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Dragan Maksimović6, Ron S. Y. Hui29, Johann W. Kolar30, David J. Perreault31 AND Charles R. Sullivan2

1Princeton University, Princeton NJ, USA
2Dartmouth College, Hanover NH, USA

3Paderborn University, Paderborn, Germany
4University of Sydney, Sydney, Australia

5Arizona State University, Tempe, AZ, USA
6University of Colorado, Boulder CO, USA

7University of Bristol, Bristol, UK
8Würth Elektronik, Germany

9Fuzhou University, Fuzhou, China
10Hangzhou Dianzi University, Hangzhou, China

11Indian Institute of Science, Bengaluru, Karnataka, India
12Katholieke Universiteit Leuven, Leuven, Belgium

13Mondragon University, Arrasate, Gipuzkoa, Spain
14Nanjing University of Posts and Telecommunications, Nanjing, China

15Nanyang Technology University, Singapore
16National Taipei University of Technology, Taipei City, Taiwan

17Politecnico di Torino, Torino, Italy
18Silicon Austria Labs, Graz, Austria

19Southeast University, Nanjing, China
20Tsinghua University, Beijing, China

21Hebei University of Technology, Hebei, China
22Tribhuvan University, Pulchowk Campus, Nepal

23Delft University of Technology, Delft, The Netherlands
24University of Tennessee, Knoxville, TN, USA

25Xi’an Jiaotong University, Xi’an, China
26ZJU-UIUC Institute, Zhejiang, China

27Google Inc., Mountain View CA, USA
28Enphase Energy, Austin TX, USA

29University of Hong Kong, Hong Kong, China
30Swiss Federal Institute of Technology, Zürich, Switzerland
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ABSTRACT
This paper summarizes the main results and contributions

of the MagNet Challenge 2023, an open-source research

initiative for data-driven modeling of power magnetic ma-

terials. The MagNet Challenge has (1) advanced the state-

of-the-art in power magnetics modeling; (2) set up examples

for fostering an open-source and transparent research com-

munity; (3) developed useful guidelines and practical rules

for conducting data-driven research in power electronics;

and (4) provided a fair performance benchmark leading to

insights on the most promising future research directions.

The competition yielded a collection of publicly disclosed

software algorithms and tools designed to capture the distinct

loss characteristics of power magnetic materials, which are

mostly open-sourced. We have attempted to bridge power

electronics domain knowledge with state-of-the-art advance-

ments in artificial intelligence, machine learning, pattern

recognition, and signal processing. The MagNet Challenge

has greatly improved the accuracy and reduced the size of

data-driven power magnetic material models. The models

and tools created for various materials were meticulously

documented and shared within the broader power electronics

community.

KEYWORDS
Open-Source, Data-Driven Methods, Machine Learning, Ar-

tificial Intelligence, Power Magnetics, Power Ferrites

I. MAGNET CHALLENGE OVERVIEW

MAGNETIC components account for more than 30 %

of both the cost and losses in nearly all power con-

verters [1], [2]. The performance of these magnetic compo-

nents represents a significant bottleneck in advancing high-

performance power electronics. Magnetic components are

becoming increasingly sophisticated with different portions

of the core excited by different waveforms [3]. Consider-

ations include the impact of dc bias [4], geometry [5] and

temperature [6]. Intricate winding structures change terminal

impedance and current distribution [7]. Usually, these effects

can only be captured as look-up tables or loss maps [8]–

[10]. While circuit simulation tools have expedited integrated

circuit design, and numerical field simulation tools have

deepened our understanding of intricate component geome-

tries, progress in modeling and simulating power magnetic

material characteristics has been lagging.

Fundamentally, Maxwell’s equations can precisely de-

scribe the linear behavior of conductors at high frequencies.

Finite element models have the potential to largely capture

the geometry and thermal impact. The challenge lies in

the highly nonlinear nature of magnetic materials and the

considerable variation in magnetic component-level behav-

iors arising from the material properties and manufacturing

processes [11]. Despite advancements in elucidating core

loss phenomena [12]–[14], physical theories and lumped

circuit models fall short in predicting core losses or B-H
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FIGURE 1. The vision and mission of the MagNet Challenge in 2023. The
open-source initiative aims at developing less complex, more versatile,
and more accurate data-driven power magnetics models.
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FIGURE 2. The 1-year timeline of the MagNet Challenge in 2023, spanning
from February 2023 to February 2024.

loops with practical accuracy for real-world materials. Ex-

isting magnetic material modeling tools either oversimplify

and lack accuracy, or rely on experimental measurements

after design and fabrication. Power electronics design can be

greatly advanced by a rapid and precise method for modeling

the complex behaviors of magnetic materials, especially tools

that can be integrated with circuit simulations or finite-

element analysis for capturing non-linear effects.

A majority of commonly used methods of modeling

core losses in power magnetics are based on the empirical

Steinmetz equation (SE) [15]. Steinmetz parameters may

vary dramatically across the magnetics operating range. As

power loss increases, the temperature of magnetic materials

also increases, which is not well captured in the Steinmetz

modeling framework. Despite several modifications and up-

grades to the original SE (e.g., MSE [16], NSE [17], ISE

[18], SSLE [19], CWH [20], iGCC [21], iGSE [22], and

i2GSE [23]) – usually by adding new parameters to the

SE framework – these curve-fitting methods have limited

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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accuracy and cannot be smoothly expanded to cover more

influences. Upgrading the Steinmetz modeling framework is

a key step in advancing the design flow for power magnetics.

Another important task for describing power magnetic

materials is to model the B–H loops [24]–[27]. As a material

signature, the B–H loop can be used to extract the power

loss, and can be used in analytical or numerical tools to

analyze the behaviors of magnetic components, such as

inductance variation, saturation, and coupling. Existing hys-

teresis modeling frameworks (e.g., the Preisach model [28]

and the Jiles-Atherton model [29]) are generally developed

based on semi-empirical equation-based methods. There are

opportunities to upgrade the B-H modeling methods with

modern neural network methods [30], [31], and to unify the

modeling of core losses and B-H loops.

These contributions of MagNet Challenge include both

advancing the technology and fostering a more collaborative

research community in power electronics by:

1) Advancing the state-of-the-art: Through collabora-

tive and competitive multi-objective optimization, the

challenge has pushed the boundaries of what is possi-

ble in power magnetics modeling.

2) Developing guidelines for data-driven research:
The challenge has established practical rules and use-

ful guidelines for conducting data-driven research in

power electronics.

3) Fostering an open-source research community: It

has set examples for creating a transparent, open-

source international research community, promoting

collaboration on key topics.

4) Exploring future research directions: By providing a

fair performance benchmark, it offers new insights that

can guide future research in power magnetics modeling

towards the most promising approaches.

A. MagNet Challenge Motivations
“It’s time to upgrade the Steinmetz equation!” – the Stein-

metz equation (SE) is an empirical equation used to calculate

the power loss (typically referred to as core loss) per unit

volume in magnetic materials when subjected to external

sinusoidal magnetic flux. The earliest version was proposed

by Charles Steinmetz in the 1890s [32], [33]. Typically, the

SE is written as:

Pv = k × fa
sw ×Bb

ac, (1)

where Pv is the time average power loss per unit volume

(e.g., in mW/cm3), fsw is the frequency (e.g., in kHz), and

Bac is the peak ac magnetic flux density (e.g., in mT);

and k, a, and b, known as the Steinmetz coefficients or

Steinmetz parameters, are generally found empirically from

the material’s core loss curves by curve fitting. One of

the most popular upgrades to the Steinmetz equation is the

improved generalized Steinmetz equation [22], often referred

to as iGSE, which estimates losses with any flux waveform

using only the parameters needed for the original equation.

The iGSE can be expressed as:

Pv =
1

T

∫ T

0

ki

∣∣∣∣dBdt
∣∣∣∣
a

(ΔBb−a)dt. (2)

Here, ΔB is the peak-to-peak flux density swing, and ki is

defined by

ki =
k

(2π)a−1
∫ 2π

0
| cos θ|a2b−adθ

(3)

while a, b, and k are the same coefficients used in the

original Steinmetz equation. The iGSE is widely used in

practice because most other models require parameters that

are not usually given by manufacturers. The i2GSE method

[23] improves upon the iGSE by adding five more param-

eters to the original three Steinmetz parameters to achieve

higher accuracy. In practice, these parameters are not widely

available from manufacturers, leaving the designer to collect

them. Even so, describing the complex behaviors of typical

power magnetic materials with only eight parameters is

often insufficient to offer the desired accuracy for precise

magnetics modeling. The different methods of finding the

Steinmetz parameters add uncertainty to the modeling accu-

racy. They also do not capture the impact of flux dc bias and

temperature.

The MagNet Challenge, modeled after the ImageNet Chal-

lenge organized by the computer vision community [34],

aimed to create an open-source community in power elec-

tronics and upgrade the existing Steinmetz equation-based

core loss modeling framework with the support of a massive

amount of high-quality measurement data covering different

materials across a wide range of frequencies, waveform

shapes, and temperatures. As illustrated in Fig. 1, a mod-

eling framework that can better leverage modern data-driven

methods to improve the model accuracy, model versatility,

and to reduce the model size was the goal of MagNet Chal-

lenge. We seek data-efficient, computing-efficient, memory-

efficient, and scalable algorithms to develop new tools and

advance the understanding of magnetic core characteristics,

including core losses and B-H loops. The key questions we

tried to answer when designing the challenge rules included

the following:

• Shall we use one uniform modeling framework (e.g.,
the SE framework), or many different modeling
frameworks to cover a wide range of materials for

different purposes?

• What accuracy is sufficient for power magnetics

modeling, considering sample-to-sample variation, ge-

ometry uncertainty, temperature variation, dc bias, and

other manufacturing and operating conditions? How

much error comes from materials and how much error

comes from measurements?

• What is the minimum number of parameters a

model needs to include to describe a particular power

magnetic material with satisfactory accuracy across a

wide operation range?

VOLUME , 3
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TABLE 1. MagNet-related GitHub Repository.

Project GitHub Repository

MagNet Challenge https://github.com/minjiechen/magnetchallenge

MagNet AI & Data https://github.com/PrincetonUniversity/magnet

MagNet Toolkit https://github.com/upb-lea/mag-net-hub

MagNet Engine https://github.com/moetomg/magnet-engine

• What is the best framework for modeling power mag-

netics considering different design goals (e.g., for core

loss modeling, B–H loop modeling, hand calculation,

SPICE simulation, or finite element analysis)?

• How can we visualize the data and develop explainable

data-driven models to advance the physical under-
standing of power magnetic materials?

• How much data do we need to train a good magnetic

material model across a wide operation range? How to

sample the operation space and reduce the dimension?

These are just a few example questions that one may

ask when developing a new framework for modeling power

magnetic material characteristics. To answer these questions,

we designed the following three competition tracks:

• Model Performance Track: Develop a systematic ap-

proach to learn from a large amount of existing data for

pre-existing materials, and apply this approach to model

similar and different new materials with new data, and

make accurate predictions.

• Concept Novelty Track: Develop new concepts for

power magnetic core loss and B-H loop modeling,

including but not limited to fundamental physical mech-

anisms and hypotheses, as well as data and signal

processing methods, tools, and algorithms.

• Software Engineering Track: Develop software tools

and systems with high readability, reusability, versatility

for open-source development, and enhanced human-

computer interface (HCI) for rapid design iterations.

The focus of the MagNet Challenge in 2023 was to model

core loss in periodic steady state. B–H loops were provided

as training data. Other related topics, such as modeling

transient dynamics of magnetic components, and predicting

B–H loops, were beyond the scope of the MagNet Challenge

in 2023 but may be included in future competitions.

The MagNet Challenge reviews and compares existing and

new methods through an open-source competition. The goal

is both to advance technology and to foster a more collab-

orative research community. Instead of looking back into

existing literature, a forward-looking platform was created to

thoroughly compare the strengths and weaknesses of existing

and newly developed technical methods under uniform rules.

By participating in the MagNet Challenge, all teams enter

the above three tracks and competed on model performance,

size, and software engineering. Figure 2 shows the timeline

of the MagNet Challenge in 2023. MagNet Challenge at-

TABLE 2. Sizes of the training and testing datasets for the 10 materials

used in competition round #1.

Material 3C90 3C94 3E6 3F4 77

Training 40713 40068 6996 6564 11444

Testing 5000 5000 5000 5000 5000

Material 78 N27 N30 N49 N87

Training 11380 11396 8978 8602 40616

Testing 5000 5000 5000 5000 5000

† Each data point represents the measured B–H loop

information at a particular operating point.

‡ Three different types of excitation (sinusoidal, triangle,

and trapezoidal) are included for each material in both

the training and testing sets.

tracted more than 220 international researchers to advance

this important topic together as competition participants,

judges, organizers, and volunteers. By submitting the devel-

oped code, reports, and models to the MagNet Challenge,

the intellectual property was disclosed to the public.

Table 1 lists the key MagNet-related GitHub repositories.

The competition handbook, tutorials, supporting documents,

training and test datasets, final submitted reports, presenta-

tion slides, meeting recordings, and the submitted models

can be found at the GitHub repository of the MagNet

Challenge. The MagNet AI & Data repository contains the

raw data and related data visualization tools maintained

by Princeton University. Other repositories include the 1)

MagNet Tookit developed by Paderborn University as a

hub for selected power loss models that were elaborated

by different competitors during the MagNet Challenge; and

2) MagNet Engine developed by University of Sydney as

a user-friendly graphical user interface (GUI) for modeling

magnetic core losses in power electronics.

B. MagNet Challenge Rules and Data Preparation
The goal of the MagNet Challenge in 2023 is to develop

intelligent software tools that can learn and predict core

loss information with efficient data usage. For each magnetic

material of interest, student teams were asked to develop a

MATLAB or Python function that takes the following three

inputs for modeling power magnetic materials in steady state:

• A single-cycle arbitrary flux density waveform in 1024

steps: B(t) (unit: T).

• An operation frequency: fsw (unit: Hz).

• A temperature: T (unit: degrees C).

and produce the following output:

• An average volumetric core loss estimation (floating

point): Pv (unit: W/m3).

Measurement data with dc bias was made available in the

MagNet database [4]. However, due to the lack of sufficient

high quality data and a clear understanding of the measure-

4 VOLUME ,



TABLE 3. Sizes of the training and testing datasets for the 5 materials used

in competition round #2.

Material 3C92 T37 3C95 79 ML95S

Training 2432 7400 5357 580 2013

Testing 7651 3172 5357 7299 3738

† The training and testing datasets were strategically

sampled in particular ways to examine the model per-

formance from different angles.

Single-Cycle B-H Sequences Single-Cycle B-H Loop

FIGURE 3. An example data sample offered in the MagNet Challenge. This
data point describes the B–H loop of N87 material operating at 25◦C,
200 kHz, and zero dc bias under a trapezoidal excitation. The volumetric
core loss is 113.64 kW/m3 under zero dc bias. Over 2,000,000 data points
like this are available in the MagNet database for 15 different materials.

ment accuracy, dc bias [4], [35] and geometry impact [5]

were not included in the MagNet Challenge in 2023. Student

teams were encouraged to consider dc bias information,

which may be included in future competitions.

Figure 3 shows an example data point used in the MagNet

Challenge. Each raw data point is a measured B-H loop

describing the characteristics of a power magnetic material

used in an experimental scenario. The capacitive effect of

the core materials, as well as the winding to core parasitic

capacitance are captured in the measurements. The training

data includes the B-H loop time sequences, frequency fsw,

and temperature T . The final outcome of the model is a

callable function:

Pv = f(B(t), fsw, T ). (4)

The data used for the MagNet Challenge comes from

the Princeton-Dartmouth MagNet Project [11], [30], [31].

The challenge included two rounds of competitions: a pre-

test round which allowed the teams to get familiar with

the data and the competition rules, and a final-test round

which determined the teams’ final ranking. Each training

data point is offered as a pair of single-cycle B(t) and H(t)
time sequences, with 1024 steps at different frequencies fsw
and temperatures T . The area of the B–H loop determines

the volumetric core loss Pv. Note that different numerical

integration algorithms for calculating the B–H loop areas

may result in very different core loss estimation results,

especially if the B–H curve is not smooth (e.g., due to non-

sinusoidal excitation or nonlinear material behavior). The

FIGURE 4. Histogram of the prediction error of an example model,
together with labeled average, 95th percentile error, and maximum error.
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average model number of parameters (size) of the 24 final submissions,
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benchmark. The minimum average 95th percentile error reaches 7 %, and
the smallest model parameter size reaches 60. Both the model sizes and
average errors are greatly reduced as a result of the community effort in
the MagNet Challenge.

testing data points include B(t), fsw, and T , but do not

include H(t) or Pv. The datasets used for the pre-test phase

and the final-test phase were:

• Round #1 Training: A large amount of training data for

10 materials dedicated for training: {3C90, 3C94, 3E6,
3F4, 77, 78, N27, N30, N49, N87}.

• Round #1 Testing: Separate, randomly sampled testing

data for the same 10 materials: {3C90, 3C94, 3E6,
3F4, 77, 78, N27, N30, N49, N87}.

• Round #2 Training: Strategically sampled training data

for 5 materials: {3C92, T37, 3C95, 79, ML95S}.

• Round #2 Testing: The remaining data for the same

5 materials used in Round #2 training: {3C92, T37,
3C95, 79, ML95S}.

Tables 2-3 list the size of the dataset made available for

each material. As documented in [11], [30], the MagNet

dataset covers a fundamental frequency range from 50 kHz

VOLUME , 5
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FIGURE 6. Model accuracy and model size ranking of the 24 teams that
qualified for the final competition. Note that the differences in the model
accuracy are usually very small among the best performing teams,
whereas the differences in model size are often very large.

to 500 kHz, and a flux density range from 10 mT to 300 mT,

with sinusoidal, triangular, and trapezoidal waveforms. The

waveforms were collected assuming the magnetic compo-

nents are utilized in a real power converter (i.e., a “T”

type circuit in [11]). The data acquisition process was fully

automated to enable systematic error analysis and ensure

high measurement repeatability. The frequency and flux

density limits were carefully selected to ensure high-enough

data quality. Although the MagNet Challenge focuses on

material-level characteristic model of ferrite materials, simi-

lar methods and data can be used to advance component-level

models and to model non-ferrite materials.

The accuracy of a data-driven model is always bounded

by the accuracy of the measurements. One can improve the

accuracy of a data-driven model by increasing the number

of parameters in the model, however, the chance of model

overfitting can significantly increase if the model accuracy is

higher than the measurement accuracy. A deep understanding

of the modeling error and measurement error enables a

good balance between model accuracy and model size. In

the MagNet Challenge, the maximum measurement error is

generally controlled below 20 % across the full operation

range [11], with an average error below 10 %. As a result,

we encouraged the participating teams to target an average

model error of around 10 %, and try to minimize the number

of model parameters.

The names of the materials used in the round #2 competi-

tion were kept confidential to ensure competition fairness.

The datasets for the 5 materials used in the round #2

competition were strategically sampled to test the model

performance in 5 different ways:

• 3C92 (Material A) is a material that looks very similar

to the 10 materials available in the first round training

set. It was used to set up a “tiny data challenge”, in

which only a small dataset was offered for training,

and a large dataset was reserved for testing.

• T37 (Material B) is a broadband material, which looks

fairly different from the 10 materials available in the

previous training set. It was used to set up a “new mate-

rial challenge”, in which a large dataset was offered for

training, and a small dataset was reserved for testing.

• 3C95 (Material C) is a material used for testing temper-

ature dependence. It was used to set up a “temperature

challenge”, in which the testing dataset includes tem-

peratures that were not covered in the training dataset.

• 79 (Material D) is a material used for testing waveform

dependence. It was used to set up a “waveform chal-

lenge”, in which the training set has only very limited

data points for trapezoidal-waveform excitation, while

the testing set has many data points for trapezoidal

waveforms.

• ML95S (Material E) is a material used for testing

frequency and flux density dependence. It was used

to set up a “frequency and flux density challenge”, in

which the training set has very limited data points for a

few frequency and flux density operating points, while

the testing set has lots of data points not covered in the

training set.

MagNet Challenge focused on core loss prediction. The

absolute value of the relative error ε of the core loss

prediction is defined as:

ε =
|Pv,meas − Pv,pred|

Pv,meas
× 100%. (5)

Here Pv,meas is the measured volumetric core loss, Pv,pred

is the predicted volumetric core loss. The histogram of ε for

each material is then plotted with the average, the 95th and

99th percentile, and the maximum errors labeled as in Fig. 4.

The 95 % percentile error was used to rank the accuracy

of different models. Based on our evaluation of sample-to-

sample variation of power magnetic components [11], we

anticipate a 95th percentile error of less than 10 % as being

competitive for magnetic core loss modeling1.

It is important to quantify the model size. We define the

model size as the total number of parameters that a model

needs to store to describe the characteristics of each material.

The complexity of algorithms, such as model structure,

iteration loops, layers of neuron networks, etc., are not

considered in counting the number of parameters. MagNet

Challenge was designed to encourage models with more

computation and less memory usage.

1The normalization in (5) might have lead towards a data bias overem-

phasizing samples with very low absolute losses since the estimation

error (numerator) typically does not scale linearly with the target value

(denominator). The extremes of operating points with very low losses (where

loss may be negligible) and very high losses (where operation is impractical)

may be of less interest in practical magnetic component design work for

power electronics, so alternative performance metrics might be considered

in future challenges.
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C. MagNet Challenge Final Results
In April 2023, 39 teams from 17 countries registered for the

MagNet Challenge. 24 teams from 17 countries continued

through the end and submitted their final results. A com-

plete list of the participating teams in the two rounds of

competition is provided in the Appendix.

Developing a good data-driven power magnetics model is

a multi-objective optimization process. Pooling the individ-

ual research outcomes together visualizes the Pareto front of

the state-of-the-art and provides a fair performance bench-

mark and insightful outlook on future research directions.

Figure 5 shows the average 95th percentile error and model

size of the final submissions. The winning models use about

1,000 parameters to achieve less than 10 % average 95th

percentile error. Fig. 6 lists the accuracy ranking and size

ranking of the 24 teams.

Table 4 provides a brief summary of the models and

methods developed by the participating teams. Table 5 lists

the 95th percentile error and size of the models developed

by each team for each of the 5 testing materials.

II. MAGNET CHALLENGE RESEARCH FINDINGS
The MagNet Challenge offered an opportunity for student

teams to explore a wide range of equation-based and data-

driven methods for power magnetic material modeling, and

the outcomes of the challenge quantitatively verified the

fundamental tradeoff between model size and model ac-

curacy. Most teams centered their strategy around modern

machine learning methods. A few of them are focused on

physics-based or equation-based methods. Evaluating a wide

variety of different methods with a strategically designed

database leads to a better understanding of the strengths and

weaknesses of different strategies.

Note that the descriptions of these models are devel-

oped based on their performance and novelty ranking in

the MagNet Challenge. Although the rules of the MagNet

Challenge were carefully designed to reflect the opportunities

and challenges in the real application scenario, a winning

model in the MagNet Challenge may or may not perform

well in real-world application scenarios. While we were able

to rank different methods by different evaluation rules as a

part of this competition, these methods are pending further

improvements, and their rankings may be very different

under different evaluation rules. Nevertheless, the perfor-

mance and rankings reported in this paper can provide useful

guidelines for further enhancement of these methods and the

development of new methods.

Here we provide a brief review of many of the individual

scientific papers recently published by the research teams

participating in the challenge [36]–[45].

A. Grey-Box Hybrid Approach
One widely-adopted data-driven approach in the MagNet

Challenge is the grey-box neural network approach, for

its excellent capability of balancing model accuracy and

1D CNN

1024 samples

MLP

MLP
Add

Add

Area

scaling

factor

Time series 

features
Scalar fe

atures

Subtract mean along 

time domain

Polygon

area calculation

feature
engineering #1

bh curve
estimation

bh curve-based
power loss est.

data-driven
loss correction

target
estimate

feature 
engineering #2

input data

FIGURE 7. Overview of the HARDCORE architecture developed by
Paderborn University, which leads to excellent model accuracy and
compact model size.

H

B
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H

B

H

B

H

Dynamic subnetwork

Hdyn
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CsegB

f

T

dB

Sr

T

f

rSr
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FIGURE 8. The MMINN architecture developed by University of Sydney.

model size. The neural network architectures are designed

with guidelines from physical understanding and explainable

logic. Figure 7 shows the HARDCORE architecture devel-

oped by Paderborn University [36]. The architecture starts

from feature engineering on the B(t) waveform, followed

by a B–H loop estimation block implemented as a 1-D
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TABLE 4. MagNet Challenge Methodology Summary.

Team Name Method Methodology Highlights

ASU Black-Box Data-Driven Model optimization guided by deep understanding about error and data size

Bristol Black-Box Data-Driven Systematic transfer learning, thorough data engineering and model optimization

Fuzhou Black-Box Data-Driven Systematic neural network exploration based on deep physical insights

HDU Black-Box Data-Driven Neural network implementation based on vision transformer approach

KU-Leuven Black-Box Data-Driven Exploration on generative adversarial neural network

NJUPT Black-Box Data-Driven Equation-based approach for smoothing loss maps

NTU Black-Box Data-Driven Vision transformer approach based on CNN

NTUT Black-Box Data-Driven Systematic neural network approach with automatic tuning of hyper-parameters

Tsinghua Black-Box Data-Driven Multi-Layer Perceptron (MLP) regression with Fast Fourier Transform

TU-Delft Black-Box Data-Driven Systematic neural network implementation and multi-objective optimization

UTK Black-Box Data-Driven GAN based data augmentation, attention based U-Net with linear conditioning

XJTU Black-Box Data-Driven Feature extraction with CNN, and sequence prediction with LSTM

CU-Boulder Grey-Box Hybrid Random forest regression with high data usage efficiency and low computing cost

IISc Grey-Box Hybrid Waveform classification and neural network development using learnable parameters

Paderborn Grey-Box Hybrid Residual CNN with physics-informed extensions (intermediate B-H reconstruction layer)

PoliTO Grey-Box Hybrid Hybrid neural network model with equation based methods for trustworthy

SAL Grey-Box Hybrid Graph neuronal network (GNN) combined with symbolic regression (SR)

SEU-WX Grey-Box Hybrid Hybrid neural network model with physical insights

Sydney Grey-Box Hybrid Hybrid neural network model with physical insights, excellent software engineering

Tribhuvan Grey-Box Hybrid Fast fourier transform for signal pre-processing followed by LSTM

ZJUI Grey-Box Hybrid Neural network for loss prediction and iGSE for safety guarantee

Mondragon White-Box Equation-Based Fully automated multi-dimensional curve-fitting

SEU-MC White-Box Equation-Based Multi-dimensional curve-fitting with physical insights

convolutional neural network (CNN). The core loss predicted

by the B–H loop area calculation is then corrected by a

data-driven model which produces the final prediction. This

model is highly compact (with 1755 parameters) but also

delivers very high prediction accuracy across all five testing

materials.

The Magnetization Mechanism-Inspired Neural Network

(MMINN) architecture developed by University of Sydney
also achieved good balance between model size and model

accuracy. MMINN is designed to capture the fundamental

magnetization processes of magnetic materials at the micro-

scopic level. As illustrated in Fig. 8, MMINN comprises two

subnetworks for capturing hysteresis (i.e., the magnetization

of magnetic domains) and dynamic (i.e., the eddy current

of the core material owing to the electromagnetic induction)

behaviors, and has the potential to be extended to capturing

more complex dynamic core loss profiles when more data

is available. The compact MMINN model only needs 1000

parameters and performed well on the accuracy test.

The model proposed by the team from Politecnico di
Torino tried to apply different modeling methods to different

excitation waveforms to minimize the model size. SVM

regression was used to model losses with sinusoidal exci-

tations and neural networks were used to model losses with

triangular excitations. The composite waveform hypothesis

was then used to convert the results predicted by the neural

network trained with triangle data for trapezoidal excitations.

The model presented by the team from the Indian Insti-
tute of Science followed a similar strategy of developing

a neural network model tailored to each type of excitation.

The loss function for training the neural networks comprised

a data loss term, i.e., MSE (output of neural network –

measured core loss), and an empirical loss term, i.e., MSE

(output of neural network – empirical equation for core loss),

where MSE (·) is the mean-squared error. The team used

the classical Steinmetz equation for sinusoidal excitations

and the composite waveform hypothesis-based improved

Steinmetz equations (ISE) [37] to compute the empirical

loss term for triangular and trapezoidal excitations as seen

in Fig. 10. In addition, the team incorporated the concept

of learnable parameters to extract the unknown Steinmetz

parameters. The model achieved very high accuracy on four

materials (except 79) with a relatively large number of

parameters.

The team from University of Colorado Boulder selected

random forest regression as the core of their strategy [38].

Random forest algorithms prioritize rapid training and com-

putation over parameter size as compared to other previ-

ously mentioned neural network methods. By leveraging the

equation-based model as a starting point and attempting to

only predict and correct the error, this method offers high

8 VOLUME ,



TABLE 5. MagNet Challenge final results: 95th percentile error and model size of the 24 teams qualified for the final competition.

Material 3C92 (Material A) T37 (Material B) 3C95 (Material C) 79 (Material D) ML95S (Material E)

Team Name % Error # Size % Error # Size % Error # Size % Error # Size % Error # Size

ASU 9.6 1576 5.6 1576 8.5 1576 55.3 1576 13.5 1576

Bristol 8.5 90653 2 90653 4.5 90653 15.9 16449 8 16449

Fuzhou 4.9 8914 2.2 8914 2.9 8914 20.7 8914 9 8914

HDU 16 2396048 3.7 2396048 6.8 2396048 201.4 2396048 19.3 2396048

KU-Leuven 72.4 118785 58 118785 66.1 118785 71.3 118785 53.7 118785

NJUPT 45.9 9728 6.9 29600 26.4 21428 59.4 1740 68.4 8052

NTU 99.8 28564 88.7 28564 93.7 28564 99.3 28564 97.8 28564

NTUT 19.9 86728 7.4 86728 7.7 86728 65.9 86728 85.1 86728

Tsinghua 13.1 116061 6.4 116061 9.3 116061 29.9 116061 25.7 116061

TU-Delft 7.2 1419 1.9 2197 3.5 2197 29.6 1419 9.1 2454

UTK 15.6 23000 4.3 23000 9.3 23896 79.2 32546 98 25990

XJTU 12.4 17342 3.8 17342 10.7 17342 30 17342 14.1 17342

CU-Boulder 40.5 11012900 7.8 11012900 25.2 11012900 44.1 11012900 36.3 11012900

IISc 4.6 25923 2.8 25923 6.8 25923 39.5 25923 9.3 25923

Paderborn 4.8 1755 2.2 1755 3.4 1755 22.2 1755 6.6 1755

PoliTO 32.1 610 33.4 760 27.7 748 47.1 700 28.5 610

SAL 351.2 329537 138.7 329537 439.5 329537 810.1 329537 152.8 329537

SEU-WX 26.1 139938 12.9 139938 15.6 139938 79.1 139938 19.1 139938

Sydney 10 1084 3.7 1084 5 1084 30.7 1084 19.9 1084

Tribhuvan 24.5 1033729 8 1033729 8.9 1033729 67.9 276225 118.7 1033729

ZJUI 15.5 4285 6.1 4285 10.1 4285 67.9 4285 77 4285

Mondragon 21.3 60 7.9 60 14.4 60 93.9 60 21.5 60

SEU-MC 38.8 81 6.9 56 21 61 50.5 23 28.2 53
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FIGURE 9. The two-stage PI-MFF-CN architecture developed by Southeast University SEU-WX.

data usage efficiency and low computation cost compared to

other models.

The Southeast University SEU-WX team presented an

interesting Physics-Inspired Multimodal Feature Fusion Cas-

caded Network (PI-MFF-CN), which was developed based

on micromagnetism and the associated Landau-Lifshitz-

Gilbert (LLG) equation, and is trained by embedding phys-

ical mechanisms in the gradient learning process of the

network. As shown in Fig. 9, a multimodal feature fu-

sion method then combines the advantages of CNNs and

fully connected neural networks (FCNNs) to learn mixed-

sequence scale data. Although it did not rank high in the

competition performance metrics, this method represents a

deep exploration of hybrid data-driven and physics-based

models.
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Silicon Austria Labs’s model is on the boundary between

gray-box model and black-box model. They trained a graph

neural network (GNN) and utilized symbolic regression

(SR) to develop a new formula for the magnetic core loss.

However, the outcomes obtained from this approach were

found to be unsatisfactory, primarily due to the structure

of the problem. Ultimately, a NN combined with an FFT

and some preprocessing techniques were utilized. FFT in

combination with NN was also explored by the team from

Tribhuvan University in [39]. The teams from Nanjing
University of Posts and Telecom also explored equation

based methods with novel insights and promising outcomes.

Zhejiang University-UIUC explored a method which uses

neural networks structured around the iGSE as a base model

to accelerate the learning process and reduce the data re-

quirement.

B. Black-Box Data-Driven Approach
The model developed by Fuzhou University fully exploited

the potential of a sequence-to-scalar transformer architecture,

together with a deep understanding of the data and the

principles of core loss modeling. As can be seen in Fig. 11,
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FIGURE 11. The multi-stage fine-tuning strategy introduced by Fuzhou
University.

they introduced a multi-stage fine-tuning strategy to explore

the process of knowledge transfer, thereby discovering a

potential solution for a fundamental cross-material model,

i.e., the “MagNet-GPT”, as further extended solutions for

the principles presented in [31], [40], [41].

The University of Bristol team adopted a long-short-term-

memory (LSTM) architecture to process the time sequences,

followed by a Feedforward Neural Network (FNN) for merg-

ing frequency and temperature information. The outstanding

model performance comes from the deep understanding and

engineering practice on transfer learning. As illustrated in

Fig. 12, the transfer learning process enables the model to

achieve high performance even with very limited available

data for a new power magnetic material. This model needed

a lot of parameters, but achieved high performance across

all five materials.

The Delft University of Technology team proposed an

excellent strategy for multi-material transfer learning and

model multi-objective optimization (MOO) [42]. As illus-

trated in Fig. 13, the MOO approach allows the model to

precisely select the right parameter size to balance model size

and accuracy. The optimization shows that a total number of

1,000 parameters is a good balance point between model size

and accuracy, which was validated by the comparison to the

winning models in the MagNet Challenge.

The University of Tennessee Knoxville team intro-

duced state-of-the-art machine learning concepts, attention-

based U-Net architecture, together with generative-advisory-

network (GAN) based data augmentation, to the MagNet

Challenge. U-Net, as shown in Fig. 14, is a neural network

architecture widely used for image segmentation. The team

specifically designed a U-Net architecture to adapt to the

intricate and varying nature of magnetic materials and op-

erational environments. The large U-Net model excelled for

3C92, T37, and 3C95, but didn’t perform well for 79 and

ML95S.

The teams from Arizona State University, Xi’an Jiao-
tong University, Tsinghua University, National Taipei
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University of Technology, Nanyang Technological Uni-
versity, and Hangzhou Dianzi University also presented

a variety of neural network architectures (combinations

of ViT, CNN, FCNN, LSTM, and Transformer) together

with systematic training and fine-tuning strategies for cross-

modeling of many materials. These methods tried to leverage

more advanced signal processing techniques (e.g., patch

embedding, class token, quantization) to reduce the load of

the neural networks and use fewer parameters. Some of these

models have very good performance and the model sizes are

relatively small.

The KU-Leuven team introduced a novel Conditional

Generative Adversarial Network (cGANET) model [43]

which explores the possibility of training an adversarial

neural network to improve the trustworthiness of a traditional

neural network approach, as illustrated in Fig. 15. It has the

potential to ensure bounded safety for data-driven methods

to predict trustworthy results.
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FIGURE 13. The multi-material transfer learning and multi-objective
optimization method proposed by TU Delft [42].

C. White-Box Equation-based Approach
The most successful equation-based attempt in the MagNet

Challenge is the ci2GSE method developed by the team from

Mondragon University, a continuation of the composite

improved Generalized Steinmetz Equation (ciGSE) [44]. The

method is a combination of the original true Steinmetz

Equation (tSE), the improved Generalized Steinmetz Equa-

tion (iGSE), the composite waveform hypothesis (CWH),

and the improved improved Generalized Steinmetz Equation

(i2GSE). For each temperature point, the ci2GSE uses 9

parameters to describe the core loss a three step trapezoidal

excitation as:

Pv =Σ[D(ek
′
1+a1 ln | dB

dt |+b1 lnΔB + ek
′
2+a2 ln | dB

dt |+b2 lnΔB)]

+ f × ek
′
rel+arel ln |trel|+brel lnΔB ,

(6)

where k′1, k′2, k′rel, a1, a2, arel, and b1, b2, brel are the

Steinmetz parameters used to describe the core losses in the

three sub-sections of the piece-wise linear waveforms (e.g.,

triangle and trapezoidal excitations). The core losses during

the relaxation time are captured. In addition, six additional

parameters p00, p10, p01, p20, p11 and p02, are used to fit

the sinusoidal core loss data into the three dimension f ,

ΔB, and Pv plane. The curve-fitting was performed for

each temperature. The total number of parameters needed

to describe the material characteristics at four temperature

points are (9+6)× 4 = 60. The curve-fitting algorithm was

implemented in Excel and was fully automated. The average

95th percentile error of this method is about 15 %, which

is impressive given that the model has only 60 parameters.

Limitations of the curve-fitting approach can be seen in

VOLUME , 11



:

G
RU

 L
ay

er

G
RU

 L
ay

er

G
RU

 L
ay

er

G
RU

 L
ay

er

Af
T

Af
T

Af
T

Af
TAttention

Layer

Transformation Parameters Generator

Metadata
(frequency, temperature, waveform type)

Input 
Sequence

Output 
Sequence

FIGURE 14. The U-Net architecture developed by University of Tennessee
Knoxville, representing an out-of-the-box attempt by using state-of-the-art
neural network architecture.
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FIGURE 15. The cGANET architecture developed by KU Leuven [43].

the results for material 79 “waveform challenge”, with a

noticeably high 95th percentile error of 93% due to missing

relaxation data in the training dataset. This error could be

decreased by pre-definition of the Steinmetz parameters if

additional training data were available.

Another impressive equation-based approach was devel-

oped by the Southeast University SEU-MC team employ-

ing the vector magnetic circuit theory to predict core loss.

The theory is developed based on lumped circuit analysis and

is very similar to the Laithwaite magnetic equivalent circuit

model [45]. The model on average used 60 parameters to

describe each material, and reach a similar accuracy as that

of the Mondragon model. However, the model tuning process

is not fully automated.

III. STATISTICS OF THE MODELING RESULTS
The data and models generated by the MagNet Challenge

can be used to verify a wide range of hypotheses in power

magnetic modeling. An example hypothesis that we can

verify (suggested by Arizona State University after the

Challenge completed) is:

• “For the same modeling strategy, a material with
more complex material characteristics, smaller data
size, or lower data quality, may naturally lead
to lower modeling accuracy and higher prediction
variation among different models.”

To verify this hypothesis, we statistically evaluate the

prediction results of different core loss models developed

by different teams for a wide range of operating conditions.

Figures 16 shows the correlation between the prediction vari-

ation and average prediction error for Materials {A, B, C, D,

E}, respectively. The prediction variation is the standard de-

viation of the core losses predicted by the models developed

by the different teams, normalized to the average predicted

core loss and expressed in percent. A higher prediction

variation indicates that the results predicted by different

teams are very different from each other, indicating complex

material characteristics. The average prediction error is the

geometric mean of the prediction errors of the different

models compared to the ground-truth measurement results.

A higher prediction variation indicates that the material is

more difficult to model, yielding higher average prediction

error. In this test, material D is the most challenging to model

with the highest prediction variation and the highest average

prediction error. This hypothesis is consistent with the results

of the MagNet Challenge.

IV. MAGNET CHALLENGE ROADMAP
The ultimate goal of the MagNet Challenge is to explore

and compare a wide range of modeling strategies for power

magnetic components, and to optimize and automate power

magnetic design. To this end, we believe that a future

MagNet model should have the following characteristics:

• Accuracy: to reach a high level of model accuracy

(as accurate as the data accuracy and sample-to-sample

variation) and repeatability for magnetics modeling in

the design, development, and manufacturing process,

and to precisely reflect the multi-scale and multi-

physics nature of power magnetic material modeling.

• Compactness: to achieve efficient model training, rapid

simulation, and effective optimization. This is particu-

larly important given the lack of sufficient high-quality

publicly available training data and the potentially

huge design space (materials, geometries) and model

operating space (excitation waveforms, temperatures,

frequencies, peak flux densities, etc.) of magnetic com-

ponents. A simpler model generally means a smaller

number of model parameters and a more efficient usage

of measurement data.

• Generality, consistency, and versatility: a good power

magnetic component model should be applicable to a

wide range of application scenarios with minimum lim-

itations, and be consistent with other existing compo-

nent models (e.g., semiconductor models and capacitor

models) for high fidelity design and simulation, and be

versatile so that it can be adjusted for different design

purposes (e.g., trading model simplicity for accuracy).

Based on the outcomes of the MagNet Challenge,

equation-based methods and data-driven methods both have

their strengths and weaknesses, and they both have sig-

nificant room to improve. They can also be expanded or

merged to cover more sophisticated application scenarios and

modeling needs. Fig. 17 shows the strategic roadmap of the

MagNet Challenge in the near future, including the topics
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FIGURE 17. Roadmap of the MagNet challenge with addressed topics
marked in red boxes, and example future topics marked in white boxes.

that have been covered in 2023. This roadmap is in line

with the above-mentioned characteristics of the envisioned

MagNet model, with a particular focus on the generality

of the model. For example, the MagNet Challenge in 2023

prioritized model accuracy and simplicity for periodic steady

state, major-loop, and zero dc bias types of excitation

waveforms. The excitation frequency is limited to the tens

to hundreds kilohertz range at sparse temperature points

(four points only). In the future, more complicated excitation

profiles (e.g., transient excitations with minor-loop and non-

zero dc bias), wider operation range (e.g., frequency range

up to a few megahertz), mixed-frequency operation (e.g.,

magnetic components in switched-mode ac-dc converters)

and geometry impacts will need to be explored.

The winning models in the MagNet Challenge perform

well under the designated training and testing scenarios,

but do not necessarily perform well in other scenarios and

may not be the most appealing modeling strategies. Better

models and better interpretations are still to be found. The

potential technologies that will be explored in future Magnet

Challenges may include:

• Data Engineering: In MagNet Challenge 2023, the

data acquisition was performed by the Challenge orga-

nizer and managed and distributed in a centralized way.

Data acquisition should be standardized and be rigor-

ously cross-validated and certified across institutions

and material manufacturers. For data-driven methods,

the quality of a model is fundamentally limited by the

quality of data. In future challenges, an open-source,

transparent, community-driven data management strat-

egy, together with strong industry support, may ensure

sustainable development by the community.

• Model Framework: In MagNet Challenge 2023,

Black-Box Data-Driven methods, White-Box Equation-

based methods, and Grey-Box Hybrid methods were

explored. A majority of student teams performed time

domain analysis. Frequency domain methods were used

less and may be worth further exploration. The machine

learning frameworks are rapidly evolving and it is

still early to identify the best strategy for modeling

power magnetic materials. Modeling frameworks that

can be naturally expanded and updated to cover many

different materials under a unified framework are worth

exploration. Modeling frameworks that can naturally

interface with large-language models could also be

interesting.

• Data Visualization: Power magnetic material modeling

is naturally complex and has high dimensionality. Sys-

tematically compressing, filtering, and visualizing the

high-dimension data for human interpretation is critical

for advancing the human-data interface and enabling

new data-driven applications.

• Physical Insights and Better Materials: Although

MagNet Challenge 2023 didn’t intend to close the
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loop for advancing physical understanding of power

magnetic materials, many teams attempted to do so

(e.g., UTK, SEU-MC). With a larger data set, bet-

ter data quality, more powerful data-driven models,

and better human-data interface, we hope the MagNet

Challenge can ultimately lead to enhanced physical

understanding of power magnetic materials, and better

magnetic material and component design.

V. CONCLUSION
This paper summarizes the key progress and major outcomes

of the MagNet Challenge in 2023, an International Challenge

on Design Methods in Power Electronics supported by

the IEEE Power Electronics Society, Google, and Enphase

Energy. The critical outcomes and performance ranking

of the challenge entries are summarized and highlighted.

It represents a pioneering collaborative research initiative

in power electronics for tackling large-scale sophisticated

research topics which can only be addressed by open-source

community efforts.
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APPENDIX: MagNet Challenge 2023 Participating Teams
The 39 undergraduate and graduate teams that registered for

the MagNet Challenge in 2023 were:

1) Aalborg University, Denmark

2) Arizona State University, USA

3) Cornell University Team 1, USA

4) Cornell University Team 2, USA

5) Federal University of Santa Catarina, Brazil

6) Fuzhou University, China

7) Hangzhou Dianzi University, China

8) Indian Institute of Science, India

9) Jinan University, China

10) Katholieke Universiteit Leuven, Belgium

11) Mondragon University, Spain

12) Nanjing University of Posts and Telecom., China

13) Nanyang Technological University, Singapore

14) Nation Taipei University of Technology, Taiwan

15) Northeastern University, USA

16) Paderborn University, Germany

17) Politecnico di Torino, Italy

18) Purdue University, USA

19) Seoul National University, Korea

20) Silicon Austria Labs, Austria

21) Southeast University SEU-WX, China

22) Southeast University SEU-MC, China

23) Tribhuvan University, Pulchowk Campus, Nepal

24) Tsinghua University, China

25) Delft University of Technology, the Netherlands

26) University of Bristol, UK

27) University of Colorado Boulder, USA

28) University of Kassel, Germany

29) University of Manchester, UK

30) University of Nottingham, UK

31) University of Sydney, Australia

32) University of Tennessee, USA

33) University of Twente Team 1, the Netherlands

34) University of Twente Team 2, the Netherlands

35) University of Wisconsin-Madison, USA

36) Universidad Politécnica de Madrid, Spain

37) Xi’an Jiaotong University, China

38) Zhejiang University, China

39) Zhejiang University-UIUC, China

The 23 teams that qualified for the round #2 competition

and submitted the final results were:

1) Arizona State University (ASU), USA

2) Fuzhou University (Fuzhou), China

3) Hangzhou Dianzi University (HDU), China

4) Indian Institute of Science (IISc), India

5) Katholieke Univ. Leuven (KU Leuven), Belgium

6) Mondragon University (Mondragon), Spain

7) Nanjing Univ. of Posts and Telecom. (NJUPT), China

8) Nanyang Technological University (NTU), Singapore

9) National Taipei Univ. of Technology (NTUT), Taiwan

10) Paderborn University (Paderborn), Germany

11) Politecnico di Torino (PoliTO), Italy

12) Silicon Austria Labs (SAL), Austria

13) Southeast University (SEU-WX), China

14) Southeast University (SEU-MC), China

15) Tribhuvan University (Tribhuvan), Nepal

16) Tsinghua University (Tsinghua), China

17) Delft Univ. of Technology (TU-Delft), the Netherlands

18) University of Bristol (Bristol), UK

19) University of Colorado Boulder (CU-Boulder), USA

20) University of Sydney (Sydney), Australia

21) University of Tennessee Knoxville (UTK), USA

22) Xi’an Jiaotong University (XJTU), China

23) Zhejiang University-UIUC (ZJUI), China
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The 7 final winners of the MagNet Challenge are:

• Model Performance 1st Place: Paderborn University

• Model Performance 2nd Place: Fuzhou University

• Model Performance 3rd Place: University of Bristol

• Excellent Innovation 1st Place: University of Sydney

• Excellent Innovation 2nd Place: Delft Univ. of Tech.

• Excellent Innovation 3rd Place: Mondragon University

• Software Engineering Award: University of Sydney

The 9 honorable mention teams are:

• Arizona State University

• Indian Institute of Science

• Xi’an Jiaotong University

• Zhejiang University-UIUC

• University of Tennessee

• Politecnico di Torino

• Southeast University SEU-WX

• Southeast University SEU-MC

• Tsinghua University
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