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ABSTRACT: Microbial organic matter turnover is an important
contributor to the terrestrial carbon dioxide (CO2) budget.
Partitioning of organic carbons into biomass relative to CO2
efflux, termed carbon-use efficiency (CUE), is widely used to
characterize organic carbon cycling by soil microorganisms. Recent
studies challenge proposals of CUE dependence on the oxidation
state of the substrate carbon and implicate instead metabolic
strategies. Still unknown are the metabolic mechanisms underlying
variability in CUE. We performed a multiomics investigation of
these mechanisms in Pseudomonas putida, a versatile soil bacterium
of the Gammaproteobacteria, processing a mixture of plant matter
derivatives. Our 13C-metabolomics data captured substrate carbons
into different metabolic pathways: cellulose-derived sugar carbons
in glycolytic and pentose-phosphate pathways; lignin-related aromatic carbons in the tricarboxylic acid cycle. Subsequent 13C-
metabolic flux analysis revealed a 3-fold lower investment of sugar carbons in CO2 efflux compared to aromatic carbons, in
agreement with reported substrate-dependent CUE. Proteomics analysis revealed enzyme-level regulation only for substrate uptake
and initial catabolism, which dictated downstream fluxes through CO2-producing versus biomass-synthesizing reactions. Metabolic
partitioning as shown here explained the substrate-dependent CUE calculated from reported metabolic flux analyses of other
bacteria, further supporting a metabolism-guided perspective for predicting the microbial conversion of accessible organic matter to
CO2 efflux.
KEYWORDS: metabolomics, carbon metabolism, carbon-use efficiency, lignocellulose, metabolic flux analysis

1. INTRODUCTION
Model predictions of terrestrial carbon dioxide (CO2) budgets
depend critically on parameters that can adequately capture
organic matter conversion by soil microorganisms (1).
Therefore, understanding and predicting CO2 efflux from
microbial conversion of soil organic matter have become
widespread endeavors in both field-scale and laboratory
studies. Stable-isotope probing (SIP) is widely used to trace
microbial activity in fields or soil microcosms after introducing
a labeled substrate2−5 and monitoring labeled fractions in CO2,
the biomass,5,6 DNA,5 or phospholipid-derived fatty acids.2 Of
particular interest in studies of soil microbial ecology is the
determination of microbial carbon-use efficiency (CUE),
which refers to the fractional partitioning of consumed organic
substrates to biomass; the remaining fraction (i.e., 1-CUE)
represents the sum of CO2 efflux and metabolite release.6,7

Therefore, using SIP experiments, the CUE is generally
determined either directly by accounting for labeled biomass
content8 or indirectly based on the fraction of substrate carbon
respired as CO2.

6 While CUE measurements based solely on
CO2 efflux provide a valuable indicator, it may not capture the

full spectrum of carbon losses, which can include metabolite
secretions. A global CUE study across 98 sites reported a
substrate dependence of microbial CUE whereby median CUE
value was higher for the sugar glucose (0.63−0.73) than for
organic acids (<0.4) or plant residues (<0.3).9 Understanding
the driver of microbial CUE is of particular interest to
disentangle the role of microbes in the global carbon cycle.
However, the underlying microbial strategies responsible for
this range in substrate-specific CUE (ssCUE) represent an
important knowledge gap in microbial ecology that remains
unresolved. There are two main proposed biochemical reasons
for the observed variability in ssCUE:9−11 first, that the
different substrates would require different catabolic pathways
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that result in different utilization efficiencies;10,11 second, that
substrates with a higher nominal oxidation state of carbon
(NOSC) due to higher chemical energy per unit mol of carbon
would result in a higher ssCUE.10,12,13 Recent studies found no
correlation between NOSC and substrate-specific assimilation
for soil fungal and bacterial isolates consuming a mixture of
different organic compounds.14,15 Therefore, metabolic path-
ways involved in microbial processing of different organic
substrates have been proposed to underlie reported variations
in substrate utilization for biomass synthesis.15−19

Here, we sought to probe how Pseudomonas putida, a soil
bacterium with diverse metabolic capabilities, would process
the metabolism of a mixture of representative lignocellulose-
related compounds toward CO2 versus biomass. More than
50% of soil organic matter is derived from plant matter,
including lignocellulose.20 Lignocellulose, the most abundant
biopolymer on earth, is composed of two carbohydrate
polymers, cellulose (9−80%) and hemicellulose (10−50%),
and lignin (5−35%), a heteropolymer of aromatic units.21,22

Cellulose and hemicellulose, both of which are polymers of
sugars, can be easily metabolized by soil microbes, but lignin is
considered highly recalcitrant to biodegradation.23 However,
several bacteria and fungi produce extracellular oxidative
enzymes that can depolymerize lignin, thereby providing lignin
derivatives for further metabolism by a subset of microbes with
pathways for aromatic carbon catabolism.24−26 Pseudomonas
species, which represent important members of the Gammap-
roteobacteria widely present in soil microbial communities,27,28

are able to metabolize sugars as well as lignin-related aromatic
derivatives such as p-coumarate, ferulate, vanillate, and 4-
hydroxybenzoate.29−31 Therefore, given the ubiquity and
metabolic versatility of Pseudomonas species, they present

ideal candidate species for probing the bacterial metabolism
underlying the ssCUE of lignocellulose-related compounds.
The objective of the present study was to address the

knowledge gap regarding the metabolic underpinnings of
ssCUE using P. putida mt-2, a widely studied soil bacterial
isolate, processing a mixture containing ferulate or p-coumarate
as a lignin-related aromatic compound and glucose from
cellulose, both of which are substrates potentially available to
microbes in soils (Figure 1A). After initial assimilation of a
sugar or an aromatic substrate, the substrate carbons are
expected to route throughout the network of central carbon
metabolism to meet carbon demands for biomass biosynthesis.
On the one hand, following uptake of glucose or other six-
carbon sugar substrates, the assimilated carbons would enter
first through upper glycolysis and subsequently feed the
pentose-phosphate (PP) pathway required for ribonucleotide
biosynthesis and downstream into lower glycolysis and the
tricarboxylic acid (TCA) cycle to support amino acid
biosynthesis (Figure 1A). On the other hand, carbons
following cleavage of aromatic substrates would first enter
the TCA cycle and, through cataplerotic reactions that convert
TCA cycle intermediates to metabolites in lower glycolysis,
carbon fluxes are subsequently subjected to gluconeogenesis,
the reverse of glycolysis, to provide metabolite precursors to
biomass biosynthesis in upper glycolysis and the PP pathway
(Figure 1A). As illustrated in Figure 1A, fluxes through the
different pathways in the metabolic network involve the
production of carbon dioxide (CO2). Therefore, we hypothe-
sized that the distinct routing of each assimilated substrate into
pathways with a relatively different number of CO2-producing
versus biomass-generating reactions would dictate the ssCUE
values.

Figure 1. (A) Schematic overview of metabolic pathways for catabolism of glucose, ferulate, and p-coumarate showing metabolic reactions (black
arrows) in upper glycolysis (green), PP pathway (yellow), lower glycolysis pathway (light orange), the TCA cycle (dark orange), and aromatic
carbon (C) metabolism (blue); only the names of the measured metabolites are shown. (B) Kinetics of substrate depletion (in % of total carbon) in
P. putida mt-2 cultures grown on a 1:1 carbon equivalent mixture of (top) glucose/ferulate or (bottom) glucose/p-coumarate. (C) Intracellular
metabolite labeling after assimilation of (left) [U−13C6]-glucose and unlabeled ferulate or (right) [U−13C6]-glucose and unlabeled p-coumarate in
P. putida mt-2: fully 13C-labeled (black), partially 13C-labeled (gray), and nonlabeled (white). Error bars in B and C represent standard deviation
values (n = 3 biological replicates).
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To test this hypothesis, we conducted a multi-omics study
involving 13C-assisted metabolomics, proteomics, and fluxo-
mics to evaluate the metabolic network responsible for the
contribution of the carbons from the different lignocellulose
derivatives to CO2-generating and biomass-synthesizing
metabolic reactions. First, we employed long-term isotopic
enrichment using 13C-labeled glucose with nonlabeled
aromatic substrates to determine the allocation of each
substrate type into different pathways in central carbon
metabolism. Second, using 13C-metabolic flux analysis, we
determined the carbon flux contribution from each substrate in
the mixture toward metabolic reactions involved in CO2 efflux
and ssCUE. Third, we monitored changes in protein levels in
cells fed on a mixture of glucose with an aromatic compound
relative to cells fed on only glucose to distinguish between
metabolite-level and protein-level regulation. While bulk CO2
data are widely used to monitor microbial respiration during
substrate conversion to CO2,

6 these data do not provide any
information about substrate-specific contribution to CO2
during microbial processing of a mixture. Such substrate-
specific information would require the measurement of the
isotopic distribution of the bulk CO2 derived from the
metabolism of a mixture with 13C-labeled and nonlabeled
substrates as demonstrated previously.19 However, in the
absence of data on intracellular metabolite labeling patterns,
the latter data would still not capture explicitly the metabolic
pathways responsible for the CO2 efflux, albeit hypothetical
frameworks regarding CO2 production from the underlying
metabolic network can be deduced.19 Assimilation of position-
specific 13C-labeled glucose into phospholipid fatty acid as a
representative biomass derivative was employed previously to
estimate metabolic pathways involved,18 but complex
deconvolution of isotopomer data was required to associate
the specific labeling of the fatty acid to flux through different
metabolic pathways. Such data deconvolution performed with
a single substrate would be challenging to implement to
capture specific pathway contributions in ssCUE during the
assimilation of substrate mixtures. Here, our application of 13C-
metabolomics profiling coupled with metabolic flux analysis
overcomes the limitations of bulk CO2 data by leveraging
direct annotation of intracellular metabolites in the central
carbon metabolism to gain substrate-specific and pathway-
specific insights on CUE. Taken together, we present a
roadmap for coupling the considerations of metabolic
pathways with the application of SIP in tracking the conversion
of bioavailable substrates from soil organic matter mixtures
into CO2 and biomass synthesis by soil microorganisms.

2. MATERIALS AND METHODS
2.1. Cell Culturing and Nutrient Conditions. The

bacterial strain,P. putida mt-2, was acquired from ATCC
(American Type Culture Collection, Manassas, VA) and
stored at −80 °C in nutrient-rich liquid Luria−Bertani medium
and 25% glycerol. Unless mentioned otherwise, all chemicals
for standards and growth media were purchased from
MilliporeSigma (St. Louis, MO) or Fisher Scientific
(Pittsburgh, PA). Carbon source-specific growth experiments
were conducted in 125 or 250 mL baffled flasks, with cell
suspensions not exceeding one-fifth of the total flask volume in
an incubator shaker (model I24; New Brunswick Scientific,
Edison, NJ) at 30 °C and 220 rpm. The pH-adjusted (pH 7.0)
and filter-sterilized (0.22 μm nylon; Waters) minimal medium
contained the carbon substrates; a 1:1 mixture of glucose/p-

coumarate or glucose/ferulate at a total concentration of 100
mM C; the following major nutrient salts: 5.0 mM NaH2PO4,
20 mM K2HPO4, 37 mM NH4Cl, 17 mM NaCl, 0.81 mM
MgSO4·7H2O, and 34 μM CaCl2·2H2O; and the following
trace metal nutrients: 30 μM FeSO4·7H2O, 0.86 μM CuSO4·
5H2O, 1.9 μM H3BO3, 7.7 μM ZnSO4·7H2O, 0.75 μM
MnSO4·5H2O, 0.26 μM NiCl2·6H2O, and 0.31 μM Na2MoO4·
5H2O. As references for the proteomic analysis, growth
experiments were conducted with glucose-only as the only
carbon source (100 mM C total). To achieve cellular
acclimation in each nutrient condition, all experiments were
conducted following two transfers into a minimal-nutrient
medium supplemented with the carbon source during the
exponential growth phase. Additionally, cells were washed with
the minimal-nutrient medium between transfers to remove the
extracellular matrix from the previous culture. Biomass growth
was monitored by measuring the optical density at 600 nm
(OD600) using an Agilent Cary UV−visible spectrophotometer
(Santa Clara, California). Exponential growth rate (h−1) was
determined via regression analysis. Measurement of cell dry
weight in grams (gCDW) as a function of exponential OD600
was obtained following lyophilization of sample aliquots (1.5
mL) using a Labconco (Kansas City, MO, USA) Freeze-Dryer
System.

2.2. Extracellular Substrate Depletion. To determine
substrate depletion by the cells, 0.5 mL culture aliquots of
three biological replicates were harvested periodically through-
out growth and pelleted with 5 min of centrifugation at 9391 g
and 4 °C (Centrifuge 5423 R, Eppendorf, Hauppauge, NY).
The supernatant was removed, filtered (Costar Spin-X 0.22
μM filters), and stored at −20 °C until instrumental analysis.
Standards for glucose, ferulate, and p-coumarate were prepared
in minimal nutrient media.
Ferulate and p-coumarate were quantified using ultrahigh-

performance liquid chromatography (UHPLC) with UV
detection at 275 nm (Thermo Scientific Vanquish Flex with
diode array detector) using a reversed-phase C18 column
(ZORBAX Eclipse Plus, 4.6 × 100 mm, 5 μm; Agilent)
maintained at 25 °C with a guard column (4.6 × 12.5 mm, 5
μm; Agilent). The method demonstrated by Hefni et al.32 for
separating phenolic acids was modified to a total run time of 18
min at a flow rate of 0.9 mL min−1 and injection volume of 10
μL. The mobile phases consisted of 1% formic acid in LC−MS
grade water (solvent A) and 80:10:10 v/v acetonitrile/
methanol/LC−MS grade water (solvent B). For solvent B, a
multistep gradient was used: 0 min, 6%; 1 min, 6%; 8.5 min,
25% B; 9 min, 25%; 9.5 min, 6%; 10.5 min, 6%.
Glucose was quantified using a UHPLC system (Thermo

Fisher Scientific DionexUltiMate 3000, Waltham, MA, USA)
coupled to a high-resolution accurate-mass mass spectrometer
(Thermo Fisher Scientific Q Exactive quadrupole-Orbitrap
hybrid MS) with ESI operating in negative mode as described
previously.33 Chromatographic separation was performed using
a XBridge Amide column (Waters, Milford, MA) with
dimensions of 4.6 × 100 mm and a particle size of 3.5 μm;
a column temperature of 25 °C was used. The volume injected
was 10 μL of samples prepared in 50% v/v ACN at a flow rate
of 0.8 mL min−1. The mobile phases consisted of 100% ACN
with 0.05% v/v triethylamine (solvent A) and 50:50 v/v
isopropyl alcohol/LC−MS water with 0.05% v/v triethylamine
(solvent B). A multistep gradient was used for solvent A: 0
min, 90%; 12 min, 90%; 12.05 min, 60%; 17 min, 60%; 19.05
min, 40%; 25 min, 20%; 26.05 min, 90%; 30.5 min, 90%.
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2.3. Intracellular 13C Labeling. To monitor the intra-
cellular assimilation of substrates, we performed 13C-metab-
olomics profiling of the cells grown on [U−13C6]-glucose with
either unlabeled p-coumarate or unlabeled ferulate. Labeled
substrates were purchased from Cambridge Isotopes (Tewks-
bury, MA, USA). To ensure long-term intracellular labeling,
liquid cultures were grown for at least two doubling times in
their respective medium solutions. Cell suspensions were
harvested after two transfers into a minimal-nutrient medium
containing the aforementioned labeled substrates; washing
with minimal-nutrient medium was performed between the
transfers. During exponential growth, cell suspensions were
filtered, and cell-containing filters were immediately quenched
in a 2 mL solution of methanol/acetonitrile/water (40:40:20)
maintained at 4 °C. Solutions with the lysed cells were
subsequently filter-centrifuged (Sigma-Aldrich Spin-X, 0.22
μM filters), and aliquots of the supernatants were dried under
nitrogen gas. Prior to analysis via LC−MS, dried aliquots were
resuspended in ultrapure LC−MS grade water (Fisher
Scientific). Following analysis and identification of intracellular
metabolites by LC-HRMS, 13C-labeling fractions were
extracted with the Metabolomic Analysis and Visualization
Engine (MAVEN) software34 and were then corrected for
natural 13C abundance.
2.4. Metabolomics Analysis via LC−MS. Both intra-

cellular and extracellular metabolites were analyzed by a
reversed-phase ion-pairing method via ultrahigh-performance
LC (UHPLC; Thermo Scientific DionexUltiMate 3000)
coupled to a high-resolution accurate-mass mass spectrometer
(Thermo Scientific Q Exactive) with electrospray ionization
operated in full-scan negative mode (m/z range 70−900) as
described previously.35 A Waters Acquity UPLC BEH C18 1.7
μm with a column size of 2.1 × 100 mm (Waters Corporation,
Massachusetts) was used and maintained at 25 °C throughout
the run. Solvent A contained 97:3 v/v LC−MS grade water/
methanol with acetic acid (15 mM) and tributylamine (10
mM), and solvent B contained 100% methanol. The total run
time was 25 min, with a flow rate of 180 μL min−1 and a
sample injection volume of 10 μL. A multistep gradient for
solvent A was used: 0 min, 100%; 2.5 min, 100%; 5 min, 80%;
7.5 min, 80%; 10 min, 45%; 12 min, 45%; 14 min, 5%; 17 min,
5%; 18 min, 0%; 25 min, 0%. The following metabolites were
monitored: gluconate, 6-phosphogluconate (6 PG), glucose-6-
phosphate (G6P), fructose-6-phosphate (F6P), fructose-1,6-
bisphosphate (FBP), dihydroxyacetone-phosphate (DHAP),
ribose-5-phosphate (R5P), xylulose-5-phosphate (Xu5P),
sedoheptulose-7-phosphate (S7P), phosphoenolpyruvate
(PEP), 3-phosphoglycerate (3 PG), pyruvate, α-ketoglutarate
(α-KG), citrate, aspartate, succinate, and malate. Aspartate
labeling was taken as a surrogate for oxaloacetate (OAA)
labeling due to the direct synthesis of aspartate from OAA.36

To monitor metabolite secretion rates, quantification of
metabolites in the extracellular medium was conducted during
the exponential phase. Culture aliquots (0.5 mL) were
harvested, subjected to centrifugation (9391 g and 4 °C for
5 min), and subsequently filtered (0.22 μM filters). The
resulting supernatant was then analyzed by using LC−MS as
described above. Metabolite excretion rates (in mol C gCDW−1

h−1) were determined by regression analysis.
2.5. Metabolic Flux Analysis. Metabolic flux analysis of

the central carbon metabolism was performed using software
13CFLUX237 and constrained on the following experimental
data: substrate consumption rate, metabolite secretion rates,

growth rate, and genome-scale cellular stoichiometry.36 Both
the sequence of the TOL plasmid pWW0 of P. putida mt-238

and the sequence of the chromosome of P. putida mt-2 have
been reported; the chromosomal sequence is that of P. putida
KT2440,39 the plasmid-less strain derived from P. putida mt-2.
Therefore, the well-characterized stoichiometry data available
for P. putida KT2440 was used in our metabolic flux analysis of
P. putida mt-2. Specifically, we used the biomass experimen-
tally determined growth rates and published biomass
composition of P. putida KT2440;40 carbon efflux rates were
calculated for carbon routing toward the biosynthesis of
proteins, nucleic acids, and cell membrane. The initial flux
values were set based on published values36,41 and
subsequently optimized based on the experimental observa-
tions. The quality of the fit to experimental data was measured
by calculating the sum of squared residuals based on
comparisons of model-estimated metabolite labeling patterns
to the measured values.42

2.6. Calculation of Carbon Utilization Efficiency. As we
stated in the Introduction, in lieu of monitoring bulk CO2 data
to infer CUE, we aim to employ a 13C-metabolomics approach
to directly determine substrate assimilation for our CUE
calculations. Specifically, following feeding on [U−13C6]-
glucose with unlabeled p-coumarate, we obtained 13C fractional
labeling data of metabolites to determine the relative
contribution of the individual substrates toward the CO2
produced in a particular metabolic reaction or toward a
particular biomass precursor. Metabolites of interest for CO2
efflux include 6 PG, OAA, pyruvate, isocitrate, and α-KG;
metabolites of interest for biomass efflux include G6P, DHAP,
erythrose-4-phosphate (E4P), 3 PG, PEP, pyruvate, and OAA.
Metabolite labeling of R5P and aspartate was used to
approximate the labeling of E4P and OAA, respectively.
Using the mass distribution vector, we determined the

fractional contribution (FC) of each of the substrates to
biomass precursor metabolites or relevant metabolites
produced from decarboxylation reactions (i.e., paired with
CO2 production) based on the following equation43

iS

n
FC i

n
i0= =

(1)

In eq 1, n is the number of carbon atoms in the resulting
metabolite, i denotes the isotopologues, and S is the relative
fraction of the isotopologues.43 Next, using the FC of each
substrate toward CO2 efflux or biomass efflux, we calculated
the ssCUE as reported previously9,15

R E
U

CUE 1= +
(2)

Here, R is the respiration rate (in mol C gCDW−1 h−1) from
the individual assimilated substrate, E is the collective secretion
rates of metabolites (in mol C gCDW−1 h−1), and U is the
uptake rate (in mol C gCDW−1 h−1) of individual assimilated
substrates. Of all of the monitored extracellular metabolites,
only gluconate exhibited appreciable secretion from which a
secretion rate was determined. Therefore, E refers here only to
the gluconate secretion rate. Error was propagated by using
standard deviations for R, E, and U.

2.7. Proteomics Methodology and Analysis. At
midexponential phase (OD600 = 0.8−1), sample aliquots (25
mL) were harvested from biological replicates (n = 3), pelleted
via centrifugation at 9391 g and 4 °C, separated from the
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centrifuge, and stored at −80 °C until further analysis. These
cell pellets were then extracted by heating and vertexing at 95
°C for 20 min in a reducing and denaturing buffer [SDS (1%)/
Tris (200 mM, pH 8.0)/DTT (10 mM)] and with cysteine
thiols alkylated with 40 mM iodoacetamide. Proteins were then
purified by a modified eFASP (enhanced filter-aided sample
preparation) protocol,44 using Sartorius Vivacon 500 concen-
trators with a 30 kDa nominal cutoff. Proteins were digested
with MS-grade trypsin (37 °C overnight), and peptides were
eluted from the concentrator and dried via vacuum
centrifugation. Peptides were then isotopically labeled at N-
and C-termini using the diDO-IPTL methodology45 for
quantitative proteomic analysis. Briefly, C-termini were labeled
with oxygen-16 or -18 by an enzymatic exchange in isotopic
water of a >98 atom % enrichment, and N-termini were labeled
with un- or dideuterated formaldehyde via reductive alkylation
using sodium cyanoborohydride. Peptide extracts from each
sample were split, and aliquots were labeled separately with
CD2O/16O and CH2O/18O; the latter were pooled to serve as
a common internal standard for quantification. Aliquots of the
16O-labeled peptides and 18O-labeled internal standard were
mixed 1:1 (v/v) and analyzed by LC−MS for protein
expression quantification.
The peptide samples were then separated on a monolithic

capillary C18 column (GL Sciences Monocap Ultra, 100 μm
I.D. × 200 cm length) with a water−acetonitrile and 0.1%
formic acid gradient (2−50% ACN over 180 min) at 360 nL
min−1 using a Dionex Ultimate 3000 LC system with
nanoelectrospray ionization (Proxeon Nanospray Flex source)
for LC−MS analysis. Mass spectra were collected on an
Orbitrap Elite mass spectrometer (Thermo) operating in data-
dependent acquisition mode, with one high-resolution
(120,000 m/Δm) MS1 parent ion full scan triggering 15
rapid-mode MS2 CID fragment ion scans of selected
precursors. Proteomic mass spectral data were analyzed using
MorpheusFromAnotherPlace (MFAP)45 and the predicted
proteome of P. putida mt-2 as search databases. Precursor and
product ion mass tolerances for MFAP searches were set to 20
ppm and 0.6 Da, respectively. Static cysteine carbamidome-
thylation and variable methionine oxidation, N-terminal (d4)-
dimethylation, and C-terminal 18O2 were included as
modifications. The false discovery rate for peptide-spectrum
matches was controlled by target-decoy searching to <0.5%.
Protein-level relative abundances and standard errors were
calculated in R using the Arm postprocessing scripts for diDO-
IPTL data.45

2.8. Statistical Analysis. For proteomics analysis,
significantly differential protein expression between exper-
imental conditions was determined by calculating a Z-score for
protein abundance differences by taking the difference in the
mean (log2-transformed) protein abundance between con-
ditions and dividing it by the sum of the total uncertain
estimate for that protein under the two conditions. This total
uncertainty estimate for a given condition was taken as the
root-square sum of (1) the standard deviation of a protein’s
abundance across the biological replicates of that condition
and (2) the average standard error of the protein’s abundance
across quantified spectra within each replicate. These Z-scores
were converted to p-values by assuming a standard normal
distribution. The familywise error rate for significantly
differential expression between conditions was controlled to
0.05 using the q-value method to correct for multiple testing.46

All growth and metabolomics experiments were conducted
on three biological replicates. Statistical analysis of CO2 efflux
across multiple CO2-generating reactions was determined
using one-way ANOVA followed by Tukey HSD posthoc
tests. For comparisons between discriminate CUEs of
substrates in mixtures, statistical analysis was conducted
using a two-tailed unpaired t-test analysis. Statistically
significant difference was determined at p ≤ 0.05.

2.9. Data Availability. Proteomics MS data and
metabolomics LC−MS data are freely available in the
ProteomeXchange and MetaboLights depositories under
identifiers PXD4041724 and MTBLS6373, respectively.

3. RESULTS AND DISCUSSION
3.1. Metabolic Routing of Assimilated Carbons from

a Mixture of Lignocellulose-Related Substrate Types.
Growth and metabolic experiments were conducted with P.
putida mt-2 cultures grown on a 1:1 carbon-equivalent
glucose:p-coumarate or glucose:ferulate mixture. Both sub-
strate types were depleted simultaneously in each mixture
scenario after approximately 50 to 75% of the glucose was
already depleted (Figure 1B). Despite this seeming preference
for glucose, there were near-equal carbon-equivalent con-
sumption rates of both substrates (46.9 ± 7.8 mM C glucose
gCDW−1 h−1 and 54.0 ± 6.0 mM C p-coumarate gCDW−1 h−1 for
the glucose:p-coumarate mixture, and 51.7 ± 8.6 mM C
glucose gCDW−1 h−1 and 47.6 ± 5.3 mM C ferulate gCDW−1 h−1

for the glucose:ferulate mixture) (Figure 1B; Supporting
Information, Table S1). To monitor the intracellular
incorporation of the lignocellulose-related substrates during
the coconsumption phase, we performed 13C-metabolomics
profiling of the cells grown on [U−13C6]-glucose with either
unlabeled p-coumarate or with unlabeled ferulate (Figure 1C;
Supporting Information Tables S2 and S3). The fraction of 13C
labeling of metabolites captured the relative assimilation of the
13C-labeled sugar carbons versus the nonlabeled carbons of the
aromatic substrates into the different metabolic pathways.
Due to the lack of a 6-phosphofructokinase gene to convert

F6P to FBP, the catabolism of glucose in Pseudomonas species
relies on a cyclic carbon flux from the Entner−Doudoroff (ED)
pathway, another forms of glycolysis, instead of the Embden−
Meyerhof−Parnas (EMP) pathway, the traditional pathway of
glycolysis; the ED pathway is linked to the EMP pathways to
meet the required carbon flux demand for the PP pathway
(Figure 1A).41,47,48 We found that the metabolites involved in
initial glucose catabolism [G6P and gluconate (Glucn)], upper
glycolysis (F6P and FBP), the PP pathway (R5P, Xu5P, and
S7P) were all dominated by glucose-derived 13C carbons,
thereby highlighting the lack of gluconeogenic flux of the
aromatic substrates toward upper glycolysis and the PP
pathway (Figure 1C). Metabolites in lower glycolysis
(DHAP, 3 PG, and PEP) contained significant proportions
of 13C (>71%) derived from glucose accompanied by evidence
of nonlabeled fractions from the gluconeogenic flux of the
aromatic carbons (Figure 1C). Pyruvate, which represents a
metabolic entry point following ring cleavage of ferulate or p-
coumarate, was only up to 50% 13C-labeled due to
incorporation of nonlabeled carbons from the assimilated
aromatic substrate subjected to gluconeogenic flux upstream of
the TCA cycle (Figure 1C). Labeling of the TCA cycle
metabolites further reflected the assimilation of carbons
derived from both glucose and the aromatic substrates, with
a clear preference for nonlabeled aromatic carbons (Figure
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1C). Metabolites in the oxidative side of the TCA cycle (citrate
and α-KG) contained nonlabeled (∼20%), partially 13C-
labeled (∼70%), and fully 13C-labeled (10%) carbons whereby
partially labeled fractions incorporated carbons derived from
both 13C-glucose and the nonlabeled aromatic substrate
(Figure 1C). However, metabolites on the reductive side of
the TCA cycle (malate and succinate) were predominately
nonlabeled (>78%) (Figure 1C), due to the assimilation entry
route for the aromatic compounds at the succinate node, which
is followed downstream by malate in the canonical direction of
the TCA cycle (Figure 1C). In sum, our 13C-metabolomics
data revealed a nonuniform partitioning of substrate carbons
derived from glucose and lignin aromatics through different
metabolic pathways. We obtained proteomics data to probe
the regulatory mechanism that dictates this metabolic
partitioning of the assimilated substrate carbons.
3.2. CO2-Producing Metabolic Reactions in the TCA

Cycle Are under Carbon Influx Regulation Rather Than
Enzyme-Level Regulation. We evaluated changes in the
protein levels in cells fed on a mixture of glucose and a lignin
derivative (ferulate or p-coumarate) relative to feeding on
glucose alone (Figure 2). Remarkably, between the mixture
and glucose alone, there was no change in the abundances of
any of the proteins involved in decarboxylation reactions in
pathways in the central carbon metabolism, including the PP
pathway, the cataplerotic reactions, lower glycolysis, and the
TCA cycle (Figure 2; Supporting Information Table S4). By
contrast, the abundances of several proteins involved in the
uptake and initial catabolism of each substrate were found to
be dependent on the growth conditions (Figure 2).
First, all proteins associated with the uptake transporter of

the aromatic substrates and initial catabolism of these
substrates to the aromatic intermediate protocatechuate were
detected only in the cells fed on the mixture with both glucose
and an aromatic substrate; these proteins were absent in the
presence of glucose alone (Figure 2). In P. putida mt-2, there
are three pathways for the cleavage of aromatic substrates (at
the meta, ortho, or para position) encoded in the genome
before subsequently routing the resulting carbon skeletons to
the TCA cycle.49,50 While the proteins in the meta-cleavage
pathway were not identified in both growth conditions with
the mixture, all the proteins in the ortho-cleavage pathways
were detected in cells fed on the substrate mixtures, and only
two of the eight proteins in the para-cleavage pathway were
found in both the glucose alone and the lignocellulose-related
mixture conditions (Figure 2). These data signified a
prevalence of the ortho-cleavage pathway and the possible
participation of the para-cleavage pathway for the initial
aromatic substrate catabolism (Figure 2).
In initial glucose catabolism or upper glycolysis, the

following relevant proteins were detected in cells grown on
glucose alone or glucose with p-coumarate but absent in cells
grown on glucose with ferulate: gluconate 2-dehydrogenase
(GAD), 2-ketogluconate-6-phosphate reductase (KGUD),
glucose-6-phosphate isomerase (PGI), and ribulose-phosphate
3-epimerase (RPE) (Figure 2). The absence of GAD and
KGUD in cells grown on glucose with ferulate implied the lack
of phosphorylation of the glucose oxidation product (2-
ketogluconate) to 6-PG.47 Furthermore, the absence of PGI
and RPE implied, respectively, the lack of fluxes through upper
EMP and the oxidative PP pathway, thereby emphasizing the
operation of the ED pathway as the primary route for glycolysis
in the presence of ferulate47 (Figure 2). The abundance of

Figure 2. Log2 fold changes in protein content of P. putida mt-2 cells
grown on glucose/ferulate (left polygons) or glucose/p-coumarate
(right polygons) relative to cells grown on control (glucose alone).
Gray indicates proteins with no significant changes in levels between
cells grown on the lignocellulose-related mixture and control, navy
blue indicates proteins only detected in glucose-grown cells, and red
indicates proteins only detected in cells grown on lignocellulose-
related mixtures. Compared to cells grown on glucose, the increase
and decrease in protein levels of cells grown on lignocellulose-related
mixtures are shown with yellow and bright-blue colors, respectively.
Data are obtained from four biological replicates (n = 4). Data and
data statistics are provided in Supporting Information Table S4.
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GAPA, which is one of the two glyceraldehyde-3-phosphate
(GAP) dehydrogenase proteins, was depleted by 2 folds (p-
value < 0.01) in the cells grown on the glucose:ferulate mixture
compared to glucose alone; the abundance of the other protein
(GAPB) remained unchanged in both growth conditions (p-
value > 0.392) (Figure 2; Supporting Information Table S4). A
functional partitioning of the GAP proteins was reported
previously whereby GAPA was implicated to facilitate flux to
lower glycolysis, and GAPB was implicated in directing flux in
the direction of gluconeogenesis.48,51 Therefore, from our data,
the relatively higher abundance of GAPA in the glucose-only
condition compared to the glucose:ferulate mixture was
consistent with the importance of GAPA to facilitate glycolysis
of glucose (Figure 2). However, despite the relative signifant
decrease in GAPA abundance during growth on the substrate
mixture compared to glucose alone, our 13C-metabolomics
data revealed that the glycolytic flux of glucose-derived carbons
downstream of GAP was favored over the gluconeogenic flux
of ferulate-derived carbons upstream of 3PG during growth on
the mixture with these two substrate types (Figure 1B). These
data thus implied that the low GAPA abundance during
growth on the mixture was still sufficient to sustain glycolytic
flux or that the GAPB can mediate bidirectional reactions at
the GAP node whereby the directionality would be driven by

the reaction quotient (i.e., relative concentration of product
versus reactant). Thus, our 13C metabolomics highight inquires
that warrant further investigation of the GAP node.
In sum, given the lack of abundance changes in the majority

of the proteins in central carbon metabolism, the proteomics
data implied that the flux of aromatic substrate carbons into
the CO2-generating TCA cycle was dictated by carbon input
flux into this pathway, which was facilitated by the triggered
expression of specific transporter and catabolic proteins for the
substrate. Next, we investigated the consequence of the
nonuniform metabolic allocation of the sugar and aromatic
carbons on their contributions to CO2 and biomass effluxes.

3.3. Disproportionate CO2 Efflux from Assimilated
Substrate Carbons due to Metabolic Partitioning. To
assess quantitatively the consequence of the observed
metabolic compartmentalization on CO2 efflux, we conducted
13C-metabolic flux analysis during feeding on a carbon-
equivalent mixture of glucose and p-coumarate. First, we
determined the distinct contribution of glucose and p-
coumarate toward CO2-producing reactions (Figure 3A,B).
About 32% of the total normalized CO2 efflux (per mol of total
C uptake) was due to the CO2-generating reaction in the ortho-
cleavage and para-cleavage pathways during the p-coumarate
uptake (Figure 3B). Consistent with the exclusive population

Figure 3. (A) Schematic of the metabolic network in P. putida mt-2 with black circles indicating metabolite labeling used to determine substrate
contribution in decarboxylation reactions and brown arrows and brown circles indicating flux to biomass synthesis and biomass metabolite
precursors, respectively. (B) Contribution of glucose (in black) or p-coumarate (in gray) toward CO2 produced in each decarboxylation reaction in
the metabolic network (ratio of CO2−C efflux rate in mol CO2−C gcdw−1 h−1 over total substrate C uptake rate in mol substrate C gcdw−1 h−1); the
pathway origin for CO2 efflux from each assimilated substrate is denoted on the left with yellow for the PP pathway, light orange for lower
glycolysis, dark orange for the TCA cycle, and blue for aromatic C catabolism. (C) Percent fraction of each assimilated substrate released as CO2−
C: glucose (in black) and p-coumarate (in gray). (D) Contribution of metabolic pathways to substrate-dependent CUE calculated from our 13C-
metabolic flux analysis of the conversion of the glucose/p-coumarate mixture. Metabolite abbreviations in (A and B) are provided in the main text.
In (B), the sum of the fractions does not equate to 1 due to carbon retention or recycling in metabolic pathways. In (B, C, and D), error bars
represent standard deviation values (n = 3 biological replicates).
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of upper glycolysis and the PP pathway by glucose-derived
carbons, the decarboxylation reaction of 6-PG to Ru5P in the
PP pathway generated CO2 only from glucose (0.26 ± 0.07
mol of CO2−C from glucose per mol of total C uptake)
(Figure 3A,B). Notably, only four of the nine decarboxylation
reactions had contributions from both substrates: the
decarboxylation of pyruvate to acetyl-CoA in lower glycolysis
(0.08 ± 0.02 mol of CO2−C from glucose and 0.17 ± 0.02 mol
of CO2−C from p-coumarate per mol of total C uptake), the
decarboxylation of isocitrate (0.20 ± 0.02 mol of CO2−C from
glucose and 0.46 ± 0.03 mol of CO2−C from p-coumarate per
mol of total C uptake), the decarboxylation of α-KG (0.49 ±
0.06 mol of CO2−C from p-coumarate per mol of total C
uptake and 0.21 ± 0.03 mol of CO2−C from glucose per mol
of total C uptake), and the anaplerotic reaction of OAA to PEP
(0.034 ± 0.01 mol of CO2−C from glucose and 0.045 ± 0.01
mol of CO2−C from p-coumarate per mol of total C uptake)
(Figure 3A,B). Therefore, in accordance with the nonuniform
assimilation of each substrate in the TCA cycle metabolites
(Figure 3B), more than 69% of the CO2 generated from both
decarboxylation reactions in the TCA cycle (from isocitrate to
α-KG and from α-KG to succinate) was derived from p-
coumarate (p-value < 0.02) (Figure 3A,B). In summary,
despite the near carbon-equivalent consumption rates for both
substrates, only about 25% of the total CO2 efflux generated
during carbon metabolism was derived from glucose, while
nearly 75% was from p-coumarate (Figure 3C; Supporting
Information Tables S5 and S6).
This disproportionate contribution of each substrate to the

total CO2 efflux was accompanied by an unequal contribution
of each substrate to the total flux to biomass biosynthesis, as
determined by 13C-metabolic flux analysis (Figure 3D;
Supporting Information Table S7). This preferential contribu-
tion of glucose over p-coumarate toward biomass production
was due to the aforementioned enrichment of glucose-derived
carbons into metabolite precursors to biomass biosynthesis in
glycolytic pathways and pathways downstream of glycolysis
(Figure 1B,C; Figure 3D). Consequently, the relatively higher
glucose investment to biomass resulted in greater ssCUE of
glucose (0.72 ± 0.04) and lower ssCUE of p-coumarate (0.37
± 0.06) (p-value < 0.02) (Figure 3D). Taken collectively, our
data showcased an unequal contribution of the individual
lignocellulose-related substrates to CO2 efflux and biomass due
to the unshared metabolic paths of the different substrates,
thus resulting in different ssCUEs from the mixture.
To examine further this relationship between substrate-

dependent CUE and partitioning in carbon metabolism in
other environmental bacteria, we performed ssCUE calcu-
lations using reported 13C-metabolic flux analyses of Bacillus
subtilis 168, P. putida KT2440, Pseudomonas protegens Pf-5,
Sphingobium sp. SYK-6, and Comamonas testosteroni KF-
136,41,48,52−55 (Figure 4A). For these species widely found in
various soil and aquatic ecosystems, the partitioning of carbon
fluxes in the metabolic network resulted in 44 to 46% lower
ssCUEs during feeding on organic acids and aromatics
compared to glucose (Figure 4A). Thus, an unequal
contribution to CO2 efflux and biomass precursors can be
predictably explained by the different metabolic paths of the
assimilated substrate carbons in several environmentally
relevant bacterial species.
3.4. Environmental Implications and Future Consid-

erations. Elucidating microbial processing of organic matter
in soils is of critical importance to the understanding of the

terrestrial CO2 budget.1 Based on global-scale data sets and
meta-analysis,56 a negative correlation was proposed between
CUE and soil organic carbon loss via microbial CO2 efflux.
Therefore, CUE represents a determining factor in the carbon
turnover in soils. Large variations in CUE derived from
different organic substrates have been reported9,11,14,15,57 and
the proposed correlation between CUE values and the
oxidation state of substrate carbon has not been corroborated
by recent studies.14,15 A fundamental understanding of the
relationship of CUE to the metabolism of different substrate

Figure 4. (A) Contribution of different metabolic pathways to
ssCUEs calculated based on published metabolic flux analyses for
several environmentally relevant bacteria fed on sugars, organic acids,
aromatic compounds, or a sugar/aromatic mixture.36,41,48,52−55 (B)
Conceptual overview of the disproportionate contribution of different
organic substrates in bioavailable soil organic matter to soil bacterial
CUE: fonts and lines in light-brown color indicate glycolytic
substrates, glycolytic pathways in the cell, and their resulting
contribution to CO2 efflux; fonts and lines in dark-red color indicate
gluconeogenic substrates, TCA cycle pathway in the cells, and their
resulting high contribution to CO2 efflux.
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availability is important for the accurate determination of the
microbial decomposition of soil organic matter and its ultimate
response to projected climate change. Bulk CO2 measurements
are widely used to estimate CUE but information on substrate-
specific contribution to CO2 would require the application of
labeled substrates.19 Still, insights on substrate assimilation into
specific metabolic pathways necessitate labeling of biomass
derivatives18 or intracellular metabolites. Here, using 13C-
metabolic flux analysis, with a Pseudomonas species represent-
ing a model soil bacterium with metabolic versatility and
adaptability, we resolve the specific metabolic contribution of
each substrate in a lignocellulose-related mixture containing
glucose and a phenolic acid, toward CO2 production and
biomass synthesis.
Specifically, our algorithm leveraged the contrast in the 13C

labeling of metabolites in glycolysis and the PP pathway versus
those following aromatic ring cleavage and the TCA cycle to
account for fluxes through different decarboxylation reactions
in the metabolic network. We revealed a metabolic partitioning
whereby nonuniform contribution of each substrate toward
biomass and CO2 resulted in a 3-fold difference in the ssCUE
values. This finding is consistent with previous studies, which
reported 50% to 3-fold higher CUE for sugars than for short-
chain carboxylic acids and aromatic substrates.9,11,57 Of notable
relevance, a recent 13C exometabolomics study of a soil
microcosm fed on a diverse mixture of organic substrates
revealed different 13C enrichments of metabolites from the
assimilated substrates,58 implying that metabolic partitioning
may be a widespread phenomenon in the microbial
community. Here, we demonstrated that ssCUEs and CUEs
in several environmentally relevant bacteria were also due to
distinct partitioning of the substrate carbons in different
metabolic pathways, thus demonstrating the broader relevance
of our proposed metabolic connection of CUE. We concluded
that, in accordance with the relative bioavailability of different
organic substrates within soil organic matter, individual
substrates processed through the metabolic network would
exhibit distinct ssCUE contributions to the overall CUE of soil
microorganisms.
In light of our findings, we posit that, on one hand,

substrates that are processed through glycolytic and PP
pathways, which provide carbon skeletons to DNA and RNA
precursors as well as several amino acids for protein synthesis,
would result in a high CUE; on the other hand, there would be
a relatively lower CUE for aromatic substrates and other
gluconeogenic substrates such as short-chain carboxylic acids
that feed directly into the TCA cycle, which generates a high
flux through CO2-producting reactions in addition to providing
metabolite precursors to protein biosynthesis (Figure 4B).
Consistent with our data, a previous study18 reported a
negative correlation between CUE calculation and the relative
investment of assimilated 13C-glucose into TCA cycle flux
based on positional 13C labeling into phospholipid fatty acids
in soil microbes. Here, we further expanded on this
metabolism-guided perspective to demonstrate explicitly that
the contributions of ssCUE from a mixture to CUE were due
to specific allocation of carbons for each substrate into
different metabolic pathways with a varying extent of CO2-
generating reactions.
To apply broadly this metabolic approach to ssCUE

predictions, there are several considerations regarding the
complexity of environmental matrices that need to be
addressed in future research. First, bioavailable substrates in

soil organic matter represent a diverse group of substrates of
differing chemistry and structure, including various carbohy-
drates and organic acids.20,59 Here, we determined that the
distinct metabolic paths of assimilated sugar versus an
assimilated lignin-related aromatic compound resulted in
dissimilar ssCUEs, in agreement with different soil microbial
CUEs reported for different types of organic substrates.9,11,14

Subsequent studies will need to address the metabolic flux
network of a heterogeneous mixture of bioavailable organic
compounds with respect to how microorganisms prioritize
anabolism (i.e., biomass growth) versus catabolism (i.e.,
metabolic conversion and CO2 generation) in soils,60 by
building on the approach highlighted by Wu et al.18 and
incorporating the 13C-metabolomics approach shown here.
Second, the present study was conducted in an aerobic
environment with nonlimiting concentrations of inorganic
nutrients, such as nitrogen, iron, phosphorus, and trace metals.
It was shown that iron availability can lead to selective carbon
assimilation in Pseudomonas species.35 Furthermore, 13C-
exometabolomics profiling has captured specific metabolic
pathways in soil samples in response to different redox
conditions.61 The availability of nitrogen or phosphorus and
environmental cues such as temperature and moisture can
influence microbial carbon utilization.9,14,17,62,63 How these
environmental factors would modulate the metabolic strategies
deployed by soil microorganisms remains to be inves-
tigated.62,63 Third, based both on genome-predicted metabolic
models and field-scale experimental observations, it was
determined that differences in CUE values are both taxon-
specific and genus-specific.64,65 Soil microbial communities
encompass a diverse assembly of bacteria and fungi with
variable metabolic capabilities for different bioavailable
substrates.3,66,67 In fact, microbial diversity was shown to be
a determining factor in establishing CUE in soil.68 Different
rates of TCA cycle fluxes normalized to substrate uptake flux
were observed for Gram-positive bacteria versus Gram-
negative bacteria, based on incorporation of 13C-sugar carbons
into fatty acids.18 How these differences in TCA cycle and
other pathway activities would be manifested for a mixture of
substrate carbons was not investigated. Building on our
findings, implementing the routing of different bioavailable
substrate carbons through the CO2-producing reactions
involved in variable metabolic network fluxes in different
microbial taxa will be necessary to capture microbial
heterogeneity in soil carbon budgets.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.est.4c01328.

Data sets from metabolomics experiments, proteomics
experiments, and metabolic flux analysis (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Ludmilla Aristilde − Department of Biological and
Environmental Engineering, College of Agriculture and Life
Sciences, Cornell University, Ithaca, New York 14853, United
States; Department of Civil and Environmental Engineering,
McCormick School of Engineering and Applied Science,
Northwestern University, Evanston, Illinois 60208, United

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.4c01328
Environ. Sci. Technol. 2024, 58, 11041−11052

11049

https://pubs.acs.org/doi/10.1021/acs.est.4c01328?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c01328/suppl_file/es4c01328_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ludmilla+Aristilde"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c01328?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


States; orcid.org/0000-0002-8566-1486; Phone: 847-
491-2999; Email: ludmilla.aristilde@northwestern.edu

Authors
Caroll M. Mendonca − Department of Biological and
Environmental Engineering, College of Agriculture and Life
Sciences, Cornell University, Ithaca, New York 14853, United
States; Department of Civil and Environmental Engineering,
McCormick School of Engineering and Applied Science,
Northwestern University, Evanston, Illinois 60208, United
States

Lichun Zhang − Department of the Geophysical Sciences,
University of Chicago, Chicago, Illinois 60637, United States

Jacob R. Waldbauer − Department of the Geophysical
Sciences, University of Chicago, Chicago, Illinois 60637,
United States; orcid.org/0000-0002-0338-6143

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.est.4c01328

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Research funding was from the U.S. National Science
Foundation (CBET-1653092; CBET-2041669; CBET-
2022854) and Northwestern University. We thank three
anonymous reviewers for their insightful comments.

■ REFERENCES
(1) Gougoulias, C.; Clark, J. M.; Shaw, L. J. The role of soil microbes
in the global carbon cycle: tracking the below-ground microbial
processing of plant-derived carbon for manipulating carbon dynamics
in agricultural systems. J. Sci. Food Agric. 2014, 94, 2362−2371.
(2) Ali, R. S.; Poll, C.; Kandeler, E. Soil Properties Control Microbial
Carbon Assimilation and Its Mean Residence Time. Front. Environ.
Sci. 2020, 8, 33.
(3) Kramer, S.; Dibbern, D.; Moll, J.; Huenninghaus, M.; Koller, R.;
Krueger, D.; Marhan, S.; Urich, T.; Wubet, T.; Bonkowski, M.;
Buscot, F.; Lueders, T.; Kandeler, E. Resource partitioning between
bacteria, fungi, and protists in the detritusphere of an agricultural soil.
Front. Microbiol. 2016, 7, 1524.
(4) Sun, W.; Sun, X.; Häggblom, M. M.; Kolton, M.; Lan, L.; Li, B.;
Dong, Y.; Xu, R.; Li, F. Identification of Antimonate Reducing
Bacteria and Their Potential Metabolic Traits by the Combination of
Stable Isotope Probing and Metagenomic-Pangenomic Analysis.
Environ. Sci. Technol. 2021, 55, 13902−13912.
(5) Barnett, S. E.; Youngblut, N. D.; Koechli, C. N.; Buckley, D. H.
Multisubstrate DNA stable isotope probing reveals guild structure of
bacteria that mediate soil carbon cycling. Proc. Natl. Acad. Sci. U.S.A.
2021, 118, 1−11.
(6) Schimel, J.; Weintraub, M. N.; Moorhead, D. Estimating
microbial carbon use efficiency in soil: Isotope-based and enzyme-
based methods measure fundamentally different aspects of microbial
resource use. Soil Biol. Biochem. 2022, 169, 108677.
(7) Geyer, K. M.; Kyker-Snowman, E.; Grandy, A. S.; Frey, S. D.
Microbial carbon use efficiency: accounting for population,
community, and ecosystem-scale controls over the fate of metabolized
organic matter. Biogeochemistry 2016, 127, 173−188.
(8) Pold, G.; Domeignoz-Horta, L. A.; Morrison, E. W.; Frey, S. D.;
Sistla, S. A.; DeAngelis, K. M. Carbon use efficiency and its
temperature sensitivity covary in soil bacteria. mBio 2020, 11, 1−16.
(9) Qiao, Y.; Wang, J.; Liang, G.; Du, Z.; Zhou, J.; Zhu, C.; Huang,
K.; Zhou, X.; Luo, Y.; Yan, L.; Xia, J. Global variation of soil microbial
carbon-use efficiency in relation to growth temperature and substrate
supply. Sci. Rep. 2019, 9, 5621−5628.

(10) Manzoni, S.; Taylor, P.; Richter, A.; Porporato, A.; Ågren, G. I.
Environmental and stoichiometric controls on microbial carbon-use
efficiency in soils. New Phytol. 2012, 196, 79−91.
(11) Sugai, S. F.; Schimel, J. P. Decomposition and biomass
incorporation of 14C-labeled glucose and phenolics in taiga forest
floor: effect of substrate quality, successional state, and season. Soil
Biol. Biochem. 1993, 25, 1379−1389.
(12) LaRowe, D. E.; Van Cappellen, P. Degradation of natural
organic matter: A thermodynamic analysis. Geochim. Cosmochim. Acta
2011, 75, 2030−2042.
(13) Kleber, M. What is recalcitrant soil organic matter? Environ.
Chem. 2010, 7, 320−332.
(14) Islam, M. R.; Singh, B.; Dijkstra, F. A. Microbial carbon use
efficiency of glucose varies with soil clay content: A meta-analysis.
Appl. Soil Ecol. 2023, 181, 104636.
(15) Cyle, K. T.; Klein, A. R.; Aristilde, L.; Martínez, C. E. Dynamic
utilization of low-molecular-weight organic substrates across a
microbial growth rate gradient. J. Appl. Microbiol. 2022, 133, 1479−
1495.
(16) Park, J. O.; Liu, N.; Holinski, K. M.; Emerson, D. F.; Qiao, K.;
Woolston, B. M.; Xu, J.; Lazar, Z.; Islam, M. A.; Vidoudez, C.; Girguis,
P. R.; Stephanopoulos, G. Synergistic substrate cofeeding stimulates
reductive metabolism. Nat. Metab. 2019, 1, 643−651.
(17) Brown, R. W.; Chadwick, D. R.; Bending, G. D.; Collins, C. D.;
Whelton, H. L.; Daulton, E.; Covington, J. A.; Bull, I. D.; Jones, D. L.
Nutrient (C, N and P) enrichment induces significant changes in the
soil metabolite profile and microbial carbon partitioning. Soil Biol.
Biochem. 2022, 172, 108779.
(18) Wu, W.; Dijkstra, P.; Hungate, B. A.; Shi, L.; Dippold, M. A. In
situ diversity of metabolism and carbon use efficiency among soil
bacteria. Sci. Adv. 2022, 8, 3958.
(19) Dijkstra, P.; Blankinship, J. C.; Selmants, P. C.; Hart, S. C.;
Koch, G. W.; Schwartz, E.; Hungate, B. A. Probing carbon flux
patterns through soil microbial metabolic networks using parallel
position-specific tracer labeling. Soil Biol. Biochem. 2011, 43, 126−
132.
(20) Angst, G.; Mueller, K. E.; Nierop, K. G. J.; Simpson, M. J. Plant-
or microbial-derived? A review on the molecular composition of
stabilized soil organic matter. Soil Biol. Biochem. 2021, 156, 108189.
(21) Chen, H. Chemical Composition and Structure of Natural
Lignocellulose. In Biotechnology of Lignocellulose; Springer: Nether-
lands, 2014; pp 25−71.
(22) Xu, F.; Li, Y. Encyclopedia of Sustainable Technologies. In
Biomass Digestion; Elsevier, 2017; pp 197−204..
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