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Abstract

In order to enable the simultaneous transmission and re-
ception of wireless signals on the same frequency, a full-
duplex (FD) radio must be capable of suppressing the power-
ful self-interference (SI) signal emitted from the transmitter
and picked up by the receiver. Critically, a major bottleneck
in wideband FD deployments is the need for adaptive SI
cancellation (SIC) that would allow the FD wireless system
to achieve strong cancellation across different settings with
distinct electromagnetic environments. In this work, we eval-
uate the performance of an adaptive wideband FD radio in
three different locations and demonstrate that it achieves
strong SIC in every location across different bandwidths.
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1 Introduction

Full-duplex (FD) wireless — the simultaneous transmission
and reception of radio signals on the same frequency — has
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(a) Block diagram of the adaptive FD radio.
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(b) The adaptive FD radio near a metal reflector.

Figure 1: The adaptive wideband FD radio.

seen significant attention over the past decade [2, 7, 8, 15],
as its adoption would result in enhanced spectrum efficiency,
improved data rates, and reduced communication latency
compared to existing half-duplex (HD) networks. A main
challenge in realizing wideband FD wireless in practical set-
tings is the presence of strong self-interference (SI) at the
receiver, preventing the reception of desired signals.

The SI is typically 70dB to 110 dB more powerful than
the desired signal, requiring very high levels of SI cancella-
tion (SIC) through various means, including passive isolation,
active analog cancellation, and digital signal processing algo-
rithms. The SI is especially sensitive to different (potentially
time-varying) surrounding electromagnetic environments,
requiring intelligent cancellation methods. In particular, an
intelligent, adaptive analog RF cancellation stage is required
to prevent desensitization in the receiver, which would result
in a complete inability to receive any incoming signals.

Although many advances have been made in designing
configurable Radio-Frequency ICs (RFICs) [1, 4, 5, 10, 16]
that allow for adaptive analog cancellation, an understudied
aspect in related works is the performance evaluation of
such hardware in a diverse set of locations with distinct
electromagnetic environmental effects, including external
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Figure 2: Initial and maximum SIC obtained by the optimal RFIC configuration at each location.

interference, SI multipath propagation, and others. In this
work, we present the SIC performance of the RFIC canceller
from [10] as part of a wideband FD radio system [9] in three
different locations and across three different bandwidths.

2 Adaptive Wideband FD Radios

In our prior work [9], we presented a wideband FD radio sys-
tem with a programmable RFIC canceller [10] that achieved
high SIC in a particular environment. The canceller utilized
switch-capacitor delay lines to implement sixteen RF taps,
each with independently configurable gain and delay, result-
ing in a large configuration space with over 10'° possible
parameter combinations. This complexity provides the can-
celler with high flexibility and range, allowing it to (poten-
tially) achieve and maintain strong SIC in different settings
with highly varying electromagnetic environments.

The block diagram of the adaptive wideband FD radio used
in this demonstration is shown in Figure 1(a). Each FD radio
is composed of a dual-antenna interface, an RFIC canceller,
an FPGA [17], and a USRP software-defined radio (SDR) [14]
controlled from a PC running GNU Radio [13], as shown in
Figure 1(b). The custom C++ GNU Radio flowgraph performs
all the necessary signal processing and control functions
necessary for the FD radio to function.

The FD radio operates at a center frequency of 1050 MHz
with a bandwidth of up to 50 MHz. The radio transmits data-
carrying packets with an average power of 0 dBm, with each
packet consisting of a Wi-Fi-like payload [3] and Zadoff-Chu
pilot symbols for SI channel estimation [6, 11], which are
communicated to the FPGA for computing — and setting —
the RFIC canceller’s optimal configuration based on stored
characterizations of the RF taps [9].

3 Experimental Procedure

Three test environments were selected to evaluate the perfor-
mance of the RFIC canceller within the full FD radio system:
(1) an RF anechoic chamber;
(2) a standard laboratory benchtop; and
(3) the same benchtop with two nearby metal sheets.
In each location, the experiment is repeated four times
with three bandwidths (10 MHz, 25 MHz, and 50 MHz). The

Environment
. Anechoic Lab Metal
Bandwidth Chamber  Bench  Reflectors
10 MHz 29.3dB  30.6dB 31.2dB
25 MHz 22.9dB 23.3dB 22.3dB
50 MHz 19.7dB 18.8dB 18.3dB

Table 1: Optimal average RFIC canceller performance.

FD radio runs its optimization, in which the RFIC canceller’s
configuration begins with all RF taps disabled and is itera-
tively updated as the FPGA attempts to maximize SIC.

The average increase in SIC between the initial isolation
state and the optimal configuration state for each set of ex-
periments is presented in Table 1. Three sample experiments
are presented in Figure 2, showing the SI residues before and
after the optimization at each of the three locations when
transmitting with a 50 MHz bandwidth.

3.1 Demo: Time-Varying Environment

In this demonstration [12], we showcase the capability of the
FD radio to achieve and sustain high RF SIC in a dynamic
location. Participants will be able to observe the transmitted
and received signals in the time and frequency domains, vi-
sualizing the evolution of the SIC over time. As participants
move and manipulate items around the radio, the electromag-
netic environment changes, simulating a change in location.
As a result, the FD radio will restart its optimization process,
iteratively improving the RFIC canceller’s configuration in
order to maintain or restore the formerly high RF SIC. We ex-
pect to obtain results similar to the ones in Figure 2, wherein
there is a significant decrease in received power between the
initial state and the final, optimal state.
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