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ABSTRACT. We construct a co-t-structure on the derived category of coherent
sheaves on the nilpotent cone AN of a reductive group, as well as on the de-
rived category of coherent sheaves on any parabolic Springer resolution. These
structures are employed to show that the push-forwards of the “exotic parity
objects” (considered by Achar, Hardesty, and Riche [Transform. Groups 24
(2019), pp. 597-657]), along the (classical) Springer resolution, give indecom-
posable objects inside the coheart of the co-t-structure on A'. We also demon-
strate how the various parabolic co-t-structures can be related by introducing
an analogue to the usual translation functors. As an application, we give a
proof of a scheme-theoretic formulation of the relative Humphreys conjecture
on support varieties of tilting modules in type A for p > h.

1. INTRODUCTION

Let G be a connected reductive group over an algebraically closed field k of
characteristic p > h (where h is the Coxeter number for G), and let G be its first
Frobenius kernel. This paper is concerned with the study of the Gi-cohomology of
G-modules, denoted by H*(G1, M). Via the well-known identification of H* (G, k)
with the coordinate ring of the nilpotent cone N of the Frobenius twist of G
(see [AJ[FP]), we see that H®*(G1, M) can be thought of as a coherent sheaf on N.

The relative Humphreys conjecture [Hu] describes the support of this coherent
sheaf when M is an indecomposable tilting G-module. This conjecture has been
proved for G = GL,, when p > n by the second author [H], and for arbitrary
reductive G when p > 0 by the authors together with S. Riche [AHR1]. The latter
paper drew inspiration from Bezrukavnikov’s work on the quantum group version of
the Humphreys conjecture [Be2], especially in its invocation of derived equivalences
with constructible sheaves on affine flag varieties.

However, one key feature of Bezrukavnikov’s work was absent from [AHRI].
In [Be2], Bezrukavnikov gave an intrinsic characterization of the (complexes of)
coherent sheaves on A that can arise as the cohomology of tilting modules for a
quantum group: they are precisely the simple objects in the heart of the perverse-
coherent t-structure on N'. This characterization is false in the reductive group case
considered in [AHR1], and no alternative characterization was known at that time.
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This paper was inspired by a desire to find such an intrinsic characterization.
Instead of using ¢-structures, we equip the derived category of (dg) coherent sheaves
on N with a co-t-structure, and we show (see Lemmal6.4) that the indecomposable
objects in its coheart (called silting objects) are precisely the sheaves arising as
G1-cohomology of indecomposable tilting G-modules.

But the main results have to do with the interaction between our co-t-structure
and (modified) translation functors between different blocks of G-modules. Of
course, H*(G1, M) = Extg, (k, M) is zero unless M lies in the (extended) prin-
cipal block of G. But if M lies in some other (typically singular) block, one can
instead study Ext'Gl(St?,M ), where St is a suitable “Steinberg-type module”
(see Section [l for the definition). These Ext-groups still have the structure of a
module over Extg (k, k) = k[N], and hence give coherent sheaves on N.

The main technical result of the paper, Theorem [6.8] implies that the module
Extal(St?,M ) again lies in the coheart of our co-t-structure. The support of
Extg, (St$, M) is easily seen to be contained in the closure of the Richardson orbit
corresponding to the set I of simple reflections. Thus, Theorem [6.8] implies that
there is a large supply of silting objects supported on Richardson orbit closures.

As an application, in Section [[l we give a new, geometric proof of the relative
Humphreys conjecture for GL,,, valid for p > n. This proof hinges on the fact that
every nilpotent orbit for GL,, is Richardson.

In fact, we obtain a stronger statement than what was known before: we show
that if M is an indecomposable tilting module in the principal block for GL,,, then
H*(Gq, M) is supported scheme-theoretically (not just set-theoretically) on the
orbit closure predicted by Humphreys. We call this stronger statement the scheme-
theoretic (relative) Humphreys conjecture. We expect that this scheme-theoretic
version holds for any reductive group G, and we hope that the tools developed in
this paper may be useful for proving it.

Contents. Section [2] contains preliminaries on co-¢-structures and on (co-)quasi-
exceptional sequences. In Sections [3] and [, we apply this machinery to the derived
category of coherent sheaves on the cotangent bundle of a partial flag variety (de-
noted by N, 7), and on the nilpotent cone (denoted by N), respectively. These
sections define the supportive co-t-structure, which is a primary focus of this paper.
Next, in Section |5 we introduce the setting of “dg coherent sheaves” on both N7
and N, and we show how to adapt some of the material from the preceding sec-
tions to this context. (For additional background on dg coherent sheaves on affine
schemes, see Appendix[Al) Sections [BHA only assume that the characteristic p of k
is “pretty good”; it need not be larger than the Coxeter number.

Starting from Section[6] we assume that p > h, and that the derived subgroup of
G is simply connected. In Section [l we establish the relationship between the sup-
portive co-t-structure and the Gi-cohomology of tilting modules. The main result
of this section relates this co-t-structure to the groups Extg, (St¥, M) discussed
above. Finally, Section [ contains a precise formulation of the scheme-theoretic
Humphreys conjecture, as well as its proof in the case of GL,.

Added in revision. Since this paper first appeared in preprint form, the authors
have obtained [AH2| a proof of the (set-theoretic) relative Humphreys conjecture
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in general, by an argument that makes crucial use of the co-t-structure machin-
ery developed in this paper. (However, the scheme-theoretic version proposed in
Section [l remains open outside of GL,,.)

2. BACKGROUND ON CO-t-STRUCTURES

In this section, we consider various homological algebra constructions involv-
ing co-t-structures (the definition will be reviewed below). Most of the results
in this section have close analogues for t-structures, found in [BBD|Bel] among
other sources. From Section [2.2] on, we will emphasize the parallels between the ¢-
structure and co-t-structure situations by including both settings in the statements
of most lemmas and propositions below. However, we will usually give proofs only
in the co-t-structure case.

2.1. Definition and generalities. We begin with some notation for subcategories
of triangulated categories. Given a set of objects X in a triangulated category ©,
we define four full subcategories of ® as follows:

...1s defined to be the smallest full additive sub-

Notation category of ® containing X and closed under . ..
(X)ext extensions

(X)ext, @ extensions and direct summands

(X )tri [£1] and extensions

(X)trie [£1], extensions, and direct summands

The latter two are triangulated categories. We obviously have (X)ext C (X)ext, @
and (X)r C (X)iri,@; in some situations, these containments are equalities.

We now recall the definition and some basic facts on co-t-structures (see [Jo,[KY]
for an overview).

Definition 2.1. Let © be a triangulated category. A co-t-structure on ® is a pair
of full additive subcategories (D>, D<) with the following properties:

(1) Both ®>¢ and D < are closed under direct summands.

(2) We have @Zo[—l] C @20 and ng[l} C ng.

(3) For A € D5y and B € D<([1], we have Hom(A, B) = 0.

(4) For any X € ©, there exists a distinguished triangle A - X — B — with
Ae :DZO and B € @S()[l].

(These axioms imply that ©>¢ and D <( are automatically closed under extensions.)
A co-t-structure (D>0,D<p) is said to be bounded if

U on[n] = U @SQ[’I’L] =2.

ne”Z nez
The additive subcategory € = D >¢ND <y is called the coheart of the co-t-structure.
Objects of € are called silting objects. A silting generator is a silting object T' with
the property that every object in € is a direct sum of direct summands of 7.

Remark 2.2. Our definition of the term silting is not consistent with the co-t-
structure literature, and the difference in usage is similar to the difference in the
usage of the word tilting for algebraic groups or for finite-dimensional algebras. In
most of the literature, a silting object is defined to be an object that generates a
silting subcategory (see Definition 2.4) under direct sums and direct summands.
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Definition 2.3. If ® and ©’ are two triangulated categories equipped with co-
t-structures with cohearts € C © and € C D', then we say that a triangulated
functor F : © — @' is co-t-exact if F(€) C & (i.e. F preserves the cohearts).

Conversely, one can intrinsically characterize subcategories arising as cohearts
of co-t-structures in the following way.

Definition 2.4. A full additive subcategory & C D is a silting subcategory if it
satisfies the following properties:
(1) & is closed under direct summands.
(2) For any two objects S, S’ € &, we have Hom(S, S’[k]) = 0 for all k& > 0.
(3) D= (G)uie-

For a proof of Proposition 2.5] see [MSSS| Corollary 5.9].

Proposition 2.5. Let © be a triangulated category. A full subcategory & C D is
a silting subcategory if and only if it is the coheart of a bounded co-t-structure on
®. In this case, the co-t-structure is uniquely determined: it is given by

@ZQ = <6[—k] . :ZC Z O>ext,€97 @SO = <6[kf] . k Z O>ext,EB~

Remark 2.6. If © = DA where 2 is a highest weight category, then the subcategory
Tilt(A) C A of tilting objects is a silting subcategory. The corresponding co-t-
structure on © will be called the natural co-t-structure. (An alternative description
of the co-t-structure in terms of standard and co-standard objects will be given in

Proposition 2.211])

Proposition [2.7] describes parallel ways of constructing ¢- and co-t-structures in
a category generated by a single object.

Proposition 2.7. Let k be a field, and let © be a k-linear triangulated category.

Suppose there is an object A that generates ® as a triangulated category, and assume
that End(A) 2 k. Let

D(<0) = (A[i] 1 > 0)ext, @ and D(>0) = (Afi] : ¢ < 0)ext,@-
Then:
(1) IfHom(A, A[i]) =0 fori < 0, then (D(<0),D(> 0)) is a t-structure on D.
In fact, it is the unique t-structure whose heart contains A. Moreover, the
heart is a finite-length abelian category, and A is the unique simple object.
(2) If Hom(A, Ali]) = 0 for i > 0, then (D(> 0),D(< 0)) is a co-t-structure
on ®. In fact, it is the unique co-t-structure whose coheart contains A.

Moreover, if © is Karoubian, then the coheart is a Krull-Schmidt category,
and A is the unique indecomposable object.

We will not prove Proposition 2.7} instead, we will prove a “graded” variant of
it later on (see Proposition 2.13). The proof given there is easily adapted to prove
Proposition 271 For the ¢-structure part of this statement, see [Bell Lemma 3].

Lemma 2.8. Letk be a field, and let ® be a k-linear triangulated category equipped
with a co-t-structure (D>0,D<o). Suppose the following conditions hold:

(1) The category ® is Karoubian.
(2) For X € ®>9 and Y € D<q, the k-vector space Hom(X,Y) is finite-
dimensional.

Then the coheart € = D¢ ND<g is a Krull-Schmidt category.
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Proof. The coheart of our co-t-structure is closed under direct summands, so it is
also Karoubian. Assumption () implies that Hom-spaces in € are finite-dimen-
sional. According to [CYZ| Corollary A.2], € is Krull-Schmidt. O

Proposition 2.9 involves the notion of “recollement” from [BBD]. In the diagram
shown below, ¢ is fully faithful, and II identifies ®” with the Verdier quotient
D/u(D'). The functors (& and I are the left adjoints of ¢ and II, respectively,
while R and IT®? are their right adjoints. These six functors are assumed to satisfy
some additional axioms, spelled out in [BBD] §1.4.3]. For the ¢-structure analogue
of the statement below, see [BBD| Théoreme 1.4.10].

Proposition 2.9. Let ®', D, and D" be three triangulated categories, and suppose
we have a recollement diagram

L v
L ‘/\
D —= D —u-> D"
‘< — ___—
R mk

Assume that @' is equipped with a co-t-structure (D%5,,D%,), and that ®" is
equipped with a co-t-structure (’D';O,”D’éo). Then the categories

D50 ={X|MX) € DL, I(X) € D40},
Do = {X | H(X) € DL, II(X) € DLy}
constitute a co-t-structure on 2.

For a proof, see [Bo, §8.2]. (In [Bo], co-t-structures are called weight structures.)
The new co-t-structure on D given by Proposition 2.9]is said to be obtained from
those on @’ and ©” by gluing or recollement. Note that the functors ¢+ and II are
co-t-exact.

Lemma 2.10. In the setting of the recollement diagram of Proposition R.9], if
X €950 and Y € D<g, then the map

(2.1) IT: Hom(X,Y) — Hom(II(X),II(Y))

is surjective. As a consequence, if the coheart € = D>¢ N D<o is a Krull-Schmidt
category, then 11 sends any indecomposable object in € to either O or an indecom-
posable object.

Proof. The recollement formalism gives us a distinguished triangle ..8(Y) — Y —
IRII(Y) —, and hence a long exact sequence

(2.2) .-+ — Hom(X,Y) — Hom(X,IT*MI(Y)) — Hom(X, u®(Y)[1]) — - --

We have Hom(X, ?(Y)[1]) = Hom(:2(X),B(Y)[1]). From Proposition 2.9 we
have (*(X) € DL, and R(Y) € D_,. From the definition of a co-t-structure,
we have Hom(:2(X), B(Y)[1]) = 0, so the first map in (22) is surjective. Via
the isomorphism Hom (X, TRII(Y)) = Hom(II(X),II(Y)), we see that (2.1 is also
surjective.

As a special case, for any object X € €, the map End(X) — End(II(X)) is surjec-
tive. In particular, if End(X) is a local ring and II(X) is nonzero, then End(II(X))
is also a local ring (since any quotient of a local ring is local), and hence II(X) is
indecomposable. The last assertion then follows, since every indecomposable object
in a Krull-Schmidt category has a local endomorphism ring. ([l
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Proposition 2.11. In the setting of the recollement diagram of Proposition 2.9,
let €, &, and € denote the cohearts of the co-t-structures on ®', ® and D",
respectively. Assume that all three cohearts are Krull-Schmidt categories.

(1) If T' € €' is indecomposable, then (T") € € is indecomposable.

(2) If T" € & is indecomposable, there is an indecomposable object T € €,
unique up to isomorphism, such that I(T) = T".

(3) Every indecomposable object in € comes from parts [ or @) above.

Proof. Recall that in a Krull-Schmidt category, an object is indecomposable if and
only if its endomorphism ring is a local ring. Part (1)) is immediate from the fact
that ¢ is fully faithful.

For part (&), consider the object (RII¥(T") € ®’. By Definition 2.1] there exists
a (noncanonical) distinguished triangle A — JRIIY(T") — B — with A € DL,[-1]
and B € ®’,. Consider the composition ¢(A) — uRI“(T") — TI“(T"). Let T be
the cone of this map, so that we have a distinguished triangle

L(A) = TIHT") - T — .

It is straightforward to see from the definitions that 7' lies in €. Moreover, since
H(T) =~ T is indecomposable, T must have a unique indecomposable summand
that is not killed by II. Let T denote this summand. This is an indecomposable
object in € satisfying II(T") = T".

Before proving the uniqueness of T, let us consider part ([B). Let X € € be an
indecomposable object. If TI(X) = 0, then the recollement formalism implies that
X = (T"), where T' = %(X) = (B(X), so we are in case (I]). If II(X) # 0, then by
Lemma [2.10] it is indecomposable. Let T = TI(X).

The uniqueness in part (2) and the remainder of part (B both come down to the
following assertion: If X € € is indecomposable and II(X) =2 T", then X = T. Let
us prove this claim. Choose an isomorphism 6 : I1(X) = T7"”. By Lemma[2.10] the
maps

Hom(X,T) — Hom(IL(X),T") and Hom(T, X) — Hom(7T",11(X))
are both surjective. Therefore, there exist maps ¢ : X — T and ¢ : T — X
such that II(¢) = 6 and II(x)) = 0~1. Note that ¢ o 1) is an element of the local
ring End(7") whose image in End(7T") is the identity map. It follows that ¢ o is

invertible. The same reasoning shows that 1) o ¢ is invertible, and hence that ¢ and
1) are themselves isomorphisms, as desired. ([l

Remark 2.12. Let T and T” be as in Proposition [211I[2). By adjunction, there are
natural maps II*(T") — T — I®(T"”). The recollement formalism implies that
the composition of these maps is equal to the canonical map IT%(7") — IR (T"):

see [BBD) §1.4.6(b)].

2.2. Categories with a Tate twist. For the remainder of this section, we will
work in the “graded” setting: we always assume that our triangulated category ©
is equipped with an autoequivalence

ni:2-9
such that for an object X € ©, we have
Xi=Xx if and only if X =0.
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This functor is called the shift-of-grading functor (or sometimes the Tate twist).
For any object X € D and any n € Z, we write X{n| for the object obtained by
applying the shift-of-grading functor n times.

Given a set of objects X in a triangulated category ® equipped with a shift-of-
grading functor {1§, we define four subcategories of ® as follows:

...1s defined to be the smallest full subcategory

Notation of ® containing X and closed under ...

(XN oxt extensions and {£1§

(XD ext, o extensions, |1, and direct summands

(XDt [+1], extensions and (41§

(X Nri, @ [£1], extensions and (+1f, and direct summands

The latter two are triangulated categories. We obviously have (X )ext C (X Next, @
and (X )i C (X)uie; in some situations, these containments are equalities.

We will also use a graded variant of the “x” operation from [BBDI §1.3.9]. Given
Xy, Xy C O, we define

X1 x Xy
to be the full subcategory of © consisting of objects X such that there is a distin-
guished triangle
Alznlj - X = Agzngj — with A1 € Xy, A2 e Xy, and ni,ng € 2.

The proof of [BBD! Proposition 1.3.10] shows that * is associative. For each n > 0,
we can set

X=X % x X,

—_————

n factors

where the 0-fold #-power of X is understood to consist of just the zero object.
Observe that if we let X = {X[i] | X € X, i € Z}, then
(e = [J = and (W) = | X
n>0 n>0
The following statement is the graded analogue of Proposition 2.7
Proposition 2.13. Let k be a field, and let © be a k-linear triangulated category
equipped with a shift-of-grading functor 11§ : © — ©. Suppose there is an object A
such that © = {A)tri, and assume that
k ifn=0,
0 otherwise.

Hom(A, Alnf) = {

Let
D(L0)=(A[]:i>0ext,0  and  D(>0) = (Afi] : i < O)ext,o-
Then:

(1) If Hom(A, Alnf[i]) = 0 for i < 0, then (D(<L 0),D(> 0)) is a t-structure
on ®. In fact, it is the unique t-structure stable under {£1§ whose heart
contains A. Moreover, the heart is a finite-length abelian category, and the
simple objects are of the form Alnf.
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(2) If Hom(A, Alnf[i]) =0 fori > 0, then (D(> 0),D(< 0)) is a co-t-structure
on ©. In fact, it is the unique co-t-structure stable under (1§ whose
coheart contains A. Moreover, if ® is Karoubian, then the coheart is a
Krull-Schmidt category, and the indecomposable objects are of the form

Alnf.

Proof. 1) The ungraded analogue of this claim is proved in [Bel, Lemma 3]
(see [AHR2, Proposition A.1] for a related argument), and that proof is easily
adapted to the graded case. More precisely, it is shown in loc. cit. that the cat-
egories ((Afi] : ¢ > O)ext and (A[i] : ¢ < 0)ext constitute a t-structure. The
subcategories defining a t-structure are automatically closed under direct sum-
mands (this follows from the existence of truncation functors), so in the setting
of part () of the proposition, we have {(A[i] : i > 0))ext = (A[] : i > 0))ext, and
GA] 1 < Ot = (AL 7 < Nexe.s-

@) Axioms (1)) and ([2)) from Definition 2.1 are clear, and axiom (B]) follows from
the assumption that Hom(A, Alnf[i]) = 0 for ¢ > 0. Next, we claim that if k& > m,
then

(2.3) Alk] = Alm] € Afm) = A[k].

Indeed, the left-hand side consists of objects X that fit into a distinguished triangle

Alk]ln1§ — X — A[m]{ne§ — Alk + 1]In1§. But since k > m, we have k+1>m

as well, so our assumptions imply that the map A[m|{ns| — A[k + 1]]{n,{ is zero,

i.e., the triangle splits. Thus, we have X = A[k]ln1§ @ A[m]lnaf € Alm] = A[k].
For any X € ®, there exist integers k1, ..., k; such that

(2.4) X € Alkq] % -+ - Alk;].

Using (2.3) repeatedly, we may assume that k; < ky < --- < k;. Let ¢ be the
unique subscript such that k; < 0 but k;41 > 0 (here we permit ¢ = 0 or ¢ = j if
necessary). Then

(2.5) X e (Aki]x - 2 Alki]) x (Alkiga] x - - x Alk;]) €D (= 0) x (D(< 0)[1]).

We have proved axiom (), and hence that (D(> 0),D(< 0)) is a co-t-structure.

If there were another co-t-structure on @, say (D%,,D~,), whose coheart con-
tained A and was stable under {£1(, then we would clearly have D (> 0) C D%,
and D(< 0) C D’,. This implies that the two co-t-structures coincide. We have
proved the uniqueness claim in the proposition.

From now on, we assume that © is Karoubian. Let € = ©(> 0) N D(< 0) be
the coheart of our co-t-structure. We claim that € is Krull-Schmidt. It is enough
to check condition (2) from Lemma 2.8 This condition follows easily from the
observation that if ¢ < 0 < j, then Hom(A[i], A[j]{nf) is finite-dimensional.

Note that A{n{ is indecomposable, because End(A4) 2 k is a local ring.

Finally, let X be a nonzero object in €. It remains to show that X is a direct
sum of objects of the form Alnf. Find an expression as in [2.4), with k& < --- < k;.
We proceed by induction on j. If j = 1, then X = A[k]{n{ for some n € Z. Since
X € €, we must have k; = 0, and we are done.

From now on, suppose j > 1. Suppose first that k; > 0. Let ¢ be such that
k; < 0 but k11 > 0, as in [.5). If ¢ = 0, we would have X € D(< 0)[1], a
contradiction. We therefore have 1 < i < j. From (2.3), we get a distinguished
triangle X’ — X — X" — with X' € (> 0) and X" € ©(< 0)[1]. The arrow
X — X" must be 0, so X’ =2 X @ X"[-1]. This tells us that X" [-1] € D(> 0), so
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X"[—1] actually lies in the coheart. The triangle X”'[—1] — X’ — X — shows that
X' lies in the coheart as well. By induction, we know that X' € Afkq] * - - *x A[k;]
is a direct sum of objects of the form A{nf. Since X is a direct summand of X’,
and since the coheart is Krull-Schmidt, our claim for X holds.

Next, if k1 < 0, we instead define ¢ to be such that k; < 0 but k;41 > 0, and
then consider the decomposition (2.5). The rest of the argument in this case is very
similar to the preceding paragraph.

The remaining case is that in which k; = --- = k; = 0. In this case, we get a
distinguished triangle X’ — X — Alm{ —, where

X €Ax---xA.
—_———
7 — 1 factors
We have Hom(A]m(, X'[1]) = 0, so the triangle splits, and X = X’ @& AlmJ. By
induction, X’ is a direct sum of objects of the form A]nf{, so we are done. O

2.3. Pre-exceptional sets. We will now develop a vast generalization of Propo-
sition 2.13] Let (S, <) be a partially ordered set. Assume that the partial order <
admits a refinement to a total order <’ such that (S, <’) is isomorphic to a subset
of Z>o. In particular, S is either finite or countable, and

(2.6) the set {t € S| t < s} is finite.

Definition 2.14. Let © be a triangulated category equipped with a Tate twist
115, and let {V4}ses be a collection of objects in ® indexed by S. This collection
is said to be a graded pre-exceptional set if it satisfies the following axioms:

(1) If s # t, then Hom(V,, V,nf[i]) = 0 for all n,i € Z.
(2) We have

k ifn=0,

0 otherwise.

Hom(V,, Vlnf{) = {

(3) The collection {V,{n{}sesnez generates ® as a triangulated category.
Suppose {V;}secs is a graded pre-exceptional set. Then:

(47) If Hom(Vs, V{nf[i]) = 0 for all n € Z and all i < 0, then {V} is said to
be a graded quasi-exceptional set.

(47) If Hom(Vs, Vi{nf[i]) = 0 for all n € Z and all ¢ > 0, then {V,} is said to
be a graded co-quasi-exceptional set.

(4%) If Hom(Vg, V4{nf[i]) = 0 for all n € Z and all i # 0, then {V,} is said to

be a graded exceptional set.

Exceptional and quasi-exceptional sets have been studied elsewhere in the liter-
ature, but we are not aware of any study of co-quasi-exceptional sets. It turns out,
however, that many of the basic lemmas about exceptional and quasi-exceptional
sets can be proved using only the axioms for pre-exceptional sets, so they remain
valid for co-quasi-exceptional sets as well.

Remark 2.15.

(1) Of course, Definition 2.14] has an obvious ungraded analogue, as do the
definitions and propositions below. We leave it to the reader to formulate
the precise statements.
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(2) The definition of “graded quasi-exceptional” given above matches that
in [Bell, but not that in [A1]: the latter includes an extra condition that
we will not impose.

If © is equipped with a graded pre-exceptional set {V}scg, then for any lower
set U C S, we define

Dy = (Vu : u € Ui

(Recall that a subset U C S is called a lower set if t € U and u < ¢ implies u € U.)
For the special case U = {u € S | u < s}, we simply write ®<;. The categories
D, and Dy, are defined similarly.

Definition 2.16. Let {Vs}.cs be a graded pre-exceptional set. It is said to be
dualizable if for each s € S, there are an object Ag € ® and a morphism ¢ : Ay —
Vs such that the following two conditions hold:

(1) The cone of t5 : Ay — V; lies in D .
(2) If s > t, then Hom(A;, Vi nf[i]) = 0 for all n,i € Z.

Remark 2.17. According to [Be2, Proposition 3(b)], every graded exceptional set is
automatically dualizable. (That statement assumes that S is finite, but the same
reasoning applies in our situation thanks to (2.6]).)

Lemma 2.18. Let {Vs}ses be a dualizable graded pre-exceptional set. For each
s € S, the pair (Ag, 15 : Ay — V) is unique up to unique isomorphism.

Proof. Suppose there is another pair (A%, : Al — V) satisfying the conditions
in Definition 2.16] Those conditions imply that if X € D, then Hom(Ag, X) =
Hom(A%, X) = 0.

Let K and K’ denote the cones of t5 and (/, respectively. By the observation
above, we have

Hom(Ag, K') = Hom(Ag, K'[-1]) = 0.

By [BBD), Proposition 1.1.9], there is a unique map f : A; — A/ that makes the
left-hand square in the diagram

Ay, —= YV, K
H
JAECIIN V) K’

commute. By swapping the roles of A; and A/, one can see that f must be an
isomorphism. O

Lemma 2.19. Let {V }ses be a dualizable graded pre-exceptional set, and let
{As}ses be the dual set. Then:

(1) If s # t, then Hom(Ag, Vi {n([i]) =0 for alln,i € Z.
(2) If s £ t, then Hom(Ag, Alnf[i]) =0 for all n,i € Z.

(3) For alln,i € Z, there are natural isomorphisms
Hom(Ag, Agln([i]) 2 Hom(Ag, Vi {nf[i]) = Hom(V,, Vnf[i]).
(4) For any lower set U C S, we have Dy = (Ay[i] 1 u € U))iyi-
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Proof. Note that Definition R.I6|[I]) implies that

(2.7) Ay, €Dy forallu e S.

Definition R.14|{]) and Definition 2.I6[2)) imply that

(2.8) Hom(X,V,)=0 for all X € Dy,
(2.9) Hom(A,,X) =0 for all X € Dy,

respectively. Let us now prove the various parts of the present lemma.
@ If s > t, this holds by Definition R.I6I2). If s % ¢, it follows from (2.7)

and (2.8).
@) By part ([0, we can strengthen ([2.9) to

(2.10) Hom(A,,X)=0 for all X € Dx,.

The claim follows from this and (2.7)).
() Let K be the cone of ts : Ay — V,, and consider the long exact sequence

-+ = Hom(A;, K{nf[i — 1]) — Hom(As, Asnf[i])
— Hom(As, Vi{nf[i]) = Hom(Ag, K{nf[i]) — ---

The first and last terms vanish by (2.9)), so the middle two are naturally isomorphic.
The proof that Hom(A,, V{nf[i]) 2 Hom(V,, V{n{[i]) is similar.

@) Let D = (Ay : u € U)i. It follows from (2.7) that D C Dy. To
prove equality, let us first consider the case where U is finite. We proceed by
induction on the number of elements in U. Choose a maximal element ¢ € U, and
let V.=U~{t}. Then ®{, = Dy by induction, so Dy is generated by D}, together
with {V,{nf},ez. By Definition 2.16l(I), it is also generated by ©{, together with
{A¢{nf}nez. We conclude that D7, = Dy.

If U is infinite, any object X € Dy is still contained in a subcategory Dy for
some finite subset U’ C U, so the preceding paragraph tells us that D7, = Dy in
this case as well. ]

Lemma 2.20. Let {Vs}ses be a dualizable graded pre-exceptional set, and let U C
S be a lower set. Let t be a mazimal element of U, and let U' = U ~ {t}. Let
L: Dy — Dy be the inclusion functor, and let 11 : Dy — Dy /Dy be the Verdier
quotient functor. Both of these functors admit left and right adjoints, and together,
the siz functors

LL HL
T o
@U/ — Lt ©U —II— @U/ZDU/
&TR/ ~_
. R

constitute a recollement diagram.

Sketch of proof. This result is proved in [Bel, Lemma 4]. Here, we will briefly
indicate the main steps of the argument.

Define ®; = (A )i and D = (V)tri. The first step is to show that for any
X € Dy, there are distinguished triangles

Y1 2 X —->Y,— withY; €D, Y, €Dy,

(2.11) | ;
Z1 =X = Zy — with Zy € Dys, Zy € D°.
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Second, the functor II induces equivalences of categories
H|@t 5©t:_>®U/®U’7 H|@t:®t:—>®U/©U/.

We define IT* and II® to be their respective inverses (composed with the inclusion
functor into Dy ).

Finally, one shows (using [BBD] Proposition 1.1.9]) that the distinguished tri-
angles in ([2.11) are in fact functorial. There are canonical isomorphisms

Vi 2 IIMIN(X)),  Z, =2 THII(X)),

and the maps Y; — X and X — Z, are the adjunction maps that make IT* and
II® into the left and right adjoints of II, respectively. On the other hand, we define

(X)) =Yy and B (X) = Z;. O
In the setting of Lemma [2.20] it follows from Definition R.I6I[I) that
(2.12) I(Ay) 2 TI(Vy).

Proposition 2.21. Let {Vs}scs be a dualizable graded pre-exceptional set, and let
{As}ses be the dual set.

(1) If {Vs}ses is a graded quasi-exceptional set, then the pair of subcategories
D0 = (Al :5€ 8,02 0ext, D70 ={((Vili] : s € 5,0 < 0o

is a bounded t-structure on ®. Moreover, its heart 2L is a finite-length
abelian category. For each s € S, there is a unique simple object Ls in A
that fits into a commutative diagram

A, —2 5V,

N,

and every simple object is isomorphic to Ls]n{ for a unique pair (s,n) €
S X Z.

(2) If {Vs}scs is a graded co-quasi-exceptional set, then the pair of subcate-
gories

@20 = <<AS[Z] s E S,’L S 0>>ext,€9> @SO = <<v5[’6] s € S,Z 2 O>>ext,@

is a bounded co-t-structure. Moreover, if © is Karoubian, then its coheart
¢ is a Krull-Schmidt additive category. For each s € S, there is a unique
indecomposable object Ts in € that fits into a commutative diagram

A, ——2— 5V,

~,

and every indecomposable object is isomorphic to Tsn{ for a unique pair
(s,n) € S xZ.

Proof. (1)) This is proved in [Bel, Propositions 1 and 2]. A brief outline of the proof
is as follows: one uses recollement to build up the ¢-structure from the case where
S is a singleton, and in that case, the ¢-structure comes from Proposition 2.13]

() We follow the main idea of the ¢-structure case. Assume first that S is finite.
We proceed by induction on the size of S. If S is empty, then ©® = 0, and there is
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nothing to prove. Otherwise, let ¢ be a maximal element of S, and let S = S~ {t}.
Form the recollement diagram for g/, Dg = D, and D/Dg  as in Lemma 2.200
Let A, = II(A,) = II(V,) (see (2.12), and observe that

D/Dsr = (Adli] : i € Z))ex.
The proof of Lemma [2.20] shows that
(2.13) m(A,)=A, and TI*A4,) =2V,
We have

Hom (A, As{nS[i]) = Hom(V,, TIRTI(V,) nf[i])

k ifi=n=0,

= Hom(Vy, Vnf[i]) =
om(Vy, Vi nfli]) {O if i >0, orifi=0andn #0.

By Proposition [2.13] © /¢ admits a unique co-t-structure whose coheart contains
A;. Combining the description from that proposition with (2.13]), we obtain

IH((9/Ds1)20) C (Adli] 1 i < Oexta,
I(D/Ds)<0) € (Vild] 1 > O ext,o-

(It follows from [BBD) (1.4.3.5)] that these containments are actually equalities,
but we will not need this claim.)

On the other hand, by induction, ®g/ has a co-t-structure given by
(2.15)

@S/’ZO = <<AS[Z] NS S/,Z' S 0>>ext,@> @S/’SO = <<VS[Z] HENS S/,’L' 2 O>>ext,®-

(2.14)

We can then apply Proposition [2.9] to obtain a co-t-structure on @ given by
Ds0 = {X [ H(X) € Ds,20,11(X) € (9/Ds1)>0}
Do = {X [ (X) € Dgr,<0, II(X) € (D/Dsr)<0}-

For X € D>, consider the distinguished triangle TIMII(X) — X — «X(X) —. In
view of (2.14) and (2.15), we see that X € (Ai] : s € S;¢ < 0)ext,@- Thus, we
have shown the first containment below:

(2.16) D50 C (Auli] 15 € S,i < Wext.my D<o C (Vili] 15 € Syi > 0exe.o-

The second holds by a similar argument. One can check using Lemma [2.19] that
if X € (Agli] : s € 5,0 < 0)exte and Y € (Vs[i] : s € 5,4 > 0)ext,@, then
Hom(X,Y[1]) = 0. From this observation, it can be deduced that both contain-
ments in ([2.16) are equalities. This completes the construction of the co-t-structure
in the case where S is finite. We denote its coheart by €.

From now on, we assume that ® is Karoubian. We claim that ¢ is Krull-
Schmidt. It is enough to check condition (2)) from Lemma 2.8 This condition
follows easily from the observation that if ¢ <0 < j, then Hom(A[i], Vg [§]{nf) is
finite-dimensional. The classification and description of indecomposable objects in
¢ follows from Proposition 2.11] and Remark 2.12] and induction on S.

Finally, suppose S is infinite. Any finite collection of objects is contained in some
subcategory ®; where U C S is a finite lower set. The axioms for a co-t-structure
hold for ® because they hold for each such ©y. (]
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Remark 2.22. If € is the coheart of a co-t-structure on ® obtained from a graded
co-quasi-exceptional set as in Proposition 2.21][2]), then we claim that

D = (-

To see this, it is enough to check that the right-hand side contains all Vg, and this
is easily seen by induction on S using the recollement formalism. Note that this is
stronger than property (3) in Definition 2.4

We now consider a special case where the co-t-structure and ¢-structure defined
in Proposition 2.21] are highly compatible.

Corollary 2.23. Let {Vs}ses be a dualizable graded exceptional set, with dual
set {As}scs. Let A be the heart of the corresponding t-structure, and let € be the
coheart of the corresponding co-t-structure. Assume furthermore that Vs and Ag
belong to A. Then A is a graded highest-weight category, and € is the category of
tilting objects in 2A.

Proof. The fact that 2 is a graded highest weight category follows from [MR] §3.5].
Moreover, by Proposition 2.21}[2), it can be immediately deduced that the tilting
objects of 2l must reside in the coheart. This forces the co-t-structure to coincide
with the unique co-t-structure characterized by Proposition 2.21] (Il

3. COTANGENT BUNDLES OF PARTIAL FLAG VARIETIES

Let G be a connected reductive group over an algebraically closed field k of
characteristic p > 0. Assume that p is “pretty good” for G, in the sense of [Hel
Definition 2.11]. This condition implies the following additional conditions:

(1) [AHRZ, Lemma 2.3] There exists a separable central isogeny G — G, where
G has a simply connected derived subgroup.

(2) [Hel Lemma 2.12] The characteristic of k is good for G.

(3) IMT, Proposition 12] There exists a nondegenerate G-invariant bilinear

form on g.

Fix a Borel subgroup B C G and a maximal torus 7. Let W = Ng(T')/T be
the Weyl group, and let X be the character lattice of T. Let ® C X be the root
system of (G, T), and let ®T C @ be the set of positive roots, chosen so that B
corresponds to the negative roots. Let S be the set of simple reflections in W, and
for s € S, let oy € ®T be the corresponding simple root. Let XT C X be the set
of dominant weights corresponding to ®+.

Let Wag = W x X be the (extended) affine Weyl group. For A € X, let t), = 1x A
be the corresponding element of W,g. We will use additive notation for X and
multiplicative notation for Wg, so that tx1, = txt,. Recall that although W,g is
not a Coxeter group in general, it shares many features with Coxeter groups. In
particular, it makes sense to speak of the length of an element w € W,g, denoted
by £(w). There is also a Bruhat order on W,g, denoted by <g;,. For each A € X,
let

w)y = the unique element of minimal length in the coset Wity.

We define an order < on X by

A< if and only if Wx <Bru Wy-
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Next, for each subset I C S, we set

X;F={AeX|{aY,\) >0 forall s €I},
X' ={xe X |(a),\) >0 for all s € T}.
Let P; C G be the parabolic subgroup containing B and corresponding to I, and
let Uy be its unipotent radical. Let n; be the Lie algebra of U;, and let
./V[ =G XPI ny.
Note that Py = B. When I = @, we often omit the subscript: we write U for the
unipotent radical of B, and n for its Lie algebra, and we denote
N =G xPn.
Let G act on n; by z -z = 2z 2z. This action commutes with the action of

Pr and induces a positive even grading on the algebra Sym(n}) which we call the
cohomological grading. This allows us to form the bounded derived category

DPCohPr*Cm (n)) = DP Sym(n})-modp, x¢

m )’

where Sym(n})-modp, xg,, denotes the category of finitely generated Pr-equivariant
graded modules over the algebra Sym(nj). We can equivalently consider the cate-

gory DPCoh&*Cm (/\7 7) by recalling the equivalence
(3.1) jt: Coh®*Cm (A7) =5 Cohr*Cm(n)),

induced by pulling back along the inclusion j; : ny — N
For any m € Z, let k,,, be the 1-dimensional G,-representation with the action
given by z - x = z™x. Define an autoequivalence

(1) : DPCoh®*Cm(A}) — DPCoh®*Cm(A}) by  F(1) = Fok_;.
We will also work with the autoequivalence
{1} := (=1)[1] : D"Coh®*Cm (N;}) — DPCoh®*Cm (A}).
It is easy to see that both (1) and {1} are Tate twists on DPCoh® €= (A7)

Remark 3.1 (Tate twist conventions). It is important to note that the (m) employed
here is opposite to the convention in [AR] §9.1], but consistent with [A2], [AHI] and
[AI]. (More precisely, the Tate twist in [A1] §2.2] is opposite to our convention, but
the action on n employed there is also opposite to ours, so statements from [Al]
can be used here unmodified.)

For A\ € X}, let ﬁld and ALA be the objects defined in [AR] §9.5]. (For
I = @, the definition of these objects goes back to [Be2]; see also [ARd,MRJ.)
Proposition [3.2] gives a key property of these objects.

Proposition 3.2 ([ACRIARLARd,Be2,MR]). The collection {%I,A}Aexj,reg is a

graded exceptional set with respect to both (1) and {1}, and {AI,A})\exlﬂeg is its
dual set.



64 PRAMOD N. ACHAR AND WILLIAM HARDESTY

For (1), this statement appears in [AR] §9.5]; for {1}, see [ACR] Lemma 3.1]
In the special case where I = &, the (1) part of this statement was proved in [ARd,
MR]; the essential ideas go back to [Be2], which treats the case k = C.

In view of Proposition 3.2] we may consider the following notions:

(1) The exotic t-structure, obtained by applying Proposition 2.21I[1]) with re-
spect to (1). This ¢-structure has been extensively studied in the papers
mentioned above.

(2) The representation-theoretic t-structure, obtained by applying Proposition
221)[) with respect to {1}. This ¢-structure was implicitly used in [AR],
and explicitly studied in [ACR]J.

(3) The supportive co-t-structure, obtained by applying Proposition 2.21|2)
with respect to {1}. This co-t-structure is one of the main objects of study
of the present paper.

(4) One may also apply Proposition 2.2TJ[2]) with respect to (1), but the result-
ing co-t-structure does not appear to be useful for the goals of this paper,
and will not be used.

The simple objects in the heart of the exotic t-structure are indexed (up to Tate
twist) by X;"°%; we set

Z}I,A = the simple exotic object labeled by A € X}

The coheart of the supportive co-t-structure (so named because of its role in
the study of support varieties) is denoted by S&*&m (./\7 7). We emphasize that this
is the only co-t-structure on DPCoh®*Cm (./\7 1) we will consider. Thus, objects of
SE*Gm (./\7 1) may simply be called “silting objects on N7 The indecomposable
silting objects are also indexed by X[ "®; we set

(3.2) EELA = the indecomposable silting object labeled by A € X8

When I = @, the subscript I will often be omitted from the notation.
The representation-theoretic ¢-structure is a highest-weight category (see [ACR]
§3.D]), and so Lemma [3.3]is a consequence of Corollary [2.23]

Lemma 3.3. The category S¢*Cm (JV[) is the category of tilting objects in the heart
of the representation-theoretic t-structure on DPCoh®*®= (A7),

In the case I = @, the objects &, were introduced in [AHRI] in a different
framework: they were obtained from the machinery of “parity objects,” rather
than from co-t-structures. The following fact, explained in [ACRl Remark 3.8],
says that these two approaches yield the same objects.

Lemma 3.4. The objects éA € DbCthXG“‘(J\N/) are precisely the parity exotic
objects of [AHRI, §3.4].

(As explained in [ACR] Remark 3.8], an analogous statement holds for ¢ 1) for
any I, but we will not need this more general statement.) Lemma [B.4] makes a
number of results from [AHRI] available to us.

'In [AR] §9.5], it is assumed that G has simply connected derived subgroup, but this assumption
can be dropped by the reasoning explained in [AHRZ2, §4.1]. The proof of [ACR| Lemma 3.1] then
also applies in this generality.
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4. THE NILPOTENT CONE

Let NV be the nilpotent cone of G and let 7 : N = N be the Springer resolution.
Each A € X gives rise to an equivariant line bundle O () on AV and an Andersen—
Jantzen sheaf

Ay =m0 (N).
(Note that 7, : DPCoh®*®=(Af) — DPCoh®*C=(A) denotes the derived push-
forward.)
For any A € X, let

Sy = min{/(v) | v € W and v\ € X1}, I3 = Owor,
and dom\ = WA N X™T. Finally, for A € X, we set

Va=A(=03),  Bi=Aualdh), £x=mLug.
Lemma 4.1. For any A € X, we have

Ew())\ Zf)\ S —X+,

TV Vaomr(03), TAy Adomr(—63), Tely = )
0 otherwise.

Proof. This is a consequence of [A2] Proposition 2.6] (see Remark B.1] on how our
Tate twist compares with the one in [A2]). O

Lemma 4.2. For any F,G € D*Coh®*®»(N}) or DPCoh®*Cm(N), the space
P Hom(F, G(k))

keZ

is finite-dimensional.

Proof. Tt is enough to prove this when F and G are shifts of objects belonging to
some set that generates the given triangulated category (under Tate twist). For
N7, we may take F = Aj,[n] and G = %I,M[m] (cf. [AHRL, Proposition 4.4)).
Since these objects come from an exceptional set, Lemma [2.19]tells us that the sum
@, Hom(F,G(k)) is at most 1-dimensional.

For N, take F = A,[n] and G = V,[m]. According to [AI, Proposition 6.1],
these objects come from a quasi-exceptional set, so if A # u, then Lemma [2.19] says
that our Hom-space vanishes. On the other hand, if A = u, we have

Hom (A [m)], Van](k)) = Hom(m, Ay x, T Vg a [ — m] (k)

= Hom(7* e Awgrs Via[n — ml(k)).

Since 7 is not smooth, the derived coherent pullback functor 7* takes values in
D~ Coh®*®=(A), and not in the bounded derived category. But of course V,x[1n—
m](k) is a bounded complex, so there is some integer N such that

Hom(Ax[m], Va[n](k)) = Hom (72N 11, Ao r, Voa[n — m](k)).
The right-hand side is now a Hom-group in DPCoh&*Cm (/\N/ ). The direct sum of
these over all k is finite-dimensional by the previous paragraph. O
Lemma 4.3. If Hom(Vy, V[n](k)) # 0, then one of the following holds:

(1) n=k=0, or
(2) n>0 and k < —2n.
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Before proving Lemmal4.3] we recall some facts about DPCoh®*®= (A from [AT].
As noted above, [AT] Proposition 6.1] says that the set {Vy} ex+ is a dualizable
graded quasi-exceptional with respect to (1). As in Section 2.3] we can consider
the following subcategories of DPCoh®*®m (A, defined with respect to (1):

D=V :peXt 1< A, D=V :peX 1< A

Apply Lemma [2.20] to obtain a recollement diagram. We denote the functors in-
volving the quotient D<»/D . as follows:

X
/_\
QSA — I\ — @SA/©<>\.

~_

X
It follows from [Al, Lemma 5.3] that for all v € X, we have
A € Dcdompy  and  Tlgom) (Aw) = dom(w) (Adom(v) (—261)).
For A € Xt and v € X*, we thus have

Iy (Ax(=26,)) ifve WA,

(4.1) I, (A,) = {0 if dom(v) < Xand v ¢ W.

We are now ready to prove Lemma [4.3]

Proof of Lemma 4.3l Let M(X) be the Weyl module for G with highest weight A,
and consider the coherent sheaf On @ M(A) € Coh®*®=(N). According to [AT]
Lemma 5.4], we have

(4.2) On @M)€ Ay, %% A, % Ay

for some weights v1,...,1, € X that satisfy dom(v;) < X and v; # A for all 4. In
particular, this shows that Ox @ M(A) lies in D <, so it makes sense to apply IT
to it. Let

g =TI\ (On @ M(A))(=03).

Combining (4.2) with (LI), we find that G belongs to a category of the form
I\ (V) {(—=271) * TIx(V2)(=2r9) * -+ % I\ (V) (—2rg) * 5 (Vy), where rq,..., 71
are some positive integers. Thus, there is a distinguished triangle

G — G —1\(Vy)
with
G € T\(Va)(=2r1) % TIx\(VA){=2rg) - - x T\ (V1) (=27%).
The proof of Lemma 2.20] shows that IT}(I1)(Vy)) & V. We therefore have

Hom(Ox © M(X)(—83), Va[n] (k)
> Hom(Oxr @ M(A){(~65), I (I\(V)) [n] (k) 2 Hom (G, TL (V) [n] (k)
> Hom(IT} (§), IITL, (V) [n] (k) = Hom(IT(G), Valn] (k)),

where the penultimate step uses the fact that I} is fully faithful [BBD] (1.4.3.5)].
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Let F = II}(G). Combining the calculation above with [AT, Lemma 5.5(2)], we
have
k ifn=k=0,

0 otherwise.

(4.3) Hom(F, V[n](k)) = {

Next, let 7' = II}(G), so that we have a distinguished triangle
F = F—=V\—,
where
(4.4) F' € Va(=2r1) * Va(=2r3) - % Vy(=2r).
This distinguished triangle gives rise to a long exact sequence
(4.5) - — Hom(F',Vi[n — 1](k)) — Hom(Vy, V[n](k))
— Hom(F, Vx[n](k)) — - .

Let us first take n to be the smallest integer such that Hom(Vy, Va[n](k)) # 0
for some k € Z. In view of ({.4)), the first term in (L.5) vanishes. The second term
is assumed to be nonzero, so the third term must be as well. But by (4.3)), this
implies that n = k = 0. In particular, we have Hom(Vy, Vx[n](k)) = 0 if n < 0.

Ass_ume_ henceforth that n > 0. We will prove by induction on n that if
Hom(Vy, Va[n|{k)) # 0, then ¥ < —2n. The case n = 0 has already been cov-
ered by the previous paragraph. Suppose now that n > 0, and let &k be the largest
integer such that Hom(Vy, Va[n](k)) # 0. (Such a k exists by Lemma [4.2]) The
third term of (4.5 vanishes (by (4.3))), so in order for the second term to be nonzero,
the first term must also by nonzero. By induction and (£.4)), we must have

k42 < —2(n—1)

for some . That is, k < —2n + 2(1 — r;). Since 1 — r; < 0, we conclude that
k< —2n. O

We can now prove a complement to Lemma [4.2]

Lemma 4.4. For any F,G € D*Coh®*®=(N}) or DPCoh®*C=(N), the space
P Hom(F, G{k})
keZ
is finite-dimensional.
Proof. For N 1, the proof of Lemma [4.2] can be repeated verbatim. For N, we may
assume that F = Ay[m]| and G = V[n]. If A # p, the reasoning in Lemma [£.2]
applies again. If A\ = y, then by Lemma 2.19] we may replace F by Va[m]. By
Lemma[4.3] the space
Hom(V\[m], Va[n]{k}) = Hom(V, Va[n — m + k](—k))
vanishes unless
n—m-+k>0,

n—-m+k=k=0 or
—k < —=2n+ 2m — 2k.

The latter condition is equivalent to m — n < k < 2m — 2n. In particular, only
finitely many integers k satisfy this condition, so our sum is finite-dimensional. [
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Proposition 4.5. The set of all Vy with A\ € Xt forms a dualizable graded pre-
exceptional set in D°Coh®*®= (N') with respect to both (1) and {1}, and its dual
set consists of all Ay with X € Xt. Moreover, this collection is:

(1) graded quasi-exceptional with respect to (1), and
(2) graded co-quasi-exceptional with respect to {1}.

Proof. As noted earlier, the fact that {Vy},cx+ is graded quasi-exceptional with
respect to (1) with dual set {Ay} ex+ can be found in [AT, Proposition 6.1]. Let
us now show that this collection is graded co-quasi-exceptional with respect to {1}.
It is immediate (thanks to the (1) case) that {V} ex+ satisfies conditions ()
and (3) of Definition .14} and that End(V)) = k. It remains to show that

Hom(Vy, Va[n]{k}) =0 if n=0and k #0, or if n > 0 and k is arbitrary.

By Lemma [£3] if the space Hom(Vy, Va[n]{k}) = Hom(Vy,Va[n + k](=k)) is
nonzero, we either have n =k =0orn+ k > 0 and —k < —2n — 2k. The latter
condition can be rewritten as n > —k and 2n < —k. This implies that 2n < n, and
hence n < 0. ]

In view of Proposition [4.5] we may consider the following notions:

(1) The exotic t-structure, also called the perverse-coherent t-structure, ob-
tained by applying Proposition R.21I(I) to {V}rex+ with respect to (1).

(2) The supportive co-t-structure, obtained by applying Proposition 2.21|[2) to
{Vi}rex+ with respect to {1}.

In fact, the objects £ are (up to (1)) precisely the simple objects in the heart
of the exotic t-structure: see [A2| Proposition 2.6]. The following statement is an
immediate consequence of Lemma [4.1]

Corollary 4.6. The functor m, : DPCoh® = (N} — DPCoh®*Cm (N) is co-t-exact
with respect to the supportive co-t-structures.

We will now get to the first major application of the theory of co-t-structures in
this setting.

Theorem 4.7. If F € D*Coh®*®=(N)sq and G € DPCoh®*C=(N)<y, then the

natural homomorphism
Hom(F,G) — Hom(m,.F, 7.G)
18 surjective.
Proof. We begin by defining two sets of objects A, V C DPCoh®*Cm (./\7) by
A={A{k}Mi] | X eX,i<0, keZ}
V ={Vk}i]|AeX,i>0,keZ)}.

We will now use the * operation from Section 2.2l with respect to {1}. The descrip-
tion of the co-t-structure in Proposition 2.2T[2)) shows that

DPCoh@*Em (./\7)20 = direct summands of U A"
n>1

DPCoh®*Cm (Af) <o = direct summands of U v

n>1
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Thus, it suffices to verify the surjectivity of the morphism
(4.6) Hom(F,G) — Hom(7,.F, m.G)

with 7 € A*" and G € ﬁim, for some n,m > 1. We will proceed by double
induction with respect to n and m.

First suppose that n = m = 1 and assume F = Ay{k1}[i1] and G = %M{kﬁg}[ig]
VVith/\,/JE:}(7 k‘l,kQEZ, i1 <0andig >0. Set k =ky — k1 and i = i5 — 47 > 0.
We have
k ifA=p,i=k=0,

Hom(F,G) = Hom(Ay, V. {k}[i]) = {0 Sherarice

Observe that if domX # domp, then both sides of (4.6]) are zero, so the map is
trivially surjective. Now suppose that domA = domy, and let § = &}, + 65. Using

Lemma [4.1] and the fact that {V,} ex+ is co-quasi-exceptional, we have
Hom(m,F, 7.G) = Hom(Adomx, Vdomr (8){k}[i])
= Hom(Zdom,\,VdomA{k; — 5}[2 + (5])
[k k=4, i=—6,
)0 otherwise (since i + 6 > 0).
So it suffices to assume that ¥ = § = —i because the natural map will again be
trivially surjective otherwise. But we have that both ¢ > 0 and § = J3 + (5; >0,

and thus, 6 = ¢ = 0. In particular, 65 = d;, = 0 which further implies that
A = pu = wo(domA) € —X*. Hence, (4.6) is given by

Hom(ﬁ,\, %)\) — HOm(Zdom)nvdom)\)-

Any nonzero map A A v » factors through Iy A= Z}wo(dom ), and any nonzero map
Adomx — Vdoma factors through £4omx. Lemma [4.1] then implies that this map of
Hom-groups is nonzero, and hence an isomorphism since both sides are isomorphic
to k. We have established surjectivity of (4.6) in the case where n =m = 1.

Now suppose (4.6]) is surjective for n = 1 and some m > 1. Let F € A and
G € V=™t he arbitrary. Then G fits into a distinguished triangle of the form

g/ N g N g/l %7

where G/ € V*™ and G” € V. Applying Hom(F, —) and Hom(m,F, —) we obtain
the commutative diagram

Hom(F,G') ——— Hom(F,G) —— Hom(F,G") ——— Hom(F, G'[1])
J{fl lfz J/f3 lf4
Hom(7.F,7.G") — Hom(m.F,7.G) — Hom(m.F,m.G") — Hom(m.F,m.G'[1]).

Our inductive hypothesis implies that f; and f3 are surjective, while Corollary [4.6]
and Definition 2.IJ[3) imply

0 = Hom(F, G'[1]) = Hom(m..F, m.G'[1]).

It then follows from the four lemma that f5 is surjective, and so we are done with
this case.
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Finally, fix n > 1 and assume that (4.6]) is surjective for any m > 1 with F € Azn
and G € Vi Let F € A+l and g e VA be arbitrary. Again, there is a
distinguished triangle

F' = F—=F"—,

where 7/ € A*" and F” € A. By applying Hom(—,G), Hom(—, m.G) and then
proceeding exactly as above, we can again deduce the surjectivity of (4.6). We are
finished by induction. ]

Theorem 4.8. Let SE*Cm(N) denote the silting subcategory of DPCoh®*Em (A).

(1) For any p € X, the object m.&,, is either 0 or an indecomposable object of
SE*Cu(N). It is nonzero if and only if up € —X*.

(2) For A € XT, set €y := w*ﬂéwo,\. Every indecomposable object of SE*Cm (N)
is isomorphic to an object of the form €x{r} for some A € X and r € Z.

The vanishing of W*éu for p ¢ —XT was previously known: see, for instance,
the comments in [AHRI, §4.2].

Proof. For any p € X, Corollary [.6] tells us that . éu lies in SE*Cm (N), and by
Theorem [4.7] 7, induces a surjective ring homomorphism

End(€,) - End(r,€,).

Here, End(@u) is a local ring, since EE# is an indecomposable object in a Krull-

Schmidt category. Its quotient ring End(w*éu) is therefore either 0 or a local
ring. Since S¢*Cm (N) is also Krull-Schmidt, we conclude that 77*@“ is either O or
indecomposable.

Suppose now that g € —X7T, and let A = wou € XT. According to Proposi-
tion [2.21] the two compositions

Apor = Lwgr = Vg and Awor = Euor = Vi

are equal (and nonzero). Now apply 7. to these maps. Using Lemmald.1] we obtain
(47) Z)\ — 2)\ — V)\ and Z)\ — @)\ — V,\.

These compositions are again equal, and the first one is nonzero, so the second one
is as well. In particular, &, # 0.

Part () of the theorem now follows from the “abstract” classification of inde-
composable silting objects given in Proposition [2.21], together with the equality of
the two compositions in (4.17).

To finish the proof of part (1), we must show that if W*éu # 0, then p € —XT.
By part (@), if ”*@u is nonzero, it is isomorphic to €,{r} for some A € X* and
some r € Z, so there are nonzero maps

Ar{r} = €, — Va{r}

whose composition is also nonzero. By Theorem 4.7 these maps arise by applying
T, t0 some nonzero maps

Awor{r} = €, = Vior{r}

whose composition is again nonzero. By Proposition[2.21] we conclude that g = woA
and r = 0, as desired. ([l
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5. PUSH-FORWARD FUNCTORS AND DG-COHERENT SHEAVES

In this section, we prove some additional lemmas on complexes of coherent
sheaves on N7 and N. We also introduce “dg versions” of the main geometric
categories.

5.1. More functors. Recall that N7 = G xF7 n;. We also set N1 := G xB ny,
and we define maps

7T[:./f\7]—>./\/’, M[Z/f\V/I—%/vI, 611./\71‘—%/&7
as follows: 77(g,z) = Ad(g)(x), pr is the quotient map, and e; is induced by the

inclusion map n; — n. Note that 74 is the Springer resolution 7 : N — N, while
e and ey are identity maps. The square

NI 2, N
(5.1) ml lw

./\7 I L N
commutes (but it is not Cartesian). All four maps are proper, so the derived
functors 7., 14, etc., take bounded complexes of (equivariant) coherent sheaves
to bounded complexes of (equivariant) coherent sheaves. The map py is smooth,

and the map e; is the inclusion of one smooth variety in another, so the same
comments apply to uy and e} (see also [AR] §9.2]). We define functors

Z; = el : DPCoh®*Cm(N) = DPCoh®*Cm (A7),
L= el DPCoh®*Cm (A7) — DPCoh®*Cm (A).

(1]

Finally, let
Sy Ny — N
be the inclusion map. Since the Pj-action on N extends to an action of G, there is
a well-defined functor

RTndS, : DPCoh™*Cm (A7) — DPCoh®Em ().

By construction, the following diagram commutes:

DPCoh®* = (N} ~ DPCoh®rCm (ny)
DPCoh“ %= (\)
Lemma 5.1. The following diagram commutes:
DPCoh*Cm (A7) = DPCoh®*Cm (A)
DPCoh“* = (N)
Proof. Let
pr = % Z o and r; := dim P;/B.
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Let O (—2ps) denote the pullback along NT — G/B of the line bundle of weight
—2pr. By smooth base change for the square

NT —— G/B =G xPr (P;/B)

| |

N ————— G/P;

we see that pur.Og(—2pr) is the pullback of the object in DPCoh®*Cm (G /Py)
corresponding to RIndIEI (—2p1). Using the form of Serre duality explained in [J1,
§11.4.2(8)], we have RIndL! (—2p;) = RInd} (k)[—r[] = k[-r1], so

1O (=2pr)[r1] = O,
Finally, we recall (cf. [AR] Lemma 9.4]) that

!

L
pr(=) = pp(=) @ O (=2p1)[r1]-
Using these observations, the commutativity of (B.1]), and the projection formula,
for M € DPCoh®*®=(A}), we have

L
72 (M) = moerply (M) 2 mrpr (i (M) 8 g1 O (~201)[r1))
L
=1 (M @ preOger (=2p1)[r1]) = (M),
as desired. ]
5.2. dg coherent sheaves. One goal of this section and the next is to show that
the functor 77, : DPCoh®*C= (A7) — DPCoh®*C=(N) is co-t-exact (see Corol-
lary [6.9). However, the proof involves a construction that takes place not in the
setting of ordinary coherent sheaves, but in the setting of dg coherent sheaves (see
the comments in Section [6.1]). In this subsection, we introduce notation related to
dg coherent sheaves on some of the varieties we have discussed above.

See Appendix[Alfor generalities on (equivariant) dg coherent sheaves on an affine
scheme. In the framework of that appendix, one may consider the categories

D(IIJcI)h(nI)7 D(]Igoh(nf)v Dgoh(N)'

It will be convenient to also be able to speak of “dg coherent sheaves on Ny or
N1 Since these varieties are not affine, they are not covered by the theory of
Appendix [A] Tnstead, we just take analogues of (3.1)) as definitions: we set

Dgoh(ﬁf) = D(Ij:gh(nf) and Dgoh(f\v/,j) = Dgoh(nf)'
We have “degrading functors” (see Proposition [A.2)
&1 : DPCoh®"Cm (A7) — DE,, (N7),
&+ DPCoh® = (N) — DE, (N).

(Such a functor exists for NT as well, of course, but we will not need a separate
notation for it.)
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Using Lemmas [A.3] and [A.Z, one can define the functors
T = RInng Srs Dgoh(ﬁl) — D((:;oh('/\/)’
,L_LI* = RIndgl : Dgoh(ﬁl) - D(C:;oh('//\\'/f)’
L . ) ~ v
iy = Resp (=) [ns] & \™ (pr/b)* : DEHNT) = DE(N),
€rx : Dgoh(NI) - Dgoh(N)’
é; : Dgoh(N) — D((:;oh(NI)’

where n; = dim P; — dim B. Each of these functors is compatible with its ordinary
(non-dg) analogue via the appropriate degrading functors. That is, the diagram

DPCoh%*Cm (N}) —S DS (N7)

TFI*J/ lfz*

DPCoh®*Cm(N) —25 DS (N)

commutes, and likewise for each of the other functors defined above.
Lastly, we define

[1]1

1= [i«€] Dgoh(N) - D(Ci;oh(NI)’
I = éI*,a!I : Dgoh(NI> - Dgoh(N)'

[1]1

By the techniques of Appendix[A] the proof of Lemma [5.1] can be adapted to show
that the diagram

=1

Dgoh(ﬁf) E— Dgoh(ﬁ)

(5.2) N A

T
Dgoh (N)
commutes.

Lemma 5.2. Let I C S be arbitrary.
(1) The set {g[(é17>\)}>\ex}hrcg generates a silting subcategory of DS, (N7), so

that &1 becomes co-t-exact. Moreover, an object F € DPCoh®*Cm (./\71) 8
silting if and only if £1(F) € Dgoh(./\N/I) is silting.

(2) The set {En(Ex)aex+ generates a silting subcategory of DE., (N'), so that
both Ex and 7« DE, (N) — DE , (N) become co-t-ezact functors. More-
over, an object F € DPCoh®*Cm(N) is silting if and only if Ex(F) €
DE, (N) is silting.

Proof. (@) Let S¢(N7) denote the full additive subcategory of D€, (N7) consisting
of (finite) direct sums of objects of the form &;(€&; ). We first claim that each
&1(€1,)) is indecomposable. By Proposition [A.2((]), we have

End(&/(€;.0)) = €D Hom(€&; 5, €, 1{n}).
neZ
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These spaces are finite-dimensional by Lemma [£.4] The right-hand side can be
thought of as a graded artinian ring. Its degree-0 component End(él,)\) is a lo-
cal ring, so by [GGl Theorem 3.1], End(fj(éz,A)) is also local. We conclude that
&(é],)\) is indecomposable, and hence that SG(/V 1) is closed under direct sum-
mands.

Next, we claim that part (2) of Definition 2.4] holds for S¢(N7). This follows
from the corresponding property for S&*G= (A7), together with Proposition [A.2(T)
again.

Since DPCoh®*C= (A7) = (SF*C=(N)))wi (see Remark 2.22), using Propo-
sition A2(2), we see that DE (N7) = (SE(N7))ui. Thus SE(N7) is a silting
subcategory of D&, (N7), and &; is co-t-exact.

Finally, it remains to prove that if £;(F) is silting, then F is silting. Suppose F
is not silting. Using the description of the co-t-structure given in Proposition [2.5]
we see there must either be a nonzero morphism F — é[A[’ﬂ](k) for some A and
some n > 0, or a morphism éI,A[—nWﬂ} — F, again with n > 0. Since &; is faithful
(Proposition [A.2][1))), applying &; to this morphism yields a nonzero morphism in
DE., (N7) that shows that &;(F) is not silting either.

@) Most of this statement holds by the same reasoning as in part (1l); the
only issue to address is the claim that 7, is co-t-exact. This follows from the
corresponding claim for 7, (Corollary [4.6)). O

6. REPRESENTATIONS OF (&

From now on, we assume that the characteristic p of k is larger than the Coxeter
number h for G, and that G has a simply connected derived subgroup. Let G be
such that G = G/Gq, where Gy is the Frobenius kernel (i.e. so that G is the
Frobenius twist of G). Let B C G be the Borel subgroup corresponding to B C G.
Let Rep(G) denote the category of finite-dimensional rational representations of G.
For A € X*, let M(\), resp. N(\), resp. T()), denote the Weyl module, resp. dual
Weyl module, resp. indecomposable tilting module, of highest weight A.

For each I C S, fix a choice of weight ¢; € X whose pairing with simple coroots

is given by
1 ifsel,
o (s1) = {o ifs¢l

(The existence of such a weight is guaranteed by the assumption that the derived
subgroup of G is simply connected.) The extended block Rep;(G) C Rep(G) is
defined as the Serre subcategory generated by all of the simple modules whose
highest weight is contained in X+ N Wag -, (—s7), where “,” denotes the p-dilated
dot action (see, for instance, [AHRI, §1.2] for a discussion). This subcategory is a
direct summand of Rep(G), and there is a projection functor

pr; : Rep(G) — Rep;(G).
One of the main results of [AR] can be restated as follows.
Theorem 6.1 ([AR]). There is an equivalence of categories

Fy: DS, (N7) = DPRep,(G).
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Moreover, this functor satisfies
Fr(&(Vip) = N(wa p (=s1)  and  Fi(&(Arx) = M(wy -+ (=s1)).

This statement does not appear in quite this form in [AR], but it is easily deduced
from [AR] Propositions 10.3 and 10.6], which state that there is a degrading functor
Fy : DPCoh®*Cm (/\N/I) — DPRep;(G) with the desired behavior on %I,)\ and 51’)\.
More precisely, examining the construction of Fy, one sees that a crucial role is
played by a certain “bigraded Koszul duality functor” kj, described in [AR] §4].
After replacing this by a singly graded Koszul duality functor following [GKM| §8],
one can check that there is an equivalence of categories Fr that makes the following
diagram commute:

DPCoh®*Cm (A7) ——L 5 DS (N;)
DPRep;(G)

Remark 6.2. If we equip D&, (/\7 7) with the co-t-structure from Lemma [5.2] and
DPRep;(G) with the co-t-structure whose coheart consists of tilting G-modules in
Rep;(G), then the functor F7 is co-t-exact. To see this, use Lemma[3.3]and observe
that the functor Fy sends tilting objects in the heart of the representation-theoretic
t-structure to tilting G-modules (cf. [ACR] Remark 3.7]).

One can transfer various representation-theoretic or geometric constructions
across the equivalence of Theorem [6.1l In this section and the next one, we exploit
this idea to obtain results on Gj-cohomology.

6.1. Steinberg translation functors. For each subset I C S, we define
St€ := Ind§ ((p — 1)s7) € Rep;(G).

It is easy to verify that (p — 1)y € XT N Wag +p (—<7) is a minimal element, so by
the linkage principle (see [J1, I1.7]), we have

St7 = T((p — 1)s1) € Rep;(G).
(In particular, St§ = k if we set ¢z = 0.) We define the Steinberg translation
functors to be the functors given by
>! = pry o — @(St¥)* : DPRep;(G) — DPRep,(G),
¥, i=pr;o — @StF : D’Rep,(G) «— DPRep,(G).

Observe that 3! and X; are both left and right adjoints to each other. We can
consider the transports of these functors across the equivalence of Theorem [6.1}

2= Fp o £ 0 Fy 1 DEy(N7) = DEH(N),

Y= F o X0 Fy: DEL(N) — DE (N7).
Unfortunately, we do not know how to give concrete geometric descriptions of
»! or ¥; in the language of dg coherent sheaves, nor how to “lift” them to
DPCoh®*Cm (A7), (If such lifts were available, the main results of this paper could

be proved using only the language of coherent sheaves, and avoiding the technical
difficulties of dg coherent sheaves.)
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On the other hand, we can also consider the transports
Ti= Fpo=l o Fy™": D"Rep;(G) — D Repy (G),
[:=F10oZ;0Fy " : D"Rep;(G) + D"Repy(G).

[

[1]

We do not know how to give an explicit representation-theoretic interpretation of
2!, but we will see some representation-theoretic information about Z; in the proof
of Lemma [6.6]
6.2. A dg enhancement of G;-cohomology. For each I C S, define a functor
H;: D"Rep(G) — DE(N) by  Hy:=7r.oF 'opr;.

Lemma [6.3] explains the relationship between these functors and Gi-cohomology.
Lemma 6.3.

(1) There is a G-equivariant isomorphism of graded rings k|N] = Extg (k, k).

(2) For any I C S and M € DPRep,(G), there is a natural isomorphism of
graded G-equivariant K|IN]-modules

H*H;(M) = @) Home, (StF, MIk]).
keZ

Proof. Part (1) is identical to [AHRI, Lemma 8.1]. For part (2], copy the proofs
of [AHRI, Lemma 8.1 and Proposition 9.1], using the observation that

FI(ONI):St?. O
Lemma 6.4. For any u € X+, we have

En(Cuwor)  if p=1wy 0 for some A € =X,
0 otherwise.

Hg (T(n)) = {

Proof. If 11 is not of the form wy -, 0, then pry (T(u)) = 0, and the claim is obvious.
Assume now that u = wy -, 0 for some A € X. As explained in the proof of [AHRI,

Proposition 9.1], We have Fg(£5(€y)) 2 T(u), and hence

En(€upr) if A€ =X,
0 otherwise,

Ho (T(1)) 2 abo(€)) = En(m,€y) & {

where the last equality holds by Theorem 4.8 O

Remark 6.5. Combining Lemma[6.4] with Theorem [4.8] yields the following remark-
able observation: the cohomology of an indecomposable tilting module coincides with
the cohomology of a uniquely determined indecomposable silting object of D(G,oh (N).

6.3. Main results. Lemmal6.6ldescribes the relationship between the various func-
tors introduced so far in this section.

Lemma 6.6. There exists a natural transformation
n:2 %!
of functors DPRep;(G) — DPRep(G) such that the induced transformation

of functors D’Rep;(G) — DE., (N) is a natural isomorphism.
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Proof. For this proof, we need slightly more information about F;. Let P; be the
standard parabolic subgroup of G corresponding to I. Then Fj is the composition
of two equivalences

- RIndS
(6.1) DE,(N7) 5 D8, iuRep(Pr) ——2% DPRep;(G).

See [AR] §5] for the definition of D, Rep(P). We will not need the details,
except to note that this category is a full triangulated subcategory of DPRep(P;).
According to [AR] Propositions 7.5 and 9.25] and their proofs (see especially [AR]
Figure 9]), there is a commutative diagram

Y, Vo
Dgoh (N) DIS)teinRep(B)

EIJ thldE’«—)@@—l)cz)
Dgoh (./VI) L) Dls)teinRep(PI)

Using the fact that Fy Lo RIndg = wgl, the commutativity of the diagram above
can be expressed as the existence of a natural isomorphism

Ero RInd§ = pr;oRIndg (— ® (p — 1)s7) : Din,(B) — DPRep; (G).
On the other hand, it can be deduced from the tensor identity (see [J1, 1.3.6]) that
¥ 0 RInd§ = pr; oRInd§ (— ® St&).
(This isomorphism holds for all D"Rep(B), not just DE,.;,Rep(B).)
Since S$t¥ = IndS ((p — 1)sz), there exists a canonical nonzero map
pr:StF — (p—1)sr,
which corresponds to idgie under Frobenius Reciprocity (see [J1, 1.3.4]). From the

formulas above, this map induces a natural transformation X; o RIndg — B0
RInd§ of functors DY, ;, Rep(B) — D"Rep;(G). Since RInd§ : DY, Rep(B) —

Stein
DPRep(G) is an equivalence of categories (cf. (6.1))), we obtain a natural trans-

formation
v YXr— 2.
Thus, we can define
n: 8 — %!

to be the natural transformation given by applying Lemma [6.7 to v. To show that
this induces the desired natural isomorphism, observe that

FrE21(0) = Fi(Og,) = Stf.
And since F; ' (k) = O, we get
=;(k) = St¥.

Moreover,
Vi : Ej(k) — E[(k)

is an isomorphism which coincides with the identity map on StIG,



78 PRAMOD N. ACHAR AND WILLIAM HARDESTY

This leads to a commutative diagram of natural transformations

HomG1 (ka EI(_)) — HomG1 (]k’ El(_))

| |
Homg, (8;(k), —) —=— Homg, (2;(k), -),
where the vertical maps arise from the adjunction isomorphism. Notice that the
transformation 7, is a natural isomorphism since every other map in the diagram
is an isomorphism.
To see why Hg1 is an isomorphism, notice that if we let M € DPRep;(G) be an
arbitrary object, then it follows from Lemma [6.3]that for any k € Z, the morphism

H"Hgn : H"Hg (BN (M) — H*Hg (Z1(M))
identifies with the isomorphism
1. : Homg, (k, 2 (M)[k]) = Homg, (k, 3 (M)[k])
given above. O
Lemma 6.7. Let € and © be categories with functors
Fi, Fs
¢c_ D

-~
G1,G2

such that F; is left adjoint to G; (for i =1,2). Then the natural isomorphisms
Homg (F;(—),—) — Home(—,Gi(—)), i=1,2
induce a bijection
{natural transformations Fy — Fy} = {natural transformations Gy — G1}.

Proof. This is a routine application of Yoneda’s lemma. O

The following statement, which is the main result of this section, is now essen-
tially just a reformulation of Lemma [6.7]

Theorem 6.8. For any I C S, there are natural isomorphisms
7,05 27, o X : DE, (A7) — DGy (N).
Proof. By the definitions and Lemma [6.6] we have
T2 =7 F B P =H B F 2 H X F =27, F 'S Fp =7, %0 O
Corollary 6.9. The functors my. and Ty, are co-t-exact for any I C S.

Proof. We begin by showing that X! : Dg,h(ﬁf ) — Dgoh(J\? ) is co-t-exact. Since
the equivalences Fy and Fy are co-t-exact (see Remark[6.2]), this claim is equivalent
to showing that X! : D’Rep;(G) — DPRep(G) is co-t-exact. Here, these derived
categories are equipped with the co-t-structures whose cohearts consist of tilting
G-modules. In other words, we must show that X! sends tilting G-modules to
tilting G-modules. This claim is immediate from the definition and the fact that
St? is a tilting G-module. Thus, %/ is co-t-exact.

By (5.2), we have 77, = 7,Z!, so Theorem [6.8] gives 77, = 7, o X, Since 7, is
co-t-exact (see Lemma [5.2)), we conclude that 7. is co-t-exact.
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It remains to prove the co-t-exactness of .. Lemma [5.2] implies that this is
co-t-exact if and only if &amy. is co-t-exact. The latter functor is isomorphic to
T1+€E1, which we already know to be co-t-exact. ([l

7. THE SCHEME-THEORETIC HUMPHREYS CONJECTURE

In this section, we continue to assume that p > h. Recall that for A € X, we
write wy for the element of minimal length in the coset Wity C W,g. To state
the Humphreys conjecture, we will need some facts about right Kazhdan—Lusztig
cells in W,gld A right Kazhdan—Lusztig cell is called antispherical if it contains
some element of the form wy. By results of Lusztig [L] and Lusztig-Xi [LX], the
antispherical right cells are in bijection with the set of G-orbits in N. Given a
G-orbit C C N, let

Xe = {A € X | wy lies in the antispherical right cell corresponding to C'}.
We thus obtain a partition of X indexed by nilpotent orbits:

X = |_| Xc.

CCcN
a G-orbit

We also set X, := wo(X¢) N X*F. It follows from [AHR2, Theorem 6.4] and [Be3),
Remark 6} that

XL ={AeX" |suppLy=C} X,
as long as p is good. We will call Xg the canonical cell corresponding to C. If
Z C N is a G-stable subspace, we set

Xz =J Xe, Xp= ] X
ccz ccz

7.1. Scheme-theoretic Humphreys conjecture. We begin by giving a scheme-
theoretic analogue of the classical Humphreys conjecture. Let

Co={NeX|0< (A+p,a”) < p for all positive roots a € T}

be the fundamental alcove. For any w € W,g, one can consider the set w-,C,. Any
such set is called an alcove.

For a nilpotent orbit C' C N, let Tz C k[N] denote the defining ideal of the
reduced subscheme C' C N. We propose the following refinement of the conjecture
proposed by Humphreys [Hul (see also [AHRI] Conjecture 8.5] and the discussion
preceding it):

Conjecture 7.1 (Scheme-theoretic Humphreys conjecture). Suppose that p € XT
belongs to the lower closure of wy -, Cp for some A € Xc. Then the annihilator of
the k|N]-module Extg (T (u), T(w)) is Z¢.

Following [AHRI, §8.3], we also formulate a “relative” version of Conjecture [7.1]

2Kazhdan-Lusztig cells are usually considered in the context of the noneztended affine Weyl
group W x Z®, rather than in W,g. However, as explained in [AHR3, Remark 2.1] it is straight-
forward to define Kazhdan—Lusztig cells in W,g, and they are in bijection with those in W x Z®.

3In more detail, [AHR2, Theorem 6.4] says that the support of £y is “independent of k” in
an appropriate sense, and [Be3, Remark 6] says that the support of the analogue of £ over C is
the closure of the nilpotent orbit assigned to the antispherical cell containing w.,,x. (Note that
the definition of the notation “wy” in [Be3| is different from ours; the wg does not appear in the
statement there.)
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Conjecture 7.2. If A € =Xt N Xg, then the annihilator of the kK[N]-module
Extg, (k, T(wx - 0)) is I,

We emphasize that Conjectures [L.1] and [[.2] are stronger than the conjectures
on set-theoretic support that were proved in [H] and [AHRI]. Nevertheless, the
set-theoretic “lower bound” proved in [AHRI, Theorem 9.3(1)] immediately im-
plies a scheme-theoretic lower bound as well: namely, the annihilator in each of
Conjectures [.1] and [Z.2] is known to be contained in Zg.

Lemma 7.3. For p > h, Conjecture [[.1] implies Conjecture [.2]

Proof. In view of the “lower bound” discussed above, this claim follows by the same
argument as in [AHRI, Remark 9.4]. O

Remark 7.4. Below, for G = GLy (k) with p > N, we will give an argument relating
Conjectures [[.1] and [7.2] in the opposite direction: see Corollary [7.7]

7.2. The type A case. For the remainder of this section we will assume that

G = GLy(k) with p > N. Our goal will be to verify Conjectures[.1]and [[.2]in this

setting. For any I C S, let C; denote the Richardson orbit satisfying C; = G - ny,

and recall the well-known fact that every nilpotent orbit for GL (k) is of this form.
For any G-stable closed subset Z C N, we take

CohCZ;XG"‘ (N) € Coh®*Cm (N, resp. DY%Coh®*Cm(N) c DPCoh®*Cm(N)

to be the full abelian, resp. triangulated, subcategory consisting of all objects set-
theoretically supported on Z.

Lemma 7.5. For any G-stable closed subset Z C N, the category D%CthXG”‘ (N)

is generated by objects of the form mj.F with F € DPCoh@*Cm (/\7;), for various
J C S such that Cy C Z.

Proof. Let D', be the full triangulated subcategory of D%Coh®*®=(N) generated
by objects of the form 7, F. We wish to show that D}, = D%Coh®*®=(N). We
proceed by induction on the number of orbits in Z.

It is enough to show that any object G € Coh$*®(N) lies in D’,. Moreover, any
such G admits a finite filtration whose subquotients are supported on the reduced
subscheme corresponding to Z. We may therefore assume that G itself has reduced
scheme-theoretic support.

Choose a subset I such that the G-orbit C is open in Z. Assume by induction
that the lemma is already known for Z’' := Z ~ C;. We will exhibit an object
F € DPCoh%*Cm (./\N/}) together with a morphism ¢ : G — m;,F whose cone is
supported (set-theoretically) on Z’. This will prove the lemma.

Let Cr = 77 (Cy), and consider the Cartesian diagram

é] —> ./Vj
(7.1) pl lﬁ,
C[ —> ./\/

In this proof, let us write 77, and 7} for the underived push-forward and pullback

functors along ;. Set F = n7G € Coh&*Cm (J\~/})7 and then define ¢ : G — 7, F to
be the composition of the maps

G — mom1G = T F = T F,
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where the first map is the unit of the adjunction, and the last map is the truncation
map. All objects above have scheme-theoretic support contained in the reduced
subscheme of Z. To prove the claim, it is enough to show that the restriction of ¢
to Cy is an isomorphism. This restriction is given by

Gle, = pop®(Gle;) — p«p®(Gloy)-

Each of these maps is an isomorphism because the map p in (7.1) is an isomorphism:
see, for instance, [J2, Remark 8.8]. O

Theorem 7.6. Conjecture [[.2] holds for G = GLy(k) and p > N.

Proof. By [AHRI, Proposition 9.1] (combined with Lemma [B.4]), this problem is
equivalent to showing that for any orbit C' and any A € XJCC, the scheme-theoretic
support of the object &) = W*@wo x is equal to C. We already know from [AHRI,
Theorem 9.3(1)] that the set-theoretic support at least contains C, so it is enough
to show that the scheme-theoretic support is contained in C. In fact, we will prove
a slightly stronger statement, replacing X, by X%: we will show that

(7.2) if A€ X%, then the scheme-theoretic support of &) is contained in C.

Suppose C = C7 for some I C S. By Lemma [Z.5] D‘é—ICthXGm (N) is generated
by the objects
T Jx éJ,M{n},
for n € Z, p € X1 where J satisfies C; C Cj. These are silting objects by
Corollary [6.9] Let us set

X' = {)\ € Xt | &, is a summand of some WJ*,éJhu{n}}.

Since 7 factors through the inclusion map C; < N/, all objects in the collection
{€x}rexs have scheme-theoretic support contained in Cf.
It follows from [AHRI, Theorem 9.3(1)] that X' C X%. To prove (7.2), we

must show that X’ = X%. To accomplish this, we will proceed with a K-theoretic
argument. The set

(7.3) {[Ex]}rex+

is a Z[t,t"!]-basis for the Grothendieck group K (DbCthXGm (N)) (where the

action of ¢ is induced by twisting with {1}). Moreover, by Lemma [.5] for any
object F € Dg_lCthXG‘“ (N), the class [F] lies in the span of the subset

(7.4) {[Ex]}rex
Two other bases for K (DbCthXG“‘ (N)) are
(7.5) {[€x]}rex+ and {[Valhrex+

Because the £,’s are obtained from the pre-exceptional set {V},cx+ by a recolle-
ment construction, the transition matrix between these bases is “upper-triangular”:
we have

(8= VAl + D axu()[VL].

peEXT
n<A
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By the same reasoning, the transition matrix between (.3) and the second basis
in (Z.3) is also upper-triangular. It follows that the transition matrix between (Z.3)
and the first basis in (Z.3) is upper-triangular: we have

(7.6) (& =€+ D bau(t)€,]

,LLEX+
pn<A

Now suppose that A € X+ Then the object £, is supported on C7, so it lies in

the span of (7.4]). Since [(‘EA] occurs with nonzero coefficient in (7.6)), we conclude
that A € X/, and hence that X’ = Xg. O

Corollary 7.7. Conjecture [L.1] holds for G = GLx(k) andp > N.

Proof. Suppose pu € Xt belongs to the lower closure of wy -, C,, for some \ € X¢.
The main result of [H] already tells us that the k[A]-module Extg (T (), T(x)) has
set-theoretic support equal to C, so we need only prove that its scheme-theoretic
support is reduced. Write T(u)*® T (1) as a sum of indecomposable tilting modules,
say

T) @T(w) =T) @ & T(vg).
We have

k
Extg, (T(n), T(w) = Extg, (k, T(n)* ® T(p) = @D Extg, (k, T(1:)).
i=1

By Theorem [1.6] every nonzero term in the last direct sum above has reduced
scheme-theoretic support. O

APPENDIX A. EQUIVARIANT DG MODULES

Let H be an algebraic group over k, and let X = Spec(A) be an affine H x G-
variety over k. In other words, A is a graded commutative finitely generated reduced
k-algebra equipped with a rational H-action. We assume throughout that the
grading on the ring A is concentrated in nonnegative degrees.

Let A-modp«g,, be the abelian category of H x Gy,-equivariant A-modules, or,
equivalently, of graded H-equivariant A-modules. Each object M € A-modgxg,,
comes equipped with an “internal grading” M = .., M;, where each M; is a
rational H-module. For M € A-modg«g. , we set

JEL
m?

M1)=M®k_1,

so that the internal grading of M (1) is given by (M(1)); = M;41.

Given a (possibly infinite) collection (M?);c; of rational H-modules, the product
vector space [, M* carries a (not necessarily rational) action of the abstract
group H (k). A vector v € [];.; M" is said to be rational if it is contained in a finite-
dimensional H (k)-stable subspace on which H acts algebraically. The subspace
consisting of rational vectors is denoted by

rat . .
I M ][
i€l el
This is a rational H-module. The same notion makes sense for H x G,-modules.

If the M? are objects of A-modgxg,. , then because the H x G,-action on A is

m )’
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rational, it is easy to see that [[&; M is an A-submodule of []
this context, H??[ M?* is again an object of A-modgy g

Let A-mod%xGm be the subcategory consisting of those modules that are finitely
generated over A. Of course, we may identify

A-modpxg, = QCoh™®(X)  and  A-modf,; = Coh™*®(X).

m

icl M?*. Thus, in

m*

Next, let CTTA-modyxg, be the category of chain complexes M = (--- —
M~ — M° — M! — ...) that are “cohomologically doubly bounded below”: that
is, the cohomology modules H!(M) € A-mody g, vanish for i < 0, and there is
an integer N such that H’(M)j =0 for all j < N and all i € Z. We do not impose
any boundedness conditions on the underlying terms M¢. However, every chain
complex in CTTA-modyxg, is quasi-isomorphic to one whose terms do satisfy

such boundedness conditions. Denote the derived category of Ct+A-mody g, by
DFTQCoh™*Cm (X)),

It is well known that the category QCoh™*®=(X) = A-modp g, has enough
injectives. (This follows from the fact that QCoh(X) has enough injectives, and
that the forgetful functor QCoh™*®m= (X) — QCoh(X) has an exact right adjoint,
namely, the “averaging” functor.) Therefore, any complex in CT+TA-mody «g,, is
quasi-isomorphic to a bounded-below chain complex of injectives. (However, the
internal grading of injective modules is usually not bounded below.)

Next, regard the graded ring A as a dg ring with zero differential. Let A-dgmod;
denote the category of H-equivariant dg modules. Let A—dgmod} C A-dgmody
be the subcategory consisting of dg modules whose cohomology H*® (M) is bounded
below, and then let A-dgmodj{(’fg C A-dgmodj; be the subcategory consisting of
modules M for which H®(M) is finitely generated over A. We denote by

, e,
Daean(X)  and  DEGE™ (X)

the derived categories of A—dgmod;} and A-dgmodj{l’fg , respectively.
We define
¢€:CtT A-modyxg, — A-dgmod};
to be the functor that sends a chain complex M = (--- — M~ — M°? — M! —
-++)in C*TA-modp «g,, to the dg module given by

rat .
san =11 M.
i+j=n
It is easy to see that

(A.1) Hr M) = [T H(M); = D HI (M),

i+j=n i+j=n

rat

(The “doubly bounded below” condition ensures that this direct sum is finite.) In
particular, ¢ sends acyclic complexes to acyclic complexes, so it induces functors

€ : DTFQCoh™*%m (X)) — DY (X),
€ : DPCoh™>n (X) — DL (X).

Lastly, we define

the full triangulated subcategory of Dé‘o’ﬁg’H(X ) generated by

DEn(X) =
Con(X) the essential image of & : DPCoh*®m (X)) - DL &H (X).
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It seems likely that one has DE, (X) = Da}f]g’H(X ) in many cases of interest, but
we will not try to prove this claim here.

Lemma A.1l.

(1) If I is a bounded-below chain complez of injective objects in CTT A-modgxc
then £(I) is a K -injective object in A-dgmod};.

(2) Every object M € A—dgmodz admits a quasi-isomorphism M — I where
Ie A—dgmodz s K -injective.

Proof. M) Let I = (- — I — I° — I' — ...) be a bounded-below chain
complex of injectives in C*A-modp g, . Assume without loss of generality that
I' =0 fori < 0. Let M € A-dgmody be an acyclic dg modules, and let f :
M — &(I) be a morphism of H-equivariant dg A-modules. We must show that f
is null-homotopic.

For each i, £(I*) is a dg module with zero differential. The underlying graded
A-module of £(I) (ignoring the differential) is given by

ey =T &=,

€L

m

and its differential d¢(r) is a product of maps of graded A-modules
dl gy E()[=4] = &[],
Let dps : M — M]1] be the differential of M. The map f: M — &(I) is a product
of maps
i M — &(I7)[—j]  such that i p) 7= ity

Below, we will define a collection of maps
(A.2) &M = &(I)[—j—1]  suchthat  di;)s'" +s7dy = fI
for all j € Z. Let s = [[;cp 8" : M — [[;c5 EI")[—i — 1]. Since M is a rational
H x Gy-module, the image of s consists of rational vectors. That is, we have a
map s : M — §(I)[—1] such that d¢(;ys + sdy = f, as desired.

We define the s7’s by induction on j. For j < 0, we must have s/ = 0, and the
equation ([(A2) holds trivially. Suppose now that s’ is defined for all j < N in such
a way that (A.2) holds. Note that

(fN _dé\EBISN—l) ody = dé\é;)lfN—l _ dé\é;)l(fN—l _ dé\/(v;)QsN—2) —0.

It follows that f& — dé\EBlsN_l induces a map g : M/imdy; — £(I™V)[~N]. Since
M is acyclic, we have imdy = kerdy, and M/imdy; = M/kerdy = imdyy.
Regard imdys as a submodule of M[1]. Using the fact that £(IV) is an injective
module, we can extend g : imdy; — £(IV)[—N] to a map sV : M[1] — £(IN)[—N].
This map satisfies the equation (A2) by construction.

@) If M lies in the image of &, say, M = £(M), then the claim follows from
part (1), since M admits an injective resolution in CT*A-mody«g,,. For general
M with differential dp; : M — M][1], consider the short exact sequence of A-
modules 0 — kerdy; — M — imdy; — 0. (Here, we are exploiting the fact that A
has zero differential.) This gives rise to a distinguished triangle in Dg&ﬁ[h (X). Now,
ker dys and imdy; are both in the image of £ (since they have zero differential), so
they admit K-injective resolutions, and hence so does M. (Il
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Proposition A.2. The functor & : DPCoh™*®m (X) — DE,(X) is a degrading
functor with respect to (—1)[1]. In other words:

(1) There is a natural isomorphism £(M) = (M (—1)[1]) such that the map
€D Hom(M, N (—n)[n]) = Hom(¢(M), £(N))

nez

is an isomorphism for all M, N € DPCoh™*®=(X).
2) The image of € generates DE (X)) as a triangulated category.
Coh

Proof. Part (2)) holds by definition. For part (1I), we rely on the well-known fact that
DPCoh™*®m (X)) is equivalent to the full subcategory of DT+QCoh™*®m(X) con-
sisting of objects with bounded, coherent cohomology. To find Hom (M, N{—n)[n]),
we may replace N by an injective resolution in C*TtA-modyxg,,, and M by
a bounded chain complex. Then &(N) is K-injective, and the chain complex
RHom(M, N) is cohomologically doubly bounded below. The claim follows by
applying (A1) to RHom(M, N). O

Lemma A.3. Let f : X — Y be an H-equivariant closed immersion of affine
H -varieties.

(1) There is a functor f. : D&, (X) — DE, (Y)) such that the following diagram
commutes:
DPCoh*Cm(X) —55 D (X)

r |#
DPCoh™*C=(y) £ DE (V).
(2) Assume that kK[X] admits a bounded resolution by H x Gy, -equivariant free

k[Y]-modules. Then there is a functor f*: DE, (V) — DE, (X) such that
the following diagram commutes:

DPCoh™*Cm(y) —£¥, DH (V)

| I

DPCoh™*En(xX) X, DH (X).
Moreover, f* is left adjoint to f,.

Proof. Since f, is an exact functor of coherent sheaves, part (1)) is clear. For
part (2), note that the assumption on the existence of a bounded free resolution of
k[X] implies that f* takes values in D®Coh™*®= (X) rather than D~ Coh™*®=(X).

Let us show that f. admits a left adjoint, i.e., for M € D (Y), the functor
Hom(M, f.(—)) is representable. We first claim that this property is preserved
under taking cones. That is, if M, 2, My — M3 — is a distinguished triangle in
DE, (Y), and if Hom(M;, f.(—)) is representable for i = 1,2, we claim that it is
also representable for i = 3. Let N1, Ny € DE, (X)) be such that we have natural
isomorphisms

Hom(M;, f.(—)) = Hom(N;, —) fori=1,2.

These isomorphisms give rise to maps n; : M; — fuN; for i = 1,2. Moreover, the
natural transformation Hom(Ma, f.(—)) — Hom(Mi, f.(—)) induced by ¢ gives
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rise to a map (;~5 : N7 — N5 making the following diagram commute:

MlL}MQ

mlom

f*Nl % ]?*NZ

Extend gg : N1 — Nj to a distinguished triangle Ny 2, Ny — N3 —, and then
extend the diagram above to a morphism of distinguished triangles

M, M, M,
Ull 772l 3773
r .f_‘*(g r 7\/

fsN1 —— f.No J«N3

The new map 73 : Mz — f. N3 gives rise to a natural transformation
HOm(Ng, _) — HOI’H(M?,, f*(_))>

and then a five-lemma argument shows that this map is an isomorphism. Thus,
Hom(Ms3, f.(—)) is representable.

We now return to the main problem of showing that Hom(M, f.(—)) is rep-
resentable. Since Déloh(Y) is generated by the image of &y, the previous para-
graph tells us that it is enough to show this when M = & (M') for some M’ €
DPCoh™*®m(Y"), The adjunction map M’ — f, f* M’ gives rise to a map &y (M') —
Ey (fof*M') = fuéx(f*M'), and this map induces a natural transformation

Hom(&x (f*M'), =) — Hom(M, f.(-)).

This map is an isomorphism on objects in the image of {x, and hence (in view of
Proposition [A.2) an isomorphism in general. We have shown that f. admits a left
adjoint f*, and that if M = & (M’), then f*M = Ex(f*M'). O

We conclude with a lemma on change of equivariance. If K C H is a closed sub-
group, there is a forgetful functor Res : DPCoh™*Cm(X) — DPCoh®*Cm(X).
If H/K is a projective variety, then this functor has a right adjoint RIndg :
DPCoh®*Cm(x) - DPCoh®*Cm (X)), defined as the composition of the equivalence

DPCoh®*Cm (X)) = DPCoh™*Cm (H x K X)

with push-forward along the map o : H x¥ X — X given by o(h,z) = h-x. (The
assumption that H/K is projective implies that o is proper, so that o, takes values
in DPCoh™*®m (X)) rather than in DTQCoh™*®= (X))

Lemma A.4. Let K C H be a closed subgroup such that H/K is projective. Let
X be an H-variety. There are functors RInd% : DE, (X) — DE, (X) and Rest
DE, (X) — D&, (X) such that the following diagrams commute:

DbCOhKXGm(X) §*X> D(Ij(oh(X) DbCOhHXGm(X) €*X> D(II{;h(X)
RIndIIgJ/ lRIndﬁ Resﬁl lResg
DPCoh™®n(X) 5 DI, (X), DPCoh'*®n(X) — D, (X).

Moreover:
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(1) The functor Resi is left adjoint to RInd%.
(2) Let d = dim H — dim K. The functor Restt(—) ® \?(Lie(H)/Lie(K))*|d]
is right adjoint to RIndg.

Proof. The existence of functors RIndg and Resg in the dg setting making these
diagrams commute is straightforward (using K-injective resolutions for the former,
and exactness for the latter). In the coherent sheaf setting, we noted above that
Resg is left adjoint to RIndg. In the dg setting, there is at least an obvious
natural transformation e : Resf RInd® (M) — M for any K-injective object M.
This natural transformation gives rise to a natural map

Hom(N, RInd% (M)) — Hom(Res(N), M).

This map is at least an isomorphism when N and M lie in the essential image of
&x (by the coherent sheaf version of the adjunction), so it is in fact an isomorphism
for all N and M.

For the last assertion in the lemma, the dg version again follows from the co-
herent sheaf version. The coherent version is a well-known consequence of Serre—
Grothendieck duality. Let us briefly explain how to obtain it. Let p : H x¥ X — X
be the map given by p(h,z) = h-x. Then p is a smooth, projective bundle
over X with fibers isomorphic to H/K. Serre-Grothendieck duality says that for
F € DPCoh™ (H x¥ X) and G € D"Coh™ (X), there is a natural isomorphism

(A.3) Hom(F,p"G éLi) wpld]) = Hom(p.F,G),

where w, is the relative canonical bundle. (See [Ht, Theorem III.11.1] for the
nonequivariant version of this statement, and see [AB| Example 2.16] for a discus-
sion of how to deduce the equivariant version.) If we identify Coh™ (H x* X) with
Coh™(X) (cf. B.1), then p, and p* are identified with RIndf and Resf, respec-
tively, while w,, corresponds to the canonical bundle of H/K, i.e., the line bundle

whose fiber over 1K € K/H is identified with A\%(Lie(H)/Lie(K))*. Thus, (A.3)
yields the desired adjunction. O
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