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Abstract

This paper presents a reactive planning system that allows a Cassie-series bipedal robot to avoid multiple non-overlapping obstacles
via a single, continuously differentiable control barrier function (CBF). The overall system detects an individual obstacle via a
height map derived from a LiDAR point cloud and computes an elliptical outer approximation, which is then turned into a CBF.
The QP-CLF-CBF formalism developed by Ames et al. is applied to ensure that safe trajectories are generated. Liveness is ensured
by an analysis of induced equilibrium points that are distinct from the goal state. Safe planning in environments with multiple
obstacles is demonstrated both in simulation and experimentally on the Cassie biped.

Keywords: Motion Planning, Autonomous Navigation, Obstacle Avoidance, Control Barrier Function, Control Lyapunov Function

1. Introduction and Contributions

Bipedal robots are typically conceived to achieve agile-
legged locomotion over irregular terrains, and maneuver in clut-
tered environments[1, 2, 3]. To explore safely in such envi-
ronments, it is critical for robots to generate quick, yet smooth
responses to any changes in the obstacles, map, and environ-
ment. In this paper, we propose a means to design and compose
control barrier functions (CBFs) for multiple non-overlapping
obstacles and evaluate the system on a 20-degree-of-freedom
(DoF) bipedal robot.

In an autonomous system, the task of avoiding obstacles is
usually handled by a planning algorithm because it has access
to the map of an entire environment. Given the map, the plan-
ning algorithm is then able to design a collision-free path from
the robot’s current position to a goal. If the map is updated
due to a change in the environment, the planner then needs to
update the planned path, so-called replanning, to accommodate
the new environment. Such maps are typically large and contain
rich information such as semantics, terrain characteristics, and
uncertainty, and thus are slow to update. This raises a concern
when obstacles either move into the planned path but the map
has not been updated or a robot’s new pose allows the detec-
tion of previously unseen obstacles. The slow update rate of the
map leads to either collision or abrupt maneuvers to avoid col-
lisions. The non-smooth aspects arising from the map updates
or changes in the perceived environment can be detrimental to
the stability of the overall system.

Research on obstacle avoidance has been studied for sev-
eral decades as pioneered in classic probabilistic roadmap ap-
proaches (PRM) [4] and cell decomposition [5, Chapter 6].
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Figure 1: In the top figure, Cassie Blue autonomously avoids multiple obsta-
cles via the developed CLF-CBF-QP obstacle avoidance system, comprised of
an intermediate goal selector, obstacle detection, and a CLF-CBF quadratic pro-
gramming solver. The bottom figure is the elevation map built in real time. The
blue and cyan blobs are obstacles that Cassie detects and avoids in real time. A
gantry is used in the experiments because the lab-built perception system that
has been added to the robot is unprotected in case of falls.
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However, the omission of robot dynamics and the extra com-
putation for map discretization make these methods hard to use
in real-time applications. Artificial potential fields [6, 7, 8, 9,
10, 11, 12, 13, 14, 15] stand out for their simplicity, extendabil-
ity, and efficiency, leading to their wide adoption for real-time
obstacle avoidance planning problems. A drawback of poten-
tial field methods is that they require the entire map of an en-
vironment to be available when designing a potential function
that will render attractive one or more goal points in the map.
Moreover, unwanted local minima and oscillations in the poten-
tial field have limited their deployment in the field. A control
barrier function (CBF) [16], on the other hand, enables real-
time controller synthesis with provable safety for mobile robots
operating in a continuous (non-discretized) space and can work
with a partial (or incomplete) map.

Control Lyapunov functions (CLFs) are positive definite
functions such that at any given time instance, there exists a
control input that renders the derivative of the function along
the system dynamics negative definite. A CLF is typically de-
signed to vanish at a desired goal state or pose.

The main theme of [16] is that a real-time quadratic program
(QP) can be used to combine a CLF and a CBF in such a way
that closed-loop trajectories induced by the CLF are minimally
modified to provide provable safety, that is, non-collision with
obstacles. This design philosophy has been explored in [16, 17,
18].

One means of avoiding obstacles is to come to a complete
stop, though it is at the cost of not reaching the goal state. The
papers [19, 20, 21, 22] showed that such behavior can be an
unintended outcome of the CLF-CBF-QP design approach of
[16]. Specifically, the inequality constraints (of the QP) asso-
ciated with the derivatives of the control Lyapunov and control
barrier functions can induce equilibria in the closed-loop sys-
tem that are distinct from the equilibrium of the CLF. Reference
[19] characterizes these equilibria via the KKT conditions as-
sociated with the QP, while reference [20] emphasizes that if an
induced equilibrium is unstable, then “natural noise” in the en-
vironment will avoid the robot being deadlocked at an unstable
equilibrium.

Inspired by the above-cited works on CLF-CBF-QPs for
planning and control, we incorporate high-bandwidth obstacle
avoidance into the CLF-RRT* reactive planner of [1]. The CLF
in [1] takes into account features specific to bipeds, such as the
limited lateral leg motion that renders lateral walking more la-
borious than sagittal plane walking. This paper seeks to utilize
the CLF designed specifically for bipedal robots in tandem with
a CBF to avoid multiple, non-overlapping obstacles in a smooth
fashion, while ensuring progress to a goal state.

The main contributions of the new proposed CLF-CBF sys-
tem are the following:

1. We propose a novel CLF-CBF-QP obstacle avoidance sys-
tem specifically adapted for bipedal robots locomoting in
the presence of multiple non-overlapping obstacles. The
full system provides for real-time obstacle detection, CBF
design, and safe control input generation through a QP.

2. We mathematically prove the validity of the proposed CBF

for both single and multiple obstacles. We also analyti-
cally analyze the existence of spurious equilibrium points
induced by the CLF-CBF constraints on the QP.

3. We propose a simple means to smooth and interpolate the
discontinuous reference control variables, which are intro-
duced when switching from one target to another.

4. We provide simulations that support the mathematical
analysis for obstacle avoidance while reaching a goal.

5. The overall reactive planning system is demonstrated
experimentally on a 20-degree-of-freedom Cassie-series
bipedal robot.

6. We open-source the implementations of the en-
tire CLF-CBF system in C++ with Robot Oper-
ating System (ROS) [23] and associated videos
of the experiments; see https://github.com/UMich-
BipedLab/multi_object_avoidance_via_clf_cbf.

The rest of the paper is organized as follows. Section 2
overviews related work. The design and validation of the pro-
posed CBF is presented in Sec. 3. We analyze equilibrium
points of the proposed CBF in Appendix A. Section 4 pro-
poses a novel and simple method to combine CBFs for non-
overlapping obstacles. Section 5 introduces a method to smooth
the reference control variables while switching target positions.
Simulation and experimental results are given in Sec. 6 and
Sec. 7, respectively. Section 8 concludes the paper and provides
potential future work.

2. Related Work on Control with Safety

A continuously differentiable, proper, positive definite func-
tion V(x) that vanishes at a single point is called a candidate
Lyapunov function [24]. If the derivative of V(x) along the tra-
jectories of a control system can be rendered negative definite
by proper choice of the control input, it is called a control Lya-
punov Function, or CLF for short [25, 26, 27]. CLFs are widely
used in the design of controllers to asymptotically drive a sys-
tem to a goal state. Safety involves steering a control system
to a goal state while avoiding self-collisions, obstacles, or other
undesirable states, collectively referred to as unsafe states. The
set complement of the unsafe states is the set of safe states.

2.1. Artificial Potential Fields and Navigation Functions

The first systematic method for real-time control and obsta-
cle avoidance was introduced by Khatib in [28]. Called the
method of Artificial Potential Functions, it revolutionized feed-
back control for manipulators in that hard constraints could be
enforced in both the robot’s task space and joint space in real
time. Prior to this seminal work, obstacle avoidance, or more
generally the generation of safe paths, was relegated to a path
planner operating at a much slower time scale. A survey of the
method of potential functions can be found in [29].

Potential functions seek to construct “repulsive fields”
around obstacles that are active throughout the entire state space
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of the robot’s dynamical system, without destroying the pres-
ence of an attractive field steering the system to a goal state. It
has been recognized that superimposed attracting and repelling
fields can create undesired spurious equilibria, which prevent
a robot from reaching its goal state [30]. In addition, poten-
tial fields have been observed to introduce trajectory oscilla-
tions as a robot passes near obstacles. Heuristic modifications
have been proposed to avoid local minima [11, 12, 13], while
potential fields have been combined with other gradient-based
functions to reduce oscillations [14, 15].

The method of Navigation Functions by Koditschek and Ri-
mon [31] sought to design a single function whose gradient pro-
duces trajectories avoiding multiple obstacles while asymptot-
ically converging to a single goal state from almost all initial
conditions [32, 33, 34, 35]; specifically, all equilibria except
the goal state should be unstable. Because the design of a nav-
igation function takes into account the global topology of the
method of navigation functions is not appropriate for problems
requiring the online identification and avoidance of obstacles;
in addition, there are topological restrictions to the existence of
navigation functions.

2.2. Control Barrier Functions and Control Lyapunov Func-
tions

Barrier Functions provide Lyapunov-like conditions for
proving a given set of safe states is forward invariant, mean-
ing that trajectories starting in the safe set remain in the safe
set. The natural extension of a barrier function to a system with
control inputs is a Control Barrier Function or CBF for short,
first proposed by [36]. CBFs parallel the extension of Lyapunov
functions to CLFs, in that the key point is to impose inequality
constraints on the derivative of a candidate CBF (resp., CLF)
to establish entire classes of controllers that render a given set
forward invariant (resp., asymptotically stable).

Importantly, barrier functions and CBFs focus solely on
safety and do not seek to simultaneously steer a system to any
particular point in the safe set. This allows CBFs to be com-
bined with other “goal-oriented” control methods as a (max-
imally permissive) supervisor that only modifies a trajectory
when it is in conflict with the safety criteria established by the
CBF. The papers [37, 38] introduced the notion of using a real-
time quadratic program (QP) to combine a CBF with a CLF
to achieve convergence to a goal state while avoiding unsafe
states. The overall method goes by the acronym CLF-CBF-QP.

For control systems that are affine in the control variable,
CLF-CBF-QPs have proven to be enormously popular in and
out of robotics applications [16, 17, 18, 39, 40, 41, 42, 43].
To highlight just a few example, reference [17] uses a CLF-
CBF-QP to achieve stable walking for bipedal robots, while
trajectory planning under spatiotemporal and control input con-
straints is presented in [40, 18, 39]. Applications to obstacle
avoidance are addressed in [43, 41, 42].

The recent paper [44] shows that CBFs are a strict gener-
alization of artificial potential functions and that in a practical
example, a CLF-CBF-QP has reduced issues with oscillations
as a robot passes near obstacles and improved liveness, mean-

ing the ability to reach the goal state. Hence, we use the method
of CLF-CBF-QPs in this paper.

2.3. Combining Multiple CBFs

Usually, a control barrier function is designed for a single
obstacle. When there are multiple obstacles in the control
system, the barrier functions for each obstacle must be com-
bined in some manner to provide safety guarantees. Reference
[45] shows that if the intersection of the set of “allowable con-
trols” of individual CBFs is non-empty, then the CLF-CBF-QP
method can be extended to several obstacles; the reference does
not show how to check this condition online (in real time). Mul-
tiple CBF functions have also been combined to obtain a single
CBF so that existing methods can be applied. Reference [46]
combines several CBFs into an overall CBF using max-min op-
erations. The resulting CBF is non-differentiable and hence this
technique is not used here. Reference [47] combines multiple
CBFs for disjoint unsafe sets with a single CLF to produce a
new CLF that simultaneously provides asymptotic stability and
obstacle avoidance. This work is therefore related to the method
navigation functions reviewed above and suffers from the same
drawbacks; however, a key technique used in this reference to
combine the CBFs before merging them with a CLF will be
exploited in the current paper, namely a continuously differen-
tiable saturation function.

2.4. CLF-CBF-QPs and Unwanted Equilibrium Points

The presence of multiple stable equilibrium points introduces
“deadlock” in a control system. Reference [19] shows that the
use of real-time QPs to combine safety and goal-reaching in
navigation problems can lead to unwanted equilibrium points.
With this awareness, the authors of [21] modify the cost func-
tion in the quadratic program to remove the unwanted equi-
libria. The modification induces a rotational motion in the
closed-loop system that steers it around the obstacle, something
a bipedal robot can do naturally. Hence, here we only exploit
their analysis method for finding the unwanted equilibria and
show that our method introduces at most one undesired equi-
librium point when obstacles are disjoint. Moreover, we do not
need to remove the unwanted equilibrium using the methods in
[48, 22] by transforming the system’s state space into a convex
manifold, or by increasing the complexity of the system’s state
space.

2.5. Summary

The presence of multiple obstacles is common in practice.
While existing works can treat disjoint obstacles, they are not
appropriate for use where obstacles are identified in real-time
via an onboard perception system. In this work, for a biped-
appropriate planning model, we propose a simple means to
combine CBFs for disjoint obstacles so that the complexity of
the real-time CLF-CBF-QP remains constant and induced equi-
librium points are easy to characterize and avoid.

3



Figure 2: Illustration of the robot state representation. xw and yw are the axes
of the world frame. The robot’s pose and the target position are P = (xr , yr , θ)
and G = (xt , yt) in the world frame, respectively. x and y are the axes of the
robot frame where the positive x direction is the robot heading direction. r is
the distance between the robot and the target position and δ is the angle between
the robot heading and the target direction. (xo, yo) is the center of obstacle in
the world frame and ro is the radius of the obstacle. d is the distance between
the obstacle and the robot.

3. Construction of Control Lyapunov Function and Control
Barrier Function

This section introduces the CLF proposed in [1] and analyzes
its trajectories when combined with a quadratic CBF through a
real-time QP. The goal is to ensure the closed-loop system is
able to reach a goal state while smoothly avoiding a single ob-
stacle. This section lays the foundation for considering multiple
obstacles in the next section.

3.1. State Representation
Denote P = (xr, yr, θ) the robot pose, G = (xt, yt) the goal

position in the world frame. We simplify an obstacle O as a
circle (and hence convex) described as its center (xo, yo) and its
radius ro. We define the robot state as

x =

rδ
θ

 , (1)

where r =
√

(xt − xr)2 + (yt − yr)2, θ is the heading angle of the
robot, and δ is the angle between θ and the line of sight from
the robot to the goal, as shown in Fig. 2.

The dynamics of the control system is defined as

ẋ = f (x) + g(x)u

=

000
 +

− cos(δ) − sin(δ) 0

sin(δ)
r −

cos(δ)
r 1

0 0 −1


vx

vy

ω

 , (2)

where we view u =
[
vx, vy, ω

]T
as the control variables in

the robot frame, as shown in Fig. 2.

3.2. Design of CLF and CBF for Bipedal Robots
The control Lyapunov function leveraged in the reactive

planner proposed in [1] takes into account features specific to

bipeds, such as the limited lateral leg motion that renders lateral
walking more laborious than sagittal plane walking. Therefore,
we also define the CLF as

V(x) =
r2 + γ2 sin2(βδ)

2
, (3)

where γ is the weight on the orientation, and β controls the size
of the field of view (FoV). Given P and G, we have a closed-
form solution for control u in (2),

ωref =
r cos(δ) [rvδ cos(δ) − vr sin(δ)]

α + r2 cos2(δ)

vref
y =

α(vr sin(δ) − rvδ cos(δ))
r2cos(δ)2 + α

vref
x =

vr cos(δ)r2 + αvδ sin(δ)r + αvr cos(δ)
r2cos(δ)2 + α

;

(4)

where vr and vδ are defined as:

vr = kr1
r

kr2 + r

vδ = −
2
β

kδ1
r

kδ2 + r
sin(2βδ).

(5)

In (4) and (5), α, β, kr1, kr2, kδ1, kδ2 are positive constants. See
[1] for more details.

Next, we introduce a candidate CBF as

B(x) =
[

xr − xo

yr − yo

]⊤
Q
[

xr − xo

yr − yo

]
− r2

o, (6)

where (xo, yo) gives the center of the obstacle, ro specifies the
“radius” of the obstacle, and Q is positive definite. We next
verify that (6) is a valid CBF.

3.3. Proof of CBF Validity

Following [49], we define the sets

D := {x ∈ R3 | B(x) , −r2
o, and r , 0}

C := {x ∈ D | B(x) ≥ 0}
(7)

associated with the candidate CBF (6) and note that Int(C) , ∅

and Int(C) = C. From [49], for (6) to be a valid CBF function
of (2), there must exist some η > 0, such that,

∀x ∈ D,∃u ∈ R3, Ḃ(x, u) + ηB(x) ≥ 0, (8)

where Ḃ(x, u) := L f B(x)+LgB(x)u is the time derivative of B(x)
along the dynamics of (2), η > 0 sets the repulsive effort of the
CBF, and

L f B(x) :=
∂B(x)
∂x

f (x) (9)

LgB(x) :=
∂B(x)
∂x

g(x). (10)

Because the drift term f (x) in (2) is identically zero, the zero
control u ≡ 0 satisfies (8) for x ∈ C. Hence, we need to show
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Figure 3: Illustration of a case when the robot directly faces the obstacle and
the target creates an equilibrium in the continuous-time system. In a simulation
with discrete-time control updates, the robot walks back and forth at the obsta-
cle boundary.

that (8) can be met for x ∈∼ C, the set complement of C. Direct
application of the chain rule gives that

LgB(x) = a(x)b(x)g(x),

where

a(x) := 2
[

xt − r cos(δ + θ) − xo, yt − r sin(δ + θ) − yo

]
Q

= 2
[

xr − xo, yr − yo

]
Q

b(x) :=
[
− cos(δ + θ) r sin(δ + θ) r sin(δ + θ)
− sin(δ + θ) −r cos(δ + θ) −r cos(δ + θ)

]

g(x) =


− cos(δ) − sin(δ) 0

sin(δ)
r −

cos(δ)
r 1

0 0 −1

 .
(11)

Moreover, a(x) only vanishes at the center of an obstacle,
the rows of b(x) are linearly independent for all r > 0, and
det (g(x)) = − 1

r , 0 for all 0 < r < ∞. It follows that for all
x ∈ D, LgB(x) , 0 and hence (8) is satisfied, proving that (6) is
a valid CBF.

3.4. Quadratic Program of the Proposed CLF-CBF System
A quadratic program (QP) is set up to optimize the control

u with the slack variable s while enforcing both the CLF and
CBF constraints. Let L(x, u, s) be the CLF constraints

L(x, u, s) := L f V(x) + LgV(x)u + µV(x) − s ≤ 0, (12)

where Lpq(x) := ∇q(x) · p(x) is the Lie derivative, µ serves as a
decay rate of the upper bound of V(x). Next, we denote B(x, u)
the CBF constraints

B(x, u) := −L f B(x) − LgB(x)u − ηB(x) ≤ 0, (13)

Figure 4: Illustration of breaking the equilibrium by using uref
2 :[

vref
x vref

y ωref + ϵ
]T

when δ = 0. The robot successfully reaches the tar-
get position without colliding with the obstacle.

where η serves as a decay rate of the lower bound of B(x).
Finally, the QP for the control values is formulated as

u∗, s∗ = arg min
L(x,u,s)≤0
B(x,u)≤0

J(u, s), (14)

where the cost function J(u, s) is defined as

J(u, s) :=
1
2

(u − uref)T H(u − uref) +
1
2

ps2, (15)

the positive definite, diagonal matrix H := diag([h1, h2, h3])
weights the control variables, uref :=

[
vref

x vref
y ωref

]T
is the

control vector from the CLF (3) without obstacles, and p ≥ 0 is
the weight of the slack variable, s.

In the proposed CLF-CBF-QP system, uref is the closed-
form solution obtained from the CLF without obstacles, and
H assigns weights for different control variables. The pro-
posed CLF-CBF-QP cost function captures inherent features
of a Cassie-series robot, such as the low-cost of longitudinal
movement and high-cost of lateral movement, while guarantee-
ing safety. We next look at liveness, that is, the ability of the
system to reach the desired goal.

3.5. Analysis for Unwanted Equilibria

Paper [19] points out very clearly that the CLF-CBF-QP for-
mulation of Sec. 3.4 can introduce unwanted equilibria that may
prevent the robot from reaching a goal state. The paper [20]
also considered this problem and noted that if the equilibria are
unstable, then liveness is preserved for almost all initial con-
ditions. In Appendix A, we follow the KKT-analysis of the
CLF-CBF-QP presented in [19] and show that only one equi-
librium point is created by the QP. Moreover, the equilibrium
occurs at an obstacle boundary for δ = 0, dy = 0, dx > 0, in

5



(a) (b) (c) (d)
//

(e) (f) (g) (h)

Figure 5: The top and bottom rows are the resulting trajectories and control variables generated by (4) and (30), respectively. The robot starts at (−15,−15,−15◦),
and the list of targets to reach is (−10,−15), (0,−10), (15,−15), (25,−15), and the final destination is (40,−30). Different colors represent the trajectory with
different targets and also correspond to control variables for the trajectory. The control variables generated by (4) decrease to zero each goal is approached, which
leads to discontinuous control variables. On the other hand, with the smoothing process, the control variables are continuous and much smoother, while the resulting
trajectories are similar.

other words, when the robot’s heading faces directly to the ob-
stacle and the target, as shown in Fig. 3. The robot will move
directly toward the obstacle and stop at the obstacle boundary.

Remark 1. When the robot encounters the above equilibrium
state, we can add a constant ϵ > 0 to uref in (14) such that
uref =

[
vref

x vref
y ωref + ϵ

]T
. As is shown in Fig. 4, the robot

breaks its equilibrium state, avoids the obstacle, and reaches
the target position. This is related to, but distinct from, the
method presented in [19] for resolving unwanted equilibria.

4. Combining CBFs for Multiple Obstacles

So far, we have assumed there is only one obstacle perceived
by the robot. In this section, we will discuss how to handle
multiple obstacles in the environment when each obstacle is a
positive distance apart from the others [47]. Specifically, for
i ∈ {1, 2, . . . ,M}, suppose that

Bi(x) :=
[

xr − xo,i

yr − yo,i

]⊤
Qi

[
xr − xo,i

yr − yo,i

]
− r2

o,i

Di := {x ∈ R3 | Bi(x) , −r2
o,i, and r , 0}

Ci := {x ∈ Di | Bi(x) ≥ 0}

(16)

are valid CBF functions for the dynamics (2). For i , j, the
obstacles corresponding to Bi : R3 → R and B j : R3 → R are a

positive distance apart if

∆i j := inf
x ∈∼ Ci

y ∈∼ C j

||x − y|| > 0. (17)

A key innovation with respect to [46] is that we will com-
pose the associated CBFs in a smooth (C1) manner. A potential
drawback with respect to [46] is that we will assume the obsta-
cles giving rise to the CBFs are a positive distance apart. Simi-
lar to [47], we saturate standard quadratic CBFs before seeking
to combine them. Distinct from [47], we multiply the saturated
CBFs instead of creating a weighted sum. This greatly sim-
plifies the analysis of the composite CBF with respect to all
previous works.

4.1. Smooth Saturation Function

We introduce a continuously differentiable saturation func-
tion that will allow us to compose in a simple manner CBFs
corresponding to obstacles that are a positive distance apart.
Consider σ : R → R by

σ(s) :=


s s ≤ 0
s(1 + s − s2) 0 < s < 1
1 s ≥ 1.

(18)

6



Figure 6: Illustration of how the trajectories vary as a function of differ-
ent obstacle positions. The target (marked in black) and the robot pose
(−15,−15,−15◦) are fixed throughout all of the simulations. The different col-
ors correspond to simulations with a single (different) obstacle present at a time.
The black trajectory is generated without any obstacle present by only includ-
ing the CLF constraint in the QP.

Then straightforward calculations show that for all s ∈ R, dσ(s)
ds

exists and satisfies

dσ(s)
ds

:=


1 s ≤ 0
1 + 2s − 3s2 0 < s < 1
0 s ≥ 1.

(19)

Upon noting that dσ(s)
ds

∣∣∣
s=0 = 1, dσ(s)

ds

∣∣∣
s=1 = 0 and for all 0 <

s < 1, 0 < dσ(s)
ds , it follows that σ : R → R is continuously

differentiable and monotonic.

Remark 2. For 0 ≤ s ≤ 1, σ is constructed from a degree-three
Bézier polynomial p : [0, 1] → R such that p(0) = 0, dp(0)

ds = 1,
p(1) = 1, dp(1)

ds = 0. Moreover, for 0 < s < 1, dp(s)
ds > 0.

Definition 1. For κ > 0, we define σκ : R → R by

σκ(s) := σ(
s
κ

). (20)

Proposition 1. Suppose that κ > 0 and B : D → R is a candi-
date CBF with D and C defined as in (7). Then σκ ◦B : D → R
is a valid CBF for the system (2) if, and only if, B : D → R is a
valid CBF.

Proof. For x ∈ C, σκ ◦ B(x) > 0 and hence satisfies (8) for
u = 0. For x ∈∼ C, by the chain rule and the construction of
σ : R → R,

∂σκ ◦ B(x)
∂x

=
dσ(s)

ds

∣∣∣∣∣
s= B(x)

κ

∂B(x)
∂x

=
1
κ

∂B(x)
∂x
. (21)

Hence, the proof of Sect. 3.3 applies.

Proposition 2. Suppose for 1 ≤ i ≤ M, the CBFs Bi(x) : R3 →

R are a positive distance apart. Then there exist κ1 > 0, κ2 > 0,
. . ., κM > 0, such that for all i , j,

{x ∈ R3 | σκi ◦ Bi(x) < 1} ∩ {x ∈ R3 | B j(x) < 0} = ∅. (22)

Figure 7: Illustration of how the trajectories vary as a function of different robot
orientations with a fixed obstacle location. The target (marked in cyan) and the
obstacle at (−4,−4) are fixed throughout all simulations. Each color stands for
a different initial robot orientation.

Proof. By the disjointness property, ∆i := min
j,i
∆i j > 0.

For S ⊂ R3 and x ∈ R3, define the distance from x to S by

d(x, S ) := inf
y∈S

||x − y||. (23)

Then, because (i) Bi is continuous, (ii) the set complement of Ci

is bounded, and (iii) d(x,∼ Ci) > 0 =⇒ Bi(x) > 0, it follows
that

m∗
i := sup

d(x,∼Ci)≤∆i

Bi(x) (24)

is a finite positive number. Therefore, for all 0 < κi < m∗
i ,

{x ∈ R3 | σκi ◦ Bi(x) < 1} ⊂ {x ∈ R3 | d(x,∼ Ci) ≤ ∆i}, (25)

and hence (22) holds.

Figure 8: Liveness analysis for the CLF-CBF system. The initial pose is
(−15,−15,−15◦), and the target is located at (0, 0). Each dot in the figure rep-
resents the center of an object with radius (r = 1). The interval between each
center dots are 0.2 meter in both x and y direction. Note that all the red points
either originally collide with the robot or the target.
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4.2. Multiplication Property of Smooth Saturated CBFs
For M ≥ 2 CBFs corresponding to disjoint obstacles, define

the sets

DM :=
M⋂

i=1

Di

CM :=
M⋂

i=1

{x ∈ DM | Bi(x) ≥ 0}

=

M⋂
i=1

Ci.

(26)

Theorem 1. Under the assumed disjointness property, the
product of smoothly saturated valid CBFs,

BM(x) :=
M∏

i=1

σκi ◦ Bi(x), (27)

is a valid CBF for DM , CM , and the dynamic system (2).

Proof. For x ∈ CM, the zero control u ≡ 0 satisfies (8) because
the drift term f (x) is zero. We show that for x < CM , (8) can be
satisfied.

By the disjoint property of the assumed CBF functions, when
BM(x) < 0, we have ∃i, such that σκi ◦ Bi(x) = Bi(x) < 0, and

σκ j ◦ B j(x) = 1 for j , i. Hence, BM(x) = Bi(x). Because Bi(x)
is assumed to be a valid CBF function, and both DM ⊂ Di and
CM ⊂ Ci hold, the CBF property holds for BM(x).

Remark 3. Due to the way we have constructed the multi-
obstacle CBF, the equilibrium analysis for a single obstacle
carries over here without changes. This is because, when the
robot is at a boundary of an obstacle, the values of the satu-
rated CBFs for the other obstacles will all be one.

5. Smoothing Reference Control Variables

We have created a continuous vector field for a single tar-
get position surrounded by multiple obstacles. However, dis-
continuities are introduced when we switch from one target to
another. The jumps appear in two ways: when the attraction
points used in the CLF are updated and when the associated
reference control variable uref is updated. The top row of Fig. 5
illustrates the jumps in the control signals associated with a list
of targets (black dots).

This section proposes a means to smooth the control signals.

(a) (b)

(c) (d)

Figure 9: Robot trajectories with 40 obstacles in the noise-free map 1 (top two) and 40 obstacles in the noisy map 2 (bottom two) synthetic maps with the size of
50 × 30 meters. The highlighted areas are the local map at that specific timestamp. The dark blue circles are the obstacles. Different colors represent different runs
in the map.

8



To begin, we define τ : R → R by

τ(s) :=


0 s ≤ 0
s2(3 − 2s) 0 < s < 1
1 s ≥ 1,

(28)

where we have ∀s ∈ R, dτ(s)
ds exists and satisfies

dτ(s)
ds

:=


0 s ≤ 0
6s − 6s2 0 < s < 1
0 s ≥ 1.

(29)

Upon noting that dτ(s)
ds

∣∣∣
s=0 = 0, dτ(s)

ds

∣∣∣
s=1 = 0 and for all 0 ≤ s ≤

1, dτ(s)
ds > 0, it follows that τ(s) is continuously differentiable

and monotonic.
Consider now two target positions G1 and G2 with their ref-

erence control variables uref
1 and uref

2 from (4). A smoothed uref

is defined as the convex combination

uref = τ(
t
T

)uref
1 + (1 − τ(

t
T

))uref
2 , (30)

where T is a switching time parameter and t is the estimated
time to G1. By the construction of the scaling function τ in (28)
and the convex combination in (30), we only execute the inter-
polation process if the robot is estimated to be less than T sec-
onds away from G1. The value of t is updated to the estimated
time to G1 when the G1 is updated. The value of t decreases
while the robot is moving. By applying the smoothed uref and
with the same list of goals, the control variables become con-
tinuous, as shown in the bottom row of Fig. 5.

6. Simulation Results with single and multiple obstacles

In this section, we first use simulation to study the behavior
and liveness of the proposed CLF-CBF system with a single
obstacle. Next, we run the system on several synthetic environ-
ments with 20 obstacles in Robot Operating System (ROS) [23]
with C++.

Remark 4. For the CBF in (6), we take Q = I and in Prop. 1,
we take κ1 = · · · = κM = min{∆2

i }
M
i=1, which is the minimum of

the square of the distance between any of the obstacles.

6.1. Robot Model in Simulation
In MATLAB and ROS, the bipedal robot is represented

by the Angular momentum Linear Inverted Pendulum (ALIP)
model [2]. The ALIP robot takes piece-wise constant inputs
from the CLF-CBF-QP system. Let g,H, τ be the gravitational
constant, the robot’s center of mass height, and the time interval
of a swing phase, respectively. The motion of an ALIP model
on the x-axis satisfies[

xk+1
ẋk+1

]
=

[
cosh(ξ) 1

ρ
sinh(ξ)

ρ sinh(ξ) cosh(ξ)

] [
xk

ẋk

]
+

[
1 − cosh(ξ)
−ρ sinh(ξ)

]
px, (31)

where xk and ẋk are the contact position and velocity of the
swing foot on the x-axis, px is the center of mass (CoM) posi-
tion on the x-axis of the robot, ξ = ρτ and ρ =

√
g/H. The

motion of the robot on the y-axis can be similarly defined.

(a) (b)

Figure 10: The left shows the sensor suite with different sensors, and the right
shows the sensor suite mounted on Cassie Blue.

6.2. Behavior Study with Single Obstacle in MATLAB
The optimal control command of the robot is the solution of

the CLF-CBF-QP problem defined in (14). The time interval
of a swing phase is set to τ = 0.3s. The robot updates its pose
based on the ALIP model and the optimal control command.
The updated pose is then fed back to the CLF-CBF-QP system
to compute the optimal control for the next iteration. This pro-
cess continues until the robot reaches the target or collides with
an obstacle.

Figure 6 shows how the trajectories vary as a function of
a single obstacle’s position with a fixed initial robot pose of
(−15,−15,−15◦), marked as the magenta arrow. The black tra-
jectory is the nominal trajectory without any obstacles present.
Each colored trajectory and matching circle represent a distinct
simulation result. The robot successfully avoids the obstacle
in all cases. In Fig. 7, we show how the trajectories vary as
a function of different robot orientations with a fixed obstacle
location.

Remark 5. When the robot is within an obstacle, there is also
a valid solution that pushes the robot outside of the obstacle.
Consider the CBF constraint (13),

L f B(x) + LgB(x)u + ηB(x) ≥ 0. (32)

When the robot is withing an obstacle, B(x) < 0 and the QP
selects u such that L f B(x) + LgB(x)u ≥ −ηB(x), causing the
robot to leave the obstacle.

6.3. Liveness Analysis in MATLAB
We analyze the liveness by placing an obstacle with a fixed

radius (r = 1) at different locations. The robot starts at
(−15,−15,−15◦) and the target is located at (0, 0). The obstacle
is placed at every 0.2 meter. If the robot successfully reaches
the target without collision, the obstacle location is marked in
green otherwise in red, as shown in Fig. 8. All the red points
either originally collide with the robot or the target.
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(a) (b)

(c) (d)

Figure 11: Autonomy experiments with Cassie Blue on the first floor of FRB. The green arrow is Cassie’s pose and the green lines are the resulting trajectories. The
blue sphere is the selected target position. The map is colored by height and the highlighted area is the local map.

6.4. Multi-Obstacle Simulation with ROS in C++
In this simulation, we implement a local map centering at

robot position with a fixed size and a sub-goal selector to place a
target within the local map to achieve long-term planning as not
all the obstacles are perceived by the robot at the beginning in
practice. Even though the global map is available in simulation
but it is not available in practice, therefore, only the information
within the local map at the specific timestamp is provided to the
robot. The robot model is the same ALIP model in Sec. 6.1.

In Fig. 9, we generate two noise-free and two noisy synthetic
maps with the size of 50 × 30 meters. Each map contains 20
obstacles marked as blue circles. We run six different initial
poses and final goals for each map. Different colors represent
different runs in the map. The highlighted area is the local map
at that specific timestamp. An intermediate goal is chosen at the
intersection between the boundary of the local map and the line
connecting the robot and the final goal at the current timestamp.
If the intermediate goal collides with an obstacle, it is moved
back along the line. The intermediate goal is updated when it is
reached or becomes inside of an obstacle due to the update of

the local map. The robot with ALIP model successfully reaches
the goals in all 6 × 4 = 24 runs.

7. Experimental Results on a Bipedal Robot

We perform several experiments of the proposed CLF-CBF-
QP system on Cassie Blue, a bipedal robot with 20 degrees of
freedom. The entire system integrates elevation mapping, in-
termediate goal selection, and the low-level CLF-CBF obstacle
avoidance system.

7.1. Autonomy System Integration
The following is summarized from [1] for the completeness

of the paper. To allow the robot to perceive its surroundings
under different lighting conditions and environments, we de-
signed a perception suite that consists of an RGB-D camera (In-
tel RealSense™ D435) and a 32-Beam Velodyne ULTRA Puck
LiDAR, as shown in Fig. 10. The sensor calibrations are per-
formed via[50, 51, 52, 53]. The invariant extended Kalman fil-
ter (InEKF) [54] estimates the pose of Cassie at 2k Hz. The raw

10



point cloud is motion compensated by the InEKF and then used
to build an elevation map.

7.2. Autonomy Experiment on Cassie Blue

We conducted several indoor experiments with Cassie Blue
on the first floor of the Ford Robotics Building (FRB) where
tables and chairs are considered obstacles. To detect obstacles
in the environment, an occupancy grid map is updated in real-
time using the timestamped elevation map. Grids with heights
greater than 0.2 meters are considered occupied. An occupied
grid is defined as the boundary of obstacles if there is an un-
occupied grid in its neighborhood. The Breadth First Search
(BFS) algorithm [55] is utilized to find the separated obstacles
in the map. Next, we apply the Gift Wrapping Algorithm [56]
to the boundary grids of obstacles to find the convex hulls of the
obstacles. Finally, the minimum bounding ball algorithm [57]
is applied to the convex hulls to find the minimum bounding cir-
cles of the obstacles. The circles are used to represent obstacles
in the CBF function (6). The target position is selected by click-
ing a point in the global map. If the final target is not within the
current local map, an intermediate goal will be selected within
the local map. When an intermediate goal is reached by Cassie
or becomes invalid because of the update of the local map, it is
updated. In the experiments, Cassie successfully avoids all the
obstacles and reaches the target position, as shown in Fig. 11.

8. Conclusion

This paper presented a reactive planning system that allows
a Cassie-series bipedal robot to avoid multiple non-overlapping
obstacles via a single, continuously differentiable control bar-
rier function (CBF). The overall system detects an individual
obstacle via a height map derived from a LiDAR point cloud
and computes an elliptical outer approximation, which is then
turned into a quadratic CBF. A continuously differentiable satu-
ration function is presented that preserves the CBF property of a
quadratic CBF while allowing the saturated CBFs for individual
obstacles to be turned into a single CBF. The CLF-CBF-QP for-
malism developed by Ames et al. can then be applied to ensure
that safe trajectories are generated in the presence of multiple
obstacles. Liveness is ensured by an analysis of induced equi-
librium points that are distinct from the goal state. Safe plan-
ning in environments with multiple obstacles is demonstrated
both in simulation and experimentally on the Cassie bipedal
robot.
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[27] R. A. Freeman, P. V. Kokotović, Robust Nonlinear Control Design,
Birkhäuser, 1996.

[28] O. Khatib, Real-time obstacle avoidance for manipulators and mobile
robots, in: Proceedings. 1985 IEEE International Conference on Robotics
and Automation, volume 2, IEEE, 1985, pp. 500–505.

[29] D. E. Koditschek, Robot planning and control via potential functions,
The robotics review (1989) 349.

[30] Y. Koren, J. Borenstein, et al., Potential field methods and their inherent
limitations for mobile robot navigation., in: ICRA, volume 2, 1991, pp.
1398–1404.

[31] E. Rimon, D. Koditschek, Exact robot navigation using artificial potential
functions, IEEE Transactions on Robotics and Automation 8 (1992) 501–
518. doi:10.1109/70.163777.

[32] D. E. Koditschek, E. Rimon, Robot navigation functions on manifolds
with boundary, Advances in applied mathematics 11 (1990) 412–442.

[33] O. Arslan, D. E. Koditschek, Exact robot navigation using power dia-
grams, in: Proc. IEEE Int. Conf. Robot. and Automation, 2016, pp. 1–8.
doi:10.1109/ICRA.2016.7487090.

[34] O. Arslan, D. E. Koditschek, Sensor-based reactive navigation in un-
known convex sphere worlds, The International Journal of Robotics Re-
search 38 (2019) 196–223.

[35] S. Paternain, D. E. Koditschek, A. Ribeiro, Navigation functions for con-
vex potentials in a space with convex obstacles, IEEE Transactions on
Automatic Control 63 (2017) 2944–2959.

[36] P. Wieland, F. Allgöwer, Constructive safety using control barrier func-
tions, in: Proceedings of the 7th IFAC Symposium on Nonlinear Control
System, 2007, pp. 462–467.

[37] Z. Li, Comparison between safety methods control barrier function
vs. reachability analysis, 2021. URL: https://arxiv.org/abs/
2106.13176. doi:10.48550/ARXIV.2106.13176.

[38] A. Singletary, S. Kolathaya, A. D. Ames, Safety-critical kinematic control
of robotic systems, IEEE Control Systems Letters 6 (2022) 139–144.
doi:10.1109/LCSYS.2021.3050609.

[39] M. Jankovic, Combining control lyapunov and barrier functions for con-
strained stabilization of nonlinear systems, in: 2017 American Control
Conference (ACC), 2017, pp. 1916–1922. doi:10.23919/ACC.2017.
7963232.

[40] K. Garg, D. Panagou, Control-lyapunov and control-barrier functions
based quadratic program for spatio-temporal specifications, in: 2019
IEEE 58th Conference on Decision and Control (CDC), 2019, pp. 1422–
1429. doi:10.1109/CDC40024.2019.9029666.

[41] M. Desai, A. Ghaffari, Clf-cbf based quadratic programs for safe motion
control of nonholonomic mobile robots in presence of moving obstacles,
in: 2022 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM), IEEE, 2022, pp. 16–21.

[42] E. A. Basso, E. H. Thyri, K. Y. Pettersen, M. Breivik, R. Skjetne, Safety-
critical control of autonomous surface vehicles in the presence of ocean
currents, in: 2020 IEEE Conference on Control Technology and Appli-
cations (CCTA), IEEE, 2020, pp. 396–403.

[43] A. Agrawal, K. Sreenath, Discrete control barrier functions for safety-
critical control of discrete systems with application to bipedal robot navi-
gation., in: Robotics: Science and Systems, volume 13, Cambridge, MA,
USA, 2017.

[44] A. Singletary, K. Klingebiel, J. Bourne, A. Browning, P. Tokumaru,
A. Ames, Comparative analysis of control barrier functions and artifi-
cial potential fields for obstacle avoidance, in: 2021 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), 2021, pp.
8129–8136. doi:10.1109/IROS51168.2021.9636670.

[45] M. Rauscher, M. Kimmel, S. Hirche, Constrained robot control using
control barrier functions, in: 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, 2016, pp. 279–285.

[46] P. Glotfelter, J. Cortés, M. Egerstedt, Nonsmooth barrier functions with
applications to multi-robot systems, IEEE control systems letters 1 (2017)
310–315.

[47] M. Z. Romdlony, B. Jayawardhana, Stabilization with guaranteed safety
using control lyapunov–barrier function, Automatica 66 (2016) 39–47.

[48] P. Thontepu, B. G. Goswami, N. Singh, S. P, S. S. M. G, S. Sun-
daram, V. Katewa, S. Kolathaya., Control barrier functions in ugvs
for kinematic obstacle avoidance: A collision cone approach, 2022.
URL: https://arxiv.org/abs/2209.11524. doi:10.48550/
ARXIV.2209.11524.

[49] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
P. Tabuada, Control barrier functions: Theory and applications, in: 2019
18th European control conference (ECC), IEEE, 2019, pp. 3420–3431.

[50] J. Huang, J. W. Grizzle, Improvements to Target-Based 3D LiDAR to
Camera Calibration, IEEE Access 8 (2020) 134101–134110.

[51] J. K. Huang, S. Wang, M. Ghaffari, J. W. Grizzle, LiDARTag: A Real-
Time Fiducial Tag System for Point Clouds, IEEE Robotics and Automa-
tion Letters (2021) 1–1. doi:10.1109/LRA.2021.3070302.

[52] J.-K. Huang, C. Feng, M. Achar, M. Ghaffari, J. W. Grizzle, Global Uni-
fying Intrinsic Calibration for Spinning and Solid-State LiDARs, arXiv
preprint arXiv:2012.03321 (2020).

[53] J.-K. Huang, W. Clark, J. W. Grizzle, Optimal target shape for lidar pose
estimation, arXiv preprint arXiv:2109.01181 (2021).

[54] R. Hartley, M. Ghaffari, R. M. Eustice, J. W. Grizzle, Contact-aided
invariant extended kalman filtering for robot state estimation, The Inter-
national Journal of Robotics Research 39 (2020) 402–430.

[55] A. Bundy, L. Wallen, Breadth-first search, in: Catalogue of artificial
intelligence tools, Springer, 1984, pp. 13–13.

[56] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Finding the convex hull.
introduction to algorithms, 2009.

[57] A. M. N. Alzubaidi, Minimum bounding circle of 2d convex hull, Inter-
national journal of Science and research 3 (2014) 364–367.

[58] S. I. Gass, C. M. Harris, Encyclopedia of operations research and man-
agement science, Journal of the Operational Research Society 48 (1997)
759–760.

Appendix A. Equilibrium Analysis of Multi-Obstacle Sys-
tems

We give the complete analysis for a single obstacle, following the
work of [19]. Because the drift term of our model is zero, any equi-
librium points are where the optimal control is the zero vector. To
avoid this undesirable situation, we seek to find all equilibrium points
E = {x|u∗ = [0, 0, 0]T, r > 0, and δ, θ ∈ (−π, π]}, where u∗ is the opti-
mal control variable. Recall that f =

[
0 0 0

]T
in (2), which leads

to L f V(x) = L f B(x) = 0. We denote the following to re-write the CLF
and the CBF constraints:[

dx dy 0
]
= −LgB(x)[

ax ay aω
]
= LgV(x),

(A.1)

where

ax = −r cos(δ) +
βγ2 sin(2βδ) sin(δ)

2r

ay = −r sin(δ) −
βγ2 sin(2βδ) cos(δ)

2r

aω =
βγ sin(2βδ)

2
.

(A.2)

The constraints become

L(x, u, s) = axvx + ayvy + aωω − s + µV(x), (A.3)

B(x, u) = dxvx + dyvy − ηB(x), (A.4)
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and the cost function (15) of the QP can then be re-written as:

J(u, s) =
1
2

h1(vx − vref
x )2 +

1
2

h2(vy − vref
y )2

+
1
2

h3(ω − ωref)2 +
1
2

ps2,

(A.5)

where {hi}
3
i=1 are the diagonal elements of H in (15), the weights of

control variables [vx, vy, ω] with hi > 0.
The KKT conditions [58] of this quadratic program are:

∂L
∂u
= Hu∗ − Huref + λ1LgVT − λ2LgBT = 0 (A.6)

∂L
∂s
= ps − λ1 = 0 (A.7)

0 = λ1(L f V + LgVu∗ + µV − s) (A.8)

0 = λ2(−L f B − LgBu∗ − ηB) (A.9)

0 ≥ L f V + LgVu∗ + µV − s (A.10)

0 ≥ −L f B − LgBu∗ − ηB (A.11)

0 ≤ λ1, λ2, (A.12)

where λ1, λ2 ∈ R, and L is the Lagrangian function and defined as

L(u, s, λ1, λ2) = J(u, s) + λ1L(x, u, s) + λ2B(x, u). (A.13)

Next, we analyze equilibrium points (if any) via four cases depend-
ing on whether each CLF or CBF constraint is active or inactive fol-
lowing [19].

Appendix A.1. Both CLF and CBF are inactive
When both constraints are inactive, we have

λ1 = 0

λ2 = 0

0 > L f V + LgVu∗ + µV − s

0 > −L f B − LgBu∗ − ηB.

(A.14)

With (A.6) and (A.7), u∗ and s∗ in this case are

u∗ = uref

s∗ = 0.
(A.15)

From (4), as long as the goal is not reached, uref is not a zero vector.
Hence, there is no equilibrium point in this case.

Appendix A.2. CLF constraint inactive and CBF constraint
active

We prove that there is no equilibrium point in this case by contra-
diction. When the CLF constraint is inactive and the CBF constraint is
active, we have

λ1 = 0

λ2 ≥ 0

0 > L f V + LgVu∗ + µV − s

0 = −L f B − LgBu∗ − ηB.

(A.16)

With (A.6) and (A.7), u∗, s∗ and λ2 in this case are

u∗ = uref + λ2H−1LgBT

s∗ = 0

λ2 = −
ηB + L f B + LgBuref

LgBH−1LgBT
.

(A.17)

If there is an equilibrium point, then u∗ is the zero vector. Hence, at
the equilibrium point, by L f V(x) = 0, u∗ = 0 and s∗ = 0, we have

L f V + LgVu∗ + µV − s∗ = µV > 0, (A.18)

which conflicts with (A.16). Therefore, there is no equilibrium point
in this case.

Appendix A.3. CLF constraint active and CBF constraint in-
active

When the CLF constraint is active and the CBF constraint is inac-
tive, we have

λ1 ≥ 0

λ2 = 0

0 = L f V + LgVu∗ + µV − s

0 > −L f B − LgBu∗ − ηB.

(A.19)

With (A.6) and (A.7), u∗, s∗ and λ1 in this case are

u∗ = uref − λ1H−1LgVT

s∗ =
λ1

p

λ1 =
pµV + pL f V + pLgVuref

pLgVH−1LgVT + 1
.

(A.20)

Using the variables defined in (A.1), u∗ can be rewritten as:

u∗ =

v
∗
x

v∗y
ω∗

 =


vref
x −

λ1ax
h1

vref
y −

λ1ay
h2

ωref −
λ1aω

h3

 . (A.21)

We know from (A.2) that

(ay = 0 & aω = 0) ⇐⇒ δ = 0. (A.22)

In addition, we know from (4) that

(vref
y = 0 & ωref = 0) ⇐⇒ δ = 0. (A.23)

Therefore, we split this case into three cases based on the value of δ.

Appendix A.3.1. δ = 0 (Case I)
Substituting δ = 0 to (A.1), we have ax = −r < 0, ay = 0, aω = 0,

and to (4), we have vref
x > 0, vref

y = 0, ωref = 0. Finally, with (A.12), the
optimal control command (A.21) can be simplified as:

u∗ =

v
∗
x

v∗y
ω∗

 =

vref

x +
λ1r
h1
> 0

0
0

 . (A.24)

The optimal control command is not a zero vector, and hence there is
no equilibrium point in this case.

Appendix A.3.2. δ > 0 (Case II)
When δ > 0, by the definitions in (A.2), we have ay < 0, aω > 0,

and by (4), we have vref
y > 0, ωref < 0. With (A.12) and (A.21), we

have

v∗y = vref
y −

λ1ay

h2
> 0

ω∗ = ωref −
λ1aω

h3
< 0.

(A.25)

The optimal control command is not a zero vector in this case. There-
fore, there is no equilibrium points in this case either.
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Appendix A.3.3. δ < 0 (Case III)
Similarly, by (A.1) and (4), we have ay > 0, aω < 0 and vref

y <

0, ωref > 0. With (A.12) and (A.21), we have

v∗y = vref
y −

λ1ay

h2
< 0

ω∗ = ωref −
λ1aω

h3
> 0

(A.26)

The optimal control command is not a zero vector in this case; hence,
there is no equilibrium point in this case.

In summary, there is no equilibrium point when the CLF constraint
is active and the CBF constraint is inactive.

Appendix A.4. Both CLF and CBF constraint are active
When the CLF constraint is active and the CBF constraint is active,

we have
λ1 ≥ 0

λ2 ≥ 0

0 = L f V + LgVu∗ + µV − s

0 = −L f B − LgBu∗ − ηB.

(A.27)

We can rewrite (A.6) and (A.7) as:

u∗ = uref − λ1H−1LgVT + λ2H−1LgBT

s∗ =
λ1

p
(A.28)

Using the variables defined in (A.1), u∗ can be rewritten as:

u∗ =

v
∗
x

v∗y
ω∗

 =

vref

x −
λ1ax

h1
−
λ2dx

h1

vref
y −

λ1ay
h2

−
λ2dy
h2

ωref −
λ1aω

h3

 . (A.29)

When the robot is at an equilibrium point, u∗ is the zero vector. By
(A.27) and L f B = 0, u∗ = 0, we have B = 0, which implies that
the robot is at the boundary of an obstacle. In the following proof of
Sec. Appendix A.4, we will assume the robot is at the boundary of
obstacles.

The property of B = 0 leads to an immediate proposition which is
helpful in finding the equilibrium point in the system when one of the
components of the optimal control is 0.

Proposition 3. dy = 0 =⇒ v∗x = 0.

Proof. By the proof in 3.3, we have LgB(x) = ∇B(x) · g(x) , 0 for
x ∈ D. Therefore, when dy = 0, we have dx , 0. Then, we can further
have LgB(x)u∗ = 0 =⇒ v∗x = 0.

In addition, with the properties (A.22) and (A.23), we split this case
into four cases based on whether δ and dy are zero.

Appendix A.4.1. dy = δ = 0 (Case I)
Substituting to (A.1), we have ax = −r < 0, ay = 0, aω = 0, and to

(4), we have vref
x > 0, vref

y = 0, ωref = 0. Finally, with Proposition 3, in
this case the optimal control command (A.29) can be written as:

u∗ =

v
∗
x

v∗y
ω∗

 =

vref

x −
λ1ax

h1
−
λ2dx

h1

0
0

 =
00
0

 . (A.30)

λ1 and λ2 can be obtained by (A.30), (A.27) and (A.28):

λ1 = pµV > 0

λ2 =
h1vref

x − pµVax

dx

(A.31)

By (A.12) and (A.31), we have

∵ vref
x > 0, ax < 0,

h1vref
x − pµVax

dx
≥ 0 −→ dx > 0. (A.32)

Hence, there is an equilibrium point when B = 0, dy = δ = 0 and
dx > 0.

Appendix A.4.2. dy , 0, δ = 0 (Case II)
When δ = 0, by (A.1) and (4), we have ax = −r < 0, ay = 0, aω = 0

and vref
x > 0, vref

y = 0, ωref = 0. Finally, with (A.12), the optimal control
command (A.29) can be simplified as:

u∗ =

v
∗
x

v∗y
ω∗

 =

vref

x −
λ1ax

h1
−
λ2dx

h1

−
λ2dy
h2
, 0

0

 . (A.33)

Because v∗y , 0, the optimal command is not a zero vector in this case.
Equilibrium points don’t exist when dy , and δ = 0.

Appendix A.4.3. δ > 0 (Case III)
When δ > 0, by (A.25), ω∗ < 0. Hence, the optimal command is

not a zero vector and there are no equilibrium points in this case.

Appendix A.4.4. δ < 0 (Case IV)
When δ < 0, by (A.26), ω∗ > 0. Hence, the optimal command is

not a zero vector and there are no equilibrium points in this case.
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