2024 American Control Conference (ACC)
July 8-12, 2024. Toronto, Canada

Eco-Driving for Connected and Automated Vehicles in Mixed Traffic
Urban Environments with Signalized Intersections

Alireza Ebrahimi, Sahand Mosharafian, Javad Mohammadpour Velni

Abstract— This paper presents a trajectory planning method
for connected and automated vehicles (CAVs) operating on
a two-lane urban road that includes signalized intersections
with a mix of human-driven vehicles (HVs) and CAVs. The
proposed approach aims to find the optimal trajectory for CAVs,
considering factors such as energy consumption, travel time and
passengers’ comfort. To achieve this objective, each CAV utilizes
data obtained from various sources. Vehicle-to-infrastructure
(V2I) communication enables access to information such as
traffic light cycle lengths, timings and positions. Vehicle-to-
vehicle (V2V) communication allows CAVs to gather information
from other CAVs, including their positions, velocities and
predicted trajectories. Additionally, on-board sensors can also
provide data about surrounding vehicles. Dynamic programming
(DP) is employed to predict the velocity profile of the CAVs over
a long horizon, incorporating information from traffic lights
and the vehicle’s specifications. The predicted velocity profile is
then fed into a model predictive controller (MPC) to follow the
CAV’s trajectory. The MPC is capable of handling disturbances
encountered during the maneuvers, such as stopping behind a
red traffic light or performing lane changes. Extensive simulation
studies demonstrate how various objectives in terms of saving
in energy consumption and travel time are achieved.

I. INTRODUCTION

Adaptive cruise control (ACC) is a driver-assistance system
that enhances safety and efficiency. However, incorporat-
ing vehicle-to-vehicle communication (V2V) and utilizing
Cooperative Adaptive Cruise Control (CACC) not only
improves safety and efficiency ([1], [2], [3]) but also enhances
traffic flow by reducing the headway gap between vehicles
([41, [5]). Vehicle-to-infrastructure (V2I) is another form of
communication that enables the sharing of road information
with vehicles. In a recent study [6], V2I-enabled eco-driving
control was introduced to reduce energy consumption in
vehicles by up to 40%. Different control and path planning
methods have been employed to find more efficient control
strategies by leveraging the data acquired from V2V and
V2I. In [7], an accurate and efficient energy consumption
approach was presented and used to develop eco-driving
systems for electric vehicles. Transition from human-driven
vehicles (HVs) to fully automated ones is a gradual process.
Authors in [8] proposed a unified multi-class car-following
model for a heterogeneous platoon moving in a single lane
roadway.

In terms of control, model predictive control (MPC) has
become a popular framework that has also been employed
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for autonomous vehicles. Numerous studies have explored
the application of MPC in autonomous driving(see, e.g.,
[9], [10], [11]). In a recent study (see [12]), an eco-CACC
strategy was proposed for CAV platoons driving through
successive signalized intersections. The study proposed the
use of MPC in follower vehicles to optimize energy efficiency.
Another study (see [13]) presented a stochastic energy-
efficient adaptive cruise control approach that utilized V2V,
V2I and radar information. In [14], a stochastic MPC
design was developed specifically for CACC applications
in a mixed-autonomy environment with the focus being
on considering uncertainties in the behavior of both AVs
and HVs. Furthermore, in [15], an eco-driving trajectory
planning approach was proposed for heterogeneous connected
autonomous vehicles in a single-lane urban environment. The
latter study utilized dynamic programming to find the optimal
velocity profile for the platoon leader and employed CACC
for the followers to track the leader. Existing works mostly
focused on single lane roads or highway roads that have no
traffic light. However, there has been less emphasis on eco-
trajectory planning in a mixed traffic signalized urban roads
with multiple lanes, to the best of our knowledge. In this
paper, an eco-trajectory planning approach is proposed for
striking a balance between energy consumption, travel time
and passenger comfort in a mixed traffic signalized multi-
lane urban road. The proposed approach utilizes dynamic
programming (DP) to predict a long-range velocity profile,
while achieving the desired balance between several factors.
The predicted velocity profile is then passed to an MPC
scheme in order to find the optimal control inputs for the
vehicle. To account for any disturbances that may occur along
the way, DP would be solved at predefined intervals. This
allows the system to adapt and compensate for any changes
or unexpected events that may affect the last calculated long-
range trajectory.

The contributions of the paper are summarized as follows:

e Eco-trajectory planning for autonomous vehicles while
balancing between fuel consumption, travel time and
passenger comfort;

o Considering mixed traffic in a two-lane signalized urban
environment.

o Optimizing for lane change and overtake.

o Adaptation to road conditions, i.e., human-driven vehi-
cles and any changes in traffic lights timings.

The remainder of the paper is organized as follows. The
system model considered in this study is briefly described in
Section II. The proposed DPMPC-based trajectory planning
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approach is discussed in Section III. Simulation results are
presented in Section IV, and concluding remarks are provided
in Section V.

II. SYSTEM MODEL

A two-lane signalized urban road, with N¢ 4 autonomous
vehicles and Ngyv human-driven vehicles is considered in
this paper. Notation ¢ € {1,2,..., Noayv + Npgv } is used to
represent ith vehicle. The distance between vehicle 7 and its
predecessor vehicle on the same lane is defined as d;(t) =
Tj—1 — l;—1 — x;, where z; is the position of the ith vehicle
and [;_; is the length of the front vehicle. In order to mitigate
the risk of collisions, a headway gap is maintained between
vehicles. Opting for a large gap can lead to traffic congestion,
while a small gap increases the likelihood of collisions. The
formulation used to calculate the headway gap between the
ith vehicle and its predecessor on the same lane, considering
different vehicle types, is

d;k(t) = HZ',1 v; + do
H¢1={ C, i—1e€CAV

ey

CotChn i-1€HV @
where dg is the standstill distance and H;_; is a function
that outputs a constant based on the preceding vehicle. In (2),
C, is the headway constant if the vehicle in front of CAV is
autonomous, C}, is the additional headway constant for the
case that there is a human-driven vehicle in front of the CAV.

The difference between the current distance of ¢th vehicle
and its predecessor and the desired distance is denoted by
Ad; and defined as

Ad;(t) = d;(t) — d; (t) 3)

In this paper, the kinematic bicycle model is used to
incorporate the longitudinal and lateral movements of each
vehicle. The model we use (see Figure 1) has been well
documented in the literature. Interested reader is referred
to, e.g., [14], for model description and conversion to a
discrete-time state-space model. The final state-space model
(as described in [14]) for the ith vehicle is

Z‘Z(k + 1) = (I + tsAi) .Tz(k‘) + tsBiui(k) + tsCivi_l(k:),

where k is the discrete time instant, x; is the state vector, ui(@
the control input vector, and A;, B; and C; are the state-space
matrices of the continuous-time state-space representation (see
[14]). Furthermore, I is the identity matrix, and ¢ denotes
the sampling time. States and control inputs are defined as
follows:

zi(k) = [Adi(k) yi(k) 0:(k) vi(k) a;(k)]", )

ui(k) = [ug

?

(k) uf

K2

(&),

where y; denotes the lateral position of the vehicle, 6; is
the vehicle steering angle with respect to the x-axis (see
Figure 1), and v; and a; are the velocity and acceleration of
the vehicle, respectively. Furthermore, uf and u{ denote the
steering rate and the vehicle’s acceleration input, respectively.

(6)
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Fig. 1. Linear kinematic bicycle model of a vehicle.
III. DPMPC-BASED TRAJECTORY PLANNING
APPROACH

The trajectory planning problem for each vehicle can be
approached from three aspects:

o Energy consumption that depends not only on the road
length and vehicle specifications but also on traffic lights
and congestion.

Passenger comfort that focuses on the smoothness of the
driving experience, where excessive changes in velocity
can cause discomfort for passengers.

Travel time that primarily depends on the road conditions,
also the velocity and acceleration. Traffic components
such as human-driven vehicles or traffic lights require
vehicles to decelerate and accelerate, affecting travel
time.

It is noted that the three aforementioned criteria are conflicting.
For example, reducing travel time may result in increased en-
ergy consumption and decreased passenger comfort. Similarly,
reducing energy consumption may increase travel time and
have variable effects on passenger comfort due to the velocity
changes. To find the optimal trajectory for each vehicle while
balancing the aforementioned factors, dynamic programming
(DP) can be employed. DP predicts the best velocity profile
for each vehicle over a long distance in the absence of other
vehicles while striking a balance between energy consumption,
travel time and passenger comfort. In our proposed approach,
this optimal profile then serves as a velocity reference
for a model predictive controller (MPC) to follow while
avoiding collisions, stopping at traffic lights, and performing
lane changes. DP solves the problem at predefined distance
intervals to account for any disturbances occurring along
the way that prevented the MPC from precisely following
the velocity profile. This proposed approach is referred to
as DPMPC (i.e., combination of dynamic programming and
model predictive control).

A. Long-range Velocity Profile Optimization Using DP

The first step in determining the optimal trajectory of a
vehicle, involves obtaining the velocity profile along the route.
This step assumes an empty road with no other cars present.
To achieve this, the specifications and current status of each
vehicle along with road information, are utilized.

These data are then used to calculate the following cost
along the entire route, resulting in finding the optimal velocity
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profile for the vehicle from the starting point to the destination:
ty
Jop =Y (aE(t,v(t),v(t—l))+ﬁ (0(t)—va)2+7 a(t)2).
t=ts

The above cost function consists of three terms as follow(s7:)
o Energy consumption: The term FE(¢,v(t),v(t — 1))
represents the energy consumption along the way and

« is the associated weight.

« Velocity difference: The term v(¢) — vy represents the

difference between the velocity of the car v(¢) and the
desired velocity vy, and 3 indicates the influence of the
velocity difference on the cost function. If the desired
velocity is equal to the speed limit, this term represents
the travelling time criterion.
Passenger comfort: a(t) represents the acceleration of
the vehicle, and v is the associated weight. The last
term penalizes large changes in velocity, hence ensuring
passenger comfort and smooth driving.

The coefficients «, S and -y are used to balance the influ-
ence of energy consumption, travelling time, and passenger
comfort, respectively, in the overall cost function. The starting
time ¢y and ending time ¢, are used to represent the time
equivalents of the starting and final positions, respectively.

1) Energy consumption: To calculate the energy consump-
tion for an electric vehicle (EV) at the time instant ¢, the first
step is to calculate the energy at the wheels as

fr(w(®) =1/2CyApav(t)? + ppmg cos ¢

4+ m g sin ¢, ®
Ew(v(t),v(t —1)) = 1/2m (v(t)* —v(t — 1)?) ©
+ fr(v(t) Az.

To compute the total force applied to the wheel, (8) is used.
In this formula, Cy is the drag coefficient, A is the projected
frontal area of the vehicle and p, is the air density, py is
friction coefficient, m is the mass, g is the gravity and ¢ is
the road grade assumed to be zero in this paper. Therefore,
the total energy can be calculated as the difference in kinetic
energy between two consecutive time samples added to the
energy by fr(v(t)) along the distance Axz. Equation (9)
shows the calculation of energy on the wheels.

When Eyy is positive, it indicates that energy is flowing
from the motor to the wheels. On the other hand, when
Eyw is negative, it indicates that the engine is acting as a
generator and hence kinetic energy of the vehicle is converted
into electrical energy and stored in the batteries (called
regenerative braking).

Required torque form the motor can also be calculated as

T(t) = —— x 2w, (10)

. €0 Madt . &L . .
where r is the wheel radius, ¢; is the gear reduction ratio,
and 7g; is drive-train system’s mechanical efficiency.

To determine the conversion efficiency, one can consult
the efficiency map of the vehicle, which provides information
on the required torque at the current velocity. According to
[7], the efficiency of an electric motor in regenerative mode
is calculated as 1, = exp(—0.0411/|al). Using the above
definitions, E(t) is calculated as
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Fig. 2. Example of a vehicle trajectory generated using the predicted
velocity profile by DP. The gray-colored area represents the search space,
red dashed lines represent the periods during which the traffic lights are red,
and blue line represents the trajectory of the vehicle.

B (wlt), ot — 1)) /3600) / gl > 0
E(v(t),v(t-1)) = {EQV(v(t),v(t ~ 1)) 73600) /e Evyr < 0

where 7, is the traction efficiency computed using (tlhlg
efficiency map of the vehicle.

2) Cost optimization: In order to minimize the cost
function in (7), dynamic programming (DP) is used. Starting
from a stationary position, DP calculates the cost in the search
space to find a sequence of velocities that minimizes this cost.
Searching the entire search space would be computationally
cumbersome. To reduce computations, three methods are
employed:

o The first approach involves finding upper and lower
time bounds at each location. The lower time bound
represents the time required for the vehicle to reach the
desired point at maximum velocity. By defining these
bounds, a time interval is established at each location
and valid solutions lie within this interval.

o The second approach entails creating a lookup table
for the cost of each time instant. Since velocities are
discretized, each vehicle can only have certain velocities
at each time step. Consequently, a lookup table can be
constructed to store the calculated costs. This results
in a matrix V' with the dimension of |v|x|v|, where
each element of the matrix v;; represents the cost
of transitioning from v; to v;. Transitions that are
impossible due to a limited acceleration are assigned an
infinite cost.

o The third approach involves eliminating solutions that
result in passing through red traffic lights before reaching
the complete solution.

Figure 2 shows an illustrative example of a vehicle
trajectory generated using the predicted velocity profile by
DP.

B. MPC-based Tracking of the Velocity Profile

The optimal trajectory taking into account the cost function
(7) is determined based on the predicted velocity profile by
DP. However, achieving this trajectory is only possible if
there are no obstacles and no changes in the road condition,
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as any disturbance could cause deviations from the DP’s
prediction. To overcome this problem (e.g., mixed traffic),
using a low-level controller is necessary. The controller’s
role is to use the optimal velocity profile generated by DP
as a reference and attempt to follow it while maintaining a
safe distance from other vehicles. Additionally, the controller
should be capable of overtaking slower vehicles in front and
stopping behind red traffic lights. We propose to use a model
predictive controller (MPC) for that purpose.
To compensate for deviations from reference, DP is solved
repeatedly at each predefined distance step.
System constraints over an MPC prediction horizon for
the ith vehicle are as follows:
Umin S Uz(k) S Umax Amin S ai(k) S Amax
Omin < ez(k) < emamy dl(k/’) > 0.
FurthermoreN}Ehe MPC cost is assumed to be

Iupe =Y [en (vilk) = oD () + ca as(k)?
k=0
+ s (yi(k) — y)* + ca 0:(k)?
+ Ri(2i(0), 2:-1(0),v:(0))
% les Adi()? + g (vi(k) — vima (8)?]]
(13)

(12)

where
Rz(xl(O), fEifl(O), ’02(0)) = max{O, — W1 (.’Elfl(O) — lifl—

MPC optimizes the vehicles’ control inputs over a prediction
horizon of length N;, by minimizing objective function (13)
subject to the constraints (4) and (12). The MPC cost in (13)
consists of the following ingredients:

« To follow the DP velocity profile, (v;(k) — vPF (k))?
represents matching the vehicle velocity v; with the
predicted velocity profile v7.

« To ensure passenger comfort, a;(k)? is added to penalize
large acceleration and deceleration.

« To follow the reference lane, (y;(k) — y!)? is used to
represent following the lateral reference, in other words,
the lane that the vehicle should be in. The reference
lane (y;) would be given to the MPC at each iteration
as described in Section III-C.

o To penalize steering, 0;(k)? is added to represent
minimizing lateral movements or steering.

« To allows velocity and distance matching, c5 Ad;(k)? +
ce (vi(k) — v;_1(k))? represents maintaining the de-
sired distance and matching velocity with the pre-
decessor, in the close distance defined by function
Rl(l'z (O), Ti—1 (0), Vi (0))

C. Lane Change

Given different conditions, each vehicle may have a
different reference velocity to follow. If the front vehicle
has a smaller velocity reference, it can disrupt the trajectory
of the vehicles behind. This situation may occur when the
front vehicle is a heavy-duty connected automated vehicle
(CAV) or even a human-driven vehicle. To ensure that the
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Fig. 3. Configuration of the proposed control structure.

predicted trajectory is followed in such cases, a lane change
may be necessary. To determine the need for a lane change, the
average of the difference between the vehicle’s velocity and
the predicted velocity over the past T, samples is calculated

as k
Lk = > (w(k) - v,(k))?,

t=k—T.

where v,.(k) represents the reference velocity at time instant
k. To initiate a lane change, several conditions must be met:

(14)

o The average velocity difference should be greater than
a predefined threshold.

« The speed in the adjacent lane should be higher than
that of the front vehicle.

o There should be a safe distance between the vehicles in
the adjacent lane.

The last two conditions can be evaluated using onboard
sensors. When all the conditions are met, the lateral reference
of the ¢th vehicle (y]) is adjusted so that the controller can
initiate the lane change. This parameter would be given to the
MPC as the reference lane to be followed. Figure 3 illustrates
the control diagram of each autonomous vehicle, and the
proposed control algorithm is also shown in Algorithm 1.

IV. SIMULATION RESULTS

We demonstrate the advantages of fusing DP and MPC,
where DP is used for predicting the optimal velocity profile
and subsequently MPC to follow that profile (DPMPC
approach); a comparison is also made against solely using
MPC following a desired constant velocity. The simulation
scenario involves a 2km, two-lane urban road with three traffic
lights positioned at 775m, 975m, and 1175m. On the first
lane, there are seven CAVs with an initial gap of 25 meters.
Additionally, there are two human-driven vehicles; one at
195m and the other at 345m, both traveling at a constant
velocity of 5m/s. The first vehicle is on the first lane, while
the second vehicle is on the second lane. Figure 4 shows the
simulation setup. In both approaches, the CAVs are required to
maintain a safe distance with their preceding vehicle, change
lanes to overtake the human-driven vehicles, and come to
a stop behind the traffic lights during the red signal period.
In DPMPC, DP is used to make long-range planning for
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Fig. 4. Simulation setup for comparison purposes.

Algorithm 1: Control Algorithm
Data: Traffic lights position and timing, front CAV
trajectory, immediate cars positions and
velocities
Result: Reaching destination safely and efficiently

12+0; // longitudinal Position
2y« 1; // Lateral Position
3v+0; // Velocity
4 v4[] < 0.0 ; // Array of Size T,
57+ 0; // Iteration Counter

6 Uprofile < Solve MPC (minimize (13) subject to (4)
and (12));

7 while z 7é Ldestination do

8 14— 1+ 1;

9 u <— Solve MPC (minimize (13) subject to (4)

and (12));
10 v — Current velocity;
11 vy < Front vehicle speed;

12 va[t MOD T¢) <= v — Uprofile;
13 | if (xt MOD Adg,) == 0 then

14 ‘ Uprofile < Solve DP (see Section III-A);
15 end

16 if Average(vq) > Vinreshold then

17 v, <— Adjacent lane speed;

18 dg < Adjacent lane vehicle distance;

19 if v, > vy and d, > Safe Distance then
20 ‘ Change lane reference

21 end

22 end

23 end

24 0

Energy Consumption Rt
-
-

wetrine
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
W
Fig. 5. Simulation results showing: (a) energy consumption, and (b) travel
time

the CAV, where the optimized profile is then utilized as the
reference velocity v”” in the MPC cost (13). In contrast,
the second approach solely relies on MPC, where instead
of using the velocity profile predicted by DP, a constant
speed is used. This constant velocity is the road speed limit
assumed to be 15m/s. The simulation results in Figure 5
show a comparison between the two approaches. Here is a
summary of our findings:

o Energy consumption: The proposed approach reduces

energy consumption by 9.57% on average compared to
the MPC (only) approach. This indicates that employing
DP to predict the best velocity profile can lead to more
efficient energy usage.

o Travel time: On the other hand, the proposed approach
exhibits an average increase of 8.98% in travel time
compared to the MPC (only) approach. This implies that
following the predicted velocity profile from DP may
result in slightly longer travel times.

The above findings highlight the trade-off between energy
consumption and travel time when considering the use of
DP for velocity profile prediction in coordination with MPC.
While energy efficiency improves, travel time increases, and
this is expected. Those factors can be balanced based on the
specific goals and priorities of the system in question.

Figure 6 shows the velocity profile for vehicles 1, 3 and 7.
The subplots on the top correspond to the proposed DPMPC
approach and the bottom plots are the results of using MPC
only. The red line in the top subplots shows the predicted
velocity profile by DP that keeps updating every 25 meters.
The green line is the actual velocity of the vehicle along the
way. The difference between these two lines is due to other
HVs and CAVs and also traffic light timing. As observed,
for the first CAV, this discrepancy is less than the 7th CAYV,
since there would be no CAV in front of the first one. The
bottom subplots show the results corresponding to MPC
approach in which the controller tries to follow a constant
speed. In this case, there would be higher acceleration and
deceleration since MPC controller takes into account neither
energy consumption nor the passenger comfort. As can be
seen, for the first and second CAVs, there would be a hard
braking at 750m due to the red traffic light.

Finally, Figure 7 illustrates the steering angle 6 for vehicles
1, 3 and 7. As observed, each vehicle overtakes two HVs.
Upon examining the plots, it is evident that the initial lane
change occurs at a nearly identical position in both approaches
(MPC and DPMPC). However, the second overtake happens
at a closer location to the first one in the MPC approach. This
discrepancy is attributed to the fact that the average speed of
the vehicle in the MPC approach is higher compared to the
DPMPC approach.

V. CONCLUDING REMARKS

In this paper, a new trajectory planning method was
developed by combining the benefits of dynamic programming
and model predictive control. Dynamic programming was
used to optimize the velocity profile for each vehicle over
a long distance, and then, this profile was fed into MPC
as a reference to follow while avoiding collisions and
passing red traffic lights. Simulation results demonstrated
the viability of the proposed control design approach and
trade-off between energy efficiency and travel time when
comparing the proposed method with MPC only. Our results
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Fig. 6. Simulation results showing position-velocity profiles for vehicles 1, 3 and 7. The red
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suggest that using the predicted velocity profile by DP is
beneficial in decreasing the energy consumption while also
slightly increasing the travel time. Other benefits of this
work include its scalability (due to the computations done at
individual vehicle’s level) and straightforward extension to
non-electric vehicles.
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