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Abstract

Let G be the group of all order-preserving self-maps of the real line. In previous
work, the first two authors constructed a pre-Tannakian category Rep(G) associated
to G. The present paper is a detailed study of this category, which we name the
Delannoy category. We classify the simple objects, determine branching rules to open
subgroups, and give a combinatorial rule for tensor products. The Delannoy category
has some remarkable features: it is semisimple in all characteristics, all simples have
categorical dimension £1, and the Adams operations on its Grothendieck group are
trivial. We also give a combinatorial model for Rep(G) based on Delannoy paths.
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1. Introduction

Pre-Tannakian tensor categories provide a natural generalization of representation
categories of algebraic groups or supergroups. A topic of recent interest is to under-
stand to what extent pre-Tannakian categories go beyond those coming from algebraic
supergroups. An important theorem of Deligne [16] states that any pre-Tannakian cat-
egory of moderate growth in characteristic 0 comes from an algebraic supergroup, and
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there has been much work devoted to generalizing this result to positive characteristic
(see, e.g., [2], [3], [8]-[11], [22]-[24], [38]). Deligne [17] also introduced the first
examples of pre-Tannakian categories not associated to algebraic supergroups: the
interpolation categories Rep(&;), Rep(GL;), Rep(O;) (see [6], [7], [20], [28], [29],
[33], [34] for subsequent work). o

In recent work [30], the first two authors introduced a general construction of
pre-Tannakian categories associated to oligomorphic groups with an appropriate mea-
sure. In the case of the infinite symmetric group, this construction recovers Deligne’s
category Rep(S;). The construction also applies to the oligomorphic group G =
Aut(R, <)Forder-preserving self-bijections of the real line. The resulting category
Rep(G) is a fundamentally new example of a tensor category: for example, in positive
characteristic, it is the first known example of a semisimple pre-Tannakian category
that is not of moderate growth. We note that [30] is mostly concerned with develop-
ing the general theory of pre-Tannakian categories associated to oligomorphic groups,
and proved little about Rep(G) in particular.

This article is a detailed study of the category Rep(G). We christen this the
Delannoy category, for reasons that will be shortly appﬁt. Our results show that it is
a remarkable object in possession of a number of features distinguishing it from other
known pre-Tannakian categories. In the rest of the introduction, we briefly describe
what Rep(G) is, and then explain a number of our results about it.

1.1. The Delannoy category
From here on, we fix a field k and write G for Aut(R, <). We now give a brief dis-
cussion of what Rep(G) is. We hope this provides the reader with enough of a sense
of the category to—@preciate our main results. A more detailed discussion of the con-
struction of Rep(G) is provided in Sections 2 and 3.

Let R™ be the subset of R” consisting of tuples (x1,...,x,) with x; <--- <
Xn. The group G acts transitively on R®. We say that a function ¢: R® — k is a
Schwartz function if it has finitely many level sets, all of which can be defined by first-
order formulas using <, =, and finitely many real constants; equivalently, this means
that the subgroup of G stabilizing ¢ is open, with respect to the natural topology
on G. We define the Schwartz space € (R™) to be the k-vector space of all Schwartz
functions.

A concept of fundamental importance to this paper is integration with respect to
Euler characteristic, as developed by Schapira and Viro (see, e.g., [47]). Precisely, if
@ is a Schwartz function on R™ that takes the values ai,...,a,, then we define

/Rm) p)dx =) ai ge(p™" (@)).

i=1
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where y. is the Euler characteristic of compactly supported cohomology. The value
of the integral belongs to k. For example, if ¢ € €(R) is the characteristic function of
an open interval, then its integral is —1.

Suppose that W is a Schwartz function on R® x R (defined in the obvious
manner). We can then define an integral operator

Avi ER™) S ERD). (e = [ W) dy.

The composition of two such integral operators is an integral operator of the same
kind. (One can think of W as the matrix of the operator Agy. The composition of two
operators is given by an analogue of matrix multiplication.)

We can use the above constructions to define a category Perm(G) of “permutation
modules.” The objects are formal direct sums of € (R")’s. The morphisms of basic
objects are G-invariant integral operators. This category carries a symmetric tensor
structure “®” defined on the basic objects by

€R™) @ (RM™) =€ R™ x R™),

The space R® x R™) decomposes into G-orbits isomorphic to R (for various s),
and the right side above is defined to be the corresponding sum of Schwartz spaces.
The tensor category Perm(G) is rigid: in fact, every object is self-dual.

The category Rep'(G) of finite length objects in Rep(G) is equivalent to the
Karoubian envelope of Perm(G), and Rep(G) is equivalent to the ind-completion of
Rep'(G); these statements rely on nontrivial results of [30], but for the present pur-
stes one can take them as definitions of Rep’(G) and Rep(G). As we have already
indicated, Rep'(G) is a semisimple pre-Talﬁdan tenso@egory; this is again a non-
trivial result of [30]. We emphasize that semisimplicity holding in all characteristics
is rather remarkable.

1.2. The path model

Before stating our results, we give another description of the Delannoy category that
highlights the relevant combinatorics. This description is new to this paper, and it is
developed in more detail in Section 9.

An (n,m)-Delannoy path is a path in the plane from (0,0) to (n,m) composed
of steps of the form (1,0), (0,1), and (1, 1). The Delannoy number D(n,m) is the
number of (r, m)-Delannoy paths, and the central Delannoy number D(n) is D(n,n).
For example, D(2) = 13 (see Figure 1). The Delannoy numbers are well known in
the literature (see, e.g., [1]).

We introduce an algebra D (n), called the Delannoy algebra, which is modeled on
Delannoy paths. The elements of () are k-linear combinations of (n, n)-Delannoy
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Figure 1. The thirteen (2, 2)-Delannoy paths.

paths; we write [p] for the basis element of D (n) corresponding to the path p. Sup-
pose that py, ps, and pj3 are three (n,n)-Delannoy paths. It turns out that there is
at most one 3-dimensional (n, n, n)-Delannoy path ¢ whose three projections are p;,
P2, and p3. (See Section 9.1 for the definition of higher dimensional paths.) We define

(_1)4(61)4-@(173) if g exists,
E(pl,PZ, p3) =

otherwise,

where £(g) is the length of g. Multiplication in £ (n) is then defined by

[p1]- [p2] = ZG(PLPL p3)[ps3l.
p3

This product is associative and unital. We show that £ (n) is isomorphic to the endo-
morphism algebra of € (R™) in Rep(G); in particular, the dimension of this endo-
morphism algebra is the central ]ﬁnnoy number D(n). The key point here is that
G-orbits on R® x R™ are naturally parameterized by (1, n)-Delannoy paths (see
Proposition 3.5).

More generally, define D (n,m) to be the space spanned by (n,m)-Delannoy
paths. A similar combinatorial rule to the above defines a composition

Dm,m)x D(m, L) - D(n,r).

We define a category with objects indexed by natural numbers and where the Hom
sets are D (n,m). We show that the additive envelope of this category is Perm(G).
We also explain how to construct the tensor product from the combinatorial point of
view. (See Section 9 for details.)

1.3. Main results
Having given some sense of Rep(G), we now explain our results.

(a) Classification of simpTes. A weight is a word in the alphabet {e,o}. Given
a weight A of length 1, we define a submodule L; of €(R™) by writing down an
explicit family of Schwartz functions and taking the submodule they generate. We
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show that the L, s are exactly the simple objects of Rep(G) (Theorem 4.3, Corol-
lary 4.12). -

(b) Decomposition of Schwartz space. We determine the simple decomposition
of €(R™) (Theorem 4.7). In particular, we find that it has length 3”. This decompo-
sition gives a representation-theoretic meaning to a classical formula for the central
Delannoy number D(n) (Remark 4.9).

(c) Projectors and dimension. Let A be a weight of length n. From (b), it fol-
lows that L, has multiplicity 1 in €(R®). We determine the projection operator
€(R™) — L, explicitly (Proposition 5.6). As a corollary, we compute the categori-
cal dimension of L : itis (—1)" (Corollary 5.7). It is a remarkable feature of Rep(G)
that every simple object has dimension £1. Outside of some trivial cases, the ¢ only
other pre-Tannakian category we know with this property is the representation cate-
gory of the supergroup SOSp(1, 2). (We thank the referee for this observation.)

(d) Branching rules. Let G(0) C G be the stabilizer of 0 € R, which is an open
subgroup of G. There are induction and restriction operations between G and G(0).
A thematic problem in this situation is to determine the branching rules, that is, the
simple decompositions of the induction or restriction of simple objects. We solve
this problem completely. A convenient feature of the present situation is that G(0) is
isomorphic to G x G, so we know exactly what its irreducible representations are.

To give a little more detail, we consider the induction

Indg o (Ly K L,,)

and completely describe its decomposition into simples (Theorem 6.1); an interesting
phenomenon here is that this induction always has length 3. Similarly, we consider
the restriction

and completely determine its decomposition into simples (Theorem 6.9). We note
that one can deduce the branching rules between G and any open subgroup from the
G(0) case. The computation of restriction plays an especially important role in the
remainder of the paper; see Example 6.11 for a demonstration of how it can be a
powerful tool.

(e) Tensor products. Another thematic problem throughout representation theory
is to describe the tensor product of irreducible representations. We solve this problem
completely for Rep(G). Precisely, given weights A and u, we consider the tensor
product o

L, ®Ly
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and give an explicit combinatorial rule for its simple decomposition (Theorem 7.2).
Roughly speaking, the simples that appear are indexed by weights obtained by shuf-
fling the words A and w; however, in these shuffles we allow letters to collide, and
there are some rules for what happens in this case.

(f) The Grothendieck group. Let K be the Grothendieck group of the category
Rep'(G). We let a;, € K be the class of the simple L} ; these elements form a Z-basis
for K. The tensor product on Rep(G) endows K with the structure of a commutative
ring. The restriction functor -

Res: Rep(G) — @(G(O)) =~ Rep(G x G)

defines a (non-cocommutative) comultiplication on K. We show that this gives K
the structure of a Hopf algebra (see Section 6.3). The Grothendieck group K carries
a natural ascending filtration, which is compatible with the Hopf algebra structure.
We show that the associated graded is isomorphic (as a Hopf algebra) to the shuffle
algebra (see Section 7.6). In particular, we find that K ® Q is a polynomial ring on
the a,, where A is a Lyndon word (Corollary 7.21).

(f) Adams operations. The Grothendieck group K naturally carries the structure
of a A-ring, and thus admits Adams operations ". We prove that these operations
are trivial, that is, " is the identity for all n (Theorem 8.2); this implies that K is a
binomial ring (Corollary 8.3). As a consequence, it is particularly easy to compute the
action of Schur functors on Rep(G) (see Section 8.5). The triviality of all Adams oper-
ations is another remarkable feature of Rep(G): the only semisimple pre-Tannakian
categories we know with this property% Rep(G") with n € N, and Czenky has
recently shown that ¥2 is nontrivial in any nontrivial symmetric fusion category of
characteristic not equal to 2 (see [13, Theorem 4.8]).

(g) The path model. As stated above, we show that Rep(G) is equivalent to a
category defined using the combinatorics of Delannoy pat}mheorem 9.8).

1.4. Connection to other work

This paper relates to a few other topics.

. Representations of other oligomorphic groups, such as the infinite symmetric
group, coincide with Deligne’s interpolation categories. There is a substantial
literature on them, such as [6], [7], [15]-[17], [20], [28], [29], [33], and [34].

. Let OI be the category of finite totally ordered sets and monotonic injec-
tions. There is a natural functor OI°’ — Perm(G) given on objects by [n] —
€(R™). It follows that OI-modules, that is, functors OI — Vec, are closely
related to Rep(G). These have been studied in [26], [27], [39], and [41].

. Our work studies a modified notion of representation for the group G. Ordi-
nary representations of G have been studied in [18], [36], and [46].
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The category Rep(G) is closely connected to the combinatorics of Delannoy
paths. These have been studied extensively in the literature, for example, [1],
[51, [12], [371, [42], [43], and [44].

1.5. Outline
We give an outline of the paper.

In Section 2, we briefly review the general theory developed in [30].

In Section 3, we specialize the discussion from Section 2 to the case of
Aut(R, <).

In Section 4, we classify the simple objects of Rep(G) and determine the
simple decomposition of the Schwartz space € (R™).

In Section 5, we analyze the invariant spaces of simple objects under open sub-
groups, determine the projection operator from € (R™) to L;, and compute
the categorical dimension of L.

In Section 6, we study the induction and restriction operations between G and
its open subgroup G(0) = G x G. We also show that K is a Hopf algebra.

In Section 7, we give a combinatorial rule for the tensor product in Rep(G)
and show that gr(K) is isomorphic to the shuffle algebra. o

In Section 8, we prove that the Adams operations are trivial on the Grothen-
dieck group.

In Section 9, we discuss the path model for Rep(G).

1.6. Notation
We list some of the important notation here:

k
1
1

coefficient ring (usually a field)
unit object of a tensor category (e.g., the trivial representation)
one-point set

D(n,m) (n,m)-Delannoy number (see Section 1.2)

€(X)

Schwartz space of X (see Section 2.2)

Perm(G) category of permutation modules (see Section 2.3)

A(G)

completed group algebra of G (see Section 2.4)

Rep(G)  category of smooth A(G)-modules (see Section 2.4)

G(4)
R®™

group Aut(R, <) (from Section 3 onward)
subgroup of G fixing the set A pointwise
set of x € R” with x; <--- < x, (see Section 3.1)

vol(X)  volume of X under the principal measure (see Section 3.2)

res

another notation for A(G) (more or less; see Section 3.3)
Grothendieck group of @f(G) (see Section 3.5)
restriction map on K (see Section 3.5)
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ind induction map on K (see Section 3.5)

A weight, that is, a word in the alphabet {e, o} (see Section 4.1)
L, simple of weight A (see Definition 4.2)

a class in K of the simple L) (see Definition 4.2)

O] concatenation product on K (see Section 4.6)

Ali, j] substring of A (see Section 6.2)

w(n) length-n weight with all letters e (see Section 7.2)

2. Generalities on oligomorphic groups

In this section, we review the construction and basic properties of the category
Rep(G) for a general oligomorphic group G. This discussion is a summary of the
main points of [30], except for Section 2.5, which is new.

2.1. Oligomorphic groups

An oligomorphic group is a pair (G, 2) consisting of a group G and a set Q equipped

with a faithful action of G such that G has finitely many orbits on Q" for all n. For

a finite subset A of 2, let G(A) be the subgroup of G fixing each element of A.

The G(A)’s form a neighborhood basis for a topology on G. This topology has the

following three properties (see [30, Proposition 2.4]).

(a) It is Hausdorff.

(b) It is non-Archimedean: open subgroups form a neighborhood basis of the iden-
tity.

(©) It is Roelcke precompact: if U and V are open subgroups, then U\G/V is
finite.

An admissible group is a topological group satisfying (a), (b), and (c). Thus every

oligomorphic group comes with an admissible topology. Although we are most inter-

ested in oligomorphic groups, our constructions depend only on the topology and not

the particular set €2. For this reason, it is most natural to work with admissible groups.

Let G be an admissible group. We say that an action of G on a set is smooth
if every stabilizer is open. We use the term G-set for a set equipped with a smooth
action of G. We say that a G-set is finitary if it has finitely many orbits. (See [30,
Section 2.3] for basic properties of G-sets.)

We define a G-set to be a set X equipped with a smooth action of some open
subgroup of G, which we call the group of definition of X . Shrinking the group of
definition does not change the G-set. Formally, the category of G-sets is the 2-colimit
of the categories of U -sets for open subgroups U (see [30, Section 2.5] for additional
details). The notion of finitary is well defined for G-sets. The symbol G does not have
any rigorous meaning on its own, but intuitively we think of G as an infinitesimal
neighborhood of the identity in G.
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Example 2.1
Any finite group is admissible, under the discrete topology.

Example 2.2

Let G be the infinite symmetric group, that is, the group of all permutations of
Q = {1,2,...}. This is oligomorphic. Let &(n) be the subgroup of & fixing each
of 1,...,n. The open subgroups of & are those that contain some G(n); in fact, every
open subgroup is conjugate to one of the form H x &(n), where H is a subgroup of
the finite symmetric group &, (see [30, Proposition 15.1]). The S-subsets of 2 are
the finite and cofinite subsets. More generally, the S-subsets of 2" are those that can
be defined by a first-order formula using equality and finitely many constants.

Example 2.3

Many oligomorphic groups can be constructed using Fraissé limits; for instance, the
automorphism group of the Rado graph is oligomorphic. (See [30, Section 6.2] for a
quick summary, and [4] for a detailed treatment.)

2.2. Measures and integration
Fix an admissible group G and a commutative ring k. We now come to a key concept
introduced in [30, Section 3.1].

Definition 2.4

A measure for G valued in k is a rule p that assigns to every finitary G-seta quantity

(X)) in k such that the following axioms hold (in which X and Y denote finitary

G-sets):

(a) Isomorphism invariance: u(X) = u(Y)if X =Y.

(b)  Normalization: ;(1) = 1, where 1 is the one-point G-set.

(c) Conjugation invariance: pu(X¥) = u(X), where X# is the conjugate of the
G-set X by g € G (see [30, Section 2.5] for the definition of X¥).

(d)  Additivity: (X T Y) = u(X) + un(Y).

(e) Multiplicativity in fibrations: if X — Y is a map of transitive U -sets, for some
open subgroup U, with fiber F' (over some point), then (X)) = w(F) - u(Y).

We note that a measure automatically satisfies (X x Y) = u(X) - u(Y). (See
[30, Section 3.1] for additional details.) There is a universal measure valued in a ring
®(G). To construct O(G), start with the polynomial ring in symbols [X], where X is
a finitary G-set (up to isomorphism), and impose relations corresponding to (b)—(e)
above. (See [30, Section 4] for details.) Computing ®(G) is an important (and often
difficult) problem.



3228 HARMAN, SNOWDEN, and SNYDER

Suppose now that we have a measure u for G valued in k. We then obtain a
theory of integration, as follows. Let X be a G-set. We say that a function ¢: X — k
is smooth if it is invariant under some open subgroup of G (contained in the group of
definition for X'), and we say ¢ has finitary support if its support is a finitary G-set.
A Schwartz function on X is a smooth k-valued function on X with finitary support,
and the space of all Schwartz functions is called Schwartz space and denoted € (X).
Let ¢ be a Schwartz function on X . The definition ensures that ¢ attains only finitely
many nonzero values, say c1,...,c, (see [30, Proposition 3.6]). Let 4; = ¢~ !(¢;).
We define the integral of ¢ by

[ orax =3t

i=1

Integration defines a k-linear map € (X) — k. (See [30, Section 3.3] for more details.)

If f: X — Y is asmooth map of G-sets, then there is an associated pushforward
map fx: €(X) — €(Y) given by integrating over fibers. This satisfies the expected
properties; for example, if g: Y — Z is a second map, then (gf)« = g« f«. If X and
Y are themselves finitary, then there is also a pullback map f*: €(Y) — €(X). (See
[30, Section 3.4] for more on pushforwards.)

Example 2.5
A finite group G admits a unique Z-valued measure via u(X) = #X. This identifies
O(G) with Z.

Example 2.6

For each complex number ¢, there is a unique C-valued measure u; for & with the
property that 11,(2) = ¢. This measure satisfies 1, (™) = (), where Q™ denotes
the set of n-element subsets of 2. A Schwartz function ¢: €2 — C is simply one that
is eventually constant. If ¢(n) = a for all n > N, then

N
/Q(p(x) dx=(—N)a+> o).

i=1

The ring ®(G) is identified with the ring of integer-valued polynomials; in particular,
the p; account for all complex measures. (See [30, Section 15] for more details on
this case.)

2.3. Permutation representations

Fix an admissible group G and a k-valued measure . If X and Y are finitary G-sets,
then a ¥ x X matrix A is a Schwartz function A: ¥ x X — k. We write Maty, x
for the space of all Y x X matrices. We also write Maty for Maty, y, and Vecy for
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Maty 1. If Aisa Z x Y matrix and B is a Y x X matrix, then we define the product
matrix AB to be the Z x X matrix given by

AB(z,x) =/YA(Z,y)B(y,x) dy.

We note that A B is indeed a Schwartz function (see [30, Section 7.1]). Matrix multi-
plication gives Maty the structure of an associative and unital ring (see [30, Proposi-
tion 7.2]); the identity element is the identity matrix Iy, which is simply the charac-
teristic function of the diagonal. Much of ordinary linear algebra can be generalized
to this setting (see [30, Section 7]) for details.

We now introduce the category of “permutation modules” Perm(G); we refer to
[30, Section 8] for details. The category is defined as follows.

. The objects are Vecy, for X a finitary G-set.
i A morphism Vecy — Vecy is a G-invariant ¥ x X matrix.
. Composition is given by matrix multiplication.

The category Perm(G) depends on the measure p, even though this is absent from
the notation. The category Perm(G) is naturally k-linear. It is also additive: we have

Vecy & Vecy = Vecxiiy.

The structure maps here are given by the usual projection matrices.
The category Perm(G) carries a natural monoidal structure ®. On objects, it is
given by

Vecy ® Vecy = Vecxxy.

On morphisms, it is given by the usual Kronecker product of matrices. The monoidal
unit is 1 = Vecy. This monoidal structure is naturally symmetric; the symmetric struc-
ture is induced by the symmetric structure on the category of G-sets.

The tensor category Perm(G) is rigid. Every object is self-dual. The evaluation
and coevaluation morphisms for Vecy are both given by the characteristic function of
the diagonal. The categorical trace of a morphism A € Mat)G(’ x 1s the “usual” matrix
trace

[XA(x,x)dx.

In particular, the categorical dimension of Vecy is p(X). (See [21, Section 4.7] for
the definition of categorical trace and dimension.)

Example 2.7
If G is a finite group, then Perm(G) is equivalent to the usual category of permutation
G-modules.
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2.4. General representations

Let G and u be as above. The category Perm(G) is typically not abelian. We now
explain how we can produce an abelian representation category Rep(G), which is well
behaved in certain circumstances. We note that the category PLm—(G) has a rather for-
mal definition, while the category Rep(G) will be an actual module category; relating
these two perspectives requires nontrivial results from [30].

The completed group algebra of G, denoted A(G), is the inverse limit of the
Schwartz spaces €(G/U) over open subgroups U; the transition map €(G/U) —
€(G/V) is a pushforward along the map G/U — G/ V. Convolution endows A(G)
with the structure of an associative and unital algebra (see [30, Section 10.3]). The
algebra structure on A(G) depends on the measure p, even though it is absent from
the notation. An A(G)-module M is called smooth if for every element x there is an
open subgroup U such that the action of A(G) on x factors through €(G/U). We
define Rep(G) to be the full subcategory of Mod 4(g) spanned by smooth modules.
The ca@)ry Rep(G) is always a Grothendieck abelian category (see [30, Proposi-
tion 10.7]).

In order for Rep(G) to be well behaved, we must make some assumptions on the
measure (. We say—that W is regular if ;£(X) is a unit in k for every transitive G-set X,
and quasiregular if there is an open subgroup U of G such that u|y is regular. The
complex-valued measure p; in Example 2.6 is quasiregular for all 7, and regular if
and only if # ¢ N. There is another condition on measures used in [30] called normal,
which is weaker than quasiregular, but we will not need it here. We assume in the
following discussion that u is quasiregular.

The most important objects of Rep(G) are the Schwartz spaces € (X ), where X
is a G-set. The A(G)-module structure on € (X) is defined via convolution (see [30,
Proposition 10.11]). The Schwartz spaces €(X) have a mapping property (see [30,
Corollary 11.19]), and every object of Rep(G) is a quotient of some € (X) (see [30,
Proposition 11.14]). There is a functor o

®: Perm(G) — Rep(G), Vecy — €(X)

that is fully faithful (see [30, Proposition 11.12]). Note that Vecx and €(X) are the
same vector space; we use different notation to emphasize that € (X) is thought of as
in Rep(G).

—Although we will not precisely define the completed group algebra or its action
on €(X), we can give a direct description of submodules of €(X). Let ¢ belong
to €(X), and suppose that ¢ is invariant under the open subgroup U C G. Given
Y € €(G/U), we define ¥ * ¢ to be the function on X given by

W *9)(x) = /G VRt R ds
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We then have the following criterion: a k-subspace V of €(X) is an A(G)-submodule
if and only if it is closed under the above convolutions; that is, given ¢ € V' that is
U -invariant and ¥ € €(G/U), the element ¥ * ¢ belongs to V. This also describes
how to form the A(G)-submodule of €(X) generated by a set of elements (take all
such convolutions).

Since the Schwartz spaces generate Rep(G), there is at most one symmetric
monoidal structure on Rep(G) that is comﬁible with ® and cocontinuous in each
variable. Such a symmet—ric monoidal structure is constructed in [30, Theorem 12.9],
and we denote it by ®. It satisfies €(X) ® €(Y) = €(X x Y) for arbitrary G-sets X
and Y.

In fact, ® satisfies a mapping property: giving a map from M ® N is equivalent to
giving a G-equivariant bilinear map from M x N that commutes with certain integrals
(see [30, Section 12.2]). This permits us to give a more concrete description of the
self-duality of €(X): the pairing €(X) ® €(X) — 1 is induced from the bilinear
form

(e ko) = [ o@wedr
This pairing will be used several times throughout this paper.

Remark 2.8

We warn the reader that the forgetful functor from Rep(G) to k-modules is not
monoidal. For example, €(X) ® €(X) =€(X x X ),ﬁch is typically larger than
€(X) ® €(X) since one usually cannot express the characteristic function of the
diagonal as a finite sum of pure tensors. One should think of €(X) ® €(Y) as a kind
of completion of the algebraic tensor product.

We recall the following general definition.

Definition 2.9

Suppose that k is a field. We say that a k-linear symmetric monoidal category € is
pre-Tannakian if it is abelian, all objects have finite length, all Hom spaces are finite-
dimensional, all objects have duals, and Ende (1) = k, where 1 is the unit object.

The following is the most important general theorem on the structure of Rep(G).
It uses the somewhat technical condition Property (P) on the measure p. This pr—operty
essentially means that w is valued in a subring of k that maps to enough fields of
positive characteristic. Since the property holds in all cases of interest to this paper,
we do not bother to explain it in detail (see [30, Definition 7.17] for details).
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THEOREM 2.10 ([30, Theorem 13.2])

Assume that k is a field, ju is quasiregular, and Property (P) holds.

(a) Every object of Rep(G) is the union of its finite length subobjects.
(b) The category Rep—f(G) of finite length objects is pre-Tannakian.
(c) If  is regular, then @f(G) is semisimple.

Remark 2.11
One can view part (c) above as an analogue of Maschke’s theorem.

As a corollary of the theorem, we find that in the regular case one can abstractly
recover the category @f(G) without going through the completed group algebra.

COROLLARY 2.12
If w is regular and satisfies (P), and k is a field, then @f(G) is the Karoubian
envelope of Perm(G).

2.5. Induction and restriction

Let G be an admissible group equipped with a quasiregular measure p, and let U be
an open subgroup of G. The measure u restricts to a quasiregular measure on U (see
[30, Proposition 3.23]), and there is a restriction functor (see [30, Section 10.5])

Resg : Rep(G) — Rep(U).

This functor is simply a restriction of scalars along the natural homomorphism
AU) — A(G).

We now discuss induction (which was not treated in [30]). Let N be an object of
Rep(U). We define Indg (N) to be the space of all functions ¢ : G — N satisfying
Efollowing two conditions:

. @ is left U -equivariant, that is, ¢(ug) = u¢(g) forallu € U and g € G;

. @ is right G-smooth, that is, there is an open subgroup V of G such that
p(gv)=9p(g)forallveVand g € G.

Givena € A(G) and ¢ € Indg (N), we define a function ap: G — N by

(ag)(g) = /G v eEh) i,

where V is an open subgroup of G for which ¢ is right-invariant. (Here ay is the
component of a in €(G/V); recall that A(G) is the inverse limit of these spaces.)
The function a¢ is well defined (i.e., independent of the choice of V'), and belongs
to Indg (N); furthermore, this construction defines on Indg (N) the structure of a
smooth A(G)-module. We omit the verification of these statements. We call Indg (N)
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the induction of N from U to G. One easily sees that induction defines an additive
functor

Indf : Rep(U) — Rep(G).

The following proposition gives its main properties.

PROPOSITION 2.13

We have the following.

(a) The induction functor is both left and right adjoint to the restriction functor.

(b) The induction functor is continuous and cocontinuous (and thus exact).

(c) Fora U -set X, we have Indg(‘C’(X)) = ‘C’(Ig(X)), where Ig(X) =GxYXx
is the induction of the U-set X to G.

Proof
(a) Let M and N be objects of Rep(G) and Rep(U), respectively. To show that induc-
tion is right adjoint to restriction, we must give a natural isomorphism

Hom(M,Ind$ (N)) = Hom(Res§; (M), N).

Suppose that o: M — Indg (N) is given. We define o' : Resg (M)— Nbyad'(m)=
a(m)(1), where the right side indicates the value of the function a(m) at 1 € G.
Now suppose that S: Resg (M) — N is given. We define 8': M — Indg (N) by
B’'(m)(g) = B(gm). We leave to the reader the verification that these constructions
are well defined and mutually inverse.

To show that induction is left adjoint to restriction, we must give a natural iso-
morphism

Hom(Indg (N), M) = Hom(N, Res§ (M)).

Suppose that @ : Ind% (N) — M is given. We define &’ : N — Res& (M) by o/ (n) =
a(yn), where y,,: G — N is the function defined by

gn ifgel,
Vn(g)z{

0 otherwise.

Now suppose that f: N — Resg(M ) is given. We define §’: Indg (N) - M by
B'(p) = |, G/U go(g~ 1) dg, where here we are integrating a module-valued function
(see [30, Section 11.9]). We again leave the necessary verifications to the reader.

(b) This follows from (a) and general properties of adjoints.

(c) Let M be an object of Rep(G). We have
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HOHlA(G) (Indg (€(X)), M) = HOII]A(U) (€(X), M) = HomU(X, M)
= Homg (1§ (X), M) = Homug) (€ (1§ (X)), M).

In the first step, we used (a); in the second, the mapping property for Schwartz space
(see [30, Corollary 11.19]); in the third, adjunction for g (at the G-set level); and
in the fourth, the property for Schwartz space again. The result now follows from
Yoneda’s lemma. O

There is one more general fact about induction we require, namely, the projection
formula.

PROPOSITION 2.14
Let M and N be objects of Rep(G) and Rep(U), respectively. Then there is a natural
isomorphism

Ind§ (Res§ (M) ® N) = M ® Ind§ (N).

Proof

This can be deduced from general considerations (see, e.g., [31, Proposition 4.6]), but
we will give a direct argument. There is a natural map (from the left side to the right
side) coming from adjunctions; we must show that it is an isomorphism. Since all
functors involved are right exact, it suffices (by choosing presentations) to verify this
when M =€(X) and N = €(Y), where X and Y are G- and U -sets. This follows
from the projection formula at the set level; that is, we have a natural isomorphism of
G-sets

I (RE(X)xY) = X x I (Y),

where Rg is the restriction functor from G-sets to U -sets. O

3. Automorphisms of the line

In this section, we introduce the main group of interest: the automorphism group of
the line. We recall some results about this case from [30], and develop some additional
basic theory.

3.1. The group
Let G = Aut(R, <) be the group of all order-preserving bijections R — R. The sym-
bol G will denote this group for the remainder of the paper. It is easy to see that G is
oligomorphic with respect to its action on R.

Let R™ denote the set of 7-element subsets of R. We identify R with the subset
of R” consisting of tuples (x1,...,x,) satisfying x; < xp <--- < x,,. One easily sees
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that G acts transitively on R®. For « € R®, we let G(a) denote the subgroup of G
consisting of elements that fix each a; (which is equivalent to fixing the set a). Recall
that a subgroup of G is open if it contains some G(a). In fact, we have the following.

PROPOSITION 3.1
Every open subgroup of G is of the form G(a) for some a € R™ and n € N.

Proof
See [30, Proposition 17.1]. O

COROLLARY 3.2
Every transitive G-set is isomorphic to R®™, for some n.'

For an open interval I C R, let G; be the group of order-preserving bijections
I — I. Choosing an order-preserving bijection i: I — R yields an isomorphism
f: G — G of topological groups. Different choices of i lead to different choices
of f; however, the various f’s only differ by an inner automorphism of G. Thus we
have a well-defined identification Gy = G up to inner automorphisms.

For a € R™ | the set R \ a is a disjoint union of n + 1 open intervals /o, ..., I.
The group G (a) preserves these intervals, and so there is an induced homomorphism

G(a) > Gy, x---xGp,.

One easily sees that this map is an isomorphism of topological groups. Thus G(a) is
isomorphic to G**1. This self-similarity present in the structure of G will play an
important role in its representation theory.

Since Gy is isomorphic to G, Corollary 3.2 implies that every transitive Gj-
set is isomorphic to 1™ for some 7. Combined with the above classification and
description of open subgroups of G, we obtain the following description of G -sets.

PROPOSITION 3.3
Every finitary G-set is a finite disjoint union of sets of the form Il("‘) X eee X I,("r),
where the I;’s are disjoint open intervals in R and the n;’s are natural numbers.

3.2. Measure and integration
Let k be a commutative ring. By [30, Theorem 17.7], the group G admits a unique
k-valued measure p satistying

/,L(Il(nl) X eee X Ir(nr)) — (_1)"1+-~-+nr7

'Recall our convention that “G-set” means “set with a smooth G-action.”
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where the /;’s are disjoint open intervals of R and the #;’s are natural numbers. For a
general G-set X, we have w(X) = xc(X), where y. is a compactly supported Euler
characteristic; one can define y.(X) by appealing to Proposition 3.3. Since u(R®™) =
(—=1)", it follows that the measure p is regular. We refer to u as the principal measure
on G, and it is the only measure for G that we will use. In what follows, we simply
write vol(X) in place of (X)), and we no longer use the symbol p for a measure.

Integration with respect to the principal measure, as defined in Section 2.2, is
essentially the Euler calculus of Schapira and Viro (see, e.g., [47]). Here are some
important examples of integrals:

/5p(x)dx:1, /l(p,q)(x)dx:—l, /l(p,q](x)dxzo.
R R R

Here p < q are real numbers, §, is the point mass at p, and 1y is the characteristic
function of the set X .

Remark 3.4

The group G admits essentially four measures in total; more precisely, the univer-
sal ring O(G) (discussed after Definition 2.4) is isomorphic to Z* (see [30, Theo-
rem 17.7]). The three nonprincipal measures are not quasiregular though.

3.3. Representation categories
We now come to the main object of study of this paper: the category Rep(G), taken
with respect to the principal measure on G over the field k. One can consider this cat-
egory over a general commutative ring, but we confine our attention to the field case.
As discussed in Section 2.4, Rep(G) is a semisimple Grothendieck abelian category
equipped with a tensor produ?@, and the category Rep'(G) of finite length objects
is pre-Tannakian. o

Associated to each G-set X, we have the Schwartz space €(X) in Rep(G).
By the classification of transitive G-sets (Corollary 3.2), €(X) decomposﬁlto a
direct sum of €(R™)’s. Thus every simple object of Rep(G) is a summand of some
€(R™). The Schwartz spaces €(R™) will play a central role in our analysis of
Rep(G).
"~ We introduce one additional piece of notation/terminology: we use the term “G -
module” or “representation of G” (or similar) for objects of the category Rep(G), and
“G-map” (or similar) for morphisms in Rep(G). Thus G is essentially sy—nonymous
with the completed group algebra A(G), with the convention that “G-module” means
“smooth module over A(G).” This terminology makes the language closer to classical
representation theory, which we find helpful.
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Figure 2. (Color online) An illustration of the proof of Proposition 3.5, with x = (1,2, 3,5, 6) and
¥y = (3,4,6,7). The solid dots are placed at lone x;’s, the open circles are placed at lone y;’s,
and the squares are placed at points that are both of the form x; and y;.

3.4. Orbits on products

We now arrive at the connection between Rep(G) and Delannoy paths. For the
moment, we establish a simple bijection; in Section 9, we will find deeper connec-
tions.

PROPOSITION 3.5
The G-orbits on R™ x R are naturally in bijective correspondence with (n,m)-
Delannoy paths. In particular, the number of orbits is the Delannoy number D(n,m).

Proof

Let (x, ) be an element of R® x R We associate to (x, y) an (1, m)-Delannoy
path p(x, y) as follows. Put a red dot on the real line at each x; and a blue dot at each
vj; ared and blue dot at the same point make a yellow dot. Now start in the plane
at (0,0) and read the real line from —oo to co. Whenever a red dot is encountered,
take a (1,0) step; for blue dots, take a (0, 1) step; and for yellow, a (1, 1) step. The
resulting path is p(x, y). See Figure 2 for an example. Note that words in red, blue,
and yellow dots correspond bijectively to Delannoy paths.

Let (x',y’) be a second element of R® x R _ 1t is clear that if (x,y) and
(x’,y") belong to the same G-orbit, then p(x,y) = p(x’,y’). Conversely, suppose
that p(x, y) = p(x’, y’); note that this means that (x, y) and (x’, y") define the same
word in colored dots. Regarding x and y as subsets of R size n and m, let z be their
union; similarly, let z’ be the union of x’ and y’. The cardinality of z is the length
(i.e., number of steps) of the path p(x, y), and similarly for z’. We thus see that z and
2z’ have the same cardinality, say £. Since G acts transitively on R, there is g € G
such that gz = 2/, that is, gz, = z,. for all 1 <r < {. Now, whether z, is an x;, y;,
or both can be determined from p(x, y) (or, equivalently, the word of colored dots).
Since p(x,y) = p(x’,y"), it follows that gx = x’ and gy = y’, and so (x, y) and
(x’, y") are in the same orbit. O
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COROLLARY 3.6
We have

dimHomg (€(R™), €(R"™)) = D(n,m).

Proof

Recall that G-maps € (R™) — € (R") are given by G-invariant R? x R™ matri-
ces. Thus the space of maps is isomorphic to the space of k-valued functions on the
orbit space G\ (R™ x R™), and so the result follows. O

Remark 3.7
The G-orbits on R x ... x R™a) can similarly be parameterized by d -dimensional
Delannoy paths, as defined in Section 9.1.

3.5. The Grothendieck group
Let K be the Grothendieck group of the category Repf(G). For a finite length G-
representation V, we let [V] denote its class in K. Classes of the form [V] are called
effective. The classes [V], with V' a simple representation, form a basis of K; we will
explicitly describe this basis in Corollary 4.13 below. We now explain a number of
features of K.

(a) The unit class. We let 1 € K be the class of the trivial representation.

(b) The ring structure. The tensor product ® on Rep(G) induces a product on
K, which we call the standard product. (We use this term to distinguish it from two
other products discussed below: the induction and concatenation products.) Under the
standard product, K is an associative, unital, and commutative ring; the unit element
is 1.

(c) The Hom pairing. We let

(,): KxK—>Z
be the Hom pairing, defined on effective classes by
(V1. [W]) = dimg Homg (V, W).

It is symmetric since Rep(G) is semisimple. The classes of simple objects form an

orthogonal basis; in fact, it follows from Theorem 4.3 that the simples are absolutely
simple (i.e., they remain irreducible over k) and so the classes of simples form an
orthonormal basis.

(d) Induction and restriction. Let G(0) C G be the stabilizer of the point 0 € R.
By definition, G(0) is an open subgroup of G. We thus have functors

Ind: Rep(G(0)) — Rep(G), Res: Rep(G) — Rep(G(0))
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as in Section 2.5. The group G(0) is isomorphic to G x G, and so the Grothendieck
group of @f(G(O)) is isomorphic to K ® K. The above functors therefore induce
additive maps

ind: K® K— K, res: K—K® K.

These maps are associative and coassociative, respectively (see below). The product
ind is not unital or commutative. We will see that res is counital, but it is not cocom-
mutative. We note that res is a ring homomorphism (with respect to the standard
product), since Res is a tensor functor.

We briefly sketch a proof of associativity. Let G(0,1) C G be the stabilizer of
{0,1} € R@ whichis isomorphic to G x G x G. Induction from G (0, 1) to G defines
a map K ® K® K — K. One can factor this induction in two ways: first induce
from G (0, 1) to G(0), and then to G; or first induce to G(1), and then to G. These
equivalent factorizations prove that ind is associative. We note that associativity also
follows from our explicit computation of ind in Theorem 6.1.

(e) Frobenius reciprocity. For x, y,z € K, we have

(ind(x ® y).z) = (x ® y,res(z)).

On the right side, (, ) is the Hom pairing on K ® K, which is simply the tensor product
of the Hom pairing on K with itself. This follows from Frobenius reciprocity at the
representation level, as discussed in Section 2.5.

(f) The projection formula. For x,y,z € K, we have

ind(res(x) (Y ® z)) =x-ind(y ® z).

This follows from Proposition 2.14.
(g) Mackey theory. For x,y € K, we have

res(ind(x ® y)) = x ® y +indy 2(x ® res(y)) + indy 3(res(x) ® y),

where ind; » denotes the induction product on the first two tensor factors. Since we
will not use this formula, we omit the proof.

(h) The filtration. We let K-, be the Z-submodule of K spanned by the simple
classes appearing in € (R") for some 0 < m < n (see Remark 4.14 for an explicit
basis of K<,). The K<, define an increasing exhaustive filtration of K. This filtration
is compatible with multiplication in the sense that

K<n Ko CKappm.

Indeed, if N and M are simple G-submodules of € (R™) and € (R"™), then N QM
is a G-submodule of
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eR™) ® €R™) =€R™ x RM),

and R™ x R decomposes into orbits of the form R) with s < n 4 m. The filtration
is also compatible with the comultiplication res, in the sense that

res(Kew) C Y Ko ®Kgj.
i+j=n

One can prove this directly by examining the restriction of € (R®™), or deduce it from
our explicit computation of res in Theorem 6.9.

(i) Other structure. There is some other structure on K that we are not yet ready
to define in detail, but we mention here. In Section 4.6, we define a third product on
K, called the concatenation product, and denoted ©. We show that res admits a counit
8 (Propositions 5.9 and 6.12). We also show that K forms a Hopf algebra under the
standard product and the restriction coproduct (Proposition 6.13). Finally, we show
that K has the structure of a A-ring (see Section 8.1); in fact, it is a binomial ring (see
Corollary 8.3).

4. Simple representations
In this section, we construct and classify the simple objects of Rep(G). We also deter-
mine the simple decomposition of the Schwartz space € (R™).

4.1. Construction of simples
To begin, we construct certain simples, which will turn out to be all of them. To
parameterize these objects, we introduce the following notion.

Definition 4.1
A weight is a word A in the alphabet {e, o}. We write £(A) for the length A, and let A
denote the set of all weights.

By a half-open interval in R, we mean a nonempty interval of the form (b, a] or
[a,b), where a € R and b € R U {+o0}. We define the type of a half-open interval
to be e if its right endpoint is included, and o if its left endpoint is included. For two
subsets / and J of R, we write / < J to mean that every element of / is less than
every element of J. For example, we have [a,b) < [b,c) ifa <b < c.

Now consider a tuple I = (I1, ..., I,) of half-open intervals. We define the type
of I to be the weight A;---A,, where A; is the type of I;. We write I still for the
hypercube 77 x --- x I,, in R”, and we let ¢y € €(R") be its characteristic function.
We say that I is ordered if I} <--- < I,,. In this case, I is contained in R("), and we
regard ¢ as an element of €(R™). We can now introduce some extremely important
representations.
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Figure 3. Two (4, 4)-Delannoy paths. The first is quasidiagonal and turns left, diagonally, right,
and diagonally. The second is not quasidiagonal.

Definition 4.2

For a weight A of length 1, we define L to be the G-submodule of € (R™) generated
by the ¢, where I is an ordered tuple of half-open intervals of type A. We also let a),
be the class of L) in the Grothendieck group K.

When n = 0, we take ¢4 to be the constant function 1 on the point R(O), so that
Ly =€ (R©) is the 1-dimensional trivial representation. The following is the main
theorem of Section 4.1.

THEOREM 4.3

We have the following.

(@)  The module L) is simple, and Endg (L)) = k.

(b) If A and  are distinct weights, then L) and L, are nonisomorphic.

We require two lemmas before proving the theorem. For an (2, n)-Delannoy path
p,let A, € Matgon be the indicator function of the orbit on R®™ xR™ corresponding
to p via Proposition 3.5. We say that p is quasidiagonal if it passes through every
vertex along the main diagonal. Suppose that p is quasidiagonal. At the ith square
along the main diagonal, p can behave in three possible ways:

. p turns diagonally if it goes from (i — 1,i — 1) to (i,i);
. p turns right if it goes from (i — 1,i — 1) to (i —1,i) and then to (i,7); or
. p turns left if it goes from (i — 1,i — 1) to (i,i — 1) and then to (7,).

See Figure 3 for an illustration.

LEMMA 4.4

Let A € A have length n, let p be an (n,n)-Delannoy path, and let ¢y be one of
the generators of L. If p is not quasidiagonal, then A, - 1 = 0. Suppose that p is
quasidiagonal. For 1 <i <n, define
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1 if p turns diagonally in the (i,i) square,

0. p) —1 ifA; = e and p turns right in the (i,i) square,

€A, p)=
l —1 ifA; = o and p turns left in the (i,i) square,

0 otherwise
and define (X, p) =[]/, € (A, p). Then
AP % G(A" p) * Q1.

Proof
Let X € R x R™ be the orbit corresponding to p. We have

(ApeD(») = vol({x e R™ | x e Tand (y,x) € X}).

The set on the right side above factors as J; x --- x J,,, where J; is a subset of /;. To
be a bit more precise, fix y and i. Then the condition (y, x) € X puts us in one of two
cases, as far as x; is concerned:

d If p steps diagonally in the i th column, then x; = y; for some j; in this case,
Ji is {yj} N I,‘.

i If p steps horizontally in the ith column, then y; < x; < yj4+; for some j;
in this case, J; is (¥, yj+1) N I;. (We use the convention yp = —oo and
Ynt1=+00.)

Suppose that y ¢ I. We claim that (A ,¢p)(y) = 0. Indeed, if any J; is empty or
all of I;, then the total volume is O since each /; is half open. To ensure that J; is
nonempty and not all of /;, it must contain some y ;. If this holds for all i, then each
I; contains exactly one y;. Since the I;’s and y;’s are both in increasing order, we
must have y; € I; for each i, thatis, y € L.

Now suppose that y € I. First we claim that if p is not quasidiagonal, then
(Aper)(y) = 0. Indeed, if (4, ¢1)(y) # 0, then each I; contains both an x; and y;, so
before we enter the interval the path is at the vertex (i — 1,7 — 1) and as we exit it is
at (i,1). Second, if p is quasidiagonal, then we want to show that €; (A, p) = vol(J;).
Let a; and b; denote the left and right endpoints of 7;. We split into cases accordingly
using the above description of J; (with j =i or j =i + | according to how the path
turns in the i th square):

. If the path turns diagonally in the ith square, then ¢;(A,p) =1 and J; =
{yi} N I; = {y;}, which has volume 1.

. If A; = e and the path turns right in the ith square, then ¢; (A, p) = —1 and
Ji = (yi-1,yi) N (ai, bi] = (ai, y;) has volume —1.

. If A; = o and the path turns right in the ith square, then €; (A, w) = 0 and
Ji = (yi—1,yi) N[ai, bi) = [ai, y;) has volume 0.
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. If A; = e and the path turns left in the i th square, then €; (A, w) =0 and J; =
(i, yi+1) O (ai, bi] = (yi, bi] has volume 0.

. If A; = o and the path turns right in the ith square, then ¢; (A, w) = —1 and
Ji = (yi, yi+1) N[ai, bi) = (yi, bi) has volume —1. O

LEMMA 4.5

Let p: R®™ — R®=D pe the projection away from the last coordinate. Then
p«(Ly) =0.

Proof

It suffices to show that p4(¢r) = 0 for all ¢y in L. Fix (x1,...,X,—1) in R®”~D and
let X C R be the set of x,,’s such that (x1,...,x,) € I. Then the value of p.(¢y) at
(x1,...,Xxp—1) is the volume of X.If x; ¢ I; for some 1 <i <n—1, then X is empty
and the volume is 0. If x; € I; for all i, then X = I,,, which also has volume 0. O

Proof of Theorem 4.3

(a) Lemma 4.4 shows that A, acts by a scalar on L,. Since the A,’s are the stan-
dard basis of the endomorphism algebra of €(R®™) by Proposition 3.5, it follows
that every endomorphism acts as a scalar on L. Since € (R"™) is semisimple, every
endomorphism of L, is induced by an endomorphism of €(R™). We thus find
Endg(L;) = k. Since L is semisimple, it follows that L is simple. Note that since
every endomorphism of € (R™) preserves L, it follows that L, has multiplicity 1
in €(R™). (We will prove a more general statement in Theorem 4.3.)

(b) Let A and p be distinct weights; we show that L, and L, are nonisomorphic.
Put n = £(A) and m = £(u), and assume that m < n without loss of generality. First
suppose that m = n. By Lemma 4.4, we see that A, acts by distinct scalars on L
and L, for appropriate p: in fact, note that there is a unique quasidiagonal path p
having no diagonal turns for which A, is nonzero on L, and this path determines A.
Thus L, and L, are distinct subspaces of €(R™). Since each has multiplicity 1 in
€ (R™), it follows that they are nonisomorphic.

Now suppose that m < n. We first claim that if L is a simple appearing in
€(R"D), then L is not isomorphic to Lj. Indeed, let p be the projection in
Lemma 4.5, and note that p*: €(R®~D) — €(R®™) is injective. If L were iso-
morphic to Ly, then we would have L) = p*(L) since L) has multiplicity 1 in
€(R™). But p.(Lj) =0 by Lemma 4.5, while p,p* = —1 (since the fibers of p
are open intervals), a contradiction. This proves the claim. Now simply note that L,
appears in €(R”~1), as the standard projection R~V — R gives an injection
C(RM) - eROD), O
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4.2. Evaluation maps
For a € R™, define a map

eve: CR™) >k, evalp) = ¢(a).

We call ev, the evaluation at a map. It is clear that ev, is a map of G(a)-
representations. We will require the following simple observation.

PROPOSITION 4.6
Let ay,...,a, € R™ be distinct, and let A be a weight of length n. Then evg,, ...,
evg, restrict to linearly independent functionals on L.

Proof

Fix 1 <i <r. We can then find I = (/; <--- < I;) of type A such that a; € I, but
aj ¢ Lforall j #i.1It follows that evg, (1) = 1, but evg; (¢1) = 0 for j # i. This
completes the proof. O

4.3. Decomposition of Schwartz space
We now determine the simple decomposition of Schwartz space.

THEOREM 4.7
For n > 0, we have an isomorphism

ew= @ i ()

L(A)<n

Proof
Define m;, to be the multiplicity of L; in €(R™), for any weight A. We first give a
lower bound for m;. Let a € R™, and put s = £(1). We have

mp = dim HOI’I’IQ(LA, f(R(n))) = dim Homg(a) (LA, k),

where the second step is Frobenius reciprocity. The functionals evy, with b C a of
cardinality s, are G (a)-equivariant and linearly independent by Proposition 4.6. Thus
my = ().

We have

'C(R(”)) — (@ L?ml) o X,
A

where X contains the simples not of the form L;. We now compare the endomor-
phism rings of the two sides. The dimension of Endg (€ (R™)) is the central Delan-
noy number D(n) (Corollary 3.6), while Endg (L) is 1-dimensional (Theorem 4.3).
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We thus find

D)=y m} +d.
A

where d is the dimension of Endg (X). We have
2
n
Y- ¥ wi=x2(l) <om,
A 520 £(A)=s s=0 \°

where in the final step we used a well-known formula for D(n) (see [42, Example 2]).
It follows that we must have m, = () where s = £(), and d = 0 (which implies that
X =0). O

Example 4.8
For n = 1,2, the theorem gives the following:
CR)=L.®L.P1,
f(R(Z)) = Lee® Lao D Loe ® Loo® L?2 ® L?Z Gé1.

Here 1 is the trivial representation. The first decomposition above was obtained “by
hand” in [30, Section 17.6].

Remark 4.9
The following two quantities are equal to each other, and to D(n) (see [42, Exam-
ples 1, 3]):

2
" (2n —k)! (1)
I;)(n—k)!(n—k)!k! _I;(k) 2

In light of Theorem 4.7, the above equality can be seen as analogous to the Selberg
trace formula. The left side is the geometric side, as one obtains it by counting the
orbits of G on the geometric object R® x R™_ The right side is the spectral side, as
one easily obtains it from the simple decomposition of € (R™).

The theorem has a number of corollaries.

COROLLARY 4.10
The length of € (R™) is 3.

Proof
From the decomposition of € (R™), we find that its length is
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2li)-52 )5t

A 520 £(A)=s 520

where in the third step we use that there are 2° weights of length s. O

COROLLARY 4.11
Let A be a weight of length s, and let a € R™. Then the dimension of the G(a)-
invariants of L is (7).

Proof

The dimension of LY is the multiplicity of L; in €(R®™) by Frobenius reci-
procity, which is ('s’) (We note that G-invariants and G-invariants coincide by [30,
Section 11.7].) O

COROLLARY 4.12
Every simple object of Rep(G) is isomorphic to L for some A.

Proof
Every object of Rep(G) is a quotient of a sum of €(R™)’s, so all simples must

appear in some Schwartz space € (R®). The theorem shows that the only simples in
€ (R™) are those of the form L. O

Recall that a, is the class of the simple L in the Grothendieck group K. We note
one final corollary that we will use constantly (often without mention).

COROLLARY 4.13
The elements {a )} ca are a L-basis of K.

Remark 4.14
We also see that the elements a, with £(1) < n form a Z-basis of K<,.

Remark 4.15

Write K(k) for the Grothendieck group, indicating the dependence on the field k. If k¥’

is a second field, Corollary 4.13 gives an isomorphism ¢ : K(k) — K(k') viaa) +> a;.

In fact, ¢ is canonical and respects the extra structure on K, as we now explain.
There are two main cases to discuss. First, if k is the prime subfield of k’, then

it follows from the construction of L) that extension of scalars induces ¢. Second,

we have a natural map K(Q) — K(F,) obtained by picking an integral lattice and
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reducing mod p. One can show that this induces ¢; here one must use the existence of
a good integral form of Rep(G), and Proposition 4.20 is helpful too.

4.4. Duality
For a weight A, let AV be the weight obtained by interchanging e and o.

PROPOSITION 4.16
Let A be a weight of length n. The pairing

(Vi LixLi >k (o) = [ pov@ads
R}’l
identifies Ly~ with the dual of L.

Proof
The pairing is clearly G-equivariant, and thus it induces a map of G-modules L)v —
LY. Since both objects are simple, this map is an isomorphism provided that it is
nonzero. It thus suffices to exhibit one nonzero pairing between functions in L, and
Ljv.

Choose real numbers

ar<bi<ci<di<--<a,<b,<c,<d,.

Define intervals I; and J; as follows:

b If A; = e, then I; =(ai,ci]and J; =[bi,di).

b If A\; = o, then I; =[bi,di) and J; =(a,~,c,~].

ThenI= ([ <---<Iy)and J = (J; <--- < Jy) have types A and AV, and so ¢y and
@y belong to L and L,v. The pairing {(¢r, ¢5) is equal to the volume of I N J. By
our construction, this set factors as ]_[?ZI(I,- N Ji),and I; N J; = [b;,¢;] is a closed
interval. Thus the volume is 1, which completes the proof. O

Remark 4.17

The group G admits an outer automorphism o obtained by reversing the real line.
This induces an involution of K that is different from the one induced by duality: we
have a§ = a,,, where u is the reverse of 1.

4.5. A dual description of the simples

We defined L as the subrepresentation of €(R™) generated by certain elements.
We now give a dual description of L, that is, we describe it as the subrepresentation
of €(R™) consisting of elements satisfying certain linear equations. We fix n > 0 in
what follows.
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To begin, we explicitly describe the embeddings of simple objects into Schwartz
space. For a subset S of [n] of cardinality m, let ps: R®™ — R be the projection
onto the S coordinates. This map induces a map of representations py : ERM) -
€ (RM).

PROPOSITION 4.18

Let A be a weight of length m withm < n. For S C [n] of cardinality m, letis: L) —
€ (RM) be the restriction of pg to L. Then the is form a basis of the multiplicity
space Homg (L, € (RM)).

Proof

By Theorem 4.7, the multiplicity space in question has dimension (;’1) It thus suffices
to prove that the elements i g are linearly independent. To see this, pick a € R®. Then
the composition

evg

L, €(RM) k
is equal to ev ¢ (). Since these functionals are linearly independent on L) (Proposi-

tion 4.6), it follows that the is’s are linearly independent. O

For 1 <i <n,let p;: R®™ — R~ be the projection away from the ith coor-
dinate; this is just pg, where S = [n] \ {i}.

PROPOSITION 4.19
Define subrepresentations X and Y of €(R™) by

X =(ker(pi)s). ¥ =) im(p).
i=1

i=1

Then X (resp., Y ) is the sum of the Lj-isotypic spaces of €(R™), where £(A) =n
(resp., L(\) < n). In particular, ER™M) =X @ Y.

Proof
It is clear that Y only contains simples L) with £(1) < n. Now, if S is a proper subset
of [n], then it does not contain some element i, and so pg factors through p;; it
follows that im(py) C im(p;"). It thus follows from Proposition 4.18 that ¥ contains
every copy of L in €(R™) if £(1) < n. We have thus verified the statement about Y .
The maps (p;)+« and p; are adjoint with respect to the standard pairings on
€(R™) and € (R™ D). It follows that X is exactly the orthogonal complement of Y .
This yields the statement about X . O
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We now come to the desired description of L} .

PROPOSITION 4.20

Let A be a weight of length n. Then L consists of those functions ¢ in € (R™)
satisfying the following two conditions:

(a) We have (p;)«(p) =0forall1 <i <n.

(b)  Forevery weight u # AV of length n and every \ € L, we have (¢, ¥) = 0.
Moreover, in (b) it is enough to consider functions ¥ of the form ¢y.

Proof

The first statement follows immediately from Propositions 4.16 and 4.19. We now
explain the second statement (about the ¢y being enough). Suppose that ¢ € € (R™)
is orthogonal to all ¢y in some L. Let U be an open subgroup of G such that ¢ is U -
invariant. The ¢y generate L, as a representation of U (see [30, Corollary 11.23] and
the preceding discussion). It follows that ¢ is orthogonal to all functionsin L,. O

4.6. The concatenation product
We define the concatenation product to be the unique bilinear map

O:KxK—-K
satisfying
a)Qay=a,

for all weights A and u; here A simply denotes the concatenation of the words A
and p. This definition is justified since the a;’s form a Z-basis of K (Corollary 4.13).
The concatenation product gives K the structure of an associative unital ring; it fact,
it is simply the noncommutative polynomial ring on the variables a, and a..

5. Invariants

In the previous section, we computed the dimension of the space of G(a)-invariants
on the simple L, (Corollary 4.11). In this section, we explicitly identify a basis of this
space. Using this, we write down the projection operator for Lj in €(R®™), which
allows us to compute the categorical dimension of L, (Corollary 5.7). We close this
section by showing how one can determine the structure of an arbitrary representation
by analyzing its invariant spaces.

5.1. The key set
Let A be a weight of length n. We define

U, c R® x R™
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to be the subset consisting of all pairs (x, y) satisfying the following conditions, for
1<i<n:

. If A; = e, then x; < y;.

. If A; = o, then y; < x;.

* Ifi <n,then x; < y;4+1 and y; < Xj41.

Here are some examples:

. When A is the empty word, ¥, = R x R(© is a point.

. For A = ee, we have x; < y; < x5 < y,.
. For A = eo, we have x; < y; < y» < Xx».
. For A = oe, we have y; <x; < x5 < y;.
. For A = oo, we have y; <x; < ¥, < x3.

It is clear that W, is a G-stable set; however, it is not a single orbit. The set ¥, will
play a key role in the rest of this section. Note that if  is the map on R® x R
given by 7(x,y) = (y, x), then t (V) = Wv.

Remark 5.1

Let p be the quasidiagonal (n,n)-Delannoy path where the ith turn is right (resp.,
left) if A; = o (resp., A; = o). The G-orbit on R™ x R™ corresponding to p in
Proposition 3.5 is defined just like W, , except with all < changed to <.

5.2. Invariant functions

For a = (ay,as,...,ay) € R™ and A a weight of length n, define ¥§ C R®™ to
be the set of points x such that (x,a) belongs to Wy, and let ¢ € €(R™) be the
characteristic function of W¢. The main interest in these functions lies in the following
result.

PROPOSITION 5.2
The space of G(a)-invariants in L, is spanned by ¥{.

Proof

Since W{ is stable by G(a), it follows that ¥§ is a G(a)-invariant element of
€(R™). Since we already know that G(a)-invariants of L) are l-dimensional
(Corollary 4.11), it is enough to show that 1//)? belongs to L,. For 1 <i <n, let
pi: R® — R@™=D be the projection away from the ith coordinate. Recall (Propo-
sition 4.20) that an element 6 of € (R®) belongs to L if and only if the following
two conditions hold:

(a) (pi)«(@)=0forall 1 <i <n,and

(b) 6 isorthogonal to all L,’s with £(u) = n, except for u = A".

We verify these two conditions for 6 = /7.
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(a) Fix (x1,...,%i,...,x,) in R®™D_ Let X C R be the set of x;’s such that
(X1,...,Xj,...,X,) belongs to W¢. Then the value of (p;)«¥§ at (x1,...,%i,...,Xn)
is the volume of X . We claim that X is a half-open interval (or empty); this will prove
the statement as such a set has volume 0. First suppose that A; = e. There are three
cases:

. Ifi =1, then X = (—o00,a1].

b Ifi>land A, =, thenX:(al-_l,a,-].
. Ifi >1and A;—y = o, then X = (x;_1,a;].
The case A; = o is similar. This proves the claim.

(b) Suppose that p is a weight of length n that is not equal to A"; this precisely
means that there is some 1 <i < n such that y; = A;. To show that wi‘ is orthogonal
to L, it suffices to show that it is orthogonal to the generators ¢. Thus let ¢p be
given, where I = (I; < --- < I,) are intervals of type w. By Fubini’s theorem (see
[30, Corollary 3.19]), we have

<l/fil,(pl):/1{(n) x/fjf(x)wl(x)dxzfl /1 Vi(X1, . Xp)dxy - dxy.

In fact, we can put the integrals on the right side in whatever order we prefer. We do
the i th integral first. Thus fix x; € I; for all j # i, and consider the integral

/lﬁf(xl,...,xi,...,xn)dx,-.
I;

It suffices to show that this integral vanishes. Let X C R be defined as in (a). Then
the above integral is simply the volume of X N [;. Suppose that A; = e. Then, as we
saw in (a), X is a half-open interval containing its right endpoint (or empty). Since /;
has type u; = A;, it is a half-open interval containing its right endpoint. Thus X N /;
is also a half-open interval containing its right endpoint (or empty), and therefore has
volume 0. The case A; = o is similar. Ul

Since the G (a)-invariant space of L is 1-dimensional, it follows from semisim-
plicity that the G (a)-coinvariant space is also 1-dimensional, that is, up to scalar
multiples, there is a unique G (a)-equivariant functional L) — k. We know two
such functionals, namely, the evaluation map ev, (see Section 4.2) and the pairing
(=, ¥3.). These two functionals are necessarily linearly dependent; in fact, they are
equal.

PROPOSITION 5.3
For any ¢ € L), we have
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pla) = / PV (x)dx.
R™)
In other words, evg = (—, ¥ ).

Proof

By the above discussion, we have ev, = B - (=, ¥/{, ), for some scalar 8. Let I =
(I <--- < I) be intervals of type A such that a; is the closed endpoint of /; for all i.
We have ev, (1) = 1. To show that = 1, it suffices to show that {¢r, 7, ) = 1. The
value of this pairing is the volume of X = W%, N 1. We claim that X = {a}, which
will complete the proof. It is clear that a € X. Conversely, suppose that b € X. Say
Ai = e. Since b; € I;, we have b; < a;, and since b € ¥{,,, we have a; < b;. Thus
b; = a;. The case A; = o is similar. Thus a = b, as required. O

COROLLARY 5.4

Letal,...,a" be distinct elements of R™. Then wzl ey wzr are linearly indepen-
dent functions.

Proof

This follows from the above proposition and the fact that ev,1,...,ev,r are linearly
independent functionals on L v (Proposition 4.6). O

COROLLARY 5.5
Let m > n, and let b € R"™. Then the functions V3, with a an n-element subset of b,

. G(b)
Jform a basis of L; ™.

Proof
The ¢ belong to Lf(b) by Proposition 5.2. By Corollary 5.4, these functions are

linearly independent. Since Lf(b) has dimension (7:) (see Corollary 4.11), the result
follows. O

5.3. The projection map
Define

7 R x R™ 5k

to be the characteristic function of W;. We regard 7; as an R® x R"™ matrix; as
such it defines an endomorphism of € (R®™).
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PROPOSITION 5.6
The matrix ;. defines the projection map €(R™W) — L, that is, 7rj, is idempotent
and its image is exactly L.

Proof

The “columns” of the matrix 7, are the functions ¥ considered above. Since these
belong to L (see Proposition 5.2), it follows that the image of 7, is contained in L.
To complete the proof, it suffices to show that 7 acts by the identity on elements of
L. This is exactly Proposition 5.3; note that ¥/, (x) = ma(a, x). O

Recall that an object in a pre-Tannakian category has a “categorical dimension”
(see [21, Section 4.7]).

COROLLARY 5.7
The categorical dimension of L), is (—l)a’l).

Proof

The categorical dimension d of L is equal to the categorical trace of m, which is
just the integral of the diagonal of ), (see [30, Proposition 8.11]). Since W, contains
the diagonal, we find that d = vol(R™), which is (—1)”, as claimed. O

Remark 5.8

Suppose that k has positive characteristic p. The paper [22] defines a notion of ““p-
adic dimension” for objects in (certain) pre-Tannakian categories over k. The p-adic
dimension of L is (—1)*». One can see this by using the integral version of Rep(G),
and the fact that L exists there. o

PROPOSITION 5.9
There exists a unique ring homomorphism §: K — Z satisfying §(a) = (—1)*®.

Proof

Suppose that k has characteristic 0. Then the map K — k assigning to each class
its categorical dimension is a ring homomorphism. Since this takes values in Z C k
by Corollary 5.7, the result follows. In positive characteristic, one can either use p-
adic dimension, or simply appeal to the fact that K is independent of the field k (see
Remark 4.15). U
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5.4. Operators on invariants
Let V' be a simple G-module. We know that V' is isomorphic to L) for some weight A.
By Corollary 4.11, the length of A is the minimal n for which V%@ is nonzero for
a € R™_ We now show how one can recover A itself via certain operators on this
invariant space.

Fix a G-module V, and let a € R™ . For every A, we define an operator

e;: yG@ _, yG@

as follows. Let x € V9@ be given. Then
= [ yigaexds.
G/G(a)

The element e, (x) is G(a)-invariant since the function ¥{ is G(a)-invariant. The
following is our main result.

PROPOSITION 5.10
The operator e), is idempotent. Its rank is the multiplicity of L) in V.

Proof
Since e, is natural in V/, it suffices to treat the case where V' is simple. We show that
e, = 0if V is not isomorphic to L}, and e, is the identity if V = L.

First suppose that V is not isomorphic to L. Let x € V%@ There is a
unique map of G-modules f: €(R™) — V satisfying f(8,) = x (see [30, Corol-
lary 11.19]). For ¢ € €(R™), we have

fe) =/ ¢(ga) gx dg.
G/G(a)
Thus e; (x) = f(¥}). Since V is not isomorphic to L, we see that f restricts to the
zero map L, — V. Since ¥{ belongs to L}, it follows that e; (x) = 0.
Now suppose that V = L. The space V9@ is 1-dimensional and spanned by

V1. It follows that e, (Y) = a - 7§ for some scalar &, and we must show that o = 1.
Since ¥§(a) = 1, we have « = (e, ¥§)(a). For g € G, we have gy = y§“. Thus

_ a ca B . ,
o= /G/G(a) vi(ga)y; " (a)dg = /R(n) Vi b)yy(a)db

= [ Wi Grab=yi@ =1,

where in the fourth step we used Proposition 5.3. O
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6. Induction and restriction

In this section, we study induction and restriction between G and its open subgroups.
Our main results give explicit formulas for these operations. As applications, we show
that K is a Hopf algebra and we classify its primitive elements.

6.1. Induction
Recall (Section 3.5) the induction product

ind: K® K— K,

which is induced by the induction functor from G(0) = G x G to G. We sometimes
write ind(x, y) in place of ind(x ® y) for readability. We now compute this operation
explicitly, in terms of the concatenation product © (see Section 4.6).

THEOREM 6.1
For x,y € K, we have

ind(x,y) =x O [E€R)] Oy,

where [E(R)] = ae + ao + 1.

See Example 4.8 for the formula for [€(R)]. We note two corollaries of the the-
orem.

COROLLARY 6.2
For weights A and |, we have

ind(a)hau) =dyren + Apop + axp-

COROLLARY 6.3
For x,y,z € K, we have

ind(x ® y,z) = x ©ind(y, z), ind(x,y ® z) =ind(x, y) © z.

Remark 6.4

The Schwartz space €(R®™) is the induction to G of the trivial representation of
G(a), where a € R™_ The theorem therefore gives [€(R™)] = [€(R)]®". This
agrees with the decomposition of € (R™) given in Theorem 4.7.

Remark 6.5
We have defined the concatenation product on the Grothendieck group, but not at
the level of representations. Corollary 6.2 suggests a possible definition of L, © L,
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namely, it can be realized as the G-submodule of Ind(L, X L) generated by the
1-dimensional space of G (a)-invariants, where a € R® with n = £(1) + £(1).

We now prove Theorem 6.1. The proof has essentially two steps. First, we show
that Ind(L, X L,,) has length 3 by computing the dimensions of invariant spaces.
Second, we identify the three simple constituents using the operators studied in Sec-
tion 5.4.

We begin by introducing a convenient device for counting invariants. Let V' be
a finite length object of Rep(G). We define the Hilbert function hy of V by letting
hy (1) be the dimension of the G(a)-invariants of V, for a € R™; this is well defined
since the various G(a) subgroups are all conjugate. We also define the Hilbert series
of V by

Hy (1) =Y hy(n)".

n>0
The following result tells us what these invariants look like.
LEMMA 6.6

Let V be a finite length object of Rep(G). Let mj, be the multiplicity of L, in V, and
let My =3 4(3y=p Ma- Then

ln
Hy ()= mp  ———.
_ f)n+l
n>0 (1 t)n
Proof
It suffices to treat the case where V' is simple; this follows from Corollary 4.11. [

Write R = R_ U {0} U R, where R_ = (—00,0) and Ry = (0, 00), and let G+
be the group of order-preserving automorphisms of R4.. These groups are isomorphic
to G, and we have G(0) = G_ x G4. Via the isomorphism G+ = G, we can apply
concepts about G-representations to G -representations, such as Hilbert series.

LEMMA 6.7
Let Wy and Wy be representations of G_ and G ,, and let V be the induction of
W1 X W, from G(0) to G. Then

Hy (t) = (1 + t)Hw, (1 )Hw, (¢).

Proof
Recall that /1y (1) is the dimension of the invariant space V%@, where a € R®. By
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Frobenius reciprocity, this is equal to the dimension of Homg (€ (R™), V). Applying
Frobenius reciprocity in the other argument, we find that

hy (n) = dim Homg gy (€ (R™), W; X W>).

Now, we have
R"= || ROxRY,
r+s+t=n,s=0,1
and so
eRM) = P eR)RERD).
r+s+t=n,s=0,1
Thus we have
hv()= Y hw,(Dhw, () + Y hwy (1w, (1),
r+t=n r+t=n—1

where the second term is omitted if # = 0. This yields the stated formula. ([

LEMMA 6.8
Let Wy, Wh, and V' be as in the previous lemma, and suppose that Wy and W, are
simple. Then V' has length 3.

Proof
Suppose that W; and W, are associated to weights of length n and m. By Lemmas 6.6
and 6.7, we have

n tm

(1—r)m+1 (1 —ym+1

Hy(t) =1+ t)Hw,OHw, (1) = (1 +1¢) -

tn+m
=((1—1)+21)- NG
tn+m [n+m+1

T (1 —pnFmT t 2(1 —pynEmEz
By Lemma 6.6 again, we thus see that V' has three simples, with one of length n + m
and two of length n +m + 1. O

Proof of Theorem 6.1

Write Lj{ for the G version of L. This is the G | -submodule of ‘C’(RS:') ) generated
by the ¢r’s, where I = (/7 < --- < I,,) are intervals of type A contained in R (here n
is the length of A). We similarly define L} .
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Let W = L; and W, = LIJ[, and let V' be the induction of W; X W,. We show
that

V = LA,U« D LA.;L D L)Lo,u,»

and this will complete the proof. Since we know that V' has length 3 by Lemma 6.8,
it is enough to show that each simple on the right side appears in V. By Frobenius
reciprocity, it is enough to show that L; X L;L appears in the restriction to G(0) of
each of these simples.

Let n = £(X) and m = £(u). We have natural maps

Ly RLE —€eR™)RERY) - Resg ) €ROT™),

where the first comes from the inclusions, and the second takes the product of the
pullbacks of the two functions. This map carries @1 X ¢y to ¢ y), where (I, J) means
(1, .. In, J1, ..., Jn). Since @y belongs to L, ,, we thus have a nonzero G(0)-
map L; X LI — L, as desired.

Letv = Aoy, and fixa e R™ and b € RS:"). Let e; be the operator on the G(a)-
invariants of a G _-representation defined in Section 5.4, and similarly define el‘f. To
show that L; X LZ appears in Resg(o) (Ly), it is enough (by Proposition 5.10) to
show that e;eJr is nonzero on the (G_(a) x G4(b))-invariants. Note that G_(a) x

"
G (b) = G(c), where ¢ = (a,0,b) € R"T™ 1 We must therefore show that e} e;"

is nonzero on Lf(e). This space is 1-dimensional, and spanned by v (see Proposi-
tion 5.2). Thus it is enough to show that e; and e:[ are separately nonzero on .

The argument here is similar to the final paragraph of the proof of Proposi-
tion 5.10. We have e} () = -y for some scalar o, and we must show that o 7 0.
We have

@= [ Vi) Y70 (¢) dp,
and so @ = vol(X), where
X ={peR®|pecWand(a.0,b) c ¥POD}

One finds that X = {a}, and so &« = 1. The case of el‘f is similar.
We have thus shown that L X LZ appears in the restriction of L),,. The case
of L., is similar. O

6.2. Restriction
Recall (Section 3.5) that we also have a map

res: K—K®K
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given by restricting from G to G x G. We now determine this map explicitly. We first
introduce a piece of notation: for a weight A = A;---A,, of length n, we let A[i, j]
denote the substring of A between indices i and j (inclusively), thatis, A; ---4;. As
with intervals, we use parentheses to exclude the edge values, for example, A[i, j) =
A; -+ A;—1. Empty intervals yield the empty word, for example, A[1,0] = &.

THEOREM 6.9
Let A be a word of length n. Then

n n
res(@) = Y @i ® aa) + ) aif.i ® aaga)-
i=0 i=1
In words, the first sum is over all ways of breaking A into two between letters (or at
the ends), while the second sum is over all ways of breaking A into two by deleting
letters.

Proof
Let o and § be weights, and let i = £(c). We have

(res(ay).aq ® ag) =(ay.ind(aq ® ap))
= (ax.daep) + (ar.aaop) + (an.aap).

where in the first step we used Frobenius reciprocity (see Section 3.5), and in the
second Corollary 6.2. The first two terms above, counted together, give 1 if @ = A[1, ]
and B =Ali +2,n]and 0 <i <n — 1, and 0 otherwise. The third term above gives 1
ifa = A[l,i] and B = A[i + 1, n], and O otherwise. This yields the stated formula. [

The theorem gives us the following very important corollary for how restriction
interacts with the filtration on K.

COROLLARY 6.10
Let x € K<,. Then

res(x)=xQ@1+1Qx+y,

where y belongsto ), ;i ., K<i ® K<,

The point here is that y is built out of elements in smaller filtration degree; thus
res(x) has a very simple form up to an error that can be controlled. This observation is
used in several proofs in the remainder of the paper; the following example illustrates
the basic mechanism used in these arguments.
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Example 6.11
Theorem 6.9 gives an alternative approach to computing the categorical dimension
of simple objects. Let A of length n be given, and suppose we know that a,, has
dimension (—1)*® for £(u) < n. From the theorem, we have

n—1 n

res(@;) = (a2 ® 1+ 1®a;) + Y axpi) ® aaga) + Y a1 ® dagn]-

i=1 i=1
Categorical dimension is invariant under restriction, and multiplicative for the exter-
nal tensor product. Thus if d is the dimension of a, then the above equation gives

d=2d+un—-1)=D"+n=1)""1,

andsod = (—1)".

6.3. The Hopf algebra structure on K
Recall (Proposition 5.9) that we have an algebra homomorphism §: K — Z defined
by 8(az) = (=1)*P).

PROPOSITION 6.12
The map § is a counit for res.

Proof
We must show that the composition

res i1

K K®K K

is the identity, and similarly for 1 ® §. Let A be a weight of length n. Applying Theo-
rem 6.9, we have

n n
(@ 1)(res(an)) = Y 8(aap.iarin + Y 8(@11,0))axin]
i=0 i=1

n
=ay + 2(5(61;1[1,1']) + 8(ax,i))aang-
i=1
The aj here is the i = 0 term of the first sum. Since the lengths of A[1,i] and A[1,7)
differ by one, the §’s in the second line cancel, and so the final result is simply a;.
This shows that (§ ® 1) o res is the identity. The 1 ® § case is similar. O

We now know that K is a bialgebra, under the standard multiplication m and the
comultiplication given by res; the unit is 1 and the counit is 8. In fact, we have the
following.
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PROPOSITION 6.13
The bialgebra K is a Hopf algebra.

Proof
Recall that if f,g: K — K are additive maps, then their convolution f * g is the
composition

Ies

K K®K K.

K®K

Convolution gives the set Hom(K, K) of all additive maps the structure of a unital
and associative algebra (see [14, Section 4.2]). The unit is the composition 18, where
n: Z — K is the unit map. An antipode is an additive map S: K — K that is a two-
sided inverse to the identity map under convolution, that is, we have S xid =id* S =
né. To prove the proposition, we must show that K admits an antipode.

Consider the equation id * S = né on a map S. Let A be a word of length n.
Evaluating at a, this takes the form

m((id ® S)(res(ay))) = (=1)".

Appealing to our computation of res (Theorem 6.9), this becomes

n n

> aaniS@iea) + Y apinSana) = (="

i=0 i=1
The i = 0 term in the first sum is S(a; ). Every other input to S in the above equation
has the form a,,, where £(u) < n. Thus the above equation allows us to recursively
solve for S(ay).

The above reasoning shows that there is a unique right inverse to id under convo-

lution. A similar argument shows that there is a unique left inverse. Since convolution
is associative, these two inverses are equal and are thus the antipode. O

Example 6.14
Proposition 6.13 shows how to recursively compute the antipode S. Here are a few
examples:

S(Cl.) = —de _2»
S(aoo) = dee +3ae + 3,
S(aoo) = doe + 261. + Zao + 4.

We do not know the general formula for S(a,). However, the leading term is always
(—1)é(k)au, where p is the reverse of A (see Remark 7.22).
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6.4. Classification of primitive elements
An element x € K is primitive if

res(x) =(x®1) + (1 ®x).

The collection of primitive elements of K forms an additive subgroup, which we
denote by KP"™, We now determine it.

PROPOSITION 6.15
The group KP"™ has a Z-basis consisting of ae + 1 and a. + 1.

Proof
From Theorem 6.9, we have

res(a. + 1) = (a. ® 1) + (1 ®a.) + 2’
note that res(1) = 1. We also have
(ao+1)®1+1®(ao+1)=(ao®1)+(1®a.)+2

Thus ae + 1 is primitive, and similarly for a, + 1.

Let y: K® K — K be the concatenation product, that is, y(a) ® a,) = a,,.
From Theorem 6.9, we have y(res(a,)) = (n + 1)a, + y, where y belongs to K<, ;.
It follows that for any x € K<,, we have y(res(x)) = (n + 1)x + y for some y €
K<n—1. On the other hand, if x is primitive, then clearly y(res(x)) = 2x. We thus see
that x can be primitive only if x belongs to K<; in other words, KP"™ C K.

Now, the Z-module K<, is free of rank 3. Since no multiple of 1 is primitive,
it follows that KP"™ has rank at most 2. But we have already exhibited two indepen-
dent elements, so KP™ has rank 2. Since these two elements generate a saturated
Z-submodule of K<, they must generate all of KPi™, O

Let A: K— K ® K be the map given by
Ax)=res(x) —x®1—-1® x.

Thus x is primitive if and only if A(x) = 0. Since there are very few primitive ele-
ments, A is nearly injective. On the other hand, A maps K<, into K<,—1 ® K<,
by Corollary 6.10. This provides a very useful setup for inductive arguments, which
we employ a few times.

7. Tensor products

In this section, we give a combinatorial rule for the decomposition of a tensor product
of two simple representations. As an application, we show that K ® Q is a polynomial
ring with variables indexed by Lyndon words (Corollary 7.21).
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7.1. The tensor product formula

Let A and u be two weights of lengths n and m. A ruffle, or (n,m)-ruffle, is a sur-
jective function r: [n] LI [m] — [£] that is injective and order-preserving on [n] and
on [m]. We think of a ruffle like a shuffle except that there can be collisions. Fix
a ruffle r, and let r; and r, be the restrictions of r to [n] and [m]. We say that
there is a collision at i € [€] if i belongs to the images of r; and r,. Suppose that
i =r1(j) =r2(f) is a collision. We say that the collision is positive if 1 ; = gy = o,
negative if A ; = g = o, and neutral otherwise. We define the preproduct of A and p
with respect to 7 to be the length £ word defined as follows. At the ith spot, we put:

. the letter A; if i = r;(j) is not a collision,
. the letter wg if i = rp(£) is not a collision,
. the letter o if i is a positive collision,

. the letter o if i is a negative collision,

. the letter ? if i is a neutral collision.

We now define a multiset P, (A, i) by replacing each ? in the preproduct with either
e, o, or the empty string (in which case the ? character is simply deleted), in all
possible ways. Thus if there are ¢ question marks, then P,.(A, i) has cardinality 34
(as a multiset). Finally, we define

m'ayan) =y Y a

T vePr(A,u)

where the outer sum is over all (r, m)-ruffles. We extend m’ bilinearly to a product
on K.

Example 7.1
Consider the two weights A = e and j« = eo. There are five ruffles. The corresponding
preproducts are

ee0, @00, e0e, 0, o).

We have underlined the position that A occupies in the above words. In the first three
cases above there are no collisions (i.e., they are shuffles); in the fourth case there is a
positive collision; and in the fifth case there is a neutral collision. In the first four cases,
P, (A, ) contains just the indicated word; in the final case, P, (A, ) = {e, 00, 00},
Thus

M (de,Ueo) = 2Uee0 + Uece + 2Ueo + Gee + de.

Throughout this section, we write m for the standard product on K, that is, the
one induced by tensor products. The following is our main result on tensor products.
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THEOREM 7.2
We have m = m’.

The theorem gives the following combinatorial rule for computing tensor prod-
ucts.

COROLLARY 7.3
Let A and  be weights of lengths n and m. Then

LeL.= P L.

T vePr(A,u)

where the outer sum is over all (n,m)-ruffles r.

Example 7.4
Combining Example 7.1 and Corollary 7.3, we find that

Le®Leo=LE2 @ Laoe ®LE* @ Lee @ L.

To prove the theorem, we compute one special type of product for m (Proposi-
tion 7.5) and establish the projection formula for m’ (Proposition 7.14); this turns out
to be enough to deduce that m = m’ (see Proposition 7.9).

7.2. Some simple tensor products
We now compute a family of particularly simple products. Let (n) be a string of
length 7 consisting of all e’s.

PROPOSITION 7.5
For n >0, we have

az(1) *Anm) = (1 + Dag@m+1) + nazm)-

We first give a nonrigorous but illuminative argument. The tensor product
L1y ® Ly(n) is the subrepresentation of €(R x R™) generated by the functions
0,14 ,....I,)» where J and each [; has type o, and Iy <--- < I,. The functions with
J = I; generate a copy of L), while the functions with I; < J < ;1 (or J < I;
or I;, < J) generate a copy of L (,41). This gives the stated decomposition.

One can make the above argument rigorous; however, there are many details to
handle. Instead, we give a different proof simply by computing in the Grothendieck
group, which avoids any subtleties. This proof is perhaps less insightful, but demon-
strates how rigid the various structures on K are.
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Put x,, = ayyaz@) and y, = (0 + 1)azn41) +nax@). Thus we must show that
Xn = yn. We will eventually do this by induction. We prove two lemmas first. Recall
from Section 6.4 that A(x) =res(x) —x® 1 —1® x.

LEMMA 7.6
Let n > 0 be given, and suppose that x; = y; for 0 <i <n. Then A(x,) = A(yn).

Proof
Put

Zh= ) dnt) ®dn())
i+j=n

so that res(@(n)) = Xn + X,—1 by Theorem 6.9. Since res is a ring homomorphism,
we have

res(xn) = (21 + 1) - (Zy + Zp1).
We have

(an(y®1) - Zy = Z Xi @ dx(j)

i+j=n
= (xn _)’n) Q1+ Z ((l + 1)aﬂ(i+l) + ian(i)) Q azx(j)
i+j=n
=(n =) @1+ Y ida) @an(h + ) idn() ® du()-
i+j=n+1 i+j=n

There is a similar formula for (1 ® @(1)) - ¥,. Summing these, we find that
Z10Z =0 —yn)®1+1Q (X —yn) + (n+ DEpqy +1Z,.
A similar computation gives
X =nE,+ (-1,
Combining all the above, we find that
es(Xp) =(Xn =) Q1+ 1Q (X —yu)+ (n+ DEp1 +Cun+ 1D)E, +n¥,1.
We also have

res(yu) =(n+ 1D)(Zpt1 + Zn) +1(Zn + Zn1)
=+ D1 +Cn+DE, +nZp.



3266 HARMAN, SNOWDEN, and SNYDER

Thus
1es(Xn) —1es(¥n) = (Xn = Yn) @ 1 + 1 ® (Xn — yn),
and so A(x,) = A(yy), as required. O
LEMMA 7.7
We have
(ele = 2Uee + do, (elo = deo + Uoe + e + ao + 1, Aolo = 2doo + do.
Proof

From Lemma 7.6, we have A(x1) = A(y1). It follows that x; — y; belongs to the
kernel of A and is therefore primitive. Thus by Proposition 6.15, we have

(elle = zaoo +ae + p(ao + 1) + q(ao + 1)

for integers p and ¢g. Since this is an effective class, we have p > —1 and ¢ > 0. We
also have

P+ q = (aete, 1) = (ae,a5) =0,
where in the second step we used adjunction. We thus have
Aele =2dee + (1 —q)ae + qas
and g € {0, 1}. Next,
de - (ae + ao + 1) = ao - ind(1) = ind(res(as))

=indde ®1+1Qae+ 1)
:2a.. +a.o+ao.+3a.+ao+la

where we have used Theorems 6.1 and 6.9 and the projection formula. Thus
delo = Ueo + Uoe + (1 + q)ao + (1 - C])ao + L

Since the above element is obviously self-dual, we must have ¢ = 0. This yields the
first two formulas, while the third follows from the first by duality. O

Proof of Proposition 7.5
We must show that x,, = y, for all n. The n = 0 case is trivial, while the n = 1
case follows from Lemma 7.7. Now let n > 2 be given, and suppose that x; = y; for
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0 <i <n.By Lemma 7.6, we have A(x,) = A(yy). Thus x, — y, is primitive, and
so by Proposition 6.15 we have

Xn =Yn+ plae+1)+qlas + 1)
for integers p and g. We have
p+q=(xn.1) = (axm).a.) =0,
where in the second step we used adjunction. We also have
q = (Xn.do) = (An(n). doto).

where again we have used adjunction. From the computation of a.a, in Lemma 7.7,
the above pairing vanishes. Thus p = ¢ =0, and so x, = y, as required. O

Let Z(x) be the ring of integer-valued polynomials in the variable x. Put b, =
(})- The elements {b, },>o form a Z-basis of Z(x).

COROLLARY 7.8
The additive map ¢ : Z{x) — K defined by ¢(b,) = a () is a ring homomorphism.

Proof

We have b1 b, = (n + 1)b,+1 + nb,. Since by generates Z{x) ® Q as a Q-algebra, it
follows that ¢ ® Q is a ring homomorphism. Since K is torsion-free, it follows that ¢
is a ring homomorphism. U

7.3. Characterization of m
Let

qg: KxK—=K

be a bilinear map, which we view as a product on K. We write ¢ still for the induced
product on K ® K. We consider the following conditions on x:

(a) The product g is commutative and unital with unit ag.

(b) The projection formula holds: for x, y, z € K, we have

ind(g(res(x),y ® z)) = ¢(x.ind(y ® z)).
(c) For any n > 0, we have
q(az(1y: azm) = (n + Dagu+1) + nazm)-

We characterize the standard product m via these conditions.
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PROPOSITION 7.9
The standard product is the unique product satisfying (a)—(c) above.

We will first require a lemma. Put
I, = ) ind(Kg ®Kg)).
i+j=n—1

Note that I, is contained in K<, by Theorem 6.1. We define the Hamming distance
between two weights of the same length to be the number of positions at which they
differ.

LEMMA 7.10
Let A and . be two weights of length n with Hamming distance d. Then in the quotient

KSn/(Ksn—l + ISn)

we have a) = (—l)dau. In particular, the above group is cyclic and generated by

an(,,).

Proof

It suffices to treat the case d = 1. Thus, after swapping A and pu if necessary, we have
A =oaef and u = aof for two weights & and S whose lengths sum to n — 1. In the
quotient group we have

ind(aqy ® ag) =ay +ay + aqg =0,
and also ang = 0, and so the result follows. O
Proof of Proposition 7.9
We have seen in Section 3.5 that m satisfies (a) and (b), while (c) is given by Proposi-

tion 7.5. Suppose now that ¢ is an arbitrary product satisfying (a)—(c). We must show
that ¢ = m. Consider the following statement:

(Sp): Ifx €K<, and y € K< withr + 5 <n, then g(x,y) = m(x, y).

We prove (S,) by induction on n. The statement (So) follows from (a), since K<y is
spanned by 1. Suppose now that (S,—;) holds, and let us prove (Sy).
Let x and y as in (S},) be given. We must show that

q(x,y) =m(x,y). (7.11)

If y belongs to K<;_1, then (7.11) holds by (S,—1). Suppose now that y = ind(ay ®
ag), where £(a) + £(B) < s — 1. We have
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q(x,y) =ind(g(res(x),aq ® ag)).

and similarly for m; this is where (b) is used. Note that res(x) is contained in (K ®
K)<, by Theorem 6.9. By (S,—1), we thus have

q(res(x),aq ® ag) = m(res(x),aq ® ag).

Applying ind, we find that (7.11) holds. We thus see that (7.11) holds if y belongs to
K<s—1 + I<s; of course, there is an analogous statement for x (since ¢ is commuta-
tive).

Applying Lemma 7.10, write

X =Ulg(r) + x', Y =vage) + v,
where u,v € Z and x’ € K<, 1 + 1<, and y" € K<5— + I<;. We have

q(x,y) =uvq(an(ry. Az(s)) + uq(azey, ') +vq(x' ax) +q(x', y").

Call the four terms above ¢y, ...,q4. We have a similar expression for m, yielding
terms my,...,mq. We have g; = m; by an easy inductive argument, or, more directly,
by the reasoning in Corollary 7.8; in any case, this is where assumption (c) is used. In
each of the remaining terms, we have g; = m; by the previous paragraph. Thus (7.11)
holds, which completes the proof. O

Example 7.12

The proof of Proposition 7.9 explains how to actually compute arbitrary products
using the projection formula and Proposition 7.5. We illustrate the simplest case by
computing de - do. First we express a, in terms of inductions and a,)’s. By Theo-
rem 6.1, we have

ao =1ind(1) —ae — 1.
Multiplying by a., we find that
de - do = ind(res(de)) — de - de — do.
We have de - de = 2dee + ae by Proposition 7.5. We have
res(de) = (@e ® 1) + (1 @ ae) + 1
by Theorem 6.9, and so

ind(reS(a.)) = zaoo + deo + Goe + 3ao +ao + 1
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by Theorem 6.1. Combining the above, we thus find that
Ue *Uo = Ueo + Uoe + e + o + 1.

Note that we computed the above product in Lemma 7.7, which was used in the proof
of Proposition 7.5, so the above computation is somewhat circular; it is just intended
to illustrate the procedure provided by the proof of Proposition 7.9.

Remark 7.13
Lemma 7.10 implies that the elements a,(,) generate K under the induction product
(which is a nonunital ring).

7.4. The projection formula for m’
We would like to apply Proposition 7.9 to show that m’ = m. For this, we need to
know that m’ satisfies the projection formula. We now prove this.

PROPOSITION 7.14
For x,y,z € K, we have
m’(x,ind(y ® z)) = ind(m’(res(x), y ® z)).

Before giving the proof, we require two lemmas. We begin by verifying the pro-
jection formula in a simple case.

LEMMA 7.15
For x € K, we have m'(x,ind(1)) = ind(res(x)).

Proof
It suffices to treat the case x = a;. Let n = £(A). Define elements x5, x3, X4, X5 as
follows:

. X5 is the sum of all a,’s where w is obtained by inserting a e in between two
letters of A, or at the start or end of A; this sum has n + 1 terms.

. x3 is defined like x,, except that we insert o.

. X4 is the sum of all a,,’s where u is obtained by toggling a single letter of A

(switching a e to a o, or vice versa); this sum has n terms.

. Xs is the sum of all @;,’s where u is obtained by deleting a letter from A; this
sum has n terms.

We will show that each side of the equation in the statement of the lemma is equal to

(2n + 1)x + x2 + x3 + X4 + x5, (7.16)

which will complete the proof.
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We begin with the left side. From the computation of ind(1), we have
m'(x,ind(1)) = m'(x,as) + m'(x,a0) + x.

We claim that this is equal to (7.16). The terms in m’(x, ae) without collisions produce
X5; similarly, the terms in m’(x, a,) without collisions produce x3. We now consider
collisions at the ith letter of A, for both products at once. Together, these produce

axn,i © (Zak,» + aXi + 1) ©axin,

where aXi just means that we toggle A;. Indeed, when we collide with A;, we just get
A, while in the other case we get ae + do + 1, which is a; + aXi + 1. Summing over
i, we obtain 2nx + x4 + xs. This proves the claim.

We next claim that the right side is also equal to (7.16). By Theorem 6.9, we have
res(x) = y1 + y2, where

n n
= Zam,i] ® @i, Y2 = Zax[u) Q@ (i)
i=0 i=1
Thus y; is the sum of ways of breaking A into two pieces between letters (or at the
ends), while y, is the sum of ways of breaking A into two pieces by deleting letters.
By Theorem 6.1, we have

n
ind(y1) = ) (aari) © (1 + @ + ao) © azging) = (1 + 1)x + X3 + x3.
i=0
Similarly,

n

ind(y2) = Z(ax[l,i) O (1 +ae +ao) O apgn) = X5 + nx + x4.

i=1

In each term in the above sum, one choice of a. or a, will replace the deleted letter,
and these terms amount to nx; the terms corresponding to the other choice amount to
x4. This proves the claim, and completes the proof. O

For a, B € {e, 0}, we define a quantity c(«, B) € K as follows:

ae ifa=p=se,
cla,B)=qae+tao+1 ifa#p,
ao ifo=p8=o.

Note that c¢(«, B) is exactly the quantity used in the definition of m’ when a collision
is encountered. The following lemma gives a recursive characterization of m’.
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LEMMA 7.17
Let A and p be weights of lengths r and 1, and let x € K. We then have

.
m'(ay,a, ®x) = Zam,i] Qa, O m'(ayg,r.X)
i=0

r
+ Zax[l,i) O c(Ai,p) ©m'(axg . X).
i=1

There is a similar formula when the order of a, © x is reversed.

Proof

The first sum is the case where the ruffle has no collision and i is taken to be maximal
such that [1,] in the first variable is mapped to [1,] by the ruffle. The second sum is
the case where the ruffle has a collision at i . O

Proof of Proposition 7.14
Consider the following statement:
(Sp) Givenx eKand y ® z € (K® K)<,, we have

m’'(x,ind(y ® z)) = ind(m’ (res(x). y ® z)).

We prove (S,) by induction on n. The n = 0 case was established in Lemma 7.15.
Suppose now that n > 1 and (S,—1) holds; we will prove (Sy).

It suffices to treat the case where x, y, and z are basis vectors. Moreover, we can
assume that y and z are not both 1 since this is covered by (Sp); since y and z play
symmetric roles, without loss of generality we can assume that y # 1. We can thus
write X = dy, ¥ = dpq, and z = ag, where p is a single letter, and £(a) + £(B) <
n—1.Put w =ind(ay ® ag). Note that y =a, © aq, and ind(y ® z) =a, © w by
Corollary 6.3. Put

A=m'(a;,a, O w), B =m'(res(a;),apa ® ag).

We must prove that A = ind(B).
Computing res(ay ) via Theorem 6.9, we find that B = X 4+ Y, where

.
X = Zm'(aul,,‘],aﬁ O aq) @ m'(ax,r.ap).
=0

.
Y =Y m'(aa, ) ap © o) ® m'(aijr.ap).
j=1



THE DELANNOY CATEGORY 3273

Applying Lemma 7.17 to the first m’ in X, we obtain X = X; + X, where

r J
X1 = Z Z(afl[l,i] O a, ®m'(axg,j1.aa)) @ m'(axr.ag).
j=0i=0

roJ
X2 =" (awni © c(hi. p) © m'(ari.j1.Ga)) ® m' (@) ap)-
j=0i=1
Similarly, we obtain ¥ = Y; + Y, where

r j—1

Yi=) Y (ai ©@a, @ m'(axg.j). aa)) ® m'(@ags.ap),
j=1i=0

r j—1

Yo=Y (aamni ©c(hi.p) © m' (s, ). aa)) ® m'(@ajr. ap).
J=tli=1

Reversing the order of the sums in X; + Y7 and using Theorem 6.9, we obtain

r r
Z((ax[u] Oay)®1)0O (Z m/(aw,j],aa)) Q@ m'(ayg,r.ag)

i=0 Jj=i

r
+ Z m'(as,j)-da)) ® m' (@, ap))
j=i+1

r
= (@ ©a,) ® 1) ©m'(res(@ig.r), da ® ag).
i=0
Applying ind to this, and appealing to Corollary 6.3 and (S,—1), we obtain

r
ind(X1 + Yl) = Zak[l’i] ® ap ©) m’(a,\(i,r]y w)
i=0

Similarly, we find that

r

X+ Yo=Y (aii ©c(Ai, p) ® 1) @ m/ (res(Xi ). da ® ap),
i=1

and so

,
ind(Xz + Y2) = Y ani © ¢(Ai. p) @ m' (A, w).

i=1
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Putting this all together, we obtain

r r
ind(B) = Zak[l,i] ©a, ©m'(axi,q.w) + Zak[l,i) O c(Ai,p) ©m' (A rpw).
i=0 i=1

This is equal to A by Lemma 7.17. O

7.5. Proof of Theorem 7.2

We now prove m’ = m by showing that m’ satisfies conditions (a)—(c) of Proposi-
tion 7.9. It is clear that ag is the unit for m’, and that m’ is commutative (since the
notion of ruffle is symmetric); thus condition (a) holds. We have verified that m’ satis-
fies the projection formula (Proposition 7.14), which gives (b). Finally, (c) is a simple
combinatorial exercise, carried out in the following lemma.

LEMMA 7.18
We have m/(aﬂ(l),an(n)) =+ Dagm+1) + naz@m).

Proof

Let A = x(1) and u = w(n). There are n + 1 shuffles (i.e., ruffles without collisions),
and for each one r the set P, (A, u) is the singleton containing v (n + 1). There are n
ruffles where the letter from A collides with one of the letters from w; for such ruffles
r, the set P, (A, i) is the singleton containing 7z (n). We thus see that

m(aksau) =(n+ l)an(n-i-l) +naz@m),

which verifies (c). O

7.6. The structure of K as a ring
Now that we have an explicit formula for the product on K, we can describe K as a
ring. Recall that K is filtered (as a ring) by the K<,. We let gr(K) be the associated
graded ring. For a weight A of length n, we let @ be the degree n element of gr(K)
defined by a, ; these elements form a Z-basis of gr(K).

Recall that an (n, m)-shuffle is an (n, m)-ruffle s: [n] U [m] — [€] with £ =n +
m, that is, s is bijective. If s is such a shuffle and A and w are words of lengths n and
m, then Pg(A, 1) contains a unique weight, which we denote by s(A, ); it has length
n+m.

PROPOSITION 7.19
For weights A and . of lengths n and m, we have

a-ay = ZES(M/«)v
S

where the sum is over all (n,m)-shuffles s.
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Proof
According to Theorem 7.2, we have

ax-aﬂzz Z ay,

T vePr(A,u)

where the sum is over all (n,m)-ruffles r. We thus find that

a-au=y_ Y  a.

T vePr(4,u1),

Lw)=n+m
as all other terms in the first formula become 0 in gr(K). If r is a ruffle that is not a
shuffle, then there is necessarily a collision, and so £(v) < n+m forany v € P, (A, ).
Thus in the above formula, it suffices to sum over shuffles. If » is a shuffle, then
Pr (A, p) contains a unique element r (A, ), and it has length n + m. This gives the
stated result. U

Recall that the shuffle algebra on an alphabet has a Z-basis consisting of all
words, and the product of two words is the sum of all shuffles (see [40, Section 1.4]).
The above proposition thus yields the following corollary.

COROLLARY 7.20
The ring gr(K) is the shuffle algebra on the alphabet {e, o}.

Now, define an order on {e,o} by @ < o, and use this to lexicographically order
the set of weights A. We say that A € A is a Lyndon weight if it is nonempty and
lexicographically smaller than its proper suffixes; that is, whenever A = uv with
nonempty we have A < v.

COROLLARY 7.21
The ring K @ Q is the polynomial algebra in the elements a) with A a Lyndon weight.

Proof

It is a well-known property of the shuffle algebra that gr(K) ® Q is a polynomial ring
in the elements @) with A a Lyndon weight (see [40, Theorem 6.1]). The stated result
follows from this by a standard argument. O

Remark 7.22

The restriction map is also compatible with filtrations. By Theorem 6.9, the induced
comultiplication on gr(K) agrees with the usual one on the shuffle algebra (see [40,
Section 1.5]). Thus gr(K) is isomorphic to the shuffle algebra as a bialgebra, and
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hence as a Hopf algebra. In particular, writing S for the antipode on K, the leading
term of S(ay) is (—1)!Ma w» Where 1 is the reverse of A, as this is the formula for
the antipode on the shuffle algebra.

8. Adams operations

In this section, we show that the Adams operations are trivial on the Grothendieck
group K. As an application, we compute the action of Schur functors on K (Proposi-
tion 8.10).

8.1. The A- and Adams operations

Recall that a A-ring is a commutative ring R equipped with operations A’ : R — R,
for i € N, satisfying some conditions, and a special A-ring is one satisfying some
further conditions. These definitions are reviewed in [30, Section 5.2], and general
background can be found in [45, Section 3] or [35, Section I]. (Note: [35] uses the
terminology “pre-A-ring” and “A-ring” in place of our “A-ring” and “special A-ring.”)
Given a A-ring R, one defines the Adams operations Y*: R — R in terms of the A/ ’s
(see [45, Section 3.4] or [35, Section 1.4]).

Suppose now that € is a k-linear pre-Tannakian category with k of character-
istic 0. Then the Grothendieck group K(€) admits the structure of a special A-ring,
with A/ ([X]) = [/\i (X)] (see [22, Section 3.3]). In the case where € is the cate-
gory of complex representations of a finite group, the Adams operations are given by
Xviqv) (&) = Xv] (g%), where y denotes virtual character. In positive characteristic,
K(€) does not carry a natural A-ring structure in general (see [22, Example 3.3]); it
does if € is semisimple, though even then the A-ring structure may not be special (as
the Verlinde category shows; see [22, Section 3.3]).

By the above, we see that our Grothendieck group K is a special A-ring via
AV = /\i V] if k has characteristic 0. In fact, this is true in positive characteristic
as well; one can prove this directly or by appealing to the fact that K is independent
of k (see Remark 4.15). The tensor product K ® K carries a natural special A-ring
structure as it is the Grothendieck group of Rep(G x G).

PROPOSITION 8.1
The map res: K — K ® K is a map of A-rings.

Proof
The map res is induced by the restriction functor

Rep(G) — Rep(G(0)) = Rep(G x G),

which is a symmetric tensor functor; thus the result follows. O
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8.2. The main theorem
The following is the main result of this section.

THEOREM 8.2
The Adams operations are trivial; that is, V" is the identity for all i.

We again emphasize that this is an extremely special property of the Delannoy
category: the only semisimple categories we know with this property are Rep(G") for
n € N. In fact, the theorem is a formal consequence of results we have alr;dy proved,
as the proof will show. The proof will take most of the remainder of the section.

We observe one corollary of Theorem 8.2 here. Recall that a binomial ring is a
commutative ring that is Z-torsion-free and closed under the operations x (”i) for
alln > 0.

COROLLARY 8.3
K is a binomial ring, and A*(x) = (’;) for all x € K.

Proof

This follows from a result of Elliott [19, Proposition 8.3] and Wilkerson [48], which
states that a A-ring with trivial Adams operations is binomial, and A’ (x) = (’; ) iden-
tically. O

In particular, we see that one can compute the simple decomposition of exterior
powers purely in terms of the ring structure on K. In fact, in Section 8.5 we will see
that this is true for arbitrary Schur functors as well.

Remark 8.4

Many elements of G are conjugate to their powers, and this perhaps provides some
intuition for Theorem 8.2. To be a little more precise, suppose we had a character the-
ory for G-modules that behaved like that for finite groups. Let V' be a finite length G-
module. If g € G is a piecewise linear map, then g is conjugate to any power g* with
i > 1. Thus yyiqvy(g) = xv) (g") = xv1(g)- Since the piecewise linear elements
of G are dense, we find that yi;(g) = x[v)(g) for all g, and so ¥'([V]) = [V].
We have not attempted to turn this argument into a rigorous proof.

8.3. A preliminary computation
We begin by verifying that the Adams operations are trivial on the elements a, and
a.. We deduce this from the following result.
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PROPOSITION 8.5
We have /\" (Le) = Ly foralln >0, and so A" (as) = ax(n)-

Proof

As with Proposition 7.5, there is an illuminative proof at the representation level (see

Remark 8.7), but we opt for a proof in the Grothendieck group which involves fewer

subtleties. Let z, = A" (a.). We must show that z,, = @ (). This is clear for n < 1.

We proceed by induction on 7. Thus let n > 2 be given, and suppose that z; = a,(;)

holds for 0 <i <n — 1. We prove z, = a(,) by combining two constraints on z.
We have

n—1 —
/\ (LO) ® Lo Ln(n—l) ® Ln’(l) = L;‘?(’L) @ Lf((,’:_ll)),

where in the first step we used the inductive hypothesis, and in the second step we used
the tensor product rule (Theorem 7.2). Since /\" (L) is a summand of the above, we
find that

Zn =Tdg@m) + SAx(n-1)

for integers 0 <r <n and 0 < s <n — 1. This is our first constraint.
Since res is a map of A-rings (Proposition 8.1), we have

res(zp) = A" (res(das)) = A" (e @1 +1Qae+1) = Z zZi®zj+ Z Zi®z;).
i+j=n i+j=n—1

Recall that A(x) =res(x) —x ® 1 — 1 ® x. Applying the inductive hypothesis to the

above formula, we find that

A(zp) = Z Ar (i) @ Ax(j) + Z Ar(i) & dn(j)-
i+j=n,i,j#0 i+j=n-1

The right side above is equal to A(ax)) by the restriction formula (Theorem 6.9).
Thus z, —ax () is in the kernel of A, and therefore a primitive element. It thus follows
from the classification of primitive elements (Proposition 6.15) that

Zn = dx(n) +P(a- + 1) +q(a0 + 1)

for integers p and ¢q. This is our second constraint.

The two constraints combined yield z,, = @y (). Indeed, there is no a. in the first
constraint, so ¢ = 0. Since n > 2, there is no 1 in the first constraint, so p = 0. (In
fact, even for n = 1 there is no 1 in the first constraintas s <n — 1.) O

COROLLARY 8.6
We have V' (ae) = ae and V' (ao) = ao forall i > 1.
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Proof

Recall that Z({x) is the ring of integer-valued polynomials, which has a Z-basis b,
given by b, = (7). This ring is a special A-ring with A’ (b;) = b;. We have already
seen that the map ¢: Z{x) — K given by ¢(b,) = dr(,) is a ring homomorphism
(Corollary 7.8). By the previous corollary, we see that (A% (b)) = A’ (¢(b;)). This
implies that ¢ is a A-ring homomorphism (see [30, Lemmas 5.26, 5.27]). Since the
Adams operations are trivial on Z(x), it follows that they are trivial on a. as well.
The case a, follows from symmetry. O

Remark 8.7

Here is the basic idea of how to prove Proposition 8.5 at the representation level
(in characteristic not equal to 2). Identify L;Qn with the submodule of €(R") gen-
erated by functions ¢y, where I is an (unordered) tuple of type 7 (n). We thus see
that /\" (Ls) is generated by functions ¢y, subject to relations g1 = sgn(o) - ¢y for
0 € G,. When the intervals in I are disjoint, we may as well put them in order, and
we thus obtain a copy of L (). If two intervals in I are equal, then ¢y = 0in /\" (L.).
One can show that any ¢y can be decomposed into ¢j’s with J disjoint or two compo-
nents equal, which yields the result.

8.4. Proof of Theorem 8.2

We now prove the theorem. We begin with a few lemmas. For letters a, b € {e, o}, let
Sa,p be the set of weights A of length at least 2 that have first letter a and final letter
b.Let K, p be the Z-submodule of K spanned by elements a; with A € S, 3.

LEMMA 8.8
Kg,p is closed under multiplication.

Proof

Consider a product a,a,,, where A and p belong to S, 5. We compute this product
according to the combinatorial rule in Theorem 7.2. Consider a ruffle r and the pre-
product of A and pu associated to r. The first letter of the preproduct is necessarily
a: indeed, it must be the first letter of A (which is a), the first letter of p (which is
a), or the result of a collision of the first letters of A and p (which can only yield
a). Similarly, the final letter of the preproduct is b. The length of the preproduct is
always at least the minimum length of A and w, and thus at least 2 in this case. Thus
the preproduct starts with a, ends with b, and has length at least 2. It follows that all
elements of P,(A, u) belong to S, . Thus aja,, is a sum of a,’s with v € S, p, and
therefore belongs to K, 5. O



3280 HARMAN, SNOWDEN, and SNYDER

Note that K, 5 is not a subring of K since it does not contain 1.

LEMMA 8.9
Ka.p is closed under the AL and W' operators fori > 1.

Proof

Let A be a nonempty weight in S, 5. By Lemma 8.8, L%’ decomposes into a sum of
simples L, with v € S, 5 (here i > 1). Since /\i(L;L) is a quotient of L@l, the same
is true for it. Thus A’(a;) is contained in Kqa,5. It now follows that K, 5 is closed
under A’ from Lemma 8.8 and the addition rule for A’. Finally, ¥ is a homogeneous
degree i polynomial in A!,..., A, and thus it too preserves Ka,p. U

Proof of Theorem 8.2
Fix i > 1. We show that ¥ is trivial on K by inductively showing that it is trivial on
K<, for all n. Triviality on K<; follows from Corollary 8.6.

Suppose now that n > 2 and ' is trivial on K<,,_1. Let A be a word of length at
least 2. By Theorem 6.9, we have

res(ay)) =a; @1 +1®a; + vy,

where y belongs to K<,—1 ® K<,_1. We now apply Y. This commutes with res by
Proposition 8.1 and fixes y by the inductive hypothesis. We thus find that

res(¥'(ax)) =¥ (@) ® 1+ 1@ ¥'(ay) + .

It therefore follows that ¥ (a;) — a; is a primitive element. It thus belongs to K<;
by Proposition 6.15. On the other hand, every basis vector appearing in ¥ (a;) — a;
is of the form a,, where £(11) > 2 by Lemma 8.9. Thus ¥ (a;) — a; must vanish. It
follows that v is trivial on K<,, which completes the proof. ([

8.5. Application to Schur functors
We now assume that k is a field of characteristic 0. For a partition A, let

s K=K

be the action of the Schur functor S, on K. Thus if x = [V] is an effective class, then
53 (x) is the class of Sy (V). We note that s, is not linear, but it is some polynomial
expression in the A operators. We now determine the action of s, explicitly. To this
end, let p, be the integer-valued polynomial such that

ps(n) =dimS; (k").
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The polynomial p, is called the hook-content polynomial (see [25, Example 6.4] for
an explicit formula). Our main result is the following.

PROPOSITION 8.10
We have s, (x) = pj(x) forall x € K.

We note that p; (x) is simply the result of applying the polynomial p; to the ring
element x. In particular, the proposition implies that the action of s, can be obtained
from just the ring structure on K, which is not true for Grothendieck groups in general.

Proof
Fix x € K, and let S be the ring of symmetric functions. We have a homomorphism
of A-rings

p: S —>K, sy > sy (x).

Let P; € S denote the ith power sum symmetric function. We have ¢(P;) = v (x),
essentially by definition of . Since the Adams operations are trivial on K (Theo-
rem 8.2), we thus see that ¢(P;) = x = ¢(P;). Let S be the quotient of S by the ideal
generated by the P; — P, for i > 1. Thus ¢ induces a ring homomorphism g: S — K.

We have a ring homomorphism v : S ® Q — Q[¢] induced by ¥ (sy) = p(?).
Explicitly, for s € S and n € N, we have

(¥s)(n)=s(1,...,1,0,0,...),

where there are n 1’s. In particular, ¥ (P;) = ¢ for all i > 1. Thus ¥ induces a ring
homomorphism ¥ : S ® Q — Q]t]. Since S ® Q is a polynomial ring in the P;’s, it
follows that S ® Q is a polynomial ring in P;, so ¥ is a ring isomorphism. We have

V(pa(P1) = pa(¥(P1)) = palx) =¥ (sp).

s05, = pu(P1)in S ® Q.
Applying @ to the identity just obtained, we see that s (x) = p,(x) holds in
K ® Q. Since K is torsion-free, this equality already holds in K. O

We can use the proposition to decompose the action of a Schur functor on
Rep(G), as we now explain. Since p, (¢) is an integer-valued polynomial, we have an
expression

palt) = Zc(x,w(j)

i>0
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for some integers c(A,i), almost all of which vanish. Recall that 7(n) € A is the
weight consisting of  e’s.

COROLLARY 8.11
We have an irreducible decomposition

Si(Le) =D LI
i>0

In particular, the c(A,i) are nonnegative and the length of Sy (L) is Zizo c(A,Q).

Proof
We have A’ (x) = (7) for x € K (Corollary 8.3), and A’ (as) = d(;) (Proposition 8.5).
By Proposition 8.10, we thus have

sA(a.) = Zc(l,i) “Ar(i)-
i>0

Since the a,(;)’s are distinct basis vectors of K and s (a.) is the class of the repre-
sentation Sy (L), it follows that c¢(A,7) is nonnegative. The result follows. O

The above corollary provides explicit confirmation of the fact that L, is not anni-
hilated by any Schur functor. We already knew this for general reasons: it is not hard to
verify that the length of tensor powers of L, grows superexponentially, which implies
this property by [16, Proposition 0.5].

COROLLARY 8.12
For any V in Rep(G), we have

SA(V)g@(/\iV)

i>0

®Bc(A,i)

Proof
It suffices to treat the finite length case. Again, we have A’ (x) = (f) for x € K (Corol-
lary 8.3). Applying Proposition 8.10 to [V'] € K, we find that

[8:00] =Y coniy [N )]
i>0

Since Rep(G) is semisimple, this equality in K yields the stated isomorphism in
Rep(G). O
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Remark 8.13
Sam Hopkins has pointed out to us that c(A,7) is the number of semistandard Young
tableaux with entries 1,...,7 such that each number appears at least once (see [32]).

9. The path model

9.1. Delannoy paths

Fix a vector ¢ € N*. A 0-1 vector in R’ is a vector whose coordinates are all either O
or 1. An a-Delannoy path is a tuple p = (p1,..., pg) where each p; is a nonzero 0-1
vector and @ = py + -+ + py. We picture p as a path in R® from 0 to a, composed of
steps p1,..., p¢. The length of the path p, denoted £(p), is the number of steps, that
is, its length as a tuple. We write I'(a) for the set of a-Delannoy paths.

Example 9.1
When n = 2 there are three nonzero 0-1 vectors, namely, (1,0), (0,1), and (1, 1).
Thus the above definition recovers the usual notion of planar Delannoy paths.

Remark 9.2
Combinatorial properties of higher dimensional Delannoy paths are studied in [5] and
[44].

Let i : [t] — [s] be an injection of finite sets, and let i *: R® — R’ be the cor-
responding projection. Given an a-Delannoy path p = (py,..., p¢), we define its
projection, denoted i *(p), by taking the tuple (i*(py1),...,i*(p¢)) and deleting any
entries that are zero. This is an i *(a)-Delannoy path, possibly of shorter length. We
thus have a function i *: T'(a) — I'(i *(a)).

9.2. The path category

We now define a k-linear category based on Delannoy paths. Let D (n,m) be the
vector space with basis indexed by the set of paths I'(n,m). We write [p] for the basis
vector of D (n,m) corresponding to p € I'(n,m). We will define a composition law
on the P’s. Before doing so, we prove a proposition.

PROPOSITION 9.3
Let a = (ay,ay,as) be a vector in N3, and suppose that

pi2 €(ay,az), P23 € I'(az,as3), piz €T'(ar,as3)

are given. Then there is at most one a-Delannoy path q such that
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71,2(9) = p1,2, 72,3(q) = p2,3, 71,3(9) = p1,3

where 1t j is the usual projection map R® — R2.

Proof

Let g and ¢’ be paths in I'(a) such that 7; j(q) = 7; j(¢’) for all (i, j) as in the
proposition statement. We show that ¢ = ¢’. It suffices to show that ¢; = ¢, for then
we can remove the first step of each of ¢ and ¢’ and continue by induction.

First suppose that ¢; = (1,0, 0). We then know that the first steps in 71 2(¢) and
m1,3(g) are (1, 0), and we have no information about the first step of 5 3(g). At most
one of 11 »(¢q}) and 7 3(¢g) vanishes; suppose the first one does not. Then 7 »(q})
is the first step in 1 2(q") = m1,2(¢q), which we know to be (1,0); it follows that
q’' = (1,0, x). We thus find that 1 3(g}) = (1, x) does not vanish, and so it is the first
step in 771,3(¢") = 71,3(¢), which we know to be (1,0); thus x = 0. We have therefore
shown that ¢ = (1,0, 0) as required.

The other possibilities for g; are similar (or easier). Thus the result follows. [

Now, let p; € D(n,m), pr € D(m, L), and p3 € D(n,£f) be given. By the
above proposition, there is at most one element g € D (n,m,£) with 71 2(q) = p1,
72,3(q) = p2, and 71 3(q) = p3. Put

(=1)H@D+EP3)  if ¢ exists,

€(p1,p2. p3) =
{0 otherwise.

We define a k-bilinear composition law
Dm,m)x D(m, L) - D(n,tL)
by

[pilolpal= ). e(pr.pa.p3)lpsl.
p3el(n,l)

We now come to the main definition of Section 9.

Definition 9.4

We define a k-linear category D as follows. For each nonnegative integer n, there is
an object X,. The space of morphisms X,,, — X, is O (n,m). The composition law
is as defined above.

Definition 9.5
The Delannoy algebra D(n) is the algebra Endgp (X;,).
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Note that we have not yet shown that composition is associative or admits identity
elements, so the above definition is somewhat incomplete. It is possible to establish
these properties directly; however, we will deduce them in the course of proving The-
orem 9.8.

Example 9.6

We describe the algebra D (1). There are three (1, 1)-Delannoy paths: the diagonal
path A, the path B that goes up and then right, and the path C that goes right and then
up. The algebra D (1) is commutative, with identity element A. The other composi-
tions are given by

B? =B, C?=-C, BC=-A-B-C.

The third composition is significant since it shows that a product of basis elements
need not be a scalar multiple of a basis element.

9.3. The equivalence theorem

Given an (n, m)-Delannoy path p, let O, C R®™ x R be the corresponding orbit,
as defined in Proposition 3.5, and let A, be the characteristic function of O, thought
of as an R® x R matrix. We thus have a natural k-linear map

D(n,m) — Homg (€(R™), €(R™M)), [p] = A4p.

As this map is a bijection on bases, it is an isomorphism of k-vector spaces. We now
verify that it is compatible with composition.

LEMMA 9.7
Given p1 € D(n,m) and p, € D(m, L), we have

Apilolpa] = Api1 Aps,

where on the right side we use matrix multiplication.

Proof

Fix an (n, £)-Delannoy path p3, and let us compute the coefficient ¢ of 4,, in the
matrix product A ,, A p,. By definition, this is the value of 4, A, at a point (z, x) in
Op,. Thus for such a point (z, x), we have

= [ AnCDARDdy.

Integrating both sides over (z,x) € O,,, we find that
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cvol(Ops) =/ Ap, (z2,)Ap,(y,2)Apy(z,x)dx dy dz.
R™) xR(M) xR&)

The right side above is vol(X '), where X is the set of points (x, y, z) such that (z, y) €

Op,, (y,2) € Op,, and (z,x) € Op,. In other words, X is the union of those orbits

that project to Op,, Op,, and O, under the three projections.

Now, the correspondence between orbits and Delannoy paths in Proposition 3.5
extends naturally to orbits on a threefold product. Moreover, this classification is com-
patible with projections, in the sense that a projection of an orbit corresponds to the
projection of the Delannoy path. Furthermore, the volume of an orbit is easily seen to
be (—1)¢, where £ is the length of the Delannoy path.

It follows that if ¢ as in the definition of €(p1, p2, p3) exists, then X = Oy,
and otherwise X is empty. In the first case, ¢ = vol(Oy4)/ vol(Op,) = (— ) @D+EP3)
and in the second case ¢ = 0. In all cases, ¢ = €(p1, p2, p3), which completes the
proof. O

We can now prove our main result about D.

THEOREM 9.8

We have the following:

(a) The composition law in D is associative and has identity elements.

(b) There is a fully faithful functor ®: D — @(G) defined on objects by
d(X,) = €(RM) and on morphisms by ®([p]) = A,.

(©) ® identifies D with the full subcategory of Rep(G) spanned by the €(R™)s.

(d) ® identifies the additive envelope of D wit@(G}.

(e) ® identifies the additive-Karoubian envelope of D with Rep'(G).

Proof
(a) Lemma 9.7 shows that composition in £ matches with composition of matrices
in Perm(G), and is therefore associative and has identity elements.

(b) Lemma 9.7 shows that this is a functor, and we already know that it induces
an isomorphism on Hom spaces.

(c) Let € be the full subcategory of Rep(G) spanned by the objects € (R™). As
d: D — € is fully faithful and essentiaﬁsurjective, it is an equivalence.

(d) This follows since Perm(G) is the additive envelope of €.

(e) This follows since @f(G) is the additive-Karoubian envelope of €. O

Remark 9.9
The equivalence theorem, combined with results on @(G) from [30], implies that
the Delannoy algebra D (n) is semisimple and, more generally, that the additive-
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Karoubian envelope of D is semisimple. It is possible to prove these statements
directly, without relying on [30].

9.4. The tensor product
Let DT be the additive envelope of . We have seen in Theorem 9.8 that D7 is
equivalent to Perm(G). We can thus transfer the tensor product from Perm(G) to
DT. We now say a few words about this.

First of all, in Perm(G) we have

pel(n,m)

where here O, is the orbit corresponding to the Delannoy path p. It follows from
the proof of Proposition 3.5 that O, is isomorphic to R®), where £ = £(p). We thus
obtain the following description of the tensor product on ™ at the level of objects:

Xy ® Xpn = EB Xi(p)-
pel(n,m)

One can describe ® on morphisms, as well as the associator for @, directly in terms of
Delannoy path, but we will not do that here. We note that the associator is nontrivial.

There is an alternate approach that is a bit more clean. We define a tensor cate-
gory &’ as follows. The objects are symbols X,,, where n is a tuple of nonnegative
integers; intuitively, X}, is the tensor product of the X}, ’s. Morphisms X, — X, are
given by linear combinations of nm Delannoy paths, where nm indicates concatena-
tion of tuples. Composition is defined analogously to &D. The tensor product is defined
on objects by X, ® X,y = Xum, and by a simple formula on morphisms. The asso-
ciator is trivial. One can then show that the additive envelopes of £ and D’ agree,
by decomposing X, with explicit idempotents. This allows one to transfer the tensor
product from D’ to DT
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