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AbstractÐWe study the problem of weakly private information
retrieval (PIR) when there is heterogeneity in servers’ trustfulness
under the maximal leakage (Max-L) metric. A user wishes
to retrieve a desired message from N non-colluding servers
efficiently, such that the identity of the desired message is not
leaked in a significant manner; however, some servers can be
more trustworthy than others. We propose a code construction
for this setting and optimize the probability distribution for this
construction. It is shown that the optimal probability alloca-
tion for the proposed scheme essentially separates the delivery
patterns into two parts: a completely private part that has the
same download overhead as the capacity-achieving PIR code,
and a non-private part that allows complete privacy leakage
but has no download overhead by downloading only from the
most trustful server. The optimal solution is established through
a sophisticated analysis of the underlying convex optimization
problem, and a reduction between the homogeneous setting and
the heterogeneous setting.

I. INTRODUCTION

The study of private information retrieval (PIR) systems [1]

was motivated by the need to protect user privacy during infor-

mation retrieval. In the canonical PIR setting, a user retrieves a

message from N non-colluding servers, each keeping a copy of

all K messages. The user wishes to ensure that the servers can

infer no information about the identity of the desired message.

The message is usually quite large, and the dominant commu-

nication cost is the download from the servers. The highest

possible information bits per downloaded bit is referred to as

the PIR capacity, which was fully characterized by Sun and

Jafar [2]. An alternative optimal code (referred to as the TSC

code) was later proposed [3], which has the minimum possible

message length and query set. Many variations and extensions

of the canonical PIR problem has been studied, such as PIR

with colluding servers [4]±[6], storage-constrained PIR [7]±

[18], PIR with symmetric privacy requirement [19]±[21], and

PIR with side information [22]±[29]; a more comprehensive

literature survey can be found in [30].

For some applications, it may not be necessary to maintain

perfect privacy, i.e., the user may not mind if the server can in-

fer the identity of the desired message with only relatively low

confidence. This setting, where a weaker privacy constraint is

placed, is referred to as weakly private information retrieval

(W-PIR) [31]±[39]. In exchange for the loss of privacy, a
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higher retrieval rate can be attained. Several different metrics

have been proposed to measure the privacy leakage in W-

PIR. Differential privacy was used in [32], [33], conditional

entropy was used in [34], mutual information in [35], and

the maximal leakage metric (see [40]) was adopted in [36],

[37], [41]. The maximal leakage metric has the advantage of

a clear information-theoretic operational meaning, and more

importantly, it is agnostic to the message retrieval probability

distribution. The W-PIR code proposed in [36] for the maximal

leakage metric was obtained by adjusting the code proposed in

[3]; similar or identical code constructions were also analyzed

in [37] and [38] under different metrics. An improved code

construction was later proposed in [41].

In this work, we consider the setting when there is het-

erogeneity in servers’ trustfulness, i.e., some of the servers

may be more trustworthy than others. We adopt a general

version of the improved W-PIR code [41], and refer it to as

the W-PIR# code. We optimize the probability allocation in

this W-PIR# code, and show that the optimal solution has

a particular simple structure: it is essentially a probabilistic

sharing between the original TSC code and a direct download

from the most trustworthy server. The optimal solution is

established through a sophisticated analysis of the underlying

convex optimization problem with homogeneously trusted

servers, and a critical reduction between the homogeneous

setting and the heterogeneous setting that utilizes the property

of the maximal leakage metric.

II. PRELIMINARIES

In this section, we formally introduce the weakly private

information retrieval (W-PIR) problem under the maximal

leakage (Max-L) metric, with either homogeneously or het-

erogeneously trusted servers. Then we provide a review of the

PIR code proposed in [3], and discuss one variant of this code

that is suitable for constructing W-PIR codes.

A. Information Retrieval Systems

There are a total of N servers, and each server stores an

independent copy of K mutually independent messages, de-

noted as W1:K := (W1,W2, . . . ,WK), where K ≥ 2 without

loss of generality. Each message consists of L symbols, and

each symbol is distributed uniformly in a finite set X , which

implies that

L := H(W1) = H(W2) = · · · = H(WK),



where the entropy is taken under the logarithm of base |X |.
The i-th symbol of the message Wk is denoted as Wk[i],
where i ∈ [1 : L] and k ∈ [1 : K]. An information retrieval

code consists of the following component functions. When

a user wishes to retrieve a message Wk, k ∈ [1 : K], the

(random) query Q
[k]
n sent to server-n is generated according

to an encoding function

Q[k]
n := ϕn(k, F

∗), n ∈ 1 : N, (1)

by leveraging some private random key F ∗ ∈ F∗. Let Qn

be the union of all possible queries Q
[k]
n over all k. For each

n ∈ [1 : N ], upon receiving a query q ∈ Qn, server-n responds

with an answer A
(q)
n produced as

A(q)
n := φn(q,W1:K), (2)

which is represented by ℓ
(q)
n symbols in certain coding alpha-

bet Y; to simplify the notation, we assume X = Y in this

work. We assume that ℓ
(q)
n may vary according to the query

but not the messages, and as such the user knows how many

symbols are expected in that answer.

For notation simplicity, we denote A
(Q[k]

n
)

n as A
[k]
n and ℓ

(Q[k]
n

)
n

as ℓ
[k]
n , both of which are random variables. With the answers

from the servers, the user attempts to recover the message Ŵk

using the decoding function

Ŵk := ψ(A
[k]
1:N , k, F

∗). (3)

A valid information retrieval code must first satisfy Ŵk =Wk,

i.e., the desired message should be correctly recovered.

We measure the download cost by the normalized (worst-

case) average download cost,

D := max
k∈1:K

E

[

1

L

N
∑

n=1

ℓ[k]n

]

, (4)

where ℓ
[k]
n is the length of the answer in the code and the

expectation is taken with respect to the random key F ∗.

B. Maximal Leakage

The index of the desired message, denoted as M , is viewed

as a random variable following a certain distribution. The

identity of the desired message WM may be leaked to server-n

due to the query Q
[M ]
n sent by the user. We use the maximal

leakage metric in this work.

The maximal leakage metric L(M → Q
[M ]
n ): It was shown

in [40] and [36] that the privacy leakage to server-n is given

as

L(M → Q[M ]
n ) = log2

(

∑

q∈Qn

max
k∈1:K

P(Q[k]
n = q)

)

, (5)

which in fact does not depend on the probability distribution

of M . When L(M → Q
[M ]
n ) is large, Q

[M ]
n leaks more

information about M in the sense that server-n can estimate M
more accurately; on the other hand, when L(M → Q

[M ]
n ) = 0,

the retrieval is private in the sense that the distribution of Q
[k]
n

and Q
[k′]
n is identical for any k, k′ ∈ [1 : K].

We measure the overall privacy leakage by the weighted

sum of the exponential leakage amounts to the individual

servers

ρ =

N
∑

n=1

γn2
L(M→Q[M]

n
),

where γn > 0. Here the exponentiation is taken to simplify

the analysis. Without loss of generality, we assume γ1 ≤ γ2 ≤
. . . ≤ γN . In most cases, we shall choose to normalize the

weights such that
∑N

n=1 γn = 1, however, this is not critical

and we shall in fact utilize this fact in subsequent derivations.

Note that the γn’s are strictly positive, since otherwise, the

problem becomes trivial as the optimal strategy is to directly

retrieve all the messages from this completely trusted server.

For the homogeneous trust setting, we simply set γn = 1/N .

A valid code for W-PIR with K messages and N servers

under the download cost constraint d is a collection of func-

tions ({ϕn}n∈[1:N ], {φn}n∈[1:N ], ψ) that can correctly retrieve

the desired message, and additionally satisfies the download

constraint D ≤ d. A leakage ρ is called achievable for the

download cost constraint d, if there exists a valid code such

that the leakage L ≤ ρ under the download constraint d.

The closure of the collection of such (ρ, d) pairs is called

the achievable (ρ, d) region, denoted by GMaxL.

C. The TSC Code and its Permuted Variant

The TSC code given in [3] will play an instrumental role in

this work. In this code, the message length is L = N − 1. A

dummy symbol Wk[0] = 0 is prepended at the beginning of

all messages. To better facilitate the construction of the new

code, particularly in a heterogeneous environment, we provide

below a variation of the original construction, which can be

viewed as probabilistic sharing between the permutations (over

the N servers) of the PIR code in [3].

Let the random key F ∗ be the concatenation of a random

length-(K−1) vector in [0 : N−1]K−1, and a random bijective

mapping π : [1 : N ] → [0 : N − 1] (i.e., a permutation on the

set [1 : N ] but downshifted by 1)

F ∗ := (F, π) = (F1, F2, . . . , FK−1, π), (6)

where F1, . . . , FK−1, π are mutually independent random

variables; each Fk is uniformly distributed over the set [0 :
N − 1], and the distribution of π will be specified later. We

shall use f to denote a specific realization of the random key

vector F , and use F to denote the set of [0 : N − 1]K−1, i.e.,

the set of possible values of the partial random key F .

The query Q
[k]
n to server-n is generated by the function

ϕ∗n(k, F
∗) defined as,

ϕ∗n(k, F
∗) ≜ (F1, F2, . . . , Fk−1, (π(n)−

K−1
∑

j=1

Fj)N ,

Fk, Fk+1, . . . , FK−1),

(7)

where (·)N represents the modulo N operation. Upon receiv-

ing the query, the server-n returns the answer A
[k]
n generated



by the function φ∗(q,W1:K),

φ∗(q,W1:K) ≜W1[Q
[k]
n,1]⊕W2[Q

[k]
n,2]⊕ · · · ⊕WK [Q

[k]
n,K ]

=Wk[(π(n)−

K−1
∑

j=1

Fj)N ]⊕ I , (8)

where ⊕ denotes addition in the given finite field, Q
[k]
n,m

represents the m-th symbol of Q
[k]
n , and I is the interference

signal defined as

I =W1[F1]⊕ · · · ⊕Wk−1[Fk−1]

⊕Wk+1[Fk]⊕ · · · ⊕WK [FK−1].
(9)

Since there exists an n∗ ∈ [1 : N ], such that (π(n∗) −
∑K−1

j=1 Fj)N = 0, it follows that A
[k]
n∗ = I . Therefore, the

user can retrieve the desired message Wk by subtracting I

from A
[k]
n for all n ̸= n∗. Note that with probability N−(K−1)

the interference signal I consists of only dummy symbols

and need not be downloaded at all, in which case a direct

download will be performed by retrieving the desired message

from N−1 servers, one symbol per server. The download cost

is therefore

D∗ =
N

N − 1

(

1−
1

NK−1

)

+
1

NK−1
=

1−N−K

1−N−1
, (10)

matching the capacity result given in [2]. It can be shown that

there is no privacy leakage regardless of the distribution of

the random permutation π, since for each fixed permutation

the resultant code is private. An example of the code, with

adjusted probabilities for W-PIR, can be found in [42] (Table

1 (a) and (b), the bottom halves without the # parts); more

details on the code can be found in [3].

D. Weakly PIR: Reassigned Probabilities in TSC

In the permuted variant of the generalized TSC code, we

can reduce the download cost by assigning a higher probability

to random keys when F1 = F2 = . . . = FK−1 = 0, i.e.,

the pattern for which the retrieval downloads the messages

without interference at the cost of L. If the probabilities of

these random keys are very high, then the messages will

more likely be downloaded directly from N − 1 servers,

resulting in privacy leakage but lower download cost; if the

probabilities of these random keys are the same as all other

keys, then we have the original permuted variant of the TSC

code, resulting in completely private retrieval. By adjusting

these probability assignments, we obtain a range of weakly

private information retrieval codes achieving different tradeoffs

between the download cost and the privacy leakage. Almost

all existing W-PIR code constructions are essentially utilizing

such an approach [35]±[38].

III. W-PIR#: GENERALIZED TSC CODE WITH ESCAPE

RETRIEVAL SYMBOLS

For high-leakage situations, the weakly private information

retrieval code given above by reassigning probabilities in the

TSC code does not perform well. To see this, consider the

extreme case of the minimum download cost point, this code

will download the messages directly from N − 1 servers,

resulting in privacy leakage to all these servers. However,

we can instead directly download the message from a single

server, therefore, leaking the message index to only one server.

This motivates the addition of such direct download patterns

in our proposed new code, and these download patterns are

denoted as #.

We next present the W-PIR# code, which is essentially

a probabilistic sharing scheme between the generalized TSC

code and the direct retrieval patterns from individual servers.

In this code, we again set L = N − 1. The random key F ∗

is generated from the set F∗ with a probability distribution

Pk(F
∗), where F∗ = ([0 : N − 1]K−1 × P) ∪ [1 : N ]

for which P = {π} is the set of all bijective mappings

[1 : N ] → [0 : N − 1]. This probability distribution is denoted

as

Pk(F
∗) =

{

pk,F
∗

(#) , F ∗ ∈ [1 : N ]

pk,π(f) , F ∗ = (f, π) ∈ [0 : N − 1]K−1 × P
,

(11)

which needs to satisfy

N
∑

n=1

pk,n(#) +
∑

f∈F

∑

π∈P

pk,π(f) = 1, k = 1, 2, . . . ,K. (12)

The query Q
[k]
n to server-n is produced as:

Q[k]
n =











#k, F ∗ = n

0K , F ∗ ∈ [1 : N ], F ∗ ̸= n

ϕ∗n(k, F
∗), F ∗ /∈ [1 : N ]

, (13)

where 0K is the length-K all-zero vector. The answer A
[k]
n

from server-n is generated as

A[k]
n =

{

Wk, q = #k

φ∗(q,W1:K), q /∈ {#k : k ∈ [1 : K]}.
(14)

The decoding procedure follows directly from the original

generalized TSC code when F ∗ /∈ [1 : N ], and does not

require decoding when F ∗ ∈ [1 : N ]. We will refer to this

code as W-PIR#. A simpler version of the code, which does

not allow all permutations, was first presented in [41].

The correctness of the code is obvious, and the download

cost D can be simply computed as

pkd ≜

N
∑

n=1

pk,n(#) +
∑

π∈P

pk,π(0K−1)
, k ∈ [1 : K], (15)

D = max
k

(

pkd +
N

N − 1
(1− pkd)

)

, (16)

where pkd is the overall probability of using a direct download

to retrieve message k, either by retrieving from (N−1) servers,

or by retrieving from only 1 servers. We defer the analysis of

privacy to the next section.

IV. MAIN RESULT

We summarize the main result with heterogeneous server

trustfulness under the Max-L metric in the following theorem.



Theorem 1. An optimal probability assignment for W-PIR#

under the Max-L metric is given by

pk,1(#) = p̂#, k ∈ [1 : K];

pk,π
∗

(f) =
1− p̂#
NK−1

, k ∈ [1 : K], f ∈ F ,

where π∗ is the mapping π∗(n) = n + 1, and other pk,n(#)

and pk,π(f) are assigned value zero. As a consequence, with

download cost D ∈ [1, D∗], we have the optimal surrogate

leakage for the W-PIR# code as

ρ∗(D) =
N
∑

n=1

γn + γ1
(K − 1)

[

NK−1(N − (N − 1)D)− 1
]

NK−1 − 1
.

(17)

This theorem implies that without the loss of optimality for

the W-PIR# code, we can directly use probabilistic sharing

between a direct download from the most trustworthy server

and the original TSC strategy without any permutation. In

other words, it consists of a completely public part (to the

most trusted server) and a completely private part, and the

proportion of the mixture determines the exact leakage in this

tradeoff. Intuitively, this strategy makes perfect sense since the

most trusted server will induce the least amount of leakage,

and we might as well retrieve the whole message from it. Note

that the probability assignment given in the theorem for the

heterogeneous W-PIR# code is also an optimal probability

assignment for the homogeneous setting.

The proof of this theorem is however quite sophisticated:

first, we establish that without the loss of optimality, we can

restrict our attention to a special type of probability allocation

strategy, which we refer to as the reduced W-PIR# code,

for the homogeneous setting; then we show that a particular

probability allocation for the reduced W-PIR# code is in fact

optimal again for the homogeneous setting; lastly, we make

a reduction based on a special property in the reduced W-

PIR# code, to yield the optimal probability allocation for the

heterogeneous trustfulness setting.

A. The Reduced W-PIR# Code

A simpler scheme can in fact be as good as the general

W-PIR# code in some cases, and this reduced version plays

an instrumental role in establishing the optimal probability

allocation for W-PIR#. In this reduced version, we set the

probability as follows

Pk(F
∗) =



















p#, F ∗ ∈ [1 : N ]

pj ,
F ∗ = (F, π) ∈ [0 : N − 1]K−1 × P

: π is cyclic and ∥F∥ = j

0, otherwise

,

(18)

where ∥F∥ is the Hamming weight of the first part of the

random key (F, π) when F ∗ /∈ [1 : N ]. In other words,

only cyclic permutations are allowed, instead of the full set of

permutations; moreover, F ’s with the same Hamming weight

are assigned the same probability. Note that this reduced W-

PIR# is symmetric even when it is used in the heterogeneous

setting.

The query Q
[k]
n can take any possible values in Q. Denote

tj ≜ |{q ∈ Q : ∥q∥ = j}|, which is calculated as

tj =

(

K
j

)

(N − 1)j , ∀ j ∈ [0 : K]. (19)

For notational simplicity, let p−1 = pK = 0. Similarly, we use

sj to denote |Fj |, i.e, the number of random key f that has

Hamming weight j, given by

sj =

(

K − 1
j

)

(N − 1)j , ∀ j ∈ [0 : K − 1]. (20)

The download cost and maximal leakage of the reduced W-

PIR# code is given in the following proposition. The proof is

relatively straightforward, and we omit it here for brevity.

Proposition 1. The reduced generalized TSC scheme induces

the download cost and maximal leakage pair (ρ,D) given as

D =
N − (Np# +Np0)

N − 1
, (21)

ρ =
N
∑

n=1

γn2
L(M→Q[M]

n
) =

N
∑

n=1

γn

( K
∑

j=1

tj max{pj−1, pj}

+ p0 + (N +K − 1)p#

)

, (22)

for p# ∈ [0, 1/N ].

B. Homogeneous Trustfulness: Reduced W-PIR# is Optimal

Let us consider the homogeneous case where γ1 = γ2 =
. . . = γN = 1/N , which we shall refer to as problem P1:

minimize
pk,n(#), p

k,π

(f)

1

N

N
∑

n=1

2L(M→Q[M]
n

)

subject to pk,n(#) ≥ 0, ∀k, n,

pk,π(f) ≥ 0, ∀k, π, f,

N
∑

n=1

pk,n(#) +
∑

f∈F

∑

π∈P

pk,π(f) = 1, ∀k,

∑N

n=1 p
k,n

(#) +
∑

π p
k,π

(0)

+ N
N−1

(

1−
∑N

n=1 p
k,n

(#) −
∑

π p
k,π

(0)

) ≤ D, ∀k

(23)

Recall that pk,n(#) is the probability of requesting server-n only

for the kth message, and pk,π(f) is the probability of query for

the kth message under the random key f and permutation π.

We denote pk,π(0K−1)
as pk,π(0) for simplicity. See Table 1 in [42]

for an example.

We first show that the optimal value (P1) of the opti-

mization problem above, which is achieved under the optimal

probably distribution in W-PIR# code, is the same as the

optimal value (P2) of the optimization problem below, which

is achieved by the optimal distribution allocation for the



reduced W-PIR# code.

minimize
p#, p0, p1, . . . , pK−1

∑K

j=1 tj max{pj−1, pj}

+(p0 + (N − 1)p#) +Kp#

subject to p#, p0, p1, . . . , pK−1 ≥ 0,

Np# +
K−1
∑

j=0

Nsjpj = 1,

N − (Np# +Np0)

N − 1
≤ D

(24)

For notation simplicity, we have taken the convention that

p−1 = pK = 0. The following proposition establishes the

optimality of the reduced W-PIR# code.

Proposition 2. (P1) = (P2).

The proof of this proposition can be found in [42], which

was obtained by carefully constructing a sequence of inequal-

ities based mostly on the convexity of the maximum function.

C. Homogeneous Trustfulness: Optimal Reduced W-PIR#

We establish the optimality of the probabilistic sharing

solution of the reduced W-PIR# code in the homogeneous

setting.

Theorem 2. For the homogeneous setting with download cost

D ∈ [1, D∗], the optimal surrogate leakage loss is given as

γ

N
∑

n=1

2L(M→Q[M]
n

)

= Nγ

(

1 +
(K − 1)

[

NK−1(N − (N − 1)D)− 1
]

NK −N

)

,

(25)

which is achieved using the allocation in Theorem 1.

The proof of this theorem can be found in [42], which was

obtained by analyzing the KKT conditions [43] of the given

convex optimization problem.

D. Heterogeneous Trustfulness: Proof of Theorem 1

We are now ready to prove Theorem 1.

Proof. Recall that the loss function, i.e., the objective function,

in the heterogeneous setting is

ρ =

N
∑

n=1

γn2
L(M→Q[M]

n
). (26)

We can alternatively consider an equivalent loss function ρo
defined as

ρo =

N
∑

n=1

γn

(

2L(M→Q[M]
n

) − 1
)

. (27)

We shall denote the optimal value under download cost

constraint D as ρ∗(D) for the loss function ρ, and similarly for

other loss functions in the sequel. It is clear that the optimal

value ρ∗(D) and the optimal value ρ∗o(D) are related as

ρ∗o(D) = ρ∗(D)−

N
∑

n=1

γn. (28)

Next consider a homogeneous setting, with the same down-

load cost constraint D and the corresponding surrogate loss

function

ρ̂ = γ1

N
∑

n=1

2L(M→Q[M]
n

), (29)

as well as the corresponding equivalent loss function ρ̂o

ρ̂o = γ1

N
∑

n=1

(2L(M→Q[M]
n

) − 1). (30)

It is clear that the optimal value of homogeneous setting ρ̂∗o(D)
is less than or equal to the optimal value of the heterogeneous

setting ρ∗o(D), i.e., ρ̂∗o(D) ≤ ρ∗o(D), because γ1 ≤ γ2 ≤ . . . ≤

γN and 2L(M→Q[M]
n

) ≥ 1 for any n due to the non-negativity

of the maximal leakage metric. Since under this new surrogate

loss function the problem is homogeneous, Theorem 2 implies

that

ρ̂∗o(D) = ρ̂∗(D)−Nγ1

= Nγ1

(

(K − 1)
[

NK−1(N − (N − 1)D)− 1
]

NK −N

)

,

(31)

which is therefore a lower bound for ρ∗o(D). It follows that

ρ∗(D) = ρ∗o(D) +
N
∑

n=1

γn ≥ ρ̂∗o(D) +
N
∑

n=1

γn

= Nγ1

(

(K − 1)
[

NK−1(N − (N − 1)D)− 1
]

NK −N

)

+

N
∑

n=1

γn.

(32)

However, this lower bound is indeed achieved by the proba-

bility distribution assignment in Theorem 1 by assigning

p̂# =
NK(1−D +D/N)− 1

NK−1 − 1
. (33)

The proof is thus complete.

V. CONCLUSION

We studied the problem of weakly private information re-

trieval when there is heterogeneity in the servers’ trustfulness,

and identified the optimal probability allocation of a general

class of W-PIR code, which we refer to as the W-PIR# code.

The optimal probability allocation for the W-PIR# code has

a simple structure that can be interpreted as a probabilistic

sharing between a capacity-achieving PIR code and a direct

download from the most trusted server, and a specific optimal

code for the homogeneous setting is in fact also optimal for

the heterogeneous setting.

In the extended version of this work [42], we further study

W-PIR under the mutual information leakage metric for both

the homogeneous and the heterogeneous settings, where the

optimal solutions for the two settings become rather different.
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