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Figure 2: Initial and maximum SIC obtained by the optimal RFIC con�guration at each location.

interference, SI multipath propagation, and others. In this

work, we present the SIC performance of the RFIC canceller

from [10] as part of a wideband FD radio system [9] in three

di�erent locations and across three di�erent bandwidths.

2 Adaptive Wideband FD Radios

In our prior work [9], we presented a wideband FD radio sys-

tem with a programmable RFIC canceller [10] that achieved

high SIC in a particular environment. The canceller utilized

switch-capacitor delay lines to implement sixteen RF taps,

each with independently con�gurable gain and delay, result-

ing in a large con�guration space with over 1019 possible

parameter combinations. This complexity provides the can-

celler with high �exibility and range, allowing it to (poten-

tially) achieve and maintain strong SIC in di�erent settings

with highly varying electromagnetic environments.

The block diagram of the adaptive wideband FD radio used

in this demonstration is shown in Figure 1(a). Each FD radio

is composed of a dual-antenna interface, an RFIC canceller,

an FPGA [17], and a USRP software-de�ned radio (SDR) [14]

controlled from a PC running GNU Radio [13], as shown in

Figure 1(b). The custom C++ GNU Radio �owgraph performs

all the necessary signal processing and control functions

necessary for the FD radio to function.

The FD radio operates at a center frequency of 1050MHz

with a bandwidth of up to 50MHz. The radio transmits data-

carrying packets with an average power of 0 dBm, with each

packet consisting of a Wi-Fi-like payload [3] and Zado�-Chu

pilot symbols for SI channel estimation [6, 11], which are

communicated to the FPGA for computing — and setting —

the RFIC canceller’s optimal con�guration based on stored

characterizations of the RF taps [9].

3 Experimental Procedure

Three test environments were selected to evaluate the perfor-

mance of the RFIC canceller within the full FD radio system:

(1) an RF anechoic chamber;

(2) a standard laboratory benchtop; and

(3) the same benchtop with two nearby metal sheets.

In each location, the experiment is repeated four times

with three bandwidths (10MHz, 25MHz, and 50MHz). The

Environment

Bandwidth
Anechoic

Chamber

Lab

Bench

Metal

Re�ectors

10 MHz 29.3 dB 30.6 dB 31.2 dB

25 MHz 22.9 dB 23.3 dB 22.3 dB

50 MHz 19.7 dB 18.8 dB 18.3 dB

Table 1: Optimal average RFIC canceller performance.

FD radio runs its optimization, in which the RFIC canceller’s

con�guration begins with all RF taps disabled and is itera-

tively updated as the FPGA attempts to maximize SIC.

The average increase in SIC between the initial isolation

state and the optimal con�guration state for each set of ex-

periments is presented in Table 1. Three sample experiments

are presented in Figure 2, showing the SI residues before and

after the optimization at each of the three locations when

transmitting with a 50MHz bandwidth.

3.1 Demo: Time-Varying Environment

In this demonstration [12], we showcase the capability of the

FD radio to achieve and sustain high RF SIC in a dynamic

location. Participants will be able to observe the transmitted

and received signals in the time and frequency domains, vi-

sualizing the evolution of the SIC over time. As participants

move and manipulate items around the radio, the electromag-

netic environment changes, simulating a change in location.

As a result, the FD radio will restart its optimization process,

iteratively improving the RFIC canceller’s con�guration in

order to maintain or restore the formerly high RF SIC. We ex-

pect to obtain results similar to the ones in Figure 2, wherein

there is a signi�cant decrease in received power between the

initial state and the �nal, optimal state.
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