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HIGHER NEARBY CYCLES AND CENTRAL SHEAVES ON AFFINE FLAG

VARIETIES

PRAMOD N. ACHAR AND SIMON RICHE

Abstract. In this paper we generalize and study a notion of (unipotent) nearby cycles over a
higher dimensional base based on Bĕılinson’s description of unipotent nearby cycles, following
an idea of Gaitsgory. This generalization, in the setting of a�ne Grassmannians, is required
in recent work of Bezrukavnikov–Braverman–Finkelberg–Kazhdan.

1. Introduction

1.1. Nearby cycles form a crucial ingredient in the local geometric Langlands program, in
particular in Gaitsgory’s construction of central (perverse) sheaves on the a�ne flag variety
of a reductive algebraic group [8]. In order to prove a certain technical property of this con-
struction required in work of Bezrukavnikov [6], Gaitsgory has introduced in [9] a somewhat
ad-hoc construction of “nearby cycles along a 2-dimensional base.” In this paper we elaborate
on this idea and explain how to define much more general “nearby cycles” functors over any
finite-dimensional a�ne space. This generalization is used in recent work of Bezrukavnikov–
Braverman–Finkelberg–Kazhdan on local L-factors, see [7].

1.2. Bĕılinson’s unipotent nearby cycles functor. The starting point of this construction
is Bĕılinson’s description of the unipotent nearby cycles functor using local systems on A1 r t0u
associated with unipotent Jordan blocks. More specifically, fix a base field F, and consider a
scheme X of finite type over A1 “ A1

F, with structure morphism f : X Ñ A1. Fix also a field k
of coe�cients (of characteristic invertible in F), and let F be a perverse sheaf on f´1pA1r t0uq.
Then Bĕılinson’s construction provides, for any integer a • 1, a complex  f,apF q on f´1p0q
concentrated in perverse degrees ´1 and 0, and morphisms  f,apF q Ñ  f,bpF q if a § b. The
main observation is that these complexes “stabilize” to the unipotent nearby cycles  un

f pF q in
the sense that:

‚ if a " 0, for any b • a the morphism pH ´1p f,apF qq Ñ pH ´1p f,bpF qq is an isomor-
phism, and both objects identify with  un

f pF q;
‚ for any a, if b " a the morphism pH 0p f,apF qq Ñ pH 0p f,bpF qq vanishes.

1.3. Higher dimensional version. Gaitsgory’s construction in [9] is based on the same idea,
but now for a scheme X (of finite type) over A2, and produces complexes indexed by a pair of
nonnegative integers. In this generality, one cannot expect the same stabilization phenomenon
as above for all perverse sheaves; but Gaitsgory simply defines his 2-dimensional nearby cycles
functor using a homotopy colimit of these complexes. In general, this construction forces one
to leave the constructible derived category; to avoid this problem, in our account of Gaitsgory’s
construction in [2] we proposed instead to restrict to complexes such that a stabilization property
as above occurs. So, for us the 2-dimensional nearby cycles functor is only “partially defined.”
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The starting point of this paper is the observation that this definition can be phrased so that it
makes sense for a scheme X (of finite type) over any a�ne space Ad.

1.4. Composition of higher nearby cycles functors. The application of nearby cycles over
a 2-dimensional base in [9] uses a comparison with two related operations: (a) compute the
nearby cycles of the given perverse sheaf successively along the 2 factors in A2; (b) restrict the
perverse sheaf to the preimage of the diagonal copy of A1, and then compute the nearby cycles of
(a shift of) this complex. Gaitsgory shows that his 2-dimensional nearby cycles complex maps to
each of the complexes obtained in (a) or (b), and that these maps are isomorphisms in the specific
setting required in [6]. In [7] the authors consider (in a related setting) a variant of (a) where one
considers a complex over Ad and computes nearby cycles along each A1-factor successively, and
they assert that the result does not depend on the choice of order on the coordinates. To justify
this assertion, here we introduce the (partially defined) d-dimensional nearby cycles functor, and
show that, in the setting of [7], each of the complexes identifies canonically with the image of
the inital complex under our functor.

To justify this fact, we interpret nearby cycles along each factor as the case d “ 1 of our
construction, and show roughly that a composition of d- and e-dimensional nearby cycles func-
tors receives a canonical map from a pd ` eq-dimensional nearby cycles functor, which in the
setting of [7] is an isomorphism. In fact, in the body of the paper we consider a more general
construction of higher nearby cycles and their compositions, which also covers the construction
in (b) above, and thereby (in our opinion) clarifies the general picture. See Definition 3.1 for the
main definition, and (3.9) for the construction involving the composition of such functors.

1.5. Compatibilities. In full generality, it is not reasonable to expect that the morphism
in (3.9) is always an isomorphism. As in [9], what we show here is that the constructions
of higher nearby cycles and of the morphisms considered above are compatible with smooth
pullback and proper pushforward in an appropriate sense (see Lemmas 3.13, 3.14, 3.17 and 3.18
for precise statements), and then study a product-type situation (see §3.9). This is su�cient
to show that the d-dimensional nearby cycles are well defined in the setting of [7], and that
their formation is compatible with composition, which amounts to the statement these authors
require. See Theorem 4.2 and §4.7 for precise statements.

1.6. Further comments. There exists a general theory of nearby and vanishing cycles over
general bases, which is much more elaborate than the version we consider here; see [11] for a
brief account. In the companion paper [16], A. Salmon explains the relationship between the
latter theory and ours.

As explained above, the construction considered here is an extension of our study in [2,
§9.4]. There is one important di↵erence in our treatment though: in [2] we introduced a general
condition of “iterated cleanness” implying that the 2-dimensional nearby cycles complex is well
defined, and showed that this condition is satisfied in the setting at hand. It is not obvious (to
us) how to extend this condition over a higher-dimensional base; here we bypass this question by
proving a compatibility statement with proper pushforward which is stronger than its counterpart
in [2] (compare Lemma 3.14 and [2, Proposition 9.4.2]) and allows us to reduce the question to
the product-type setting.

In this paper we work in the setting of étale sheaves on schemes over fields, in order to meet
the setting of [7]. However all our statements have obvious variants for “usual” sheaves on
complex algebraic varieties endowed with their analytic topology (and coe�cients in a field),
and all our proofs apply in both settings.

After we completed a preliminary version of this paper, it was pointed out to us that a special
case of our construction had already been introduced by A. Salmon, with applications to the
cohomology of shtukas; see [15] and Example 3.11.
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2. Preliminaries

2.1. Pointed maps and associated linear morphisms. We fix a base field F. Below, by a
“scheme” we will mean an F-scheme of finite type. If P is a finite set, we may consider the a�ne
space

AP “ SpecpFrXp : p P P sq
with coordinates indexed by P . The generic part of this a�ne space, denoted by AP

⌘ , is the open
subscheme where no coordinates vanish:

AP
⌘ “ tpxpqpPP | xp ‰ 0 for all pu.

(In case P “ ?, we interpret these definitions as A? “ A?
⌘ “ SpecpFq.)

For any finite set P we let P˚ denote the disjoint union P >t˚u, where ˚ denotes a new element.
For finite sets P and Q, a pointed map ↵ : P˚ Ñ Q˚ is a function that satisfies ↵p˚q “ ˚. If
↵ : P˚ Ñ Q˚ is a pointed map, there is an induced linear map of a�ne spaces ↵̄ : AQ Ñ AP

given by

↵̄ppxqqqPQq “ pypqpPP where yp “
#
x↵ppq if ↵ppq P Q,

0 if ↵ppq “ ˚.
We also set AP

⌘,↵ “ tpxpqpPP P AP | xp ‰ 0 if ↵ppq ‰ ˚u; then the restriction of ↵̄ to AQ
⌘ factors

through a morphism ↵̄⌘ : AQ
⌘ Ñ AP

⌘,↵.

Remark 2.1. From the definition we see that ↵̄ is injective if ↵ is surjective, and surjective if ↵
is injective. For arbitrary ↵, one can decompose the situation into a combination of these two
settings as follows: set R “ ↵pP q XQ. Then ↵ decomposes in the obvious way as a composition
of pointed maps

P˚
↵1›Ñ R˚

↵2›Ñ Q˚,

and we have ↵̄ “ ↵̄1 ˝ ↵̄2 where ↵̄1 is injective and ↵̄2 is surjective.

2.2. Scheme morphisms associated with pointed maps. Now suppose we have a scheme
X equipped with a map f : X Ñ AP . The generic part of X is defined by X⌘ “ X ˆAP AP

⌘ ; the
natural morphism X⌘ Ñ AP

⌘ will be denoted f⌘, and the embedding X⌘ Ñ X will be denoted
jX (or j when no confusion is likely).

If ↵ : P˚ Ñ Q˚ is a pointed map, then one can consider the schemes

X↵ :“ X ˆAP AQ and X↵
⌘ :“ X ˆAP AQ

⌘

where the fiber products are taken with respect to ↵̄ : AQ Ñ AP and its restriction to AQ
⌘ . The

natural morphism X↵ Ñ X will be denoted i1X,↵ (or i1↵), its restriction to X↵
⌘ will be denoted

iX,↵ (or i↵) and we will denote by

f↵ : X↵ Ñ AQ

the natural projection morphism. By Remark 2.1, i1↵ is a closed immersion if ↵ is surjective,
and is smooth and surjective if ↵ is injective; moreover we have i↵ “ i1↵ ˝ jX↵ . Note also that if
↵´1p˚q “ t˚u then i↵ factors through a morphism

i2↵ : X↵
⌘ Ñ X⌘.
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2.3. Jordan block local systems. Let ` be a prime di↵erent from the characteristic of F, and
let k be a topological field of one of the following two forms:

‚ an algebraic extension of Q`, equipped with the `-adic topology;
‚ an algebraic extension of F`, equipped with the discrete topology.

Our goal in the rest of this section is to describe the construction of a family of indecomposable
k-local systems on A1 r t0u on which a generator of the geometric fundamental group acts by a
unipotent Jordan block.

This construction is certainly well known when k has characteristic 0 (see, for instance, [4, 13]),
and it is relatively easy when F is separably closed (so that there is no Galois action to consider).
It is probably known in the generality we consider here, but as we could not find a suitable
reference, we include the details. The construction uses identities involving some polynomials
with rational coe�cients, which are discussed in the next subsection.

2.4. Z-closed polynomials and binomial identities. Let us say that a polynomial fpxq
in Qrxs is Z-closed if it has the property that for all nonnegative integers n • 0, we have
fpnq P Z. Of course, any polynomial f P Qrxs determines a continuous (for the `-adic topology)
function Q` Ñ Q`. Because the nonnegative integers Z•0 are dense in Z`, if f is Z-closed, then it
restricts to a function Z` Ñ Z`. Furthermore, with k as above, any Z-closed polynomial f P Qrxs
determines a continuous function f : Z` Ñ k.

Any polynomial with coe�cients in Z is obviously Z-closed, but there are others: for instance,
the polynomials �0, �1, . . . given by

�rpxq “
ˆ
x

r

˙
“ xpx ´ 1q ¨ ¨ ¨ px ´ r ` 1q

r!
.

(When r “ 0, this expression is interpreted as 1.) For integers r, s • 0, these polynomials satisfy

(2.1) �rpxq�spxq “
mintr,suÿ

i“0

pr ` s ´ iq!
pr ´ iq!ps ´ iq!i!�r`s´ipxq.

To prove this, observe that if we replace x by a nonnegative integer n, the left-hand side is the
coe�cient of urvs in p1 ` uqnp1 ` vqn, which can also be written as

p1 ` u ` v ` uvqn “
nÿ

k“0

ˆ
n

k

˙
pu ` v ` uvqk “

nÿ

k“0

ˆ
n

k

˙ ÿ

g,h,i•0
g`h`i“k

k!

g!h!i!
ug`ivh`i.

The coe�cient of urvs is found by taking those terms where g “ r´i, h “ s´i, and k “ r`s´i.
This yields the right-hand side of (2.1).

Next, consider the two-variable polynomial �rptxq “
`
tx
r

˘
P Qrx, ts. Since �0, �1, . . . form a

Q-basis for Qrxs, there is a unique expression of the form

(2.2) �rptxq “
rÿ

j“0

cjrptq�jpxq,

for some polynomials cjrptq P Qrts. Comparing the coe�cients of xr and evaluating at x “ 0, we
see that

(2.3) crrptq “ tr P Zrts and c0rptq “
#
1 if r “ 0,

0 if r ° 0.

In particular, these polynomials are Z-closed.
We claim that the cjr are in fact Z-closed for all j, i.e., that cjrpmq P Z for integers m • 0.

We prove this by induction on m: if r ° 0 we obviously have cjrp0q “ 0, and for m ° 0, by



HIGHER NEARBY CYCLES AND CENTRAL SHEAVES ON AFFINE FLAG VARIETIES 5

Vandermonde’s identity, we have
ˆ
mx

r

˙
“

rÿ

g“0

ˆpm ´ 1qx
g

˙ˆ
x

r ´ g

˙
“

rÿ

g“0

gÿ

h“0

chg pm ´ 1q�hpxq�r´gpxq.

Expanding the right-hand side using (2.1) and comparing coe�cients of �j , we find that

cjrpmq “
ÿ

0§h§g§r
0§r´g`h´j§minth,r´gu

chg pm ´ 1q j!

pj ` g ´ rq!pj ´ hq!pr ´ g ` h ´ jq! P Z.

2.5. Functions on the Tate module. Let F be a separable closure of F, and let Z`p1q be the
Tate module of Fˆ, i.e., the inverse limit of the groups of `n-th roots of unity in F. This is
naturally a free Z`-module of rank 1. Let

CpZ`p1q, kq “ set of continuous functions Z`p1q Ñ k.
Here, “continuous” should be understood with respect to the profinite topology on Z`p1q and
the topology on k indicated in §2.3. This set is a ring under pointwise multiplication.

The group GalpF|Fq acts on Z`p1q by the cyclotomic character �` : GalpF|Fq Ñ Zˆ
` . There is

an induced action of the semidirect product GalpF|Fq ˙ Z`p1q on CpZ`p1q, kq, given by

pp�, gq ¨ fqphq “ fp�`p�q´1ph ´ gqq
for � P GalpF|Fq and g, h P Z`p1q. This is an action by ring automorphisms.

To write down some explicit elements in CpZ`p1q, kq, let us choose a generator g for Z`p1q as
a Z`-module. Thus every element in Z`p1q can be written uniquely as ng for some n P Z`. Then
for r • 0 there is a continuous function

'g
r : Z`p1q Ñ k given by 'g

rpngq “ p´1qr�rpnq.
Lemma 2.2. Let g P Z`p1q be an element that generates Z`p1q as a Z`-module, and for a • 0
let

La “ spankt'g
0,'

g
1, . . . ,'

g
a´1u Ä CpZ`p1q, kq.

(1) The subspace La Ä CpZ`p1q, kq is independent of the choice of g.
(2) The subspace La is stable under the action of GalpF|Fq ˙ Z`p1q.
(3) We have dimLa “ a.
(4) Any generator of Z`p1q acts on La by a unipotent Jordan block.
(5) For any integer a • 1, there is a canonical short exact of GalpF|Fq ˙ Z`p1q-modules

0 Ñ La´1 Ñ La Ñ kp´a ` 1q Ñ 0.

(6) For any two integers a, b • 1, there is a canonical map of GalpF|Fq ˙ Z`p1q-modules
La bk Lb Ñ La`b´1 whose image contains Lmaxta,bu.

Proof. (1) If g1 is another generator for Z`p1q as a Z`-module, then we have g1 “ ug for some
u P Zˆ

` . It follows from (2.2) that

'g1
r “

rÿ

j“0

p´1qj`rcjrpuq'g
j .

This shows that the span of 'g1
0 , . . . ,'

g1
a´1 is contained in the span of 'g

0, . . . ,'
g
a´1. By symmetry

the opposite containment also holds, so La is independent of the choice of g.
(2) We have

pp´gq ¨ 'g
rqpngq “ 'g

rppn ` 1qgq “ p´1qr
ˆ
n ` 1

r

˙
“ p´1qr

ˆ
n

r ´ 1

˙
` p´1qr

ˆ
n

r

˙
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or, in other words,

(2.4) p´gq ¨ 'g
r “

#
'g
0 if r “ 0,

'g
r ´ 'g

r´1 if r ° 0.

This formula shows that p´gq preserves La and acts by a unipotent operator. It follows that
the cyclic subgroup Zg Ä Z`p1q preserves La as well. Since Zg is dense in Z`p1q, continuity
considerations show that La is preserved by all of Z`p1q.

Similarly, for � P GalpF|Fq, we have

(2.5) � ¨ 'g
r “ '�`p�q´1g

r “
rÿ

j“0

p´1qj`rcjrp�`p�q´1q'g
j .

Thus, La is stable under GalpF|Fq, and hence under GalpF|Fq ˙ Z`p1q.
(3) We wish to show that the functions 'g

0,'
g
1, . . . are linearly independent. If not, find some

nontrivial linear dependence relation

b0'
g
0 ` ¨ ¨ ¨ ` bm'

g
m “ 0

with b0, . . . , bm P k. We may assume that this relation is chosen so that m as small as possible;
then bm ‰ 0 and m ° 0. Apply the operator f fiÑ f ´ p´gq ¨ f to this equation. By (2.4), we
obtain

b1'
g
0 ` b2'

g
1 ` ¨ ¨ ¨ ` bm'

g
m´1 “ 0,

contradicting the minimality of m. We conclude that dimLa “ a.
(4) This follows from (2.4) and the independence on g (see (1)).
(5) By construction we have an embedding of representations La´1 Ä La. If g is a generator

of Z`p1q as a Z`-module, then it is clear from (2.4) that p´gq acts trivially on the quotient
La{La´1. Therefore, the group Zg Ä Z`p1q acts trivially, and by continuity, all of Z`p1q acts
trivially.

On the other hand, by (2.5), an element � P GalpF|Fq acts on La{La´1 by the scalar
ca´1
a´1p�`p�q´1q “ �`p�q´a`1 (see (2.3)). We conclude that La{La´1 – kp´a ` 1q.
(6) Consider the multiplication map CpZ`p1q, kq bk CpZ`p1q, kq Ñ CpZ`p1q, kq. This map is

compatible with the action of GalpF|Fq ˙ Z`p1q. It follows from (2.1) that the multiplication
map restricts to the desired map

La bk Lb Ñ La`b´1.

The image of this map contains 'a “ 'a'0 and 'b “ '0'b. By (2.4), it contains all of La and
Lb, and thus it contains Lmaxta,bu. ⇤

In the next lemma (which will not be used below) we discuss the case when k has characteristic
0; in particular, these results show that in this case our construction recovers the local systems
considered in [4, 13].

Lemma 2.3. Assume that k has characteristic 0.

(1) For r • 0, there is an isomorphism of GalpF|Fq-modules

La – k ‘ kp´1q ‘ ¨ ¨ ¨ ‘ kp´a ` 1q.
In terms of the right-hand side, the action of g P Z`p1q is given by

(2.6) g fiÑ exp

»

——–

0 x´g,´y
0 x´g,´y

...
...
0 x´g,´y

0

fi

��fl

where x´,´y : Z`p1q bZ` kp´rq Ñ kp´r ` 1q is the natural pairing map.
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(2) For a § b, there is a short exact sequence of GalpF|Fq ˙ Z`p1q-modules

0 Ñ La Ñ Lb Ñ Lb´ap´aq Ñ 0.

Proof. By definition we have

kp´rq “ k bZ` HomZ`pZ`prq,Z`q “ k bZ` HomZ`pZ`p1q b ¨ ¨ ¨ b Z`p1qlooooooooooomooooooooooon
r copies

,Z`q.

Define a k-linear map ✓r : kp´rq Ñ CpZ`p1q, kq as follows: for u P HomZ`pZ`prq,Z`q, we let
✓rp1 b uq : Z`p1q Ñ k be the function given by

✓rp1 b uqpgq “ 1
r!upg b ¨ ¨ ¨ b gq.

Then ✓r is GalpF|Fq-equivariant and nonzero. We claim that ✓r induces an isomorphism

(2.7) kp´rq –
"
f P CpZ`p1q, kq

ˇ̌
ˇ fpngq “ nrfpgq for all
n P Z` and all g P Z`p1q

*
.

Indeed, it is clear that the image of ✓r is contained in the right-hand side of (2.7). Moreover,
the latter set is 1-dimensional, because any element satisfying this condition is determined by
its value on some generator of Z`p1q as a Z`-module.

Let us describe the pairing x´,´y : Z`p1q bZ` kp´rq Ñ kp´r ` 1q in terms of ✓r and ✓r´1.
For g P Z`p1q and f belonging to the right-hand side of (2.7), we have

(2.8) xg, fypgq “ rfpgq.
For the remainder of this proof, we assume that g is a generator of Z`p1q as a Z`-module.

Consider the continuous function

⌫gr : Z`p1q Ñ k given by ⌫gr pngq “ nr{r!.
It is clear that ⌫gr spans the right-hand side of (2.7). On the other hand, ⌫g0 , . . . , ⌫

g
a´1 is a basis

for La, so La – k ‘ ¨ ¨ ¨ ‘ kp´a ` 1q as a GalpF|Fq-module. By (2.8), xg, ⌫gr ypgq “ 1{pr ´ 1q!, so
xg, ⌫gr y “ ⌫gr´1.

In the usual Z`p1q-action on La, the action of g on ⌫gr is given by

pg ¨ ⌫gr qpngq “ pn ´ 1qr
r!

“
rÿ

j“0

p´1qj
j!

⌫gr´jpngq “
rÿ

j“0

1

j!
x´g, x¨ ¨ ¨ x´g,looooooomooooooon

j times

⌫gr y ¨ ¨ ¨ ypngq.

This shows that (2.6) holds when g is a generator of Z`p1q as a Z`-module. It then holds in
general by continuity.

(2) We continue to let g be a fixed generator of Z`p1q as a Z`-module. Let Ba : Lb Ñ Lb´a be
the map given by

Bap⌫gr q “
#
⌫gr´a if a § r § b ´ 1,

0 otherwise.

If we identify Lb with the space of polynomial functions Z` Ñ k of degree § b ´ 1, then Ba

is the a-fold di↵erentiation operator. It is easy to check that Ba is Z`p1q-equivariant, but not
GalpF|Fq-equivariant. Specifically, for � P GalpF|Fq and f P Lb, we have

Bap� ¨ fq “ �`p�q´a� ¨ Bapfq.
We conclude that Ba induces an isomorphism Lb{La – Lb´ap´aq. ⇤
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Remark 2.4. When k has characteristic `, the isomorphism in Lemma 2.3(1) may be false. A
direct calculation shows that

�2ptxq “ txptx ´ 1q
2

“ t2�2pxq ` t2 ´ t

2
�1pxq,

so that c12ptq “ 1
2 pt2 ´ tq. Let g be a generator of Z`p1q as a Z`-module. By (2.5), in the basis

t'g
0,'

g
1,'

g
2u for L3, an element � P GalpF|Fq acts by

»

–
1

�`p�q´1 1
2 p�`p�q´1 ´ �`p�q´2q

�`p�q´2

fi

fl .

Suppose now that ` “ 2, and that F “ Fp for some prime p ” 3 pmod 4q. Take � P GalpF|Fq to
be the Frobenius map, so that �`p�q “ p. Then � acts on L3 by

»

–
1

p´1 p´3
`
p
2

˘

p´2

fi

fl “
»

–
1

1 1
1

fi

fl .

In particular, the action of GalpF|Fq on L3 is not semisimple!

2.6. Definition of the local systems. Consider the a�ne line A1 over F. Recall that there is
a canonical exact sequence

⇡geom
1 pA1 r t0u, 1q ãÑ ⇡1pA1 r t0u, 1q ⇣ GalpF|Fq.

This sequence is split by the choice of the unit F-point in A1 r t0u, and we identify

⇡1pA1 r t0u, 1q “ GalpF|Fq ˙ ⇡geom
1 pA1 r t0u, 1q.

We also have a canonical quotient map ⇡geom
1 pA1 r t0u, 1q ⇣ Z`p1q, which is compatible with

the action of GalpF|Fq on both groups. Combining these observations, we obtain a canonical
surjective map

⇡1pA1 r t0u, 1q ⇣ GalpF|Fq ˙ Z`p1q.
Thus, any continuous k-representation of GalpF|Fq ˙ Z`p1q gives rise to an étale k-local system
on A1. For a • 0, we let La be the local system on A1r t0u corresponding to the representation
La as in Lemma 2.2.

The pullback of La to A1
F r t0u is the local system corresponding to the continuous repre-

sentation of ⇡geom
1 pA1 r t0u, 1q given by the restriction of La to this subgroup. By construction

this action factors through an action of the commutative group Z`p1q. It therefore admits a
canonical action of Z`p1q by automorphisms of local systems.

By Lemma 2.2, for a • 1 there exists a canonical exact sequence

(2.9) La´1 ãÑ La ⇣ L1p´a ` 1q

where L1 is the trivial local system. Iterating these embeddings we obtain, for any a § b, a
canonical embedding

(2.10) La ãÑ Lb.

For any a, b • 1, there is a canonical morphism

La b Lb Ñ La`b´1
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whose image contains Lmaxpa,bq, and such that the following diagram commutes, where the
vertical maps are the surjections appearing in (2.9):

La b Lb La`b´1

L1p´a ´ b ` 2q L1p´a ´ b ` 2q.id

Moreover, these morphisms are compatible with the embeddings (2.10) in the obvious way.
Iterating this construction one obtains, for any k • 1 and any integers a1, . . . , ak, a morphism
of local systems on A1 r t0u
(2.11) La1 b ¨ ¨ ¨ b Lak Ñ La1`¨¨¨`ak´k`1.

3. Higher nearby cycles

3.1. Setting. Let X, f , ↵ be as in §2.2. The goal of this section is to explain the construction,
for F a perverse sheaf on X⌘, of a perverse sheaf

⌥↵f pF q P PervpX↵
⌘ , kq,

together with a collection parametrized by ↵´1p˚q X P of pairwise commuting actions of Z`p1q
on its pullback to F. We warn the reader that this construction is “partial”: it will be defined
only for certain perverse sheaves F . We do not have any general criterion which guarantees
that this construction works, but we do have tools (see Lemmas 3.13, 3.14 and 3.20) that can
be used to show that this is the case in certain settings, where it gives rise to very important
objects (see Section 4).

In the case where |P | “ 1 and Q “ ?, our construction will reduce to Bĕılinson’s description
of the unipotent nearby cycles functor, and when |P | “ 2 and Q “ ? it corresponds to the
theory of “nearby cycles along a 2-dimensional base” developed in [9] and studied in [2, §9.4];
see Example 3.11.

3.2. Definition. Let a : P Ñ Z•1 be a function. Define a local system La on AP
⌘ by

La “
ò

pPP
Lappq.

For any p P P , we have an action of Z`p1q on the pullback of La to F induced by the action on
the factor labelled by p. If a,b : P Ñ Z•1 are two functions, we say that a § b if appq § bppq
for all p P P . If a § b, then (2.10) gives rise to an embedding of local systems

(3.1) La ãÑ Lb

on AP
⌘ . In the special case where appq “ bppq for all but one element p0 of P , and moreover

bpp0q “ app0q ` 1, by (2.9) the cokernel is a Tate twist of a local system of the same form:
specifically, we have a short exact sequence

(3.2) La ãÑ Lb ⇣ Lcpapp0qq where

#
cppq “ appq “ bppq for all p ‰ p0,

cpp0q “ 1.

Let us say that a : P Ñ Z•1 is ↵-special (with respect to a given pointed map ↵ : P˚ Ñ Q˚)
if for each p P ↵´1pQq we have appq “ 1.

Definition 3.1. Let f : X Ñ AP be a morphism of schemes. Let F P PervpX⌘, kq, and let
↵ : P˚ Ñ Q˚ be a pointed map. If a,b : P Ñ Z•1 satisfy a § b, then for any i P Z there is a
natural map

(3.3) pH ipi˚↵j˚pF b f˚
⌘ Laqq Ñ pH ipi˚↵j˚pF b f˚

⌘ Lbqq
induced by (3.1). We say that the ↵-nearby cycles of F are well defined if
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‚ for i “ |Q| ´ |P |, there exists N P Z•0 such that if a is ↵-special and satisfies appq • N
for any p P ↵´1p˚q X P , then for any b • a ↵-special the map (3.3) is an isomorphism;

‚ for i ‰ |Q|´ |P |, for any a ↵-special there exists b • a ↵-special such that the map (3.3)
vanishes.

If these conditions are satisfied, we set

⌥↵f pF q “ lim›Ñ
a:PÑZ•1
↵-special

pH |Q|´|P |pi˚↵j˚pF b f˚
⌘ Laqq.

In this case, for any p P ↵´1p˚q X P , after pullback to F we have an action of Z`p1q on ⌥↵f pF q
induced by the corresponding action on La, called the monodomy action associated with p.
These actions pairwise commute.

Remark 3.2. (1) It should be clear that, although we omit the adjective “unipotent” from
our terminology for simplicity, what we consider in Definition 3.1 is an extension of the
construction of the unipotent part of the nearby cycles functor.

(2) In the definition above one can allow more generally X to be an ind-scheme over F which
is of ind-finite type. By definition a complex on such an ind-scheme is supported on a
closed subscheme, and the functor of Definition 3.1 can be calculated on a complex by
restriction to a closed subscheme supporting the given complex. All the statements of
this section hold in this generality, replacing the condition “proper” by “ind-proper,”
and the property “smooth” by “representable by a smooth morphism.”

We will sometimes write ⌥↵XpF q instead of ⌥↵f pF q. This construction is obviously functorial
in the sense that if F ,G P PervpX⌘, kq are such that the ↵-nearby cycles of F and G are well
defined and if u : F Ñ G is a morphism, then we have a natural morphism

⌥↵f puq : ⌥↵f pF q Ñ ⌥↵f pG q
which intertwines the monodromy actions (after pullback to F).

Lemma 3.3. The partially defined functor ⌥↵f is exact in the sense that if

F1 ãÑ F2 ⇣ F3

is a short exact sequence in PervpX⌘, kq such that the ↵-nearby cycles of F1, F2 and F3 are
well defined, then the induced morphisms

⌥↵f pF1q Ñ ⌥↵f pF2q Ñ ⌥↵f pF3q
form a short exact sequence in PervpX↵

⌘ , kq.
Proof. For any a : P Ñ Z•1 we have an exact sequence

pH |Q|´|P |´1pi˚↵j˚pF3 b f˚
⌘ Laqq Ñ pH |Q|´|P |pi˚↵j˚pF1 b f˚

⌘ Laqq
Ñ pH |Q|´|P |pi˚↵j˚pF2 b f˚

⌘ Laqq Ñ pH |Q|´|P |pi˚↵j˚pF3 b f˚
⌘ Laqq

Ñ pH |Q|´|P |`1pi˚↵j˚pF1 b f˚
⌘ Laqq.

Fix N such that the map (3.3) is an isomorphism for i “ |Q| ´ |P |, for any a which is ↵-special
with appq • N for p P ↵´1p˚q XP and any b which is ↵-special and satisfies b • a, for the three
complexes F1, F2 and F3. Fix a which is ↵-special and satisfies appq • N for p P ↵´1p˚q X P .
Fix b • a which is ↵-special and such that the morphism

pH |Q|´|P |`1pi˚↵j˚pF1 b f˚
⌘ Laqq Ñ pH |Q|´|P |`1pi˚↵j˚pF1 b f˚

⌘ Lbqq
vanishes, and then fix c • b which is ↵-special and such that the morphism

pH |Q|´|P |´1pi˚↵j˚pF3 b f˚
⌘ Lbqq Ñ pH |Q|´|P |´1pi˚↵j˚pF3 b f˚

⌘ Lcqq
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vanishes. Considering the commutative diagram

pH |Q|´|P |´1pi˚↵j˚pF3 b f˚
⌘ Lbqq pH |Q|´|P |pi˚↵j˚pF1 b f˚

⌘ Lbqq

pH |Q|´|P |´1pi˚↵j˚pF3 b f˚
⌘ Lcqq pH |Q|´|P |pi˚↵j˚pF1 b f˚

⌘ Lcqq

in which all maps are the natural ones, using the fact that the right vertical map is an isomor-
phism and the left one vanishes, we obtain that the upper horizontal map vanishes. Similarly,
considering the commutative diagram

pH |Q|´|P |pi˚↵j˚pF3 b f˚
⌘ Laqq pH |Q|´|P |`1pi˚↵j˚pF1 b f˚

⌘ Laqq

pH |Q|´|P |pi˚↵j˚pF3 b f˚
⌘ Lbqq pH |Q|´|P |`1pi˚↵j˚pF1 b f˚

⌘ Lbqq

where the left vertical map is an isomorphism and the right one vanishes, we obtain that the lower
horizontal map vanishes. This means that in the exact sequence considered at the beginning of
the proof (for the map b) the first and last morphisms vanish. Since the second, third and fourth
terms in this sequence identify with ⌥↵f pF1q, ⌥↵f pF2q and ⌥↵f pF3q respectively, this finishes the
proof. ⇤

Remark 3.4. Recall the notation of §2.1, and set X⌘,↵ “ X ˆAP AP
⌘,↵. Then the immersion jX

factors as a composition

X⌘
jX,↵,1››››Ñ X⌘,↵

jX,↵,2››››Ñ X,

and iX,↵ factors through a morphism hX,↵ : X↵
⌘ Ñ X⌘,↵. Hence for any function a we have an

identification

(3.4) i˚↵j˚pF b f˚
⌘ Laq “ h˚

X,↵pjX,↵,1q˚pF b f˚
⌘ Laq.

Remark 3.5. Consider the decomposition ↵ “ ↵2˝↵1 from Remark 2.1. Then a map a : P Ñ Z•1

is ↵-special i↵ it is ↵1-special, and we have i1X,↵ “ i1X,↵1
˝ i1X↵1 ,↵2

, so for any ↵-special a we have

i˚X,↵pjXq˚pF b f˚
⌘ Laq – piX↵1 ,↵2q˚pi1X,↵1

q˚pjXq˚pF b f˚
⌘ Laq.

Since p↵2q´1p˚q “ t˚u we have a morphism i2X↵1 ,↵2
, which is easily seen to be smooth and

surjective, and an identification

i˚X,↵pjXq˚pF b f˚
⌘ Laq – pi2X↵1 ,↵2

q˚piX,↵1q˚pjXq˚pF b f˚
⌘ Laq.

Since i2X↵1 ,↵2
is smooth of relative dimension |Q| ´ |R| the functor pi2X↵1 ,↵2

q˚r|Q| ´ |R|s is exact
with respect to the perverse t-structure (see [5, §4.2.4] or [1, Proposition 3.6.1]), so for any i P Z
we have

(3.5) pH ipi˚X,↵pjXq˚pF b f˚
⌘ Laqq –

pi2X↵1 ,↵2
q˚r|Q| ´ |R|s

´
pH i´|Q|`|R|pi˚X,↵1

pjXq˚pF b f˚
⌘ Laqq

¯
.

Since i2X↵1 ,↵2
is also surjective, pi2X↵1 ,↵2

q˚r|Q| ´ |R|s is also faithful on perverse sheaves (see [1,

Theorem 3.6.6]),1 hence it detects isomorphisms. We deduce that the ↵-nearby cycles of F are
well defined i↵ so are the ↵1-nearby cycles of F , and that in this case we have

⌥↵f pF q “ pi2X↵1 ,↵2
q˚⌥↵1

f pF qr|Q| ´ |R|s.
1In fact i2X↵1 ,↵2

has geometrically connected fibers, so that pi2X↵1 ,↵2
q˚r|Q| ´ |R|s is even fully faithful on

perverse sheaves, see [5, Proposition 4.2.5] or [1, Theorem 3.6.6].
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3.3. First properties. The following lemma makes more precise the perverse degrees one has
to consider in Definition 3.1.

Lemma 3.6. Let F P PervpX⌘, kq, and let ↵ : P˚ Ñ Q˚ be a pointed map. For any map
a : P Ñ Z•1, we have pH ipi˚↵j˚pF b f˚

⌘ Laqq “ 0 unless |Q| ´ |P | § i § |Q| ´ |imp↵q X Q|.
Proof. Remark 3.5 reduces the proof to the case ↵ is surjective, which we assume from now
on. Set r :“ |P | ´ |Q|. Then i1↵ is a closed immersion; more specifically, it can be written
as a composition ir ˝ ¨ ¨ ¨ ˝ i1 where each ij is a closed immersion whose complementary open
immersion is a�ne. (In fact it su�ces to remark this for ↵̄, where the decomposition is obtained
by writing this map as a composition of embeddings of codimension-1 linear subspaces.) Then
the claim follows from the fact that if i : X Ñ Y is a closed immersion with a�ne complement,
the functor i˚ sends any complex concentrated in perverse degrees between a and b to a complex
concentrated in perverse degrees between a ´ 1 and b, see [5, Corollaire 4.1.10]. ⇤

We deduce the following property.

Lemma 3.7. Let F P PervpX⌘, kq, and let ↵ : P˚ Ñ Q˚ be a pointed map. For any two
functions a,b : P Ñ Z•1 with a § b, the natural map

pH |Q|´|P |pi˚↵j˚pF b f˚
⌘ Laqq Ñ pH |Q|´|P |pi˚↵j˚pF b f˚

⌘ Lbqq
is injective.

Proof. By induction, we can reduce to the case where appq “ bppq for all but one element of
P , say p0, and moreover bpp0q “ app0q ` 1. In this case, define c as in (3.2). That short exact
sequence gives rise to a distinguished triangle

i˚↵j˚pF b f˚
⌘ Laq Ñ i˚↵j˚pF b f˚

⌘ Lbq Ñ i˚↵j˚pF b f˚
⌘ Lcqpapp0qq r1s››Ñ .

Lemma 3.6 applies to all three terms, and then the present lemma follows by examining the long
exact sequence in perverse cohomology. ⇤

3.4. Reformulation. In the following lemma we show that Definition 3.1 can be formulated in
a slightly di↵erent way.

Lemma 3.8. Let F P PervpX⌘, kq, and let ↵ : P˚ Ñ Q˚ be a pointed map. The ↵-nearby cycles
of F are well defined if and only if the following conditions hold.

‚ There exists N P Z•0 such that if a is ↵-special and satisfies appq • N for any
p P ↵´1p˚q X P , then for any b • a ↵-special the natural map

pH |Q|´|P |pi˚↵j˚pF b f˚
⌘ Laqq Ñ pH |Q|´|P |pi˚↵j˚pF b f˚

⌘ Lbqq
is an isomorphism.

‚ For any a ↵-special there exists b • a ↵-special such that the natural map

p⌧°|Q|´|P |pi˚↵j˚pF b f˚
⌘ Laqq Ñ p⌧°|Q|´|P |pi˚↵j˚pF b f˚

⌘ Lbqq
vanishes.

Proof. By Lemma 3.6, the map (3.3) automatically vanishes for i † |Q| ´ |P |. In view of this,
it is clear that the conditions in the present lemma imply those in Definition 3.1.

Conversely, assume that the conditions in Definition 3.1 hold. Let a : P Ñ Z•1 be an ↵-
special function, and define a sequence of functions a1,a2, . . . inductively as follows: set a1 “ a,
and if a1, . . . ,an´1 are already defined, choose an • an´1 such that

pH ipi˚↵j˚pF b f˚
⌘ Lan´1qq Ñ pH ipi˚↵j˚pF b f˚

⌘ Lanqq
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vanishes for i ° |Q| ´ |P |. (By Lemma 3.6 again, there are only finitely many degrees
i ° |Q| ´ |P | in which the objects above are nonzero, so finding such a an requires only finitely
many invocations of Definition 3.1.) Set

Mj “ p⌧°|Q|´|P |pi˚↵j˚pF b f˚
⌘ Laj qq, j “ 1, 2, . . . .

By Lemma 3.9 below, there is an integer N • 1 such that M1 Ñ MN is the zero map. The
second condition of the lemma is then satisfied by b “ aN . ⇤

Lemma 3.9. Let T be a triangulated category equipped with a non-degenerate t-structure, and
suppose we have a sequence of objects and maps

M1
�1›Ñ M2

�2›Ñ M3 Ñ ¨ ¨ ¨
such that the following conditions hold:

(1) there exist integers a § b such that for all j, the t-cohomology tH ipMjq vanishes unless
a § i § b;

(2) for any j • 1 and i P Z, the map tH ip�jq vanishes.

Then the composition �b´a`1 ˝ �b´a ˝ ¨ ¨ ¨ ˝ �1 : M1 Ñ Mb´a`2 vanishes.

Proof. We proceed by induction on b ´ a. If b ´ a “ 0, then Mj “ tH apMjqr´as for all j, and
the maps �j are already all zero by assumption, so the claim is clear.

Otherwise, for any j we set M 1
j “ t⌧•a`1Mj , and let �1

j : M 1
j Ñ M 1

j`1 be the induced map.
By induction, the map �1

b´a ˝ ¨ ¨ ¨ ˝ �1
1 : M 1

1 Ñ M 1
b´a`1 vanishes. Let

 “ �b´a ˝ ¨ ¨ ¨ ˝ �1 : M1 Ñ Mb´a`1,

and consider the commutative diagram

tH apM1qr´as M1 M 1
1

tH apMb´a`1qr´as Mb´a`1 M 1
b´a`1

tH apMb´a`2qr´as Mb´a`2 M 1
b´a`2

0  0

`1

0 �b´a`1 �1
b´a`1

`1

`1

where all rows are distinguished triangles. An examination of the long exact sequence of Hom-
groups shows that  must be induced by a map

✓ : M1 Ñ tH apMb´a`1qr´as.
The composition �b´a`1 ˝  is equal to the composition

M1
✓›Ñ tH apMb´a`1qr´as Ñ Mb´a`1

�b´a`1›››››Ñ Mb´a`2.

But the composition of the last two arrows is 0, so �b´a`1˝ “ 0, which concludes the proof. ⇤

3.5. Examples. To illustrate Definition 3.1 we next consider some special cases.

Example 3.10. Assume that ↵´1p˚q “ t˚u. Then there exists only one ↵-special map, namely
the constant map with value 1, and the corresponding local system is constant (of rank 1). In
this case, we interpret the conditions in Definition 3.1 as requiring that pH ipi˚↵j˚pF qq “ 0 if
i ‰ |Q| ´ |P |. Note that we have i↵ “ j ˝ i2↵, hence i˚↵j˚pF q “ pi2↵q˚F . It follows that the
↵-nearby cycles of F are well defined if and only if pi2↵q˚F r|Q| ´ |P |s is perverse, and that if
this is the case we have

⌥↵f pF q – pi2↵q˚F r|Q| ´ |P |s.
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Example 3.11. Assume now that Q “ ?. In this case, there exists a unique map

↵ : P˚ Ñ Q˚ “ t˚u
(which will therefore be omitted from the notation), and any map a : P Ñ Z•1 is special. If
n “ |P |, we will speak of n-dimensional nearby cycles instead of ↵-nearby cycles in this case.
More specifically:

(1) In case n “ 1, the constructions above amount to those of Bĕılinson [4] in his description
of the unipotent nearby cycles functor and its monodromy action, see [13] (see also [14]
or [2, §9.2] for the analogous construction in the complex analytic setting); in particular,
the 1-dimensional nearby cycles of F are well defined for any F , and compute the
unipotent part of the nearby cycles  f pF q. The monodromy action on the pullback to
F is the inverse of the standard monodromy action.

(2) In case n “ 2, the considerations above specialize to the setting studied in [2, §9.4] (fol-
lowing an idea of Gaitsgory in [9]); in particular, [2, Proposition 9.4.7] gives a su�cient
condition under which the 2-dimensional nearby cycles of F are well defined and can be
computed in terms of iterated unipotent nearby cycles.

This case is also considered (for general n) in [15], where appropriate versions of Lemmas 3.13
and 3.14 below are also obtained.

3.6. Compatibilities.

Lemma 3.12. If ↵ : P˚ Ñ Q˚ is surjective, |Q| “ |P | ´ 1, and |↵´1p˚q| “ 2, then the ↵-nearby
cycles of F are well defined.

Proof. Our assumptions imply that there is exactly one element p P P with ↵ppq “ ˚. It is clear
that the datum of an ↵-special map a : P Ñ Z•1 is equivalent to the datum of a nonnegative
integer (corresponding to appq). If ⇡p : AP Ñ A1 is the projection onto the pth coordinate, then
the construction of the ↵-nearby cycles of F with respect to f amounts to the construction
of the 1-dimensional nearby cycles of F with respect to ⇡p ˝ f , which are well defined by
Example 3.11. ⇤

For the next statements we fix a pointed map ↵ : P˚ Ñ Q˚. Given a morphism g : Y Ñ X,
we will denote by g⌘ : Y⌘ Ñ X⌘ and g↵⌘ : Y ↵

⌘ Ñ X↵
⌘ the morphisms obtained by base change.

Lemma 3.13. Let g : Y Ñ X be a smooth morphism of relative dimension d, and let
F P PervpX⌘, kq.

(1) If the ↵-nearby cycles of F are well defined, then so are the ↵-nearby cycles of g˚
⌘F rds.

(2) If g is surjective, and if the ↵-nearby cycles of g˚
⌘F rds are well defined, then so are the

↵-nearby cycles of F .

In either case, there is a natural isomorphism

⌥↵fgpg˚
⌘F rdsq – pg↵⌘ q˚⌥↵f pF qrds.

Proof. The first claim follows from the smooth base change theorem and t-exactness of shifted
smooth pullbacks. The second claim follows from the fact that pullback under a smooth surjective
morphism is faithful on perverse sheaves and detects isomorphisms, as in Remark 3.5. Details
are left to the reader. ⇤
Lemma 3.14. Let g : Y Ñ X be a proper morphism, and let F P PervpY⌘, kq. Assume that the
following conditions hold:

(1) the ↵-nearby cycles of F are well defined;
(2) both pg⌘q˚F and pg↵⌘ q˚⌥↵fgpF q are perverse.

Then the ↵-nearby cycles of pg⌘q˚F are well defined, and there is a natural isomorphism

⌥↵f ppg⌘q˚F q – pg↵⌘ q˚⌥↵fgpF q.
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Proof. To simplify notation we set r “ |Q| ´ |P | and h “ fg. For any ↵-special functions
a,b : P Ñ Z•1 with a § b, we can form the following commutative diagram, in which the
columns are truncation distinguished triangles (in the top row, we use Lemma 3.6 to identify
p⌧§rp´q with pH rp´qr´rs):

(3.6)

pH rpi˚Y,↵jY ˚pF b h˚
⌘Laqqr´rs pH rpi˚Y,↵jY ˚F b h˚

⌘Lbqr´rs

i˚Y,↵jY ˚pF b h˚
⌘Laq i˚Y,↵jY ˚pF b h˚

⌘Lbq

p⌧°ri˚Y,↵jY ˚pF b h˚
⌘Laq p⌧°ri˚Y,↵jY ˚pF b h˚

⌘Lbq
`1 `1

Since the ↵-nearby cycles of F are well defined, by Lemma 3.8, we may choose a such that
the top horizontal map is an isomorphism for any b • a (so that these objects identify with
⌥↵hpF q), and then choose b such that the bottom horizontal map is 0.

By base change and the projection formula, we have

g↵⌘˚i
˚
Y,↵jY ˚pF b h˚

⌘Laq – i˚X,↵jX˚g⌘˚pF b g˚
⌘ f

˚
⌘ Laq – i˚X,↵jX˚ppg⌘˚F q b f˚

⌘ Laq.
Thus, applying g↵⌘˚ to (3.6), we obtain a diagram

(3.7)

g↵⌘˚
pH rpi˚Y,↵jY ˚pF b h˚

⌘Laqqr´rs g↵⌘˚
pH rpi˚Y,↵jY ˚pF b h˚

⌘Lbqqr´rs

i˚X,↵jX˚pg⌘˚F b f˚
⌘ Laq i˚X,↵jX˚pg⌘˚F b f˚

⌘ Lbq

g↵⌘˚pp⌧°ri˚Y,↵jY ˚pF b h˚
⌘Laqq g↵⌘˚pp⌧°ri˚Y,↵jY ˚pF b h˚

⌘Lbqq

„

0

`1 `1

whose columns are distinguished triangles. The objects in the top row are identified with
g↵⌘˚⌥

↵
hpF qr´rs; in particular, by assumption, they are concentrated in perverse degree r. Since

g⌘˚F is assumed to be perverse, Lemma 3.6 tells us that the objects in the middle row live in
perverse degrees • r. It follows that

pH ipg↵⌘˚pp⌧°ri˚Y,↵jY ˚pF b h˚
⌘Laqqq “ 0 for i § r ´ 2,

and likewise for Lb. Taking perverse cohomology, we obtain the following commutative diagram
with exact columns:

pH r´1pg↵⌘˚pp⌧°ri˚Y,↵jY ˚pF b h˚
⌘Laqqq pH r´1pg↵⌘˚pp⌧°ri˚Y,↵jY ˚pF b h˚

⌘Lbqqq

g↵⌘˚
pH rpi˚Y,↵jY ˚pF b h˚

⌘Laqq g↵⌘˚
pH rpi˚Y,↵jY ˚pF b h˚

⌘Lbqq

pH rpi˚X,↵jX˚pg⌘˚F b f˚
⌘ Laqq pH rpi˚X,↵jX˚pg⌘˚F b f˚

⌘ Lbqq

pH rpg↵⌘˚pp⌧°ri˚Y,↵jY ˚pF b h˚
⌘Laqqq pH rpg↵⌘˚pp⌧°ri˚Y,↵jY ˚pF b h˚

⌘Lbqqq.

0

„

0

Here, the third horizontal arrow is injective by Lemma 3.7. Since the composition of the topmost
horizontal arrow with the topmost right vertical arrow is injective, the latter morphism must be
injective, which implies that the topmost term in the left-hand column vanishes. By one of the
four-lemmas, the 0 morphism on the fourth line is injective, so that the bottommost term in this
column also vanishes. We deduce that we actually have

pH ipg↵⌘˚pp⌧°ri˚Y,↵jY ˚pF b h˚
⌘Laqqq “ 0 for i § r.
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The same reasoning also applies to b, which implies that the columns of (3.7) can be identified
with truncation distinguished triangles: that whole diagram can be rewritten as as

(3.8)

pH rpi˚X,↵jX˚pg⌘˚F b f˚
⌘ Laqqr´rs pH rpi˚X,↵jX˚pg⌘˚F b f˚

⌘ Lbqqr´rs

i˚X,↵jX˚pg⌘˚F b f˚
⌘ Laq i˚X,↵jX˚pg⌘˚F b f˚

⌘ Lbq

p⌧°ri˚X,↵jX˚pg⌘˚F b f˚
⌘ Laq p⌧°ri˚X,↵jX˚pg⌘˚F b f˚

⌘ Lbq

„

0

`1 `1

Our argument shows that the top (resp. bottom) row of (3.8) is an isomorphism (resp. zero)
whenever the corresponding row of (3.6) has the same property. By Lemma 3.8, we conclude
that the ↵-nearby cycles of g⌘˚F are well defined. The identification of (3.7) with (3.8) shows
that ⌥↵f pg⌘˚F q – g↵⌘˚⌥

↵
fgpF q. ⇤

3.7. Compositions of higher nearby cycles: construction. Let ↵ : P˚ Ñ Q˚ and
� : Q˚ Ñ R˚ be pointed maps, and let F P PervpX⌘, kq be an object which satisfies the
following properties:

‚ the ↵-nearby cycles and the �↵-nearby cycles of F are well defined;
‚ the �-nearby cycles of ⌥↵f pF q are well defined.

In the rest of this subsection we explain how, in this setting, one can define a canonical morphism

(3.9) ⌥�↵f pF q Ñ ⌥�f↵p⌥↵f pF qq.
Let c : P Ñ Z•1 be a �↵-special function. Recall that this means that cppq ‰ 1 implies

�p↵ppqq “ ˚. Define two new functions a,b : P Ñ Z•1 by

appq “
#
cppq if ↵ppq “ ˚,
1 otherwise,

bppq “
#
cppq if �p↵ppqq “ ˚ but ↵ppq ‰ ˚,
1 otherwise.

We clearly have that a is ↵-special, and that Lc – La b Lb. Next, define b1 : Q Ñ Z•1 by

b1pqq “ ´|↵´1pqq| ` 1 `
ÿ

pP↵´1pqq
bppq.

We claim that b1 is �-special. Indeed, if �pqq ‰ ˚, then the summation involves only elements p
satisfying �p↵ppqq ‰ ˚, and the claim follows from the fact that c is �↵-special. Note also that
if �pqq “ ˚ we have

(3.10) b1pqq “ ´|↵´1pqq| ` 1 `
ÿ

pP↵´1pqq
cppq.

Recall the open subscheme AP
⌘,↵ from §2.1 and the morphism ↵̄⌘ : AQ

⌘ Ñ AP
⌘,↵. Note that the

local system Lb on AP
⌘ extends (uniquely) to a local system Lb,↵ on AP

⌘,↵. We claim that there
exists a natural morphism

(3.11) ↵̄˚
⌘Lb,↵ Ñ Lb1

of local systems on AQ
⌘ . Indeed, for q P Q, the qth copy of A1 in AQ is mapped under ↵̄ to the

diagonal copy of A1 inside A↵´1pqq. It follows that

↵̄˚
⌘Lb,↵ –

ò

qPQ

´ â

pP↵´1pqq
Lbppq

¯
.

The morphisms (2.11) provide a map
â

pP↵´1pqq
Lbppq Ñ Lb1pqq
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for each q; taking the external tensor product over q, we obtain (3.11).
Note now that the restriction of ↵̄ to AQ

⌘,� factors through AP
⌘,�↵, which allows to define the

morphism iX,↵,� : X↵
⌘,� Ñ X⌘,�↵ by base change. We consider the commutative diagram as

follows, where the unlabelled arrow is the obvious open immersion:

X�↵
⌘ X↵

⌘ X⌘

X↵
⌘,� X⌘,↵

X⌘,�↵

X�↵ X↵ X.

jX�↵

hX↵,�

jX↵

hX,↵jX↵,�,1

jX

jX,↵,1

jX,�↵,1

iX,↵,�

jX↵,�,2 jX,↵,2

jX,�↵,2

i1
X↵,� i1

X,↵

We have a sequence of natural maps or isomorphisms as follows:

i˚X,�↵pjXq˚pF b f˚
⌘ Lcq – h˚

X↵,�i
˚
X,↵,�pjX,�↵,1q˚pF b f˚

⌘ Lcq
adjunction›››››››Ñ h˚

X↵,�pjX↵,�,1q˚pjX↵,�,1q˚i˚X,↵,�pjX,�↵,1q˚pF b f˚
⌘ Lcq

– h˚
X↵,�pjX↵,�,1q˚h˚

X,↵pjX,↵,1q˚pF b f˚
⌘ La b f˚

⌘ Lbq.
Now, recall the local system Lb,↵, and denote by f⌘,↵ : X⌘,↵ Ñ AP

⌘,↵ the morphism induced by
f . By adjunction and compatibility of pullback with tensor product, there exists a canonical
morphism

pjX,↵,1q˚pF b f˚
⌘ Laq b f˚

⌘,↵Lb,↵ Ñ pjX,↵,1q˚pF b f˚
⌘ La b f˚

⌘ Lbq.
This morphism becomes an isomorphism if Lb,↵ is replaced by the constant local system; since
after pullback to F the local system Lb,↵ is an extension of copies of this constant sheaf, we
deduce that it is an isomorphism too. We deduce identifications

h˚
X↵,�pjX↵,�,1q˚h˚

X,↵pjX,↵,1q˚pF b f˚
⌘ La b f˚

⌘ Lbq
– h˚

X↵,�pjX↵,�,1q˚h˚
X,↵

`
pjX,↵,1q˚pF b f˚

⌘ Laq b f˚
⌘,↵Lb,↵

˘

– h˚
X↵,�pjX↵,�,1q˚

``
h˚
X,↵pjX,↵,1q˚pF b f˚

⌘ Laq
˘

b
`
h˚
X↵,�f

˚
⌘,↵Lb,↵

˘˘

– h˚
X↵,�pjX↵,�,1q˚

``
h˚
X,↵pjX,↵,1q˚pF b f˚

⌘ Laq
˘

b
`
pf↵⌘ q˚↵̄˚

⌘Lb,↵

˘˘
.

Using (3.11) we deduce a canonical morphism

h˚
X↵,�pjX↵,�,1q˚h˚

X,↵pjX,↵,1q˚pF b f˚
⌘ La b f˚

⌘ Lbq
Ñ h˚

X↵,�pjX↵,�,1q˚
``
h˚
X,↵pjX,↵,1q˚pF b f˚

⌘ Laq
˘

b pf↵⌘ q˚Lb1
˘
.

Using (3.4), Lemma 3.6, and the fact that tensoring with pf↵⌘ q˚Lb1 is exact for the perverse
t-structure, applying perverse cohomology in degree |R| ´ |P | to the composition of the maps
above we deduce a canonical morphism

(3.12) pH |R|´|P |pi˚X,�↵pjXq˚pF b f˚
⌘ Lcqq Ñ

pH |Q|´|R|ph˚
X↵,�pjX↵,�,1q˚ppH |P |´|Q|pph˚

X,↵pjX,↵,1q˚pF b f˚
⌘ Laqq b pf↵⌘ q˚Lb1 qqq.

When c is large (among �↵-special maps) then a is large (among ↵-special maps) and b1 is large
(among �-special maps) in view of (3.10). Hence in this case (3.12) provides the morphism we
were looking for.

Remark 3.15. Suppose that |P | “ 2, |Q| “ 1, R “ ?, and ↵ is nonconstant. Then the mor-
phism (3.9) is that appearing in [2, Lemma 9.4.3 or Lemma 9.4.11], depending on the size of
↵´1p˚q.
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3.8. Compositions of higher nearby cycles: properties. The following three statements
give compatibility properties of the morphisms (3.9). Each of them can be checked on definitions.

Lemma 3.16. Suppose we have three pointed maps ↵ : P˚ Ñ Q˚, � : Q˚ Ñ R˚, and
� : R˚ Ñ S˚. If all the objects in the diagram below are defined, then the diagram commutes,
where each arrow is an instance of (3.9):

⌥��↵f pF q ⌥�f�↵p⌥�↵f pF qq

⌥��f↵p⌥↵f pF qq ⌥�f�↵p⌥�f↵p⌥↵f pF qqq.

Lemma 3.17. Let g : Y Ñ X be a smooth morphism of relative dimension d, let ↵ : P˚ Ñ Q˚,
� : Q˚ Ñ R˚ be pointed maps, let F P PervpX⌘, kq. Assume that:

‚ the ↵-nearby cycles and the �↵-nearby cycles of F are well defined;
‚ the �-nearby cycles of ⌥↵f pF q are well defined.

Then the ↵-nearby cycles and the �↵-nearby cycles of g˚
⌘F rds, and the �-nearby cycles of

⌥↵fgpg˚
⌘F rdsq, are all well defined, and the morphism

⌥�↵fg pg˚
⌘F rdsq Ñ ⌥�pfgq↵p⌥↵fgpg˚

⌘F rdsqq
given by (3.9) is, taking into account the identifications of Lemma 3.13, the image under pg↵⌘ q˚rds
of the corresponding morphism ⌥�↵f pF q Ñ ⌥�f↵p⌥↵f pF qq. ⇤
Lemma 3.18. Let g : Y Ñ X be a proper morphism, let ↵ : P˚ Ñ Q˚, � : Q˚ Ñ R˚ be pointed
maps, and let F P PervpY⌘, kq. Assume that:

‚ the ↵-nearby cycles and the �↵-nearby cycles of F are well defined;
‚ the �-nearby cycles of ⌥↵fgpF q are well defined;
‚ the complexes

pg⌘q˚F , pg↵⌘ q˚⌥↵fgpF q, pg�↵⌘ q˚⌥
�
pfgq↵p⌥↵fgpF qq and pg�↵⌘ q˚⌥

�↵
fg pF q

are perverse.

Then the ↵-nearby cycles and the �↵-nearby cycles of pg⌘q˚F , and the �-nearby cycles of
⌥↵f ppg⌘q˚F q, are all well defined, and the morphism

⌥�↵f ppg⌘q˚F q Ñ ⌥�f↵p⌥↵f ppg⌘q˚F qq
given by (3.9) is, taking into account the identifications of Lemma 3.14, the image under pg�↵⌘ q˚
of the corresponding morphism ⌥�↵fg pF q Ñ ⌥�pfgq↵p⌥↵fgpF qq. ⇤

3.9. Product-type situations. Let P be a finite set, and suppose we have a collection of maps
pfp : Xp Ñ A1qpPP . For each p, let

Xp,⌘ “ f´1
p pA1 r t0uq and Xp,0 “ f´1

p pt0uq.
Denote the inclusion maps by jp : Xp,⌘ Ñ Xp and ip : Xp,0 Ñ Xp. Set

X “
π

pPP
Xp and f “

π

pPP
fp : X Ñ AP .

We obviously have X⌘ “ ±
pPP Xp,⌘. More generally, for any pointed map ↵ : P˚ Ñ Q˚, we can

describe X↵
⌘ as follows:

(3.13) X↵
⌘ –

π

qPQ
X↵

q,⌘ ˆ
π

pP↵´1p˚qXP

Xp,0 where X↵
q,⌘ “

π
A1

pP↵´1pqq
Xp,⌘.
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Here, the right-hand side is a fiber product over A1. If ↵´1pqq “ ?, the right-hand side should
be understood to be A1.

The following lemma is immediate from the definitions.

Lemma 3.19. Let pfp : Xp Ñ A1qpPP be as above. Suppose we have a collection of objects
Fp P Db

c pXp,⌘, kq, and set

F “
ò

pPP
Fp P Db

c pX, kq.

Then the object i˚↵j˚F P Db
c pX↵

⌘ , kq is given by

i˚↵j˚F –
ò

qPQ

¨

˝ ò
A1

⌘

pP↵´1pqq
Fp

˛

‚b
ò

pP↵´1p˚qXP

i˚
p jp˚Fp.

Here, the notation “bA1
⌘
” is a relative external tensor product: it is the pullback of the usual

external tensor product
Ò

pP↵´1pqq
Fp along the map

π
A1

pP↵´1pqq
Xp,⌘ ãÑ

π

pP↵´1pqq
Xp,⌘.

(When ↵´1pqq “ ?, this is the map A1 Ñ SpecpFq, and Ò
pP↵´1pqq

Fp should be understood to be

the constant sheaf k on SpecpFq.)
Lemma 3.20. Let pfp : Xp Ñ A1qpPP and ↵ : P˚ Ñ Q˚ be as above. Suppose we have a
collection of perverse sheaves Fp P PervpXp,⌘, kq that satisfy the following condition: for each
q P Q, the object ¨

˝ ò
A1

⌘

pP↵´1pqq
Fp

˛

‚r1 ´ |↵´1pqq|s P Db
c pX↵

q,⌘, kq

is perverse. Then the ↵-nearby cycles of F are well defined, and we have

⌥↵f pF q –
ò

qPQ

¨

˝ ò
A1

⌘

pP↵´1pqq
Fp

˛

‚r1 ´ |↵´1pqq|s b
ò

pP↵´1p˚qXP

 un
fp pFpq.

Proof. Consider two ↵-special functions a § b. By Lemma 3.19, the map

i˚↵j˚pF b f˚
⌘ Laq Ñ i˚↵j˚pF b f˚

⌘ Lbq
is the external tensor product of the following two kinds of maps:

for q P Q :
ò

A1
⌘

pP↵´1pqq
pFp b f˚

p,⌘Lappq Ñ Fp b f˚
p,⌘Lbppqq;(3.14)

for p P ↵´1p˚q X P : i˚
p jp˚pFp b f˚

p,⌘Lappq Ñ Fp b f˚
p,⌘Lbppqq.(3.15)

In (3.14), because a and b are ↵-special, we have appq “ bppq “ 1 for each p that appears. That
is, (3.14) is just the identity map of the object

Ò
A1

⌘

pP↵´1pqq
Fp, which is a shifted perverse sheaf by

assumption.
The perverse cohomology of (3.15) is precisely Bĕılinson’s description of the unipotent nearby

cycles of Fp. More precisely, for a and b large enough, the i-th perverse cohomology of the map
in (3.15) is an isomorphism if i “ ´1, and is 0 otherwise.
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We conclude that, for a and b large enough, the perverse cohomology pH i of the external
tensor product of all the maps (3.14) and (3.15) is an isomorphism when

i “
ÿ

qPQ
p1 ´ |↵´1pqq|q `

ÿ

pP↵´1p˚qXP

p´1q “ |Q| ´ |P |,

and zero otherwise. ⇤

Lemma 3.21. Let pfp : Xp Ñ A1qpPP be as above, and let ↵ : P˚ Ñ Q˚ and � : Q˚ Ñ R˚ be
pointed maps. Suppose we have a collection of perverse sheaves Fp P PervpXp,⌘, kq satisfying the
following three conditions:

(1) for each q P Q, the following object is perverse:
¨

˝ ò
A1

⌘

pP↵´1pqq
Fp

˛

‚r1 ´ |↵´1pqq|s P Db
c pX↵

q,⌘, kq;

(2) for each r P R, the following object is perverse:
¨

˝ ò
A1

⌘

pP↵´1p�´1prqq
Fp

˛

‚r1 ´ |↵´1p�´1prqq|s P Db
c pX�↵

r,⌘ , kq;

(3) for any p P P such that ↵ppq ‰ ˚ and p�↵qppq “ ˚ we have  un
fp

pFpq “  fppFpq.
Then the ↵-nearby cycles and the �↵-nearby cycles of F are well defined, as well as the �-nearby
cycles of ⌥↵f pF q, and the map ⌥�↵f pF q Ñ ⌥�f↵p⌥↵f pF qq from (3.9) is an isomorphism.

Proof. Our assumptions together with Lemma 3.20 imply that the ↵-nearby cycles and the �↵-
nearby cycles of F are well defined. To study the �-nearby cycles of ⌥↵f pF q, let us introduce
the notation Z “ ±

pP↵´1p˚qXP Xp,0, so that X↵
⌘ “ ±

qPQ X↵
q,⌘ ˆ Z. We also let

Gq “
¨

˝ ò
A1

⌘

pP↵´1pqq
Fp

˛

‚r1 ´ |↵´1pqq|s and GZ “
ò

pP↵´1p˚qXP

 un
fp pFpq,

so that if we set G “ ⌥↵f pF q, then by Lemma 3.20 we have

G –
˜

ò

qPQ
Gq

¸
b GZ .

The diagram

X↵
⌘

jX↵››Ñ X↵ iX↵,�–›››› X�↵
⌘

can be redrawn as

π

qPQ
X↵

q,⌘ ˆ Z
jX↵››Ñ

π

qPQ
X↵

q ˆ Z
iX↵,�–››››

π

rPR

¨

˝
π

A1

rP�´1pqq
X↵

q,⌘

˛

‚ˆ
π

qP�´1p˚qXQ

X↵
q,0 ˆ Z.

This almost matches the general set-up at the beginning of this subsection, except for the extra
factor of Z. A minor variant of Lemma 3.20 says that a su�cient condition for the �-nearby
cycles of G to be well defined is that for each r P R the object

(3.16)

¨

˝ ò
A1

⌘

qP�´1prq
Gq

˛

‚r1 ´ |�´1prq|s
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be perverse. If this holds, then we have

(3.17) ⌥�f↵pG q –
ò

rPR

¨

˝ ò
A1

⌘

qP�´1prq
Gq

˛

‚r1 ´ |�´1prq|s b
ò

qP�´1p˚qXQ

 un
f↵
q

pGqq b GZ .

Using the definition of Gq, we rewrite the object in (3.16) as

¨

˚̊
˚̊
˝

ò
A1

⌘

qP�´1prq
pP↵´1pqq

Fp

˛

‹‹‹‹‚

»

–1 ´ |�´1prq| `
ÿ

qP�´1prq
p1 ´ |↵´1pqq|q

fi

fl

–
¨

˝ ò
A1

⌘

pP↵´1p�´1prqq
Fp

˛

‚r1 ´ |↵´1p�´1prqq|s.

This object is perverse by the second assumption in the lemma. We conclude that the �-nearby
cycles of G are well defined. Moreover, using the definition of Gq, we can rewrite (3.17) as

ò

rPR

¨

˚̊
˚̊
˝

ò
A1

⌘

qP�´1prq
pP↵´1pqq

Fp

˛

‹‹‹‹‚
r1 ´ |↵´1p�´1prqq|s b

ò

qP�´1p˚qXQ

 un
f↵
q

pGqq b
ò

pP↵´1p˚qXP

 un
fp pFpq.

To finish the comparison with ⌥�↵f pF q, we must show that if �pqq “ ˚, then

 un
f↵
q

pGqq –
ò

pP↵´1pqq
 un

fp pFpq.

This claim follows from the definition of Gq, our third assumption, and the compatibility of
nearby cycles with external tensor products, see [10, Théorème 4.7]. ⇤

4. Application to central sheaves

In this section we assume (for simplicity) that F is algebraically closed, and denote by AlgF
the category of F-algebras.

4.1. Graphs of points. We consider the curve C “ A1
F and the closed point 0 P CpFq. Given

R P AlgF and y P CpRq, we denote by �y Ä CR :“ C ˆSpecpFq SpecpRq the graph of y. The
constant R-point defined by 0 P CpFq will also be denoted 0. If P is a finite set, for R P AlgF
and pypqpPP P CP pRq we set

�typ:pPP u “
§

pPP
�yp Ä CR.

Of course, for any subset Q Ä P we have a closed immersion �typ:pPQu Ñ �typ:pPP u. We will also

denote by p�typ:pPP u the completion of CR along �typ:pPP u (i.e. the spectrum of the completion
of OpCRq with respect to the ideal of definition of the closed subscheme �typ:pPP u). We have a

natural morphism p�typ:pPP u Ñ CR, and the closed immersion �typ:pPP u Ñ CR factors through a

closed immersion �typ:pPP u Ñ p�typ:pPP u. We set

p�˝
typ:pPP u :“ p�typ:pPP u r �typ:pPP u.
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4.2. Satake category and central sheaves. Let G be a connected reductive algebraic group
over F. To G and a choice of Borel subgroup B Ä G we can associate in the usual way the loop
group LG, the positive loop group L`G, the Iwahori subgroup I Ä L`G, the a�ne Grassmannian
GrG “ LG{L`G and the a�ne flag variety FlG “ LG{I. Here the quotients are the fppf
quotients, and they are represented by ind-projective ind-schemes over F; for all of this, see [2]
for details. Recall that the L`G-equivariant derived category Db

L`GpGrG, kq of k-sheaves on
GrG, resp. the I-equivariant derived category Db

I pFlG, kq of k-sheaves on FlG, is endowed with

a canonical unital and associative convolution product ‹L`G, resp. ‹I .
The Satake category is the category PervL`GpGrG, kq of L`G-equivariant k-perverse sheaves

on GrG. It is a fundamental standard fact (see [12, 3]) that the product ‹L`G is t-exact on
both sides, hence restricts to a bifunctor on the Satake category, and moreover that this restric-
tion admits a canonical commutativity constraint. For a finite collection pApqpPP of objects in

PervL`GpGrG, kq, it therefore makes sense to consider the convolution product ‹L`G
pPP Ap.

We will denote by G the smooth a�ne group scheme over C constructed (following X. Zhu)
in [2, §2.2.3.1]: its restriction to C r t0u, resp. to the formal neighborhood of 0, identifies with
GˆpCrt0uq, resp. with the Iwahori group scheme of LG attached to B. For any scheme X over
C, we will denote by E0

X “ X ˆC G the trivial principal G-bundle over X. Recall the ind-scheme
GrCen

G over C defined in [2, §2.2.3.2]; it represents the functor sending R P AlgF to the set of
equivalence classes of triples py, E ,�q where:

‚ y P CpRq;
‚ E is a principal G-bundle over p�y;
‚ � : E|p�y̋

„›Ñ E0
p�y̋

is an isomorphism.

We have canonical identifications

(4.1) GrCen
G |t0u – FlG, GrCen

G |Crt0u – GrG ˆ pC r t0uq.
Following Gaitsgory [8], we consider the functor

Z : PervL`GpGrG, kq Ñ PervIpFlG, kq
defined by ZpA q “ ⌥GrCen

G
pA b kCrt0ur1sq. In fact, in this setting it is known that the nearby

cycles of A b kCrt0ur1s are unipotent (see [2, §2.4.5]), so that ZpA q coincides with the full
nearby cycles, see Example 3.11. It is known that this functor is monoidal when seen as a
functor with values in Db

I pFlG, kq (see [2, Theorem 3.4.1]), that for any F in PervIpFlG, kq and
A in PervL`GpGrG, kq the convolution F ‹I ZpA q is perverse (see [2, Corollary 3.2.5]), and that
Z is a central functor; in particular, for F , A as above there exists a canonical isomorphism
F ‹I ZpA q – ZpA q ‹I F , see [2, Theorem 3.2.3 and §3.5.1]. In particular, for a finite collection
pApqpPP of objects in PervL`GpGrG, kq, it makes sense to consider the convolution product
‹I

pPPZpApq.
4.3. Iterated a�ne Grassmannians. Let P be a finite set. Define a functor GrP on AlgF as
follows: for R P AlgF, GrP pRq is the set of equivalence classes of the following data:

‚ a point pypqpPP in CP pRq;
‚ a principal G-bundle E over p�t0uYtyp:pPP u;
‚ an isomorphism � : E|p�˝

t0uYtyp:pPPu

„›Ñ E0
p�˝

t0uYtyp:pPPu
.

This functor is represented by an ind-proper ind-scheme over CP . It is also easily seen that
if Q is another finite set and ↵ : P˚ Ñ Q˚ is a surjective pointed map, there is a canonical
identification AQ ˆAP GrP “ GrQ.

Example 4.1. For n P Z•1 and P “ t1, . . . , nu, the ind-scheme Grt1,...,nu coincides with the
ind-scheme Grn of [7, §5.1]. If P “ ? we have Gr? “ FlG.
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Denote by
CP,: Ä CP

the open subscheme consisting of the points pypqpPP such that yp ‰ 0 for any p and yp ‰ yp1 for
any p ‰ p1. By standard arguments we have a canonical identification

(4.2) pGrP q|CP,: – FlG ˆ pGrGqP ˆ CP,:.

Denote by |P the open embedding

pGrP q|CP,: Ñ pGrP q|pCrt0uqP “ pGrP q⌘.
Below we will consider collections of perverse sheaves

A˚ P PervIpFlG, kq and Ap P PervL`GpGrG, kq
for each p P P . For brevity, we denote this collection by pAiqiPP˚ . We consider the functor

CP : PervIpFlG, kq ˆ
π

pPP
PervL`GpGrG, kq Ñ PervppGrP q⌘q

defined by

CP ppAiqiPP˚ q “ p|P q!˚
˜

A˚ b
˜

ò

pPP
Ap

¸
b kCP,: r|P |s

¸
,

where we use the identification (4.2).
The main result of this section is the following statement, proved in §4.6. The statement

involves the extension of the constructions of Section 3 to ind-schemes of ind-finite type, see
Remark 3.2(2).

Theorem 4.2. Let ↵ : P˚ Ñ Q˚ be a surjective pointed map. For any A˚ in PervIpFlG, kq and
pApqpPP in PervL`GpGrG, kq, the ↵-nearby cycles of CP ppAiqiPP˚ q are well defined, and moreover
we have a canonical identification

⌥↵GrP

`
CP ppAiqiPP˚ q

˘
– CQ

`
pBjqjPQ˚

˘

where

B˚ “ A˚ ‹I
´

‹I
pP↵´1p˚qXPZpApq

¯
and Bq “ ‹L`G

pP↵´1pqqAp for q P Q.

If � : Q˚ Ñ R˚ is another surjective pointed map, then the natural map

⌥�↵GrP

`
CP ppAiqiPP˚ q

˘
Ñ ⌥�GrQ

⌥↵GrP

`
CP ppAiqiPP˚ q

˘

given by (3.9) is an isomorphism.

Remark 4.3. As was explained to us by A. Salmon, Theorem 4.2 can be restated as the con-
struction of a category cofibered over the category of finite pointed sets (and pointed maps).

Remark 4.4. In this remark we assume that P “ t1, . . . , nu for some n P Z•1 and Q “ ?. In
this case there is a unique choice for ↵, we have GrQ “ FlG, and Theorem 4.2 says that

(4.3) ⌥↵GrP pA˚,A1, . . . ,Anq – A˚ ‹I ZpA1q ‹I ¨ ¨ ¨ ‹I ZpAnq.
(1) If n “ 1, by Example 3.11 the fact that the nearby cycles are well defined is automatic;

the isomorphism (4.3) is the content of [2, Proposition 3.2.1]. In case n “ 2, this
statement is closely related to the results of [2, §3.5].

(2) There exists a natural action of the symmetric group Sn on GrP by permutation of the
points yi. This action preserves the preimage of CP,: and, under the identification (4.2),
its restriction to this open subset identifies with the diagonal action by permutation of
the factors in pGrGqn and CP,:. It also preserves the preimage of p0, . . . , 0q and restricts
to the identity on this preimage. For any � P Sn we deduce a canonical isomorphism
between ⌥GrP pCP pA˚,A1, . . . ,Anqq and the similar object obtained by permutation of
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the Ai’s. Using the same techniques as in [2, §3.5.8] one can check that, under (4.3),
this isomorphism is induced by the “centrality” isomorphism for the functor Z (see [2,
Theorem 3.2.3]) or, equivalently (by [9], see [2, Theorem 3.5.1]), by the commutativity
constraint on the Satake category.

4.4. Convolution–torsor a�ne Grassmannians. We now introduce some auxiliary ind-
schemes needed for the proof of Theorem 4.2. In this section, we assume that P˚ and Q˚
are equipped with total orders such that ˚ is the smallest element, and that ↵ : P˚ Ñ Q˚ is a
surjective, order-preserving pointed map. We set

minp↵´1q :“ ti P P | i “ minp↵´1p↵piqqqu, mınp↵´1q :“ P˚ rminp↵´1q.
For i in P or Q, we will denote by i ´ 1 the predecessor of i.

Let c and t be two subsets of P such that c X t “ ?. We will call c the “convolution locus,”
and t the “torsor locus.” (These terms will be justified below.). Define a functor xGrc,t↵ as follows:

for R P AlgF, xGrc,t↵ pRq is the set of equivalence classes of the following data:

‚ a point pyqqqPQ in CQpRq;
‚ for i P P˚, a principal G-bundle E i over p�t0uYtyq :qPQu;
‚ for i P P˚ r c, an isomorphism

�i : E i
|p�t0uYtyq :qPQur�y↵piq

„›Ñ E0
p�t0uYtyq :qPQur�y↵piq

.

‚ for i P c, an isomorphism �i : E i
|p�t0uYtyq :qPQur�y↵piq

„›Ñ E i´1
|p�t0uYtyq :qPQur�y↵piq

;

‚ for i P t, an isomorphism �i : E i´1 „›Ñ E0
p�t0uYtyq :qPQu

.

In this definition, if ↵piq “ ˚, then “y↵piq” should be taken to mean the point 0 P CpRq. In

the special case where ↵ is the identity map, we may write xGrc,tP instead of xGrc,t↵ . Using

standard arguments (see e.g. [2, Proposition 2.3.11]) one can show that xGrc,t↵ is represented by
an ind-scheme over CQ, which is moreover ind-proper if t “ ?.

Example 4.5. For n P Z•1 and P “ t1, . . . , nu, the ind-scheme xGrt1,...,nu,?
t1,...,nu coincides with the

ind-scheme ÄGrn of [7, §5.1].

If t1 Ä t, there is an obvious map

(4.4) q : xGrc,t↵ Ñ xGrc,trt1
↵

given by forgetting the �i’s with i P t1. There is also a “twisting map”

(4.5) p : xGrc,t↵ Ñ xGrcYt1,trt1
↵

that is defined on R-points as follows: for each j P t1, replace �j by the composition

Ej

|p�t0uYtyq :qPQur�y↵pjq

�j

›Ñ E0
p�t0uYtyq :qPQur�y↵pjq

p�jq´1

››››Ñ Ej´1

|p�t0uYtyq :qPQur�y↵pjq
,

and then forget �j .
Let us describe this ind-scheme (or its generic part) in some special cases. First, when

c “ t “ ?, we have

(4.6) xGr?,?
↵ – FlG ˆ ¨ ¨ ¨ ˆ FlGloooooooomoooooooon

|↵´1p˚q| copies

ˆ
π

jPQ
pGrCen

G ˆC ¨ ¨ ¨ ˆC GrCen
G qlooooooooooooooomooooooooooooooon

|↵´1pjq| copies

.

In particular, its generic part is

(4.7) p xGr?,?
↵ q⌘ – FlG ˆ ¨ ¨ ¨ ˆ FlGloooooooomoooooooon

|↵´1p˚q| copies

ˆGrG ˆ ¨ ¨ ¨ ˆ GrGlooooooooomooooooooon
|↵´1pQq| copies

ˆpC r t0uqQ.
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Next, suppose c “ mınp↵´1q. We have

(4.8) p xGrmınp↵´1q,?
↵ q⌘ – LG ˆI LG ˆI ¨ ¨ ¨ ˆI FlGlooooooooooooooomooooooooooooooon

|↵´1p˚q| factors

ˆ

π

jPQ
LG ˆL`G LG ˆL`G ¨ ¨ ¨ ˆL`G GrGloooooooooooooooooooooomoooooooooooooooooooooon

|↵´1pjq| factors

ˆpC r t0uqQ.

More generally, the previous description remains valid over CQ,: for any c containing mınp↵´1q:
(4.9) p xGrc,?↵ q|CQ,: – p xGrmınp↵´1q,?

↵ q|CQ,: if c Å mınp↵´1q.

However, over a point pyqqqPQ R CQ,:, the fiber of xGrc,?↵ may di↵er from (4.8) in the following

way: some instances of “GrG ˆ p´q” are replaced by “LG ˆL`G p´q,” depending on c and on
the coincidences among the yj ’s.

We now explain why t is called the “torsor locus.” Define the pro-smooth group scheme
L`
QG over CQ which represents the functor on AlgF such that pL`

QGqpRq consists of the tuples

ppyqqqPQ, gq with pyqqqPQ P CQpRq and g P Gpp�t0uYtyq :qPQuq. (The representability of this group
scheme can be proved as in [2, §3.5.2].) The following lemma follows from standard arguments
(see e.g. [2, Lemma 2.3.9]).

Lemma 4.6. The maps (4.4) and (4.5) are both principal bundles (with respect to di↵erent
actions) for the group scheme π

CQ

iPt1
L`
QG.

Suppose we have a collection of perverse sheaves pAiqiPP˚ , where

(4.10) Ai P PervIpFlG, kq if ↵piq “ ˚, Ai P PervL`GpGrG, kq if ↵piq P Q.

Via (4.7), regard pÒ
i Aiq b kpCˆt0uqQr|Q|s as a perverse sheaf on p xGr?,?

↵ q⌘. Next, fix some
subset c Ä P , and consider the maps

(4.11) xGr?,?
↵

q–› xGr?,c
↵

p›Ñ xGrc,?↵ .

By equivariant descent, there is a unique object

rCc
↵ppAiqiPP˚ q P Pervpp xGrc,?↵ q⌘, kq

such that we have an isomorphism

p˚
⌘

rCc
↵ppAiqiPP˚ q – q˚

⌘

˜˜
ò

iPP˚

Ai

¸
b kpCˆt0uqQr|Q|s

¸
.

As an example, in the special case where c “ mınp↵´1q, using the identification from (4.8), we
have

(4.12) rCmınp↵´1q
↵ ppAiqiPP˚ q – pA˚ rb ¨ ¨ ¨ rb Amaxp↵´1p˚qqqb

˜
ò

jPQ
pAminp↵´1pjqq rb ¨ ¨ ¨ rb Amaxp↵´1pjqqq

¸
b kpCrt0uqQr|Q|s.

(Here, rb denotes the usual twisted external product.) More generally, thanks to (4.9), the
previous description remains valid over CQ,: for any c containing mınp↵´1q:
(4.13) rCc

↵ppAiqiPP˚ q|CQ,: – rCmınp↵´1q
↵ ppAiqiPP˚ q|CQ,: .
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4.5. Two kinds of convolution. We continue with the setting of §4.4, and assume that
c Å mınp↵´1q. This implies that t Ä minp↵´1q. We define a map

m “ mc,t
↵ : xGrc,t↵ Ñ xGr↵pcXminp↵´1qq,↵ptq

Q

by sending an R-point ppyjq, pE iq, p�iq, p�iqq to ppyjq, pFjq, p�̃jq, p�̃jqq where

Fj :“ Emaxp↵´1pjqq, �̃j :“ �minp↵´1pjqq ˝ ¨ ¨ ¨ ˝ �maxp↵´1pjqq, �̃j “ �minp↵´1pjqq.

To check that these definitions make sense, let us record the domains and codomains of the
various maps above. Because c Å mınp↵´1q, we have

�i : E i
|p�t0uYtyq :qPQur�yj

„›Ñ E i´1
|p�t0uYtyq :qPQur�yj

if minp↵´1pjqq † i § maxp↵´1pjqq,

�minp↵´1pjqq : E i
|p�t0uYtyq :qPQur�yj

„›Ñ Fj´1

|p�t0uYtyq :qPQur�yj

if minp↵´1pjqq P c,

�minp↵´1pjqq : E i
|p�t0uYtyq :qPQur�yj

„›Ñ E0
p�t0uYtyq :qPQur�yj

if minp↵´1pjqq R c,

�minp↵´1pjqq : Fj´1 „›Ñ E0
p�t0uYtyq :qPQu

if minp↵´1pjqq P t.

In the special case where c “ mınp↵´1q and t “ ?, this map can be combined with (4.11) to
obtain the following “convolution diagram”:

(4.14) xGr?,?
↵

q–› xGr?,mınp↵´1q
↵

p›Ñ xGrmınp↵´1q,?
↵

m›Ñ xGr?,?
Q .

The following lemma is immediate from (4.12).

Lemma 4.7. Let pAiqiPP˚ be as in (4.10). There is a canonical isomorphism

pm⌘q˚rCmınp↵´1q
↵ ppAiqiPP˚ q – pA˚ ‹I ¨ ¨ ¨ ‹I Amaxp↵´1p˚qqqb

˜
ò

jPQ
pAminp↵´1pjqq ‹L`G ¨ ¨ ¨ ‹L`G Amaxp↵´1pjqqq

¸
b kpCrt0uqQr|Q|s.

Next, we define a map

µ “ µ↵ : xGrP,?
↵ Ñ GrQ

that sends an R-point ppyjq, pE iq, p�iqq to ppyjq, EmaxpP q, �̂q where

�̂ “ �˚
|p�˝

t0uYtyq :qPQu
˝ ¨ ¨ ¨ ˝ �maxpP q´1

|p�˝
t0uYtyq :qPQu

˝ �maxpP q
|p�˝

t0uYtyq :qPQu
.

We combine this with (4.11) to obtain a second convolution diagram

(4.15) xGr?,?
↵

q–› xGr?,P
↵

p›Ñ xGrP,?
↵

µ↵››Ñ GrQ.

Lemma 4.8. Let pAiqiPP˚ be as in (4.10). There is a canonical isomorphism

pµ↵,⌘q˚rCP
↵

`
pAiqiPP˚

˘
– CQ

`
pBjqjPQ˚

˘

where the Bj’s are as in Theorem 4.2.

Proof. Let us first treat the special case where P “ Q and ↵ is the identity map. In this case,
the statement of the lemma simplifies to

(4.16) pµidP ,⌘q˚rCP
idP

ppAiqiPP˚ q – CP ppAiqiPP˚ q.
The proof in this case is similar to that of [3, Lemma 1.7.10] (the crucial step in the comparison
of fusion and convolution in the Satake category). As a first step, we deduce from (4.13) that

´
pµidP ,⌘q˚rCP

idP
ppAiqiPP˚ q

¯

|CP,:
– A˚ b

˜
ò

pPP
Ap

¸
b kCP,: r|P |s.
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xGr?,?
↵

xGr?,mınp↵´1q
↵

xGrmınp↵´1q,?
↵

xGr?,?
Q

xGr?,P
↵

xGrmınp↵´1q,minp↵´1q
↵

xGr?,Q
Q

xGrP,?
↵

xGrQ,?
Q

GrQ

q p m

q
q

p

p

q

m

p

q

p

m

µ
µ

Figure 1. Diagram for the proof of Lemma 4.8

We wish to prove that pµidP ,⌘q˚rCP
idP

ppAiqiPP˚ q is the intermediate extension of the object above.
To do this, we use the standard characterization of the intermediate extension from [5, Proposi-
tion 2.1.9] or [1, Lemma 3.3.4]: namely, it su�ces to prove that the restriction, resp. corestriction,

of pµidP ,⌘q˚rCP
idP

ppAiqiPP˚ q to the complement of CP,: in pCrt0uqP lies in perverse degrees § ´1,
resp. • 1. One can stratify pC r t0uqP in terms of coincidences between points, with strata in-
dexed by partitions of P . Given a partition ⌧ into m subsets, the preimage of the stratum X⌧

attached to ⌧ (of dimension m) in GrP identifies with FlG ˆ pGrGqm ˆ X⌧ , and the restric-

tion of pµidP ,⌘q˚rCP
idP

ppAiqiPP˚ q identifies with the external product of A˚ with some convolution
products of the Ai’s and with kX⌧

r|P |s. Using the fact that convolution of L`G-equivariant
perverse sheaves on GrG is t-exact (see §4.2) we see that if m † |P | this restriction is in negative
perverse degrees, proving the desired claim about restriction. The claim about corestrictions
can be checked similarly, or deduced using Verdier duality. This completes the proof of (4.16).

To prove the lemma in general, we use the commutative diagram in Figure 1. Our problem
lies along the diagonal of this diagram. Across the top of the diagram is an instance of (4.14),
and down the right-hand side of the diagram is an instance of (4.15). The squares involving
maps labeled “m” are all cartesian. We have

pµ↵,⌘q˚rCP
↵ ppAiqiPP˚ q – pµidQ,⌘q˚ppmP,?

↵ q⌘q˚rCP
↵ ppAiqiPP˚ q.

By proper base change, we have

p˚
⌘ ppmP,?

↵ q⌘q˚rCP
↵ ppAiqiPP˚ q – q˚

⌘ ppmmınp↵´1q,?
↵ q⌘q˚rCmınp↵´1q

↵ ppAiqiPP˚ q,
and then by Lemma 4.7 we have

ppmP,?
↵ q⌘q˚rCP

↵ ppAiqiPP˚ q – rCQ
idQ

ppBjqjPQ˚ q.
Now apply pµidQ,⌘q˚ to this equation. The result follows by the special case (4.16) considered
above. ⇤

4.6. Proof of Theorem 4.2. We will first establish both the existence of, and the formula
for, ⌥↵GrP

pCP ppAiqiPP˚ qq. Choose total orders on P˚ and Q˚ as §4.4, so that ˚ is the smallest
element in both sets, and such that ↵ : P˚ Ñ Q˚ is order-preserving. Consider the diagram

xGr?,?
P

q–› xGr?,P
P

p›Ñ xGrP,?
P

µidP›››Ñ GrP .

Its base change along ↵̄ : AQ Ñ AP is

xGr?,?
↵

q–› xGr?,P
↵

p›Ñ xGrP,?
↵

µ↵››Ñ GrQ.
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To start, in view of (4.6), Lemma 3.20, and Remark 4.4(1),

⌥↵yGr?,?
P

˜
ò

iPP˚

Ai b kpCrt0uqP r|P |s
¸

is well defined, and isomorphic to
˜

ò

iPP˚

A 1
i

¸
b kpCrt0uqQr|Q|s where A 1

i “
#
ZpAiq if i P P X ↵´1p˚q,
Ai otherwise.

Next, by two applications of Lemma 3.13, we obtain that

⌥↵yGrP,?
P

prCP
idP

ppAiqiPP˚ qq

is well defined, and isomorphic to

(4.17) rCP
↵ ppA 1

i qiPP˚ q.
Applying Lemma 4.8 twice, we have

pµidP ,⌘q˚rCP
idP

ppAiqiPP˚ q “ CP ppAiqiPP˚ q, pµ↵,⌘q˚rCP
↵ ppA 1

i qiPP˚ q “ CQppBiqiPQ˚ q,
where the Bj ’s are as in Theorem 4.2. By Lemma 3.14, we conclude that the ↵-nearby cycles
of CP ppAiqiPP˚ q are well defined, and that

⌥↵GrP pCP ppAiqiPP˚ qq – CQppBiqiPQ˚ q,
as desired. This completes the proof of the first part of Theorem 4.2.

Next, by Lemma 3.21, the natural map

⌥�↵yGr?,?
P

˜
ò

iPP˚

Ai b kpCrt0uqP r|P |s
¸

Ñ ⌥�yGr?,?
↵
⌥↵yGr?,?

P

˜
ò

iPP˚

Ai b kpCrt0uqP r|P |s
¸

is an isomorphism. By two applications of Lemma 3.17, we find that the map

⌥�↵yGrP,?
P

prCP
P ppAiqiPP˚ qq Ñ ⌥�yGrP,?

↵
⌥↵yGrP,?

P

prCP
P ppAiqiPP˚ qq

is an isomorphism, and then Lemma 3.18 implies that so is the map

⌥�↵GrP
pCP ppAiqiPP˚ q Ñ ⌥�GrQ

p⌥↵GrP pCP ppAiqiPP˚ qq
This completes the proof of Theorem 4.2.

4.7. Groupoid perspective. Let P be a finite set. Let K “ KP be the set whose elements
are sequences of surjective pointed maps

(4.18) � “ pP˚
↵1›Ñ P1˚

↵2›Ñ ¨ ¨ ¨ ↵k´1›››Ñ Pk´1,˚
↵k››Ñ ?˚q.

Given such a sequence �, an elementary refinement of � is a new sequence �1 obtained by
decomposing some ↵i into a composition of two surjective maps: say

�1 “ pP˚
↵1›Ñ ¨ ¨ ¨ ↵i´1›››Ñ Pi´1,˚

↵1
i›Ñ Q˚

↵2
i››Ñ Pi,˚

↵i`1›››Ñ ¨ ¨ ¨ ↵k››Ñ ?˚q
where ↵i “ ↵2

i ˝ ↵1
i. Make K into a poset by declaring that � ® �1 if �1 can be obtained from �

by a (possibly empty) sequence of elementary refinements. Of course, this poset can be regarded
as a category in the usual way: there is a morphism � Ñ �1 if � ® �1. This poset (resp. category)
has a unique minimal element (resp. initial object): namely, the unique pointed map P˚ Ñ ?˚.

Lemma 4.9. Let K– be the groupoid obtained from K by formally inverting all morphisms.
Then K– is a contractible groupoid.
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Recall that a groupoid is said to be contractible if for any two objects x and y, there is a
unique morphism x Ñ y. (This is equivalent to requiring that the nerve of the groupoid be a
contractible Kan complex.) The following standard argument applies to any poset with a unique
minimal (or maximal) element.

Proof. The initial object e of K remains an initial object in K–, so there is a unique morphism
from e to every other object. This implies that every object of K– is initial, and then that K–

is contractible. ⇤
Let � be as in (4.18). For brevity, we introduce the notation

⌥�pCP ppAiqiPP˚ qq :“ ⌥↵k
GrPk´1

˝ ¨ ¨ ¨ ˝⌥↵2
GrP1

˝⌥↵1
GrP

pCP ppAiqiPP˚ qq.
(Here, all the functors are well defined thanks to Theorem 4.2.)

Proposition 4.10. For any object A˚ in PervIpFlG, kq, and any collection of objects pApqpPP in
PervL`GpGrG, kq, there is a contractible groupoid whose objects are of the form ⌥�pCP ppAiqiPP˚ qq.
Proof. Define a functor F : K Ñ PervIpFlG, kq as follows: on objects, we set

F p�q “ ⌥�pCP ppAiqiPP˚ qq.
If � Ñ �1 is an elementary refinement, then Theorem 4.2 gives us an isomorphism

F p� Ñ �1q : F p�q „›Ñ F p�1q.
By Lemma 3.16, this rule extends to arbitrary morphisms in K, so F is a well-defined functor.
Since F sends every morphism in K to an isomorphism, it extends uniquely to a faithful functor
F– : K– Ñ PervIpFlG, kq. Its image is a (non-full) subcategory of PervIpFlG, kq that is a
contractible groupoid by Lemma 4.9. ⇤
Remark 4.11. Here are some examples of objects in the groupoid from Proposition 4.10 in the
case where P “ t1, . . . , nu (cf. Remark 4.4). Choose an enumeration t�1, . . . ,�nu of t1, . . . , nu,
and let �� be the sequence

P˚ “ t�1, . . . ,�nu˚
↵1›Ñ t�2, . . . ,�nu˚ Ñ ¨ ¨ ¨ Ñ t�n´1,�nu˚

↵n´1›››Ñ t�nu˚
↵n››Ñ ?˚,

where ↵ip�iq “ ˚ and ↵ip�jq “ �j for j ° i. Let f�i denote the composition

Grt1,...,nu ˆAt1,...,nu At�i,�i`1,...,�nu Ñ At�i,�i`1,...,�nu Ñ At�iu.

By Example 3.11 and Lemma 3.12, we have

⌥��ppAiqiPP˚ q –  f�n
¨ ¨ ¨ f�1

pCP ppAiqiPP˚ qq.
On the other hand, if we let �min denote the unique map P˚ Ñ ?˚, then Theorem 4.2 says that

⌥�minppAiqiPP˚ q – A˚ ‹I
`
‹I

pPPZpApq
˘
.

Our considerations therefore fully justify [7, Proposition 5.2.1].
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