (0 WB! ı.A/Œ&1! such that ı.h/(0 D (h& ı.p/p, or

ı.p/pD (h& ı.h/(0: (A.7)

By the nine lemma, there exist objects B 0 and A0 such that the rows and columns
of the following diagram are distinguished triangles:

The rightmost column shows that A0 2 D%1. Now consider the map ı.i/(hi 2
End.T /. If this were an isomorphism, then the middle column above would split (by
the map i.ı.i/(hi/#1 W T !B), and B 0 would be a direct summand of B , and hence
an object of S with fewer indecomposable summands than B . But then the top row
would contradict the minimality in the choice of (A.6). We conclude that ı.i/(hi is
not invertible.
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Similar reasoning shows that &ı.i/ı.h/(0i 2 End.T / is also not invertible. Since
End.T / is a local ring, the sum of two nonunits is again a nonunit, and thus ı.i/(hi &
ı.i/ı.h/(0i is not invertible. But by (A.7), we have

ı.i/(hi & ı.i/ı.h/(0i D ı.i/ı.p/pi D idT ;

a contradiction.
We conclude that S 0 2D%0, and hence that S0 'D%0. Applying ı, we also have

S0 ' D&0, so S0 ' S. Reversing the roles of the two categories, we also obtain
S0 *S, and hence SDS0.
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