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GRADED EXTENSIONS OF GENERALIZED HAAGERUP
CATEGORIES

PINHAS GROSSMAN, MASAKI IZUMI, AND NOAH SNYDER

ABSTRACT. We classify certain Zs-graded extensions of generalized Haagerup
categories in terms of numerical invariants satisfying polynomial equations.
In particular, we construct a number of new examples of fusion categories,
including: Zso-graded extensions of Za, generalized Haagerup categories for
all n < 5; Za X Zz-graded extensions of the Asaeda-Haagerup categories; and
extensions of the Za X Zo generalized Haagerup category by its outer automor-
phism group A4. The construction uses endomorphism categories of operator
algebras, and in particular, free products of Cuntz algebras with free group
C*-algebras.

1. INTRODUCTION

A quadratic category is a fusion category whose set of simple objects has exactly
two orbits under the (left) tensor product action of the subcategory of invertible ob-
jects. Quadratic categories play a prominent role in the classification of small-index
subfactors. Indeed, with a notable exception (the Extended Haagerup categories),
all known fusion categories can be constructed by starting with either categories
coming from quantum groups at roots of unity or starting with quadratic fusion
categories, and then applying certain constructions.

In this paper we study one of these constructions (G-extensions) applied to one
of the most important families of quadratic categories: the generalized Haagerup
categories. One motivating application of these techniques is to resolve in the
positive the open question of whether the Asaeda-Haagerup fusion categories admit
extensions by their full Brauer-Picard group, which is the Klein 4-group.

Generalized Haagerup categories were introduced as a generalization of Haagerup’s
famous original example appearing in the classification of small index subfactors
], by replacing the group Zs = Inv(C) of isomorphism classes of invertible
objects which appears in the Haagerup subfactor with an arbitrary finite Abelian
group. A generalized Haagerup category is tensor generated by a single simple ob-
ject X, and satisfies the following fusion rules (plus some cohomological conditions)

gX2X®g ! VgeTw(C), XX=1a @ g X.
g€Inv(C)

Generalized Haagerup categories were classified in m in terms of solutions of
certain polynomial equations; moreover, when there is such a solution the category
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can be realized as a category of endomorphisms of a von Neumann factor completion
of a Cuntz algebra. We will be generalizing this approach to also treat extensions
of generalized Haagerup categories, but this generalization will require replacing
Cuntz algebras by more complicated algebras.

A G-extension of a fusion category C is a G-graded fusion category D whose
trivial component is C. There is a general obstruction theory for G-extensions de-
veloped by Etingof-Nikshych-Ostrik using the homotopy type of the Brauer-Picard
groupoid of C |[ENO10]. As is typical for obstruction theories, this is quite easy to
apply when the cohomology groups where the obstructions live are trivial, but if
the groups are non-trivial it can be quite difficult to figure out whether the obstruc-
tion vanishes or not. In this paper we will take a much more bare-hands approach,
using concrete realizations of our examples as categories of endomorphisms, and
explicitly computing structure constants.

In general, the non-trivially graded parts of a G-extension of C will be non-
trivial invertible bimodule categories over C. In this paper we will be considering
the special case of quasi-trivial extensions, where each of these bimodules comes
from an outer automorphism of C (i.e. it is trivial as either a left or right module,
but the two actions are twisted by an outer automorphism relative to each other).

Our first main result says:

Theorem 1.1. Unitary extensions of a generalized Haagerup category C by an
outer action of Zo which is trivial on the subcategory of invertible objects are com-
pletely classified by solutions to certain polynomial equations. Moreover, when
these polynomial equations are satisfied then the extensions may be explicitly re-
alized as categories of endomorphisms of a factor completion of the free product
Ont1 * Opy1 x C*(F3) where O denotes a Cuntz algebra, F denotes a free group,
and n is the size of Inv(C). (See Theorems|[3.1, [3.2, and[3.3 below for the precise

statements).

Such outer actions can only exist when the group Inv(C) has even order. Gen-
eralized Haagerup categories are known to exist for all cyclic groups of size < 10
(with multiple distinct examples for certain groups), and we solve the polynomial
equations for Zs-extensions for all of the examples in this range, thereby construct-
ing new fusion categories in each case. In fact, due to choices in the construction of
the extension, we have 4 different Zs-extensions for each example, which are also
distinct as tensor categories (some of the choices even lead to different fusion rules).

We then generalize these techniques to give applications in two further examples
of interest. First, we consider the category A#H4 in the Morita equivalence class of
the Asaeda-Haagerup subfactor. This can be constructed as a degenerate version
of a generalized Haagerup category for the group Z, X Zs, where the second factor
acts trivially and so the group of invertible objects up to isomorphism is Z4. In
prior work we calculated the Brauer-Picard groupoid of the Asaeda-Haagerup fu-
sion categories and saw that the Brauer-Picard group is the Klein 4-group |GS16;
GIS18]. Using Etingof-Nikshych-Ostrik’s obstruction theory, it is easy to see that
these fusion categories have Zs-extensions for each subgroup of the Klein 4-group
|GJS15], but since the Klein 4-group is not cyclic the question of whether there is an
extension by the full Klein 4-group is substantially more difficult. For the original
fusion categories AH; and AHo, which arise as the even parts of the Asaeda-
Haagerup subfactor, the invertible bimodule categories do not come from outer
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automorphisms, but for AH, all the bimodule categories do come from outer au-
tomorphisms. Thus the problem of finding extensions of AH, is very close to the
setting of our main result. This leads to our second result.

Theorem 1.2. The Asaeda-Haagerup fusion category AH4 has an extension by its
Klein 4-group of outer automorphisms. Moreover, this extension can be explicitly
realized as a category of endomorphisms of a factor completion of the algebra Og *
Og * C* (Fg)

By Etingof-Nikshych-Ostrik’s theory, we can conclude that the obstruction van-
ishes, and hence all of the Asaeda-Haagerup fusion categories have extensions by
their full Brauer-Picard group; and moreover all such extensions can be easily clas-
sified via group cohomology. These extensions give some new rich and complicated
examples of fusion categories. Homotopy theoretically this can be summarized by
saying that the Brauer-Picard 3-groupoid is homotopy equivalent to the product
of Eilenberg-Maclane spaces K (Z2 X Z2,1) x K(C*,3), or equivalently that the
Postnikov k-invariant vanishes.

Our other application is to the generalized Haagerup category for the group
Zs X Zo. This category is related to a conformal inclusion SU(5); C Spin(24);
see [Xul8; [Edi21a]. This category is interesting because its Brauer-Picard group is
unusually rich: it was shown in |Grol9] that this group has order 360, and it was
identified as S35 x As in [Edi2la]. The outer automorphism subgroup is A4. We
show using similar techniques to our main theorem:

Theorem 1.3. There is an As-graded extension of the Zo X Zo generalized Haagerup
category by its outer automorphism group. Moreover, this extension can be realized
as a category of endomorphisms of a factor closure of the algebra Os x O x O *
05 * C* (F13).

Again this implies that the relevant obstruction vanishes and hence lets us com-
pletely classify all such extensions, of which there are exactly 15 up to equivalence.
We also classify all extensions by subgroups of the outer automorphism group. Thus
we determine the extension theory associated to the outer automorphism subgroup
of the Brauer-Picard group. It is an interesting problem to determine the exten-
sion theory by the entire Brauer-Picard group; however we do not currently see an
accessible way to approach this.

The paper is organized as follows.

In Section 2 we review some background material on fusion categories, extension
theory, generalized Haagerup categories, and outer automorphisms.

In Section 3 we give the classification of certain Zs-extensions of generalized
Haagerup categories.

In Section 4 we look at some examples, including generalized Haagerup categories
for cyclic groups, the Asaeda-Haagerup categories, and the generalized Haagerup
category for Zo X Zs.

In Section 5 we study the Zs X Zs generalized Haagerup example further, and
classify all of its quasi-trivial extensions.

A long and tedious calculation needed for the argument in Section 5 is deferred
to an Appendix.

Acknowledgements. We would like to thank Cain Edie-Michell for pointing
out to us Davydov and Nikshych’s result [DN21, Corollary 8.7].
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We would like to dedicate this paper to the memory of Vaughan Jones. During
the first semester that Noah attended Vaughan’s subfactor seminar at UC Berkeley,
Pinhas gave a talk on his joint work with Vaughan |GJ07] in which he drew the
intermediate subfactor lattice for the index 6 + 4v/2 and Vaughan declared with
satisfaction “Now that’s a finite quantum group!” We all miss him, and we’d like
to think that these rich extensions might have elicited a similar response.

2. BACKGROUND

2.1. Fusion categories. A fusion category over an algebraically closed field k is
a rigid semisimple k-linear monoidal category with finitely many simple objects up
to isomorphism and finite-dimensional morphism spaces, and such that the unit
object is simple [ENOO5]. In this paper k will always be the field C of complex
numbers.

An object X in a fusion category is said to be invertible if there is another object
Y such that X ® Y = 1 (where 1 is the unit object). The invertible objects in a
fusion category C form a tensor subcategory Inv(C), and the set of isomorphism
classes of invertible objects is a group, by an abuse of notation also sometimes
denoted by Inv(C).

One can define left and right module categories and bimodule categories over
fusion categories, as well as relative tensor products - see [ENO10] for details. A
bimodule category is said to be invertible if its relative tensor product with its
opposite bimodule category is equivalent to a trivial bimodule. Invertible bimodule
categories are also called Morita equivalences.

One way that invertible bimodule categories arise is through automorphisms.
Given a tensor autoequivalence « of a fusion category C, there is an invertible
bimodule category ¢Cq(c), where the right action of C is twisted by a. This bimodule
is equivalent to the trivial bimodule ¢C¢ iff « is inner (isomorphic to conjugation
by an invertible object). The set of isomorphism classes of tensor autoequivalences
of C, modulo inner autoequivalences, is a group, denoted by Out(C).

To any fusion category C, one can associate the Brauer-Picard 3-groupoid, whose
objects are fusion categories Morita equivalent to C, whose 1-morphisms are Morita
equivalences between such categories, whose 2-morphisms are bimodule equiva-
lences, and whose 3-morphisms are bimodule natural isomorphisms. This can be
truncated: in particular, the Brauer-Picard groupoid consists just of Morita equiv-
alences modulo equivalence, and the Brauer-Picard group consists of Morita au-
toequivalences of C up to equivalence. Also, by the homotopy hypothesis, one can
think of a 3-groupoid as a homotopy 3-type (that is, a space in the sense of algebraic
topology, whose homotopy groups vanish above 3).

In this paper, we are primarily concerned with unitary fusion categories. A fusion
category is called unitary if it is equipped with a * (sometimes called “dagger”)
structure which makes it into a C*-tensor category (see [DR89] for the definition
of a (strict) C*-tensor category). When discussing tensor functors between unitary
fusion categories, we assume such functors are also unitary, i.e. compatible with
the C*-structure. Unitary fusion categories are closely related to operator algebras;
see Section [2.3] below.



GRADED EXTENSIONS OF GENERALIZED HAAGERUP CATEGORIES 5

2.2. Extension theory. Let I' be a finite group. A I'-graded fusion category is a
fusion category with a direct sum decomposition

c=EPc,
gel
where the C4 are full Abelian subcategories and the tensor product bifunctor maps
Cy X Cp, to Cygp, Vg, h € I'. The trivial component C, is then a fusion category and
all of the graded components C, are C.-C. bimodule categories. If the grading is

faithful, then these bimodule categories are all invertible [ENO10].

Definition 2.1. A T'-extension of a fusion category C is a faithfully T'-graded fusion
category whose trivial component is tensor equivalent to C.

Whenever we discuss equivalence between two I'-extensions of C, we once fix
tensor equivalences between C and the trivial components of the extensions, and
then identify them afterward.

Definition 2.2. We say that two I'-extensions D and D' of C are equivalent if there
exists a tensor equivalence F from D to D’ satisfying F|p, = id and F(D,) =D/,
for every g € T'. We denote by Extr(C) the set of equivalence classes of T'-extensions
of C.

Note that one can have inequivalent extensions which nonetheless are equivalent
as tensor categories. This can happen either because the equivalence permutes the
gradings, or because the equivalence restricts non-trivially to C; see [Edi21b].

On the other hand, there is an even less flexible definition where in addition
to fixing the zero graded part and fixing the grading, you also fix the bimodule
categories. The main statements in [ENO10] implicitly use this even more restrictive
definition. To correct those results for the above definition of extension, one needs
to look at orbits under the action of applying a bimodule autoequivalence to each
graded part in a coherent way. See |DN21] for more detail.

One way that I'-extensions arise is from categorical group actions: if I' acts on
C, then there is a corresponding semidirect product C x I', which is a I'-extension

of C.

Definition 2.3. A I'-extension of C is called trivial if it is equivalent to a semidirect
product of a categorical action of I' on C. A T'-extension is called quasi-trivial if
each graded component contains an invertible object.

Equivalently, an extension is quasi-trivial if each of the homogenous components
is equivalent to the trivial module as a (left) C-module category.

The following result of Etingof-Nikshych-Ostrik describes extensions in terms of
the Brauer-Picard groupoid.

Theorem 2.1 (JENO10]). A group homomorphism ¢ from a finite group T into the
Brauer-Picard group of C determines an obstruction class in O3(c) € H3(T',Inv(Z(C)))
for the existence of a C-bimodule quasi-tensor product (defined there) on the T'-
indexed collection of bimodules coming from the map. If this obstruction vanishes,
then the set of such C-bimodule quasi-tensor products is a torsor for H*(T,Inv(Z(C))).

Then each such C-bimodule quasi-tensor product M determines an obstruction
class in O*(c, M) € H*(T,C*) for the existence of an associativity constraint. If
this obstruction vanishes, then the set of associativity constraints A for the quasi-
tensor product forms a torsor over H3(I',C*).
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The H3(T',C*) torsor structure can be realized in a concrete manner as follows.
Let D be a I'extension of C, and let [w] € H3(T',C). Then we can put

w]-D=EPD,Rg C DX Vect.
gel’

In the context of operator algebras, this procedure corresponds to taking an (outer)
tensor product with a I'-kernel with obstruction [w], which we often use in this work.

The parametrization in Theorem [2.1] does not classify extensions up to equiv-
alence, in the sense defined above, because two associators A and A’ for a given
pair (¢, M) with A}, = w(f,g,h) 0 Ajgn and [w] € H*(T,C*) \ {0} may give
equivalent extensions. The missing piece for complete classification was obtained
recently by Davydov and Nikshych.

Theorem 2.2 (|[DN21, Corollary 8.7]). Let the notation be as above. Then there ex-
ists a group homomorphism p%c_’M) : HY(D,Inv(Z(C))) — H3(L,C*) satisfying the
following property: Let A and A’ be associators for (¢, M), and let w € Z3(I',C*)
with Ag g n = w(f,g,h)0 A} . Then the two I'-extensions of C arising from A and
A’ are equivalent if and only if the cohomology class [w] is in the image ofp%c)M). In
consequence, the equivalence classes of T'-extensions of C with (¢, M) form a torsor
over coker(p(, y)-

In practice it can of course be difficult to compute the obstruction classes for
specific examples. One of the motivations of this work is to provide interesting
examples of graded extensions.

Remark. When T is a finite group, we have H"(T',C*) = H*(T',T) forn > 1
because C* =2 R x T as trivial T-modules and H"(T',R) = {0} for n > 1. Thus
we mainly discuss H™(T',T) as it is more natural from the view point of operator
algebras. In fact, there should be a version of Etingof-Nikshych-Ostrik’s extension
theory in the unitary setting using an appropriate unitary analogue of the Brauer-
Picard group where T appears as w3, but we will not require this unitary version of
obstruction theory in this paper.

2.3. The category Endy(M). Let M be a Type III factor. The C-linear category
End(M) has as objects the normal unital x-endomorphisms of M, and as morphisms
elements of M which intertwine such endomorphisms:

Hom(p,0) ={t € M : tp(z) = o(z)t, Yo € M}.
This can be made into a strict monoidal category by defining
pRO=poo
and
t®s=tpi(s) = o1(s)t, te€ Hom(p1,01), s € Hom(pz, 02).
The identity automorphism is a monoidal unit.

Let Endo(M) be the full subcategory of End(M) whose objects are endomor-
phisms with finite-index (see [Lon89] for a discussion of index in infinite factors).
Then Endg (M) is still a monoidal category, and it is also rigid and semi-simple with
finite-dimensional morphism spaces. Thus any full tensor subcategory of Endy (M)
with finitely many simple objects is a unitary fusion category. Conversely, every

unitary fusion category embeds into Endg(M) for some M (in fact M can be taken
to be any hyperfinite Type III factor) in an essentially unique way.
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Recall that a tensor functor from a strict fusion category C to another strict
fusion category D is a pair (F, L) consisting of a functor F' : C — D and natural
isomorphisms

Ly € Homp(F(p) ® F(0), F(p & o))
satisfying
Lp®U,T o (Lp,a ® IF(T)) = Lp,a@‘r o (IF(p) ® Lo’,'r)
for any p, 0,7 € C. We may and do assume F(1¢) = 1p and L1, , = Ly 1. = Ip(,).-
When C and D are C* categories, we further assume that L, , is a unitary.
The following uniqueness result is [Izul7, Theorem 2.2], essentially due to Popa.

Theorem 2.3. Let M and P be hyperfinite type III factors, and let C and D
be unitary fusion categories embedded in Endo(M) and Endo(P) respectively. Let
(F,L) be a tensor functor from C to D that is an equivalence of the two unitary
fusion categories C and D. Then there exists a surjective isomorphism ® : M — P
and unitaries U, € P for each object p € C satisfying

F(p)=AdU,0®o0pod !
Ft)=U,2t)U,, X € (p,0),
Lo = Upos® 0 po & Uz = Upoo U3 F(p) (U7).
When discussing the category Endg (M), it is common to suppress tensor product

and “Hom” symbols, and to use square brackets to denote isomorphism classes (also
called sectors).

2.4. Generalized Haagerup categories. A generalized Haagerup category is a
unitary fusion category C which is tensor generated by a simple object X satisfying
the fusion rules

geX=X®g ! Vgelw(C), XeX=le P goX,
g€Inv(C)
and satisfying certain cohomological conditions (see [[zul§]).
It is shown in [Izul8] that a generalized Haagerup category can always be realized
in a standard form in Endo(M) as follows.

Let G = Inv(C). There is a copy of the Cuntz algebra O+, with generators
{s} U{ty}geq inside M, a map

G — Aut(M), g— ay,
and an irreducible endomorphism p of M, such that the following relations hold:

(1)

ag(s) =s, ag(tn) = €g(M)thiag, Vg,h€G

1 1
o) = Ls e 0 L
d geG \/E

p(tg) = e—g(g)[n-gt—gss™ + \/_qastg + Z A_g(hy k)th—gthtk—gti_gl;
h,keG
for structure constants

2mi 2mi

eg(h) e {-1,1}, nye{l,es e 3}, Ayhk)eC
satisfying
(2.1) en+k(9) = en(g)ex(g + 2h), en(0) =1
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(2.2) Ng+2h = Mg
Ng
(2.3) Z Ag(h,0) = —gg
heG
—— NgNg’
(2.4) S Aglh = g, k) A (=g F) = by — 2025,
heG
(2.5) Agt2n(p, @) = en(g)en(g +p)en(g + @)en(g +p+ @) Ay (P, q)
(2.6) Ag(h k) = A4k, h)
(2.7) Ag(hyk) = Ag(=k,h — k)nge—1(g + h)e—r(g9 + k)e_1(g + h + k)
= Ag(k —h,—h)ge_n(g + h)e_n(g + k)e_n(g +h+k)
(2-8) Ag(ha k) = Ag-i—h(ha k)779779+k779+h779+h+k6h(Q)Eh(9 + k)
= Agrr(h, k)TgTgrnngskNgrnrrer(g)en(g + h)

(2.9) ZAg(I + ¥, D Agpia(—2, 1 +P)Ag—graty(—y, 1 +q)
leG

=Ag(p+z,q+a+y)Agp(a+y.p+a+y)
X NgNg+q+aNg+p+q+yTg+pNg+z+yg+g+aty
X €ep(g =P+ )epta(g —P+a+Y)eg(9—a+ T+ Y)egiy(g —a+2)

02,004,0,
- d NgTg+pTg+q

ag(p(z)) = pla—g(x))
p*(x) = sxs* + Z ty(ag(p(x))t;, VreM
geG
(The second condition follows from the first one for z in the Cuntz algebra.)

In such a setup, the full tensor subcategory of Endg(M) generated by p is a
generalized Haagerup category if the action of G is outer.

We will also be interested in “degenerate” generalized Haagerup categories,
where the action of G on M may not be outer. An example of such a category
for G = Z4 x Zs is the Asaeda-Haagerup category A#H,4, where the Z, factor acts
trivially; this category is a Zs-de-equivariantization of a corresponding generalized
Haagerup category.

2.5. The outer automorphism group. Let (F, L) be a tensor autoequivalence
of a generalized Haagerup category C with group of invertible objects G = Inv(C).
Then there exists p € G and o € Aut(G) satisfying [F'(ay)] = [ay(g)] and [F(p)] =
[app]. Thus there exist unitaries vy, u € U(M) satisfying

F(ay) = Ad(ve(g)) © ag(g) and F(p) = Ad(u) o ay 0 p.

Note that ({F(ag)}gea, {L} ,}g,n) form a cocycle action of G on M. Since F(ay)
is outer for all g # e, it is equivalent to a genuine action, and we may assume that
Ly =1 for all g,h € G up to natural transformation. Then we have

Ad(vg) 0 ag 0 Ad(vr) o ap, = Ad(vgqn) © Qg
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and Ad(vgag(vn)) = Ad(vgn). This means that there exists a 2-cocycle w in
Z*(G, T) satistying vga(vp,) = w(g, h)vgn, and the cohomology class [w] € H?*(G,T)
depends only on the class [(F,L)] € Out(C). Since the inner autoequivalence
ag ® - Q a;l of C sends p to agg o p, while it leaves «j, invariant, only the class
[p] € G/2G is an invariant of [(F, L)] too. Thus the triple

([w], [P, o) € H(G,T) x G/2G x Aut(G)

is an invariant of the class [(F, L)] € Out(C).

If the cohomology class of w is trivial, we may assume that {v,}geq form an
a-cocycle by modifying vy. Since a is outer, every a-cocycle is a coboundary, and
there exists v € U(M) satisfying vy = v*ay(v). Thus

F(ag) = Ad(vg) o g = Ad(v) ™t o ag o Ad(v),

and we may assume that F'(ay) = F(ag() and Ly, = 1 for all g,h € G up to
natural transformation.
The group
(H?*(G,T) x G/2G) x Aut(G)
acts on the set of solutions (e,7, A) of the above equations modulo gauge equiva-
lence, and we have an explicit description of Out(C) in terms of this action.

Theorem 2.4 ([Izul8, Theorem 5.9]). Let C be a generalized Haagerup category
given by (e,n, A). Then Out(C) is the stabilizer of [(e,n, A)].

For every known example, we have Out(C) C G/2G x Aut(G), and we may
assume that F(ay) = ag(g) and Ly = 1 for all g,h € G for every tensor au-
toequivalence (F, L) of C. Assume C is embedded in Endo(M) and 5 € Aut(M)
implements a tensor autoequivalence of C in this situation. Then the above ar-
gument shows that by perturbing § by an inner automorphism, we may always
assume Boa,o0fB71 = Qg(q)-

Recall that the group Inv(Z(C)) plays an essential role in the extension theory. In
the case of generalized Haagerup categories satisfying a certain extra assumption -
which is satisfied in all of the examples of interest below - we can identify Inv(Z(C))
with

Gy ={g9€@G; 29 =0}
(see |GIL15]), and the action of Out(C) on Inv(Z(C)) is determined by the permu-
tation o € Aut(G) associated to each outer automorphism.

We end this section by describing how Theorem [2.3] works in the case of gen-
eralized Haagerup categories. Assume that C is a generalized Haagerup category
given by the Cuntz algebra model («, p). Assume we have two embeddings C in
Endo(M;), i = 1,2, where My and M, are hyperfinite Type III; factors. More
precisely, we have ag),p(i) € Endo(M;) and homomorphisms ¢; : Ojgj41 — M;
satisfying

af]i) Ol = 1; 0 g P o =10 Pg-
We apply Theorem [2.3] to the monoidal functor (F, L) given by
Fla{)=af, F(p) = F(p®),

FW () =P () for v e (u,v), L, =1
Then we get an isomorphism ¢ : My — M, and unitaries u, € U(M>) such that
1? = Ad(u), o ®op™ o d 1,
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B (w) = w, (M (X))uy,
Upor = uy® o pM o @7 (u,).
For 1 = a, and v = ay, this shows that {ua, }sec is a ® o alV) o @~Lcocycle,
and there exists a unitary u € U(Ma) satisfying ua, = u*® o o) o ®~1(u). By
replacing ® with Ad(u) o ® if necessary, we may assume that a(?) = ® o)) o =1
and uo, = 1. Under this condition, we have

Uagop = Uay 04572) (up) = 04572) (U‘P)7
Upoa_, = Up®P o0 p(2) o fI)_l(uo_g) = up.

Since ag 0 p = poa_g, we find that u, is fixed by agl) =do af) o®~!. There is no
further argument to simplify the situation. In conclusion, this means that when we
compare two extensions of C by using Theorem 2.3] there is a freedom to replace p
by by Ad(u) o p with u fixed by a4, while we can always fix the group part ay.

3. CLASSIFICATION OF EXTENSIONS

As mentioned in the previous section, for a generalized Haagerup category C with
group of invertible objects G = Inv(C), we can identify Out(C) with a subgroup of

(H*(G,T) x G/2G) x Aut(G);

and moreover for all known examples, the outer automorphisms are cocycle-free in
the sense that Out(C) lies in the subgroup G/2G x Aut(QG).

We would like to classify Zs-graded extensions associated to an outer automor-
phism which fixes the invertible objects, i.e. which corresponds to the trivial ele-
ment in Aut(G). Such an automorphism moves p to a,p for some p € G\2G (note
that for a given element of Out(C), the choice of p is determined only up to an
element of 2@G).

As motivation for studying this type of automorphism, we note that it is shown
in [Grol9] that the Brauer-Picard group of the generalized Haagerup subfactor
for Z, is isomorphic to Zs, and is generated by such an outer automorphism. As
we will see below, such outer automorphisms also exist for all known examples of
generalized Haagerup categories for even groups.

3.1. Structure constants and constraints. Let C be a generalized Haagerup
category realized in standard form in Endg(M). We would like to analyze the
structure of an arbitrary Zs-extension of C generated by an invertible object (au-
tomorphism) /3 such that

[Bag] = [agf], Vge€G
[Bp] = [appf], for some p € G\2G.

So we fix p € G\2G and assume that § is an automorphism of M satisfying these
fusion rules. We also assume that the automorphism associated to 3 is cocycle-free,
so that may assume

ﬁoag:agoﬁv VQEG,
as explained in the previous section.

Choose a unitary u € M such that

Bop=Ad(u)oapopof.

Note that u is determined up to a scalar since p is irreducible.



GRADED EXTENSIONS OF GENERALIZED HAAGERUP CATEGORIES 11

Lemma 3.1. We have [8%] = [ap+.] for some z € Ga.

Proof. By assumption /32 is in C, and hence isomorphic to «, for some g € G. We
have

[azgp] = [agpa—g] = [BQPﬁ_2] = [Bappﬁ_l] = [azpp).
Therefore we have 29 = 2p, and hence g = p + z for some z € Gs. O
Now choose a unitary v € M such that
B2 = Ad(v) o s
We first determine the actions of a; and 3 on u and v.

Lemma 3.2. (1) There are characters x, u € G such that

ag(u) = x(g)u, ag(v) = ulg)v, VgeqG.
(2) We have
Bv) = v,
where 12 = u(p + 2).
Proof. We have
Ad(ag(u)) o app = ag o Ad(u) o app o g

= Qg0 ﬂpﬁfl oty = ﬂpﬂil = Ad(u) o app.
Since app is irreducible, it must be that ag(u) is a scalar multiple of u; call the
corresponding character x. Similarly,

Ad(ag(v)) © Cpps = g 0 B2 0 0y = % = Ad(1) © ps,

80 agy(v) is a scalar multiple of v; call the corresponding character p.
Finally, we have

A(B(v)) 0 apes = BB = B2,
so B(v) is also a scalar multiple of v; call the corresponding scalar v. We have
v = B2(v) = (Ad(v) 0 apes)(v) = pilp + 2)v.
O
Note that we have not found any constraints on S(u). Similarly, we have not

found any constraints on 3(s) or S(tg).
We would now like to determine where p sends u and v.

Lemma 3.3. Replacing u with a scalar multiple if necessary, we may assume that
p(u) = u*B(s)s" + Y alg)u*Blty—p)uty,
geG
where a(g) is a function from G to T.

Proof. We have u € (appB, Bp), so that p(u) € (paypB, pBp) = (a—pp*B, PBp)-
Since [appf] = [Bp], we also have

[pBp] = [a—p/’2ﬁ] = la_pBl & @[O‘gpﬁ]a
geG

and a basis for (a_,p?B, pBp) is given by
{u"B(s)s™} U{u"B(tg—p)uty}eec:
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Multiplying u by a scalar if necessary, we may assume that up(u)s = 5(s), so that
plu) =u*B(s S+Z Ju* B(tg—p)ut,.
geG

Since up(u)ty = a(g)B(ty—p)u is an isometry for each g, we must have |a(g)| = 1. O
Note that we can replace u with —u, which would multiply each a(g) by —1.
Lemma 3.4. We have
p(Bw) = x(p)(w* B(u)[vsv* B(s)" + Y alg)eps=(g — p)otgspv” Bu)B(ty) Tu)

geG
Proof. We have
p(B(u)) = (a—p 0 Ad(u”) o Bp)(u)
= (Ad(u") o Bpay)(u) = x(p)(Ad(u”) o Bp)(u)
= X(p)uBu*B(s)s* + Y _ alg)uBlty—p)ut})u

geG
= x(p)(u"B(u")[vsv™B(s)" + Z 9)ep+2(9 — P)otgypv* B(u)B(tg)"u)
geG
(where we have used 32 = Ad(v) o aps). O

Lemma 3.5. We have
p(v) = &uB(u)*v

where £ € T.
Proof. We have v € (a2, %), so p(v) € (papyz, p3?), which is a one-dimensional
space since [payy.] = [pB?] is irreducible. Therefore, it suffices to show that
u*B(u)*v € (pay+z, pB?), which can be readily checked:

VE (pptz = Qpizp, a*Zpﬂzp)

Bu)* € (a—2,8°p = B2 pasy, BappBasz, = BpBa_,)
u* € (BpBa—p, pBapBa—, = pﬂz)'
(]

Next, we will check constraints from the relation a0 p = poa_, on u and v.

Lemma 3.6. We have
(1)

(2)

a(h +2g) = a(h)eg(h)eg(h — p)x(9), Yg,h € G.

ng)* = x(9)* Y9 € G.
Proof. For the first part, we have

g (p()) = g (uw B(s)s" + 3 alh)u* Blta-—p)ut})

heG

X(—g)u*B(s)s™ + Z Jeg(h = p)eg(h)u”Bltagn—p)utsgp-
hea
On the other hand,

pla—g(u)) = x(—g)p(u) = x(—g )s* + Y a(h)u*B(tn—p)ut},).

heG
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Equating terms gives the desired relation. For the second part, we have
ag(p(v)) = ag(u”Bu) v) = Ex(—29)u(g)u”B(u) v
and
pla—g(v)) = p(—g)€u*B(u)*v
so we get 1(2g) = x(29). O
Next, we check constraints from the relation 5o p = Ad(u) o appo 8 on v.
Lemma 3.7. We have
n(p) = x(p + 2).
Proof. We have
Blp(v)) = B(Eu"B(u) v) = Ex(—p + 2)B(uw) vu™v" B(v) = vEx(—p + 2)B(u) vu,
while

w(app(B(v)))u* = vu(—plup(v)u’ = vu(~p)EB(u) vu

O
What remains is to check constraints coming from the relation
2(2) = sws” + 3 tylagp) (@)t
geG
for x = v and z = u.
Lemma 3.8. We have
(1)
& =x(p)
(2)
a(g)alg — p)ep+=(9 — 2p)€ = ulg), Vg € G.
Proof. We have
pP(v) = (éu*ﬂ( ) v) = € p(u)*p(B(u)) u*B(u) v
uﬁ s—i—z uﬁqpt;)*
geG
(x(p)(w* Bu*)[osv* B(s)" + D alh)eps=(h = p)vtnipo” Bu)B(tn)]u) u* Blu) v
heq
=& Z Jtgu*B(tg—p)*)
geG
’US + Z 6p-i—z h p)ﬁ(th)ﬁ(u)*’l}t;;-{-p)
heq
= &x(=p)(svs" + Y alg)alg — p)ep+=(g — 2p)tgu"B(u) vt})
geG
= Ex(—p)(svs™ + Y _ alg)alg — p)ep(g)eps=(g — 2p)ty(cgp) (0)E)).
geG
Setting this equal to
svs™ + Z tg(agp)(v)t
geG

gives the relations. O
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Finally, we will look at p?(u).
Lemma 3.9. We have

(1)
Ng+p = Tg Vge G
(2)
x(g) = a(9)®, Vg
(3)
a(g)a(—g) = e—g(g —ple—g(9), Vg.
(4)

Ay(h, k) =alg+ h)a(g + k)a(g+ h+k)a(9)Ag—p(h, k), Vg,h, k.
Proof. We have
p*(u) = p(u* s—l—z g B(tg—p)uty)

geqG

= p(u) + Y a(g)p(u) pBlty—p)p(u)p(ty)”)

geqG

= (WB(s)s" + ) _ alg)u*Blty—p)uty) (Ad(u™)Bpay(s))p(s)"

geqG

+Y " alg) (W B(s)s™ + Y a(k)u*Bte—p)uty)” (Ad(u*)Bpay) (tg—p)

geG keG

(W B(s)s™ + > a(h)u* Bltn—p)ut;)p(ty)”

heG

T+ alg)tgu Bltg—p)")B(p(s)up(s)”

geG

_|_Z 9)ep(g —p)(sB(s Z E)teu” B(tk—p) ") B(p(tgp))

geG keG

)s"+ Y all)B(tn—p)ut;)p(ty)”

heG

= sp(s" > alg)tgut Bty ,p(s))up(s)”

geqG

+ Z a(g)a(h)ep(g — p)sB(s™p(tg+p)tn—p)utyp(ty)”

-+
2
)
\_/
—~

= ‘

Jep(g = P)tru” Bti—pp(tgrp)s)s™plty)"

a(k)ep(g — p)tru” Bty —pp(tgrp)th—p)uthp(ty)”

1
= dSUP Z Jtgu*B(tg—p)up(s)”
gEG

+% > Tgrpa(g)a(—g)ep(g — p)e—g—p(g + p)sut™ yp(ty)*

+ Y grpa(9)a(=9)ep(g — p)e—g—p(g + P)t—guB(s)s* p(ty)"
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+ Z a(g)a(h)a(k)ep(g — ple—g—p(g + P)A—g—p(k + g,k + g)

tit” Btghtk—p)utyp(ty)”
This gives

p2(u)s*—su+\/_ Z 9tau B(tg—plu

+§ S notra(9)al-9)e—o(9)epls — p)e—g-p(g + p)su
geG

\/— Z nga( (—) 9(9)ep(9—p)e—g—p(9+P)A—g—p(k+g,0)tiu"B(te—p)u

g,keG

= % + 2 Z NgTgrpa(g)a(—g)e—g(9)ep(g —p)e—g—p(g +p) | su

geG
f S ) (% + 3" malk)a(—k)e—r(k)ep(k — pe—tp(k +p)A_ip(k + g, 0)) tgu”Bltg—p)u
geG keG

Setting this equal to su gives the equation
> nalgrralg)a(—g)e—g(9)ep(g — p)e—g—p(g +p) =n,
geG

which implies that

(3.1) 9T +pa(9)a(=g)e—g(9)ep(9 — P)e—g-p(9 +P)

' = NgTlgipa(9)al—g)e-g(9)e—g(g —p) =1,

and

1 . —n
4 Z MetpA—r—p(k +9,0) = Z Tovp Ag—p(k + 9.0) = Tgrp” él]+p’

keG keG
which is true (where we have used Eqs. (2.3) and (2.7)) ).
Similarly,

pA(u)t = N sutl y Z Vtgu B(tg—p)ut]

geG

Z Mg+pa(9)a(—g)e—g(9)ep(g — P)e—g—p(g +P)A—4(l + g, 0)sut;
gGG
ATt pa(—1a(l)ep (1 = pei—p (=1 + p)e(=Dtiu* B(s)s*

+ > alg)a(h)a(k)ey(g —p)e—g—p(g +p)e—g(9)

g,h,keG
Ay p(k+g,h+ Q)A—g(l +g,h+ g)tkU*ﬁ(tg+h+k—p)Ut2+g+l
Collecting terms and applying Eq. (8.I) gives

1 _7 * * 1 N\ * *
= d+g§ngA 21+ ,0))sut] +a(—1)>tu*B(s)s +Eg§a(g>tgu Blty_p)ul]

+ Z (Z m(z a(=9)Mgng+pa(m — g)

meG keG e
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A_gp(k+g,m)A_g(l+ g, m))teu”B(tmtrk—p)ut 1)

= a(—1)*tu*B(s)s*

+ ) alk) mT (> al=g)Tgngpa(m — g)

meG keG geG

A_gp(k+g,m)A_g(l+ g, m)))teu”B(tm+k—p)utr, 41)
(where we have used Eqs. (2.3) and (2.7)) to eliminate the first term).
Comparing with

tiagp(u) = x (=Dt (u*B(s)s” +Z Ju"B(ty— p)ut )

geG
x(=Dtiu"B(s 5+ZX (9)tiu"B(tg—p)ut,
geG
we get the relations
(3.2) a(l)® = x(1)

and

> abya(m + a(=g)igng+pa(m — g)A—g—p(k + g,m)A_s(I + g,m)))
geG

geG

= krm P em Y, €gr(—k)egri(—k+m)egri(—Degyi(—l+m)Ag(k+g,m) Ay + g,m)
geaG

= ek em M mer(—k)ex(—k+m)ea(=De(—1+m) Y A_y(k+g,m)A_, (1 + g,m)
geG

Setting k =1 and r = k + g (and replacing g with —g), we get the relation

(33) Ag—p(r,m) = a(r + g)a(m + g)ng4pngalg)a(m +r + g)Ag(r, m).
Finally, by Eq. (8.2)), we have that
a(g)a(—g) = +1
is always real, so by Eq. (8.2) we must have
(3.4) Ng = Ng+p> VY,
which simplifies Egs. (8.1]) and (B3.3).
([

Note that although in deriving the last relation in the proof we specialized the
equation to k = [, the resulting relation makes the equation true for all £ and [
(which we will need later for reconstruction of the category from these relations).

Putting this all together, we arrive at the following description of 5:
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Theorem 3.1. Let C be a (possibly degenerate) generalized Haagerup category for G
realized in standard form in Endo(M) with structure constants (A, €,n), and suppose
that B € Aut(M) commutes with oy, g € G and there are elements p € G\2G and
z € Gy such that

[BP] = [CYpPBL [ﬁ2] = [O‘;D-i-Z]'

Then there exist unitaries u and v in M such that
Bop=Ad(u)oa,opof, 52 = Ad(v) o a;
characters x, p € G such that
(3.5) ag(u) = x(g)u, ag(v) = p(g)v;
constants £, v € T such that
(3.6) p(v) =&u*B(u)v, B(v) =wvv;
and a function a : G = T such that
(3.7) plu) = B(s)s" + 3 alg)u Blty—p)uts;
geG
and such that the following identities hold:

(3.8) V2 = pu(p+ 2)

(3.9) £ =x(p)

(3.10) 1(9)* = x(g)?

(3.11) u(p) = x(p + 2)

(3.12) a(0) =1

(3.13) x(9) = a(g)?

(3.14) a(h +2g) = a(h)eg(h)eg(h — p)x(9)

(3.15) a(g)alg — p)ep+=(9 — 2p)€ = p(g)

(3.16) a(g)a(—g) = €-g(g —p)e—4(9)

(3.17) Ay(h,k) = a(g + h)a(g + k)alg + h + k)a(g)Ag—p(h, k)

We also must have 1ng = 1g4p, Vg € G.

Proof. The relations are collected from the previous lemmas. The only new one is
a(0) = 1, which we can assume by noting that a(0)? = x(0) = 1, so that a(0) = +1,
and then replacing u by —u if necessary. ([

When g € G2, Eq. (3.14) implies
x(9) = €g(h)eg(h — p).
Then putting h = 0 and h = p, we get

(3.18) x(9) = €4(p) = €4(—=p), Vg € Gs.
Some of the relations in Theorem [3.1] are redundant, and we can organize them
in a more efficient way as follows.
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Lemma 3.10. Eq. (3.8)-(3.17) are equivalent to the following equations:

(3.19) v = p(p +2),

(3.20) §=a(p)e—p(p)

(3.21) x(9) = a(g)?

(3.22) 1(g) = a(g)alg — p)a(p)e—p(g)e—p(p)e=(9)

(3.23) a(0) =1

(3.21) ol ey (h ~ D)y Oy (),

(3.25) a(g)a(—g) = €49 — P)ey(9)

(3.26) Ay(h, k) = a(g + h)a(g + k)alg + h + k)a(g)Ay_p(h, k)

Definition 3.1. We will call a collection of data (x,u,&,v,a(g)) satisfying the
conditions in Theorem [3.1 a set of extension data for (C, A, €, p,z).

3.2. Reconstruction. We now describe how to reconstruct a Zq-graded extension
of a generalized Haagerup category C from its extension data.

Suppose we are given a set of extension data (x, p,&,v,a(g)) for (C, A, e, p,2).
Let U = Opy1 % Opyq1 % C*(F3), which is the universal C*-algebra generated by two
copies of O, 41 and three unitaries ug, w1, and v. Intuitively, we think of the first
copy of O, 41 as the original Cuntz algebra for C; the second copy as the image of
the first copy under the new automorphism (; and the unitaries ug, vy, and v as
corresponding to u, B(u), and v in the previous section, respectively.

We would like to extend p and oy to U such that the original relations

Qg O xp = Olgth, Qg OpPp=pPOot_g

and
pP(x) = 535" + Y tgay(p(z))t;
geG
continue to hold; then define 8 on U such that the new relations
Boag=ayoB, pofi=Adu)oayopof, B =Adw)oay.
also hold; and finally extend everything to a von Neumann algebra closure of U to

get a unitary fusion category.
Let ®¢ (resp. ®1) be the canonical isomorphism from O)g|1; onto the first (resp.

second) copy of Ojg|41 in U. We set s(F) = @y (s) and t_((]k) = Py (ty).
We define a G-action & on U by
dg(uk) = X(g)ukv for k = 0,1, &g(v) = /L(g)va

dg(fbk(x)) = @k(ag(:v)), S O|G|+1
and an endomorphism p of U by

o [Bola) itk =0
P(2k() {ué‘bl(pap(:r))uo ifk=1"
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plug) = uj(sVs@* + 3 a(g)t uet),

geqG

plur) = x(p)ugut (vs@v*sW* 4 Z 9)ept2(g — p)vt( ) *ultfll)*)uo,
geG

Av) = Euuiv.
Lemma 3.11. We have
Ggop=poa_g Vged
Proof. It is easy to see that the relation holds for x € ®4(O)g|41), for k = 0,1. For
x € {ug,u1,v}, the relation reduces to a similar calculation as in Lemma [3.6] using

Egs. (8.10) and (3.14).
([
We define an endomorphism B on U by
- Py (x ifk=0
Bawy =m0 R
v®o(apy(x))v* k=1
Bluo) =ur, B(ur) = p(p)ougv*, B(v) = vv.
Lemma 3.12. We have
(1) @O&g:dgoﬂ
@) B = Ad(v) 0 Gy
(3) Bop=Ad(ug)od,opop
Proof. 1. Easy.
2. Also straightforward to check, using Eq. (3.8]).
3. Similar calculation as in Lemma [3.7] using Eq. (B.11).
(I

Finally, we need to check that p? has the correct form.
Lemma 3.13. We have
P () = sQasO" 13 "0 (6,p) ()t Vo € U.
geG
Proof. Tt suffices to show that
[,2(13)5(0) — 50,

and

P (@)t =t (dgp)(x), Vg€ G.
Again, this is easy to check for x € fIJk(O‘G‘H). Note that

p( ) 1) O)*+Z O)*)
geqG
= uj(B(s)sO* + 3" a(g)BEY, ut®)
geG

and ~
p(v) = &ulB(up)*v.
Then then calculation is essentially the same as in Lemmas [3.8 and [3.9] using Eqs.

.9, @.13), B.13), B.16), and (B.17). U
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Lemma 3.14. There is a factor closure of U to which the endomorphisms &g, p
and (B all extend.

Proof. This can be shown by a similar argument to Appendix of [Izul§]. O
Putting this all together, we get the following reconstruction result.

Theorem 3.2. Let C be a possibly degenerate generalized Haagerup category for
G, with structure constants (A,€). Let p € G\2G and z € Go be given, and let
(x, 1, &, v,a(g)) be a set of extension data. Then there is a Zo-graded extension of
C which realizes the extension data.

Remark. Suppose the we have extension data such that everything besides a(g) is
trivial (note that in particular this implies that a(g) € {£1}, Vg). Then we don’t
need a free product, and we can define B directly on the original Cuntz algebra by

B(s)=s, Blty) =alg+Dp)tyrp. We can then verify using Egs. (3.14), (3.16) and
(5.17) that B satisfies the appropriate relations, namely

Bop=a,0p0B, B2=api.
A necessary condition for this situation to occur is that e (p) = 1 for all k € Ga.

Indeed, assume uw = 1. Then Bopo B~ = a,o0p, and B(ty) is a multiple of t,.
Thus for all k € Ga, we get

ak(B(to)) = Blax(te)) = B(to),
which shows e(p) = 1.
This will be useful later when we look at the Asaeda-Haagerup categories.

3.3. Equivalence. We have seen that we can describe an extension in terms of
extension data. We would like to know when two sets of extension data describe
equivalent extensions.

Suppose we have two extensions, each of the form discussed above, for the same
generalized Haagerup category C with structure constants (A, €). Then by Theorem
2.3l and the discussion at the end of Section [2.5] for the purposes of comparing
extension data up to unitary equivalence, we may assume without loss of generality
that both extensions are realized in the same Endg (M), with the same group action
a, but with the choices for p possibly differing by an inner perturbation by a unitary
fixed by «, and with possibly different choices for S.

We can easily show that if we replace p with Ad(w) o p, where w is a unitary
fixed by ay, the extension data do not change at all.

So what remains is to check how the choice of 3 affects the extension data. There
are two ways we could modify 8 and still describe the an equivalent extension.

First, we can replace # by a different representative of the same isomorphism
class [8'] =[], i.e.

B = Ad(w)o 3
for some unitary w. To keep the relation
agoff = oaqay
we require that the oy act as scalars on w, meaning there is a character ¢ € G with
ag(w) = ((g)w, Vg€ G.
In this case we can take

W = wup(w)* € (appB,Bp)s v = wBw)v € (appa, 52
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as the unitaries for the extension. Then we have
1) ,
ag(u') = ag(wup(w)”)
= ((9)*x(g)wup(w)* = ¢(9)*x(9)v’
(2)

= (p(w)u*w )(wﬂ() ) (ws* p*(w)")
+ Y alg) (plw)uw) (wh(tg—p)w*) (wutyp* (w)*)

geG
=u"*p'(s)s +Z Ju" B (tg—p)wuagp(w* )t
geG
_ u/*ﬁ S + Z q p)u/t;
geG

Therefore x and p are each multiplied by (2, ¢ is multiplied by ((p), v is multiplied
by ((p + z), and a(g) is multiplied by ((g).

Second, we can replace 3 by a different object 5’ in the extension which satisfies
the same initial assumptions as 5. This means that

(8] = [axf]
for some k € G, and since
[8%] = [op2] = [B%] = [aax8?),
we have
k] = [id],
which implies that & € G3. On the other hand, for any k € G2, we have
[(xB)?] = [8%] = [ap+:],  [ewBp] = lanappB] = [apparf].

Thus a3 satisfies the same assumptions as .
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In this case, we can still take u as our intertwiner for (appf8’, 8'p) and v as our
intertwiner for (a2, 3?). Thus x and g remain unchanged. On the other hand,
we have

(1)
B'(v) = (wf)(v) = aw(vv) = p(k)vv
(2)
p(v) = EuB(u) v = Eu™ (o f’) (u) v = Ex(k)u” B’ (u) v
(3)

p(u) =u*B(s)s 4+ Z Ju* B(tg—p)ut,
geG
—wB()5 P W) + 3 ealg — plalg)uF (ty_p)ut
geG

Thus v is multiplied by u(k) and & is multiplied by x (k).

For a(g), we need to first normalize the new a(g) by replacing u with —u if
necessary, and so a(g) is multiplied by e, (g — p)ex(—p) in the extension data corre-
sponding to g'.

Putting this all together, we get the following description of equivalence.

Theorem 3.3. Let C be a generalized Haagerup category with structure constants
(A,€), and fix p € G\2G and z € Ga. Let (x,p,& v, a(g)) and (X', 1/, &, v' d'(g))
be two sets of extension data for (C, A,e€,p,z). Then the corresponding extensions
are unitarily equivalent iff there is a character ¢ € G and an element k € Gy such
that
X'=¢x, W=,
&= Cpx(k)E v =((p+2)uk)v

a'(g9) = C(9)er(g — p)er(p)alg)

Proof. First note that since the extension data completely determine the 65-symbols
of the extension, any two extensions which share the same extension data are equiv-
alent.

Now, as we have seen, once (A, ¢) is fixed, the only freedom we have for the
extension data is the choice of 3, which leads to the relations above.

Conversely, for any character ¢, we can find a unitary w in M such that ay4(w) =
¢(g)w. Therefore we can always vary the extension data by the given relations. O

Remark. In the degenerate case, where the action of « is not outer, we may not
be able realize every character C.

In the rest of this section, we assume that A, (h, k) # 0 for all g, h, k € G, which
is true for every known example. In this case, € is a bicharacter on Go x G. Let
(X, 11, &, v,a) and (X, i,€,7,a) be two extension data, and let b(g) = a(g)/a(g).
Then Eq. (B.17) shows that b is a character, and we have

X(9) =b(9)*x(9), ig) = b(g)*n(g)

E=b(p)§, v==xb(p+ 2.
Therefore, to determine the number of extensions with fixed (p, z), Theorem [3.3]
shows that we can fix a, and in consequence x, y, and £ too. Now the only remaining
freedom is multiplying v by —1.
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Letting ¢(g) = ex(g — p)er(p) = €x(g) in Theorem B.3) we get
V' = e(p+ 2)u(k)v = ex(2)x(k)u(k).
Let 7 be a character of G defined by

_ Hl9le:lg) _ alg —plalp) ]
T(g) - X(g) - a(g) —P(g) —P(p)'

Then since x? = p?, we have 72 = 1. Now we have
V' =71(k)e, (k)ep(2)v.

Note that we always have 7(p) = 1, and in fact 7 is trivial for every known example.
In summary, we get the following classification.

Corollary 3.1. Assume that there exists extension data for (C, A, ¢€,p,z), where
Ag(h, k) # 0 for all g,h,k € G. Then the number of equivalence classes of such
extensions is 2if T(k)er(2)e. (k) =1 for all k € Ga, and it is 1 if there exists k € G
with 7(k)eg(2)e.(k) = —1.

Corollary 3.2. Under the assumptions of the above corollary, if G = Zay, then
there exists either 0 or 2 extensions for a given (p, z).

Proof. In the case of G = Zsa,, we have G2 = {0,n}, and we may always assume
p = 1. Since p generates G in this case, 7(p) = 1 implies that 7 is trivial. Now we
have 7(k)ex(2)e. (k) = 1 for every combination of z and k. Thus there exist exactly
2 extensions for (1, z) once extension data exists. O

Remark. In our situation, we have
H?(Zy,Inv(Z(C))) = H*(Z2, G2) = Go,
H?*(Zy,C*) = Ly,
HY(Zy,Inv(Z(C))) = H'(Z2, G2) = Hom(Zs, G2) = Gs.
As in the argument at the end of subsection 5.2, we can see that z corresponds to

the element in H*(Za,Inv(Z(C))) in Theorem[2.1, and 7(k)ex(2)e. (k) corresponds
to p%cﬁM)(k) in Theorem [2.2 if H?(Za,C*) is identified with {1,—1}.

4. EXAMPLES

4.1. Cyclic groups. For an even cyclic group G = Zo,, there are two possible
bicharacters on G X G = Zg X Zay,, namely the trivial one and €, (m) = (—1)™.

For all known examples, € restricts to the nontrivial bicharacter. In particular,
there are examples known for each n < 5 such that [1]+[a4p] admits a Q-system for
each g € G, with two different examples each for n = 3,5. The Q-systems comprise
two orbits under the action of the inner automorphism group of C, corresponding
to whether g is even or odd.

It is natural to wonder whether the two orbits are transposed by an outer auto-
morphism of C, and this is indeed the case for all of the the known examples (note
that H?(Zan,T) is trivial, so the cocycle-free condition is automatic). It is then
natural to ask whether these outer automorphisms realize Z,-graded extensions of
the fusion categories.

We therefore consider extension data for p = 1. We have z € G2 = {0,n}.

Then we have
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so x(1) is a primitive 2n!”* root of unity. We then have ¢2" = —1. Then

p(1) = x(1)x(2)-
From Eq. (8.15) we then have

a(g)a(g — 1)§ = €p+2(9 — 2p)pu(9)

= e1(g — 2)ex(9)€*x(2)? = ex(g — 2)€6*.
If we fix €1(2n — 1) = —1 and €1(g) = 1 otherwise, this gives the unique solution

alg)=—€9, 1<g<2n-1.

We can then check Eq.(3.14) and (8.16]) (which only depend on €) hold, and what
remains is to check Eq. (B.17) using the structure data Ay (h, k). Note that Eq.
B.17) does not depend on z.

Theorem 4.1. For each of the known examples of generalized Haagerup categories
for G = Za,, 1<n <5, and each odd p and z € {0,n}, there are two distinct
Zo-graded extensions of the form discussed in the previous section.

Proof. We check Eq. (8.17) with a computer. Then by Corollary B.2] in each case
there are two distinct extensions up to equivalence. ([

Remark. In this paper we are concerned with classifying extensions up to the nat-
ural notion of equivalence, but one can also ask whether different extensions give
distinct tensor categories. For Zo-extensions of generalized Haagerup categories,
there is a unique nontrivial homogeneous component, so the only way two different
extensions can be tensor equivalent is if they are related by a nontrivial automor-
phism of the trivial component (that is, of the generalized Haagerup category).

Note that the choice of z € {0,n} for a generalized Haagerup category for an
even cyclic group is an invariant of the tensor category (indeed, of the fusion rules)
of the extension. It is less clear whether the sign choice in v in the extension data
is also an invariant of the tensor category.

One can check that once one fizes an extension as above, the extension data
is invariant under conjugation by the ag4, as well as conjugation by 5. Thus if
the outer automorphism group of the generalized Haagerup category is generated by
conjugation by B, then the different extensions are also distinct as tensor categories.
This is the case for the generalized Haagerup category for Zy.

Thus at least for Zy, the Zo-graded extensions constructed above give four dif-
ferent fusion categories, and we conjecture that this holds in general for Zoy,.

4.2. Asaeda-Haagerup categories. The Asaeda-Haagerup subfactor was one of
the two original “exotic” subfactors discovered in |[AH99] (the other being the
Haagerup subfactor, corresponding to a generalized Haagerup category for Zj).
It was shown in |GIS1&] that there are exactly six fusion categories in the Morita
equivalence class of the Asaeda-Haagerup categories. Three of these, including the
two which are the even parts of the Asaeda-Haagerup subfactor, do not admit any
outer automorphisms. The other three are quadratic categories, and one of these,
called AHy, is a de-equivariantization of a generalized Haagerup category for the
group G = Zy4 X Zs.

The category AH4 may be considered a degenerate generalized Haagerup cat-
egory, coming from a solution to Eq. ([2.1)-2.9) for G with € 1)((4,7)) = 1 for
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all (i, j), which means that o ,1) acts trivially on the Cuntz algebra (and hence is
equal to id). Thus we have Inv(AH4) = Zy.

There are 8 non-isomorphic Q-systems of the form [id] + [agp], which fall into
4 inner conjugacy classes, with conjugation by (s o) acting trivially on the set of
Q-systems. The Brauer-Picard group is

BrPic(AH4) =2 Out(AH4) = Zo X Zo

and acts transitively on the inner conjugacy classes of Q-systems. (The Brauer-
Picard group had previously been calculated for the original Asaeda-Haagerup cat-
egories in |GS16] using other methods).

Therefore it is natural to wonder whether A4 can be extended by Out(AH4),
and consequently whether all of the Asaeda-Haagerup categories admit Zg X Zo-
graded extensions.

In |GJS15] it was shown on abstract grounds that the obstructions for Zo-
extensions vanish - but those methods do not determine the obstructions for Zy X Zo-
extensions.

We will show that the Zo x Zg obstructions vanish by directly constructing a
Zo X Zso-extension using the methods above.

We refer to |GIS18, Section 4] for the structure constants (A, €) of the category
AH,4, and note that the bicharacter e on G2 x G is given by

et (1, 1)) = {1‘1 =20

We will consider extensions for each of p = (1,0) and p = (0, 1).

We start with p = (1,0), and let z = (0,0). Note that e, (p) = 1 for all k € Ga,
so by Remark [3.2] there is a possibility of realizing an extension on the original
Cuntz algebra.

Up to equivalence, there are two solutions for a(g) in Egs. (2.I)-([2.8)), exactly
one of which also solves Eq. ([2.9)) (this was checked with Mathematica).

We fix the extension data as a((0,1)) = —1 and a(g) = 1 otherwise, and then
v = %1 determine two inequivalent extensions.

We then have x = p =& =1, and if v = 1 as well, we can represent the extension
on the Cuntz algebra Oy.

Next, we consider p = (0,1) and z = (0,0). In this case we have €3 g)(p) = —1,
so there is no hope of realizing an extension on the original Cuntz algebra. We find
again a unique solution for a(g) up to equivalence:

otherwise

i

a((z,y)) = e,

and again a sign choice in v/ gives two different extensions.

Remark. For each p, we have chosen z = (0,0), and found corresponding exten-
sions. Since Inv(Z(AH4)) is trivial, there can be at most one quasi-tensor product
for a given choice of p, so we cannot have additional extensions for other choices
of z.

For example, for p = (1,0) and z = (2,0), there is a solution to Eq. (2.1)-(2.8),
but it does not satisfy (2.9).

We would now like to realize extensions for p = (1,0) and p = (0, 1) simultane-
ously.



26 PINHAS GROSSMAN, MASAKI IZUMI, AND NOAH SNYDER

Let U = Og % Og x C*(F3). We define an automorphism 3’ using a/(g) and a
choice of sign for ’ as in the proof of Theorem 3.2

We can also define 8 on Oy using a(g) with v = 1.

We now want to extend 8 to U. We need to preserve the relations

ﬂop:a(lyo)opoﬂ, Booag=ag0p, ﬂzza(Lo)

which hold on the Cuntz algebra, and we would also like the extension of 3 to
commute with 3’. So we define

B(®o(z)) = B(®1(x)) = B(x), Va € Oy,
Bluo) = cuo, B(ur) = cur, PBv) =cv.

Then we have

and

if
A =x((1,0)) =i, ?=p'((1,0)) =1,
which will now assume.

Lemma 4.1. We have

Bop=dgugopof
if
ca'(g—(1,0))a(g — (0,1))a(g) = a'(g), VgeG

Proof. Tt is straightforward to check that the relations hold for x € ®4(Og). For
ug we have

(Bop)(uo) = Blug(sMW s + 3 a'(g)B' (1 1) Juot{))

geG

— 2uf(sVs O+ 3 e (g)alg— (0, 1)+(1,0))alg+(1,0)F (o 1 1.0 uot D))
geG
and

(d( )0503)(%)
= ex/(—(1,0)(uj (MW" + 3 " d/( (0,1))u ")),

geG
which are equal if the relation holds.
Next we have
(Bop)(v) = B(Eufuiv) = £ uguiv

and

(61,000 po B)(v) = 1/ ((1,0))' uguiv,
which are equal if

#((1,0)) = ¢* = X'((1,0)),

which is true. O

Theorem 4.2. The obstruction in H*(Zy x Z3,T) for the existence of Zo X Za-
graded extensions of the Asaeda-Haagerup categories by mutually inequivalent bi-
module categories vanishes.
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Proof. We can verify that the relation in Lemma .1l holds for ¢ = e~"1 . Then we
can simultaneously extend 8 and 3’ to a factor closure, as in the proof of Theorem
[3.21 Since such an extension exists, the obstruction must vanish. O

Since the homotopy type of the Brauer-Picard 2-group is an invariant of Morita
equivalence, we get corresponding extensions of all the Asaeda-Haagerup categories.

Corollary 4.1. For each of the Asaeda-Haagerup fusion catgeories, there exist 8
different Zo x Za-graded extensions of the Asaeda-Haagerup categories by mutually
inequivalent bimodule categories.

Proof. Since Inv(Z(C)) is trivial, so are H"(Zy X Z2,InvZ(C)) for all n. Thus
there is no choice of quasi-tensor product. By Theorem [4.2] the obstructions for
extensions vanish. Therefore Theorem 2.1 and Theorem 2.2 show that the set of

extensions form a torsor over H3(Zg X Za, T) = (Z2)3.
O

Note that unlike for AH4, the group Out(C) is trivial for C = AH; 23. There-
fore the corresponding extensions for those categories are not quasi-trivial, but
rather involve bimodule categories that are non-trivial even as module categories
(see |GS16] and the accompanying text files for a description of these bimodule
categories, including dimensions of simple objects and fusion rules).

Conjecture 4.1. Similar Zo X Zo-graded extensions exist for generalized Asaeda-
Haagerup categories (de-equivariantizations of generalized Haagerup categories for
the groups Lam x Ly with € 1y trivial).

For specific values of m the conjecture can in theory be checked by a similar
calculation as above - namely, try to find extension data for p = (1,0),z = (0,0)
with trivial x,u,&; then for p = (0,1), 2 = (0,0); then check the relation in Lemma
[4.1] However, genralized Asaeda-Haagerup categories are themselves not yet known
to exist for m > 1.

4.3. The group Zs X Zs. It was shown in [[zul8] that there is a unique generalized
Haagerup category C for G = Zg X Zy. This category is related to a conformal
inclusion SU(5)s C Spin(24); see [Xul8; [Edi21a]. It was shown in [Grol9] that the
Brauer-Picard group of this category has order 360, and the group was identified
as S5 x A in [Edi21a]. The outer automorphism subgroup is Ay.

We would like to classify the quasi-trivial graded-extensions of C, and in partic-
ular find A4-extensions by the entire outer automorphism group. In this subsection
we first consider the Zs-extensions.

We will use the normalization

11 1 1
1 -1 -1 1
=11 1 1 1|

1 -1 1 -1

as in [Izul8] (corresponding to s = —1 there). We label the elements of the group
by {0,p,q,7} (in that order with respect to the matrices of structure constants).
We consider extensions by an automorphism 3 which conjugates p to a;p.

Then Eq. (8.14) reduces to
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so x is given by the second column of the e matrix, (1,—1,1,—1), and then £ = =+i.
From Eq. (3.15) we have
a(p) =¢, alg)a(r) = alp)u(r)ep=(r) = a(p)u(a)ep+-(q)
By Theorem [3.3] without loss of generality we can assume
a=(1,—i,t,1)
for some
t=+1=—p(q)ept=(q) = —p(r)ept=(r).
Checking Eq. B.17 with a computer (or by hand) gives ¢ = 1. Then we have

1(q) = €p+2(q) = x(@)ep+2(q)eq(P) = x(9)e=(q)
and similarly
p(r) = x(r)e:(r).

Note that we also have
1(0) = x(0)e=(0),  p(p) = x(p)e=(p)
by Eq. (8.11)). So

= Xe€z.

Thus 7 in Corollary Bl is trivial, and the number of extensions are determined
by whether € (2)e. (k) can take -1 or not. We also have

vi=plp+2) = —e(2).

It was shown in [Izul8] that there is a Zs-action on C which fixes p and cycli-
cally permutes {ay, o, o }. Therefore, similar extensions exist for automorphisms
taking p to agp and a,.p.

Summarizing, we have:

Theorem 4.3. For each x € {p,q,r} and y € G, there is a Zqo-extension of C by
an automorphism By, such that [Bryp) = [QwpBey] and [62,] = [azyy]. Such an
extension is unique unless y = 0, and there exist exactly two extensions for y = 0.

We defer the general case of quasi-trivial extensions of C by outer automorphisms
to a separate section, since the argument is long and involved.

5. QUASI-TRIVIAL EXTENSIONS OF THE GENERALIZED HAAGERUP CATEGORY
FOR Zg X Zi

At the end of the previous section we classified quasi-trivial Zs-extensions of
the generalized Haagerup category for Zs X Zs. In this section we will consider
more generally extensions of this category by arbitrary subgroups of the outer
automorphism group Ay.

Throughout this section, let C be the generalized Haagerup category for Zg x Zo,
realized in standard form in Endg(M). We label the group as G = {0, p, ¢,7}, and
use the same normalization of € and A as in the previous section.
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5.1. Constraints for a Z, x Zs-extension. We first consider Zy X Zo-extensions.

Let us first assume that we have a Zg x Zs-extension, also realized in Endg (M),
generated by automorphisms 8, and g, such that [Bhpﬂ,jl] = [app] for each h €
{p,q}. Let B, = (BpBy) . Then we have

[Brﬂﬁr_l] = [Bq_lﬁp_lpﬁpﬁq] = [arp).
We will denote the corresponding unitaries and extension data using subscripts,

e.g. up, Vp, &n, ap ete., for h € {p,q,r}.
Then as we have seen, we can without loss of generality assume that

ap = (1,—14,1,9)
and similarly
aq = (1,4,—1i,1).
Then we have
a, = (1,ts, ti, —si),
where t and s are signs.
Lemma 5.1. We have
ar, = (1,1,4, —1).
Also,
Bp(uq)up = Byt (uy),
and similarly for cyclic permutations of (p,q,T).
Proof. We have
Ad(B, 7 (uy)) 0 amp = B, pBr = BpBapBy ' B, !
= Bp o Ad(uy) o aqpﬁp_l = Ad(Bp(ug)aq(up)) © apigp
= Ad(Bp(uq)up) © arp,
which implies that
Bp(uq)up = bpﬂ;l(ui)
for some unitary scalar by,.
Consider the action of p on this identity. We have

= (B, 167‘p6r )(uT)upap(ﬁp(p(uq)))upp(up)

=e(q)B, (UTQTP(UT)U:)U;ﬂp(U:;)ﬂp(qu(uq))upp(up)
= ep(q)er(r)gﬁr_l(qu(uT)u:)ﬁr_l(ur)ﬁp(qu(uq))upp(up)
= Eﬂ;l(Urp(ur))ﬂp(qu(uq))upp(up)-

So we have:

b2 = ﬂil(urp(ur))ﬂp(qu( ))upp(up)
= ﬂpﬂq(ﬂr s* + Zar g T)u’f‘tq)

geqG

Bp(Bq(s)s +Zaq )Bq(th—q)uqty,)

heG

(Bp(s)s™ + Z ap (k) Bp (tk—p)upty)

keG
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= (ﬂpﬁqﬂr)(S)S*
+ Z ap(g)aq(g —p)ar(g —p— Q)(Bpﬁqﬁr)(tg—p—q—r)(Bpﬁq(“r))ﬁp(uq)upt;
geG
= 55"+ Z ap(9)aq(g — p)ar(g — r)bytgty.
geG
So we get

by = ay(9)ag(g —plar(g —r)by =1, VgeG,
which implies that b, =1 and s =¢ = 1, so that a, = (1,1,¢, —17).
This calculation is invariant under cyclic permutations of (p, ¢, 7).
O

We record for later use the relation among a,, a4, a, that we found in the proof
of Lemma 5.1} which can be verified directly:

(5.1) ap(9)aq(g —plar(g—r)=1, VYgeG.

As we have seen previously, each of the Zjs-graded extensions can be recon-
structed from a Cuntz algebra and three unitaries corresponding to up, vy, and
Br(up). For our Zs x Zo-graded extension, we also have to consider the images
under the various B of each uj; and vy,.

A priori, there are 21 unitaries to consider:

{Br(un)netpiary, kezaxzs YU LBe(Vh)heip.ar), kezaxza\{h}

(where we let By = id; note that we have B (vy) = vpvp). We can then use the
relations

BpBqfBr = id and B7 = Ad(vs) © s,

to express B(w) as a word in these unitaries and their adjoints for any w on this
list. Similarly, we can use the relation

pofrn=Ad(uy)opfnopoay

to simplify p(w). Thus, the C*-algebra generated by the Cuntz algebra generators
and these unitaries is invariant under the ag, B4, and p.

We first show that 6 of these 21 unitaries can be written in terms of the other
15.

Lemma 5.2. We have:

(1) ﬂp(uq) = _ezr(T)v:ﬂr(ur)*vru;
(2) Bp(vg) = Tgpig(r + 20 )} Br(vg)vr
and similarly for other cyclic permutations of (p,q,r)

Proof. (1) We have
Bp(ug) = By (ur)uy, = B2 (Br(ur))uy,
= (Ad(vr) o O‘r+zT)71(ﬁr(u:))u; = X’I‘(T + ZT)U: (BT(U:))’UTUZ,

and

Xr (7" + Zr) = €r4z, (T) = €p (T)ez'r (T) = —€z (T)
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(2) We have
Bp(vg) = TgBpBe(vq) = V_qﬂfl(”q) = 35;2(57" (vq))

=7(Ad(v,) o O‘T+zr)71 (Br(vq)) = Tgpiq(r + 2r) vy Br(vg) vy
O

In light of Lemma [5.2] we only need to consider the 15 unitaries of the form
un, Br(un), Bn(ur), vn, and By (vy), where h' is the successor of h in the cyclic
ordering (p, q,r). We introduce the notation

:ﬁ](ul)a Z7] € {p7q7r}'
We now derive two further relations among these 15 unitaries.
The first one comes from the fact that

Ad(”;()Q)) = Ad(ﬁq(vp)) = fBq0 Ad(vp) o B;l
= Bg(p+2,8)87 " = piz, BB By -

Lemma 5.3. The unitary Upvéq)qu,gr)vrvﬁp ) is a scalar.

Proof. Tt suffices to show that Ad(vpvéq)qué v, 0P )) is the identity. By the previ-
ous remark, we have

Ad(vp v(q)) (Qpt2, 58 )Oép+zp6q526 ! ﬂgﬁqﬂg ;1

with similar formulas for Ad(v,vS”) and Ad(v,v®),
so we have

Ad(vpv 00,08 0,0 P)) = (828,828, 1)(B2 8. 8268, 1) (B2 8,828, )
= B3 BaBaBaBrBaBrBpBr Byt = By BaBpBaBiBy ' = ByBaBrB, "t = BpBy " =id

where we have used the relation 8, = (3,8,) ! four times. O

By renormalizing v, if necessary, we may and will assume that

(5.2) vpvz(jq)qug’”)vrvﬁp) =1.
Lemma 5.4. We have
(5.3) uip)v:v((f)*uflr)v;vfo‘”*u](oq)v;vﬁp)* = —¢., (p)ez, (qez, (r).

Proof. First note that the relation 57 = Ad(vp) o ap», can be rewritten as
Bt = (Ad(vn) © aniz,) " Bh.
We then have
uq(pp) = Bp(ur) = (B4Br _1(u ) = ﬁr_l(ﬁq_l(ur))
= ((Ad(v;) 0 orgez, ) 7' Br) (((Ad(vg) © gz, )™ Bg) (ur)
=Xr(q+ 2+ 7+ 2)(Ad(v) U(T ") © BrBq)(ur)
= eqragtrtz, () (AdWIV") 0 Br) (—ez, () ul vpuy)
— 2y (P)€s, 42, (M)A WG ) (Br (0p) "By (up) " Br(0p) B (ug)")
= —€z,(p)ez, 42, (r)Ad(viv T)*)((VPNP(Q‘FZq) aBa(vp)"vg)
((Ad(v )o aq-l-zqﬁq)(up) )(Vpﬂp(q + Zq)v Bq(vp)vq)ﬁr(uq) )
— 2y (P)z, 2, (1) Xp (4 + 2g) Ad (0705 (0 8(0p)" By ()" B (vp) v v (g) ")
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= T€zptzg (p)ezﬂqu (r)vy Ut(f)*vgﬁq (vp)* By (up)* By (vp)veBr (uq)*vgr)vr
= —€.,(pe, (@)e, (T)vﬁp)Upu](oq)*v](f)vqugr)*vy)vr.
Rearranging gives the condition. (I
We next apply p and ) to the conditions in Lemmas [5.3] and [5.4] to see if any

further constraints arise. It turns out only applying S, to the condition in Lemma
5.3 gives an additional constraint.

Lemma 5.5. We have
l=€ptzytz(2p)es, (2p + 2 + 21)
= €aptrgten (2q)€2,(2p + 2 + 2r) = €ptzgtz, (2r)€2,(2p + 24 + 2)
Proof. We have
1=5,(1) = ﬁp(vpvéq)quér)vrvgp))
= vapﬁr_l(vp)ﬁp (Uq)(ﬁpﬁr)(vq)ﬁp (UT)(Ad(Up) © O‘p-i-zp)(vr)
= Upftr (P + 2p)Vp (U7 (Qrp 2, Br ) (vp)vr ) (Vg iq (1 + 27 )07 Br (vg ) vr)
“(BpBr)(vg) Bp(vr)vpvrvy
= VpTgfir (P + 2p)ip (7 + 20 ) 1q (1 + 27 )Vpy By (Up)vér)vr (ﬁpﬁr)(vq)vgp)vpvrvz
= UpUqptr(p + 2p) pp (1 + 2 ) g (7 + 2 )vpvy (Tppp(q + Zq)vgﬁq(vp)vq)vz(zr)vr
'(Ad(vﬁp)vp)aq-l-zfi-zpﬁq)(Uq)vgp)vpvrvz
= pir (P + 2p)pp (P + 2r + 2g) (1 + 2p + 2¢)
-vpv:v;v](f)quff)vrv,(}’)vpv;quqv;vﬁp)*vﬁp)vvav;
= pir(P + 2p) (P + 2 + 2¢) 11q (P + 2p)-
Using the relation

1r(9) = Xn(9)€z, (9) = €g(h)ez, (9),
we have

L= pr(p+ 2p)ttp(p + 2r + 20 11q(p + 2p)
= €ptz,tzq (p)eerzp (Q)eerzp (T)ezp (p + 2 + Zq)ezq (p + Zp)ezr (p + Zp)
= €2, (2¢ + 2r)€2y12,(2p) = €2, (2p + 2¢ + 2r) €2 42042, (2p)-

Similarly, we can replace p with ¢ or r. O
Corollary 5.1. One of the following occurrs:

(1) zp+2zg+2 =0

(2) Two of zp, 24, zr are 0

(3) zp=24= 2
Proof. Suppose z, + z4 + 2z, # 0. Then

€g(zp + 2q + 2 )€z, 4 2,42,(9) = 1
holds for g =0 or g = 2, + 24+ 2. Suppose, e.g. z, and 2z, are both nonzero. Then
we must have
Zp =2 =2Zpt+ 2q+ 2r = Zp.

O

Remark. Conversely, the relations in Lemmali.d follow from any of the conditions
in Corollary [5.1.
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Finally, we record the formulas for 3, and p applied to ué‘n and v](f), which will

be needed for reconstruction.

Lemma 5.6. We have
(r) (p), %, (r)x

(1) Br(us?) = xp(p + 20 + 2g)08 vruf vz
(2) ﬁr(vzgq)) = V;DM;D( +2p + Zq)vt(ZT)UTUPU*UIST)
(3) plus?) = xp(@)uzus? o5 vy B (5) 020" By(s)*

+ ; €rtz,+zg (9 —p)ay(g )BT(tg_p)v*vZ()q)*up Ba(tg)*luq
g

(4) ( 1(7q)) = —€z, (Q),Up( )Xp(T + zp + Zq)gpu Uz() 2 Uzgq)vqurv*ut(z )uq

Proof. We have already seen similar calculations for 8 in previous proofs.
For p, we have

p(u;(f)) = p(Bq(up)) = UZ(aqﬁqp)(up)uq

= Xp(q)ugBq(upBp(s)s™ + Z ap(9)upBp(tg—p)upty)uq

geaG
= Xp (@) [l v D vy B, (s)v5050* By (5) g

+ Z Ertzptzg (9 — p)u U(q)* Uqﬂr( g9— p)” U(q)* ﬂq(tg)*uq]
geG

and
P(U;(:q) = p(By(vp)) = u:; (g Byp)(vp)uq
= UP(Q)gpu;ﬂq(u;ﬁp( ) p)Uq

= (@ (4 2+ 20) g oy v oo v g

= pp(@)xp(r + 2p + Zq)fpuzuéq)*qu Vg Br (up) vgug
= =€, (Oup(@)Xp(r + 2p + zq)gpu:;u;(oq)*v](f)vqurv;ﬂq (uq)qu; Uq

=€z, () tp(@)Xp(r + 2p + zq)gpu;ué’n*vé‘nvqurv;uéq)uq.
O

5.2. Reconstruction. We now describe how to reconstruct Zs x Zs-graded exten-
sions of the Zs x Zo generalized Haagerup category, following the calculations of
the previous section.

We start with the Cuntz algebra Oy, together with the endomorphism p and
G = Zgy X Zs action a.

Let zp, 2q, 2r € Zg X Zy satisfying the conditions of Corollary [5.1] be given. Let
ap = (1,—1,1,9), ag = (1,4, —1,1), and a, = (1,1,4, —1). Let &, =1,

Xn(9) = €g(h),  pn(g) = eg(h)e, (9),

for h € {p,q,7}.

Let vy, € {£i} for h = 0 and v, € {£1} for h € {p,q,r} be given for each
he{p,q,r}.

For h € {p,q,r}, we will denote by h’ its successor in the cylic ordering (p, ¢, 7),
and by k" the third element.
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Let U = O5 % O5 % O5 % O« C*(F13), which is the universal C*-algebra generated

© () (h) 0) (h")
h

by four copies of O and fifteen unitaries up = u),’, u;, ’, u;, ’, vp = v,(L v, for

h € {p,q,r}; subject to the relations

(5.4) vpvéq)quér)vrvgp) =1
and
(5.5) ugp)v:vér)*ugr)v;véq)*uz(ﬂ)v;vgp)* = —¢€z,(p)ez, (q)ez, (1)

(recall that these relations come from Lemmas 5.3 and [5.4])
We label the four copies of O5 by Zs X Zs, and denote by ®j, the inclusion map
of O5 into U corresponding to h € {0,p, q,r}.
Then we define &4 on U by
ag(Pn(z)) = Pnlay(z)), € Os

~ k k ~ k k
ag(ul?) = xn(@ul?,  ay(0*) = pn(g)vl?,
and define p by

p(On(x)) = up Pr(pap(z))up, (whereweletug = 1)

ﬁ(uh) = U;;(S(h)s(o)* + Z ah(g)t;}i)huhtgo)*%

geG
~ h * h)* * * * h *
plup) = xn(hyupuy on (sQvp s + 3 an(g)enss, (g + bty vpugt0 yup,
geG

' * h)x (R’ A h' )% "N
p(ud")y = xon (B yug ul ) 0y [P g (P ()

" Y% (R') (R )*
+ D enrnrn (g ) o a1
geG
~ w  (h)x*
Alon) = Enigul v,
% «  (W)x (B h’
p(os)) = —€up (W) un (B )X (B + 2n + 20 )€zl ol ooy ully uns

Remark. The formulas for p come from the formulas for Zo-extensions in the
previous chapter, together with the calculations in Lemmalb.6 for the unitaries uflh )
and v,(Lh ). Note that Xn(h) = en(h) = =1 and xn(h') = e (h) = 1 can be used to

simplify the formulas for ﬁ(ugh)) and ﬁ(uglh,)). Similarly, the scalar cofficients in the

formulas for p(vy) and ﬁ(v(h,)) can be simplified to i and ie., 1., (h"), respectively.
Lemma 5.7. (1) The formulas above define a G-action & and an endomor-
phism p on U.

(2) We have &gop=pody.

Proof. To show that the formulas give well-defined maps, we need to check that &,

and p preserves the relations (5.4) and (5.9).

Applying &, to Upvéq)qugr)vrvﬁp ) multiplies it by the scalar

1(9)?1q(9)* 1r(9)* = 1,
and applying &, to ugp)vﬁvér)*ugr)vgvéq)*u,(,q)v;vﬁp)* multiplies it by the scalar

Xp(9)1p(9)*Xa(9)1q(9)*Xr (9 r () uP)
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= Xp(9)Xq(9)Xr(9) = €g(p+q+7) = €4(0) = 1.
For p, we have
o o)

q)XP(T + 2p + 2)Epuy U( 2 (q)v u Uqul(;q)uq)
)Xq(P + 2¢ + 2r)Equr (T *vgr)v UpUy: u(r) )
)XT(q + zr + Zp)fru*u(p)* (» )’U UgV U(p)’u,p)

p(vp

(&DU*U ?) “p) (—€2, (@) pp(
'(gq ”q)( €2, (1) pg (7
(&ruy (T vp)(— €zp (P)pr(p

The scalar coeﬁiment

- (gpgqgr) €2, \D ( )qu ( )EzT (T)Eq (p)ezp (Q)er (Q)ezq (T)E;D (T)EZT (p)
€rtzp+zg (p)€p+zr+zq (Q)€q+zr+zp (T)

= —€, (p)ezq (Q)Ezr (T)
and the product of unitaries, after cancelling inverses, is

u;u(p) vpu u( D% (y (Q)U u(r) U(T)UTugp)*vﬁp)vp)uqv;uz(f’)up

= —¢€z,(p)ez, (q)ez, (T)(u;uz()p)*vpuZ)(uqvp Z()p)up)
= —¢€, (p)ezq (Q)EZT (’I“),
where we have used relation (B.5]) (after taken the adjoint and a cyclic reordering).
Thus
ﬁ(vpv](oq)quér)vrvﬁp)) =1,
and p preserves relation (5.4]).

Next, we have
n’ h
Aluy upp)”)

= ()" of o5 g 0! 50

)« R)x (W), (h')x
+Z€h”+zh+zh/ (9+h)uh'“§1 ) f(z )Uh’th hvh’vi(z ) ( : (h) up]
geG

Envgusun) (= ez (B) ner (R xaor (W + 20 + 200 ) Gyl o v ol ulhuy,)

« (W)= (' Mo (W)% (R)x
= _ezh+zh// (h/)uh ’U,( ) ’U( ) [ (h )vh’ (h") (h)
h')x (b ")k h)x (h
+ Zeh"+zh+zh' (g +h)t +hvh’vi(z ) ( )t(h) ]vhv,(l//) ugw)uh.
geG
So then

((IT)* (T)v;v(q)*ué@v;vﬁp)*)
p)u, u(p)* Py [S(Q)v;vﬁp)*s(p)*

@ o7
= (_ezr+zq (

+ D etz (9 +)an(9)t vav(?)* PV (D, )
geG

'(—equrzp(r)u:fugT)* (M, [s (ZD)U*U(T)* (r)*

Y eptagta (9 Dag(9)thorvs ) Jogui uPu,)
geG
(=€t (q)u;u(q)*v(lnvq [S(T)U;Uéq)*s(q)*
+ 37 Crayin (9 + Pap(9)t 0o DD oo uPu, )
geG

= —e, (D)ez, (@)e, (Nupul? vy,
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(8@ P 7y 0 5@

+ Z €p+zq+zr( 9)€r+zp+2z4 (9+ Q)€q+zr+zp (9 +1r)ar(g)ag(g + q)ap(g +7)
geG

t;ﬁrvzv(p)* (p)v*v(T) gr)v;vz()q)*ué‘”t;?:]v;vép)*ugp)u

= —¢€;,(pez, (q)es, (T)u;ugp)*vﬁp)vp [s(q)s(q)*

+ Z —€,(p 62q )€z, (T)ep-i-zq-i-zr (g)er-i-zp-i-zq (9+ Q)€q+z,+2,(9 + T)
geG

P

‘ar(9)aq(g + q)ap(g + )t ;erté‘fzj]v*v(p)* (p)

where we have used relations (5.4]) and (5.3]) in the last step.
Finally, we have
—€z, (p)ezq (9)e-, (T)€p+zq +zn (g)€r+zp+zq (9 + Q)€q+zr+zp (g+r)
ar(9)aq(g + q)ap(g +r)
= ar(9)aq(g + 9ap(g +71) =1,
(using relation (B.1))), so we get

O RN O NCOEM O OR

= —€z, (p)ezq (Q)ezr (q) 4+ Z t(ﬁrt((ﬂz:
geG

= —¢z,(p)ez, (e, (1),
and p preserves relation (5.5]).
It is then clear that & is a G-action and p is an endomorphism of U.
To check that po &y = a4 o p, it suffices to check the relations

g (plug)) = plag)(u™)) = xulg)p(uy ) = eg(h)A(ul”)
and , , , ,
ag(P) () = plag) (")) = un(9)p(uy")) = eg(h)es, (9)A(v}")
which can be easily verified from the formulas for ﬁ(uzh/)) and [)(v,(Lh/)) .

Next we define automorphisms 3, for h € {p, q,r} by the formulas

() k=0
~ v ®o(ahts, (2))VF k=nh
Bu(@y(a) = § 0l () "

’Uh//(I)hN (ah”""zh” (,’E))’Uhu k = h

Uf(bf'l')vhq)h, (ah’+zh+zh,,( ))’Uh’U}(L}},)* kE=n"

Bn(up) = uif), Bh(ué’“) = xn(h + zn)vpupvy,

~ ’ ’
Bn(u")) = —ez,, (B )xn (W' + 2 VOl s v v
~ 17 ~ 7’
Br(un) = =€z, (W Yhmull oy, Bulufs ) = X5 (B + 2 Yol o

Bh(ug} )) = Xh/(h/ + zp + Zh//)U}S}/L/)UhUEI/ )U;:U;(J/L/) )

Bulunr) = ufh), Bulus ) = —euy, (W)xor (0 + 2+ 200 Yoil ull v vl )

ﬁh(’ug},)) = Xh" (h + Zh)’Uh’U,hN’U;;

~ h/ . « h/
ﬂh(vh) = VpUp, ﬂh(’U}(L )) = I/p,up(h + zp + zhu)v;,,vh/v,g )’Uh/’UhN
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~ 1"
w(n) = Tnrp (B 4 2 ’U*//’U(},I )vh//
K h"Yh

~ h// h
ﬂh(v}(ﬂ )) = Vh/,uh/(h + zn + zhn)v,(l,,)vhvh/vhv,(w)*

5 h

Bu(wn) =vi)), Bu(wpsd) = (b + 2 )onvnn vy,
Once again, the formulas here come from the calculations in the previous subsection,
and some of the scalar coefficients can be simplified by calculating y and p in terms
of e.

Lemma 5.8. The formulas above define automorphisms By onU such that:
(1) @hodg =Gy o fp
(2) @;21 = Ad(vn) © Whgztn _
(3) Brop=Ad(un)odapopof.

The proof of Lemma [5.8 is straightforward but tedious, so we defer it to an
appendix.

Lemma 5.9. We have p*(z) = sxzs* + Y tg(ogp)(x)t} for all x € U.
geq ’

Proof. Tt suffices to check the relation for z = uflh/) and x = U,(I ). We have

P(u")) = 5B (un) = pAd(uf, )an B plun) = Ad(F(un)*uj,) Bur 52 ()
:Ad(ﬁ(uh/>*u;>éh/<5uhs*+Ztg<agp>< W)

geqG
= Ad(p(un) wi ) (M M0 43 e (W1 e (g p) (it ))

geG
’ * hl *\ %
= (s (O 4 Z ap (g)t§+z/uh/t§0) )
geG
(s 50 S e (B une (g p) (uf] g )
geG

(S(h’ ) 0)* + Z ah/ +Zl/uh,t(0)*)
geG

(o)u(h) o)*+th (O)aq+h/p( (h )) (0)x
geG

_ 5(0)“2”)5(0)* I Z tgo)%p(ugh/))t;o)*
geG
and a similar calculation applies to v}(lhl).
O

Theorem 5.1. For any choice of zp, zq, 2r satisfying one of the conditions of
Corollary [5.1, and any choice of vy, € {£i} for z, = 0 and vy, € {£1} for z €
{p,q,7} , there exists a corresponding extension of the Zo X Zo generalized Haagerup
category C by the Zg X Zg subgroup of the outer automorphism group.

We can count the number of distinct Zy x Zg-extensions given by the above
construction as follows. There are 28 triples (zp, zq, 2») which satisfy one of the
conditions of Corollary [5.1]

(1) For (0,0,0), there exist exactly 8 extensions.
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(2) For each of (z,0,0), (0,z,0), (0,0,z), x € {p,q,r}, there exist exactly 4
extensions.

(3) For each of (z,z,0), (z,0,z), (0,z,z), € {p,q,r}, there exist exactly 2
extensions.

(4) For each of (x,z,z), x € {p,q,r}, there exist exactly 2 extensions.

(5) For each of (p,q,7), (q,7.p), (r,p,q), (p,7,q), (r,q,D), (¢,p,7), there exists
a unique extension.

The fourth and fifth cases are a little subtle, and we discuss them now.

Assume (zp, 24, 2r) = (p,p,p). Then we may assume v, = v, = 1. The only
remaining freedom for perturbing 3, and 3, keeping this condition is to replace 3,
and S, with o, o 8, and o, o 8, with z,y € {0,p}, up to inner automorphisms.
This amounts to replacing 3, with a4y © 8-, and multiplying v, by

Eery(Zr)ezT (.I + Z/) = €x+y(p)€p(x + y)a

which is always 1 in any combination of  and y. Thus the two extensions for v, = 1
and v, = —1 are inequivalent.

In the fifth case, a similar computation shows that the two extensions for v, =1
and v, = —1 are equivalent.

Corollary 5.2. There exist exactly 74 different Zo X Zo-graded extensions, up to
equivalence.

We can interpret our classification result in terms of Theorem 2.1] and Theorem
2.2 as follows.

First we show that the freedom for v, corresponds to H3(Zy x Zo,T) =2 73,
with which we identify {1, —1}3. Assume a Zy x Zs-graded extension (ag, p, B5)
is realized in Endg(M). We choose another factor N and an outer Zg x Zgy-kernel
o : Zo X Zs — Aut(N), which is a map inducing an embedding of Zy X Zs into
Out(N). We may assume o, = (0, 0 g,)~'. Then there exist unitaries wy, € U(N)
for h = p,q,r satisfying 07 = Ad(wp,), and there exists §, € {1,—1} satisfying
on(wp) = Spwy. The triple (8,,dq,6,) € {1, —1}? is identified with the obstruction
of o in H3(ZyxZs, T). Now can get a new extension (a,®id, p®id, 8, ®0},) realized
in Endg(M ® N), which has the same (zp, z4, z) as before while vy, is replaced by
Spvn. This means that the freedom of vy, corresponds to the H3(Zy x Zsg, T)-torsor
structure.

Now the only remaining freedom is (zp, 24, 2r), which should correspond to an
element in

H?*(Zy x Zy,Inv(Z(C)) = H*(Zy x Zs,G) = G>.
This means that out of 64 possibilities for M, only 28 have trivial obstruction
04(0, M) S H4(Zg X Lo, T)
Finally, we have

HY(Zy x Zy,Inv(Z(C)) = H'(Zg x Zy,G) = Hom(Zy x Zs,G) = G*.
Since the effect of p(, 5y + H'(Z2 x Z2,Inv(Z(C)) — H?(Zz x Z3,T) should corre-
spond to the freedom of replacing (8,, 54, Br) by
(az o ﬂpv Oy O /8(17 Qyty O ﬂr)

up to inner perturbation, we should have

p%c.,M) (z,y) = (€2, (T)ex(2p), €2, (¥)ey(2¢), €2, (T + Y)€uty(2r)).
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5.3. As-extensions. We will now consider extensions by the entire outer automor-
phism group Ay = (Za X Zs) % Zs.

Let 6 be the automorphism of G defined by 6(h) = h'. Tt was shown in [Izul8]
that since the structure constants A and € are invariant under @, the automorphism
Yo of O defined by

Yo(s) = s, 70(tg) = to(y)
(and as usual extended to the closure) satisfies

Y0 © Qg = Qp(g) ©Y0, YOO P = POY0-
Let H = () = Z3. Then we have
H"(H,Inv(Z(C))) = {0}, Vn>1,
H*(H,T) = {0},
H3(H,T) = Zs.
Thus Theorem[2.1]land Theorem[2.2lshow that there exist exactly three H-extensions
of C.
One of the three H-extensions is generated by 7o, and the other two can be
obtained by modifying the associator of the Vecz, subcategory generated by ~o by

an element of H3(Z3, T), as in the argument at the end of the previous subsection.
(We will refer to this construction as changing the associator of 7p).

Remark. The same argument works for other order 8 subgroups of Out(C) too.

We would like to extend ~o to U. Suppose that 0(zxn) = zgs) for h € {p,q,7}.

Define vy by
Yo(Pr(z)) = Doy (v0(x))

- (k 0k - (k 0k

) = P o) — O,
Lemma 5.10. The above formulas define an automorphism of U, and we have

(1) 7o® =1id

(2) 70 o dg = d@(g) © /770
(3) Yoop=poq o
(4) If vp = vy = vy, then Yo © Br = Byn) © Yo
Proof. First note that, using the fact that zg(,) = 0(2x), we can see that 7y preserves
the relations (B.4) and (5.5), and is therefore well-defined. It is then clear that
is an automorphism of order 3.

Then the relations (2)-(4) follow from the invariance of the structure constants
under 6.

Since €4(h) = €g(g)(0(h)) (and therefore also x4(h) = xa(g)(0(h)) and py(h) =
Ho(g)(0(h)), again using the fact that z¢(;) = 0(zn)), we can check that vy o &y =
Qg(g) © Yo-

Similarly, since &, =i, Yh € {p,q,7} and ax(g) = agn)(0(g)), we can check that
Yoo p=po. L

And since v}, is the same for all h, we can check that 4o o 8, = By(n) © Yo- O

Again by changing the associator of 7g, we get triple the number of extensions.

Theorem 5.2. There exist exactly 15 quasi-trivial extensions of C by the entire
outer automorphism subgroup of the Brauer-Picard group. More precisely,
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(1) For each of the 2 cases zp, = zg = 2z, = 0 and v, = vy = v, = =£i, there
are exactly 3 extensions distinguished by the associators of the invertible
objects in the 6-homogeneous part. These 6 extensions form a torsor over
H3(A4,T).

(2) For each of the 3 cases (zp, 24, 2r) = (z,2',2"), x € {p,q, 7}, and vy, = v, =
v, =1, there exist exactly three extensions distinguished by the associators
of the invertible objects in the 8-homogeneous part.

Proof. Let (o, p, Bp, Bq: Br,7v) be a Ag-extension of C realized in Endg(M), where
(e, p, Bp, Bq, Br) is a Zg X Zs-extension as in the previous subsection, and v is an
invertible object in the #-homogeneous part. Then 43 € C, and there exists g € G
satisfying [v%] = [ay]. Since [y®] commutes with [v], we get [y3] = [id]. Since

lagy] = [ag+g77] = [%/704;/1],

the associator of « does not depend on the choice of the invertible object v in the
f-homogeneous part. Thus the associator of v is a well-defined invariant of the
extension.

Since A4 is a semi-direct product G x H, and |G| = |Inv(Z(C)))| = 4, |H| = 3,
we have HP(H, HY(G,T)) = 0 for all p > 1, ¢ > 1, and H*(H,Inv(Z(C))")) = 0.
Thus Lyndon-Hochschild-Serre spectral sequence shows that there exists a split
exact sequence

0 — H*(H,T) = H3(A4, T) — H3(G,T)" =0,
where H3(H,T) = Z3 and H*(G, T)? = Z,, and
H'(A4,Inv(2(C)))) = HY(G, G)H = Hom(G, G)? = Zy x Z.
Thus the intersection of H*(H,T) and the image of
Plean : H'(As,Inv(Z(C))) — H?(A4, T)

is trivial, which means that the set of equivalence classes of A4-extensions of C has
a free H3(H, T)-action through the H3(Ay4, T)-action, and it changes the associator
of ~. In particular, we get the extensions listed in the theorem.

Now it suffices to show that there exist exactly 5 extensions with v having trivial
associator. In this case, we may assume that v2 = id, and the H-extension (a, p, )
is equivalent to the model («, p,vp). Thus using the uniqueness theorem, we may
assume that v acts on the Cuntz algebra Os C M as vy by replacing p with Ad(w)op
with a unitary w fixed by a4 for all g € G. Recall that this replacement does not
change the extension data of 3,, 4, or 3,. Thus we may and do assume that ~y
restricted to Os is 79 from the beginning.

Since (a, p, Bp), (o, p, 710 By07), (o, p,v0 Broy~1) are equivalent extensions,
we have zj,, = z;, for all h € {p,q,r}, and v, = vy = v, = £i if 2z, = 0. If 2, # 0,
we can arrange 3y, 34, and 3, so that v, = v, = v, = 1.

As in the case of 7, we have [(8,7)%] = [id], and so

(Bl VB V2 Bpy 2] = [id].

Thus we may replace 8, with yo0 8, oy~!, and B, with (8, oy o B,77') !, which
does not change the extension data of 3,, 84, or 5.
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Unfortunately, we can not expect that (8,7)® = id holds on the nose, and we
should modify 8,. We have ;' oo, =, 0,07, and

ﬁp_loﬁq:ﬁp_2oﬁr_l :ﬁp_2oﬁr_2oﬁ7‘:AdU;oap+zpOAd’U:oar—i-zToﬁr
— Ad(}02) 0 g1z, 0 By

We set 8. = Ad(vjv;) o agyz, © Br, which satisfies (8] 0 v)* = id. We set 3], =
yop.oy tand 8, =~%0 3, 0y2 Then

(5.6) voByoyTt =8y

(5.7) B, 0Bl 0 B =id
hold for all x € {p,q,r}.

Although the extension data of 3, is not necessarily the same as before, it is
completely determined by that of ;. Since we can work on the new extension
data in the previous sections equally well, we assume that Eq.(5.6),(5.17) hold for
B, instead of 8., to avoid heavy notation.

The above two equations force that 7y(u,) is a multiple of u,s, and y(v;) is a
multiple of v,s. For the latter, we can simply assume that -y(v,) = v, holds for all
x € {p,q,r} by renaming them, while we can still keep Eq.(5.2)) by normalizing v,,.
Eq.([3.7) shows that y(us;) = u, holds for all € {p,q,r}.

Now the action of v on O5 U {u,, ul®, qu”'), Vg, vg(f/)} are completely determined
by the data (zp,vp). This means that if two As-extensions of C share the same
data, they share the same 6j-symbols, and they are equivalent extensions. (|

APPENDIX A. PROOF OF LEMMA [5.8

In this Appendix, we prove Lemma [5.8] which states that the Bh, as defined
in the reconstruction of a Zs X Zs-extension of the Zy X Zo generalized Haagerup
category, satisfy the appropriate relations. The tedious proof consists of checking
the claimed identities of endomorphisms by calculating the images of the various
generating unitaries under the left and right hand side of each identity, simplifying
if possible using (5.4]) and (5.5]), and comparing the results.

Proof. First, we need to show that Bh a is well-defined endomorphism. Clearly, Bh
maps each copy of Os isomorphically onto another Cuntz subalgebra of ¢4. Then
we need to check that (3}, preserves relations (5.4) and (5.5). The relation (5.4) was
checked in the proof of Lemma [5.5 For relation (5.5]), we have

Bp(ugp)vffvy)*uér)v;vz()q)*u](oq)U;Uﬁp)*)

= (xr(p+ ZP)UPUTU;)(Uﬁp)*)(Vqu(q +2p + ZT)ng)Upvq’U;’U?(_p)*)*
(Xq (q+zp—|—zr)v,(f’) vpu((f) ”;U;«p)* ) Tqpq(r+2:)vy v((lr)vr)* (Vphtp (Pt2zq+2r )V ”:; ”;(:q)qur)*

(=€2, (@)Xp(r + 20)0fvsu vguiv, ) (o) (0 (P + 2p)0p0r05)*
The product of unitaries is

vpuTv;u((f) (U;vﬁp)*v;ﬁvy)*v;vé‘z)*)u((f)*vqu:v; =1,
using relation (5.4]). The scalar coefficient is
= —€z, (Q) (NrXr)(p + Zp)(Mqu)(q +zp + ZT)(Xpﬂq)(T + ZT)Np(p + 2q + ZT)

=~z (@)ez, (Pt 2p)ez, (0 + 2p + 20 )6rpz, (D @) €, (T + 20 ) €ptay 42, (D)€, (P+ 29+ 21)
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—ep(P)er(r)ez, (P)ez, (Q)ez, (T)ex, (2g + 2r)ez, 42, (2p) = —€2, (D), (@)e-, (1),

using the relation in Lemmal5.51 Thus Bp preserves (5.5), and since this calculation
is invariant under cyclic permutations of (p, ¢, r), so do Bq and BT.

It is straightforward to check that Bh 0y = Qg O Bh-

Next, we need to check that 32 = Ad(vp) 0 @y -, . This relation clearly holds on
D(O05) and P, (0Os5). We also have

Br(@w (x)) = Bu (Vi @ (Cnrr 4z, () )0

h)x* h)x h
= o) (O on P (s ez b2y (O 42, (2)) 0RO Y0R 1)

= Un®p (Antz, )v = (Ad(vn) © Gnsz, ) (P (2))
and
B2 (@ (2)) = B (0} on @ (@nr 2,12, ()70
= (vnonr v} )R (Vi @por (s gz, (O 42y 42,00 (2)) )R )0 (VR VG0
= Un®pr (s, (¥))v) = (Ad(vh) © Qpgz, ) (P (7))

We will now check this relation for all of the unitaries containing a symbol other
than h.

[ ]
B,%(uglh )y = Br(—e.,, (W) xn(h" + Zh//)’l);;//’l);;/u;;} s vpe )

—EZhr’(h/)Xh(h"+2h”)(vi(ﬂ))*(v;uv,(ﬁ )’Uh”)*

(Xh’ (h” + zhu)v;,,uzj/vhn)*(v;;,,v,(j,l )vh//)(ugf/)) (’U}(L}/l/))

= e (W) (W0 00 % (oo Yl Coprii Yoil o) v
o (e (Y ol o)
o (e el Ol Do)
=, (h)e.,, (W) (=€, (D)es,, (W)es,, (B))
on (o ol g o Y
= —e., (Wonuy vy, = x(h + zn)onul vy

= (Ad(vp) © Gnpsy ) (ul™).

~ h// ~ h h
ﬂi(ug’ )) = ﬂh(Xh’ (h'/ + zn + Zh//)vi(lll)vhug-bl )vhvl(z”)*)
= X (W + 20 + 200) (Vn 0w} (0n) (X (R + 200 )07l oo ) (03)* (0o vf)*
= xn (h + zn)vn (Vrr v oRVE UL, (Vpr v vRVE 0E

= xn (h+ zh)vhu’ﬁ, vy = (Ad(vp) o ah“h)(ugﬁ )).



GRADED EXTENSIONS OF GENERALIZED HAAGERUP CATEGORIES

B W) = Br(=ea (W) xnr (B + 20 + 2 ol ud v vinlh))

= =€z, (R)xn (W + zn + 217 ) (VnvRe vy ) (X (B + 20)vnunvy)* (vs)

(= (W05 v ) (vn)* (Vv v})*

=€z, (h)ez,, (W )xn(h+ zn)xne (B + 21 + 210)

h
Vp (O U VR UV VR UR U )ugw ) (ool onvin )ur

h// h//
= Can (hn)vhug“ )U;; = xn(h+ Zh)vhug/, )v;;

"

= (Ad(vn) © @npsy ) (ugh )

~ h/ ~ _ h/
ﬂﬁ(v}(L )) = ﬂh(l/h,uh(h + zp + Zh//)11;;//11;;/11,(I )vh/vhn)
— h * h' *
= I/pup(h —+ zp + zhn)(v,(l,,))*(vh,, U}(I, )Uh//)
_ h/ h//
(Trpn(h + zp + zhu)v;”v;/v,g )vh/vhu)(v;”v,(ﬂ )vhu)(vhn)

n' h’ h’ h
= Vh2v}(1//) Uh// U}(‘/ ) ('Uh// 'U;;// )'U;;/ 'U}(L )Uh/ ('Uh// U;;// )U}S/ )'Uh// Uf(L”)

h)* % ') h ' h
= —ezh(zh)(v,(l//) vh,,v,(L, )* vh/)v,(I )( h/v,(L ) h//v,(L,,))

= nsz (Wes, (h+ z)ono”) (0o )0y

= pn(h+ zn)onoy) ) = (Ad(op) 0 s, ) (o))
B2y = B (omr i (B + 20 + 2 )0 vpvprogv )
= vprpin (B + zn + zp ) (Vpopevf) (V)
(T (0 4 2 )00yl o) (0n)* (o vnvf)*

= e (h+ z0)on (o v on v W) (o vion v i

= s (B + z)onol ot = (Ad(vn) 0 Gepay ) (5 )

B2 (unr) = Br(—es,, (W)l vpmu)

— —e., (WY (= (R)xHr (W + 21 + 217)

h) (h)* h)* h)
'”;(1//)“2) vnul vhv,(w) )* (v f(w))( ( ))

= — o, (W) (Wl ol yonune v (u o) o) ul™)

= Xn'(h + zn)vhup vy, = (Ad(va) © Apyz, ) (uns)

B (i) = Buxd (0 + 20 yojaly o)
= Xh/(h” + Zh//)(’Uh,, ) (Xh’(h/ + zn + Zh//)U}(L}},)UhUEZ} )UhU}(L}},)*))(U}(L}},))

= xn(h+ zh)(v,g,,) v,(i,))vhugh )vh(vé}},)*vg},))

= xwr (b + zn)onult v = (Ad(vn) 0 sy ) ()

B2 (upr) = Bu(ul)) = xnor (h + zn)onupovl, = (Ad(vp) © Gy ) (unr)

43
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[ ]
Bi(ug})) = Bh(xh// (h, —+ Zh)’l)h'llah//v;;)
= Xhn" (h —+ Zh)(Vh’Uh)(ug}/))(thh)*
= Xh//(h, + zh)vhug})vz = (Ad(vh) o &hjLzh’)(ug/L/))
[ ]

B3 (wn) = Bu (@ (W + 2no Yuivf)y o)
B (s (B (h) y (h) L (R)xyy (o (k)
Br (T puns (R + 2 ) (v ) (Wi o (B 4 20+ 200 )00 VRV 000 ) ) (Vg )

= e (h -+ 2) (vg o) Yonone v (o)1) 0}1))

= e (h + zn)vnvp vy, = (Ad(vh) © Gngzy, ) (Vnr)

B2 (onr) = Br(vl)) = pnr (h 4 20 )onopvf, = (Ad(vp) © G, ) (o)

B2 (0s)) = Bu(pnr (B + zn)ononoy)
=y (B + 20) (o) (W) (v on)*
= ‘u,hu(h + zh)vhvg},)v; = Ad(vh) (e} &h+zh, (1)}(1]}/))
Finally, we will check the relation S5 o 5 = Ad(up) o én o o Bp.
‘We have ) )
(Brp)(@nr () = B (up, ®ar(pan (x))un)

1" 1"
= (uhv;;nugf, )’Uh//)(’UZ//(I)h// (Ozh/urzh,, (pah/( )))(vh//)vzuug}, )*vh//u;;)
" N
= unviugl, @ (pon sz, (@)t onrus,
while

(Ad(un)@npbn) (@ ()

= uh([)(v;;//q)hn (Othurzh,, (I )'Uh”))

)
_ x o (h") * (R")x *
= (upvj g, "upe ) (Wpn ®po (pany 2, ,, (x )uhu)(uh,,uh,, UVprup)
)

)
h//

= Uh’l);;//ugl// )Qh” (pathzh// (I)

Similarly, we have

uh” Uh// uh

(Br) (@ ()
— B (i D1 (peuns () yup)

h)x* x (h)x* h
= a0 on P (st a2 (i ()00 Jull)
(h)* (h)*_ (k)

= Uy 'U}(LN)’Uh(I)h’ (pah+zh +zpn (x))vhvh,, Up, 1
while

(Ad(up)anpBn)(@n (2))

= uhp(vh“ R Pp (Oéh”—',-zh-i-zhn (‘T) v vh” )
( )

h)*
= uh(uhuz//) 'U}(L//)’Uhuh/)(uh/ Qh’ pah+zh,+zh// (

(h)*, ()
= Upir VUpn VP (pah—i-zh—i-zh//( ) 'Uhvh// uh//

Now we will again check the relation on all the unitaries containing a symbol
other than h.

)
v,

h)x (h *
)’U, )(’U,h/vh'U}(L//) ug//)uh) Up,
)
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[ ]
(ﬁhﬁ) (unr)
= By, ("% + 3" an(g) g+h,uh,tg0>*))
geG
= uhv,tuug},”)vhu (=€, (h" g sy s>
h// % h// % *
—|— Z Eh//_,’_zh// (g —|— h/)ah/ (g)'l};//t;Jrh)/’Uh//’Uhuugu ) Uhlluztgh) )
geG
_ w (W), B s(h") (h)*
= upVintyy ' (—€z,, (K)s" Jupns
+ 3 €nria (g + Wan (s ) ulh ) onrut0),
geG
while

(Ad(un)anpBr) (un)
= i (h)yunp(—es,,, (W Yormulls vl yus,
= _ezh// (hl/)uh

. . 0 X " B )%
(5@, sP* 4 Z an(9)€nrsz,, (g + h")t gﬁh,,vh,,ug,, )t_gh ) )uz,, )

geG

50+ 3 )
geG

—€z,1 (h/I)Uh’Uhuugu )(S(h )’Uh//S(h)

// h// « h
+ Z an(9)an(g +h")enr 1z, (g +h")ty th )Ugw ) vh”uht{(]-i-);’)
geG

h'! "
= ’U,h'U;;//ug” )(—ezh// (h//)s(h )’Uh//S(h)*

+ Z apr (g + hl)eh”-l-zhu (g)tgh//)’ug}/ ) Vpr U t(+)h/)
geG

1"

= Uhv;://ug}/ )(—ezh,, (h”) (h“) h//S(h)*

h h'" )% * *
+ Z ap’ (g)eh//_;’_zh’” (g —+ h/)t§]+f3’u§l” ) 'Uh//uhtgh) ),
geG
where we have used (5.0)).

[ )
~ h/
EIC)
= B (uful ol v [s D " (0
)% (k' ")
+ Zeh//+Zh,+zh/ (9 + h)an(g)t +hvh'vi(z ) ( 't .(qh) Jun

geG
"

I B h’ h
= (uhv,’;,,ué,, )vhu)(vz,,uhnvz,ug, )vh/vhn)(v;,,vz,vg )vh/vhn)(v;,,v,(l,
/ " (h) BY o (h)xy s (R7)%
[—ez,, (W)xn(R" 4 zp ) (v ops"vuy; )(Oh Uy Vpr)
h' 7
'(’U;:N’U;:/’Ugh))*vh/vhu)(’U;:uS(h )*Uh//)

+ Z R +zp 42y, (g =+ h)eh/Jrzh,JrZh// (g + h)eh'”rz;w (g)ah (g)
geqG

h x (h)* * R )% * * h')x
(v,(L,,)vht((]_F;Ivhv,(I,,) )(vh,,vgh,)) vhn)(vh”vh,vgh)) Vpr Uprr)
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'(U;;//U;;/Ug}/)*vh/’U,;;//’Uh//)(U;;//tgh”)*’l]h//)]
T AR
Rt Up h''Up,
* h'! 1% ’ "
= uhvh,,ug,, )uhnv;/ug, )[ezh/(h/)ezh//(h)s(h) s
+ 3 —en (h+ 9)en,, (Wen (9)an (o)t utls vt Jufly o,
geG
where we have used (5.4) twice, while

(Ad(un)anpBn) (uy”)
= Xh(h)(_ezh/ (h/)Xh(h/N + zhu))uhﬁ(v;,,v;/ugf )*Uh/u;;//vh//)u;

= €0 (W )ewriz,, (W)un(Whufls wnr) (v gl )
(Xh/(h/)u;;,’u,;;,l )*(’Uh/S O)U;’; S h )* Z ah/ 6h’+zh/ (g—i—h’)vh/t;?zh,vhlugf ) f]h,)*)uh/)*
geqG
* h)* * " * * 1\ * * R )x *
'(Uhlug.b/ ) ’Uh/)(uhu(s(h )S(O) =+ Z a/h”(g)té+h)//uh”t(0) )) (Uh//'u;l//) ’Uhu)’u,h
geqG

_ y N Lo WP (0
= —¢.,, (W)enr gz, (R)upvyuy,, " wpn vy,

sy s +Z an (g)an (g + W )en 4, (g+h )t(h )ugf) vh«uh,,t(zh) ]ugf, i vp)ug,

geqG
h// h/
= uhv;,,ug,/ )uhuv;,ug/ )
’ h/ h// *
lez,, (W)€, (R)s ™ vp st

h * * *
+ 3 —an(9)es,, (h+ g)es,,, (Men (@t bl oniit Pl v s,
geG
where again we have used (G.1J).
[ ]
(Bnp) ()
= BuCan (W Yy vpl o [s Mool
M (R 7Yy
—|—Zah/ g €h+zh/+zh”(g+h) E]-‘,-)h'vh”v}(ﬂ ) (/ ) gh ) ]
geG

’U,h//)
h h R') o« (h)x h h)* h
(ugu)) (U}S//)vhugl/ )’Uhv}(z”) ) (U}(L//)vhvh/vhU}(Lu) )(U}S//))
[xn (B + 2zn + zhu)(vhs(o)vh)(vg},)) (U,S},L,)vhvh/vhv,(;},)*) (v,(i,)vhs(h )*vzv,(i,)*)

+ Z ap’ (g)eh—i-zh/-i-zhu (g + h )eh—i-zh (g + h )eh’—i-zh-l-zhu (g)
geqG

0 h h « (h)x h W) s (e, (R N, x (h)x
(vhtéﬁh,vh)(v}(l,/)) (v,(l,,)vhvh ’Uh’U}(l//) ) (U,(I,,)vhugl/ )vhv,(l,,) )(’U](I,,)’Uht(h) vhv,(l,,) )] (u

— u oo™ v e (1)@, 5
0) () 1) (1) ()

+ Z ah/ g ezh+zh/+zhu (h )eh/+zh/ (g)tg+h/vh uh g h'! uh” 9
geG
while 5 o
(Ad(un)npBn) (ufy )
= upxn (h)p(xn (W + zn + zhu)v,(l//)vhugf )U;vg}) Yuj,
B % x  (R)* (h) (h) (h)*
oo (W yun (o v un) (! o)
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R : WY
(UZ'“Z/ )*(Uh’s Vg 4 Z an(9)€nr+z,, (9 + h')ont Eﬁzh’vh’ug’ )t_«(;h " Yups)
geG

h)* h)x (h h
(uhuz ) vh)*(uZuﬁl,,) v,(L,,)vhuh/v;;ug )uh)*uz

= a0 ol v (—esy sy, ()5 O, s

h " h)x (h
+ Z an(g) €zntzp+zpm (h )Ghurzh, (g)t(ﬁh/vh%/ )té ) ))vpv ;(w) Ugw)

geqG
¢ "
(Bup) (i)
= Bh(Xh” (h”)u;;//ugf/ )*’Uhu (S(O)’U*,,S(h//)*
h// 17 %
+ D anr(g)enria, (9 + Wt im0 )
geqG
h h)_ (h)x « (h)* h
(UELII)) (U}S//)UEI ) Uhuh/vhv}g//) ) ( f(L”))
J=ep (R)xnr (W =+ 20 + 20 ) s (0 ) (00 vy, s P vz 07
+ Z Qpt (g)eh”+zh// (g —|— h//)eh/+zh+zh// (g)
geqG
h h h w ok (h)* h x o« (h)* h
téﬁh// () (o u e i) ot o 1)
= —ufl v onunvgul [= e, (W) xnr (0 + 21 + 20)s My s )
+ Z A g eh’”"’_zh” (g + h )Eh’-i-zh-i-zh” (g)ﬁ( )h//uglh)*vhu;kl/tgh/) ]U;’U}(l]}/)*ug}/)
geG
= €z, (hI)EZ; ” ( h”)ugl//)*vi(j/l/)vh'llh Uhugh)
UhS —|— Z ah// €h+zh g + )t((;j_)h//uglh)*vhuh/tgh )]vzvéﬁ)*ug/),
geaG
while

(Ad(un)anpbn) (u )

= wp e (B) (=€, (B) Xt (W + 20+ 2z S0l ul oy o) Y,

h h
= 2, (W)es,, (o Yun (w0l opup v u,)

O (g on
(0™ 37 an(g)ens, (9 + Wty ohuf e yun)* (il on)

geG

(Uh/ Z (lh/ g+h,’LLh/t(O) ))
geqG

(gl on) " (wgugl) ofl opu vl wn) s,

= _EZh (h )Ezh” (Zh“)ugﬁ’) U](I}/l/)vhuh/vhu(h)

* * h *\ %
(SO0 £ 3 an(g)en e (g + WDt ul100%)

geG
(s 5@ 4 Zah/ t( h/uh/t(o) )* vhv,g}f/) ug,/)
geG

h
- _ezh (h )ezhn (Zh”)u;b//) ’U}(L//)'Uhuhfv;:ug )
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[S(h)vhS(h,) + Z a,h(g)a,h, (g —+ h’)ethzh (g + h)tgh)uzh)*vhuz/téiz,,]
geG

h)x (h
’Uh,U](I//) u;lll)

= T€y, (h )ezh// (Zh//)ugﬂ,) v,(i,)vhuh/v;u( )

[sM s + Z an (9)€ntz, (g + 1)t ((]Jr)h,,uglh) vhuh,t_(q )]va,(J,L,) uz,,)
geG
° ’
(Bup) ()

= B e (1) ull o

* " x h' 7Y s
(5@, s(h)* 4 Z an (9)€n 4=, (g + h)t gszh,vh/ugl )y E]h ) Yup)
geaG

B " h'’
= — (Wl o) (W o) (W o)
n "
e (0" 4 z20)s ™ (Wiop o) (s o)
!/
+ ) an(@)en 2, (9 + h)enr sz, (o)
geG
" " " h'
)'Uh//)* ('U;';// UZ/ Vp' )'Uzch// t((]h )*'Uh//] (’U;;// UEI// Vp ’U,;;)
(h) (R")x ()%

Uh//vh/

(h) (h
tq-‘rh/ (’U;;// Uh/

h//
= —uhv;//v,(l/ )’Uh// [Xh/(h,ll + Zh//)s
W% (R " '
+ Z Qh (Q)Eh’+zh, (g + h/)Gh”-i-zh’,, (g)t( )h’vh”vl(z’ ) (/ )tgih )*]U’;z” )*Uh”u;;a
geqG
while

(Ad(un)anpbn) (ugl))
= unxn (W)X (W + 200 YWinults oo Vi,
(h")x_ (') (R )% (h”)*

——Ezh"(h’)uhXh/(h”)[uh//uh/ vy Uhus( )U* g w
h '’ « By (B .
+Z€h+zh,l+zh// (g+hl)ah/( )uh”ugﬂ )*’U}(LI )vh”thrh’Uh”U}(L/ ) u;«/ )téh )*U}w]
geqG
x  (h")x «
'(uh”uh” ’Uh//)uh
14 B .
zhu(h’)uhuhu’uz, )* (, )vh//[ (h)’U //,U}(L ) (h )%
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+ Z an(9)€n vz, +2,. (9 + h”)v}(w)vht(-i-h”vhvh” Upinty")
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(h)*, () [s (R) %, ()% (h)x

= Uy VUpir Vh|S Uh’U S

h ryx (h
+ Z an (9)€nt2y,+2,, (9 + h”)t((ﬁ;l//v;v,(ﬂ,)*ug,,) (h)*)

geqG
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while B
(Ad(un)anpBn)(un)
= un (o () p(ufh))
:uh(Xh”(h)[Uzug/L,) U}(J/L/)Uhs(h,) * (h/)*s(h)*
+ Z €tz 24 (9 + B )anr (g )U;;“g}/) Ul(zf’l’)vhtthh”Uhvl(z}'l')*ug}’) S un])us,
geG
(h)x, (h) [S(h’) (h)* _(h)*

= Uy Upi Up VL, S

* (h)* *
T Z €hrt 242, (9 + B an (g )t_ZnLh”vhU}(z”) u;w) ]

geG
[ ]
S~ h
(Bnp) (uf)))
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+ Z €'tz 20 (9 + B )ans (g)tq+h“vh”;(w) Ugw)t(h) Jun)
geG
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e (b 20 )0 s Dvwn (o) (vnvmn vy (vr 50}
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geG
Wt on (o) (00 07) (om0 (ont 7ol
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geG
while ~ .
(Ad(un)ann) (uih)
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geG
[ ]
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= &hV_hezh (h// + zp + Zh”)ezh/ (h/)ezh” (h)

(n") n' (h)x (h") (h")x *
Uh’l)huuh” Uh//’l}h/uh Uy, Uy, "Un/Ups ~ UprrUp,

where we have used relations (5.4]) and (5.5]), while
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(Uz/ug} )*vh/)(uz,,ugﬁ ) VR U,
= Enlnes, (hll + zp + Zh”)fzm (hl)ez;w (h)

1"

(r") n, (k)% (h") (h/")* *
uhvh,,uh,, uh//vh/uhu ’Uh vh/uh// Vprr Uy,

(Bnp)(vf) )
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(Buf) (ow)
=By (§h/u;ug}l)*vh/)
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