
Eco-Driving for Connected and Automated Vehicles in Mixed Traffic

Urban Environments with Signalized Intersections

Alireza Ebrahimi, Sahand Mosharafian, Javad Mohammadpour Velni

Abstract— This paper presents a trajectory planning method
for connected and automated vehicles (CAVs) operating on
a two-lane urban road that includes signalized intersections
with a mix of human-driven vehicles (HVs) and CAVs. The
proposed approach aims to find the optimal trajectory for CAVs,
considering factors such as energy consumption, travel time and
passengers’ comfort. To achieve this objective, each CAV utilizes
data obtained from various sources. Vehicle-to-infrastructure
(V2I) communication enables access to information such as
traffic light cycle lengths, timings and positions. Vehicle-to-
vehicle (V2V) communication allows CAVs to gather information
from other CAVs, including their positions, velocities and
predicted trajectories. Additionally, on-board sensors can also
provide data about surrounding vehicles. Dynamic programming
(DP) is employed to predict the velocity profile of the CAVs over
a long horizon, incorporating information from traffic lights
and the vehicle’s specifications. The predicted velocity profile is
then fed into a model predictive controller (MPC) to follow the
CAV’s trajectory. The MPC is capable of handling disturbances
encountered during the maneuvers, such as stopping behind a
red traffic light or performing lane changes. Extensive simulation
studies demonstrate how various objectives in terms of saving
in energy consumption and travel time are achieved.

I. INTRODUCTION

Adaptive cruise control (ACC) is a driver-assistance system

that enhances safety and efficiency. However, incorporat-

ing vehicle-to-vehicle communication (V2V) and utilizing

Cooperative Adaptive Cruise Control (CACC) not only

improves safety and efficiency ([1], [2], [3]) but also enhances

traffic flow by reducing the headway gap between vehicles

([4], [5]). Vehicle-to-infrastructure (V2I) is another form of

communication that enables the sharing of road information

with vehicles. In a recent study [6], V2I-enabled eco-driving

control was introduced to reduce energy consumption in

vehicles by up to 40%. Different control and path planning

methods have been employed to find more efficient control

strategies by leveraging the data acquired from V2V and

V2I. In [7], an accurate and efficient energy consumption

approach was presented and used to develop eco-driving

systems for electric vehicles. Transition from human-driven

vehicles (HVs) to fully automated ones is a gradual process.

Authors in [8] proposed a unified multi-class car-following

model for a heterogeneous platoon moving in a single lane

roadway.

In terms of control, model predictive control (MPC) has

become a popular framework that has also been employed
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for autonomous vehicles. Numerous studies have explored

the application of MPC in autonomous driving(see, e.g.,

[9], [10], [11]). In a recent study (see [12]), an eco-CACC

strategy was proposed for CAV platoons driving through

successive signalized intersections. The study proposed the

use of MPC in follower vehicles to optimize energy efficiency.

Another study (see [13]) presented a stochastic energy-

efficient adaptive cruise control approach that utilized V2V,

V2I and radar information. In [14], a stochastic MPC

design was developed specifically for CACC applications

in a mixed-autonomy environment with the focus being

on considering uncertainties in the behavior of both AVs

and HVs. Furthermore, in [15], an eco-driving trajectory

planning approach was proposed for heterogeneous connected

autonomous vehicles in a single-lane urban environment. The

latter study utilized dynamic programming to find the optimal

velocity profile for the platoon leader and employed CACC

for the followers to track the leader. Existing works mostly

focused on single lane roads or highway roads that have no

traffic light. However, there has been less emphasis on eco-

trajectory planning in a mixed traffic signalized urban roads

with multiple lanes, to the best of our knowledge. In this

paper, an eco-trajectory planning approach is proposed for

striking a balance between energy consumption, travel time

and passenger comfort in a mixed traffic signalized multi-

lane urban road. The proposed approach utilizes dynamic

programming (DP) to predict a long-range velocity profile,

while achieving the desired balance between several factors.

The predicted velocity profile is then passed to an MPC

scheme in order to find the optimal control inputs for the

vehicle. To account for any disturbances that may occur along

the way, DP would be solved at predefined intervals. This

allows the system to adapt and compensate for any changes

or unexpected events that may affect the last calculated long-

range trajectory.

The contributions of the paper are summarized as follows:

• Eco-trajectory planning for autonomous vehicles while

balancing between fuel consumption, travel time and

passenger comfort;

• Considering mixed traffic in a two-lane signalized urban

environment.

• Optimizing for lane change and overtake.

• Adaptation to road conditions, i.e., human-driven vehi-

cles and any changes in traffic lights timings.

The remainder of the paper is organized as follows. The

system model considered in this study is briefly described in

Section II. The proposed DPMPC-based trajectory planning
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approach is discussed in Section III. Simulation results are

presented in Section IV, and concluding remarks are provided

in Section V.

II. SYSTEM MODEL

A two-lane signalized urban road, with NCAV autonomous

vehicles and NHV human-driven vehicles is considered in

this paper. Notation i ∈ {1, 2, ..., NCAV +NHV } is used to

represent ith vehicle. The distance between vehicle i and its

predecessor vehicle on the same lane is defined as di(t) =
xi−1 − li−1 − xi, where xi is the position of the ith vehicle

and li−1 is the length of the front vehicle. In order to mitigate

the risk of collisions, a headway gap is maintained between

vehicles. Opting for a large gap can lead to traffic congestion,

while a small gap increases the likelihood of collisions. The

formulation used to calculate the headway gap between the

ith vehicle and its predecessor on the same lane, considering

different vehicle types, is

d∗i (t) = Hi−1 vi + d0 (1)

Hi−1 =

{

Ca i− 1 ∈ CAV
Ca + Ch i− 1 ∈ HV

(2)

where d0 is the standstill distance and Hi−1 is a function

that outputs a constant based on the preceding vehicle. In (2),

Ca is the headway constant if the vehicle in front of CAV is

autonomous, Ch is the additional headway constant for the

case that there is a human-driven vehicle in front of the CAV.

The difference between the current distance of ith vehicle

and its predecessor and the desired distance is denoted by

∆di and defined as

∆di(t) = di(t)− d∗i (t) (3)

In this paper, the kinematic bicycle model is used to

incorporate the longitudinal and lateral movements of each

vehicle. The model we use (see Figure 1) has been well

documented in the literature. Interested reader is referred

to, e.g., [14], for model description and conversion to a

discrete-time state-space model. The final state-space model

(as described in [14]) for the ith vehicle is

xi(k + 1) = (I + tsAi)xi(k) + tsBiui(k) + tsCivi−1(k),
(4)

where k is the discrete time instant, xi is the state vector, ui is

the control input vector, and Ai, Bi and Ci are the state-space

matrices of the continuous-time state-space representation (see

[14]). Furthermore, I is the identity matrix, and ts denotes

the sampling time. States and control inputs are defined as

follows:

xi(k) = [∆di(k) yi(k) θi(k) vi(k) ai(k)]
T , (5)

ui(k) = [ua
i (k) u

ϕ
i (k)]

T , (6)

where yi denotes the lateral position of the vehicle, θi is

the vehicle steering angle with respect to the x-axis (see

Figure 1), and vi and ai are the velocity and acceleration of

the vehicle, respectively. Furthermore, uϕ
i and ua

i denote the

steering rate and the vehicle’s acceleration input, respectively.

Fig. 1. Linear kinematic bicycle model of a vehicle.

III. DPMPC-BASED TRAJECTORY PLANNING

APPROACH

The trajectory planning problem for each vehicle can be

approached from three aspects:

• Energy consumption that depends not only on the road

length and vehicle specifications but also on traffic lights

and congestion.

• Passenger comfort that focuses on the smoothness of the

driving experience, where excessive changes in velocity

can cause discomfort for passengers.

• Travel time that primarily depends on the road conditions,

also the velocity and acceleration. Traffic components

such as human-driven vehicles or traffic lights require

vehicles to decelerate and accelerate, affecting travel

time.

It is noted that the three aforementioned criteria are conflicting.

For example, reducing travel time may result in increased en-

ergy consumption and decreased passenger comfort. Similarly,

reducing energy consumption may increase travel time and

have variable effects on passenger comfort due to the velocity

changes. To find the optimal trajectory for each vehicle while

balancing the aforementioned factors, dynamic programming

(DP) can be employed. DP predicts the best velocity profile

for each vehicle over a long distance in the absence of other

vehicles while striking a balance between energy consumption,

travel time and passenger comfort. In our proposed approach,

this optimal profile then serves as a velocity reference

for a model predictive controller (MPC) to follow while

avoiding collisions, stopping at traffic lights, and performing

lane changes. DP solves the problem at predefined distance

intervals to account for any disturbances occurring along

the way that prevented the MPC from precisely following

the velocity profile. This proposed approach is referred to

as DPMPC (i.e., combination of dynamic programming and

model predictive control).

A. Long-range Velocity Profile Optimization Using DP

The first step in determining the optimal trajectory of a

vehicle, involves obtaining the velocity profile along the route.

This step assumes an empty road with no other cars present.

To achieve this, the specifications and current status of each

vehicle along with road information, are utilized.

These data are then used to calculate the following cost

along the entire route, resulting in finding the optimal velocity
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profile for the vehicle from the starting point to the destination:

JDP =

tf
∑

t=tst

(

αE(t, v(t), v(t−1))+β (v(t)−vd)
2+γ a(t)2

)

.

(7)
The above cost function consists of three terms as follows:

• Energy consumption: The term E(t, v(t), v(t − 1))
represents the energy consumption along the way and

α is the associated weight.

• Velocity difference: The term v(t)− vd represents the

difference between the velocity of the car v(t) and the

desired velocity vd, and β indicates the influence of the

velocity difference on the cost function. If the desired

velocity is equal to the speed limit, this term represents

the travelling time criterion.

• Passenger comfort: a(t) represents the acceleration of

the vehicle, and γ is the associated weight. The last

term penalizes large changes in velocity, hence ensuring

passenger comfort and smooth driving.

The coefficients α, β and γ are used to balance the influ-

ence of energy consumption, travelling time, and passenger

comfort, respectively, in the overall cost function. The starting

time tst and ending time tf are used to represent the time

equivalents of the starting and final positions, respectively.

1) Energy consumption: To calculate the energy consump-

tion for an electric vehicle (EV) at the time instant t, the first

step is to calculate the energy at the wheels as

fT (v(t)) = 1/2 Cd Aρa v(t)
2 + µf mg cosϕ

+mg sinϕ,
(8)

EW (v(t), v(t− 1)) = 1/2 m (v(t)2 − v(t− 1)2)

+ fT (v(t))∆x.
(9)

To compute the total force applied to the wheel, (8) is used.

In this formula, Cd is the drag coefficient, A is the projected

frontal area of the vehicle and ρa is the air density, µf is

friction coefficient, m is the mass, g is the gravity and ϕ is

the road grade assumed to be zero in this paper. Therefore,

the total energy can be calculated as the difference in kinetic

energy between two consecutive time samples added to the

energy by fT (v(t)) along the distance ∆x. Equation (9)

shows the calculation of energy on the wheels.

When EW is positive, it indicates that energy is flowing

from the motor to the wheels. On the other hand, when

EW is negative, it indicates that the engine is acting as a

generator and hence kinetic energy of the vehicle is converted

into electrical energy and stored in the batteries (called

regenerative braking).

Required torque form the motor can also be calculated as

T (t) =
r

ϵ0 ηdt
×

EW (t)

∆x
, (10)

where r is the wheel radius, ϵ0 is the gear reduction ratio,

and ηdt is drive-train system’s mechanical efficiency.

To determine the conversion efficiency, one can consult

the efficiency map of the vehicle, which provides information

on the required torque at the current velocity. According to

[7], the efficiency of an electric motor in regenerative mode

is calculated as ηr = exp(−0.0411/|a|). Using the above

definitions, E(t) is calculated as

Fig. 2. Example of a vehicle trajectory generated using the predicted
velocity profile by DP. The gray-colored area represents the search space,
red dashed lines represent the periods during which the traffic lights are red,
and blue line represents the trajectory of the vehicle.

E(v(t), v(t−1)) =

{

EW (v(t), v(t− 1)) / 3600) / ηt;EW ⩾ 0
EW (v(t), v(t− 1)) / 3600) / ηr;EW < 0

(11)
where ηt is the traction efficiency computed using the

efficiency map of the vehicle.

2) Cost optimization: In order to minimize the cost

function in (7), dynamic programming (DP) is used. Starting

from a stationary position, DP calculates the cost in the search

space to find a sequence of velocities that minimizes this cost.

Searching the entire search space would be computationally

cumbersome. To reduce computations, three methods are

employed:

• The first approach involves finding upper and lower

time bounds at each location. The lower time bound

represents the time required for the vehicle to reach the

desired point at maximum velocity. By defining these

bounds, a time interval is established at each location

and valid solutions lie within this interval.

• The second approach entails creating a lookup table

for the cost of each time instant. Since velocities are

discretized, each vehicle can only have certain velocities

at each time step. Consequently, a lookup table can be

constructed to store the calculated costs. This results

in a matrix V with the dimension of |v|×|v|, where

each element of the matrix vi,j represents the cost

of transitioning from vi to vj . Transitions that are

impossible due to a limited acceleration are assigned an

infinite cost.

• The third approach involves eliminating solutions that

result in passing through red traffic lights before reaching

the complete solution.

Figure 2 shows an illustrative example of a vehicle

trajectory generated using the predicted velocity profile by

DP.

B. MPC-based Tracking of the Velocity Profile

The optimal trajectory taking into account the cost function

(7) is determined based on the predicted velocity profile by

DP. However, achieving this trajectory is only possible if

there are no obstacles and no changes in the road condition,
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as any disturbance could cause deviations from the DP’s

prediction. To overcome this problem (e.g., mixed traffic),

using a low-level controller is necessary. The controller’s

role is to use the optimal velocity profile generated by DP

as a reference and attempt to follow it while maintaining a

safe distance from other vehicles. Additionally, the controller

should be capable of overtaking slower vehicles in front and

stopping behind red traffic lights. We propose to use a model

predictive controller (MPC) for that purpose.

To compensate for deviations from reference, DP is solved

repeatedly at each predefined distance step.

System constraints over an MPC prediction horizon for

the ith vehicle are as follows:
vmin ≤ vi(k) ≤ vmax, amin ≤ ai(k) ≤ amax,

θmin ≤ θi(k) ≤ θmax, di(k) > 0.
(12)

Furthermore, the MPC cost is assumed to be

JMPC =

Nh
∑

k=0

[

c1 (vi(k)− vDP
i (k))2 + c2 ai(k)

2

+ c3 (yi(k)− yri )
2 + c4 θi(k)

2

+Ri(xi(0), xi−1(0), vi(0))

× [c5 ∆di(k)
2 + c6 (vi(k)− vi−1(k))

2]
]

(13)

where

Ri(xi(0), xi−1(0), vi(0)) = max{0,− w1 (xi−1(0)− li−1−

xi(0)) + w2 vi(0)}.

MPC optimizes the vehicles’ control inputs over a prediction

horizon of length Nh by minimizing objective function (13)

subject to the constraints (4) and (12). The MPC cost in (13)

consists of the following ingredients:

• To follow the DP velocity profile, (vi(k) − vDP
i (k))2

represents matching the vehicle velocity vi with the

predicted velocity profile vDP
i .

• To ensure passenger comfort, ai(k)
2 is added to penalize

large acceleration and deceleration.

• To follow the reference lane, (yi(k) − yri )
2 is used to

represent following the lateral reference, in other words,

the lane that the vehicle should be in. The reference

lane (yri ) would be given to the MPC at each iteration

as described in Section III-C.

• To penalize steering, θi(k)
2 is added to represent

minimizing lateral movements or steering.

• To allows velocity and distance matching, c5 ∆di(k)
2 +

c6 (vi(k) − vi−1(k))
2 represents maintaining the de-

sired distance and matching velocity with the pre-

decessor, in the close distance defined by function

Ri(xi(0), xi−1(0), vi(0)).

C. Lane Change

Given different conditions, each vehicle may have a

different reference velocity to follow. If the front vehicle

has a smaller velocity reference, it can disrupt the trajectory

of the vehicles behind. This situation may occur when the

front vehicle is a heavy-duty connected automated vehicle

(CAV) or even a human-driven vehicle. To ensure that the

Fig. 3. Configuration of the proposed control structure.

predicted trajectory is followed in such cases, a lane change

may be necessary. To determine the need for a lane change, the

average of the difference between the vehicle’s velocity and

the predicted velocity over the past Tc samples is calculated

as

L(k) =

k
∑

t=k−Tc

(v(k)− vr(k))
2, (14)

where vr(k) represents the reference velocity at time instant

k. To initiate a lane change, several conditions must be met:

• The average velocity difference should be greater than

a predefined threshold.

• The speed in the adjacent lane should be higher than

that of the front vehicle.

• There should be a safe distance between the vehicles in

the adjacent lane.

The last two conditions can be evaluated using onboard

sensors. When all the conditions are met, the lateral reference

of the ith vehicle (yri ) is adjusted so that the controller can

initiate the lane change. This parameter would be given to the

MPC as the reference lane to be followed. Figure 3 illustrates

the control diagram of each autonomous vehicle, and the

proposed control algorithm is also shown in Algorithm 1.

IV. SIMULATION RESULTS

We demonstrate the advantages of fusing DP and MPC,

where DP is used for predicting the optimal velocity profile

and subsequently MPC to follow that profile (DPMPC

approach); a comparison is also made against solely using

MPC following a desired constant velocity. The simulation

scenario involves a 2km, two-lane urban road with three traffic

lights positioned at 775m, 975m, and 1175m. On the first

lane, there are seven CAVs with an initial gap of 25 meters.

Additionally, there are two human-driven vehicles; one at

195m and the other at 345m, both traveling at a constant

velocity of 5m/s. The first vehicle is on the first lane, while

the second vehicle is on the second lane. Figure 4 shows the

simulation setup. In both approaches, the CAVs are required to

maintain a safe distance with their preceding vehicle, change

lanes to overtake the human-driven vehicles, and come to

a stop behind the traffic lights during the red signal period.

In DPMPC, DP is used to make long-range planning for
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Fig. 4. Simulation setup for comparison purposes.

Algorithm 1: Control Algorithm

Data: Traffic lights position and timing, front CAV

trajectory, immediate cars positions and

velocities

Result: Reaching destination safely and efficiently

1 x← 0 ; // longitudinal Position

2 y ← 1 ; // Lateral Position

3 v ← 0 ; // Velocity

4 vd[]← 0.0 ; // Array of Size Tc

5 i← 0 ; // Iteration Counter

6 vprofile ← Solve MPC (minimize (13) subject to (4)

and (12));

7 while x ̸= xdestination do

8 i← i+ 1;

9 u← Solve MPC (minimize (13) subject to (4)

and (12));

10 v ← Current velocity;

11 vf ← Front vehicle speed;

12 vd[i MOD Tc]← v − vprofile;

13 if (x MOD ∆ddp) == 0 then

14 vprofile ← Solve DP (see Section III-A);

15 end

16 if Average(vd) > vthreshold then

17 va ← Adjacent lane speed;

18 da ← Adjacent lane vehicle distance;

19 if va > vf and da > Safe Distance then

20 Change lane reference

21 end

22 end

23 end

24 0

Fig. 5. Simulation results showing: (a) energy consumption, and (b) travel
time

the CAV, where the optimized profile is then utilized as the

reference velocity vDP
i in the MPC cost (13). In contrast,

the second approach solely relies on MPC, where instead

of using the velocity profile predicted by DP, a constant

speed is used. This constant velocity is the road speed limit

assumed to be 15m/s. The simulation results in Figure 5

show a comparison between the two approaches. Here is a

summary of our findings:

• Energy consumption: The proposed approach reduces

energy consumption by 9.57% on average compared to

the MPC (only) approach. This indicates that employing

DP to predict the best velocity profile can lead to more

efficient energy usage.

• Travel time: On the other hand, the proposed approach

exhibits an average increase of 8.98% in travel time

compared to the MPC (only) approach. This implies that

following the predicted velocity profile from DP may

result in slightly longer travel times.

The above findings highlight the trade-off between energy

consumption and travel time when considering the use of

DP for velocity profile prediction in coordination with MPC.

While energy efficiency improves, travel time increases, and

this is expected. Those factors can be balanced based on the

specific goals and priorities of the system in question.

Figure 6 shows the velocity profile for vehicles 1, 3 and 7.

The subplots on the top correspond to the proposed DPMPC

approach and the bottom plots are the results of using MPC

only. The red line in the top subplots shows the predicted

velocity profile by DP that keeps updating every 25 meters.

The green line is the actual velocity of the vehicle along the

way. The difference between these two lines is due to other

HVs and CAVs and also traffic light timing. As observed,

for the first CAV, this discrepancy is less than the 7th CAV,

since there would be no CAV in front of the first one. The

bottom subplots show the results corresponding to MPC

approach in which the controller tries to follow a constant

speed. In this case, there would be higher acceleration and

deceleration since MPC controller takes into account neither

energy consumption nor the passenger comfort. As can be

seen, for the first and second CAVs, there would be a hard

braking at 750m due to the red traffic light.

Finally, Figure 7 illustrates the steering angle θ for vehicles

1, 3 and 7. As observed, each vehicle overtakes two HVs.

Upon examining the plots, it is evident that the initial lane

change occurs at a nearly identical position in both approaches

(MPC and DPMPC). However, the second overtake happens

at a closer location to the first one in the MPC approach. This

discrepancy is attributed to the fact that the average speed of

the vehicle in the MPC approach is higher compared to the

DPMPC approach.

V. CONCLUDING REMARKS

In this paper, a new trajectory planning method was

developed by combining the benefits of dynamic programming

and model predictive control. Dynamic programming was

used to optimize the velocity profile for each vehicle over

a long distance, and then, this profile was fed into MPC

as a reference to follow while avoiding collisions and

passing red traffic lights. Simulation results demonstrated

the viability of the proposed control design approach and

trade-off between energy efficiency and travel time when

comparing the proposed method with MPC only. Our results
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Fig. 6. Simulation results showing position-velocity profiles for vehicles 1, 3 and 7. The red plots are the results of DPMPC and the green ones are MPC
(only) results.

Fig. 7. Simulation results showing the steering angle. The subplots display θ w.r.t. the vehicle’s position for vehicles 1, 3, and 7. The red graph is the
DPMPC result, while the green one shows the MPC (only) result.

suggest that using the predicted velocity profile by DP is

beneficial in decreasing the energy consumption while also

slightly increasing the travel time. Other benefits of this

work include its scalability (due to the computations done at

individual vehicle’s level) and straightforward extension to

non-electric vehicles.
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