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GRADED EXTENSIONS OF GENERALIZED HAAGERUP

CATEGORIES

PINHAS GROSSMAN, MASAKI IZUMI, AND NOAH SNYDER

Abstract. We classify certain Z2-graded extensions of generalized Haagerup

categories in terms of numerical invariants satisfying polynomial equations.

In particular, we construct a number of new examples of fusion categories,

including: Z2-graded extensions of Z2n generalized Haagerup categories for

all n ≤ 5; Z2 × Z2-graded extensions of the Asaeda-Haagerup categories; and

extensions of the Z2×Z2 generalized Haagerup category by its outer automor-

phism group A4. The construction uses endomorphism categories of operator

algebras, and in particular, free products of Cuntz algebras with free group

C∗-algebras.

1. Introduction

A quadratic category is a fusion category whose set of simple objects has exactly
two orbits under the (left) tensor product action of the subcategory of invertible ob-
jects. Quadratic categories play a prominent role in the classification of small-index
subfactors. Indeed, with a notable exception (the Extended Haagerup categories),
all known fusion categories can be constructed by starting with either categories
coming from quantum groups at roots of unity or starting with quadratic fusion
categories, and then applying certain constructions.

In this paper we study one of these constructions (G-extensions) applied to one
of the most important families of quadratic categories: the generalized Haagerup
categories. One motivating application of these techniques is to resolve in the
positive the open question of whether the Asaeda-Haagerup fusion categories admit
extensions by their full Brauer-Picard group, which is the Klein 4-group.

Generalized Haagerup categories were introduced as a generalization of Haagerup’s
famous original example appearing in the classification of small index subfactors
[AH99], by replacing the group Z3 = Inv(C) of isomorphism classes of invertible
objects which appears in the Haagerup subfactor with an arbitrary finite Abelian
group. A generalized Haagerup category is tensor generated by a single simple ob-
ject X , and satisfies the following fusion rules (plus some cohomological conditions)
[Izu18]:

g ⊗X ∼= X ⊗ g−1, ∀g ∈ Inv(C), X ⊗X ∼= 1⊕
⊕

g∈Inv(C)

g ⊗X.

Generalized Haagerup categories were classified in [Izu18] in terms of solutions of
certain polynomial equations; moreover, when there is such a solution the category
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can be realized as a category of endomorphisms of a von Neumann factor completion
of a Cuntz algebra. We will be generalizing this approach to also treat extensions
of generalized Haagerup categories, but this generalization will require replacing
Cuntz algebras by more complicated algebras.

A G-extension of a fusion category C is a G-graded fusion category D whose
trivial component is C. There is a general obstruction theory for G-extensions de-
veloped by Etingof-Nikshych-Ostrik using the homotopy type of the Brauer-Picard
groupoid of C [ENO10]. As is typical for obstruction theories, this is quite easy to
apply when the cohomology groups where the obstructions live are trivial, but if
the groups are non-trivial it can be quite difficult to figure out whether the obstruc-
tion vanishes or not. In this paper we will take a much more bare-hands approach,
using concrete realizations of our examples as categories of endomorphisms, and
explicitly computing structure constants.

In general, the non-trivially graded parts of a G-extension of C will be non-
trivial invertible bimodule categories over C. In this paper we will be considering
the special case of quasi-trivial extensions, where each of these bimodules comes
from an outer automorphism of C (i.e. it is trivial as either a left or right module,
but the two actions are twisted by an outer automorphism relative to each other).

Our first main result says:

Theorem 1.1. Unitary extensions of a generalized Haagerup category C by an
outer action of Z2 which is trivial on the subcategory of invertible objects are com-
pletely classified by solutions to certain polynomial equations. Moreover, when
these polynomial equations are satisfied then the extensions may be explicitly re-
alized as categories of endomorphisms of a factor completion of the free product
On+1 ∗ On+1 ∗ C∗(F3) where O denotes a Cuntz algebra, F denotes a free group,
and n is the size of Inv(C). (See Theorems 3.1, 3.2, and 3.3 below for the precise
statements).

Such outer actions can only exist when the group Inv(C) has even order. Gen-
eralized Haagerup categories are known to exist for all cyclic groups of size ≤ 10
(with multiple distinct examples for certain groups), and we solve the polynomial
equations for Z2-extensions for all of the examples in this range, thereby construct-
ing new fusion categories in each case. In fact, due to choices in the construction of
the extension, we have 4 different Z2-extensions for each example, which are also
distinct as tensor categories (some of the choices even lead to different fusion rules).

We then generalize these techniques to give applications in two further examples
of interest. First, we consider the category AH4 in the Morita equivalence class of
the Asaeda-Haagerup subfactor. This can be constructed as a degenerate version
of a generalized Haagerup category for the group Z4 ×Z2, where the second factor
acts trivially and so the group of invertible objects up to isomorphism is Z4. In
prior work we calculated the Brauer-Picard groupoid of the Asaeda-Haagerup fu-
sion categories and saw that the Brauer-Picard group is the Klein 4-group [GS16;
GIS18]. Using Etingof-Nikshych-Ostrik’s obstruction theory, it is easy to see that
these fusion categories have Z2-extensions for each subgroup of the Klein 4-group
[GJS15], but since the Klein 4-group is not cyclic the question of whether there is an
extension by the full Klein 4-group is substantially more difficult. For the original
fusion categories AH1 and AH2, which arise as the even parts of the Asaeda-
Haagerup subfactor, the invertible bimodule categories do not come from outer
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automorphisms, but for AH4 all the bimodule categories do come from outer au-
tomorphisms. Thus the problem of finding extensions of AH4 is very close to the
setting of our main result. This leads to our second result.

Theorem 1.2. The Asaeda-Haagerup fusion category AH4 has an extension by its
Klein 4-group of outer automorphisms. Moreover, this extension can be explicitly
realized as a category of endomorphisms of a factor completion of the algebra O9 ∗
O9 ∗ C∗(F3).

By Etingof-Nikshych-Ostrik’s theory, we can conclude that the obstruction van-
ishes, and hence all of the Asaeda-Haagerup fusion categories have extensions by
their full Brauer-Picard group; and moreover all such extensions can be easily clas-
sified via group cohomology. These extensions give some new rich and complicated
examples of fusion categories. Homotopy theoretically this can be summarized by
saying that the Brauer-Picard 3-groupoid is homotopy equivalent to the product
of Eilenberg-Maclane spaces K(Z2 × Z2, 1) × K(C×, 3), or equivalently that the
Postnikov k-invariant vanishes.

Our other application is to the generalized Haagerup category for the group
Z2 × Z2. This category is related to a conformal inclusion SU(5)5 ⊂ Spin(24);
see [Xu18; Edi21a]. This category is interesting because its Brauer-Picard group is
unusually rich: it was shown in [Gro19] that this group has order 360, and it was
identified as S3 × A5 in [Edi21a]. The outer automorphism subgroup is A4. We
show using similar techniques to our main theorem:

Theorem 1.3. There is an A4-graded extension of the Z2×Z2 generalized Haagerup
category by its outer automorphism group. Moreover, this extension can be realized
as a category of endomorphisms of a factor closure of the algebra O5 ∗ O5 ∗ O5 ∗
O5 ∗ C∗(F13).

Again this implies that the relevant obstruction vanishes and hence lets us com-
pletely classify all such extensions, of which there are exactly 15 up to equivalence.
We also classify all extensions by subgroups of the outer automorphism group. Thus
we determine the extension theory associated to the outer automorphism subgroup
of the Brauer-Picard group. It is an interesting problem to determine the exten-
sion theory by the entire Brauer-Picard group; however we do not currently see an
accessible way to approach this.

The paper is organized as follows.
In Section 2 we review some background material on fusion categories, extension

theory, generalized Haagerup categories, and outer automorphisms.
In Section 3 we give the classification of certain Z2-extensions of generalized

Haagerup categories.
In Section 4 we look at some examples, including generalized Haagerup categories

for cyclic groups, the Asaeda-Haagerup categories, and the generalized Haagerup
category for Z2 × Z2.

In Section 5 we study the Z2 × Z2 generalized Haagerup example further, and
classify all of its quasi-trivial extensions.

A long and tedious calculation needed for the argument in Section 5 is deferred
to an Appendix.

Acknowledgements. We would like to thank Cain Edie-Michell for pointing
out to us Davydov and Nikshych’s result [DN21, Corollary 8.7].
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We would like to dedicate this paper to the memory of Vaughan Jones. During
the first semester that Noah attended Vaughan’s subfactor seminar at UC Berkeley,
Pinhas gave a talk on his joint work with Vaughan [GJ07] in which he drew the
intermediate subfactor lattice for the index 6 + 4

√
2 and Vaughan declared with

satisfaction “Now that’s a finite quantum group!” We all miss him, and we’d like
to think that these rich extensions might have elicited a similar response.

2. Background

2.1. Fusion categories. A fusion category over an algebraically closed field k is
a rigid semisimple k-linear monoidal category with finitely many simple objects up
to isomorphism and finite-dimensional morphism spaces, and such that the unit
object is simple [ENO05]. In this paper k will always be the field C of complex
numbers.

An object X in a fusion category is said to be invertible if there is another object
Y such that X ⊗ Y ∼= 1 (where 1 is the unit object). The invertible objects in a
fusion category C form a tensor subcategory Inv(C), and the set of isomorphism
classes of invertible objects is a group, by an abuse of notation also sometimes
denoted by Inv(C).

One can define left and right module categories and bimodule categories over
fusion categories, as well as relative tensor products - see [ENO10] for details. A
bimodule category is said to be invertible if its relative tensor product with its
opposite bimodule category is equivalent to a trivial bimodule. Invertible bimodule
categories are also called Morita equivalences.

One way that invertible bimodule categories arise is through automorphisms.
Given a tensor autoequivalence α of a fusion category C, there is an invertible
bimodule category CCα(C), where the right action of C is twisted by α. This bimodule
is equivalent to the trivial bimodule CCC iff α is inner (isomorphic to conjugation
by an invertible object). The set of isomorphism classes of tensor autoequivalences
of C, modulo inner autoequivalences, is a group, denoted by Out(C).

To any fusion category C, one can associate the Brauer-Picard 3-groupoid, whose
objects are fusion categories Morita equivalent to C, whose 1-morphisms are Morita
equivalences between such categories, whose 2-morphisms are bimodule equiva-
lences, and whose 3-morphisms are bimodule natural isomorphisms. This can be
truncated: in particular, the Brauer-Picard groupoid consists just of Morita equiv-
alences modulo equivalence, and the Brauer-Picard group consists of Morita au-
toequivalences of C up to equivalence. Also, by the homotopy hypothesis, one can
think of a 3-groupoid as a homotopy 3-type (that is, a space in the sense of algebraic
topology, whose homotopy groups vanish above 3).

In this paper, we are primarily concerned with unitary fusion categories. A fusion
category is called unitary if it is equipped with a ∗ (sometimes called “dagger”)
structure which makes it into a C∗-tensor category (see [DR89] for the definition
of a (strict) C∗-tensor category). When discussing tensor functors between unitary
fusion categories, we assume such functors are also unitary, i.e. compatible with
the C∗-structure. Unitary fusion categories are closely related to operator algebras;
see Section 2.3 below.
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2.2. Extension theory. Let Γ be a finite group. A Γ-graded fusion category is a
fusion category with a direct sum decomposition

C =
⊕

g∈Γ

Cg

where the Cg are full Abelian subcategories and the tensor product bifunctor maps
Cg × Ch to Cgh, ∀g, h ∈ Γ. The trivial component Ce is then a fusion category and
all of the graded components Cg are Ce-Ce bimodule categories. If the grading is
faithful, then these bimodule categories are all invertible [ENO10].

Definition 2.1. A Γ-extension of a fusion category C is a faithfully Γ-graded fusion
category whose trivial component is tensor equivalent to C.

Whenever we discuss equivalence between two Γ-extensions of C, we once fix
tensor equivalences between C and the trivial components of the extensions, and
then identify them afterward.

Definition 2.2. We say that two Γ-extensions D and D′ of C are equivalent if there
exists a tensor equivalence F from D to D′ satisfying F|De

= id and F(Dg) = D′
g

for every g ∈ Γ. We denote by ExtΓ(C) the set of equivalence classes of Γ-extensions
of C.

Note that one can have inequivalent extensions which nonetheless are equivalent
as tensor categories. This can happen either because the equivalence permutes the
gradings, or because the equivalence restricts non-trivially to C; see [Edi21b].

On the other hand, there is an even less flexible definition where in addition
to fixing the zero graded part and fixing the grading, you also fix the bimodule
categories. The main statements in [ENO10] implicitly use this even more restrictive
definition. To correct those results for the above definition of extension, one needs
to look at orbits under the action of applying a bimodule autoequivalence to each
graded part in a coherent way. See [DN21] for more detail.

One way that Γ-extensions arise is from categorical group actions: if Γ acts on
C, then there is a corresponding semidirect product C ! Γ, which is a Γ-extension
of C.

Definition 2.3. A Γ-extension of C is called trivial if it is equivalent to a semidirect
product of a categorical action of Γ on C. A Γ-extension is called quasi-trivial if
each graded component contains an invertible object.

Equivalently, an extension is quasi-trivial if each of the homogenous components
is equivalent to the trivial module as a (left) C-module category.

The following result of Etingof-Nikshych-Ostrik describes extensions in terms of
the Brauer-Picard groupoid.

Theorem 2.1 ([ENO10]). A group homomorphism c from a finite group Γ into the
Brauer-Picard group of C determines an obstruction class in O3(c) ∈ H3(Γ, Inv(Z(C)))
for the existence of a C-bimodule quasi-tensor product (defined there) on the Γ-
indexed collection of bimodules coming from the map. If this obstruction vanishes,
then the set of such C-bimodule quasi-tensor products is a torsor for H2(Γ, Inv(Z(C))).

Then each such C-bimodule quasi-tensor product M determines an obstruction
class in O4(c,M) ∈ H4(Γ,C∗) for the existence of an associativity constraint. If
this obstruction vanishes, then the set of associativity constraints A for the quasi-
tensor product forms a torsor over H3(Γ,C∗).
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The H3(Γ,C∗) torsor structure can be realized in a concrete manner as follows.
Let D be a Γ-extension of C, and let [ω] ∈ H3(Γ,C). Then we can put

[ω] · D =
⊕

g∈Γ

Dg ! g ⊂ D !VecωΓ .

In the context of operator algebras, this procedure corresponds to taking an (outer)
tensor product with a Γ-kernel with obstruction [ω], which we often use in this work.

The parametrization in Theorem 2.1 does not classify extensions up to equiv-
alence, in the sense defined above, because two associators A and A′ for a given
pair (c,M) with A′

f,g,h = ω(f, g, h) ◦ Af,g,h and [ω] ∈ H3(Γ,C×) \ {0} may give
equivalent extensions. The missing piece for complete classification was obtained
recently by Davydov and Nikshych.

Theorem 2.2 ([DN21, Corollary 8.7]). Let the notation be as above. Then there ex-
ists a group homomorphism p1(c,M) : H

1(Γ, Inv(Z(C))) → H3(Γ,C×) satisfying the

following property: Let A and A′ be associators for (c,M), and let ω ∈ Z3(Γ,C×)
with Af,g,h = ω(f, g, h)◦A′

f,g,h. Then the two Γ-extensions of C arising from A and
A′ are equivalent if and only if the cohomology class [ω] is in the image of p1(c,M). In

consequence, the equivalence classes of Γ-extensions of C with (c,M) form a torsor
over coker(p1(c,M)).

In practice it can of course be difficult to compute the obstruction classes for
specific examples. One of the motivations of this work is to provide interesting
examples of graded extensions.

Remark. When Γ is a finite group, we have Hn(Γ,C×) = Hn(Γ,T) for n ≥ 1
because C× ∼= R × T as trivial Γ-modules and Hn(Γ,R) = {0} for n ≥ 1. Thus
we mainly discuss Hn(Γ,T) as it is more natural from the view point of operator
algebras. In fact, there should be a version of Etingof-Nikshych-Ostrik’s extension
theory in the unitary setting using an appropriate unitary analogue of the Brauer-
Picard group where T appears as π3, but we will not require this unitary version of
obstruction theory in this paper.

2.3. The category End0(M). Let M be a Type III factor. The C-linear category
End(M) has as objects the normal unital ∗-endomorphisms ofM , and as morphisms
elements of M which intertwine such endomorphisms:

Hom(ρ,σ) = {t ∈ M : tρ(x) = σ(x)t, ∀x ∈ M}.
This can be made into a strict monoidal category by defining

ρ⊗ σ = ρ ◦ σ
and

t⊗ s = tρ1(s) = σ1(s)t, t ∈ Hom(ρ1,σ1), s ∈ Hom(ρ2,σ2).

The identity automorphism is a monoidal unit.
Let End0(M) be the full subcategory of End(M) whose objects are endomor-

phisms with finite-index (see [Lon89] for a discussion of index in infinite factors).
Then End0(M) is still a monoidal category, and it is also rigid and semi-simple with
finite-dimensional morphism spaces. Thus any full tensor subcategory of End0(M)
with finitely many simple objects is a unitary fusion category. Conversely, every
unitary fusion category embeds into End0(M) for some M (in fact M can be taken
to be any hyperfinite Type III factor) in an essentially unique way.
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Recall that a tensor functor from a strict fusion category C to another strict
fusion category D is a pair (F,L) consisting of a functor F : C → D and natural
isomorphisms

Lρ,σ ∈ HomD(F (ρ)⊗ F (σ), F (ρ⊗ σ))

satisfying
Lρ⊗σ,τ ◦ (Lρ,σ ⊗ IF (τ)) = Lρ,σ⊗τ ◦ (IF (ρ) ⊗ Lσ,τ )

for any ρ,σ, τ ∈ C. We may and do assume F (1C) = 1D and L1C,ρ = Lρ,1C
= IF (ρ).

When C and D are C∗ categories, we further assume that Lρ,σ is a unitary.
The following uniqueness result is [Izu17, Theorem 2.2], essentially due to Popa.

Theorem 2.3. Let M and P be hyperfinite type III1 factors, and let C and D
be unitary fusion categories embedded in End0(M) and End0(P ) respectively. Let
(F,L) be a tensor functor from C to D that is an equivalence of the two unitary
fusion categories C and D. Then there exists a surjective isomorphism Φ : M → P
and unitaries Uρ ∈ P for each object ρ ∈ C satisfying

F (ρ) = AdUρ ◦ Φ ◦ ρ ◦ Φ−1,

F (t) = UσΦ(t)U
∗
ρ , X ∈ (ρ,σ),

Lρ,σ = Uρ◦σΦ ◦ ρ ◦ Φ−1(U∗
σ)U

∗
ρ = Uρ◦σU

∗
ρF (ρ)(U∗

σ).

When discussing the category End0(M), it is common to suppress tensor product
and “Hom” symbols, and to use square brackets to denote isomorphism classes (also
called sectors).

2.4. Generalized Haagerup categories. A generalized Haagerup category is a
unitary fusion category C which is tensor generated by a simple object X satisfying
the fusion rules

g ⊗X ∼= X ⊗ g−1, ∀g ∈ Inv(C), X ⊗X ∼= 1⊕
⊕

g∈Inv(C)

g ⊗X,

and satisfying certain cohomological conditions (see [Izu18]).
It is shown in [Izu18] that a generalized Haagerup category can always be realized

in a standard form in End0(M) as follows.
Let G = Inv(C). There is a copy of the Cuntz algebra O|G|+1 with generators

{s} ∪ {tg}g∈G inside M , a map

G → Aut(M), g /→ αg,

and an irreducible endomorphism ρ of M , such that the following relations hold:

(1)
αg(s) = s, αg(th) = ϵg(h)th+2g, ∀g, h ∈ G

ρ(s) =
1

d
s+

∑

g∈G

1√
d
t2g

ρ(tg) = ϵ−g(g)[η−gt−gss
∗ +

ηg√
d
st∗−g +

∑

h,k∈G

A−g(h, k)th−gth+k−gt
∗
k−g ],

for structure constants

ϵg(h) ∈ {−1, 1}, ηg ∈ {1, e
2πi
3 , e−

2πi
3 }, Ag(h, k) ∈ C

satisfying

(2.1) ϵh+k(g) = ϵh(g)ϵk(g + 2h), ϵh(0) = 1
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(2.2) ηg+2h = ηg

(2.3)
∑

h∈G

Ag(h, 0) = −
ηg
d

(2.4)
∑

h∈G

Ag(h− g, k)Ag′(h− g′, k) = δg,g′ −
ηgηg′

d
δk,0

(2.5) Ag+2h(p, q) = ϵh(g)ϵh(g + p)ϵh(g + q)ϵh(g + p+ q)Ag(p, q)

(2.6) Ag(h, k) = Ag(k, h)

Ag(h, k) = Ag(−k, h− k)ηgϵ−k(g + h)ϵ−k(g + k)ϵ−k(g + h+ k)(2.7)

= Ag(k − h,−h)ηgϵ−h(g + h)ϵ−h(g + k)ϵ−h(g + h+ k)

Ag(h, k) = Ag+h(h, k)ηgηg+kηg+hηg+h+kϵh(g)ϵh(g + k)(2.8)

= Ag+k(h, k)ηgηg+hηg+kηg+h+kϵk(g)ϵk(g + h)

∑

l∈G

Ag(x+ y, l)Ag−p+x(−x, l + p)Ag−q+x+y(−y, l+ q)(2.9)

= Ag(p+ x, q + x+ y)Ag−p(q + y, p+ x+ y)

× ηgηg+q+xηg+p+q+yηg+pηg+x+yηg+q+x+y

× ϵp(g − p+ x)ϵp+x(g − p+ q + y)ϵq(g − q + x+ y)ϵq+y(g − q + x)

−
δx,0δy,0,

d
ηgηg+pηg+q

(2)
αg(ρ(x)) = ρ(α−g(x))

ρ2(x) = sxs∗ +
∑

g∈G

tg(αg(ρ(x))t
∗
g , ∀x ∈ M

(The second condition follows from the first one for x in the Cuntz algebra.)
In such a setup, the full tensor subcategory of End0(M) generated by ρ is a

generalized Haagerup category if the action of G is outer.
We will also be interested in “degenerate” generalized Haagerup categories,

where the action of G on M may not be outer. An example of such a category
for G = Z4 × Z2 is the Asaeda-Haagerup category AH4, where the Z2 factor acts
trivially; this category is a Z2-de-equivariantization of a corresponding generalized
Haagerup category.

2.5. The outer automorphism group. Let (F,L) be a tensor autoequivalence
of a generalized Haagerup category C with group of invertible objects G = Inv(C).
Then there exists p ∈ G and σ ∈ Aut(G) satisfying [F (αg)] = [ασ(g)] and [F (ρ)] =
[αpρ]. Thus there exist unitaries vg, u ∈ U(M) satisfying

F (αg) = Ad(vσ(g)) ◦ ασ(g) and F (ρ) = Ad(u) ◦ αp ◦ ρ.
Note that ({F (αg)}g∈G, {L∗

g,h}g,h) form a cocycle action of G on M . Since F (αg)
is outer for all g ̸= e, it is equivalent to a genuine action, and we may assume that
Lg,h = 1 for all g, h ∈ G up to natural transformation. Then we have

Ad(vg) ◦ αg ◦Ad(vh) ◦ αh = Ad(vg+h) ◦ αg+h,
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and Ad(vgαg(vh)) = Ad(vgh). This means that there exists a 2-cocycle ω in
Z2(G,T) satisfying vgα(vh) = ω(g, h)vgh, and the cohomology class [ω] ∈ H2(G,T)
depends only on the class [(F,L)] ∈ Out(C). Since the inner autoequivalence
αg ⊗ · ⊗ α−1

g of C sends ρ to α2g ◦ ρ, while it leaves αh invariant, only the class
[p] ∈ G/2G is an invariant of [(F,L)] too. Thus the triple

([ω], [p],σ) ∈ H2(G,T) ×G/2G×Aut(G)

is an invariant of the class [(F,L)] ∈ Out(C).
If the cohomology class of ω is trivial, we may assume that {vg}g∈G form an

α-cocycle by modifying vg. Since α is outer, every α-cocycle is a coboundary, and
there exists v ∈ U(M) satisfying vg = v∗αg(v). Thus

F (αg) = Ad(vg) ◦ αg = Ad(v)−1 ◦ αg ◦Ad(v),
and we may assume that F (αg) = F (ασ(g)) and Lg,h = 1 for all g, h ∈ G up to
natural transformation.

The group
(H2(G,T)×G/2G)!Aut(G)

acts on the set of solutions (ϵ, η, A) of the above equations modulo gauge equiva-
lence, and we have an explicit description of Out(C) in terms of this action.

Theorem 2.4 ([Izu18, Theorem 5.9]). Let C be a generalized Haagerup category
given by (ϵ, η, A). Then Out(C) is the stabilizer of [(ϵ, η, A)].

For every known example, we have Out(C) ⊂ G/2G ! Aut(G), and we may
assume that F (αg) = ασ(g) and Lg,h = 1 for all g, h ∈ G for every tensor au-
toequivalence (F,L) of C. Assume C is embedded in End0(M) and β ∈ Aut(M)
implements a tensor autoequivalence of C in this situation. Then the above ar-
gument shows that by perturbing β by an inner automorphism, we may always
assume β ◦ αg ◦ β−1 = ασ(g).

Recall that the group Inv(Z(C)) plays an essential role in the extension theory. In
the case of generalized Haagerup categories satisfying a certain extra assumption -
which is satisfied in all of the examples of interest below - we can identify Inv(Z(C))
with

G2 = {g ∈ G; 2g = 0}
(see [GI15]), and the action of Out(C) on Inv(Z(C)) is determined by the permu-
tation σ ∈ Aut(G) associated to each outer automorphism.

We end this section by describing how Theorem 2.3 works in the case of gen-
eralized Haagerup categories. Assume that C is a generalized Haagerup category
given by the Cuntz algebra model (α, ρ). Assume we have two embeddings C in
End0(Mi), i = 1, 2, where M1 and M2 are hyperfinite Type III1 factors. More

precisely, we have α(i)
g , ρ(i) ∈ End0(Mi) and homomorphisms ιi : O|G|+1 → Mi

satisfying
α(i)
g ◦ ιi = ιi ◦ αg. ρ(i) ◦ ιi = ιi ◦ ρg.

We apply Theorem 2.3 to the monoidal functor (F,L) given by

F (α(1)
g ) = α(2)

g , F (ρ(1)) = F (ρ(2)),

F (ι(1)(v)) = ι(2)(v) for v ∈ (µ, ν), Lµ,ν = 1.

Then we get an isomorphism Φ : M1 → M2 and unitaries uµ ∈ U(M2) such that

µ(2) = Ad(u)µ ◦ Φ ◦ µ(1) ◦ Φ−1,
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ι(2)(v) = uνΦ(ι
(1)(X))u∗

µ,

uµ◦ν = uµΦ ◦ µ(1) ◦ Φ−1(uν).

For µ = αg and ν = αh, this shows that {uαg
}g∈G is a Φ ◦ α(1) ◦ Φ−1-cocycle,

and there exists a unitary u ∈ U(M2) satisfying uαg
= u∗Φ ◦ α(1) ◦ Φ−1(u). By

replacing Φ with Ad(u) ◦Φ if necessary, we may assume that α(2) = Φ ◦ α(1) ◦Φ−1

and uαg
= 1. Under this condition, we have

uαg◦ρ = uαg
α(2)
g (uρ) = α(2)

g (uρ),

uρ◦α−g
= uρΦ ◦ ρ(2) ◦ Φ−1(uα−g

) = uρ.

Since αg ◦ρ = ρ◦α−g, we find that uρ is fixed by α(1)
g = Φ◦α(2)

g ◦Φ−1. There is no
further argument to simplify the situation. In conclusion, this means that when we
compare two extensions of C by using Theorem 2.3, there is a freedom to replace ρ
by by Ad(u) ◦ ρ with u fixed by αg, while we can always fix the group part αg.

3. Classification of extensions

As mentioned in the previous section, for a generalized Haagerup category C with
group of invertible objects G = Inv(C), we can identify Out(C) with a subgroup of

(H2(G,T) ×G/2G)!Aut(G);

and moreover for all known examples, the outer automorphisms are cocycle-free in
the sense that Out(C) lies in the subgroup G/2G!Aut(G).

We would like to classify Z2-graded extensions associated to an outer automor-
phism which fixes the invertible objects, i.e. which corresponds to the trivial ele-
ment in Aut(G). Such an automorphism moves ρ to αpρ for some p ∈ G\2G (note
that for a given element of Out(C), the choice of p is determined only up to an
element of 2G).

As motivation for studying this type of automorphism, we note that it is shown
in [Gro19] that the Brauer-Picard group of the generalized Haagerup subfactor
for Z4 is isomorphic to Z2, and is generated by such an outer automorphism. As
we will see below, such outer automorphisms also exist for all known examples of
generalized Haagerup categories for even groups.

3.1. Structure constants and constraints. Let C be a generalized Haagerup
category realized in standard form in End0(M). We would like to analyze the
structure of an arbitrary Z2-extension of C generated by an invertible object (au-
tomorphism) β such that

[βαg] = [αgβ], ∀g ∈ G

[βρ] = [αpρβ], for some p ∈ G\2G.

So we fix p ∈ G\2G and assume that β is an automorphism of M satisfying these
fusion rules. We also assume that the automorphism associated to β is cocycle-free,
so that may assume

β ◦ αg = αg ◦ β, ∀g ∈ G,

as explained in the previous section.
Choose a unitary u ∈ M such that

β ◦ ρ = Ad(u) ◦ αp ◦ ρ ◦ β.
Note that u is determined up to a scalar since ρ is irreducible.
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Lemma 3.1. We have [β2] = [αp+z ] for some z ∈ G2.

Proof. By assumption β2 is in C, and hence isomorphic to αg for some g ∈ G. We
have

[α2gρ] = [αgρα−g] = [β2ρβ−2] = [βαpρβ
−1] = [α2pρ].

Therefore we have 2g = 2p, and hence g = p+ z for some z ∈ G2. "

Now choose a unitary v ∈ M such that

β2 = Ad(v) ◦ αp+z .

We first determine the actions of αg and β on u and v.

Lemma 3.2. (1) There are characters χ, µ ∈ Ĝ such that

αg(u) = χ(g)u, αg(v) = µ(g)v, ∀g ∈ G.

(2) We have
β(v) = νv,

where ν2 = µ(p+ z).

Proof. We have
Ad(αg(u)) ◦ αpρ = αg ◦Ad(u) ◦ αpρ ◦ αg

= αg ◦ βρβ−1 ◦ αg = βρβ−1 = Ad(u) ◦ αpρ.

Since αpρ is irreducible, it must be that αg(u) is a scalar multiple of u; call the
corresponding character χ. Similarly,

Ad(αg(v)) ◦ αp+z = αg ◦ β2 ◦ α−g = β2 = Ad(v) ◦ αp+z,

so αg(v) is a scalar multiple of v; call the corresponding character µ.
Finally, we have

Ad(β(v)) ◦ αp+z = β(β2)β−1 = β2,

so β(v) is also a scalar multiple of v; call the corresponding scalar ν. We have

ν2v = β2(v) = (Ad(v) ◦ αp+z)(v) = µ(p+ z)v.

"

Note that we have not found any constraints on β(u). Similarly, we have not
found any constraints on β(s) or β(tg).

We would now like to determine where ρ sends u and v.

Lemma 3.3. Replacing u with a scalar multiple if necessary, we may assume that

ρ(u) = u∗β(s)s∗ +
∑

g∈G

a(g)u∗β(tg−p)ut
∗
g,

where a(g) is a function from G to T.

Proof. We have u ∈ (αpρβ,βρ), so that ρ(u) ∈ (ραpρβ, ρβρ) = (α−pρ2β, ρβρ).
Since [αpρβ] = [βρ], we also have

[ρβρ] = [α−pρ
2β] = [α−pβ]⊕

⊕

g∈G

[αgρβ],

and a basis for (α−pρ2β, ρβρ) is given by

{u∗β(s)s∗} ∪ {u∗β(tg−p)ut
∗
g}g∈G.
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Multiplying u by a scalar if necessary, we may assume that uρ(u)s = β(s), so that

ρ(u) = u∗β(s)s∗ +
∑

g∈G

a(g)u∗β(tg−p)ut
∗
g.

Since uρ(u)tg = a(g)β(tg−p)u is an isometry for each g, we must have |a(g)| = 1. "

Note that we can replace u with −u, which would multiply each a(g) by −1.

Lemma 3.4. We have

ρ(β(u)) = χ(p)(u∗β(u∗)[vsv∗β(s)∗ +
∑

g∈G

a(g)ϵp+z(g − p)vtg+pv
∗β(u)β(tg)

∗]u)

Proof. We have
ρ(β(u)) = (α−p ◦Ad(u∗) ◦ βρ)(u)

= (Ad(u∗) ◦ βραp)(u) = χ(p)(Ad(u∗) ◦ βρ)(u)
= χ(p)u∗β(u∗β(s)s∗ +

∑

g∈G

a(g)u∗β(tg−p)ut
∗
g)u

= χ(p)(u∗β(u∗)[vsv∗β(s)∗ +
∑

g∈G

a(g)ϵp+z(g − p)vtg+pv
∗β(u)β(tg)

∗]u)

(where we have used β2 = Ad(v) ◦ αp+z). "

Lemma 3.5. We have
ρ(v) = ξu∗β(u)∗v,

where ξ ∈ T.

Proof. We have v ∈ (αp+z ,β2), so ρ(v) ∈ (ραp+z, ρβ2), which is a one-dimensional
space since [ραp+z] = [ρβ2] is irreducible. Therefore, it suffices to show that
u∗β(u)∗v ∈ (ραp+z, ρβ2), which can be readily checked:

v ∈ (ραp+z = α−p+zρ,α−2pβ
2ρ)

β(u)∗ ∈ (α−2pβ
2ρ = β2ρα2p,βαpρβα2p = βρβα−p)

u∗ ∈ (βρβα−p, ρβαpβα−p = ρβ2).

"

Next, we will check constraints from the relation αg ◦ ρ = ρ ◦ α−g on u and v.

Lemma 3.6. We have

(1)
a(h+ 2g) = a(h)ϵg(h)ϵg(h− p)χ(g), ∀g, h ∈ G.

(2)
µ(g)2 = χ(g)2, ∀g ∈ G.

Proof. For the first part, we have

αg(ρ(u)) = αg(u
∗β(s)s∗ +

∑

h∈G

a(h)u∗β(th−p)ut
∗
h)

= χ(−g)u∗β(s)s∗ +
∑

h∈G

a(h)ϵg(h− p)ϵg(h)u
∗β(t2g+h−p)ut

∗
2g+h.

On the other hand,

ρ(α−g(u)) = χ(−g)ρ(u) = χ(−g)(u∗β(s)s∗ +
∑

h∈G

a(h)u∗β(th−p)ut
∗
h).
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Equating terms gives the desired relation. For the second part, we have

αg(ρ(v)) = αg(ξu
∗β(u)∗v) = ξχ(−2g)µ(g)u∗β(u)∗v

and
ρ(α−g(v)) = µ(−g)ξu∗β(u)∗v,

so we get µ(2g) = χ(2g). "

Next, we check constraints from the relation β ◦ ρ = Ad(u) ◦ αpρ ◦ β on v.

Lemma 3.7. We have
µ(p) = χ(p+ z).

Proof. We have

β(ρ(v)) = β(ξu∗β(u)∗v) = ξχ(−p+ z)β(u)∗vu∗v∗β(v) = νξχ(−p+ z)β(u)∗vu∗,

while
u(αpρ(β(v)))u

∗ = νµ(−p)uρ(v)u∗ = νµ(−p)ξβ(u)∗vu∗.

"

What remains is to check constraints coming from the relation

ρ2(x) = sxs∗ +
∑

g∈G

tg(αgρ)(x)t
∗
g

for x = v and x = u.

Lemma 3.8. We have

(1)
ξ2 = χ(p)

(2)
a(g)a(g − p)ϵp+z(g − 2p)ξ = µ(g), ∀g ∈ G.

Proof. We have

ρ2(v) = ρ(ξu∗β(u)∗v) = ξ2ρ(u)∗ρ(β(u))∗u∗β(u)∗v

= ξ2(u∗β(s)s∗ +
∑

g∈G

a(g)u∗β(tg−p)ut
∗
g)

∗

·(χ(p)(u∗β(u∗)[vsv∗β(s)∗ +
∑

h∈G

a(h)ϵp+z(h− p)vth+pv
∗β(u)β(th)

∗])u)∗u∗β(u)∗v

= ξ2χ(−p)(sβ(s∗) +
∑

g∈G

a(g)tgu
∗β(tg−p)

∗)

·(β(s)vs∗ +
∑

h∈G

a(h)ϵp+z(h− p)β(th)β(u)
∗vt∗h+p)

= ξ2χ(−p)(svs∗ +
∑

g∈G

a(g)a(g − p)ϵp+z(g − 2p)tgu
∗β(u)∗vt∗g)

= ξ2χ(−p)(svs∗ +
∑

g∈G

a(g)a(g − p)ξµ(g)ϵp+z(g − 2p)tg(αgρ)(v)t
∗
g).

Setting this equal to

svs∗ +
∑

g∈G

tg(αgρ)(v)t
∗
g

gives the relations. "
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Finally, we will look at ρ2(u).

Lemma 3.9. We have

(1)
ηg+p = ηg, ∀g ∈ G

(2)
χ(g) = a(g)2, ∀g

(3)
a(g)a(−g) = ϵ−g(g − p)ϵ−g(g), ∀g.

(4)

Ag(h, k) = a(g + h)a(g + k)a(g + h+ k)a(g)Ag−p(h, k), ∀g, h, k.

Proof. We have

ρ2(u) = ρ(u∗β(s)s∗ +
∑

g∈G

a(g)u∗β(tg−p)ut
∗
g)

= ρ(u)∗ρβ(s)ρ(s)∗ +
∑

g∈G

a(g)ρ(u)∗ρβ(tg−p)ρ(u)ρ(tg)
∗)

= (u∗β(s)s∗ +
∑

g∈G

a(g)u∗β(tg−p)ut
∗
g)

∗(Ad(u∗)βραp(s))ρ(s)
∗

+
∑

g∈G

a(g)(u∗β(s)s∗ +
∑

k∈G

a(k)u∗β(tk−p)ut
∗
k)

∗(Ad(u∗)βραp)(tg−p)

·(u∗β(s)s∗ +
∑

h∈G

a(h)u∗β(th−p)ut
∗
h)ρ(tg)

∗

= (sβ(s)∗ +
∑

g∈G

a(g)tgu
∗β(tg−p)

∗)β(ρ(s))uρ(s)∗

+
∑

g∈G

a(g)ϵp(g − p)(sβ(s)∗ +
∑

k∈G

a(k)tku
∗β(tk−p)

∗)β(ρ(tg+p))

·(β(s)s∗ +
∑

h∈G

a(h)β(th−p)ut
∗
h)ρ(tg)

∗

= sβ(s∗ρ(s))uρ(s)∗ +
∑

g∈G

a(g)tgu
∗β(t∗g−pρ(s))uρ(s)

∗

+
∑

g,h∈G

a(g)a(h)ϵp(g − p)sβ(s∗ρ(tg+p)th−p)ut
∗
hρ(tg)

∗

+
∑

g,k∈G

a(g)a(k)ϵp(g − p)tku
∗β(t∗k−pρ(tg+p)s)s

∗ρ(tg)
∗

+
∑

g,h,k∈G

a(g)a(h)a(k)ϵp(g − p)tku
∗β(t∗k−pρ(tg+p)th−p)ut

∗
hρ(tg)

∗

=
1

d
suρ(s)∗ +

1√
d

∑

g∈G

a(g)tgu
∗β(tg−p)uρ(s)

∗

+
1√
d

∑

g∈G

ηg+pa(g)a(−g)ϵp(g − p)ϵ−g−p(g + p)sut∗−gρ(tg)
∗

+
∑

g∈G

ηg+pa(g)a(−g)ϵp(g − p)ϵ−g−p(g + p)t−gu
∗β(s)s∗ρ(tg)

∗
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+
∑

g,h,k∈G

a(g)a(h)a(k)ϵp(g − p)ϵ−g−p(g + p)A−g−p(k + g, h+ g)

·tku∗β(tg+h+k−p)ut
∗
hρ(tg)

∗

This gives

ρ2(u)s =
1

d2
su+

1√
dd

∑

g∈G

a(g)tgu
∗β(tg−p)u

+
1

d

∑

g∈G

ηgηg+pa(g)a(−g)ϵ−g(g)ϵp(g − p)ϵ−g−p(g + p)su

+
1√
d

∑

g,k∈G

ηga(g)a(−g)a(k)ϵ−g(g)ϵp(g−p)ϵ−g−p(g+p)A−g−p(k+g, 0)t∗ku
∗β(tk−p)u

=

⎛

⎝

1

d2
+

1

d

∑

g∈G

ηgηg+pa(g)a(−g)ϵ−g(g)ϵp(g − p)ϵ−g−p(g + p)

⎞

⎠ su

+
1√
d

∑

g∈G

a(g)

(

1

d
+
∑

k∈G

ηka(k)a(−k)ϵ−k(k)ϵp(k − p)ϵ−k−p(k + p)A−k−p(k + g, 0)

)

tgu
∗β(tg−p)u

Setting this equal to su gives the equation
∑

g∈G

ηgηg+pa(g)a(−g)ϵ−g(g)ϵp(g − p)ϵ−g−p(g + p) = n,

which implies that

ηgηg+pa(g)a(−g)ϵ−g(g)ϵp(g − p)ϵ−g−p(g + p)

= ηgηg+pa(g)a(−g)ϵ−g(g)ϵ−g(g − p) = 1,
(3.1)

and

−
1

d
=
∑

k∈G

ηk+pA−k−p(k + g, 0) =
∑

k∈G

ηg+p
2Ag−p(k + g, 0) = ηg+p

2−ηg+p

d
,

which is true (where we have used Eqs. (2.3) and (2.7) ).
Similarly,

ρ2(u)tl =
1

d
√
d
sut∗l +

1

d

∑

g∈G

a(g)tgu
∗β(tg−p)ut

∗
l

+
1√
d

∑

g∈G

ηg+pa(g)a(−g)ϵ−g(g)ϵp(g − p)ϵ−g−p(g + p)A−g(l + g, 0)sut∗l

+η−lη−l+pa(−l)a(l)ϵp(−l − p)ϵl−p(−l + p)ϵl(−l)tlu
∗β(s)s∗

+
∑

g,h,k∈G

a(g)a(h)a(k)ϵp(g − p)ϵ−g−p(g + p)ϵ−g(g)

·A−g−p(k + g, h+ g)A−g(l + g, h+ g)tku
∗β(tg+h+k−p)ut

∗
h+g+l

Collecting terms and applying Eq. (3.1) gives

=
1√
d
(
1

d
+
∑

g∈G

ηgA−g(l + g, 0))sut∗l + a(−l)2tlu
∗β(s)s∗ +

1

d

∑

g∈G

a(g)tgu
∗β(tg−p)ut

∗
l

+
∑

m∈G

(
∑

k∈G

a(k)(
∑

g∈G

a(−g)ηgηg+pa(m− g)
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·A−g−p(k + g,m)A−g(l + g,m))tku
∗β(tm+k−p)ut

∗
m+l)

= a(−l)2tlu
∗β(s)s∗

+
∑

m∈G

∑

k∈G

a(k)(
δm,0

d
+ (
∑

g∈G

a(−g)ηgηg+pa(m− g)

·A−g−p(k + g,m)A−g(l + g,m)))tku
∗β(tm+k−p)ut

∗
m+l)

(where we have used Eqs. (2.3) and (2.7) to eliminate the first term).
Comparing with

tlαlρ(u) = χ(−l)tl(u
∗β(s)s∗ +

∑

g∈G

a(g)u∗β(tg−p)ut
∗
g)

= χ(−l)tlu
∗β(s)s∗ +

∑

g∈G

χ(−l)a(g)tlu
∗β(tg−p)ut

∗
g

we get the relations

(3.2) a(l)2 = χ(l)

and
∑

g∈G

a(l)a(m+ l)a(−g)ηgηg+pa(m− g)A−g−p(k + g,m)A−g(l + g,m)))

= δk,l −
δm,0

d
= ηkηl

∑

g∈G

A−k(k + g,m)A−l(l + g,m)

= η2kηk+mη2l ηl+m

∑

g∈G

ϵg+k(−k)ϵg+k(−k+m)ϵg+l(−l)ϵg+l(−l+m)Ag(k+g,m)Ag(l + g,m)

= η2kηk+mη2l ηl+mϵk(−k)ϵk(−k+m)ϵl(−l)ϵl(−l+m)
∑

g∈G

A−g(k+g,m)A−g(l + g,m)

Setting k = l and r = k + g (and replacing g with −g), we get the relation

(3.3) Ag−p(r,m) = a(r + g)a(m+ g)ηg+pηga(g)a(m+ r + g)Ag(r,m).

Finally, by Eq. (3.2), we have that

a(g)a(−g) = ±1

is always real, so by Eq. (3.2) we must have

(3.4) ηg = ηg+p, ∀g,

which simplifies Eqs. (3.1) and (3.3).
"

Note that although in deriving the last relation in the proof we specialized the
equation to k = l, the resulting relation makes the equation true for all k and l
(which we will need later for reconstruction of the category from these relations).

Putting this all together, we arrive at the following description of β:
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Theorem 3.1. Let C be a (possibly degenerate) generalized Haagerup category for G
realized in standard form in End0(M) with structure constants (A, ϵ, η), and suppose
that β ∈ Aut(M) commutes with αg, g ∈ G and there are elements p ∈ G\2G and
z ∈ G2 such that

[βρ] = [αpρβ], [β2] = [αp+z ].

Then there exist unitaries u and v in M such that

β ◦ ρ = Ad(u) ◦ αp ◦ ρ ◦ β, β2 = Ad(v) ◦ αz;

characters χ, µ ∈ Ĝ such that

(3.5) αg(u) = χ(g)u, αg(v) = µ(g)v;

constants ξ, ν ∈ T such that

(3.6) ρ(v) = ξu∗β(u∗)v, β(v) = νv;

and a function a : G → T such that

(3.7) ρ(u) = u∗β(s)s∗ +
∑

g∈G

a(g)u∗β(tg−p)ut
∗
g;

and such that the following identities hold:

(3.8) ν2 = µ(p+ z)

(3.9) ξ2 = χ(p)

(3.10) µ(g)2 = χ(g)2

(3.11) µ(p) = χ(p+ z)

(3.12) a(0) = 1

(3.13) χ(g) = a(g)2

(3.14) a(h+ 2g) = a(h)ϵg(h)ϵg(h− p)χ(g)

(3.15) a(g)a(g − p)ϵp+z(g − 2p)ξ = µ(g)

(3.16) a(g)a(−g) = ϵ−g(g − p)ϵ−g(g)

(3.17) Ag(h, k) = a(g + h)a(g + k)a(g + h+ k)a(g)Ag−p(h, k)

We also must have ηg = ηg+p, ∀g ∈ G.

Proof. The relations are collected from the previous lemmas. The only new one is
a(0) = 1, which we can assume by noting that a(0)2 = χ(0) = 1, so that a(0) = ±1,
and then replacing u by −u if necessary. "

When g ∈ G2, Eq. (3.14) implies

χ(g) = ϵg(h)ϵg(h− p).

Then putting h = 0 and h = p, we get

(3.18) χ(g) = ϵg(p) = ϵg(−p), ∀g ∈ G2.

Some of the relations in Theorem 3.1 are redundant, and we can organize them
in a more efficient way as follows.



18 PINHAS GROSSMAN, MASAKI IZUMI, AND NOAH SNYDER

Lemma 3.10. Eq. (3.8)-(3.17) are equivalent to the following equations:

(3.19) ν2 = µ(p+ z),

(3.20) ξ = a(p)ϵ−p(p)

(3.21) χ(g) = a(g)2

(3.22) µ(g) = a(g)a(g − p)a(p)ϵ−p(g)ϵ−p(p)ϵz(g)

(3.23) a(0) = 1

(3.24)
a(h+ 2g)

a(h)a(2g)
= ϵg(h)ϵg(h− p)ϵg(0)ϵg(−p),

(3.25) a(g)a(−g) = ϵ−g(g − p)ϵ−g(g)

(3.26) Ag(h, k) = a(g + h)a(g + k)a(g + h+ k)a(g)Ag−p(h, k)

Definition 3.1. We will call a collection of data (χ, µ, ξ, ν, a(g)) satisfying the
conditions in Theorem 3.1 a set of extension data for (C, A, ϵ, p, z).

3.2. Reconstruction. We now describe how to reconstruct a Z2-graded extension
of a generalized Haagerup category C from its extension data.

Suppose we are given a set of extension data (χ, µ, ξ, ν, a(g)) for (C, A, ϵ, p, z).
Let U = On+1 ∗On+1 ∗C∗(F3), which is the universal C∗-algebra generated by two
copies of On+1 and three unitaries u0, u1, and v. Intuitively, we think of the first
copy of On+1 as the original Cuntz algebra for C; the second copy as the image of
the first copy under the new automorphism β; and the unitaries u0, u1, and v as
corresponding to u, β(u), and v in the previous section, respectively.

We would like to extend ρ and αg to U such that the original relations

αg ◦ αh = αg+h, αg ◦ ρ = ρ ◦ α−g

and
ρ2(x) = sxs∗ +

∑

g∈G

tgαg(ρ(x))t
∗
g

continue to hold; then define β on U such that the new relations

β ◦ αg = αg ◦ β, ρ ◦ β = Ad(u0) ◦ αp ◦ ρ ◦ β, β2 = Ad(v) ◦ αp+z

also hold; and finally extend everything to a von Neumann algebra closure of U to
get a unitary fusion category.

Let Φ0 (resp. Φ1) be the canonical isomorphism from O|G|+1 onto the first (resp.

second) copy of O|G|+1 in U . We set s(k) = Φk(s) and t(k)g = Φk(tg).
We define a G-action α̃ on U by

α̃g(uk) = χ(g)uk, for k = 0, 1, α̃g(v) = µ(g)v,

α̃g(Φk(x)) = Φk(αg(x)), x ∈ O|G|+1

and an endomorphism ρ̃ of U by

ρ̃(Φk(x)) =

{

Φ0(ρ(x)) if k = 0

u∗
0Φ1(ραp(x))u0 if k = 1

,
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ρ̃(u0) = u∗
0(s

(1)s(0)∗ +
∑

g∈G

a(g)t(1)g−pu0t
(0)
g

∗),

ρ̃(u1) = χ(p)u∗
0u

∗
1(vs

(0)v∗s(1)∗ +
∑

g∈G

a(g)ϵp+z(g − p)vt(0)g+pv
∗u1t

(1)
g

∗)u0,

ρ̃(v) = ξu∗
0u

∗
1v.

Lemma 3.11. We have

α̃g ◦ ρ̃ = ρ̃ ◦ α̃−g, ∀g ∈ G

Proof. It is easy to see that the relation holds for x ∈ Φk(O|G|+1), for k = 0, 1. For
x ∈ {u0, u1, v}, the relation reduces to a similar calculation as in Lemma 3.6, using
Eqs. (3.10) and (3.14).

"

We define an endomorphism β̃ on U by

β̃(Φk(x)) =

{

Φ1(x) if k = 0

vΦ0(αp+z(x))v∗ if k = 1
,

β̃(u0) = u1, β̃(u1) = µ(p)vu0v
∗, β̃(v) = νv.

Lemma 3.12. We have

(1) β̃ ◦ α̃g = α̃g ◦ β̃
(2) β̃2 = Ad(v) ◦ α̃p+z

(3) β̃ ◦ ρ̃ = Ad(u0) ◦ α̃p ◦ ρ̃ ◦ β̃

Proof. 1. Easy.
2. Also straightforward to check, using Eq. (3.8).
3. Similar calculation as in Lemma 3.7, using Eq. (3.11).

"

Finally, we need to check that ρ̃2 has the correct form.

Lemma 3.13. We have

ρ̃2(x) = s(0)xs(0)∗ +
∑

g∈G

t(0)g (α̃g ρ̃)(x)t
(0)
g

∗, ∀x ∈ U .

Proof. It suffices to show that

ρ̃2(x)s(0) = s(0)x

and
ρ̃2(x)t(0)g = t(0)g (α̃g ρ̃)(x), ∀g ∈ G.

Again, this is easy to check for x ∈ Φk(O|G|+1). Note that

ρ̃(u0) = u∗
0(s

(1)s(0)∗ +
∑

g∈G

a(g)t(1)g−pu0t
(0)
g

∗)

= u∗
0(β̃(s

(0))s(0)∗ +
∑

g∈G

a(g)β̃(t(0)g−p)u0t
(0)
g

∗)

and
ρ̃(v) = ξu∗

0β̃(u0)
∗v.

Then then calculation is essentially the same as in Lemmas 3.8 and 3.9, using Eqs.
(3.9), (3.13), (3.15), (3.16), and (3.17). "
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Lemma 3.14. There is a factor closure of U to which the endomorphisms α̃g, ρ̃
and β̃ all extend.

Proof. This can be shown by a similar argument to Appendix of [Izu18]. "

Putting this all together, we get the following reconstruction result.

Theorem 3.2. Let C be a possibly degenerate generalized Haagerup category for
G, with structure constants (A, ϵ). Let p ∈ G\2G and z ∈ G2 be given, and let
(χ, µ, ξ, ν, a(g)) be a set of extension data. Then there is a Z2-graded extension of
C which realizes the extension data.

Remark. Suppose the we have extension data such that everything besides a(g) is
trivial (note that in particular this implies that a(g) ∈ {±1}, ∀g). Then we don’t
need a free product, and we can define β directly on the original Cuntz algebra by
β(s) = s, β(tg) = a(g+ p)tg+p. We can then verify using Eqs. (3.14), (3.16) and
(3.17) that β satisfies the appropriate relations, namely

β ◦ ρ = αp ◦ ρ ◦ β, β2 = αp+z.

A necessary condition for this situation to occur is that ϵk(p) = 1 for all k ∈ G2.
Indeed, assume u = 1. Then β ◦ ρ ◦ β−1 = αp ◦ ρ, and β(t0) is a multiple of tp.
Thus for all k ∈ G2, we get

αk(β(t0)) = β(αk(t0)) = β(t0),

which shows ϵk(p) = 1.
This will be useful later when we look at the Asaeda-Haagerup categories.

3.3. Equivalence. We have seen that we can describe an extension in terms of
extension data. We would like to know when two sets of extension data describe
equivalent extensions.

Suppose we have two extensions, each of the form discussed above, for the same
generalized Haagerup category C with structure constants (A, ϵ). Then by Theorem
2.3 and the discussion at the end of Section 2.5, for the purposes of comparing
extension data up to unitary equivalence, we may assume without loss of generality
that both extensions are realized in the same End0(M), with the same group action
α, but with the choices for ρ possibly differing by an inner perturbation by a unitary
fixed by α, and with possibly different choices for β.

We can easily show that if we replace ρ with Ad(w) ◦ ρ, where w is a unitary
fixed by αg, the extension data do not change at all.

So what remains is to check how the choice of β affects the extension data. There
are two ways we could modify β and still describe the an equivalent extension.

First, we can replace β by a different representative of the same isomorphism
class [β′] = [β], i.e.

β′ = Ad(w) ◦ β
for some unitary w. To keep the relation

αg ◦ β′ = β′ ◦ αg

we require that the αg act as scalars on w, meaning there is a character ζ ∈ Ĝ with

αg(w) = ζ(g)w, ∀g ∈ G.

In this case we can take

u′ = wuρ(w)∗ ∈ (αpρβ
′,β′ρ), v′ = wβ(w)v ∈ (αp+z ,β

′2)
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as the unitaries for the extension. Then we have

(1)
αg(u

′) = αg(wuρ(w)
∗)

= ζ(g)2χ(g)wuρ(w)∗ = ζ(g)2χ(g)u′

(2)
αg(v

′) = αg(wβ(w)v)

= ζ(g)2µ(g)wβ(w)v = ζ(g)2µ(g)v′

(3)
β′(v′) = β′(wβ(w)v)

= Ad(w)(β(wβ(w)v))

= w(β(w)β2(w)β(v))w∗

= νwβ(w)(vαp+z(w)v
∗)vw∗

= νζ(p+ z)wβ(w)v = νζ(p+ z)v′

(4)
ρ(v′) = ρ(wβ(w)v) = ρ(w)ρβ(w)ρ(v)

= ξρ(w)α−pAd(u
∗)βρ(w)u∗β(u)∗v

= ξζ(p)ρ(w)u∗β(ρ(w)u∗)v

= ξζ(p)ρ(w)u∗w∗(wβ(ρ(w)u∗)w∗)wv

= ξζ(p)u′∗β′(u′∗)β′(w)wv = ξζ(p)u′∗β′(u′∗)v′

(5)
ρ(u′) = ρ(w)ρ(u)ρ2(w)∗

= ρ(w)u∗β(s)s∗ρ2(w)∗ +
∑

g∈G

a(g)ρ(w)u∗β(tg−p)ut
∗
gρ

2(w)∗

= (ρ(w)u∗w∗)(wβ(s)w∗)(ws∗ρ2(w)∗)

+
∑

g∈G

a(g)(ρ(w)u∗w∗)(wβ(tg−p)w
∗)(wut∗gρ

2(w)∗)

= u′∗β′(s)s∗ +
∑

g∈G

a(g)u′∗β′(tg−p)wuαgρ(w
∗)t∗g

= u′∗β′(s)s∗ +
∑

g∈G

a(g)ζ(g)u′∗β′(tg−p)u
′t∗g

Therefore χ and µ are each multiplied by ζ2, ξ is multiplied by ζ(p), ν is multiplied
by ζ(p+ z), and a(g) is multiplied by ζ(g).

Second, we can replace β by a different object β′ in the extension which satisfies
the same initial assumptions as β. This means that

[β′] = [αkβ]

for some k ∈ G, and since

[β2] = [αp+z ] = [β′2] = [α2kβ
2],

we have
[α2k] = [id],

which implies that k ∈ G2. On the other hand, for any k ∈ G2, we have

[(αkβ)
2] = [β2] = [αp+z ], [αkβρ] = [αkαpρβ] = [αpραkβ].

Thus αkβ satisfies the same assumptions as β.
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In this case, we can still take u as our intertwiner for (αpρβ′,β′ρ) and v as our
intertwiner for (αp+z ,β′2). Thus χ and µ remain unchanged. On the other hand,
we have

(1)
β′(v) = (αkβ)(v) = αk(νv) = µ(k)νv.

(2)
ρ(v) = ξu∗β(u)∗v = ξu∗(αkβ

′)(u)∗v = ξχ(k)u∗β′(u)∗v

(3)

ρ(u) = u∗β(s)s∗ρ2(w)∗ +
∑

g∈G

a(g)u∗β(tg−p)ut
∗
g

= u∗β′(s)s∗ρ2(w)∗ +
∑

g∈G

ϵk(g − p)a(g)u∗β′(tg−p)ut
∗
g

Thus ν is multiplied by µ(k) and ξ is multiplied by χ(k).
For a(g), we need to first normalize the new a(g) by replacing u with −u if

necessary, and so a(g) is multiplied by ϵk(g− p)ϵk(−p) in the extension data corre-
sponding to β′.

Putting this all together, we get the following description of equivalence.

Theorem 3.3. Let C be a generalized Haagerup category with structure constants
(A, ϵ), and fix p ∈ G\2G and z ∈ G2. Let (χ, µ, ξ, ν, a(g)) and (χ′, µ′, ξ′, ν′, a′(g))
be two sets of extension data for (C, A, ϵ, p, z). Then the corresponding extensions
are unitarily equivalent iff there is a character ζ ∈ Ĝ and an element k ∈ G2 such
that

χ′ = ζ2χ, µ′ = ζ2µ,

ξ′ = ζ(p)χ(k)ξ, ν′ = ζ(p+ z)µ(k)ν

a′(g) = ζ(g)ϵk(g − p)ϵk(p)a(g)

Proof. First note that since the extension data completely determine the 6j-symbols
of the extension, any two extensions which share the same extension data are equiv-
alent.

Now, as we have seen, once (A, ϵ) is fixed, the only freedom we have for the
extension data is the choice of β, which leads to the relations above.

Conversely, for any character ζ, we can find a unitary w in M such that αg(w) =
ζ(g)w. Therefore we can always vary the extension data by the given relations. "

Remark. In the degenerate case, where the action of α is not outer, we may not
be able realize every character ζ.

In the rest of this section, we assume that Ag(h, k) ̸= 0 for all g, h, k ∈ G, which
is true for every known example. In this case, ϵ is a bicharacter on G2 × G. Let
(χ, µ, ξ, ν, a) and (χ̃, µ̃, ξ̃, ν̃, ã) be two extension data, and let b(g) = ã(g)/a(g).
Then Eq. (3.17) shows that b is a character, and we have

χ̃(g) = b(g)2χ(g), µ̃(g) = b(g)2µ(g)

ξ̃ = b(p)ξ, ν̃ = ±b(p+ z)ν.

Therefore, to determine the number of extensions with fixed (p, z), Theorem 3.3
shows that we can fix a, and in consequence χ, µ, and ξ too. Now the only remaining
freedom is multiplying ν by −1.
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Letting ζ(g) = ϵk(g − p)ϵk(p) = ϵk(g) in Theorem 3.3, we get

ν′ = ϵk(p+ z)µ(k)ν = ϵk(z)χ(k)µ(k).

Let τ be a character of G defined by

τ(g) =
µ(g)ϵz(g)

χ(g)
=

a(g − p)a(p)

a(g)
ϵ−p(g)ϵ−p(p).

Then since χ2 = µ2, we have τ2 = 1. Now we have

ν′ = τ(k)ϵz(k)ϵk(z)ν.

Note that we always have τ(p) = 1, and in fact τ is trivial for every known example.
In summary, we get the following classification.

Corollary 3.1. Assume that there exists extension data for (C, A, ϵ, p, z), where
Ag(h, k) ̸= 0 for all g, h, k ∈ G. Then the number of equivalence classes of such
extensions is 2 if τ(k)ϵk(z)ϵz(k) = 1 for all k ∈ G2, and it is 1 if there exists k ∈ G2

with τ(k)ϵk(z)ϵz(k) = −1.

Corollary 3.2. Under the assumptions of the above corollary, if G = Z2n, then
there exists either 0 or 2 extensions for a given (p, z).

Proof. In the case of G = Z2n, we have G2 = {0, n}, and we may always assume
p = 1. Since p generates G in this case, τ(p) = 1 implies that τ is trivial. Now we
have τ(k)ϵk(z)ϵz(k) = 1 for every combination of z and k. Thus there exist exactly
2 extensions for (1, z) once extension data exists. "

Remark. In our situation, we have

H2(Z2, Inv(Z(C))) = H2(Z2, G2) = G2,

H3(Z2,C
×) = Z2,

H1(Z2, Inv(Z(C))) = H1(Z2, G2) = Hom(Z2, G2) = G2.

As in the argument at the end of subsection 5.2, we can see that z corresponds to
the element in H2(Z2, Inv(Z(C))) in Theorem 2.1, and τ(k)ϵk(z)ϵz(k) corresponds
to p1(c,M)(k) in Theorem 2.2 if H3(Z2,C×) is identified with {1,−1}.

4. Examples

4.1. Cyclic groups. For an even cyclic group G = Z2n, there are two possible
bicharacters on G2 ×G = Z2 × Z2n, namely the trivial one and ϵn(m) = (−1)m.

For all known examples, ϵ restricts to the nontrivial bicharacter. In particular,
there are examples known for each n ≤ 5 such that [1]+[αgρ] admits a Q-system for
each g ∈ G, with two different examples each for n = 3, 5. The Q-systems comprise
two orbits under the action of the inner automorphism group of C, corresponding
to whether g is even or odd.

It is natural to wonder whether the two orbits are transposed by an outer auto-
morphism of C, and this is indeed the case for all of the the known examples (note
that H2(Z2n,T) is trivial, so the cocycle-free condition is automatic). It is then
natural to ask whether these outer automorphisms realize Z2-graded extensions of
the fusion categories.

We therefore consider extension data for p = 1. We have z ∈ G2 = {0, n}.
Then we have

χ(p)m = χ(1)n = χ(n) = ϵn(1) = −1,
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so χ(1) is a primitive 2nth root of unity. We then have ξ2n = −1. Then

µ(1) = χ(1)χ(z).

From Eq. (3.15) we then have

a(g)a(g − 1)ξ = ϵp+z(g − 2p)µ(g)

= ϵ1(g − 2)ϵz(g)ξ
2gχ(z)g = ϵ1(g − 2)ξ2g.

If we fix ϵ1(2n− 1) = −1 and ϵ1(g) = 1 otherwise, this gives the unique solution

a(g) = −ξg, 1 ≤ g ≤ 2n− 1.

We can then check Eq.(3.14) and (3.16) (which only depend on ϵ) hold, and what
remains is to check Eq. (3.17) using the structure data Ag(h, k). Note that Eq.
(3.17) does not depend on z.

Theorem 4.1. For each of the known examples of generalized Haagerup categories
for G = Z2n, 1 ≤ n ≤ 5, and each odd p and z ∈ {0, n}, there are two distinct
Z2-graded extensions of the form discussed in the previous section.

Proof. We check Eq. (3.17) with a computer. Then by Corollary 3.2, in each case
there are two distinct extensions up to equivalence. "

Remark. In this paper we are concerned with classifying extensions up to the nat-
ural notion of equivalence, but one can also ask whether different extensions give
distinct tensor categories. For Z2-extensions of generalized Haagerup categories,
there is a unique nontrivial homogeneous component, so the only way two different
extensions can be tensor equivalent is if they are related by a nontrivial automor-
phism of the trivial component (that is, of the generalized Haagerup category).

Note that the choice of z ∈ {0, n} for a generalized Haagerup category for an
even cyclic group is an invariant of the tensor category (indeed, of the fusion rules)
of the extension. It is less clear whether the sign choice in ν in the extension data
is also an invariant of the tensor category.

One can check that once one fixes an extension as above, the extension data
is invariant under conjugation by the αg, as well as conjugation by β. Thus if
the outer automorphism group of the generalized Haagerup category is generated by
conjugation by β, then the different extensions are also distinct as tensor categories.
This is the case for the generalized Haagerup category for Z4.

Thus at least for Z4, the Z2-graded extensions constructed above give four dif-
ferent fusion categories, and we conjecture that this holds in general for Z2n.

4.2. Asaeda-Haagerup categories. The Asaeda-Haagerup subfactor was one of
the two original “exotic” subfactors discovered in [AH99] (the other being the
Haagerup subfactor, corresponding to a generalized Haagerup category for Z3).
It was shown in [GIS18] that there are exactly six fusion categories in the Morita
equivalence class of the Asaeda-Haagerup categories. Three of these, including the
two which are the even parts of the Asaeda-Haagerup subfactor, do not admit any
outer automorphisms. The other three are quadratic categories, and one of these,
called AH4, is a de-equivariantization of a generalized Haagerup category for the
group G = Z4 × Z2.

The category AH4 may be considered a degenerate generalized Haagerup cat-
egory, coming from a solution to Eq. (2.1)-(2.9) for G with ϵ(0,1)((i, j)) = 1 for
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all (i, j), which means that α(0,1) acts trivially on the Cuntz algebra (and hence is
equal to id). Thus we have Inv(AH4) ∼= Z4.

There are 8 non-isomorphic Q-systems of the form [id] + [αgρ], which fall into
4 inner conjugacy classes, with conjugation by α(2,0) acting trivially on the set of
Q-systems. The Brauer-Picard group is

BrPic(AH4) ∼= Out(AH4) ∼= Z2 × Z2

and acts transitively on the inner conjugacy classes of Q-systems. (The Brauer-
Picard group had previously been calculated for the original Asaeda-Haagerup cat-
egories in [GS16] using other methods).

Therefore it is natural to wonder whether AH4 can be extended by Out(AH4),
and consequently whether all of the Asaeda-Haagerup categories admit Z2 × Z2-
graded extensions.

In [GJS15] it was shown on abstract grounds that the obstructions for Z2-
extensions vanish - but those methods do not determine the obstructions for Z2×Z2-
extensions.

We will show that the Z2 × Z2 obstructions vanish by directly constructing a
Z2 × Z2-extension using the methods above.

We refer to [GIS18, Section 4] for the structure constants (A, ϵ) of the category
AH4, and note that the bicharacter ϵ on G2 ×G is given by

ϵ(i,j)((k, l)) =

{

−1 (i, l) = (2, 1)

1 otherwise
.

We will consider extensions for each of p = (1, 0) and p = (0, 1).
We start with p = (1, 0), and let z = (0, 0). Note that ϵk(p) = 1 for all k ∈ G2,

so by Remark 3.2, there is a possibility of realizing an extension on the original
Cuntz algebra.

Up to equivalence, there are two solutions for a(g) in Eqs. (2.1)-(2.8), exactly
one of which also solves Eq. (2.9) (this was checked with Mathematica).

We fix the extension data as a((0, 1)) = −1 and a(g) = 1 otherwise, and then
ν = ±1 determine two inequivalent extensions.

We then have χ = µ = ξ = 1, and if ν = 1 as well, we can represent the extension
on the Cuntz algebra O9.

Next, we consider p = (0, 1) and z = (0, 0). In this case we have ϵ(2,0)(p) = −1,
so there is no hope of realizing an extension on the original Cuntz algebra. We find
again a unique solution for a(g) up to equivalence:

a′((x, y)) = e
xπi
4 ,

and again a sign choice in ν′ gives two different extensions.

Remark. For each p, we have chosen z = (0, 0), and found corresponding exten-
sions. Since Inv(Z(AH4)) is trivial, there can be at most one quasi-tensor product
for a given choice of p, so we cannot have additional extensions for other choices
of z.

For example, for p = (1, 0) and z = (2, 0), there is a solution to Eq. (2.1)-(2.8),
but it does not satisfy (2.9).

We would now like to realize extensions for p = (1, 0) and p = (0, 1) simultane-
ously.
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Let U = O9 ∗ O9 ∗ C∗(F3). We define an automorphism β̃′ using a′(g) and a
choice of sign for ν′ as in the proof of Theorem 3.2.

We can also define β on O9 using a(g) with ν = 1.
We now want to extend β to U . We need to preserve the relations

β ◦ ρ = α(1,0) ◦ ρ ◦ β, β ◦ αg = αg ◦ β, β2 = α(1,0)

which hold on the Cuntz algebra, and we would also like the extension of β to
commute with β̃′. So we define

β̃(Φ0(x)) = β̃(Φ1(x)) = β(x), ∀x ∈ O9,

β̃(u0) = cu0, β̃(u1) = cu1, β̃(v) = c′v.

Then we have
β̃ ◦ α̃g = α̃g ◦ β̃, β̃ ◦ β̃′ = β̃′ ◦ β̃

and
β̃2 = α̃(1,0)

if
c2 = χ′((1, 0)) = i, c′2 = µ′((1, 0)) = i,

which will now assume.

Lemma 4.1. We have
β̃ ◦ ρ̃ = α̃(1,0) ◦ ρ̃ ◦ β̃

if
ca′(g − (1, 0))a(g − (0, 1))a(g) = a′(g), ∀g ∈ G

Proof. It is straightforward to check that the relations hold for x ∈ Φk(O9). For
u0 we have

(β̃ ◦ ρ̃)(u0) = β̃(u∗
0(s

(1)s(0)∗ +
∑

g∈G

a′(g)β̃′(t(1)g−(0,1))u0t
(0)
g

∗))

= cu∗
0(s

(1)s(0)∗+
∑

g∈G

ca′(g)a(g−(0, 1)+(1, 0))a(g+(1, 0))β̃′(t(1)
g−(0,1)+(1,0))u0t

(0)
g+(1,0)

∗)

and
(α̃(1,0) ◦ ρ̃ ◦ β̃)(u0)

= cχ′(−(1, 0))(u∗
0(s

(1)s(0)∗ +
∑

g∈G

a′(g)β̃′(t(1)g−(0,1))u0t
(0)
g

∗)),

which are equal if the relation holds.
Next we have

(β̃ ◦ ρ̃)(v) = β̃(ξu∗
0u

∗
1v) = ξ′c2c′u∗

0u
∗
1v

and
(α̃(1,0) ◦ ρ̃ ◦ β̃)(v) = µ′((1, 0))c′ξ′u∗

0u
∗
1v,

which are equal if
µ′((1, 0)) = c2 = χ′((1, 0)),

which is true. "

Theorem 4.2. The obstruction in H4(Z2 × Z2,T) for the existence of Z2 × Z2-
graded extensions of the Asaeda-Haagerup categories by mutually inequivalent bi-
module categories vanishes.
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Proof. We can verify that the relation in Lemma 4.1 holds for c = e−
3πi
4 . Then we

can simultaneously extend β̃ and β̃′ to a factor closure, as in the proof of Theorem
3.2. Since such an extension exists, the obstruction must vanish. "

Since the homotopy type of the Brauer-Picard 2-group is an invariant of Morita
equivalence, we get corresponding extensions of all the Asaeda-Haagerup categories.

Corollary 4.1. For each of the Asaeda-Haagerup fusion catgeories, there exist 8
different Z2 ×Z2-graded extensions of the Asaeda-Haagerup categories by mutually
inequivalent bimodule categories.

Proof. Since Inv(Z(C)) is trivial, so are Hn(Z2 × Z2, InvZ(C)) for all n. Thus
there is no choice of quasi-tensor product. By Theorem 4.2, the obstructions for
extensions vanish. Therefore Theorem 2.1 and Theorem 2.2 show that the set of
extensions form a torsor over H3(Z2 × Z2,T) ∼= (Z2)3.

"

Note that unlike for AH4, the group Out(C) is trivial for C = AH1,2,3. There-
fore the corresponding extensions for those categories are not quasi-trivial, but
rather involve bimodule categories that are non-trivial even as module categories
(see [GS16] and the accompanying text files for a description of these bimodule
categories, including dimensions of simple objects and fusion rules).

Conjecture 4.1. Similar Z2 × Z2-graded extensions exist for generalized Asaeda-
Haagerup categories (de-equivariantizations of generalized Haagerup categories for
the groups Z4m × Z2 with ϵ(0,1) trivial).

For specific values of m the conjecture can in theory be checked by a similar
calculation as above - namely, try to find extension data for p = (1, 0), z = (0, 0)
with trivial χ,µ,ξ; then for p = (0, 1), z = (0, 0); then check the relation in Lemma
4.1. However, genralized Asaeda-Haagerup categories are themselves not yet known
to exist for m > 1.

4.3. The group Z2×Z2. It was shown in [Izu18] that there is a unique generalized
Haagerup category C for G = Z2 × Z2. This category is related to a conformal
inclusion SU(5)5 ⊂ Spin(24); see [Xu18; Edi21a]. It was shown in [Gro19] that the
Brauer-Picard group of this category has order 360, and the group was identified
as S3 ×A5 in [Edi21a]. The outer automorphism subgroup is A4.

We would like to classify the quasi-trivial graded-extensions of C, and in partic-
ular find A4-extensions by the entire outer automorphism group. In this subsection
we first consider the Z2-extensions.

We will use the normalization

ϵg(h) =

⎛

⎜

⎜

⎝

1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

⎞

⎟

⎟

⎠

,

as in [Izu18] (corresponding to s = −1 there). We label the elements of the group
by {0, p, q, r} (in that order with respect to the matrices of structure constants).
We consider extensions by an automorphism β which conjugates ρ to αpρ.

Then Eq. (3.14) reduces to
χ(g) = ϵg(p),
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so χ is given by the second column of the ϵ matrix, (1,−1, 1,−1), and then ξ = ±i.
From Eq. (3.15) we have

a(p) = ξ̄, a(q)a(r) = a(p)µ(r)ϵp+z(r) = a(p)µ(q)ϵp+z(q)

By Theorem 3.3, without loss of generality we can assume

a = (1,−i, t, i)

for some

t = ±1 = −µ(q)ϵp+z(q) = −µ(r)ϵp+z(r).

Checking Eq. 3.17 with a computer (or by hand) gives t = 1. Then we have

µ(q) = ϵp+z(q) = χ(q)ϵp+z(q)ϵq(p) = χ(q)ϵz(q)

and similarly

µ(r) = χ(r)ϵz(r).

Note that we also have

µ(0) = χ(0)ϵz(0), µ(p) = χ(p)ϵz(p)

by Eq. (3.11). So

µ = χϵz.

Thus τ in Corollary 3.1 is trivial, and the number of extensions are determined
by whether ϵk(z)ϵz(k) can take -1 or not. We also have

ν2 = µ(p+ z) = −ϵz(z).

It was shown in [Izu18] that there is a Z3-action on C which fixes ρ and cycli-
cally permutes {αp,αq,αr}. Therefore, similar extensions exist for automorphisms
taking ρ to αqρ and αrρ.

Summarizing, we have:

Theorem 4.3. For each x ∈ {p, q, r} and y ∈ G, there is a Z2-extension of C by
an automorphism βx,y such that [βx,yρ] = [αxρβx,y] and [β2

x,y] = [αx+y]. Such an
extension is unique unless y = 0, and there exist exactly two extensions for y = 0.

We defer the general case of quasi-trivial extensions of C by outer automorphisms
to a separate section, since the argument is long and involved.

5. Quasi-trivial extensions of the generalized Haagerup category
for Z2 × Z2

At the end of the previous section we classified quasi-trivial Z2-extensions of
the generalized Haagerup category for Z2 × Z2. In this section we will consider
more generally extensions of this category by arbitrary subgroups of the outer
automorphism group A4.

Throughout this section, let C be the generalized Haagerup category for Z2×Z2,
realized in standard form in End0(M). We label the group as G = {0, p, q, r}, and
use the same normalization of ϵ and A as in the previous section.
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5.1. Constraints for a Z2×Z2-extension. We first consider Z2×Z2-extensions.
Let us first assume that we have a Z2 ×Z2-extension, also realized in End0(M),

generated by automorphisms βp and βq such that [βhρβ
−1
h ] = [αhρ] for each h ∈

{p, q}. Let βr = (βpβq)−1. Then we have

[βrρβ
−1
r ] = [β−1

q β−1
p ρβpβq] = [αrρ].

We will denote the corresponding unitaries and extension data using subscripts,
e.g. uh, vh, ξh, ah etc., for h ∈ {p, q, r}.

Then as we have seen, we can without loss of generality assume that

ap = (1,−i, 1, i)

and similarly
aq = (1, i,−i, 1).

Then we have
ar = (1, ts, ti,−si),

where t and s are signs.

Lemma 5.1. We have
ar = (1, 1, i,−i).

Also,
βp(uq)up = β−1

r (u∗
r),

and similarly for cyclic permutations of (p, q, r).

Proof. We have

Ad(β−1
r (u∗

r)) ◦ αrρ = β−1
r ρβr = βpβqρβ

−1
q β−1

p

= βp ◦Ad(uq) ◦ αqρβ
−1
p = Ad(βp(uq)αq(up)) ◦ αp+qρ

= Ad(βp(uq)up) ◦ αrρ,

which implies that
βp(uq)up = bpβ

−1
r (u∗

r)

for some unitary scalar bp.
Consider the action of ρ on this identity. We have

bp = β−1
r (ur)βp(uq)up = ρ(β−1

r (ur)βp(uq)up)

= (β−1
r βrρβ

−1
r )(ur)u

∗
pαp(βp(ρ(uq)))upρ(up)

= ϵp(q)β
−1
r (urαrρ(ur)u

∗
r)u

∗
pβp(u

∗
q)βp(uqρ(uq))upρ(up)

= ϵp(q)ϵr(r)bpβ
−1
r (urρ(ur)u

∗
r)β

−1
r (ur)βp(uqρ(uq))upρ(up)

= bpβ
−1
r (urρ(ur))βp(uqρ(uq))upρ(up).

So we have:

b2p = β−1
r (urρ(ur))βp(uqρ(uq))upρ(up)

= βpβq(βr(s)s
∗ +

∑

g∈G

ar(g)βr(tg−r)urt
∗
g)

·βp(βq(s)s
∗ +

∑

h∈G

aq(h)βq(th−q)uqt
∗
h)

·(βp(s)s
∗ +

∑

k∈G

ap(k)βp(tk−p)upt
∗
k)
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= (βpβqβr)(s)s
∗

+
∑

g∈G

ap(g)aq(g − p)ar(g − p− q)(βpβqβr)(tg−p−q−r)(βpβq(ur))βp(uq)upt
∗
g

= ss∗ +
∑

g∈G

ap(g)aq(g − p)ar(g − r)bptgt
∗
g.

So we get

b2p = ap(g)aq(g − p)ar(g − r)bp = 1, ∀g ∈ G,

which implies that bp = 1 and s = t = 1, so that ar = (1, 1, i,−i).
This calculation is invariant under cyclic permutations of (p, q, r).

"

We record for later use the relation among ap, aq, ar that we found in the proof
of Lemma 5.1, which can be verified directly:

(5.1) ap(g)aq(g − p)ar(g − r) = 1, ∀g ∈ G.

As we have seen previously, each of the Z2-graded extensions can be recon-
structed from a Cuntz algebra and three unitaries corresponding to uh, vh, and
βh(uh). For our Z2 × Z2-graded extension, we also have to consider the images
under the various βk of each uh and vh.

A priori, there are 21 unitaries to consider:

{βk(uh)}h∈{p,q,r}, k∈Z2×Z2
∪ {βk(vh)}h∈{p,q,r}, k∈Z2×Z2\{h}

(where we let β0 = id; note that we have βh(vh) = νhvh). We can then use the
relations

βpβqβr = id and β2
h = Ad(vh) ◦ αh+zh

to express β(w) as a word in these unitaries and their adjoints for any w on this
list. Similarly, we can use the relation

ρ ◦ βh = Ad(u∗
h) ◦ βh ◦ ρ ◦ αh

to simplify ρ(w). Thus, the C∗-algebra generated by the Cuntz algebra generators
and these unitaries is invariant under the αg, βh, and ρ.

We first show that 6 of these 21 unitaries can be written in terms of the other
15.

Lemma 5.2. We have:

(1) βp(uq) = −ϵzr(r)v
∗
rβr(ur)∗vru∗

p

(2) βp(vq) = νqµq(r + zr)v∗rβr(vq)vr

and similarly for other cyclic permutations of (p, q, r)

Proof. (1) We have

βp(uq) = β−1
r (u∗

r)u
∗
p = β−2

r (βr(u
∗
r))u

∗
p

= (Ad(vr) ◦ αr+zr)
−1(βr(u

∗
r))u

∗
p = χr(r + zr)v

∗
r (βr(u

∗
r))vru

∗
p,

and

χr(r + zr) = ϵr+zr(r) = ϵr(r)ϵzr (r) = −ϵzr(r).
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(2) We have

βp(vq) = νqβpβq(vq) = νqβ
−1
r (vq) = νβ−2

r (βr(vq))

= ν(Ad(vr) ◦ αr+zr)
−1(βr(vq)) = νqµq(r + zr)v

∗
rβr(vq)vr.

"

In light of Lemma 5.2, we only need to consider the 15 unitaries of the form
uh, βh(uh), βh′(uh), vh, and βh′(vh), where h′ is the successor of h in the cyclic
ordering (p, q, r). We introduce the notation

u(j)
i = βj(ui), i, j ∈ {p, q, r}.

We now derive two further relations among these 15 unitaries.
The first one comes from the fact that

Ad(v(q)p ) = Ad(βq(vp)) = βq ◦Ad(vp) ◦ β−1
q

= βq(αp+zpβ
2
p)β

−1
q = αp+zpβqβ

2
pβ

−1
q .

Lemma 5.3. The unitary vpv
(q)
p vqv

(r)
q vrv

(p)
r is a scalar.

Proof. It suffices to show that Ad(vpv
(q)
p vqv

(r)
q vrv

(p)
r ) is the identity. By the previ-

ous remark, we have

Ad(vpv
(q)
p ) = (αp+zpβ

2
p)αp+zpβqβ

2
pβ

−1
q = β2

pβqβ
2
pβ

−1
q ,

with similar formulas for Ad(vqv
(r)
q ) and Ad(vrv

(p)
r ),

so we have

Ad(vpv
(q)
p vqv

(r)
q vrv

(p)
r ) = (β2

pβqβ
2
pβ

−1
q )(β2

qβrβ
2
qβ

−1
r )(β2

rβpβ
2
rβ

−1
p )

= β2
pβqβ

2
pβqβrβ

2
qβrβpβ

2
rβ

−1
p = β2

pβqβpβqβ
2
rβ

−1
p = β2

pβqβrβ
−1
p = βpβ

−1
p = id,

where we have used the relation βp = (βqβr)−1 four times. "

By renormalizing vp if necessary, we may and will assume that

(5.2) vpv
(q)
p vqv

(r)
q vrv

(p)
r = 1.

Lemma 5.4. We have

(5.3) u(p)
r v∗rv

(r)∗
q u(r)

q v∗qv
(q)∗
p u(q)

p v∗pv
(p)∗
r = −ϵzp(p)ϵzq(q)ϵzr (r).

Proof. First note that the relation β2
h = Ad(vh) ◦ αh+zh can be rewritten as

β−1
h = (Ad(vh) ◦ αh+zh)

−1βh.

We then have

u(p)
r = βp(ur) = (βqβr)

−1(ur) = β−1
r (β−1

q (ur))

= ((Ad(vr) ◦ αr+zr)
−1βr)(((Ad(vq) ◦ αq+zq )

−1βq)(ur))

= χr(q + zq + r + zr)(Ad(v
∗
rv

(r)∗
q ) ◦ βrβq)(ur)

= ϵq+zq+r+zr(r)(Ad(v
∗
rv

(r)∗
q ) ◦ βr)(−ϵzp(p)v

∗
pu

(p)∗
p vpu

∗
q)

= −ϵzp(p)ϵzr+zq(r)Ad(v
∗
rv

(r)∗
q )(βr(vp)

∗β−1
q (up)

∗βr(vp)βr(uq)
∗)

= −ϵzp(p)ϵzr+zq (r)Ad(v
∗
rv

(r)∗
q )((νpµp(q + zq)v

∗
qβq(vp)

∗vq)

·((Ad(v∗q ) ◦ αq+zqβq)(up)
∗)(νpµp(q + zq)v

∗
qβq(vp)vq)βr(uq)

∗)

= −ϵzp(p)ϵzr+zq (r)χp(q + zq)Ad(v
∗
rv

(r)∗
q )(v∗qβq(vp)

∗βq(up)
∗βq(vp)vqβr(uq)

∗)
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= −ϵzp+zq (p)ϵzr+zq (r)v
∗
r v

(r)∗
q v∗qβq(vp)

∗βq(up)
∗βq(vp)vqβr(uq)

∗v(r)q vr

= −ϵzp(p)ϵzq (q)ϵzr (r)v
(p)
r vpu

(q)∗
p v(q)p vqu

(r)∗
q v(r)q vr.

Rearranging gives the condition. "

We next apply ρ and βh to the conditions in Lemmas 5.3 and 5.4 to see if any
further constraints arise. It turns out only applying βh to the condition in Lemma
5.3 gives an additional constraint.

Lemma 5.5. We have

1 = ϵzp+zq+zr (zp)ϵzp(zp + zq + zr)

= ϵzp+zq+zr (zq)ϵzq (zp + zq + zr) = ϵzp+zq+zr(zr)ϵzr(zp + zq + zr)

Proof. We have
1 = βp(1) = βp(vpv

(q)
p vqv

(r)
q vrv

(p)
r )

= νpvpβ
−1
r (vp)βp(vq)(βpβr)(vq)βp(vr)(Ad(vp) ◦ αp+zp)(vr)

= νpµr(p+ zp)vp(v
∗
r (αr+zrβr)(vp)vr)(νqµq(r + zr)v

∗
rβr(vq)vr)

·(βpβr)(vq)βp(vr)vpvrv
∗
p

= νpνqµr(p+ zp)µp(r + zr)µq(r + zr)vpv
∗
rβr(vp)v

(r)
q vr(βpβr)(vq)v

(p)
r vpvrv

∗
p

= νpνqµr(p+ zp)µp(r + zr)µq(r + zr)vpv
∗
r (νpµp(q + zq)v

∗
qβq(vp)vq)v

(r)
q vr

·(Ad(v(p)r vp)αq+zr+zpβq)(vq)v
(p)
r vpvrv

∗
p

= µr(p+ zp)µp(p+ zr + zq)µq(r + zp + zq)

·vpv∗rv∗qv(q)p vqv
(r)
q vrv

(p)
r vpv

∗
qvqvqv

∗
pv

(p)∗
r v(p)r vpvrv

∗
p

= µr(p+ zp)µp(p+ zr + zq)µq(p+ zp).

Using the relation
µh(g) = χh(g)ϵzh(g) = ϵg(h)ϵzh(g),

we have
1 = µr(p+ zp)µp(p+ zr + zq)µq(p+ zp)

= ϵp+zr+zq (p)ϵp+zp(q)ϵp+zp(r)ϵzp(p+ zr + zq)ϵzq (p+ zp)ϵzr(p+ zp)

= ϵzp(zq + zr)ϵzq+zr(zp) = ϵzp(zp + zq + zr)ϵzp+zq+zr(zp).

Similarly, we can replace p with q or r. "

Corollary 5.1. One of the following occurrs:

(1) zp + zq + zr = 0
(2) Two of zp, zq, zr are 0
(3) zp = zq = zr

Proof. Suppose zp + zq + zr ̸= 0. Then

ϵg(zp + zq + zr)ϵzp+zq+zr(g) = 1

holds for g = 0 or g = zp+zq+zr. Suppose, e.g. zp and zq are both nonzero. Then
we must have

zp = zq = zp + zq + zr = zr.

"

Remark. Conversely, the relations in Lemma 5.5 follow from any of the conditions
in Corollary 5.1.
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Finally, we record the formulas for βr and ρ applied to u(q)
p and v(q)p , which will

be needed for reconstruction.

Lemma 5.6. We have

(1) βr(u
(q)
p ) = χp(p+ zr + zq)v

(r)
q vru

(p)
p v∗rv

(r)∗
q

(2) βr(v
(q)
p ) = νpµp(p+ zp + zq)v

(r)
q vrvpv∗rv

(r)∗
q

(3) ρ(u(q)
p ) = χp(q)u∗

qu
(q)∗
p v(q)p vq[βr(s)v∗qv

(q)∗
p βq(s)∗

+
∑

g∈G

ϵr+zp+zq (g − p)ap(g)βr(tg−p)v∗qv
(q)∗
p u(q)

p βq(tg)∗]uq

(4) ρ(v(q)p ) = −ϵzq(q)µp(q)χp(r + zp + zq)ξpu∗
qu

(q)∗
p v(q)p vqurv∗qu

(q)
q uq

Proof. We have already seen similar calculations for β in previous proofs.
For ρ, we have

ρ(u(q)
p ) = ρ(βq(up)) = u∗

q(αqβqρ)(up)uq

= χp(q)u
∗
qβq(u

∗
pβp(s)s

∗ +
∑

g∈G

ap(g)u
∗
pβp(tg−p)upt

∗
g)uq

= χp(q)[u
∗
qu

(q)∗
p v(q)p vqβr(s)v

∗
qv

(q)∗
p βq(s)

∗uq

+
∑

g∈G

ϵr+zp+zq (g − p)u∗
qu

(q)∗
p v(q)p vqβr(tg−p)v

∗
qv

(q)∗
p u(q)

p βq(tg)
∗uq]

and

ρ(v(q)p = ρ(βq(vp)) = u∗
q(αqβqρ)(vp)uq

= µp(q)ξpu
∗
qβq(u

∗
pβp(u

∗
p)vp)uq

= µp(q)χp(r + zp + zq)ξpu
∗
qu

(q)∗
p v(q)p vqu

(q)∗
p v∗qv

(q)∗
p v(q)p uq

= µp(q)χp(r + zp + zq)ξpu
∗
qu

(q)∗
p v(q)p vqβr(up)

∗v∗quq

= −ϵzq(q)µp(q)χp(r + zp + zq)ξpu
∗
qu

(q)∗
p v(q)p vqurv

∗
qβq(uq)vqv

∗
quq

= −ϵzq (q)µp(q)χp(r + zp + zq)ξpu
∗
qu

(q)∗
p v(q)p vqurv

∗
qu

(q)
q uq.

"

5.2. Reconstruction. We now describe how to reconstruct Z2×Z2-graded exten-
sions of the Z2 × Z2 generalized Haagerup category, following the calculations of
the previous section.

We start with the Cuntz algebra O5, together with the endomorphism ρ and
G = Z2 × Z2 action α.

Let zp, zq, zr ∈ Z2 × Z2 satisfying the conditions of Corollary 5.1 be given. Let
ap = (1,−i, 1, i), aq = (1, i,−i, 1), and ar = (1, 1, i,−i). Let ξh = i,

χh(g) = ϵg(h), µh(g) = ϵg(h)ϵzh(g),

for h ∈ {p, q, r}.
Let νh ∈ {±i} for h = 0 and νh ∈ {±1} for h ∈ {p, q, r} be given for each

h ∈ {p, q, r}.
For h ∈ {p, q, r}, we will denote by h′ its successor in the cylic ordering (p, q, r),

and by h′′ the third element.
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Let U = O5 ∗O5 ∗O5 ∗O5 ∗C∗(F13), which is the universal C∗-algebra generated

by four copies of O5 and fifteen unitaries uh = u(0)
h , u(h)

h , u(h′)
h , vh = v(0)h , v(h

′)
h , for

h ∈ {p, q, r}; subject to the relations

(5.4) vpv
(q)
p vqv

(r)
q vrv

(p)
r = 1

and

(5.5) u(p)
r v∗rv

(r)∗
q u(r)

q v∗qv
(q)∗
p u(q)

p v∗pv
(p)∗
r = −ϵzp(p)ϵzq (q)ϵzr (r)

(recall that these relations come from Lemmas 5.3 and 5.4.)
We label the four copies of O5 by Z2 ×Z2, and denote by Φh the inclusion map

of O5 into U corresponding to h ∈ {0, p, q, r}.
Then we define α̃g on U by

α̃g(Φh(x)) = Φh(αg(x)), x ∈ O5

α̃g(u
(k)
h ) = χh(g)u

(k)
h , α̃g(v

(k)
h ) = µh(g)v

(k)
h ,

and define ρ̃ by

ρ̃(Φh(x)) = u∗
hΦh(ραh(x))uh, (whereweletu0 = 1)

ρ̃(uh) = u∗
h(s

(h)s(0)∗ +
∑

g∈G

ah(g)t
(h)
g+huht

(0)
g

∗),

ρ̃(u(h)
h ) = χh(h)u

∗
hu

(h)∗
h vh(s

(0)v∗hs
(h)∗ +

∑

g∈G

ah(g)ϵh+zh(g + h)t(0)g+hv
∗
hu

(h)
h t(h)g

∗)uh,

ρ(u(h′)
h ) = χh(h

′)u∗
h′u

(h′)∗
h v(h

′)
h vh′ [s(h

′′)v∗h′v
(h′)∗
h s(h

′)∗

+
∑

g∈G

ϵh′′+zh+zh′ (g + h)th
′′

g+hv
∗
h′v

(h′)∗
h u(h′)

h t(h
′)∗

g ]uh′

ρ̃(vh) = ξhu
∗
hu

(h)∗
h vh

ρ(v(h
′)

h ) = −ϵzh′ (h
′)µh(h

′)χh(h
′′ + zh + zh′)ξhu

∗
h′u

(h′)∗
h v(h

′)
h vh′uh′′v∗h′u

(h′)
h′ uh′

Remark. The formulas for ρ̃ come from the formulas for Z2-extensions in the

previous chapter, together with the calculations in Lemma 5.6 for the unitaries u(h′)
h

and v(h
′)

h . Note that χh(h) = ϵh(h) = −1 and χh(h′) = ϵh′(h) = 1 can be used to

simplify the formulas for ρ̃(u(h)
h ) and ρ̃(u(h′)

h ). Similarly, the scalar cofficients in the

formulas for ρ̃(vh) and ρ̃(v(h
′)

h ) can be simplified to i and iϵzh+zh′ (h
′′), respectively.

Lemma 5.7. (1) The formulas above define a G-action α̃ and an endomor-
phism ρ̃ on U .

(2) We have α̃g ◦ ρ̃ = ρ̃ ◦ α̃g.

Proof. To show that the formulas give well-defined maps, we need to check that α̃g

and ρ̃ preserves the relations (5.4) and (5.5).

Applying α̃g to vpv
(q)
p vqv

(r)
q vrv

(p)
r multiplies it by the scalar

µp(g)
2µq(g)

2µr(g)
2 = 1,

and applying α̃g to u(p)
r v∗rv

(r)∗
q u(r)

q v∗qv
(q)∗
p u(q)

p v∗pv
(p)∗
r multiplies it by the scalar

χp(g)µp(g)
2χq(g)µq(g)

2χr(g)µr(g)
2u(p)

r
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= χp(g)χq(g)χr(g) = ϵg(p+ q + r) = ϵg(0) = 1.

For ρ̃, we have
ρ̃(vpv

(q)
p vqv

(r)
q vrv

(p)
r )

= (ξpu
∗
pu

(p)∗
p vp)(−ϵzq (q)µp(q)χp(r + zp + zq)ξpu

∗
qu

(q)∗
p v(q)p vqurv

∗
qu

(q)
q uq)

·(ξqu∗
qu

(q)∗
q vq)(−ϵzr(r)µq(r)χq(p+ zq + zr)ξqu

∗
ru

(r)∗
q v(r)q vrupv

∗
ru

(r)
r ur)

·(ξru∗
ru

(r)∗
r vr)(−ϵzp(p)µr(p)χr(q + zr + zp)ξru

∗
pu

(p)∗
r v(p)r vpuqv

∗
pu

(p)
p up)

The scalar coefficient is

−(ξpξqξr)
2ϵzp(p)ϵzq (q)ϵzr(r)ϵq(p)ϵzp(q)ϵr(q)ϵzq (r)ϵp(r)ϵzr (p)

·ϵr+zp+zq (p)ϵp+zr+zq (q)ϵq+zr+zp(r)

= −ϵzp(p)ϵzq (q)ϵzr(r)

and the product of unitaries, after cancelling inverses, is

u∗
pu

(p)∗
p vpu

∗
qu

(q)∗
p (v(q)p vqu

(r)∗
q v(r)q vru

(p)∗
r v(p)r vp)uqv

∗
pu

(p)
p up

= −ϵzp(p)ϵzq (q)ϵzr(r)(u
∗
pu

(p)∗
p vpu

∗
q)(uqv

∗
pu

(p)
p up)

= −ϵzp(p)ϵzq (q)ϵzr (r),

where we have used relation (5.5) (after taken the adjoint and a cyclic reordering).
Thus

ρ̃(vpv
(q)
p vqv

(r)
q vrv

(p)
r ) = 1,

and ρ̃ preserves relation (5.4).
Next, we have

ρ̃(u(h′)
h v∗hv

h)∗
h′′ )

= χh(h
′)[u∗

h′u
(h′)∗
h v(h

′)
h vh′s(h

′′)v∗h′v
(h′)∗
h s(h

′)∗uh′

+
∑

g∈G

ϵh′′+zh+zh′ (g + h)u∗
h′u

(h′)∗
h v(h

′)
h vh′th

′′

g+hv
∗
h′v

(h′)∗
h u(h′)

h t(h
′)∗

g uh′ ]

(ξhv
∗
hu

(h)
h uh)(−ϵzh(h)µh′′(h)χh′′(h′ + zh + zh′′)ξh′′u∗

hu
(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′ u(h)

h′′ uh)

= −ϵzh+zh′′ (h
′)u∗

h′u
(h′)∗
h v(h

′)
h vh′ [s(h

′′)v∗h′v
(h′)∗
h s(h

′)∗

+
∑

g∈G

ϵh′′+zh+zh′ (g + h)th
′′

g+hv
∗
h′v

(h′)∗
h u(h′)

h t(h
′)∗

g ]v∗hv
(h)∗
h′′ u(h)

h′′ uh.

So then
ρ̃(u(p)

r v∗rv
(r)∗
q u(r)

q v∗qv
(q)∗
p u(q)

p v∗pv
(p)∗
r )

= (−ϵzr+zq (p)u
∗
pu

(p)∗
r v(p)r vp[s

(q)v∗pv
(p)∗
r s(p)∗

+
∑

g∈G

ϵq+zr+zp(g + r)ar(g)t
q
g+rv

∗
pv

(p)∗
r u(p)

r t(p)∗g ]v∗rv
(r)∗
q u(r)

q ur)

·(−ϵzq+zp(r)u
∗
ru

(r)∗
q v(r)q vr[s

(p)v∗rv
(r)∗
q s(r)∗

+
∑

g∈G

ϵp+zq+zr(g + q)aq(g)t
p
g+qv

∗
rv

(r)∗
q u(r)

q t(r)∗g ]v∗qv
(q)∗
p u(q)

p uq)

·(−ϵzp+zr(q)u
∗
qu

(q)∗
p v(q)p vq[s

(r)v∗qv
(q)∗
p s(q)∗

+
∑

g∈G

ϵr+zp+zq (g + p)ap(g)t
r
g+pv

∗
qv

(q)∗
p u(q)

p t(q)∗g ]v∗pv
(p)∗
q u(p)

r up)

= −ϵzp(p)ϵzq (q)ϵzr (r)u
∗
pu

(p)∗
r v(p)r vp
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[s(q)v∗pv
(p)∗
r v∗rv

(r)∗
q v∗qv

(q)∗
p s(q)∗

+
∑

g∈G

ϵp+zq+zr (g)ϵr+zp+zq (g + q)ϵq+zr+zp(g + r)ar(g)aq(g + q)ap(g + r)

t(q)g+rv
∗
pv

(p)∗
r u(p)

r v∗rv
(r)∗
q u(r)

q v∗qv
(q)∗
p u(q)

p t(q)∗g+r]v
∗
pv

(p)∗
q u(p)

r up

= −ϵzp(p)ϵzq (q)ϵzr (r)u
∗
pu

(p)∗
r v(p)r vp[s

(q)s(q)∗

+
∑

g∈G

−ϵzp(p)ϵzq (q)ϵzr(r)ϵp+zq+zr(g)ϵr+zp+zq(g + q)ϵq+zr+zp(g + r)

·ar(g)aq(g + q)ap(g + r)t(q)g+rt
(q)∗
g+r]v

∗
pv

(p)∗
q u(p)

r up,

where we have used relations (5.4) and (5.5) in the last step.
Finally, we have

−ϵzp(p)ϵzq (q)ϵzr (r)ϵp+zq+zr(g)ϵr+zp+zq (g + q)ϵq+zr+zp(g + r)

·ar(g)aq(g + q)ap(g + r)

= ar(g)aq(g + q)ap(g + r) = 1,

(using relation (5.1)), so we get

ρ̃(u(p)
r v∗rv

(r)∗
q u(r)

q v∗qv
(q)∗
p u(q)

p v∗pv
(p)∗
r )

= −ϵzp(p)ϵzq (q)ϵzr(r)[s
(q)s(q)∗ +

∑

g∈G

t(q)g+rt
(q)∗
g+r ]

= −ϵzp(p)ϵzq (q)ϵzr (r),

and ρ̃ preserves relation (5.5).
It is then clear that α̃ is a G-action and ρ̃ is an endomorphism of U .
To check that ρ̃ ◦ α̃g = α̃g ◦ ρ̃, it suffices to check the relations

α̃g(ρ̃(u
(h′)
h )) = ρ̃(α̃g)(u

(h′)
h )) = χh(g)ρ̃(u

(h′)
h ) = ϵg(h)ρ̃(u

(h′)
h )

and
α̃g(ρ̃)(v

(h′)
h )) = ρ̃(α̃g)(v

(h′)
h )) = µh(g)ρ̃(v

(h′)
h ) = ϵg(h)ϵzh(g)ρ̃(v

(h′)
h )

which can be easily verified from the formulas for ρ̃(u(h′)
h ) and ρ̃(v(h

′)
h ) .

"

Next we define automorphisms β̃h for h ∈ {p, q, r} by the formulas

β̃h(Φk(x)) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Φh(x) k = 0

vhΦ0(αh+zh(x))v
∗
h k = h

v∗h′′Φh′′(αh′′+zh′′ (x))vh′′ k = h′

v(h)h′′ vhΦh′(αh′+zh+zh′′ (x))v
∗
hv

(h)∗
h′′ k = h′′

β̃h(uh) = u(h)
h , β̃h(u

(h)
h ) = χh(h+ zh)vhuhv

∗
h

β̃h(u
(h′)
h ) = −ϵzh′ (h

′)χh(h
′′ + zh′′)v∗h′′v∗h′u

(h′)∗
h′ vh′u∗

h′′vh′′

β̃h(uh′) = −ϵzh′′ (h
′′)v∗h′′u

(h′′)∗
h′′ vh′′u∗

h, β̃h(u
(h′)
h′ ) = χ′

h(h
′′ + zh′′)v∗h′′uh′′

h′ vh′′

β̃h(u
(h′′)
h′ ) = χh′(h′ + zh + zh′′)v(h)h′′ vhu

(h′)
h′ v∗hv

(h)∗
h′′ )

β̃h(uh′′) = u(h)
h′′ , β̃h(u

(h′′)
h′′ ) = −ϵzh(h)χh′′ (h′ + zh + zh′′)v(h)h′′ u

(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′

β̃h(u
(h)
h′′ ) = χh′′(h+ zh)vhuh′′v∗h

β̃h(vh) = νhvh, β̃h(v
(h′)
h ) = νpµp(h+ zh′ + zh′′)v∗h′′v∗h′v

(h′)
h vh′vh′′
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β̃h(vh′) = νh′µh′(h′′ + zh′′)v∗h′′v
(h′′)
h′ vh′′

β̃h(v
(h′′)
h′ ) = νh′µh′(h′ + zh + zh′′)v(h)h′′ vhvh′v∗hv

(h)∗
h′′

β̃h(vh′′) = v(h)h′′ , β̃h(v
(h)
h′′ ) = µh′′(h+ zh)vhvh′′v∗h.

Once again, the formulas here come from the calculations in the previous subsection,
and some of the scalar coefficients can be simplified by calculating χ and µ in terms
of ϵ.

Lemma 5.8. The formulas above define automorphisms β̃h on U such that:

(1) β̃h ◦ α̃g = α̃g ◦ β̃h

(2) β̃2
h = Ad(vh) ◦ αh+z+h

(3) β̃h ◦ ρ̃ = Ad(uh) ◦ α̃h ◦ ρ̃ ◦ β̃h.

The proof of Lemma 5.8 is straightforward but tedious, so we defer it to an
appendix.

Lemma 5.9. We have ρ̃2(x) = sxs∗ +
∑

g∈G

tg(αgρ)(x)t∗g for all x ∈ U .

Proof. It suffices to check the relation for x = u(h′)
h and x = v(h

′)
h . We have

ρ̃2(u(h′)
h ) = ρ̃2β̃h′(uh) = ρ̃Ad(u∗

h′)α̃h′ β̃h′ ρ̃(uh) = Ad(ρ̃(uh′)∗u∗
h′)β̃h′ ρ̃2(u)

= Ad(ρ̃(uh′)∗u∗
h′)β̃h′(suhs

∗ +
∑

g∈G

tg(αgρ)(uh)t
∗
g)

= Ad(ρ̃(uh′)∗u∗
h′)(s(h

′)u(h′)
h s(h

′)∗ +
∑

g∈G

χh(h
′)t(h

′)
g uh′(αgρ)(u

(h′)
h )u∗

h′t(h
′)∗

g )

= (s(h
′)s(0)∗ +

∑

g∈G

ah′(g)t(h
′)

g+h′uh′t(0)g
∗)∗

·(s(h
′)u(h′)

h s(h
′)∗ +

∑

g∈G

χh(h
′)t(h

′)
g uh′(αgρ)(u

(h′)
h )u∗

h′t(h
′)∗

g )

·(s(h
′)s(0)∗ +

∑

g∈G

ah′(g)t(h
′)

g+h′uh′t(0)g
∗)

= s(0)u(h′)
h s(0)∗ +

∑

g∈G

χh(h
′)t(0)g αg+h′ρ(u(h′)

h )t(0)∗g

= s(0)u(h′)
h s(0)∗ +

∑

g∈G

t(0)g αgρ(u
(h′)
h )t(0)∗g

and a similar calculation applies to v(h
′)

h .
"

Theorem 5.1. For any choice of zp, zq, zr satisfying one of the conditions of
Corollary 5.1, and any choice of νh ∈ {±i} for zh = 0 and νh ∈ {±1} for zh ∈
{p, q, r} , there exists a corresponding extension of the Z2×Z2 generalized Haagerup
category C by the Z2 × Z2 subgroup of the outer automorphism group.

We can count the number of distinct Z2 × Z2-extensions given by the above
construction as follows. There are 28 triples (zp, zq, zr) which satisfy one of the
conditions of Corollary 5.1.

(1) For (0, 0, 0), there exist exactly 8 extensions.
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(2) For each of (x, 0, 0), (0, x, 0), (0, 0, x), x ∈ {p, q, r}, there exist exactly 4
extensions.

(3) For each of (x, x, 0), (x, 0, x), (0, x, x), x ∈ {p, q, r}, there exist exactly 2
extensions.

(4) For each of (x, x, x), x ∈ {p, q, r}, there exist exactly 2 extensions.
(5) For each of (p, q, r), (q, r.p), (r, p, q), (p, r, q), (r, q, p), (q, p, r), there exists

a unique extension.

The fourth and fifth cases are a little subtle, and we discuss them now.
Assume (zp, zq, zr) = (p, p, p). Then we may assume νp = νq = 1. The only

remaining freedom for perturbing βp and βq keeping this condition is to replace βp

and βq with αx ◦ βp and αy ◦ βq with x, y ∈ {0, p}, up to inner automorphisms.
This amounts to replacing βr with αx+y ◦ βr, and multiplying νr by

ϵx+y(zr)ϵzr(x+ y) = ϵx+y(p)ϵp(x+ y),

which is always 1 in any combination of x and y. Thus the two extensions for νr = 1
and νr = −1 are inequivalent.

In the fifth case, a similar computation shows that the two extensions for νr = 1
and νr = −1 are equivalent.

Corollary 5.2. There exist exactly 74 different Z2 × Z2-graded extensions, up to
equivalence.

We can interpret our classification result in terms of Theorem 2.1 and Theorem
2.2 as follows.

First we show that the freedom for νh corresponds to H3(Z2 × Z2,T) ∼= Z3
2,

with which we identify {1,−1}3. Assume a Z2 × Z2-graded extension (αg, ρ,βh)
is realized in End0(M). We choose another factor N and an outer Z2 × Z2-kernel
σ : Z2 × Z2 → Aut(N), which is a map inducing an embedding of Z2 × Z2 into
Out(N). We may assume σr = (σp ◦ σq)−1. Then there exist unitaries wh ∈ U(N)
for h = p, q, r satisfying σ2

h = Ad(wh), and there exists δh ∈ {1,−1} satisfying
σh(wh) = δhwh. The triple (δp, δq, δr) ∈ {1,−1}3 is identified with the obstruction
of σ in H3(Z2×Z2,T). Now can get a new extension (αg⊗id, ρ⊗id,βh⊗σh) realized
in End0(M ⊗N), which has the same (zp, zq, zr) as before while νh is replaced by
δhνh. This means that the freedom of νh corresponds to the H3(Z2 ×Z2,T)-torsor
structure.

Now the only remaining freedom is (zp, zq, zr), which should correspond to an
element in

H2(Z2 × Z2, Inv(Z(C)) = H2(Z2 × Z2, G) = G3.

This means that out of 64 possibilities for M , only 28 have trivial obstruction
O4(c,M) ∈ H4(Z2 × Z2,T).

Finally, we have

H1(Z2 × Z2, Inv(Z(C)) = H1(Z2 × Z2, G) = Hom(Z2 × Z2, G) = G2.

Since the effect of p1(c,M) : H
1(Z2 × Z2, Inv(Z(C)) → H3(Z2 × Z2,T) should corre-

spond to the freedom of replacing (βp,βq,βr) by

(αx ◦ βp,αy ◦ βq,αx+y ◦ βr)

up to inner perturbation, we should have

p1(c,M)(x, y) = (ϵzp(x)ϵx(zp), ϵzq(y)ϵy(zq), ϵzr(x+ y)ϵx+y(zr)).
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5.3. A4-extensions. We will now consider extensions by the entire outer automor-
phism group A4 = (Z2 × Z2)! Z3.

Let θ be the automorphism of G defined by θ(h) = h′. It was shown in [Izu18]
that since the structure constants A and ϵ are invariant under θ, the automorphism
γ0 of O5 defined by

γ0(s) = s, γ0(tg) = tθ(g)
(and as usual extended to the closure) satisfies

γ0 ◦ αg = αθ(g) ◦ γ0, γ0 ◦ ρ = ρ ◦ γ0.

Let H = ⟨γ0⟩ ∼= Z3. Then we have

Hn(H, Inv(Z(C))) = {0}, ∀n ≥ 1,

H4(H,T) = {0},
H3(H,T) = Z3.

Thus Theorem 2.1 and Theorem 2.2 show that there exist exactly threeH-extensions
of C.

One of the three H-extensions is generated by γ0, and the other two can be
obtained by modifying the associator of the VecZ3

subcategory generated by γ0 by
an element of H3(Z3,T), as in the argument at the end of the previous subsection.
(We will refer to this construction as changing the associator of γ0).

Remark. The same argument works for other order 3 subgroups of Out(C) too.

We would like to extend γ0 to U . Suppose that θ(zh) = zθ(h) for h ∈ {p, q, r}.
Define γ̃0 by

γ̃0(Φh(x)) = Φθ(h)(γ0(x))

γ̃0(u
(k)
h ) = u(θ(k))

θ(h) , γ̃0(v
(k)
h ) = v(θ(k))θ(h) .

Lemma 5.10. The above formulas define an automorphism of U , and we have

(1) γ̃0
3 = id

(2) γ̃0 ◦ α̃g = α̃θ(g) ◦ γ̃0
(3) γ̃0 ◦ ρ̃ = ρ̃ ◦ γ̃0
(4) If νp = νq = νr, then γ̃0 ◦ β̃h = β̃θ(h) ◦ γ̃0

Proof. First note that, using the fact that zθ(h) = θ(zh), we can see that γ̃0 preserves
the relations (5.4) and (5.5), and is therefore well-defined. It is then clear that γ̃0
is an automorphism of order 3.

Then the relations (2)-(4) follow from the invariance of the structure constants
under θ.

Since ϵg(h) = ϵθ(g)(θ(h)) (and therefore also χg(h) = χθ(g)(θ(h)) and µg(h) =
µθ(g)(θ(h)), again using the fact that zθ(h) = θ(zh)), we can check that γ̃0 ◦ α̃g =
α̃θ(g) ◦ γ̃0.

Similarly, since ξh = i, ∀h ∈ {p, q, r} and ah(g) = aθ(h)(θ(g)), we can check that
γ̃0 ◦ ρ̃ = ρ̃ ◦ γ̃0.

And since νh is the same for all h, we can check that γ̃0 ◦ β̃h = β̃θ(h) ◦ γ̃0. "

Again by changing the associator of γ0, we get triple the number of extensions.

Theorem 5.2. There exist exactly 15 quasi-trivial extensions of C by the entire
outer automorphism subgroup of the Brauer-Picard group. More precisely,
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(1) For each of the 2 cases zp = zq = zr = 0 and νp = νq = νr = ±i, there
are exactly 3 extensions distinguished by the associators of the invertible
objects in the θ-homogeneous part. These 6 extensions form a torsor over
H3(A4,T).

(2) For each of the 3 cases (zp, zq, zr) = (x, x′, x′′), x ∈ {p, q, r}, and νp = νq =
νr = 1, there exist exactly three extensions distinguished by the associators
of the invertible objects in the θ-homogeneous part.

Proof. Let (α, ρ,βp,βq,βr, γ) be a A4-extension of C realized in End0(M), where
(α, ρ,βp,βq,βr) is a Z2 × Z2-extension as in the previous subsection, and γ is an
invertible object in the θ-homogeneous part. Then γ3 ∈ C, and there exists g ∈ G
satisfying [γ3] = [αg]. Since [γ3] commutes with [γ], we get [γ3] = [id]. Since

[αgγ] = [αg′+g′′γ] = [αg′γα−1
g′ ],

the associator of γ does not depend on the choice of the invertible object γ in the
θ-homogeneous part. Thus the associator of γ is a well-defined invariant of the
extension.

Since A4 is a semi-direct product G !H , and |G| = |Inv(Z(C)))| = 4, |H | = 3,
we have Hp(H,Hq(G,T)) = 0 for all p ≥ 1, q ≥ 1, and H1(H, Inv(Z(C))H)) = 0.
Thus Lyndon-Hochschild-Serre spectral sequence shows that there exists a split
exact sequence

0 → H3(H,T) → H3(A4,T) → H3(G,T)H → 0,

where H3(H,T) ∼= Z3 and H3(G,T)H ∼= Z2, and

H1(A4, Inv(Z(C)))) = H1(G,G)H = Hom(G,G)θ ∼= Z2 × Z2.

Thus the intersection of H3(H,T) and the image of

p1(c,M) : H
1(A4, Inv(Z(C))) → H3(A4,T)

is trivial, which means that the set of equivalence classes of A4-extensions of C has
a free H3(H,T)-action through the H3(A4,T)-action, and it changes the associator
of γ. In particular, we get the extensions listed in the theorem.

Now it suffices to show that there exist exactly 5 extensions with γ having trivial
associator. In this case, we may assume that γ3 = id, and the H-extension (α, ρ, γ)
is equivalent to the model (α, ρ, γ0). Thus using the uniqueness theorem, we may
assume that γ acts on the Cuntz algebraO5 ⊂ M as γ0 by replacing ρ with Ad(w)◦ρ
with a unitary w fixed by αg for all g ∈ G. Recall that this replacement does not
change the extension data of βp, βq, or βr. Thus we may and do assume that γ
restricted to O5 is γ0 from the beginning.

Since (α, ρ,βp), (α, ρ, γ−1 ◦ βq ◦ γ), (α, ρ, γ ◦ βr ◦ γ−1) are equivalent extensions,
we have zh′ = z′h for all h ∈ {p, q, r}, and νp = νq = νr = ±i if zh = 0. If zh ̸= 0,
we can arrange βp, βq, and βr so that νp = νq = νr = 1.

As in the case of γ, we have [(βpγ)3] = [id], and so

[βp][γβpγ
−1][γ2βpγ

−2] = [id].

Thus we may replace βq with γ ◦ βp ◦ γ−1, and βr with (βp ◦ γ ◦ βqγ−1)−1, which
does not change the extension data of βp, βq, or βr.
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Unfortunately, we can not expect that (βpγ)3 = id holds on the nose, and we
should modify βp. We have β−1

p ◦ γ ◦ βp = β−1
p ◦ βq ◦ γ, and

β−1
p ◦ βq = β−2

p ◦ β−1
r = β−2

p ◦ β−2
r ◦ βr = Adv∗p ◦ αp+zp ◦Adv∗r ◦ αr+zr ◦ βr

= Ad(v∗pv
∗
r ) ◦ αq+zq ◦ βr.

We set β′
r = Ad(v∗pv

∗
r ) ◦ αq+zq ◦ βr, which satisfies (β′

r ◦ γ)3 = id. We set β′
p =

γ ◦ β′
r ◦ γ−1 and β′

q = γ2 ◦ β′
r ◦ γ−2. Then

(5.6) γ ◦ β′
x ◦ γ−1 = β′

x′

(5.7) β′
x ◦ β′

x′ ◦ β′
x′′ = id

hold for all x ∈ {p, q, r}.
Although the extension data of β′

x is not necessarily the same as before, it is
completely determined by that of βx. Since we can work on the new extension
data in the previous sections equally well, we assume that Eq.(5.6),(5.7) hold for
βx instead of β′

x to avoid heavy notation.
The above two equations force that γ(ux) is a multiple of ux′ , and γ(vx) is a

multiple of vx′ . For the latter, we can simply assume that γ(vx) = vx′ holds for all
x ∈ {p, q, r} by renaming them, while we can still keep Eq.(5.2) by normalizing vp.
Eq.(3.7) shows that γ(ux) = ux′ holds for all x ∈ {p, q, r}.

Now the action of γ on O5 ∪ {ux, u
(x)
x , u(x′)

x , vx, v
(x′)
x } are completely determined

by the data (zp, νp). This means that if two A4-extensions of C share the same
data, they share the same 6j-symbols, and they are equivalent extensions. "

Appendix A. Proof of Lemma 5.8

In this Appendix, we prove Lemma 5.8, which states that the β̃h, as defined
in the reconstruction of a Z2 × Z2-extension of the Z2 × Z2 generalized Haagerup
category, satisfy the appropriate relations. The tedious proof consists of checking
the claimed identities of endomorphisms by calculating the images of the various
generating unitaries under the left and right hand side of each identity, simplifying
if possible using (5.4) and (5.5), and comparing the results.

Proof. First, we need to show that β̃h a is well-defined endomorphism. Clearly, β̃h

maps each copy of O5 isomorphically onto another Cuntz subalgebra of U . Then
we need to check that β̃h preserves relations (5.4) and (5.5). The relation (5.4) was
checked in the proof of Lemma 5.5. For relation (5.5), we have

β̃p(u
(p)
r v∗rv

(r)∗
q u(r)

q v∗qv
(q)∗
p u(q)

p v∗pv
(p)∗
r )

= (χr(p+ zp)vpurv
∗
p)(v

(p)∗
r )(νqµq(q + zp + zr)v

(p)
r vpvqv

∗
pv

(p)∗
r )∗

(χq(q+zp+zr)v
(p)
r vpu

(q)
q v∗pv

(p)∗
r )(νqµq(r+zr)v

∗
rv

(r)
q vr)

∗(νpµp(p+zq+zr)v
∗
rv

∗
qv

(q)
p vqvr)

∗

(−ϵzq(q)χp(r + zr)v
∗
rv

∗
qu

(q)∗
q vqu

∗
rvr)(νpvp)

∗(µr(p+ zp)vpvrv
∗
p)

∗

The product of unitaries is

vpurv
∗
qu

(q)
q (v∗pv

(p)∗
r v∗rv

(r)∗
q v∗qv

(q)∗
p )u(q)∗

q vqu
∗
rv

∗
p = 1,

using relation (5.4). The scalar coefficient is

= −ϵzq(q)(µrχr)(p+ zp)(µqχq)(q + zp + zr)(χpµq)(r + zr)µp(p+ zq + zr)

= −ϵzq(q)ϵzr (p+zp)ϵzq (q+zp+zr)ϵr+zr(p+q)ϵzq (r+zr)ϵp+zq+zr(p)ϵzp(p+zq+zr)
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−ϵp(p)ϵr(r)ϵzp(p)ϵzq (q)ϵzr (r)ϵzp(zq + zr)ϵzq+zr(zp) = −ϵzp(p)ϵzq (q)ϵzr (r),

using the relation in Lemma 5.5. Thus β̃p preserves (5.5), and since this calculation
is invariant under cyclic permutations of (p, q, r), so do β̃q and β̃r.

It is straightforward to check that β̃h ◦ α̃g = α̃g ◦ β̃h.
Next, we need to check that β̃2

h = Ad(vh) ◦ α̃h+zh. This relation clearly holds on
Φ0(O5) and Φh(O5). We also have

β̃2
h(Φh′(x)) = β̃h(v

∗
h′′Φh′′(αh′′+zh′′ (x))vh′′ )

= v(h)∗h′′ (v(h)h′′ vhΦh′(αh′+zh+zh′′ (αh′′+zh′′ (x)))v
∗
hv

(h)∗
h′′ )v(h)h′′ )

= vhΦh′(αh+zh)v
∗
h = (Ad(vh) ◦ α̃h+zh)(Φh′(x))

and

β̃2
h(Φh′′(x)) = β̃h(v

(h)
h′′ vhΦh′(αh′+zh+zh′′ (x))v

∗
hv

(h)∗
h′′ )

= (vhvh′′v∗h)vh(v
∗
h′′Φh′′(αh′′+zh′′ (αh′+zh+zh′′ (x)))vh′′ )v∗h(vhv

∗
h′′v∗h)

= vhΦh′′(αh+zh(x))v
∗
h = (Ad(vh) ◦ α̃h+zh)(Φh′′(x)).

We will now check this relation for all of the unitaries containing a symbol other
than h.

•

β̃2
h(u

(h′)
h ) = β̃h(−ϵzh′ (h

′)χh(h
′′ + zh′′)v∗h′′v∗h′u

(h′)∗
h′ vh′u∗

h′′vh′′)

= −ϵzh′ (h
′)χh(h

′′ + zh′′)(v(h)h′′ )∗(v∗h′′v
(h′′)
h′ vh′′)∗

(χh′(h′′ + zh′′)v∗h′′uh′′

h′ vh′′)∗(v∗h′′v
(h′′)
h′ vh′′)(u(h)

h′′ )∗(v
(h)
h′′ )

= ϵzh′ (h
′)ϵzh′′ (h

′′)v(h)∗h′′ v∗h′′v
(h′′)∗
h′ (vh′′v∗h′′)u

(h′′)∗
h′ (vh′′v∗h′′ )v

(h′′)
h′ vh′′u(h)∗

h′′ v(h)h′′

= ϵzh′ (h
′)ϵzh′′ (h

′′)(v(h)∗h′′ v∗h′′v
(h′′)∗
h′ )u(h′′)∗

h′ v(h
′′)

h′ vh′′u(h)∗
h′′ v(h)h′′

= ϵzh′ (h
′)ϵzh′′ (h

′′)vhv
(h′)
h vh′u(h′′)∗

h′ (v(h
′′)

h′ vh′′u(h)∗
h′′ v(h)h′′ )

= ϵzh′ (h
′)ϵzh′′ (h

′′)(−ϵzh(h)ϵzh′ (h
′)ϵzh′′ (h

′′))

·vh(v(h
′)

h vh′u(h′′)∗
h′ u(h′′)

h′ v∗h′v
(h′)∗
h )u(h′)

h v∗h

= −ϵzh(h)vhu
(h′)
h v∗h = χh(h+ zh)vhu

(h′)
h v∗h

= (Ad(vh) ◦ α̃h+zh)(u
(h′)
h ).

•
β̃2
h(u

(h′′)
h′ ) = β̃h(χh′(h′ + zh + zh′′)v(h)h′′ vhu

(h′)
h′ v∗hv

(h)∗
h′′ )

= χh′(h′ + zh + zh′′)(vhvh′′v∗h)(vh)(χ
′
h(h

′′ + zh′′)v∗h′′uh′′

h′ vh′′)(vh)
∗(vhvh′′v∗h)

∗

= χh′(h+ zh)vh(vh′′v∗hvhv
∗
h′′)uh′′

h′ (vh′′v∗hvhv
∗
h′′)v∗h

= χh′(h+ zh)vhu
h′′

h′ v∗h = (Ad(vh) ◦ α̃h+zh)(u
(h′′)
h′ ).
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•

β̃2
h(u

(h′′)
h′′ ) = β̃h(−ϵzh(h)χh′′(h′ + zh + zh′′)v(h)h′′ u

(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′ )

= −ϵzh(h)χh′′(h′ + zh + zh′′)(vhvh′′v∗h)(χh(h+ zh)vhuhv
∗
h)

∗(vh)

·(−ϵzh′′ (h
′′)v∗h′′u

(h′′)∗
h′′ vh′′u∗

h)
∗(vh)

∗(vhvh′′v∗h)
∗

= ϵzh(h)ϵzh′′ (h
′′)χh(h+ zh)χh′′(h′ + zh + zh′′)

·vh(vh′′v∗hvhu
∗
hv

∗
hvhuhv

∗
h′′)u

(h′′)
h′′ (vh′′v∗hvhv

∗
h′′)v∗h

= ϵzh(h
′′)vhu

(h′′)
h′′ v∗h = χh′′(h+ zh)vhu

(h′′)
h′′ v∗h

= (Ad(vh) ◦ α̃h+zh)(u
(h′′)
h′′ )

•
β̃2
h(v

(h′)
h ) = β̃h(νhµh(h+ zh′ + zh′′)v∗h′′v∗h′v

(h′)
h vh′vh′′)

= νpµp(h+ zh′ + zh′′)(v(h)h′′ )∗(v∗h′′v
(h′′)
h′ vh′′)∗

·(νhµh(h+ zh′ + zh′′)v∗h′′v∗h′v
(h′)
h vh′vh′′)(v∗h′′v

(h′′)
h′ vh′′)(vh′′ )

= νh
2v(h)∗h′′ v∗h′′v

(h′′)∗
h′ (vh′′v∗h′′)v∗h′v

(h′)
h vh′(vh′′v∗h′′)v

(h′′)
h′ vh′′v(h)h′′

= −ϵzh(zh)(v
(h)∗
h′′ v∗h′′v

(h′′)∗
h′ v∗h′)v

(h′)
h (vh′v(h

′′)
h′ vh′′v(h)h′′ )

= ϵh+zh(h)ϵzh(h+ zh)vhv
(h′)
h (v(h

′)
h v(h

′)∗
h )v∗h

= µh(h+ zh)vhv
(h′)
h v∗h = (Ad(vh) ◦ α̃h+zh)(v

(h′)
h )

•
β̃2
h(v

(h′′)
h′ ) = β̃h(νh′µh′(h′ + zh + zh′′)v(h)h′′ vhvh′v∗hv

(h)∗
h′′ ))

= νh′µh′(h′ + zh + zh′′)(vhvh′′v∗h)(vh)

·(νh′µh′(h′′ + zh′′)v∗h′′v
(h′′)
h′ vh′′)(vh)

∗(vhvh′′v∗h)
∗

= µh′(h+ zh)vh(vh′′v∗hvhv
∗
h′′)v

(h′′)
h′ (vh′′v∗hvhv

∗
h′′)v∗h

= µh′(h+ zh)vhv
(h′′)
h′ v∗h = (Ad(vh) ◦ α̃h+zh)(v

(h′′)
h′ )

•
β̃2
h(uh′) = β̃h(−ϵzh′′ (h

′′)v∗h′′u
(h′′)∗
h′′ vh′′u∗

h)

= −ϵzh′′ (h
′′)(v(h)h′′ )∗(−ϵzh(h)χh′′ (h′ + zh + zh′′)

·v(h)h′′ u
(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′ )∗(v(h)h′′ )(u

(h)
h )∗

= −ϵzh(h
′)(v(h)∗h′′ v(h)h′′ )vhuh′v∗h(u

(h)
h v(h)∗h′′ v(h)h′′ u

(h)∗
h )

= χh′(h+ zh)vhuh′v∗h = (Ad(vh) ◦ α̃h+zh)(uh′)

•
β̃2
h(u

(h′)
h′ ) = β̃h(χ

′
h(h

′′ + zh′′)v∗h′′uh′′

h′ vh′′)

= χh′(h′′ + zh′′)(v(h)h′′ )∗(χh′(h′ + zh + zh′′)v(h)h′′ vhu
(h′)
h′ v∗hv

(h)∗
h′′ ))(v(h)h′′ )

= χh′(h+ zh)(v
(h)∗
h′′ v(h)h′′ )vhu

(h′)
h′ v∗h(v

(h)∗
h′′ v(h)h′′ )

= χh′(h+ zh)vhu
(h′)
h′ v∗h = (Ad(vh) ◦ α̃h+zh)(u

(h′)
h′ )

•

β̃2
h(uh′′) = β̃h(u

(h)
h′′ ) = χh′′(h+ zh)vhuh′′v∗h = (Ad(vh) ◦ α̃h+zh)(uh′′)
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•
β̃2
h(u

(h)
h′′ ) = β̃h(χh′′(h+ zh)vhuh′′v∗h)

= χh′′(h+ zh)(νhvh)(u
(h)
h′′ )(νhvh)

∗

= χh′′(h+ zh)vhu
(h)
h′′ v∗h = (Ad(vh) ◦ α̃h+zh)(u

(h)
h′′ )

•
β̃2
h(vh′) = β̃h(νh′µh′(h′′ + zh′′)v∗h′′v

(h′′)
h′ vh′′)

= β̃h(νh′µh′(h′′ + zh′′)(v(h)h′′ )(νh′µh′(h′ + zh + zh′′)v(h)h′′ vhvh′v∗hv
(h)∗
h′′ ))(v(h)∗h′′ ))

= µh′(h+ zh)(v
(h)
h′′ v

(h)
h′′ )vhvh′v∗h(v

(h)∗
h′′ v(h)∗h′′ )

= µh′(h+ zh)vhvh′v∗h = (Ad(vh) ◦ α̃h+zh)(vh′)

•

β̃2
h(vh′′) = β̃h(v

(h)
h′′ ) = µh′′(h+ zh)vhvh′′v∗h = (Ad(vh) ◦ α̃h+zh)(vh′′ )

•
β̃2
h(v

(h)
h′′ ) = β̃h(µh′′ (h+ zh)vhvh′′v∗h)

= µh′′(h+ zh)(νhvh)(v
(h)
h′′ )(νhvh)

∗

= µh′′(h+ zh)vhv
(h)
h′′ v∗h = Ad(vh) ◦ α̃h+zh(v

(h)
h′′ ).

Finally, we will check the relation β̃h ◦ ρ̃ = Ad(uh) ◦ α̃h ◦ ρ̃ ◦ β̃h.
We have

(β̃hρ̃)(Φh′(x)) = β̃h(u
∗
h′Φh′(ραh′(x))uh′)

= (uhv
∗
h′′u

(h′′)
h′′ vh′′)(v∗h′′Φh′′(αh′′+zh′′ (ραh′(x)))(vh′′ )v∗h′′u

(h′′)∗
h′′ vh′′u∗

h)

= uhv
∗
h′′u

(h′′)
h′′ Φh′′(ραh+zh′′ (x))u

(h′′)∗
h′′ vh′′u∗

h

while
(Ad(uh)α̃hρ̃β̃h)(Φh′(x))

= uh(ρ̃(v
∗
h′′Φh′′(αh′+zh′′ (x))vh′′ ))u∗

h

= (uhv
∗
h′′u

(h′′)
h′′ uh′′)(u∗

h′′Φh′′(ραh+zh′′ (x))uh′′ )(u∗
h′′u

(h′′)∗
h′′ vh′′u∗

h)

= uhv
∗
h′′u

(h′′)
h′′ Φh′′(ραh+zh′′ (x))u

(h′′)∗
h′′ vh′′u∗

h

Similarly, we have
(β̃hρ̃)(Φh′′ (x))

= β̃h(u
∗
h′′Φh′′(ραh′′ (x))uh′′)

= u(h)∗
h′′ (v(h)h′′ vhΦh′(αh′+zh+zh′′ (ραh′′(x)))v∗hv

(h)∗
h′′ ))u(h)

h′′

= u(h)∗
h′′ v(h)h′′ vhΦh′(ραh+zh+zh′′ (x))v

∗
hv

(h)∗
h′′ u(h)

h′′

while
(Ad(uh)α̃hρ̃β̃h)(Φh′′(x))

= uhρ̃(v
(h)
h′′ vhΦh′(αh′′+zh+zh′′ (x))v

∗
hv

(h)∗
h′′ )u∗

h

= uh(u
∗
hu

(h)∗
h′′ v(h)h′′ vhuh′)(u∗

h′Φh′(ραh+zh+zh′′ (x))uh′)(u∗
h′v∗hv

(h)∗
h′′ u(h)

h′′ uh)u
∗
h

= u(h)∗
h′′ v(h)h′′ vhΦh′(ραh+zh+zh′′ (x))v

∗
hv

(h)∗
h′′ u(h)

h′′

Now we will again check the relation on all the unitaries containing a symbol
other than h.
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•
(β̃hρ̃)(uh′)

= β̃h(u
∗
h′(s(h

′)s(0)∗ +
∑

g∈G

ah′(g)t(h
′)

g+h′uh′t(0)g
∗))

= uhv
∗
h′′u

(h′′)
h′′ vh′′(−ϵzh′′ (h

′′)v∗h′′s(h
′′)vh′′s(h)∗

+
∑

g∈G

ϵh′′+zh′′ (g + h′)ah′(g)v∗h′′t
(h′′)
g+h′vh′′v∗h′′u

(h′′)∗
h′′ vh′′u∗

ht
(h)
g

∗)

= uhv
∗
h′′u

(h′′)
h′′ (−ϵzh′′ (h

′′)s(h
′′)vh′′s(h)∗

+
∑

g∈G

ϵh′′+zh′′ (g + h′)ah′(g)t(h
′′)

g+h′u
(h′′)∗
h′′ vh′′u∗

ht
(h)
g

∗),

while
(Ad(uh)α̃hρ̃β̃h)(uh′)

= χh′(h)uhρ̃(−ϵzh′′ (h
′′)v∗h′′u

(h′′)∗
h′′ vh′′u∗

h)u
∗
h

= −ϵzh′′ (h
′′)uh

·((s(0)v∗h′′s(h
′′)∗ +

∑

g∈G

ah′′(g)ϵh′′+zh′′ (g + h′′)t(0)g+h′′v∗h′′u
(h′′)
h′′ t(h

′′)
g

∗)u(h′′)∗
h′′ vh′′)∗

·u∗
h(s

(h)s(0)∗ +
∑

g∈G

ah(g)t
(h)
g+huht

(0)
g

∗)∗u∗
h

= −ϵzh′′ (h
′′)uhv

∗
h′′u

(h′′)
h′′ (s(h

′′)vh′′s(h)∗

+
∑

g∈G

ah′′(g)ah(g + h′′)ϵh′′+zh′′ (g + h′′)t(h
′′)

g u(h′′)∗
h′′ vh′′u∗

ht
(h)∗
g+h′)

= uhv
∗
h′′u

(h′′)
h′′ (−ϵzh′′ (h

′′)s(h
′′)vh′′s(h)∗

+
∑

g∈G

ah′(g + h′)ϵh′′+zh′′ (g)t
(h′′)
g u(h′′)∗

h′′ vh′′u∗
ht

(h)∗
g+h′)

= uhv
∗
h′′u

(h′′)
h′′ (−ϵzh′′ (h

′′)s(h
′′)vh′′s(h)∗

+
∑

g∈G

ah′(g)ϵh′′+zh′′ (g + h′)t(h
′′)

g+h′u
(h′′)∗
h′′ vh′′u∗

ht
(h)∗
g ),

where we have used (5.1).
•

(β̃hρ̃)(u
(h′)
h )

= β̃h(u
∗
h′u

(h′)∗
h v(h

′)
h vh′ [s(h

′′)v∗h′v
(h′)∗
h s(h

′)∗

+
∑

g∈G

ϵh′′+zh+zh′ (g + h)ah(g)t
h′′

g+hv
∗
h′v

(h′)∗
h u(h′)

h t(h
′)∗

g ]uh′

= (uhv
∗
h′′u

(h′′)
h′′ vh′′ )(v∗h′′uh′′v∗h′u

(h′)
h′ vh′vh′′)(v∗h′′v∗h′v

(h′)
h vh′vh′′)(v∗h′′v

(h′′)
h′ vh′′)

[−ϵzh′ (h
′)χh(h

′′ + zh′′)(v(h)h′′ vhs
(h′)v∗hv

(h)∗
h′′ )(v∗h′′v

(h′′)∗
(h′) vh′′)

·(v∗h′′v∗h′v
(h′)∗
(h) vh′vh′′)(v∗h′′s(h

′′)∗vh′′)

+
∑

g∈G

ϵh′′+zh+zh′ (g + h)ϵh′+zh+zh′′ (g + h)ϵh′′+zh′′ (g)ah(g)

(v(h)h′′ vht
(h′)
g+hv

∗
hv

(h)∗
h′′ )(v∗h′′v

(h′′)∗
(h′) vh′′)(v∗h′′v∗h′v

(h′)∗
(h) vh′vh′′)
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·(v∗h′′v∗h′u
(h′)∗
h′ vh′u∗

h′′vh′′)(v∗h′′t(h
′′)∗

g vh′′)]

v∗h′′u
(h′′)∗
h′′ vh′′u∗

h

= uhv
∗
h′′u

(h′′)
h′′ uh′′v∗h′u

(h′)
h′ [ϵzh′ (h

′)ϵzh′′(h)s(h
′)vh′s(h

′′)∗)

+
∑

g∈G

−ϵzh′ (h+ g)ϵzh′′ (h)ϵh′(g)ah(g)t
(h′)
g+hu

(h′)∗
h′ vh′u∗

h′′t(h
′′)∗

g ]u(h′′)∗
h′′ vh′′u∗

h,

where we have used (5.4) twice, while

(Ad(uh)α̃hρ̃β̃h)(u
(h′)
h )

= χh(h)(−ϵzh′ (h
′)χh(h

′′ + zh′′))uhρ̃(v
∗
h′′v∗h′u

(h′)∗
h′ vh′u∗

h′′vh′′)u∗
h

= ϵzh′ (h
′)ϵh′′+zh′′ (h)uh(v

∗
h′′u

(h′′)
h′′ uh′′)(v∗h′u

(h′)
h′ uh′)

·(χh′(h′)u∗
h′u

(h′)∗
h′ (vh′s(0)v∗h′s(h

′)∗+
∑

g∈G

ah′(g)ϵh′+zh′ (g+h′)vh′t(0)g+h′v∗h′u
(h′)
h′ t(h

′)
g

∗)uh′)∗

·(u∗
h′u

(h′)∗
h′ vh′)(u∗

h′′(s(h
′′)s(0)∗ +

∑

g∈G

ah′′(g)t(h
′′)

g+h′′uh′′t(0)g
∗))∗(u∗

h′′u
(h′′)∗
h′′ vh′′)u∗

h

= −ϵzh′ (h
′)ϵh′′+zh′′ (h)uhv

∗
h′′u

(h′′)
h′′ uh′′v∗h′u

(h′)
h′

[s(h
′)vh′s(h

′′)∗+
∑

g∈G

ah′(g)ah′′(g + h′)ϵh′+zh′ (g+h′)t(h
′)

g u(h′)∗
h′ vh′u∗

h′′t
(h′′)∗
g+h ]u(h′′)∗

h′′ vh′′)u∗
h

= uhv
∗
h′′u

(h′′)
h′′ uh′′v∗h′u

(h′)
h′

[ϵzh′ (h
′)ϵzh′′ (h)s

(h′)vh′s(h
′′)∗

+
∑

g∈G

−ah(g)ϵzh′ (h+ g)ϵzh′′ (h)ϵh′(g)t(h
′)

g+hu
(h′)∗
h′ vh′u∗

h′′t(h
′′)∗

g ]u(h′′)∗
h′′ vh′′)u∗

h,

where again we have used (5.1).
•

(β̃hρ̃)(u
(h′′)
h′ )

= β̃h(χh′(h′′)u∗
h′′u

(h′′)∗
h′ v(h

′′)
h′ vh′′ [s(h)v∗h′′v

(h′′)∗
h′ s(h

′′)∗

+
∑

g∈G

ah′(g)ϵh+zh′+zh′′ (g + h′)t(h)g+h′v∗h′′v
(h′′)∗
h′ u(h′′)

h′ t(h
′′)∗

g ]uh′′)

= (u(h)
h′′ )∗(v

(h)
h′′ vhu

(h′)
h′ v∗hv

(h)∗
h′′ )∗(v(h)h′′ vhvh′v∗hv

(h)∗
h′′ )(v(h)h′′ )

[χh′(h′ + zh + zh′′)(vhs
(0)v∗h)(v

(h)
h′′ )∗(v

(h)
h′′ vhvh′v∗hv

(h)∗
h′′ )∗(v(h)h′′ vhs

(h′)∗v∗hv
(h)∗
h′′ )

+
∑

g∈G

ah′(g)ϵh+zh′+zh′′ (g + h′)ϵh+zh(g + h′)ϵh′+zh+zh′′ (g)

(vht
(0)
g+h′v∗h)(v

(h)
h′′ )∗(v

(h)
h′′ vhvh′v∗hv

(h)∗
h′′ )∗(v(h)h′′ vhu

(h′)
h′ v∗hv

(h)∗
h′′ )(v(h)h′′ vht

(h′)∗
g v∗hv

(h)∗
h′′ )](u(h)

h′′ )

= u(h)∗
h′′ v(h)h′′ vhu

(h′)∗
h′ vh′ [−ϵzh+zh′′ (h

′)s(0)v∗h′s(h
′)

+
∑

g∈G

ah′(g)ϵzh+zh′+zh′′ (h
′)ϵh′+zh′ (g)t

(0)
g+h′v∗h′u

(h′)
h′ t(h

′)∗
g ]v∗hv

(h)∗
h′′ u(h)

h′′ ,

while
(Ad(uh)α̃hρ̃β̃h)(u

(h′′)
h′ )

= uhχh′(h)ρ̃(χh′(h′ + zh + zh′′)v(h)h′′ vhu
(h′)
h′ v∗hv

(h)∗
h′′ )u∗

h

= −ϵzh+zh′′ (h
′)uh(u

∗
hu

(h)∗
h′′ v(h)h′′ vhuh′v∗hu

(h)
h uh)(u

∗
hu

(h)∗
h vh)
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(u∗
h′u

(h′)∗
h′ (vh′s(0)v∗h′s(h

′)∗ +
∑

g∈G

ah′(g)ϵh′+zh′ (g + h′)vh′t(0)g+h′v∗h′u
(h′)
h′ t(h

′)
g

∗)uh′)

(u∗
hu

(h)∗
h vh)

∗(u∗
hu

(h)∗
h′′ v(h)h′′ vhuh′v∗hu

(h)
h uh)

∗u∗
h

= u(h)∗
h′′ v(h)h′′ vhu

(h′)∗
h′ vh′(−ϵzh+zh′′ (h

′)s(0)v∗h′s(h
′)∗

+
∑

g∈G

ah′(g)ϵzh+zh′+zh′′ (h
′)ϵh′+zh′ (g)t

(0)
g+h′v∗h′u

(h′)
h′ t(h

′)
g

∗))v∗hv
(h)∗
h′′ u(h)

h′′

•
(β̃hρ̃)(u

(h′′)
h′′ )

= β̃h(χh′′(h′′)u∗
h′′u

(h′′)∗
h′′ vh′′(s(0)v∗h′′s(h

′′)∗

+
∑

g∈G

ah′′(g)ϵh′′+zh′′ (g + h′′)t(0)g+h′′v∗h′′u
(h′′)
h′′ t(h

′′)
g

∗)uh′′)

= −(u(h)
h′′ )∗(v

(h)
h′′ u

(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′ )∗(v(h)h′′ )

·[−ϵzh(h)χh′′(h′ + zh + zh′′)s(h)(v(h)h′′ )∗(v
(h)
h′′ vhs

(h′)v∗hv
(h)∗
h′′ )

+
∑

g∈G

ah′′(g)ϵh′′+zh′′ (g + h′′)ϵh′+zh+zh′′ (g)

·t(h)g+h′′(v
(h)
h′′ )∗(v

(h)
h′′ u

(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′ )(v(h)h′′ vht

(h′)
g

∗v∗hv
(h)∗
h′′ )](u(h)

h′′ )

= −u(h)∗
h′′ v(h)h′′ vhuh′v∗hu

(h)
h [−ϵzh(h)χh′′(h′ + zh + zh′′)s(h)vhs

(h′)

+
∑

g∈G

ah′′(g)ϵh′′+zh′′ (g + h′′)ϵh′+zh+zh′′ (g)t
(h)
g+h′′u

(h)∗
h vhu

∗
h′t(h

′)
g

∗]v∗hv
(h)∗
h′′ u(h)

h′′

= −ϵzh(h
′)ϵzh′′ (zh′′)u(h)∗

h′′ v(h)h′′ vhuh′v∗hu
(h)
h

[s(h)vhs
(h′) +

∑

g∈G

ah′′(g)ϵh+zh(g + h′)t(h)g+h′′u
(h)∗
h vhu

∗
h′t(h

′)
g ]v∗hv

(h)∗
h′′ u(h)

h′′ ,

while
(Ad(uh)α̃hρ̃β̃h)(u

(h′′)
h′′ )

= uhχh′′(h)ρ̃(−ϵzh(h)χh′′(h′ + zh + zh′′)v(h)h′′ u
(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′ )u∗

h

= ϵzh(h
′)ϵzh′ (zh′)uh(u

∗
hu

(h)∗
h′′ v(h)h′′ vhuh′v∗hu

(h)
h uh)

·(χh(h)u
∗
hu

(h)∗
h vh

·(s(0)v∗hs(h)∗ +
∑

g∈G

ah(g)ϵh+zh(g + h)t(0)g+hv
∗
hu

(h)
h t(h)g

∗)uh)
∗(u∗

hu
(h)∗
h vh)

·(u∗
h′(s(h

′)s(0)∗ +
∑

g∈G

ah′(g)t(h
′)

g+h′uh′t(0)g
∗))∗

·(u∗
hu

(h)∗
h vh)

∗(u∗
hu

(h)∗
h′′ v(h)h′′ vhuh′v∗hu

(h)
h uh)

∗u∗
h

= −ϵzh(h
′)ϵzh′′ (zh′′)u(h)∗

h′′ v(h)h′′ vhuh′v∗hu
(h)
h

·(s(0)v∗hs(h)∗ +
∑

g∈G

ah(g)ϵh+zh(g + h)t(0)g+hv
∗
hu

(h)
h t(h)g

∗)∗

·(s(h
′)s(0)∗ +

∑

g∈G

ah′(g)t(h
′)

g+h′uh′t(0)g
∗)∗v∗hv

(h)∗
h′′ u(h)

h′′

= −ϵzh(h
′)ϵzh′′ (zh′′)u(h)∗

h′′ v(h)h′′ vhuh′v∗hu
(h)
h
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[s(h)vhs
(h′) +

∑

g∈G

ah(g)ah′(g + h)ϵh+zh(g + h)t(h)g u(h)∗
h vhu

∗
h′t

(h′)
g+h′′ ]

·v∗hv
(h)∗
h′′ u(h)

h′′

= −ϵzh(h
′)ϵzh′′ (zh′′)u(h)∗

h′′ v(h)h′′ vhuh′v∗hu
(h)
h

[s(h)vhs
(h′) +

∑

g∈G

ah′′(g)ϵh+zh(g + h′)t(h)g+h′′u
(h)∗
h vhu

∗
h′t(h

′)
g ]v∗hv

(h)∗
h′′ u(h)

h′′

•
(β̃hρ̃)(u

(h′)
h′ )

= β̃h(χh′(h′)u∗
h′u

(h′)∗
h′ vh′

·(s(0)v∗h′s(h
′)∗ +

∑

g∈G

ah′(g)ϵh′+zh′ (g + h′)t(0)g+h′v∗h′u
(h′)
h′ t(h

′)
g

∗)uh′)

= −(v∗h′′u
(h′′)∗
h′′ vh′′u∗

h)
∗(v∗h′′uh′′

h′ vh′′)∗(v∗h′′v
(h′′)
h′ vh′′)

[χh′(h′′ + zh′′)s(h)(v∗h′′v
(h′′)
h′ vh′′)∗(v∗h′′s(h

′′)∗vh′′)

+
∑

g∈G

ah′(g)ϵh′+zh′ (g + h′)ϵh′′+zh′′(g)

·t(h)g+h′(v∗h′′v
(h′′)
h′ vh′′)∗(v∗h′′uh′′

h′ vh′′)v∗(h′′t(h
′′)∗

g vh′′ ](v∗h′′u
(h′′)∗
h′′ vh′′u∗

h)

= −uhv
∗
h′′v

(h′′)
h′ vh′′ [χh′(h′′ + zh′′)s(h)v∗h′′v

(h′′)∗
h′ s(h

′′)∗

+
∑

g∈G

ah′(g)ϵh′+zh′ (g + h′)ϵh′′+zh′′ (g)t
(h)
g+h′v∗h′′v

(h′′)∗
h′ u(h′′)

h′ t(h
′′)∗

g ]u(h′′)∗
h′′ vh′′u∗

h,

while
(Ad(uh)α̃hρ̃β̃h)(u

(h′)
h′ )

= uhχh′(h)ρ̃(χ′
h(h

′′ + zh′′)v∗h′′uh′′

h′ vh′′)u∗
h

= −ϵzh′′(h′)uhχh′(h′′)[u∗
h′′u

(h′′)∗
h′ v(h

′′)
h′ vh′′s(h)v∗h′′v

(h′′)∗
h′ s(h

′′)∗uh′′

+
∑

g∈G

ϵh+zh′+zh′′ (g + h′)ah′(g)u∗
h′′u

(h′′)∗
h′ v(h

′′)
h′ vh′′thg+h′v∗h′′v

(h′′)∗
h′ u(h′′)

h′ t(h
′′)∗

g uh′′ ]

·(u∗
h′′u

(h′′)∗
h′′ vh′′)u∗

h

= −ϵzh′′ (h′)uhu
∗
h′′u

(h′′)∗
h′ v(h

′′)
h′ vh′′ [s(h)v∗h′′v

(h′′)∗
h′ s(h

′′)∗

+
∑

g∈G

ϵh+zh′+zh′′ (g + h′)ah′(g)thg+h′v∗h′′v
(h′′)∗
h′ u(h′′)

h′ t(h
′′)∗

g ]u(h′′)∗
h′′ vh′′u∗

h

•
(β̃hρ̃)(uh′′)

= β̃h(u
∗
h′′(s(h

′′)s(0)∗ +
∑

g∈G

ah′′(g)t(h
′′)

g+h′′uh′′t(0)g
∗))

= u(h)∗
h′′ (v(h)h′′ vhs

(h′)v∗hv
(h)∗
h′′ s(h)∗

+
∑

g∈G

ah′′(g)ϵh′+zh+zh′′ (g + h′′)v(h)h′′ vht
(h′)
g+h′′v∗hv

(h)∗
h′′ u(h)

h′′ t(h)g
∗)

= u(h)∗
h′′ v(h)h′′ vh[s

(h′)v∗hv
(h)∗
h′′ s(h)∗

+
∑

g∈G

ah′′(g)ϵh′+zh+zh′′ (g + h′′)t(h
′)

g+h′′v∗hv
(h)∗
h′′ u(h)

h′′ t(h)g
∗),
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while
(Ad(uh)α̃hρ̃β̃h)(uh′′)

= uh(χh′′ (h)ρ̃(u(h)
h′′ ))u∗

h

= uh(χh′′(h)[u∗
hu

(h)∗
h′′ v(h)h′′ vhs

(h′)v∗hv
(h)∗
h′′ s(h)∗uh

+
∑

g∈G

ϵh′+zh′′+zh(g + h′′)ah′′(g)u∗
hu

(h)∗
h′′ v(h)h′′ vht

h′

g+h′′v∗hv
(h)∗
h′′ u(h)

h′′ t(h)∗g uh])u
∗
h

= u(h)∗
h′′ v(h)h′′ vh[s

(h′)v∗hv
(h)∗
h′′ s(h)∗

+
∑

g∈G

ϵh′+zh′′+zh(g + h′′)ah′′(g)th
′

g+h′′v∗hv
(h)∗
h′′ u(h)

h′′ t(h)∗g ]

•
(β̃hρ̃)(u

(h)
h′′ )

= β̃h(u
∗
hu

(h)∗
h′′ v(h)h′′ vh[s

(h′)v∗hv
(h)∗
h′′ s(h)∗

+
∑

g∈G

ϵh′+zh′′+zh(g + h′′)ah′′(g)th
′

g+h′′v∗hv
(h)∗
h′′ u(h)

h′′ t(h)∗g ]uh)

= (u(h)
h )∗(vhuh′′v∗h)

∗(vhvh′′v∗h)(vh)

·[χh′′(h+ zh)v
∗
h′′s(h

′′)vh′′(vh)
∗(vhvh′′v∗h)

∗(vhs
(0)∗v∗h)

+
∑

g∈G

ϵh′+zh′′+zh(g + h′′)ϵh′′+zh′′ (g + h′′)ϵh+zh(g)ah′′(g)

·v∗h′′t
(h′′)
g+h′′vh′′(vh)

∗(vhvh′′v∗h)
∗(vhuh′′v∗h)(vht

(h)∗
g v∗h)]u

(h)
h

= ϵzh(h
′′)u(h)∗

h vhu
∗
h′′ [s(h

′′)s(0)∗ +
∑

g∈G

ah′′(g)t(h
′′)

g+h′′uh′′t(h)∗g ]v∗hu
(h)
h ,

while
(Ad(uh)α̃hρ̃β̃h)(u

(h)
h′′ )

= uh(χh′′(h)ρ̃(χh′′(h+ zh)vhuh′′v∗h))u
∗
h

= ϵzh(h
′′)uh(u

∗
hu

(h)∗
h vh)

·(u∗
h′′(s(h

′′)s(0)∗ +
∑

g∈G

ah′′(g)t(h
′′)

g+h′′uh′′t(0)g
∗))(u∗

hu
(h)∗
h vh)

∗u∗
h

= ϵzh(h
′′)u(h)∗

h vhu
∗
h′′ [s(h

′′)s(0)∗ +
∑

g∈G

ah′′(g)t(h
′′)

g+h′′uh′′t(h)g
∗]v∗hu

(h)
h

•
(β̃hρ̃)(v

(h′)
h )

= β̃h(−ϵzh′ (h
′)µh(h

′)χh(h
′′ + zh + zh′)ξhu

∗
h′u

(h′)∗
h v(h

′)
h vh′uh′′v∗h′u

(h′)
h′ uh′)

= (−ϵzh′ (h
′)µh(h

′)χh(h
′′ + zh + zh′ξh)(νhµh(h+ zh′ + zh′′))

·(−ϵzh′ (h
′)χh(h

′′ + zh′′))(χh′(h′′ + zh′′))

·(v∗h′′u
(h′′)∗
h′′ vh′′u∗

h)
∗(v∗h′′v∗h′u

(h′)∗
h′ vh′u∗

h′′vh′′)∗(v∗h′′v∗h′v
(h′)
h vh′vh′′)(v∗h′′v

(h′′)
h′ vh′′)

·(u(h)
h′′ )(v∗h′′v

(h′′)
h′ vh′′)∗(v∗h′′uh′′

h′ vh′′)(v∗h′′u
(h′′)∗
h′′ vh′′u∗

h)

= −ξhνhϵzh(h
′ + zh′ + zh′′)ϵzh′′ (h

′)

·uhv
∗
h′′u

(h′′)
h′′ uh′′v∗h′uh′

h′(v
(h′)
h vh′v(h

′′)
h′ vh′′)u(h)

h′′ v∗h′′v
(h′′)∗
h′ uh′′

h′ u
(h′′)∗
h′′ vh′′u∗

h

= −ξhνhϵzh(h
′ + zh′ + zh′′)ϵzh′′ (h

′)

·uhv
∗
h′′u

(h′′)
h′′ uh′′v∗h′uh′

h′(v∗hv
(h)∗
h′′ u(h)

h′′ v∗h′′v
(h′′)∗
h′ uh′′

h′ )u
(h′′)∗
h′′ vh′′u∗

h
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= ξhνhϵzh(h
′′ + zh′ + zh′′)ϵzh′ (h

′)ϵzh′′ (h)

·uhv
∗
h′′u

(h′′)
h′′ uh′′v∗h′uh′

h′u
(h′)∗
h v(h

′)
h vh′u(h′′)∗

h′′ vh′′u∗
h,

where we have used relations (5.4) and (5.5), while

(Ad(uh)α̃hρ̃β̃h)(v
(h′)
h )

= uh(µh(h)ρ̃(νhµh(h+ zh′ + zh′′)v∗h′′v∗h′v
(h′)
h vh′vh′′)u∗

h

= µh(h)νhµh(h+ zh′ + zh′′)(−ϵzh′ (h
′)µh(h

′)χh(h
′′ + zh + zh′)ξh)

·uh(u
∗
h′′u

(h′′)∗
h′′ vh′′)∗(u∗

h′u
(h′)∗
h′ vh′)∗(u∗

h′u
(h′)∗
h v(h

′)
h vh′uh′′v∗h′u

(h′)
h′ uh′)

·(u∗
h′u

(h′)∗
h′ vh′)(u∗

h′′u
(h′′)∗
h′′ vh′′)u∗

h

= ξhνhϵzh(h
′′ + zh′ + zh′′)ϵzh′ (h

′)ϵzh′′ (h)

uhv
∗
h′′u

(h′′)
h′′ uh′′v∗h′uh′

h′u
(h′)∗
h v(h

′)
h vh′u(h′′)∗

h′′ vh′′u∗
h

•
(β̃hρ̃)(v

(h′′)
h′ )

= β̃h(−ϵzh′′ (h
′′)µh′(h′′)χh′(h+ zh′ + zh′′)ξh′u∗

h′′u
(h′′)∗
h′ v(h

′′)
h′ vh′′uhv

∗
h′′u

(h′′)
h′′ uh′′)

= −ϵzh′′ (h
′′)µh′(h′′)χh′(h+ zh′ + zh′′)ξh′(χh′(h′ + zh + zh′′))

·(−ϵzh(h)χh′′(h′ + zh + zh′′))(νh′µh′(h′ + zh + zh′′))

·(u(h)
h′′ )∗(v

(h)
h′′ vhu

(h′)
h′ v∗hv

(h)∗
h′′ )∗(v(h)h′′ vhvh′v∗hv

(h)∗
h′′ )(v(h)h′′ )(u

(h)
h )(v(h)h′′ )∗

·(v(h)h′′ u
(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′ )(u(h)

h′′ )

= νh′ξh′ϵzh+zh′′ (h
′)ϵzh′ (h

′′ + zh + zh′′)u(h)∗
h′′ v(h)h′′ vhu

(h′)∗
h′ vh′u∗

h′v∗hv
(h)∗
h′′ u(h)

h′′ ,

while
(Ad(uh)α̃hρ̃β̃h)(v

(h′′)
h′ )

= uh(µh′(h)ρ̃(νh′µh′(h′ + zh + zh′′)v(h)h′′ vhvh′v∗hv
(h)∗
h′′ ))u∗

h

= µh′(h)νh′µh′(h′ + zh + zh′′)ξh′

·uh(u
∗
hu

(h)∗
h′′ v(h)h′′ vhuh′v∗hu

(h)
h uh)(u

∗
hu

(h)∗
h vh)

·(u∗
h′u

(h′)∗
h′ vh′)(u∗

hu
(h)∗
h vh)

∗(u∗
hu

(h)∗
h′′ v(h)h′′ vhuh′v∗hu

(h)
h uh)

∗u∗
h

= νh′ξh′ϵzh+zh′′ (h
′)ϵzh′ (h

′′ + zh + zh′′)u(h)∗
h′′ v(h)h′′ vhu

(h′)∗
h′ vh′u∗

h′v∗hv
(h)∗
h′′ u(h)

h′′

•
(β̃hρ̃)(v

(h)
h′′ )

= β̃h(−ϵzh(h)µh′′(h)χh′′(h′ + zh′′ + zh)ξh′′u∗
hu

(h)∗
h′′ v(h)h′′ vhuh′v∗hu

(h)
h uh)

= −ϵzh(h)µh′′(h)χh′′(h′ + zh′′ + zh)ξh′′χh′′(h+ zh)

·χh(h+ zh)µh′′ (h+ zh)(−ϵzh′′ (h
′′))

·(u(h)
h )∗(vhuh′′v∗h)

∗(vhvh′′v∗h)(vh)(v
∗
h′′u

(h′′)∗
h′′ vh′′u∗

h)(vh)
∗(vhuhv

∗
h)(u

(h)
h )

= ξh′′ϵzh(h
′′)ϵzh′′ (zh)u

(h)∗
h vhu

∗
h′′u

(h′′)∗
h′′ vh′′v∗hu

(h)
h

while
(Ad(uh)α̃hρ̃β̃h)(v

(h)
h′′ )

= uhµh′′(h)ρ̃(µh′′(h+ zh)vhvh′′v∗h)u
∗
h

= µh′′(h)µh′′(h+ zh)ξh′′uh(u
∗
hu

(h)∗
h vh)(u

∗
h′′u

(h′′)∗
h′′ vh′′)(u∗

hu
(h)∗
h vh)

∗u∗
h

ξh′′ϵzh(h
′′)ϵzh′′ (zh)u

(h)∗
h vhu

∗
h′′u

(h′′)∗
h′′ vh′′v∗hu

(h)
h
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•
(β̃hρ̃)(vh′ )

= β̃h(ξh′u∗
h′u

(h′)∗
h′ vh′)

= ξh′(−ϵzh′′ (h
′′)v∗h′′u

(h′′)∗
h′′ vh′′u∗

h)
∗(χh′(h′′ + zh′′)v∗h′′uh′′

h′ vh′′)∗

·(νh′µh′(h′′ + zh′′)v∗h′′v
(h′′)
h′ vh′′)

= −ξh′νh′ϵzh′ (h
′′ + zh′′)ϵzh′′ (h

′′)uhv
∗
h′′v

(h′′)
h′ vh′′ ,

while
(Ad(uh)α̃hρ̃β̃h)(vh′)

= uhµh′(h)ρ̃(νh′µh′(h′′ + zh′′)v∗h′′v
(h′′)
h′ vh′′)u∗

h

= µh′(h)νh′µh′(h′′ + zh′′)(−ϵzh′′ (h
′′)µh′(h′′)χh′(h+ zh′ + zh′′)ξh′)

·uh(u
∗
h′′u

(h′′)∗
h′′ vh′′)∗(u∗

h′′u
(h′′)∗
h′ v(h

′′)
h′ vh′′uhv

∗
h′′u

(h′′)
h′′ uh′′)(u∗

h′′u
(h′′)∗
h′′ vh′′)u∗

h

= −ξh′νh′ϵzh′ (h
′′ + zh′′)ϵzh′′ (h

′′)uhv
∗
h′′u

(h′′)
h′′ v(h

′′)
h′ vh′′

•
(β̃hρ̃)(vh′′ ) = β̃h(ξh′′u∗

h′′u
(h′′)∗
h′′ vh′′)

= ξh′′u(h)∗
h′′ (−ϵzh(h)χh′′(h′ + zh + zh′′)v(h)h′′ u

(h)∗
h vhu

∗
h′v∗hv

(h)∗
h′′ )∗v(h)h′′

= ξh′′ϵzh(h
′)ϵzh′′ (h

′′)u(h)∗
h′′ v(h)h′′ vhuh′v∗hu

(h′)
h ,

while
(Ad(uh)α̃hρ̃β̃h)(vh′′ ) = uhµh′′(h)ρ̃(v(h)h′′ )u∗

h

= µh′′(h)uh(−ϵzh(h)µh′′(h)χh′′(h′ + zh′′ + zh)ξh′′u∗
hu

(h)∗
h′′ v(h)h′′ vhuh′v∗hu

(h)
h uh)u

∗
h

= ξh′′ϵzh(h
′)ϵzh′′ (h

′′)u(h)∗
h′′ v(h)h′′ vhuh′v∗hu

(h)
h

"
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