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CO-t-STRUCTURES ON DERIVED CATEGORIES OF

COHERENT SHEAVES AND THE COHOMOLOGY OF TILTING

MODULES

PRAMOD N. ACHAR AND WILLIAM HARDESTY

Dedicated to the memory of Jim Humphreys

Abstract. We construct a co-t-structure on the derived category of coherent
sheaves on the nilpotent cone N of a reductive group, as well as on the de-
rived category of coherent sheaves on any parabolic Springer resolution. These
structures are employed to show that the push-forwards of the “exotic parity
objects” (considered by Achar, Hardesty, and Riche [Transform. Groups 24
(2019), pp. 597–657]), along the (classical) Springer resolution, give indecom-
posable objects inside the coheart of the co-t-structure on N . We also demon-
strate how the various parabolic co-t-structures can be related by introducing
an analogue to the usual translation functors. As an application, we give a
proof of a scheme-theoretic formulation of the relative Humphreys conjecture
on support varieties of tilting modules in type A for p > h.

1. Introduction

Let G be a connected reductive group over an algebraically closed field k of
characteristic p > h (where h is the Coxeter number for G), and let G1 be its first
Frobenius kernel. This paper is concerned with the study of the G1-cohomology of
G-modules, denoted by H•(G1, M). Via the well-known identification of H•(G1, k)
with the coordinate ring of the nilpotent cone N of the Frobenius twist of G
(see [AJ,FP]), we see that H•(G1, M) can be thought of as a coherent sheaf on N .

The relative Humphreys conjecture [Hu] describes the support of this coherent
sheaf when M is an indecomposable tilting G-module. This conjecture has been
proved for G = GLn when p > n by the second author [H], and for arbitrary
reductive G when p ! 0 by the authors together with S. Riche [AHR1]. The latter
paper drew inspiration from Bezrukavnikov’s work on the quantum group version of
the Humphreys conjecture [Be2], especially in its invocation of derived equivalences
with constructible sheaves on affine flag varieties.

However, one key feature of Bezrukavnikov’s work was absent from [AHR1].
In [Be2], Bezrukavnikov gave an intrinsic characterization of the (complexes of)
coherent sheaves on N that can arise as the cohomology of tilting modules for a
quantum group: they are precisely the simple objects in the heart of the perverse-
coherent t-structure on N . This characterization is false in the reductive group case
considered in [AHR1], and no alternative characterization was known at that time.
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This paper was inspired by a desire to find such an intrinsic characterization.
Instead of using t-structures, we equip the derived category of (dg) coherent sheaves
on N with a co-t-structure, and we show (see Lemma 6.4) that the indecomposable
objects in its coheart (called silting objects) are precisely the sheaves arising as
G1-cohomology of indecomposable tilting G-modules.

But the main results have to do with the interaction between our co-t-structure
and (modified) translation functors between different blocks of G-modules. Of
course, H•(G1, M) = Ext•

G1
(k, M) is zero unless M lies in the (extended) prin-

cipal block of G. But if M lies in some other (typically singular) block, one can
instead study Ext•

G1
(StGI , M), where StGI is a suitable “Steinberg-type module”

(see Section 6 for the definition). These Ext-groups still have the structure of a
module over Ext•

G1
(k, k) ∼= k[N ], and hence give coherent sheaves on N .

The main technical result of the paper, Theorem 6.8, implies that the module
Ext•

G1
(StGI , M) again lies in the coheart of our co-t-structure. The support of

Ext•
G1

(StGI , M) is easily seen to be contained in the closure of the Richardson orbit
corresponding to the set I of simple reflections. Thus, Theorem 6.8 implies that
there is a large supply of silting objects supported on Richardson orbit closures.

As an application, in Section 7, we give a new, geometric proof of the relative
Humphreys conjecture for GLn, valid for p > n. This proof hinges on the fact that
every nilpotent orbit for GLn is Richardson.

In fact, we obtain a stronger statement than what was known before: we show
that if M is an indecomposable tilting module in the principal block for GLn, then
H•(G1, M) is supported scheme-theoretically (not just set-theoretically) on the
orbit closure predicted by Humphreys. We call this stronger statement the scheme-
theoretic (relative) Humphreys conjecture. We expect that this scheme-theoretic
version holds for any reductive group G, and we hope that the tools developed in
this paper may be useful for proving it.

Contents. Section 2 contains preliminaries on co-t-structures and on (co-)quasi-
exceptional sequences. In Sections 3 and 4, we apply this machinery to the derived
category of coherent sheaves on the cotangent bundle of a partial flag variety (de-
noted by ÑI), and on the nilpotent cone (denoted by N ), respectively. These
sections define the supportive co-t-structure, which is a primary focus of this paper.
Next, in Section 5, we introduce the setting of “dg coherent sheaves” on both ÑI

and N , and we show how to adapt some of the material from the preceding sec-
tions to this context. (For additional background on dg coherent sheaves on affine
schemes, see Appendix A.) Sections 3–5 only assume that the characteristic p of k
is “pretty good”; it need not be larger than the Coxeter number.

Starting from Section 6, we assume that p > h, and that the derived subgroup of
G is simply connected. In Section 6, we establish the relationship between the sup-
portive co-t-structure and the G1-cohomology of tilting modules. The main result
of this section relates this co-t-structure to the groups Ext•

G1
(StGI , M) discussed

above. Finally, Section 7 contains a precise formulation of the scheme-theoretic
Humphreys conjecture, as well as its proof in the case of GLn.

Added in revision. Since this paper first appeared in preprint form, the authors
have obtained [AH2] a proof of the (set-theoretic) relative Humphreys conjecture
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in general, by an argument that makes crucial use of the co-t-structure machin-
ery developed in this paper. (However, the scheme-theoretic version proposed in
Section 7 remains open outside of GLn.)

2. Background on co-t-structures

In this section, we consider various homological algebra constructions involv-
ing co-t-structures (the definition will be reviewed below). Most of the results
in this section have close analogues for t-structures, found in [BBD, Be1] among
other sources. From Section 2.2 on, we will emphasize the parallels between the t-
structure and co-t-structure situations by including both settings in the statements
of most lemmas and propositions below. However, we will usually give proofs only
in the co-t-structure case.

2.1. Definition and generalities. We begin with some notation for subcategories
of triangulated categories. Given a set of objects X in a triangulated category D,
we define four full subcategories of D as follows:

. . . is defined to be the smallest full additive sub-
Notation category of D containing X and closed under . . .
〈X 〉ext extensions
〈X 〉ext,⊕ extensions and direct summands
〈X 〉tri [±1] and extensions
〈X 〉tri,⊕ [±1], extensions, and direct summands

The latter two are triangulated categories. We obviously have 〈X 〉ext ⊂ 〈X 〉ext,⊕
and 〈X 〉tri ⊂ 〈X 〉tri,⊕; in some situations, these containments are equalities.

We now recall the definition and some basic facts on co-t-structures (see [Jo,KY]
for an overview).

Definition 2.1. Let D be a triangulated category. A co-t-structure on D is a pair
of full additive subcategories (D≥0, D≤0) with the following properties:

(1) Both D≥0 and D≤0 are closed under direct summands.
(2) We have D≥0[−1] ⊂ D≥0 and D≤0[1] ⊂ D≤0.
(3) For A ∈ D≥0 and B ∈ D≤0[1], we have Hom(A, B) = 0.
(4) For any X ∈ D, there exists a distinguished triangle A → X → B → with

A ∈ D≥0 and B ∈ D≤0[1].

(These axioms imply that D≥0 and D≤0 are automatically closed under extensions.)
A co-t-structure (D≥0, D≤0) is said to be bounded if

⋃

n∈Z
D≥0[n] =

⋃

n∈Z
D≤0[n] = D.

The additive subcategory C = D≥0∩D≤0 is called the coheart of the co-t-structure.
Objects of C are called silting objects. A silting generator is a silting object T with
the property that every object in C is a direct sum of direct summands of T .

Remark 2.2. Our definition of the term silting is not consistent with the co-t-
structure literature, and the difference in usage is similar to the difference in the
usage of the word tilting for algebraic groups or for finite-dimensional algebras. In
most of the literature, a silting object is defined to be an object that generates a
silting subcategory (see Definition 2.4) under direct sums and direct summands.
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Definition 2.3. If D and D′ are two triangulated categories equipped with co-
t-structures with cohearts C ⊂ D and C′ ⊂ D′, then we say that a triangulated
functor F : D → D′ is co-t-exact if F (C) ⊂ C′ (i.e. F preserves the cohearts).

Conversely, one can intrinsically characterize subcategories arising as cohearts
of co-t-structures in the following way.

Definition 2.4. A full additive subcategory S ⊂ D is a silting subcategory if it
satisfies the following properties:

(1) S is closed under direct summands.
(2) For any two objects S, S′ ∈ S, we have Hom(S, S′[k]) = 0 for all k > 0.
(3) D = 〈S〉tri,⊕.

For a proof of Proposition 2.5, see [MSSS, Corollary 5.9].

Proposition 2.5. Let D be a triangulated category. A full subcategory S ⊂ D is
a silting subcategory if and only if it is the coheart of a bounded co-t-structure on
D. In this case, the co-t-structure is uniquely determined: it is given by

D≥0 = 〈S[−k] : k ≥ 0〉ext,⊕, D≤0 = 〈S[k] : k ≥ 0〉ext,⊕.

Remark 2.6. If D = DbA where A is a highest weight category, then the subcategory
Tilt(A) ⊂ A of tilting objects is a silting subcategory. The corresponding co-t-
structure on D will be called the natural co-t-structure. (An alternative description
of the co-t-structure in terms of standard and co-standard objects will be given in
Proposition 2.21.)

Proposition 2.7 describes parallel ways of constructing t- and co-t-structures in
a category generated by a single object.

Proposition 2.7. Let k be a field, and let D be a k-linear triangulated category.
Suppose there is an object A that generates D as a triangulated category, and assume
that End(A) ∼= k. Let

D(≤ 0) = 〈A[i] : i ≥ 0〉ext,⊕ and D(≥ 0) = 〈A[i] : i ≤ 0〉ext,⊕.

Then:

(1) If Hom(A, A[i]) = 0 for i < 0, then (D(≤ 0), D(≥ 0)) is a t-structure on D.
In fact, it is the unique t-structure whose heart contains A. Moreover, the
heart is a finite-length abelian category, and A is the unique simple object.

(2) If Hom(A, A[i]) = 0 for i > 0, then (D(≥ 0), D(≤ 0)) is a co-t-structure
on D. In fact, it is the unique co-t-structure whose coheart contains A.
Moreover, if D is Karoubian, then the coheart is a Krull–Schmidt category,
and A is the unique indecomposable object.

We will not prove Proposition 2.7; instead, we will prove a “graded” variant of
it later on (see Proposition 2.13). The proof given there is easily adapted to prove
Proposition 2.7. For the t-structure part of this statement, see [Be1, Lemma 3].

Lemma 2.8. Let k be a field, and let D be a k-linear triangulated category equipped
with a co-t-structure (D≥0, D≤0). Suppose the following conditions hold:

(1) The category D is Karoubian.
(2) For X ∈ D≥0 and Y ∈ D≤0, the k-vector space Hom(X, Y ) is finite-

dimensional.

Then the coheart C = D≥0 ∩ D≤0 is a Krull–Schmidt category.
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Proof. The coheart of our co-t-structure is closed under direct summands, so it is
also Karoubian. Assumption (2) implies that Hom-spaces in C are finite-dimen-
sional. According to [CYZ, Corollary A.2], C is Krull–Schmidt. !

Proposition 2.9 involves the notion of “recollement” from [BBD]. In the diagram
shown below, ι is fully faithful, and Π identifies D′′ with the Verdier quotient
D/ι(D′). The functors ιL and ΠL are the left adjoints of ι and Π, respectively,
while ιR and ΠR are their right adjoints. These six functors are assumed to satisfy
some additional axioms, spelled out in [BBD, §1.4.3]. For the t-structure analogue
of the statement below, see [BBD, Théorème 1.4.10].

Proposition 2.9. Let D′, D, and D′′ be three triangulated categories, and suppose
we have a recollement diagram

D′ D D′′.ι Π

ιL

ιR

ΠL

ΠR

Assume that D′ is equipped with a co-t-structure (D′
≥0, D

′
≤0), and that D′′ is

equipped with a co-t-structure (D′′
≥0, D

′′
≤0). Then the categories

D≥0 = {X | ιL(X) ∈ D′
≥0,Π(X) ∈ D′′

≥0},

D≤0 = {X | ιR(X) ∈ D′
≤0,Π(X) ∈ D′′

≤0}
constitute a co-t-structure on D.

For a proof, see [Bo, §8.2]. (In [Bo], co-t-structures are called weight structures.)
The new co-t-structure on D given by Proposition 2.9 is said to be obtained from
those on D′ and D′′ by gluing or recollement. Note that the functors ι and Π are
co-t-exact.

Lemma 2.10. In the setting of the recollement diagram of Proposition 2.9, if
X ∈ D≥0 and Y ∈ D≤0, then the map

(2.1) Π : Hom(X, Y ) → Hom(Π(X),Π(Y ))

is surjective. As a consequence, if the coheart C = D≥0 ∩ D≤0 is a Krull–Schmidt
category, then Π sends any indecomposable object in C to either 0 or an indecom-
posable object.

Proof. The recollement formalism gives us a distinguished triangle ιιR(Y ) → Y →
ΠRΠ(Y ) →, and hence a long exact sequence

(2.2) · · · → Hom(X, Y ) → Hom(X,ΠRΠ(Y )) → Hom(X, ιιR(Y )[1]) → · · · .

We have Hom(X, ιιR(Y )[1]) ∼= Hom(ιL(X), ιR(Y )[1]). From Proposition 2.9, we
have ιL(X) ∈ D′

≥0 and ιR(Y ) ∈ D′
≤0. From the definition of a co-t-structure,

we have Hom(ιL(X), ιR(Y )[1]) = 0, so the first map in (2.2) is surjective. Via
the isomorphism Hom(X,ΠRΠ(Y )) ∼= Hom(Π(X),Π(Y )), we see that (2.1) is also
surjective.

As a special case, for any object X ∈ C, the map End(X) → End(Π(X)) is surjec-
tive. In particular, if End(X) is a local ring and Π(X) is nonzero, then End(Π(X))
is also a local ring (since any quotient of a local ring is local), and hence Π(X) is
indecomposable. The last assertion then follows, since every indecomposable object
in a Krull–Schmidt category has a local endomorphism ring. !
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Proposition 2.11. In the setting of the recollement diagram of Proposition 2.9,
let C′, C, and C′′ denote the cohearts of the co-t-structures on D′, D and D′′,
respectively. Assume that all three cohearts are Krull–Schmidt categories.

(1) If T ′ ∈ C′ is indecomposable, then ι(T ′) ∈ C is indecomposable.
(2) If T ′′ ∈ C′′ is indecomposable, there is an indecomposable object T ∈ C,

unique up to isomorphism, such that Π(T ) ∼= T ′′.
(3) Every indecomposable object in C comes from parts (1) or (2) above.

Proof. Recall that in a Krull–Schmidt category, an object is indecomposable if and
only if its endomorphism ring is a local ring. Part (1) is immediate from the fact
that ι is fully faithful.

For part (2), consider the object ιRΠL(T ′′) ∈ D′. By Definition 2.1, there exists
a (noncanonical) distinguished triangle A → ιRΠL(T ′′) → B → with A ∈ D′

≥0[−1]

and B ∈ D′
≤0. Consider the composition ι(A) → ιιRΠL(T ′′) → ΠL(T ′′). Let T̃ be

the cone of this map, so that we have a distinguished triangle

ι(A) → ΠL(T ′′) → T̃ → .

It is straightforward to see from the definitions that T̃ lies in C. Moreover, since
Π(T̃ ) ∼= T ′′ is indecomposable, T̃ must have a unique indecomposable summand
that is not killed by Π. Let T denote this summand. This is an indecomposable
object in C satisfying Π(T ) ∼= T ′′.

Before proving the uniqueness of T , let us consider part (3). Let X ∈ C be an
indecomposable object. If Π(X) = 0, then the recollement formalism implies that
X ∼= ι(T ′), where T ′ = ιL(X) ∼= ιR(X), so we are in case (1). If Π(X) ,= 0, then by
Lemma 2.10, it is indecomposable. Let T ′′ = Π(X).

The uniqueness in part (2) and the remainder of part (3) both come down to the
following assertion: If X ∈ C is indecomposable and Π(X) ∼= T ′′, then X ∼= T . Let
us prove this claim. Choose an isomorphism θ : Π(X)

∼−→ T ′′. By Lemma 2.10, the
maps

Hom(X, T ) → Hom(Π(X), T ′′) and Hom(T, X) → Hom(T ′′,Π(X))

are both surjective. Therefore, there exist maps φ : X → T and ψ : T → X
such that Π(φ) = θ and Π(ψ) = θ−1. Note that φ ◦ ψ is an element of the local
ring End(T ) whose image in End(T ′′) is the identity map. It follows that φ ◦ ψ is
invertible. The same reasoning shows that ψ ◦φ is invertible, and hence that φ and
ψ are themselves isomorphisms, as desired. !

Remark 2.12. Let T and T ′′ be as in Proposition 2.11(2). By adjunction, there are
natural maps ΠL(T ′′) → T → ΠR(T ′′). The recollement formalism implies that
the composition of these maps is equal to the canonical map ΠL(T ′′) → ΠR(T ′′):
see [BBD, §1.4.6(b)].

2.2. Categories with a Tate twist. For the remainder of this section, we will
work in the “graded” setting: we always assume that our triangulated category D
is equipped with an autoequivalence

!1" : D → D

such that for an object X ∈ D, we have

X!1" ∼= X if and only if X = 0.
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This functor is called the shift-of-grading functor (or sometimes the Tate twist).
For any object X ∈ D and any n ∈ Z, we write X!n" for the object obtained by
applying the shift-of-grading functor n times.

Given a set of objects X in a triangulated category D equipped with a shift-of-
grading functor !1", we define four subcategories of D as follows:

. . . is defined to be the smallest full subcategory
Notation of D containing X and closed under . . .
〈〈X 〉〉ext extensions and !±1"
〈〈X 〉〉ext,⊕ extensions, !±1", and direct summands
〈〈X 〉〉tri [±1], extensions and !±1"
〈〈X 〉〉tri,⊕ [±1], extensions and !±1", and direct summands

The latter two are triangulated categories. We obviously have 〈〈X 〉〉ext ⊂ 〈〈X 〉〉ext,⊕
and 〈〈X 〉〉tri ⊂ 〈〈X 〉〉tri,⊕; in some situations, these containments are equalities.

We will also use a graded variant of the “∗” operation from [BBD, §1.3.9]. Given
X1, X2 ⊂ D, we define

X1 ∗ X2

to be the full subcategory of D consisting of objects X such that there is a distin-
guished triangle

A1!n1" → X → A2!n2" → with A1 ∈ X1, A2 ∈ X2, and n1, n2 ∈ Z.

The proof of [BBD, Proposition 1.3.10] shows that ∗ is associative. For each n ≥ 0,
we can set

X ∗n = X ∗ · · · ∗ X︸ ︷︷ ︸
n factors

,

where the 0-fold ∗-power of X is understood to consist of just the zero object.
Observe that if we let X̂ = {X[i] | X ∈ X , i ∈ Z}, then

〈〈X 〉〉ext =
⋃

n≥0

X ∗n and 〈〈X 〉〉tri =
⋃

n≥0

X̂ ∗n.

The following statement is the graded analogue of Proposition 2.7.

Proposition 2.13. Let k be a field, and let D be a k-linear triangulated category
equipped with a shift-of-grading functor !1" : D → D. Suppose there is an object A
such that D = 〈〈A〉〉tri, and assume that

Hom(A, A!n") ∼=
{

k if n = 0,

0 otherwise.

Let

D(≤ 0) = 〈〈A[i] : i ≥ 0〉〉ext,⊕ and D(≥ 0) = 〈〈A[i] : i ≤ 0〉〉ext,⊕.

Then:

(1) If Hom(A, A!n"[i]) = 0 for i < 0, then (D(≤ 0), D(≥ 0)) is a t-structure
on D. In fact, it is the unique t-structure stable under !±1" whose heart
contains A. Moreover, the heart is a finite-length abelian category, and the
simple objects are of the form A!n".
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(2) If Hom(A, A!n"[i]) = 0 for i > 0, then (D(≥ 0), D(≤ 0)) is a co-t-structure
on D. In fact, it is the unique co-t-structure stable under !±1" whose
coheart contains A. Moreover, if D is Karoubian, then the coheart is a
Krull–Schmidt category, and the indecomposable objects are of the form
A!n".

Proof. (1) The ungraded analogue of this claim is proved in [Be1, Lemma 3]
(see [AHR2, Proposition A.1] for a related argument), and that proof is easily
adapted to the graded case. More precisely, it is shown in loc. cit. that the cat-
egories 〈〈A[i] : i ≥ 0〉〉ext and 〈〈A[i] : i ≤ 0〉〉ext constitute a t-structure. The
subcategories defining a t-structure are automatically closed under direct sum-
mands (this follows from the existence of truncation functors), so in the setting
of part (1) of the proposition, we have 〈〈A[i] : i ≥ 0〉〉ext = 〈〈A[i] : i ≥ 0〉〉ext,⊕ and
〈〈A[i] : i ≤ 0〉〉ext = 〈〈A[i] : i ≤ 0〉〉ext,⊕.

(2) Axioms (1) and (2) from Definition 2.1 are clear, and axiom (3) follows from
the assumption that Hom(A, A!n"[i]) = 0 for i > 0. Next, we claim that if k > m,
then

(2.3) A[k] ∗ A[m] ⊂ A[m] ∗ A[k].

Indeed, the left-hand side consists of objects X that fit into a distinguished triangle
A[k]!n1" → X → A[m]!n2" → A[k + 1]!n1". But since k > m, we have k + 1 > m
as well, so our assumptions imply that the map A[m]!n2" → A[k + 1]!n1" is zero,
i.e., the triangle splits. Thus, we have X ∼= A[k]!n1" ⊕ A[m]!n2" ∈ A[m] ∗ A[k].

For any X ∈ D, there exist integers k1, . . . , kj such that

(2.4) X ∈ A[k1] ∗ · · · ∗ A[kj ].

Using (2.3) repeatedly, we may assume that k1 ≤ k2 ≤ · · · ≤ kj . Let i be the
unique subscript such that ki ≤ 0 but ki+1 > 0 (here we permit i = 0 or i = j if
necessary). Then

(2.5) X ∈ (A[k1] ∗ · · · ∗ A[ki]) ∗ (A[ki+1] ∗ · · · ∗ A[kj ]) ⊂ D(≥ 0) ∗ (D(≤ 0)[1]).

We have proved axiom (4), and hence that (D(≥ 0), D(≤ 0)) is a co-t-structure.
If there were another co-t-structure on D, say (D′

≥0, D
′
≤0), whose coheart con-

tained A and was stable under !±1", then we would clearly have D(≥ 0) ⊂ D′
≥0

and D(≤ 0) ⊂ D′
≤0. This implies that the two co-t-structures coincide. We have

proved the uniqueness claim in the proposition.
From now on, we assume that D is Karoubian. Let C = D(≥ 0) ∩ D(≤ 0) be

the coheart of our co-t-structure. We claim that C is Krull–Schmidt. It is enough
to check condition (2) from Lemma 2.8. This condition follows easily from the
observation that if i ≤ 0 ≤ j, then Hom(A[i], A[j]!n") is finite-dimensional.

Note that A!n" is indecomposable, because End(A) ∼= k is a local ring.
Finally, let X be a nonzero object in C. It remains to show that X is a direct

sum of objects of the form A!n". Find an expression as in (2.4), with k1 ≤ · · · ≤ kj .
We proceed by induction on j. If j = 1, then X ∼= A[k1]!n" for some n ∈ Z. Since
X ∈ C, we must have k1 = 0, and we are done.

From now on, suppose j > 1. Suppose first that kj > 0. Let i be such that
ki ≤ 0 but ki+1 > 0, as in (2.5). If i = 0, we would have X ∈ D(≤ 0)[1], a
contradiction. We therefore have 1 ≤ i < j. From (2.5), we get a distinguished
triangle X ′ → X → X ′′ → with X ′ ∈ D(≥ 0) and X ′′ ∈ D(≤ 0)[1]. The arrow
X → X ′′ must be 0, so X ′ ∼= X ⊕ X ′′[−1]. This tells us that X ′′[−1] ∈ D(≥ 0), so
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X ′′[−1] actually lies in the coheart. The triangle X ′′[−1] → X ′ → X → shows that
X ′ lies in the coheart as well. By induction, we know that X ′ ∈ A[k1] ∗ · · · ∗ A[ki]
is a direct sum of objects of the form A!n". Since X is a direct summand of X ′,
and since the coheart is Krull–Schmidt, our claim for X holds.

Next, if k1 < 0, we instead define i to be such that ki < 0 but ki+1 ≥ 0, and
then consider the decomposition (2.5). The rest of the argument in this case is very
similar to the preceding paragraph.

The remaining case is that in which k1 = · · · = kj = 0. In this case, we get a
distinguished triangle X ′ → X → A!m" →, where

X ′ ∈ A ∗ · · · ∗ A︸ ︷︷ ︸
j − 1 factors

.

We have Hom(A!m", X ′[1]) = 0, so the triangle splits, and X ∼= X ′ ⊕ A!m". By
induction, X ′ is a direct sum of objects of the form A!n", so we are done. !

2.3. Pre-exceptional sets. We will now develop a vast generalization of Propo-
sition 2.13. Let (S,≤) be a partially ordered set. Assume that the partial order ≤
admits a refinement to a total order ≤′ such that (S,≤′) is isomorphic to a subset
of Z≥0. In particular, S is either finite or countable, and

(2.6) the set {t ∈ S | t ≤ s} is finite.

Definition 2.14. Let D be a triangulated category equipped with a Tate twist
!1", and let {∇s}s∈S be a collection of objects in D indexed by S. This collection
is said to be a graded pre-exceptional set if it satisfies the following axioms:

(1) If s ,≥ t, then Hom(∇s,∇t!n"[i]) = 0 for all n, i ∈ Z.
(2) We have

Hom(∇s,∇s!n") ∼=
{

k if n = 0,

0 otherwise.

(3) The collection {∇s!n"}s∈S,n∈Z generates D as a triangulated category.

Suppose {∇s}s∈S is a graded pre-exceptional set. Then:

(4+) If Hom(∇s,∇s!n"[i]) = 0 for all n ∈ Z and all i < 0, then {∇s} is said to
be a graded quasi-exceptional set.

(4−) If Hom(∇s,∇s!n"[i]) = 0 for all n ∈ Z and all i > 0, then {∇s} is said to
be a graded co-quasi-exceptional set.

(4±) If Hom(∇s,∇s!n"[i]) = 0 for all n ∈ Z and all i ,= 0, then {∇s} is said to
be a graded exceptional set.

Exceptional and quasi-exceptional sets have been studied elsewhere in the liter-
ature, but we are not aware of any study of co-quasi-exceptional sets. It turns out,
however, that many of the basic lemmas about exceptional and quasi-exceptional
sets can be proved using only the axioms for pre-exceptional sets, so they remain
valid for co-quasi-exceptional sets as well.

Remark 2.15.

(1) Of course, Definition 2.14 has an obvious ungraded analogue, as do the
definitions and propositions below. We leave it to the reader to formulate
the precise statements.
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(2) The definition of “graded quasi-exceptional” given above matches that
in [Be1], but not that in [A1]: the latter includes an extra condition that
we will not impose.

If D is equipped with a graded pre-exceptional set {∇s}s∈S , then for any lower
set U ⊂ S, we define

DU = 〈〈∇u : u ∈ U〉〉tri.

(Recall that a subset U ⊂ S is called a lower set if t ∈ U and u ≤ t implies u ∈ U .)
For the special case U = {u ∈ S | u ≤ s}, we simply write D≤s. The categories
D<s and D)≥s are defined similarly.

Definition 2.16. Let {∇s}s∈S be a graded pre-exceptional set. It is said to be
dualizable if for each s ∈ S, there are an object ∆s ∈ D and a morphism ιs : ∆s →
∇s such that the following two conditions hold:

(1) The cone of ιs : ∆s → ∇s lies in D<s.
(2) If s > t, then Hom(∆s,∇t!n"[i]) = 0 for all n, i ∈ Z.

Remark 2.17. According to [Be2, Proposition 3(b)], every graded exceptional set is
automatically dualizable. (That statement assumes that S is finite, but the same
reasoning applies in our situation thanks to (2.6).)

Lemma 2.18. Let {∇s}s∈S be a dualizable graded pre-exceptional set. For each
s ∈ S, the pair (∆s, ιs : ∆s → ∇s) is unique up to unique isomorphism.

Proof. Suppose there is another pair (∆′
s, ι

′
s : ∆′

s → ∇s) satisfying the conditions
in Definition 2.16. Those conditions imply that if X ∈ D<s, then Hom(∆s, X) =
Hom(∆′

s, X) = 0.
Let K and K ′ denote the cones of ιs and ι′s, respectively. By the observation

above, we have

Hom(∆s, K
′) = Hom(∆s, K

′[−1]) = 0.

By [BBD, Proposition 1.1.9], there is a unique map f : ∆s → ∆′
s that makes the

left-hand square in the diagram

∆s ∇s K

∆′
s ∇s K ′

f

ιs

ι′s

commute. By swapping the roles of ∆s and ∆′
s, one can see that f must be an

isomorphism. !

Lemma 2.19. Let {∇s}s∈S be a dualizable graded pre-exceptional set, and let
{∆s}s∈S be the dual set. Then:

(1) If s ,= t, then Hom(∆s,∇t!n"[i]) = 0 for all n, i ∈ Z.
(2) If s ,≤ t, then Hom(∆s,∆t!n"[i]) = 0 for all n, i ∈ Z.
(3) For all n, i ∈ Z, there are natural isomorphisms

Hom(∆s,∆s!n"[i]) ∼= Hom(∆s,∇s!n"[i]) ∼= Hom(∇s,∇s!n"[i]).

(4) For any lower set U ⊂ S, we have DU = 〈〈∆u[i] : u ∈ U〉〉tri.
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Proof. Note that Definition 2.16(1) implies that

(2.7) ∆u ∈ D≤u for all u ∈ S.

Definition 2.14(1) and Definition 2.16(2) imply that

Hom(X,∇u) = 0 for all X ∈ D)≥u,(2.8)

Hom(∆u, X) = 0 for all X ∈ D<u,(2.9)

respectively. Let us now prove the various parts of the present lemma.
(1) If s > t, this holds by Definition 2.16(2). If s ,≥ t, it follows from (2.7)

and (2.8).
(2) By part (1), we can strengthen (2.9) to

Hom(∆u, X) = 0 for all X ∈ D)≥u.(2.10)

The claim follows from this and (2.7).
(3) Let K be the cone of ιs : ∆s → ∇s, and consider the long exact sequence

· · · → Hom(∆s, K!n"[i − 1]) → Hom(∆s,∆s!n"[i])
→ Hom(∆s,∇s!n"[i]) → Hom(∆s, K!n"[i]) → · · · .

The first and last terms vanish by (2.9), so the middle two are naturally isomorphic.
The proof that Hom(∆s,∇s!n"[i]) ∼= Hom(∇s,∇s!n"[i]) is similar.

(4) Let D′
U = 〈〈∆u : u ∈ U〉〉tri. It follows from (2.7) that D′

U ⊂ DU . To
prove equality, let us first consider the case where U is finite. We proceed by
induction on the number of elements in U . Choose a maximal element t ∈ U , and
let V = U !{t}. Then D′

V = DV by induction, so DU is generated by D′
V together

with {∇t!n"}n∈Z. By Definition 2.16(1), it is also generated by D′
V together with

{∆t!n"}n∈Z. We conclude that D′
U = DU .

If U is infinite, any object X ∈ DU is still contained in a subcategory DU ′ for
some finite subset U ′ ⊂ U , so the preceding paragraph tells us that D′

U = DU in
this case as well. !

Lemma 2.20. Let {∇s}s∈S be a dualizable graded pre-exceptional set, and let U ⊂
S be a lower set. Let t be a maximal element of U , and let U ′ = U ! {t}. Let
ι : DU ′ ↪→ DU be the inclusion functor, and let Π : DU → DU/DU ′ be the Verdier
quotient functor. Both of these functors admit left and right adjoints, and together,
the six functors

DU ′ DU DU/DU ′ι Π

ιL

ιR

ΠL

ΠR

constitute a recollement diagram.

Sketch of proof. This result is proved in [Be1, Lemma 4]. Here, we will briefly
indicate the main steps of the argument.

Define Dt = 〈〈∆t〉〉tri and Dt = 〈〈∇t〉〉tri. The first step is to show that for any
X ∈ DU , there are distinguished triangles

(2.11)
Y1 →X → Y2 → with Y1 ∈ Dt, Y2 ∈ DU ′ ,

Z1 →X → Z2 → with Z1 ∈ DU ′ , Z2 ∈ Dt.
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Second, the functor Π induces equivalences of categories

Π|Dt : Dt
∼−→ DU/DU ′ , Π|Dt : Dt ∼−→ DU/DU ′ .

We define ΠL and ΠR to be their respective inverses (composed with the inclusion
functor into DU ).

Finally, one shows (using [BBD, Proposition 1.1.9]) that the distinguished tri-
angles in (2.11) are in fact functorial. There are canonical isomorphisms

Y1
∼= ΠL(Π(X)), Z2

∼= ΠR(Π(X)),

and the maps Y1 → X and X → Z2 are the adjunction maps that make ΠL and
ΠR into the left and right adjoints of Π, respectively. On the other hand, we define
ιL(X) = Y2 and ιR(X) = Z1. !

In the setting of Lemma 2.20, it follows from Definition 2.16(1) that

(2.12) Π(∆t) ∼= Π(∇t).

Proposition 2.21. Let {∇s}s∈S be a dualizable graded pre-exceptional set, and let
{∆s}s∈S be the dual set.

(1) If {∇s}s∈S is a graded quasi-exceptional set, then the pair of subcategories

D≤0 = 〈〈∆s[i] : s ∈ S, i ≥ 0〉〉ext, D≥0 = 〈〈∇s[i] : s ∈ S, i ≤ 0〉〉ext

is a bounded t-structure on D. Moreover, its heart A is a finite-length
abelian category. For each s ∈ S, there is a unique simple object Ls in A
that fits into a commutative diagram

∆s ∇s

Ls

ιs

and every simple object is isomorphic to Ls!n" for a unique pair (s, n) ∈
S × Z.

(2) If {∇s}s∈S is a graded co-quasi-exceptional set, then the pair of subcate-
gories

D≥0 = 〈〈∆s[i] : s ∈ S, i ≤ 0〉〉ext,⊕, D≤0 = 〈〈∇s[i] : s ∈ S, i ≥ 0〉〉ext,⊕

is a bounded co-t-structure. Moreover, if D is Karoubian, then its coheart
C is a Krull–Schmidt additive category. For each s ∈ S, there is a unique
indecomposable object Ts in C that fits into a commutative diagram

∆s ∇s

Ts

ιs

and every indecomposable object is isomorphic to Ts!n" for a unique pair
(s, n) ∈ S × Z.

Proof. (1) This is proved in [Be1, Propositions 1 and 2]. A brief outline of the proof
is as follows: one uses recollement to build up the t-structure from the case where
S is a singleton, and in that case, the t-structure comes from Proposition 2.13.

(2) We follow the main idea of the t-structure case. Assume first that S is finite.
We proceed by induction on the size of S. If S is empty, then D = 0, and there is
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nothing to prove. Otherwise, let t be a maximal element of S, and let S′ = S!{t}.
Form the recollement diagram for DS′ , DS = D, and D/DS′ as in Lemma 2.20.
Let At = Π(∆t) = Π(∇t) (see (2.12)), and observe that

D/DS′ = 〈〈At[i] : i ∈ Z〉〉ext.

The proof of Lemma 2.20 shows that

(2.13) ΠL(At) ∼= ∆t and ΠR(At) ∼= ∇t.

We have

Hom(At, At!n"[i]) ∼= Hom(∇t,Π
RΠ(∇t)!n"[i])

∼= Hom(∇t,∇t!n"[i]) ∼=
{

k if i = n = 0,

0 if i > 0, or if i = 0 and n ,= 0.

By Proposition 2.13, D/DS′ admits a unique co-t-structure whose coheart contains
At. Combining the description from that proposition with (2.13), we obtain

(2.14)
ΠL((D/DS′)≥0) ⊂ 〈〈∆t[i] : i ≤ 0〉〉ext,⊕,

ΠR((D/DS′)≤0) ⊂ 〈〈∇t[i] : i ≥ 0〉〉ext,⊕.

(It follows from [BBD, (1.4.3.5)] that these containments are actually equalities,
but we will not need this claim.)

On the other hand, by induction, DS′ has a co-t-structure given by
(2.15)

DS′,≥0 = 〈〈∆s[i] : s ∈ S′, i ≤ 0〉〉ext,⊕, DS′,≤0 = 〈〈∇s[i] : s ∈ S′, i ≥ 0〉〉ext,⊕.

We can then apply Proposition 2.9 to obtain a co-t-structure on D given by

D≥0 = {X | ιL(X) ∈ DS′,≥0,Π(X) ∈ (D/DS′)≥0},

D≤0 = {X | ιR(X) ∈ DS′,≤0,Π(X) ∈ (D/DS′)≤0}.

For X ∈ D≥0, consider the distinguished triangle ΠLΠ(X) → X → ιιL(X) →. In
view of (2.14) and (2.15), we see that X ∈ 〈〈∆s[i] : s ∈ S, i ≤ 0〉〉ext,⊕. Thus, we
have shown the first containment below:

(2.16) D≥0 ⊂ 〈〈∆s[i] : s ∈ S, i ≤ 0〉〉ext,⊕, D≤0 ⊂ 〈〈∇s[i] : s ∈ S, i ≥ 0〉〉ext,⊕.

The second holds by a similar argument. One can check using Lemma 2.19 that
if X ∈ 〈〈∆s[i] : s ∈ S, i ≤ 0〉〉ext,⊕ and Y ∈ 〈〈∇s[i] : s ∈ S, i ≥ 0〉〉ext,⊕, then
Hom(X, Y [1]) = 0. From this observation, it can be deduced that both contain-
ments in (2.16) are equalities. This completes the construction of the co-t-structure
in the case where S is finite. We denote its coheart by C.

From now on, we assume that D is Karoubian. We claim that C is Krull–
Schmidt. It is enough to check condition (2) from Lemma 2.8. This condition
follows easily from the observation that if i ≤ 0 ≤ j, then Hom(∆s[i],∇s′ [j]!n") is
finite-dimensional. The classification and description of indecomposable objects in
C follows from Proposition 2.11 and Remark 2.12, and induction on S.

Finally, suppose S is infinite. Any finite collection of objects is contained in some
subcategory DU where U ⊂ S is a finite lower set. The axioms for a co-t-structure
hold for D because they hold for each such DU . !
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Remark 2.22. If C is the coheart of a co-t-structure on D obtained from a graded
co-quasi-exceptional set as in Proposition 2.21(2), then we claim that

D = 〈〈C〉〉tri.

To see this, it is enough to check that the right-hand side contains all ∇s, and this
is easily seen by induction on S using the recollement formalism. Note that this is
stronger than property (3) in Definition 2.4.

We now consider a special case where the co-t-structure and t-structure defined
in Proposition 2.21 are highly compatible.

Corollary 2.23. Let {∇s}s∈S be a dualizable graded exceptional set, with dual
set {∆s}s∈S. Let A be the heart of the corresponding t-structure, and let C be the
coheart of the corresponding co-t-structure. Assume furthermore that ∇s and ∆s

belong to A. Then A is a graded highest-weight category, and C is the category of
tilting objects in A.

Proof. The fact that A is a graded highest weight category follows from [MR, §3.5].
Moreover, by Proposition 2.21(2), it can be immediately deduced that the tilting
objects of A must reside in the coheart. This forces the co-t-structure to coincide
with the unique co-t-structure characterized by Proposition 2.21. !

3. Cotangent bundles of partial flag varieties

Let G be a connected reductive group over an algebraically closed field k of
characteristic p ≥ 0. Assume that p is “pretty good” for G, in the sense of [He,
Definition 2.11]. This condition implies the following additional conditions:

(1) [AHR2, Lemma 2.3] There exists a separable central isogeny G̃ → G, where
G̃ has a simply connected derived subgroup.

(2) [He, Lemma 2.12] The characteristic of k is good for G.
(3) [MT, Proposition 12] There exists a nondegenerate G-invariant bilinear

form on g.

Fix a Borel subgroup B ⊂ G and a maximal torus T . Let W = NG(T )/T be
the Weyl group, and let X be the character lattice of T . Let Φ ⊂ X be the root
system of (G, T ), and let Φ+ ⊂ Φ be the set of positive roots, chosen so that B
corresponds to the negative roots. Let S be the set of simple reflections in W , and
for s ∈ S, let αs ∈ Φ+ be the corresponding simple root. Let X+ ⊂ X be the set
of dominant weights corresponding to Φ+.

Let Waff = W "X be the (extended) affine Weyl group. For λ ∈ X, let tλ = 1"λ
be the corresponding element of Waff . We will use additive notation for X and
multiplicative notation for Waff , so that tλ+µ = tλtµ. Recall that although Waff is
not a Coxeter group in general, it shares many features with Coxeter groups. In
particular, it makes sense to speak of the length of an element w ∈ Waff , denoted
by ((w). There is also a Bruhat order on Waff , denoted by ≤Bru. For each λ ∈ X,
let

wλ = the unique element of minimal length in the coset Wtλ.

We define an order ≤ on X by

λ ≤ µ if and only if wλ ≤Bru wµ.
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Next, for each subset I ⊂ S, we set

X+
I = {λ ∈ X | 〈α∨

s ,λ〉 ≥ 0 for all s ∈ I},

X+,reg
I = {λ ∈ X | 〈α∨

s ,λ〉 > 0 for all s ∈ I}.

Let PI ⊂ G be the parabolic subgroup containing B and corresponding to I, and
let UI be its unipotent radical. Let nI be the Lie algebra of UI , and let

ÑI = G ×PI nI .

Note that P∅ = B. When I = ∅, we often omit the subscript: we write U for the
unipotent radical of B, and n for its Lie algebra, and we denote

Ñ = G ×B n.

Let Gm act on nI by z · x = z−2x. This action commutes with the action of
PI and induces a positive even grading on the algebra Sym(n∗

I) which we call the
cohomological grading. This allows us to form the bounded derived category

DbCohPI×Gm(nI) = Db Sym(n∗
I)-modPI×Gm ,

where Sym(n∗
I)-modPI×Gm denotes the category of finitely generated PI -equivariant

graded modules over the algebra Sym(n∗
I). We can equivalently consider the cate-

gory DbCohG×Gm(ÑI) by recalling the equivalence

(3.1) j∗I : CohG×Gm(ÑI)
∼−→ CohPI×Gm(nI),

induced by pulling back along the inclusion jI : nI ↪→ ÑI .
For any m ∈ Z, let km be the 1-dimensional Gm-representation with the action

given by z · x = zmx. Define an autoequivalence

〈1〉 : DbCohG×Gm(ÑI) → DbCohG×Gm(ÑI) by F〈1〉 = F ⊗ k−1.

We will also work with the autoequivalence

{1} := 〈−1〉[1] : DbCohG×Gm(ÑI) → DbCohG×Gm(ÑI).

It is easy to see that both 〈1〉 and {1} are Tate twists on DbCohG×Gm(ÑI).

Remark 3.1 (Tate twist conventions). It is important to note that the 〈m〉 employed
here is opposite to the convention in [AR, §9.1], but consistent with [A2], [AH1] and
[A1]. (More precisely, the Tate twist in [A1, §2.2] is opposite to our convention, but
the action on n employed there is also opposite to ours, so statements from [A1]
can be used here unmodified.)

For λ ∈ X+,reg
I , let ∇̃I,λ and ∆̃I,λ be the objects defined in [AR, §9.5]. (For

I = ∅, the definition of these objects goes back to [Be2]; see also [ARd, MR].)
Proposition 3.2 gives a key property of these objects.

Proposition 3.2 ([ACR,AR,ARd,Be2,MR]). The collection {∇̃I,λ}λ∈X+,reg
I

is a

graded exceptional set with respect to both 〈1〉 and {1}, and {∆̃I,λ}λ∈X+,reg
I

is its

dual set.
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For 〈1〉, this statement appears in [AR, §9.5]; for {1}, see [ACR, Lemma 3.1].1

In the special case where I = ∅, the 〈1〉 part of this statement was proved in [ARd,
MR]; the essential ideas go back to [Be2], which treats the case k = C.

In view of Proposition 3.2, we may consider the following notions:

(1) The exotic t-structure, obtained by applying Proposition 2.21(1) with re-
spect to 〈1〉. This t-structure has been extensively studied in the papers
mentioned above.

(2) The representation-theoretic t-structure, obtained by applying Proposition
2.21(1) with respect to {1}. This t-structure was implicitly used in [AR],
and explicitly studied in [ACR].

(3) The supportive co-t-structure, obtained by applying Proposition 2.21(2)
with respect to {1}. This co-t-structure is one of the main objects of study
of the present paper.

(4) One may also apply Proposition 2.21(2) with respect to 〈1〉, but the result-
ing co-t-structure does not appear to be useful for the goals of this paper,
and will not be used.

The simple objects in the heart of the exotic t-structure are indexed (up to Tate
twist) by X+,reg

I ; we set

L̃I,λ = the simple exotic object labeled by λ ∈ X+,reg
I .

The coheart of the supportive co-t-structure (so named because of its role in
the study of support varieties) is denoted by SG×Gm(ÑI). We emphasize that this
is the only co-t-structure on DbCohG×Gm(ÑI) we will consider. Thus, objects of
SG×Gm(ÑI) may simply be called “silting objects on ÑI .” The indecomposable
silting objects are also indexed by X+,reg

I ; we set

(3.2) ẼI,λ = the indecomposable silting object labeled by λ ∈ X+,reg
I .

When I = ∅, the subscript I will often be omitted from the notation.
The representation-theoretic t-structure is a highest-weight category (see [ACR,

§3.D]), and so Lemma 3.3 is a consequence of Corollary 2.23.

Lemma 3.3. The category SG×Gm(ÑI) is the category of tilting objects in the heart
of the representation-theoretic t-structure on DbCohG×Gm(ÑI).

In the case I = ∅, the objects Ẽλ were introduced in [AHR1] in a different
framework: they were obtained from the machinery of “parity objects,” rather
than from co-t-structures. The following fact, explained in [ACR, Remark 3.8],
says that these two approaches yield the same objects.

Lemma 3.4. The objects Ẽλ ∈ DbCohG×Gm(Ñ ) are precisely the parity exotic
objects of [AHR1, §3.4].

(As explained in [ACR, Remark 3.8], an analogous statement holds for ẼI,λ for
any I, but we will not need this more general statement.) Lemma 3.4 makes a
number of results from [AHR1] available to us.

1In [AR, §9.5], it is assumed that G has simply connected derived subgroup, but this assumption
can be dropped by the reasoning explained in [AHR2, §4.1]. The proof of [ACR, Lemma 3.1] then
also applies in this generality.
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4. The nilpotent cone

Let N be the nilpotent cone of G and let π : Ñ → N be the Springer resolution.
Each λ ∈ X gives rise to an equivariant line bundle OÑ (λ) on Ñ and an Andersen–
Jantzen sheaf

Aλ = π∗OÑ (λ).

(Note that π∗ : DbCohG×Gm(Ñ ) → DbCohG×Gm(N ) denotes the derived push-
forward.)

For any λ ∈ X, let

δλ = min{((v) | v ∈ W and vλ ∈ X+}, δ∗λ = δw0λ,

and domλ = Wλ ∩ X+. Finally, for λ ∈ X+, we set

∇λ = Aλ〈−δ∗λ〉, ∆λ = Aw0λ〈δ∗λ〉, Lλ = π∗L̃w0λ.

Lemma 4.1. For any λ ∈ X, we have

π∗∇̃λ
∼= ∇domλ〈δ∗λ〉, π∗∆̃λ

∼= ∆domλ〈−δ∗λ〉, π∗L̃λ =

{
Lw0λ if λ ∈ −X+,

0 otherwise.

Proof. This is a consequence of [A2, Proposition 2.6] (see Remark 3.1 on how our
Tate twist compares with the one in [A2]). !

Lemma 4.2. For any F , G ∈ DbCohG×Gm(ÑI) or DbCohG×Gm(N ), the space
⊕

k∈Z
Hom(F , G〈k〉)

is finite-dimensional.

Proof. It is enough to prove this when F and G are shifts of objects belonging to
some set that generates the given triangulated category (under Tate twist). For
ÑI , we may take F = ∆̃I,λ[n] and G = ∇̃I,µ[m] (cf. [AHR1, Proposition 4.4]).
Since these objects come from an exceptional set, Lemma 2.19 tells us that the sum⊕

k Hom(F , G〈k〉) is at most 1-dimensional.
For N , take F = ∆λ[n] and G = ∇µ[m]. According to [A1, Proposition 6.1],

these objects come from a quasi-exceptional set, so if λ ,= µ, then Lemma 2.19 says
that our Hom-space vanishes. On the other hand, if λ = µ, we have

Hom(∆λ[m],∇λ[n]〈k〉) ∼= Hom(π∗∆̃w0λ,π∗∇̃w0λ[n − m]〈k〉)
∼= Hom(π∗π∗∆̃w0λ, ∇̃w0λ[n − m]〈k〉).

Since π is not smooth, the derived coherent pullback functor π∗ takes values in
D−CohG×Gm(Ñ ), and not in the bounded derived category. But of course ∇̃w0λ[n−
m]〈k〉 is a bounded complex, so there is some integer N such that

Hom(∆λ[m],∇λ[n]〈k〉) ∼= Hom(τ≥Nπ∗π∗∆̃w0λ, ∇̃w0λ[n − m]〈k〉).

The right-hand side is now a Hom-group in DbCohG×Gm(Ñ ). The direct sum of
these over all k is finite-dimensional by the previous paragraph. !
Lemma 4.3. If Hom(∇λ,∇λ[n]〈k〉) ,= 0, then one of the following holds:

(1) n = k = 0, or
(2) n > 0 and k ≤ −2n.
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Before proving Lemma 4.3, we recall some facts about DbCohG×Gm(N ) from [A1].
As noted above, [A1, Proposition 6.1] says that the set {∇λ}λ∈X+ is a dualizable
graded quasi-exceptional with respect to 〈1〉. As in Section 2.3, we can consider
the following subcategories of DbCohG×Gm(N ), defined with respect to 〈1〉:

D≤λ = 〈〈∇µ : µ ∈ X+, µ ≤ λ〉〉tri, D<λ = 〈〈∇µ : µ ∈ X+, µ < λ〉〉tri.

Apply Lemma 2.20 to obtain a recollement diagram. We denote the functors in-
volving the quotient D≤λ/D<λ as follows:

D≤λ D≤λ/D<λ.Πλ

ΠL
λ

ΠR
λ

It follows from [A1, Lemma 5.3] that for all ν ∈ X, we have

Aν ∈ D≤dom(ν) and Πdom(ν)(Aν) ∼= Πdom(ν)(Adom(ν)〈−2δν〉).

For λ ∈ X+ and ν ∈ X+, we thus have

(4.1) Πλ(Aν) ∼=

{
Πλ(Aλ〈−2δν〉) if ν ∈ Wλ,

0 if dom(ν) ≤ λ and ν /∈ Wλ.

We are now ready to prove Lemma 4.3.

Proof of Lemma 4.3. Let M(λ) be the Weyl module for G with highest weight λ,
and consider the coherent sheaf ON ⊗ M(λ) ∈ CohG×Gm(N ). According to [A1,
Lemma 5.4], we have

(4.2) ON ⊗ M(λ) ∈ Aν1 ∗ · · · ∗ Aνk ∗ Aλ

for some weights ν1, . . . , νk ∈ X that satisfy dom(νi) ≤ λ and νi ,= λ for all i. In
particular, this shows that ON ⊗ M(λ) lies in D≤λ, so it makes sense to apply Πλ

to it. Let

G = Πλ(ON ⊗ M(λ))〈−δ∗λ〉.
Combining (4.2) with (4.1), we find that G belongs to a category of the form
Πλ(∇λ)〈−2r1〉 ∗ Πλ(∇λ)〈−2r2〉 ∗ · · · ∗ Πλ(∇λ)〈−2rk〉 ∗ Πλ(∇λ), where r1, . . . , rk

are some positive integers. Thus, there is a distinguished triangle

G′ → G → Πλ(∇λ)

with

G′ ∈ Πλ(∇λ)〈−2r1〉 ∗Πλ(∇λ)〈−2r2〉 ∗ · · · ∗Πλ(∇λ)〈−2rk〉.
The proof of Lemma 2.20 shows that ΠR

λ (Πλ(∇λ)) ∼= ∇λ. We therefore have

Hom(ON ⊗ M(λ)〈−δ∗λ〉,∇λ[n]〈k〉)
∼= Hom(ON ⊗ M(λ)〈−δ∗λ〉,ΠR

λ (Πλ(∇λ))[n]〈k〉) ∼= Hom(G,Πλ(∇λ)[n]〈k〉)
∼= Hom(ΠR

λ (G),ΠR
λΠλ(∇λ)[n]〈k〉) ∼= Hom(ΠR

λ (G),∇λ[n]〈k〉),

where the penultimate step uses the fact that ΠR
λ is fully faithful [BBD, (1.4.3.5)].
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Let F = ΠR
λ (G). Combining the calculation above with [A1, Lemma 5.5(2)], we

have

(4.3) Hom(F ,∇λ[n]〈k〉) ∼=

{
k if n = k = 0,

0 otherwise.

Next, let F ′ = ΠR
λ (G′), so that we have a distinguished triangle

F ′ → F → ∇λ →,

where

(4.4) F ′ ∈ ∇λ〈−2r1〉 ∗ ∇λ〈−2r2〉 ∗ · · · ∗ ∇λ〈−2rk〉.
This distinguished triangle gives rise to a long exact sequence

(4.5) · · · → Hom(F ′,∇λ[n − 1]〈k〉) → Hom(∇λ,∇λ[n]〈k〉)
→ Hom(F ,∇λ[n]〈k〉) → · · · .

Let us first take n to be the smallest integer such that Hom(∇λ,∇λ[n]〈k〉) ,= 0
for some k ∈ Z. In view of (4.4), the first term in (4.5) vanishes. The second term
is assumed to be nonzero, so the third term must be as well. But by (4.3), this
implies that n = k = 0. In particular, we have Hom(∇λ,∇λ[n]〈k〉) = 0 if n < 0.

Assume henceforth that n ≥ 0. We will prove by induction on n that if
Hom(∇λ,∇λ[n]〈k〉) ,= 0, then k ≤ −2n. The case n = 0 has already been cov-
ered by the previous paragraph. Suppose now that n > 0, and let k be the largest
integer such that Hom(∇λ,∇λ[n]〈k〉) ,= 0. (Such a k exists by Lemma 4.2.) The
third term of (4.5) vanishes (by (4.3)), so in order for the second term to be nonzero,
the first term must also by nonzero. By induction and (4.4), we must have

k + 2ri ≤ −2(n − 1)

for some i. That is, k ≤ −2n + 2(1 − ri). Since 1 − ri ≤ 0, we conclude that
k ≤ −2n. !

We can now prove a complement to Lemma 4.2.

Lemma 4.4. For any F , G ∈ DbCohG×Gm(ÑI) or DbCohG×Gm(N ), the space
⊕

k∈Z
Hom(F , G{k})

is finite-dimensional.

Proof. For ÑI , the proof of Lemma 4.2 can be repeated verbatim. For N , we may
assume that F = ∆λ[m] and G = ∇µ[n]. If λ ,= µ, the reasoning in Lemma 4.2
applies again. If λ = µ, then by Lemma 2.19, we may replace F by ∇λ[m]. By
Lemma 4.3, the space

Hom(∇λ[m],∇λ[n]{k}) = Hom(∇λ,∇λ[n − m + k]〈−k〉)
vanishes unless

n − m + k = k = 0 or

{
n − m + k > 0,

−k ≤ −2n + 2m − 2k.

The latter condition is equivalent to m − n < k ≤ 2m − 2n. In particular, only
finitely many integers k satisfy this condition, so our sum is finite-dimensional. !
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Proposition 4.5. The set of all ∇λ with λ ∈ X+ forms a dualizable graded pre-
exceptional set in DbCohG×Gm(N ) with respect to both 〈1〉 and {1}, and its dual
set consists of all ∆λ with λ ∈ X+. Moreover, this collection is:

(1) graded quasi-exceptional with respect to 〈1〉, and
(2) graded co-quasi-exceptional with respect to {1}.

Proof. As noted earlier, the fact that {∇λ}λ∈X+ is graded quasi-exceptional with
respect to 〈1〉 with dual set {∆λ}λ∈X+ can be found in [A1, Proposition 6.1]. Let
us now show that this collection is graded co-quasi-exceptional with respect to {1}.
It is immediate (thanks to the 〈1〉 case) that {∇λ}λ∈X+ satisfies conditions (1)
and (3) of Definition 2.14, and that End(∇λ) ∼= k. It remains to show that

Hom(∇λ,∇λ[n]{k}) = 0 if n = 0 and k ,= 0, or if n > 0 and k is arbitrary.

By Lemma 4.3, if the space Hom(∇λ,∇λ[n]{k}) = Hom(∇λ,∇λ[n + k]〈−k〉) is
nonzero, we either have n = k = 0 or n + k > 0 and −k ≤ −2n − 2k. The latter
condition can be rewritten as n > −k and 2n ≤ −k. This implies that 2n < n, and
hence n < 0. !

In view of Proposition 4.5, we may consider the following notions:

(1) The exotic t-structure, also called the perverse-coherent t-structure, ob-
tained by applying Proposition 2.21(1) to {∇λ}λ∈X+ with respect to 〈1〉.

(2) The supportive co-t-structure, obtained by applying Proposition 2.21(2) to
{∇λ}λ∈X+ with respect to {1}.

In fact, the objects Lλ are (up to 〈1〉) precisely the simple objects in the heart
of the exotic t-structure: see [A2, Proposition 2.6]. The following statement is an
immediate consequence of Lemma 4.1.

Corollary 4.6. The functor π∗ : DbCohG×Gm(Ñ ) → DbCohG×Gm(N ) is co-t-exact
with respect to the supportive co-t-structures.

We will now get to the first major application of the theory of co-t-structures in
this setting.

Theorem 4.7. If F ∈ DbCohG×Gm(Ñ )≥0 and G ∈ DbCohG×Gm(Ñ )≤0, then the
natural homomorphism

Hom(F , G) → Hom(π∗F ,π∗G)

is surjective.

Proof. We begin by defining two sets of objects ∆̃, ∇̃ ⊂ DbCohG×Gm(Ñ ) by

∆̃ = {∆̃λ{k}[i] | λ ∈ X, i ≤ 0, k ∈ Z},

∇̃ = {∇̃λ{k}[i] | λ ∈ X, i ≥ 0, k ∈ Z}.

We will now use the ∗ operation from Section 2.2 with respect to {1}. The descrip-
tion of the co-t-structure in Proposition 2.21(2) shows that

DbCohG×Gm(Ñ )≥0 = direct summands of
⋃

n≥1

∆̃∗n,

DbCohG×Gm(Ñ )≤0 = direct summands of
⋃

n≥1

∇̃∗n.
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Thus, it suffices to verify the surjectivity of the morphism

(4.6) Hom(F , G) → Hom(π∗F ,π∗G)

with F ∈ ∆̃∗n and G ∈ ∇̃∗m, for some n, m ≥ 1. We will proceed by double
induction with respect to n and m.

First suppose that n = m = 1 and assume F = ∆̃λ{k1}[i1] and G = ∇̃µ{k2}[i2]
with λ, µ ∈ X, k1, k2 ∈ Z, i1 ≤ 0 and i2 ≥ 0. Set k = k2 − k1 and i = i2 − i1 ≥ 0.
We have

Hom(F , G) = Hom(∆̃λ, ∇̃µ{k}[i]) =

{
k if λ = µ, i = k = 0,

0 otherwise.

Observe that if domλ ,= domµ, then both sides of (4.6) are zero, so the map is
trivially surjective. Now suppose that domλ = domµ, and let δ = δ∗µ + δ∗λ. Using

Lemma 4.1 and the fact that {∇λ}λ∈X+ is co-quasi-exceptional, we have

Hom(π∗F ,π∗G) = Hom(∆domλ,∇domλ〈δ〉{k}[i])

= Hom(∆domλ,∇domλ{k − δ}[i + δ])

=

{
k if k = δ, i = −δ,

0 otherwise (since i + δ ≥ 0).

So it suffices to assume that k = δ = −i because the natural map will again be
trivially surjective otherwise. But we have that both i ≥ 0 and δ = δ∗λ + δ∗µ ≥ 0,
and thus, δ = i = 0. In particular, δ∗λ = δ∗µ = 0 which further implies that
λ = µ = w0(domλ) ∈ −X+. Hence, (4.6) is given by

Hom(∆̃λ, ∇̃λ) → Hom(∆domλ,∇domλ).

Any nonzero map ∆̃λ → ∇̃λ factors through L̃λ = L̃w0(domλ), and any nonzero map

∆domλ → ∇domλ factors through Ldomλ. Lemma 4.1 then implies that this map of
Hom-groups is nonzero, and hence an isomorphism since both sides are isomorphic
to k. We have established surjectivity of (4.6) in the case where n = m = 1.

Now suppose (4.6) is surjective for n = 1 and some m ≥ 1. Let F ∈ ∆̃ and
G ∈ ∇̃∗m+1 be arbitrary. Then G fits into a distinguished triangle of the form

G′ → G → G′′ →,

where G′ ∈ ∇̃∗m and G′′ ∈ ∇̃. Applying Hom(F ,−) and Hom(π∗F ,−) we obtain
the commutative diagram

Hom(F , G′) Hom(F , G) Hom(F , G′′) Hom(F , G′[1])

Hom(π∗F ,π∗G′) Hom(π∗F ,π∗G) Hom(π∗F , π∗G′′) Hom(π∗F ,π∗G′[1]).

f1 f2 f3 f4

Our inductive hypothesis implies that f1 and f3 are surjective, while Corollary 4.6
and Definition 2.1(3) imply

0 = Hom(F , G′[1]) = Hom(π∗F ,π∗G′[1]).

It then follows from the four lemma that f2 is surjective, and so we are done with
this case.
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Finally, fix n ≥ 1 and assume that (4.6) is surjective for any m ≥ 1 with F ∈ ∆̃∗n

and G ∈ ∇̃∗m. Let F ∈ ∆̃∗n+1 and G ∈ ∇̃∗m be arbitrary. Again, there is a
distinguished triangle

F ′ → F → F ′′ →,

where F ′ ∈ ∆̃∗n and F ′′ ∈ ∆̃. By applying Hom(−, G), Hom(−,π∗G) and then
proceeding exactly as above, we can again deduce the surjectivity of (4.6). We are
finished by induction. !

Theorem 4.8. Let SG×Gm(N ) denote the silting subcategory of DbCohG×Gm(N ).

(1) For any µ ∈ X, the object π∗Ẽµ is either 0 or an indecomposable object of
SG×Gm(N ). It is nonzero if and only if µ ∈ −X+.

(2) For λ ∈ X+, set Eλ := π∗Ẽw0λ. Every indecomposable object of SG×Gm(N )
is isomorphic to an object of the form Eλ{r} for some λ ∈ X+ and r ∈ Z.

The vanishing of π∗Ẽµ for µ /∈ −X+ was previously known: see, for instance,
the comments in [AHR1, §4.2].

Proof. For any µ ∈ X, Corollary 4.6 tells us that π∗Ẽµ lies in SG×Gm(N ), and by
Theorem 4.7, π∗ induces a surjective ring homomorphism

End(Ẽµ) " End(π∗Ẽµ).

Here, End(Ẽµ) is a local ring, since Ẽµ is an indecomposable object in a Krull–

Schmidt category. Its quotient ring End(π∗Ẽµ) is therefore either 0 or a local

ring. Since SG×Gm(N ) is also Krull–Schmidt, we conclude that π∗Ẽµ is either 0 or
indecomposable.

Suppose now that µ ∈ −X+, and let λ = w0µ ∈ X+. According to Proposi-
tion 2.21, the two compositions

∆̃w0λ → L̃w0λ → ∇̃w0λ and ∆̃w0λ → Ẽw0λ → ∇̃w0λ

are equal (and nonzero). Now apply π∗ to these maps. Using Lemma 4.1, we obtain

(4.7) ∆λ → Lλ → ∇λ and ∆λ → Eλ → ∇λ.

These compositions are again equal, and the first one is nonzero, so the second one
is as well. In particular, Eλ ,= 0.

Part (2) of the theorem now follows from the “abstract” classification of inde-
composable silting objects given in Proposition 2.21, together with the equality of
the two compositions in (4.7).

To finish the proof of part (1), we must show that if π∗Ẽµ ,= 0, then µ ∈ −X+.

By part (2), if π∗Ẽµ is nonzero, it is isomorphic to Eλ{r} for some λ ∈ X+ and
some r ∈ Z, so there are nonzero maps

∆λ{r} → π∗Ẽµ → ∇λ{r}

whose composition is also nonzero. By Theorem 4.7, these maps arise by applying
π∗ to some nonzero maps

∆̃w0λ{r} → Ẽµ → ∇̃w0λ{r}

whose composition is again nonzero. By Proposition 2.21, we conclude that µ = w0λ
and r = 0, as desired. !
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5. Push-forward functors and dg-coherent sheaves

In this section, we prove some additional lemmas on complexes of coherent
sheaves on ÑI and N . We also introduce “dg versions” of the main geometric
categories.

5.1. More functors. Recall that ÑI = G ×PI nI . We also set Ñ I := G ×B nI ,
and we define maps

πI : ÑI → N , µI : Ñ I → ÑI , eI : Ñ I ↪→ Ñ
as follows: πI(g, x) = Ad(g)(x), µI is the quotient map, and eI is induced by the
inclusion map nI ↪→ n. Note that π∅ is the Springer resolution π : Ñ → N , while
µ∅ and e∅ are identity maps. The square

(5.1)

Ñ I Ñ

ÑI N

eI

µI π

πI

commutes (but it is not Cartesian). All four maps are proper, so the derived
functors πI∗, µI∗, etc., take bounded complexes of (equivariant) coherent sheaves
to bounded complexes of (equivariant) coherent sheaves. The map µI is smooth,
and the map eI is the inclusion of one smooth variety in another, so the same
comments apply to µ!

I and e∗I (see also [AR, §9.2]). We define functors

ΞI := µI∗e
∗
I : DbCohG×Gm(Ñ ) → DbCohG×Gm(ÑI),

ΞI := eI∗µ
!
I : DbCohG×Gm(ÑI) → DbCohG×Gm(Ñ ).

Finally, let
sI : nI ↪→ N

be the inclusion map. Since the PI -action on N extends to an action of G, there is
a well-defined functor

R IndG
PI

: DbCohPI×Gm(N ) → DbCohG×Gm(N ).

By construction, the following diagram commutes:

DbCohG×Gm(ÑI) DbCohPI×Gm(nI)

DbCohG×Gm(N )

πI∗

∼

R IndG
PI

◦sI∗

Lemma 5.1. The following diagram commutes:

DbCohG×Gm(ÑI) DbCohG×Gm(Ñ )

DbCohG×Gm(N )

πI∗

ΞI

π∗

Proof. Let

ρI :=
1

2

∑

α∈Φ+
I

α and rI := dim PI/B.
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Let OÑ I (−2ρI) denote the pullback along Ñ I → G/B of the line bundle of weight
−2ρI . By smooth base change for the square

Ñ I G/B = G ×PI (PI/B)

ÑI G/PI

µI

we see that µI∗OÑ I (−2ρI) is the pullback of the object in DbCohG×Gm(G/PI)

corresponding to R IndPI
B (−2ρI). Using the form of Serre duality explained in [J1,

§II.4.2(8)], we have R IndPI
B (−2ρI) ∼= R IndPI

B (k)[−rI ] ∼= k[−rI ], so

µI∗OÑ I (−2ρI)[rI ] ∼= OÑI
.

Finally, we recall (cf. [AR, Lemma 9.4]) that

µ!
I(−) ∼= µ∗

I(−)
L
⊗ OÑ I (−2ρI)[rI ].

Using these observations, the commutativity of (5.1), and the projection formula,
for M ∈ DbCohG×Gm(ÑI), we have

π∗Ξ
I(M) = π∗eI∗µ

!
I(M) ∼= πI∗µI∗(µ

∗
I(M)

L
⊗Ñ I OÑ I (−2ρI)[rI ])

∼= πI∗(M
L
⊗ µI∗OÑ I (−2ρI)[rI ]) ∼= πI∗(M),

as desired. !

5.2. dg coherent sheaves. One goal of this section and the next is to show that
the functor πI∗ : DbCohG×Gm(ÑI) → DbCohG×Gm(N ) is co-t-exact (see Corol-
lary 6.9). However, the proof involves a construction that takes place not in the
setting of ordinary coherent sheaves, but in the setting of dg coherent sheaves (see
the comments in Section 6.1). In this subsection, we introduce notation related to
dg coherent sheaves on some of the varieties we have discussed above.

See Appendix A for generalities on (equivariant) dg coherent sheaves on an affine
scheme. In the framework of that appendix, one may consider the categories

DPI
Coh(nI), DB

Coh(nI), DG
Coh(N ).

It will be convenient to also be able to speak of “dg coherent sheaves on ÑI or
Ñ I .” Since these varieties are not affine, they are not covered by the theory of
Appendix A. Instead, we just take analogues of (3.1) as definitions: we set

DG
Coh(ÑI) := DPI

Coh(nI) and DG
Coh(Ñ I) := DB

Coh(nI).

We have “degrading functors” (see Proposition A.2)

ξI : DbCohG×Gm(ÑI) → DG
Coh(ÑI),

ξN : DbCohG×Gm(N ) → DG
Coh(N ).

(Such a functor exists for Ñ I as well, of course, but we will not need a separate
notation for it.)
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Using Lemmas A.3 and A.4, one can define the functors

π̄I∗ = R IndG
PI

s̄I∗ : DG
Coh(ÑI) → DG

Coh(N ),

µ̄I∗ = R IndPI
B : DG

Coh(Ñ I) → DG
Coh(ÑI),

µ̄!
I = ResPI

B (−)[nI ]
L
⊗
∧nI (pI/b)∗ : DG

Coh(ÑI) → DG
Coh(Ñ I),

ēI∗ : DG
Coh(Ñ I) → DG

Coh(Ñ ),

ē∗I : DG
Coh(Ñ ) → DG

Coh(Ñ I),

where nI = dim PI − dim B. Each of these functors is compatible with its ordinary
(non-dg) analogue via the appropriate degrading functors. That is, the diagram

DbCohG×Gm(ÑI) DG
Coh(ÑI)

DbCohG×Gm(N ) DG
Coh(N )

ξI

πI∗ πI∗

ξN

commutes, and likewise for each of the other functors defined above.
Lastly, we define

Ξ̄I := µ̄I∗ē
∗
I : DG

Coh(Ñ ) → DG
Coh(ÑI),

Ξ̄I := ēI∗µ̄
!
I : DG

Coh(ÑI) → DG
Coh(Ñ ).

By the techniques of Appendix A, the proof of Lemma 5.1 can be adapted to show
that the diagram

(5.2)

DG
Coh(ÑI) DG

Coh(Ñ )

DG
Coh(N )

π̄I∗

Ξ̄I

π̄∗

commutes.

Lemma 5.2. Let I ⊂ S be arbitrary.

(1) The set {ξI(ẼI,λ)}λ∈X+,reg
I

generates a silting subcategory of DG
Coh(ÑI), so

that ξI becomes co-t-exact. Moreover, an object F ∈ DbCohG×Gm(ÑI) is
silting if and only if ξI(F) ∈ DG

Coh(ÑI) is silting.
(2) The set {ξN (Eλ)}λ∈X+ generates a silting subcategory of DG

Coh(N ), so that

both ξN and π∗ : DG
Coh(Ñ ) → DG

Coh(N ) become co-t-exact functors. More-
over, an object F ∈ DbCohG×Gm(N ) is silting if and only if ξN (F) ∈
DG

Coh(N ) is silting.

Proof. (1) Let SG(ÑI) denote the full additive subcategory of DG
Coh(ÑI) consisting

of (finite) direct sums of objects of the form ξI(ẼI,λ). We first claim that each

ξI(ẼI,λ) is indecomposable. By Proposition A.2(1), we have

End(ξI(ẼI,λ)) ∼=
⊕

n∈Z
Hom(ẼI,λ, ẼI,λ{n}).
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These spaces are finite-dimensional by Lemma 4.4. The right-hand side can be
thought of as a graded artinian ring. Its degree-0 component End(ẼI,λ) is a lo-

cal ring, so by [GG, Theorem 3.1], End(ξI(ẼI,λ)) is also local. We conclude that

ξI(ẼI,λ) is indecomposable, and hence that SG(ÑI) is closed under direct sum-
mands.

Next, we claim that part (2) of Definition 2.4 holds for SG(ÑI). This follows
from the corresponding property for SG×Gm(ÑI), together with Proposition A.2(1)
again.

Since DbCohG×Gm(ÑI) = 〈〈SG×Gm(ÑI)〉〉tri (see Remark 2.22), using Propo-
sition A.2(2), we see that DG

Coh(ÑI) = 〈〈SG(ÑI)〉〉tri. Thus SG(ÑI) is a silting

subcategory of DG
Coh(ÑI), and ξI is co-t-exact.

Finally, it remains to prove that if ξI(F) is silting, then F is silting. Suppose F
is not silting. Using the description of the co-t-structure given in Proposition 2.5,
we see there must either be a nonzero morphism F → ẼI,λ[n]〈k〉 for some λ and

some n > 0, or a morphism ẼI,λ[−n]〈k〉 → F , again with n > 0. Since ξI is faithful
(Proposition A.2(1)), applying ξI to this morphism yields a nonzero morphism in
DG

Coh(ÑI) that shows that ξI(F) is not silting either.
(2) Most of this statement holds by the same reasoning as in part (1); the

only issue to address is the claim that π∗ is co-t-exact. This follows from the
corresponding claim for π∗ (Corollary 4.6). !

6. Representations of G

From now on, we assume that the characteristic p of k is larger than the Coxeter
number h for G, and that G has a simply connected derived subgroup. Let G be
such that G = G/G1, where G1 is the Frobenius kernel (i.e. so that G is the
Frobenius twist of G). Let B ⊂ G be the Borel subgroup corresponding to B ⊂ G.
Let Rep(G) denote the category of finite-dimensional rational representations of G.
For λ ∈ X+, let M(λ), resp. N(λ), resp. T(λ), denote the Weyl module, resp. dual
Weyl module, resp. indecomposable tilting module, of highest weight λ.

For each I ⊂ S, fix a choice of weight ςI ∈ X+ whose pairing with simple coroots
is given by

α∨
s (ςI) =

{
1 if s ∈ I,

0 if s /∈ I.

(The existence of such a weight is guaranteed by the assumption that the derived
subgroup of G is simply connected.) The extended block RepI(G) ⊂ Rep(G) is
defined as the Serre subcategory generated by all of the simple modules whose
highest weight is contained in X+ ∩Waff ·p (−ςI), where “·p” denotes the p-dilated
dot action (see, for instance, [AHR1, §1.2] for a discussion). This subcategory is a
direct summand of Rep(G), and there is a projection functor

prI : Rep(G) → RepI(G).

One of the main results of [AR] can be restated as follows.

Theorem 6.1 ([AR]). There is an equivalence of categories

FI : DG
Coh(ÑI)

∼−→ DbRepI(G).
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Moreover, this functor satisfies

FI(ξI(∇̃I,λ)) ∼= N(wλ ·p (−ςI)) and FI(ξI(∆̃I,λ)) ∼= M(wλ ·p (−ςI)).

This statement does not appear in quite this form in [AR], but it is easily deduced
from [AR, Propositions 10.3 and 10.6], which state that there is a degrading functor
F̃I : DbCohG×Gm(ÑI) → DbRepI(G) with the desired behavior on ∇̃I,λ and ∆̃I,λ.
More precisely, examining the construction of F̃I , one sees that a crucial role is
played by a certain “bigraded Koszul duality functor” κI , described in [AR, §4].
After replacing this by a singly graded Koszul duality functor following [GKM, §8],
one can check that there is an equivalence of categories FI that makes the following
diagram commute:

DbCohG×Gm(ÑI) DG
Coh(ÑI)

DbRepI(G)
F̃I

ξI

FI

Remark 6.2. If we equip DG
Coh(ÑI) with the co-t-structure from Lemma 5.2 and

DbRepI(G) with the co-t-structure whose coheart consists of tilting G-modules in
RepI(G), then the functor FI is co-t-exact. To see this, use Lemma 3.3 and observe
that the functor F̃I sends tilting objects in the heart of the representation-theoretic
t-structure to tilting G-modules (cf. [ACR, Remark 3.7]).

One can transfer various representation-theoretic or geometric constructions
across the equivalence of Theorem 6.1. In this section and the next one, we exploit
this idea to obtain results on G1-cohomology.

6.1. Steinberg translation functors. For each subset I ⊂ S, we define

StGI := IndG
B ((p − 1)ςI) ∈ RepI(G).

It is easy to verify that (p − 1)ςI ∈ X+ ∩ Waff ·p (−ςI) is a minimal element, so by
the linkage principle (see [J1, II.7]), we have

StGI ∼= T((p − 1)ςI) ∈ RepI(G).

(In particular, StG∅ ∼= k if we set ς∅ = 0.) We define the Steinberg translation
functors to be the functors given by

ΣI := pr∅ ◦ − ⊗(StGI )∗ : DbRepI(G) −→ DbRep∅(G),

ΣI := prI ◦ − ⊗StGI : DbRepI(G) ←− DbRep∅(G).

Observe that ΣI and ΣI are both left and right adjoints to each other. We can
consider the transports of these functors across the equivalence of Theorem 6.1:

ΣI := F∅
−1 ◦ΣI ◦ FI : DG

Coh(ÑI) → DG
Coh(Ñ ),

ΣI := FI
−1 ◦ΣI ◦ F∅ : DG

Coh(Ñ ) → DG
Coh(ÑI).

Unfortunately, we do not know how to give concrete geometric descriptions of
ΣI or ΣI in the language of dg coherent sheaves, nor how to “lift” them to
DbCohG×Gm(ÑI). (If such lifts were available, the main results of this paper could
be proved using only the language of coherent sheaves, and avoiding the technical
difficulties of dg coherent sheaves.)
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On the other hand, we can also consider the transports

ΞI := F∅ ◦ Ξ̄I ◦ FI
−1 : DbRepI(G) → DbRep∅(G),

ΞI := FI ◦ Ξ̄I ◦ F∅
−1 : DbRepI(G) ← DbRep∅(G).

We do not know how to give an explicit representation-theoretic interpretation of
ΞI , but we will see some representation-theoretic information about ΞI in the proof
of Lemma 6.6.

6.2. A dg enhancement of G1-cohomology. For each I ⊂ S, define a functor

HI : DbRep(G) → DG
Coh(N ) by HI := πI∗ ◦ F−1

I ◦ prI .

Lemma 6.3 explains the relationship between these functors and G1-cohomology.

Lemma 6.3.

(1) There is a G-equivariant isomorphism of graded rings k[N ] ∼= Ext•
G1

(k, k).
(2) For any I ⊂ S and M ∈ DbRepI(G), there is a natural isomorphism of

graded G-equivariant k[N ]-modules

H•HI(M) ∼=
⊕

k∈Z
HomG1(StGI , M [k]).

Proof. Part (1) is identical to [AHR1, Lemma 8.1]. For part (2), copy the proofs
of [AHR1, Lemma 8.1 and Proposition 9.1], using the observation that

FI(OÑI
) = StGI . !

Lemma 6.4. For any µ ∈ X+, we have

H∅(T(µ)) ∼=

{
ξN (Ew0λ) if µ = wλ ·p 0 for some λ ∈ −X+,

0 otherwise.

Proof. If µ is not of the form wλ ·p 0, then pr∅(T(µ)) = 0, and the claim is obvious.
Assume now that µ = wλ ·p 0 for some λ ∈ X. As explained in the proof of [AHR1,

Proposition 9.1], We have F∅(ξ∅(Ẽλ)) ∼= T(µ), and hence

H∅(T(µ)) ∼= π∗ξ∅(Ẽλ) ∼= ξN (π∗Ẽλ) ∼=

{
ξN (Ew0λ) if λ ∈ −X+,

0 otherwise,

where the last equality holds by Theorem 4.8. !
Remark 6.5. Combining Lemma 6.4 with Theorem 4.8 yields the following remark-
able observation: the cohomology of an indecomposable tilting module coincides with
the cohomology of a uniquely determined indecomposable silting object of DG

Coh(N ).

6.3. Main results. Lemma 6.6 describes the relationship between the various func-
tors introduced so far in this section.

Lemma 6.6. There exists a natural transformation

η : ΞI → ΣI

of functors DbRepI(G) → DbRep∅(G) such that the induced transformation

H∅η : H∅Ξ
I → H∅Σ

I

of functors DbRepI(G) → DG
Coh(N ) is a natural isomorphism.
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Proof. For this proof, we need slightly more information about FI . Let PI be the
standard parabolic subgroup of G corresponding to I. Then FI is the composition
of two equivalences

(6.1) DG
Coh(ÑI)

ψI−−→
∼

Db
SteinRep(PI)

R IndG
PI−−−−−→

∼
DbRepI(G).

See [AR, §5] for the definition of Db
SteinRep(PI). We will not need the details,

except to note that this category is a full triangulated subcategory of DbRep(PI).
According to [AR, Propositions 7.5 and 9.25] and their proofs (see especially [AR,
Figure 9]), there is a commutative diagram

DG
Coh(Ñ ) Db

SteinRep(B)

DG
Coh(ÑI) Db

SteinRep(PI)

ΞI

ψ∅

R Ind
PI
B ((−)⊗(p−1)ςI)

ψI

Using the fact that F−1
∅ ◦ R IndG

B
∼= ψ−1

∅ , the commutativity of the diagram above
can be expressed as the existence of a natural isomorphism

ΞI ◦ R IndG
B

∼= prI ◦R IndG
B (−⊗ (p − 1)ςI) : Db

Stein(B) → DbRepI(G).

On the other hand, it can be deduced from the tensor identity (see [J1, I.3.6]) that

ΣI ◦ R IndG
B

∼= prI ◦R IndG
B (−⊗ StGI ).

(This isomorphism holds for all DbRep(B), not just Db
SteinRep(B).)

Since StGI = IndG
B ((p − 1)ςI), there exists a canonical nonzero map

pI : StGI → (p − 1)ςI ,

which corresponds to idStGI
under Frobenius Reciprocity (see [J1, I.3.4]). From the

formulas above, this map induces a natural transformation ΣI ◦ R IndG
B → ΞI ◦

R IndG
B of functors Db

SteinRep(B) → DbRepI(G). Since R IndG
B : Db

SteinRep(B) →
DbRep∅(G) is an equivalence of categories (cf. (6.1)), we obtain a natural trans-
formation

γ : ΣI → ΞI .

Thus, we can define

η : ΞI −→ ΣI

to be the natural transformation given by applying Lemma 6.7 to γ. To show that
this induces the desired natural isomorphism, observe that

FI ΞI(OÑ ) = FI(OÑI
) = StGI .

And since F−1
∅ (k) = OÑ , we get

ΞI(k) = StGI .

Moreover,

γk : ΣI(k) −→ ΞI(k)

is an isomorphism which coincides with the identity map on StGI .
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This leads to a commutative diagram of natural transformations

HomG1(k,ΞI(−)) HomG1(k,ΣI(−))

HomG1(ΞI(k),−) HomG1(ΣI(k),−),

η∗

. .

γ∗

∼

where the vertical maps arise from the adjunction isomorphism. Notice that the
transformation η∗ is a natural isomorphism since every other map in the diagram
is an isomorphism.

To see why H∅η is an isomorphism, notice that if we let M ∈ DbRepI(G) be an
arbitrary object, then it follows from Lemma 6.3 that for any k ∈ Z, the morphism

HkH∅η : HkH∅(ΞI(M)) → HkH∅(ΣI(M))

identifies with the isomorphism

η∗ : HomG1(k,ΞI(M)[k])
∼−→ HomG1(k,ΣI(M)[k])

given above. !

Lemma 6.7. Let C and D be categories with functors

C
F1, F2 !!

D
G1, G2

""

such that Fi is left adjoint to Gi (for i = 1, 2). Then the natural isomorphisms

HomD(Fi(−),−)
∼−→ HomC(−, Gi(−)), i = 1, 2

induce a bijection

{natural transformations F1 → F2}
∼−→ {natural transformations G2 → G1}.

Proof. This is a routine application of Yoneda’s lemma. !

The following statement, which is the main result of this section, is now essen-
tially just a reformulation of Lemma 6.7.

Theorem 6.8. For any I ⊂ S, there are natural isomorphisms

π∗ ◦ Ξ̄I ∼= π∗ ◦ ΣI : DG
Coh(ÑI) → DG

Coh(N ).

Proof. By the definitions and Lemma 6.6, we have

π∗Ξ̄
I = π∗F

−1
∅ ΞIFI = H∅Ξ

IFI
∼= H∅Σ

IFI
∼= π∗F

−1
∅ ΣIFI = π∗Σ

I . !

Corollary 6.9. The functors πI∗ and πI∗ are co-t-exact for any I ⊂ S.

Proof. We begin by showing that ΣI : DG
Coh(ÑI) → DG

Coh(Ñ ) is co-t-exact. Since
the equivalences FI and F∅ are co-t-exact (see Remark 6.2), this claim is equivalent
to showing that ΣI : DbRepI(G) → DbRep∅(G) is co-t-exact. Here, these derived
categories are equipped with the co-t-structures whose cohearts consist of tilting
G-modules. In other words, we must show that ΣI sends tilting G-modules to
tilting G-modules. This claim is immediate from the definition and the fact that
StGI is a tilting G-module. Thus, ΣI is co-t-exact.

By (5.2), we have πI∗ ∼= π∗Ξ̄I , so Theorem 6.8 gives πI∗ ∼= π∗ ◦ ΣI . Since π∗ is
co-t-exact (see Lemma 5.2), we conclude that πI∗ is co-t-exact.
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It remains to prove the co-t-exactness of πI∗. Lemma 5.2 implies that this is
co-t-exact if and only if ξNπI∗ is co-t-exact. The latter functor is isomorphic to
πI∗ξI , which we already know to be co-t-exact. !

7. The scheme-theoretic Humphreys conjecture

In this section, we continue to assume that p > h. Recall that for λ ∈ X, we
write wλ for the element of minimal length in the coset Wtλ ⊂ Waff . To state
the Humphreys conjecture, we will need some facts about right Kazhdan–Lusztig
cells in Waff .2 A right Kazhdan–Lusztig cell is called antispherical if it contains
some element of the form wλ. By results of Lusztig [L] and Lusztig–Xi [LX], the
antispherical right cells are in bijection with the set of G-orbits in N . Given a
G-orbit C ⊂ N , let

XC = {λ ∈ X | wλ lies in the antispherical right cell corresponding to C}.

We thus obtain a partition of X indexed by nilpotent orbits:

X =
⊔

C⊂N
a G-orbit

XC .

We also set X+
C := w0(XC) ∩ X+. It follows from [AHR2, Theorem 6.4] and [Be3,

Remark 6]3 that
X+

C = {λ ∈ X+ | supp Lλ = C} ⊂ X+,

as long as p is good. We will call X+
C the canonical cell corresponding to C. If

Z ⊆ N is a G-stable subspace, we set

XZ =
⋃

C⊂Z

XC , X+
Z =

⋃

C⊂Z

X+
C .

7.1. Scheme-theoretic Humphreys conjecture. We begin by giving a scheme-
theoretic analogue of the classical Humphreys conjecture. Let

Cp = {λ ∈ X | 0 < 〈λ + ρ,α∨〉 < p for all positive roots α ∈ Φ+}
be the fundamental alcove. For any w ∈ Waff , one can consider the set w ·p Cp. Any
such set is called an alcove.

For a nilpotent orbit C ⊂ N , let IC ⊂ k[N ] denote the defining ideal of the
reduced subscheme C ⊂ N . We propose the following refinement of the conjecture
proposed by Humphreys [Hu] (see also [AHR1, Conjecture 8.5] and the discussion
preceding it):

Conjecture 7.1 (Scheme-theoretic Humphreys conjecture). Suppose that µ ∈ X+

belongs to the lower closure of wλ ·p Cp for some λ ∈ XC . Then the annihilator of
the k[N ]-module Ext∗G1

(T(µ), T(µ)) is IC .

Following [AHR1, §8.3], we also formulate a “relative” version of Conjecture 7.1.

2Kazhdan–Lusztig cells are usually considered in the context of the nonextended affine Weyl
group W " ZΦ, rather than in Waff . However, as explained in [AHR3, Remark 2.1] it is straight-
forward to define Kazhdan–Lusztig cells in Waff , and they are in bijection with those in W "ZΦ.

3In more detail, [AHR2, Theorem 6.4] says that the support of Lλ is “independent of k” in
an appropriate sense, and [Be3, Remark 6] says that the support of the analogue of Lλ over C is
the closure of the nilpotent orbit assigned to the antispherical cell containing ww0λ. (Note that
the definition of the notation “wλ” in [Be3] is different from ours; the w0 does not appear in the
statement there.)
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Conjecture 7.2. If λ ∈ −X+ ∩ XC , then the annihilator of the k[N ]-module
Ext∗G1

(k, T(wλ ·p 0)) is IC .

We emphasize that Conjectures 7.1 and 7.2 are stronger than the conjectures
on set-theoretic support that were proved in [H] and [AHR1]. Nevertheless, the
set-theoretic “lower bound” proved in [AHR1, Theorem 9.3(1)] immediately im-
plies a scheme-theoretic lower bound as well: namely, the annihilator in each of
Conjectures 7.1 and 7.2 is known to be contained in IC .

Lemma 7.3. For p > h, Conjecture 7.1 implies Conjecture 7.2.

Proof. In view of the “lower bound” discussed above, this claim follows by the same
argument as in [AHR1, Remark 9.4]. !
Remark 7.4. Below, for G = GLN (k) with p > N , we will give an argument relating
Conjectures 7.1 and 7.2 in the opposite direction: see Corollary 7.7.

7.2. The type A case. For the remainder of this section we will assume that
G = GLN (k) with p > N . Our goal will be to verify Conjectures 7.1 and 7.2 in this
setting. For any I ⊂ S, let CI denote the Richardson orbit satisfying CI = G · nI ,
and recall the well-known fact that every nilpotent orbit for GLN (k) is of this form.

For any G-stable closed subset Z ⊂ N , we take

CohG×Gm
Z (N ) ⊂ CohG×Gm(N ), resp. Db

ZCohG×Gm(N ) ⊂ DbCohG×Gm(N )

to be the full abelian, resp. triangulated, subcategory consisting of all objects set-
theoretically supported on Z.

Lemma 7.5. For any G-stable closed subset Z ⊂ N , the category Db
ZCohG×Gm(N )

is generated by objects of the form πJ∗F with F ∈ DbCohG×Gm(ÑJ), for various
J ⊂ S such that CJ ⊂ Z.

Proof. Let D′
Z be the full triangulated subcategory of Db

ZCohG×Gm(N ) generated
by objects of the form πJ∗F . We wish to show that D′

Z = Db
ZCohG×Gm(N ). We

proceed by induction on the number of orbits in Z.
It is enough to show that any object G ∈ CohG×Gm

Z (N ) lies in D′
Z . Moreover, any

such G admits a finite filtration whose subquotients are supported on the reduced
subscheme corresponding to Z. We may therefore assume that G itself has reduced
scheme-theoretic support.

Choose a subset I such that the G-orbit CI is open in Z. Assume by induction
that the lemma is already known for Z ′ := Z ! CI . We will exhibit an object
F ∈ DbCohG×Gm(ÑI) together with a morphism φ : G → πI∗F whose cone is
supported (set-theoretically) on Z ′. This will prove the lemma.

Let C̃I = π−1
I (CI), and consider the Cartesian diagram

(7.1)
C̃I ÑI

CI N

p πI

In this proof, let us write πI◦ and π◦
I for the underived push-forward and pullback

functors along πI . Set F = π◦
IG ∈ CohG×Gm(ÑI), and then define φ : G → πI∗F to

be the composition of the maps

G → πI◦π
◦
IG = πI◦F → πI∗F ,
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where the first map is the unit of the adjunction, and the last map is the truncation
map. All objects above have scheme-theoretic support contained in the reduced
subscheme of Z. To prove the claim, it is enough to show that the restriction of φ
to CI is an isomorphism. This restriction is given by

G|CI → p◦p
◦(G|CI ) → p∗p

◦(G|CI ).

Each of these maps is an isomorphism because the map p in (7.1) is an isomorphism:
see, for instance, [J2, Remark 8.8]. !

Theorem 7.6. Conjecture 7.2 holds for G = GLN (k) and p > N .

Proof. By [AHR1, Proposition 9.1] (combined with Lemma 3.4), this problem is
equivalent to showing that for any orbit C and any λ ∈ X+

C , the scheme-theoretic

support of the object Eλ = π∗Ẽw0λ is equal to C. We already know from [AHR1,
Theorem 9.3(1)] that the set-theoretic support at least contains C, so it is enough
to show that the scheme-theoretic support is contained in C. In fact, we will prove
a slightly stronger statement, replacing X+

C by X+
C

: we will show that

(7.2) if λ ∈ X+
C

, then the scheme-theoretic support of Eλ is contained in C.

Suppose C = CI for some I ⊂ S. By Lemma 7.5, Db
CI

CohG×Gm(N ) is generated

by the objects

πJ∗ẼJ,µ{n},

for n ∈ Z, µ ∈ X+,reg
J where J satisfies CJ ⊂ CI . These are silting objects by

Corollary 6.9. Let us set

X′ :=
{
λ ∈ X+ | Eλ is a summand of some πJ∗ẼJ,µ{n}

}
.

Since πJ factors through the inclusion map CI ↪→ N , all objects in the collection
{Eλ}λ∈X′ have scheme-theoretic support contained in CI .

It follows from [AHR1, Theorem 9.3(1)] that X′ ⊆ X+
C

. To prove (7.2), we

must show that X′ = X+
C

. To accomplish this, we will proceed with a K-theoretic
argument. The set

(7.3) {[Eλ]}λ∈X+

is a Z[t, t−1]-basis for the Grothendieck group K
(
DbCohG×Gm(N )

)
(where the

action of t is induced by twisting with {1}). Moreover, by Lemma 7.5, for any
object F ∈ Db

CI
CohG×Gm(N ), the class [F ] lies in the span of the subset

(7.4) {[Eλ]}λ∈X′ .

Two other bases for K
(
DbCohG×Gm(N )

)
are

(7.5) {[Lλ]}λ∈X+ and {[∇λ]}λ∈X+ .

Because the Lλ’s are obtained from the pre-exceptional set {∇λ}λ∈X+ by a recolle-
ment construction, the transition matrix between these bases is “upper-triangular”:
we have

[Lλ] = [∇λ] +
∑

µ∈X+

µ<λ

aλ,µ(t)[∇µ].
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By the same reasoning, the transition matrix between (7.3) and the second basis
in (7.5) is also upper-triangular. It follows that the transition matrix between (7.3)
and the first basis in (7.5) is upper-triangular: we have

(7.6) [Lλ] = [Eλ] +
∑

µ∈X+

µ<λ

bλ,µ(t)[Eµ].

Now suppose that λ ∈ X+
CI

. Then the object Lλ is supported on CI , so it lies in

the span of (7.4). Since [Eλ] occurs with nonzero coefficient in (7.6), we conclude
that λ ∈ X′, and hence that X′ = X+

C
. !

Corollary 7.7. Conjecture 7.1 holds for G = GLN (k) and p > N .

Proof. Suppose µ ∈ X+ belongs to the lower closure of wλ ·p Cp for some λ ∈ XC .
The main result of [H] already tells us that the k[N ]-module Ext∗G1

(T(µ), T(µ)) has

set-theoretic support equal to C, so we need only prove that its scheme-theoretic
support is reduced. Write T(µ)∗⊗T(µ) as a sum of indecomposable tilting modules,
say

T(µ)∗ ⊗ T(µ) = T(ν1) ⊕ · · · ⊕ T(νk).

We have

Ext∗G1
(T(µ), T(µ)) ∼= Ext∗G1

(k, T(µ)∗ ⊗ T(µ)) ∼=
k⊕

i=1

Ext∗G1
(k, T(νi)).

By Theorem 7.6, every nonzero term in the last direct sum above has reduced
scheme-theoretic support. !

Appendix A. Equivariant dg modules

Let H be an algebraic group over k, and let X = Spec(A) be an affine H ×Gm-
variety over k. In other words, A is a graded commutative finitely generated reduced
k-algebra equipped with a rational H-action. We assume throughout that the
grading on the ring A is concentrated in nonnegative degrees.

Let A-modH×Gm be the abelian category of H ×Gm-equivariant A-modules, or,
equivalently, of graded H-equivariant A-modules. Each object M ∈ A-modH×Gm

comes equipped with an “internal grading” M =
⊕

j∈Z Mj , where each Mj is a
rational H-module. For M ∈ A-modH×Gm , we set

M〈1〉 = M ⊗ k−1,

so that the internal grading of M〈1〉 is given by (M〈1〉)j = Mj+1.
Given a (possibly infinite) collection (M i)i∈I of rational H-modules, the product

vector space
∏

i∈I M i carries a (not necessarily rational) action of the abstract
group H(k). A vector v ∈

∏
i∈I M i is said to be rational if it is contained in a finite-

dimensional H(k)-stable subspace on which H acts algebraically. The subspace
consisting of rational vectors is denoted by

∏rat

i∈I

M i ⊂
∏

i∈I

M i.

This is a rational H-module. The same notion makes sense for H × Gm-modules.
If the M i are objects of A-modH×Gm , then because the H × Gm-action on A is
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rational, it is easy to see that
∏rat

i∈I M i is an A-submodule of
∏

i∈I M i. Thus, in

this context,
∏rat

i∈I M i is again an object of A-modH×Gm .

Let A-modfg
H×Gm

be the subcategory consisting of those modules that are finitely
generated over A. Of course, we may identify

A-modH×Gm = QCohH×Gm(X) and A-modfg
H×Gm

= CohH×Gm(X).

Next, let C++A-modH×Gm be the category of chain complexes M = (· · · →
M−1 → M0 → M1 → · · · ) that are “cohomologically doubly bounded below”: that
is, the cohomology modules Hi(M) ∈ A-modH×Gm vanish for i 5 0, and there is
an integer N such that Hi(M)j = 0 for all j < N and all i ∈ Z. We do not impose
any boundedness conditions on the underlying terms M i. However, every chain
complex in C++A-modH×Gm is quasi-isomorphic to one whose terms do satisfy
such boundedness conditions. Denote the derived category of C++A-modH×Gm by

D++QCohH×Gm(X).

It is well known that the category QCohH×Gm(X) = A-modH×Gm has enough
injectives. (This follows from the fact that QCoh(X) has enough injectives, and
that the forgetful functor QCohH×Gm(X) → QCoh(X) has an exact right adjoint,
namely, the “averaging” functor.) Therefore, any complex in C++A-modH×Gm is
quasi-isomorphic to a bounded-below chain complex of injectives. (However, the
internal grading of injective modules is usually not bounded below.)

Next, regard the graded ring A as a dg ring with zero differential. Let A-dgmodH

denote the category of H-equivariant dg modules. Let A-dgmod+
H ⊂ A-dgmodH

be the subcategory consisting of dg modules whose cohomology H•(M) is bounded
below, and then let A-dgmod+,fg

H ⊂ A-dgmod+
H be the subcategory consisting of

modules M for which H•(M) is finitely generated over A. We denote by

D+,H
QCoh(X) and D+,fg,H

Coh (X)

the derived categories of A-dgmod+
H and A-dgmod+,fg

H , respectively.
We define

ξ : C++A-modH×Gm → A-dgmod+
H

to be the functor that sends a chain complex M = (· · · → M−1 → M0 → M1 →
· · · ) in C++A-modH×Gm to the dg module given by

ξ(M)n =
∏rat

i+j=n

M i
j .

It is easy to see that

(A.1) Hn(ξ(M)) ∼=
∏rat

i+j=n

Hi(M)j
∼=

⊕

i+j=n

Hi(M)j .

(The “doubly bounded below” condition ensures that this direct sum is finite.) In
particular, ξ sends acyclic complexes to acyclic complexes, so it induces functors

ξ : D++QCohH×Gm(X) → D+,H
QCoh(X),

ξ : DbCohH×Gm(X) → D+,fg,H
Coh (X).

Lastly, we define

DH
Coh(X) =

the full triangulated subcategory of D+,fg,H
Coh (X) generated by

the essential image of ξ : DbCohH×Gm(X) → D+,fg,H
Coh (X).
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It seems likely that one has DH
Coh(X) = D+,fg,H

Coh (X) in many cases of interest, but
we will not try to prove this claim here.

Lemma A.1.

(1) If I is a bounded-below chain complex of injective objects in C++A-modH×Gm ,
then ξ(I) is a K-injective object in A-dgmod+

H .
(2) Every object M ∈ A-dgmod+

H admits a quasi-isomorphism M → I where
I ∈ A-dgmod+

H is K-injective.

Proof. (1) Let I = (· · · → I−1 → I0 → I1 → · · · ) be a bounded-below chain
complex of injectives in C++A-modH×Gm . Assume without loss of generality that
Ii = 0 for i < 0. Let M ∈ A-dgmodH be an acyclic dg modules, and let f :
M → ξ(I) be a morphism of H-equivariant dg A-modules. We must show that f
is null-homotopic.

For each i, ξ(Ii) is a dg module with zero differential. The underlying graded
A-module of ξ(I) (ignoring the differential) is given by

ξ(I) =
∏rat

i∈Z
ξ(Ii)[−i],

and its differential dξ(I) is a product of maps of graded A-modules

dj
ξ(I) : ξ(Ij)[−j] → ξ(Ij+1)[−j].

Let dM : M → M [1] be the differential of M . The map f : M → ξ(I) is a product
of maps

f j : M → ξ(Ij)[−j] such that dj
ξ(I)f

j = f j+1dM .

Below, we will define a collection of maps

(A.2) sj : M → ξ(Ij)[−j − 1] such that dj−1
ξ(I)s

j−1 + sjdM = f j

for all j ∈ Z. Let s =
∏

i∈Z si : M →
∏

i∈Z ξ(Ii)[−i − 1]. Since M is a rational
H × Gm-module, the image of s consists of rational vectors. That is, we have a
map s : M → ξ(I)[−1] such that dξ(I)s + sdM = f , as desired.

We define the sj ’s by induction on j. For j < 0, we must have sj = 0, and the
equation (A.2) holds trivially. Suppose now that sj is defined for all j < N in such
a way that (A.2) holds. Note that

(fN − dN−1
ξ(I) sN−1) ◦ dM = dN−1

ξ(I) fN−1 − dN−1
ξ(I) (fN−1 − dN−2

ξ(I) sN−2) = 0.

It follows that fN − dN−1
ξ(I) sN−1 induces a map g : M/ im dM → ξ(IN )[−N ]. Since

M is acyclic, we have im dM = ker dM , and M/ im dM
∼= M/ ker dM

∼= im dM .
Regard im dM as a submodule of M [1]. Using the fact that ξ(IN ) is an injective
module, we can extend g : im dM → ξ(IN )[−N ] to a map sN : M [1] → ξ(IN )[−N ].
This map satisfies the equation (A.2) by construction.

(2) If M lies in the image of ξ, say, M = ξ(M̃), then the claim follows from
part (1), since M̃ admits an injective resolution in C++A-modH×Gm . For general
M with differential dM : M → M [1], consider the short exact sequence of A-
modules 0 → ker dM → M → im dM → 0. (Here, we are exploiting the fact that A
has zero differential.) This gives rise to a distinguished triangle in D+,H

QCoh(X). Now,
ker dM and im dM are both in the image of ξ (since they have zero differential), so
they admit K-injective resolutions, and hence so does M . !
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Proposition A.2. The functor ξ : DbCohH×Gm(X) → DH
Coh(X) is a degrading

functor with respect to 〈−1〉[1]. In other words:

(1) There is a natural isomorphism ξ(M) ∼= ξ(M〈−1〉[1]) such that the map
⊕

n∈Z
Hom(M, N〈−n〉[n])

∼−→ Hom(ξ(M), ξ(N))

is an isomorphism for all M, N ∈ DbCohH×Gm(X).
(2) The image of ξ generates DH

Coh(X) as a triangulated category.

Proof. Part (2) holds by definition. For part (1), we rely on the well-known fact that
DbCohH×Gm(X) is equivalent to the full subcategory of D++QCohH×Gm(X) con-
sisting of objects with bounded, coherent cohomology. To find Hom(M, N〈−n〉[n]),
we may replace N by an injective resolution in C++A-modH×Gm , and M by
a bounded chain complex. Then ξ(N) is K-injective, and the chain complex
R Hom(M, N) is cohomologically doubly bounded below. The claim follows by
applying (A.1) to R Hom(M, N). !
Lemma A.3. Let f : X → Y be an H-equivariant closed immersion of affine
H-varieties.

(1) There is a functor f̄∗ : DH
Coh(X) → DH

Coh(Y ) such that the following diagram
commutes:

DbCohH×Gm(X) DH
Coh(X)

DbCohH×Gm(Y ) DH
Coh(Y ).

ξX

f∗ f̄∗

ξY

(2) Assume that k[X] admits a bounded resolution by H ×Gm-equivariant free
k[Y ]-modules. Then there is a functor f̄∗ : DH

Coh(Y ) → DH
Coh(X) such that

the following diagram commutes:

DbCohH×Gm(Y ) DH
Coh(Y )

DbCohH×Gm(X) DH
Coh(X).

ξY

f∗
f̄∗

ξX

Moreover, f̄∗ is left adjoint to f̄∗.

Proof. Since f∗ is an exact functor of coherent sheaves, part (1) is clear. For
part (2), note that the assumption on the existence of a bounded free resolution of
k[X] implies that f∗ takes values in DbCohH×Gm(X) rather than D−CohH×Gm(X).

Let us show that f̄∗ admits a left adjoint, i.e., for M ∈ DH
Coh(Y ), the functor

Hom(M, f̄∗(−)) is representable. We first claim that this property is preserved

under taking cones. That is, if M1
φ−→ M2 → M3 → is a distinguished triangle in

DH
Coh(Y ), and if Hom(Mi, f̄∗(−)) is representable for i = 1, 2, we claim that it is

also representable for i = 3. Let N1, N2 ∈ DH
Coh(X) be such that we have natural

isomorphisms

Hom(Mi, f̄∗(−)) ∼= Hom(Ni,−) for i = 1, 2.

These isomorphisms give rise to maps ηi : Mi → f̄∗Ni for i = 1, 2. Moreover, the
natural transformation Hom(M2, f̄∗(−)) → Hom(M1, f̄∗(−)) induced by φ gives



86 PRAMOD N. ACHAR AND WILLIAM HARDESTY

rise to a map φ̃ : N1 → N2 making the following diagram commute:

M1 M2

f̄∗N1 f̄∗N2.

φ

η1 η2

f̄∗φ̃

Extend φ̃ : N1 → N2 to a distinguished triangle N1
φ̃−→ N2 → N3 →, and then

extend the diagram above to a morphism of distinguished triangles

M1 M2 M3

f̄∗N1 f̄∗N2 f̄∗N3 .

φ

η1 η2 η3

f̄∗φ̃

The new map η3 : M3 → f̄∗N3 gives rise to a natural transformation

Hom(N3,−) → Hom(M3, f̄∗(−)),

and then a five-lemma argument shows that this map is an isomorphism. Thus,
Hom(M3, f̄∗(−)) is representable.

We now return to the main problem of showing that Hom(M, f̄∗(−)) is rep-
resentable. Since DH

Coh(Y ) is generated by the image of ξY , the previous para-
graph tells us that it is enough to show this when M = ξY (M ′) for some M ′ ∈
DbCohH×Gm(Y ). The adjunction map M ′ → f∗f∗M ′ gives rise to a map ξY (M ′) →
ξY (f∗f∗M ′) ∼= f̄∗ξX(f∗M ′), and this map induces a natural transformation

Hom(ξX(f∗M ′),−) → Hom(M, f̄∗(−)).

This map is an isomorphism on objects in the image of ξX , and hence (in view of
Proposition A.2) an isomorphism in general. We have shown that f̄∗ admits a left
adjoint f̄∗, and that if M = ξY (M ′), then f̄∗M ∼= ξX(f∗M ′). !

We conclude with a lemma on change of equivariance. If K ⊂ H is a closed sub-
group, there is a forgetful functor ResH

K : DbCohH×Gm(X) → DbCohK×Gm(X).
If H/K is a projective variety, then this functor has a right adjoint R IndH

K :
DbCohK×Gm(X) → DbCohH×Gm(X), defined as the composition of the equivalence

DbCohK×Gm(X) ∼= DbCohH×Gm(H ×K X)

with push-forward along the map σ : H ×K X → X given by σ(h, x) = h · x. (The
assumption that H/K is projective implies that σ is proper, so that σ∗ takes values
in DbCohH×Gm(X) rather than in D+QCohH×Gm(X).)

Lemma A.4. Let K ⊂ H be a closed subgroup such that H/K is projective. Let
X be an H-variety. There are functors R IndH

K : DK
Coh(X) → DH

Coh(X) and ResH
K :

DH
Coh(X) → DK

Coh(X) such that the following diagrams commute:

DbCohK×Gm(X) DK
Coh(X)

DbCohH×Gm(X) DH
Coh(X),

ξX

R IndH
K R IndH

K

ξX

DbCohH×Gm(X) DH
Coh(X)

DbCohK×Gm(X) DK
Coh(X).

ξX

ResH
K ResH

K

ξX

Moreover:
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(1) The functor ResH
K is left adjoint to R IndH

K .

(2) Let d = dim H − dim K. The functor ResH
K(−) ⊗

∧d(Lie(H)/Lie(K))∗[d]
is right adjoint to R IndH

K .

Proof. The existence of functors R IndH
K and ResH

K in the dg setting making these
diagrams commute is straightforward (using K-injective resolutions for the former,
and exactness for the latter). In the coherent sheaf setting, we noted above that
ResH

K is left adjoint to R IndH
K . In the dg setting, there is at least an obvious

natural transformation ε : ResH
K R IndH

K(M) → M for any K-injective object M .
This natural transformation gives rise to a natural map

Hom(N, R IndH
K(M)) → Hom(ResH

K(N), M).

This map is at least an isomorphism when N and M lie in the essential image of
ξX (by the coherent sheaf version of the adjunction), so it is in fact an isomorphism
for all N and M .

For the last assertion in the lemma, the dg version again follows from the co-
herent sheaf version. The coherent version is a well-known consequence of Serre–
Grothendieck duality. Let us briefly explain how to obtain it. Let p : H×K X → X
be the map given by p(h, x) = h · x. Then p is a smooth, projective bundle
over X with fibers isomorphic to H/K. Serre–Grothendieck duality says that for
F ∈ DbCohH(H ×K X) and G ∈ DbCohH(X), there is a natural isomorphism

(A.3) Hom(F , p∗G
L
⊗ ωp[d]) ∼= Hom(p∗F , G),

where ωp is the relative canonical bundle. (See [Ht, Theorem III.11.1] for the
nonequivariant version of this statement, and see [AB, Example 2.16] for a discus-
sion of how to deduce the equivariant version.) If we identify CohH(H ×K X) with
CohK(X) (cf. (3.1)), then p∗ and p∗ are identified with R IndH

K and ResH
K , respec-

tively, while ωp corresponds to the canonical bundle of H/K, i.e., the line bundle

whose fiber over 1K ∈ K/H is identified with
∧d(Lie(H)/Lie(K))∗. Thus, (A.3)

yields the desired adjunction. !
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