


2  |    DE FRENNE et al.

1  |  INTRODUC TION

Most terrestrial climate data are derived from synoptic weather 

stations, which measure atmospheric conditions of ambient air and 
represent a coarse spatial grain. These stations are designed ac-

cording to the standards of the World Meteorological Organization 

(WMO), that is, to be situated in open areas, typically at 1.5–2.0 m 
above the ground, where air temperature sensors are shielded from 
solar radiation and where airflow minimises fine- scale heterogene-

ity (WMO, 2023). However, many terrestrial organisms live near or 
below the ground or on vegetation (surfaces), experiencing near- 
surface microclimates (Box 1). For instance, many animals and plants 
inhabit either sunlit or shaded environments just centimetres above 

the ground, where radiation absorption and evaporation strongly in-

fluence the temperature of the surface and the air in its immediate 

vicinity: the proximal microclimate (Klinges, Baecher, et al., 2024). 

Temperature differences between north-  and south- facing slopes 

or between open and shaded forest patches can exceed 10–20°C 
(Maclean et al., 2021; Suggitt et al., 2011). Similar variations are ob-

served in other environmental variables, such as relative humidity 
and wind speed, which can, for example, differ markedly between 
forest understories and short- stature vegetation. Many organisms 

rely on this microclimatic variation to maintain their body tem-

peratures and water balance within their preferred range (Mitchell 

et al., 2024).

Researchers in ecology and evolution face the challenge of deter-

mining if, why, what, how, when and where microclimatic conditions 
should be measured. Historically, ecologists have relied on mac-

roclimate data to infer relationships between organisms and their 

environments. However, it is now widely recognised that these mea-

sures often provide only crude approximations and can sometimes 

lead to erroneous or misleading predictions (Haesen, Lembrechts, 
et al., 2023; Körner & Hiltbrunner, 2018; Maclean & Early, 2023; 

Suggitt et al., 2011). An additional challenge is that microclimate 
varies at fine spatial and temporal resolutions (Pincebourde & 

Woods, 2020), increasing the need for replication.
The WMO regularly updates guidelines for climatological prac-

tices (WMO, 2023), including location of measurements, instrumen-

tation required and network design and management. However, 
these guidelines focus on reducing the very factors that microclimate 

researchers are interested in measuring. While several papers have 

already collated information on microclimate science, standardised 
guidelines do not yet exist for the field. De Frenne et al. (2021) dis-

cuss the drivers and importance of microclimate variation, focusing 
specifically on forests. Bramer et al. (2018) covered the state of the 

art at the time in terms of measuring and modelling microclimates, 
but did not consider data management or sharing. A lack of com-

mon data protocols and knowledge of measurement methods were 

ranked as the second and third most important challenges for mi-

croclimate science (behind funding issues) at the British Ecological 
Society workshop that inspired this last paper. Since then, there 
have been developments in sensor design (Wild et al., 2019) and 

understanding measurement error (Maclean et al., 2021), modelling 
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BOX 1 Definition of macroclimate versus 
microclimate

The macroclimate represents the average atmospheric 

conditions of ambient air across a large geographic region, 
independent of local topography, soil and vegetation 
(Stoutjesdijk & Barkman, 2014; WMO, 2023). We here 

define microclimate as the thermal and hydric conditions 

in the immediate vicinity of organisms (i.e. proximal 

microclimate sensu Klinges, Baecher, et al., 2024, see 
Section 3) or ecosystem processes of interest, as driven 
by atmospheric conditions interacting with the abiotic and 

biotic components of the Earth's surface. This is often in 

a relatively small area, within few metres or less above 
and below the Earth's surface and within canopies of 

vegetation (Britannica, 2024). We distinguish microclimate 

from ‘mesoclimate’ in which climatic variations are caused 

by the wholesale movement of air masses where variation 

is typically most evident at scales ranging from hundreds 

of metres to kilometres. Extensive discussions of the 

definitions of macroclimate, microclimate, mesoclimate and 
also other terms including topoclimate, nanoclimate and 
ecoclimate are available elsewhere (Barry & Blanken, 2016; 

Bramer et al., 2018; Geiger et al., 2009; Stoutjesdijk & 

Barkman, 2014).
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(Gril, Spicher, et al., 2023; Kearney et al., 2020; Klinges et al., 2022; 

Maclean & Klinges, 2021) and data collation and sharing (Lembrechts 
et al., 2020) to facilitate the expansion of the discipline from local to 

global scales. Kemppinen et al. (2024) provide a discussion of these, 
but a comprehensive and practical step- by- step guide for those 

starting in the field is still lacking.

Here, we review standardised methods for terrestrial microcli-
mate research, grouped in 10 practical guidelines. These range from 
understanding the importance of microclimates, through what, how, 
when and where to measure them, the design of microclimate stud-

ies and how best to analyse and deposit data for further use and 

collaboration (Figures 1 and 2). As such, the paper is designed as a 
chronological guide taking the reader through all the steps required 
to complete a microclimate study across ecological and evolutionary 

topics. We do not explain major physical, ecological or ecophysiolog-

ical theories driving microclimates—these are described elsewhere 

(Barry & Blanken, 2016; Bramer et al., 2018; Geiger et al., 2009; 

Maclean et al., 2021; Monteith & Unsworth, 2013). The aim is rather 

to provide a practical guide for people embarking on ecological re-

search involving microclimate data and to help avoid the pitfalls we 

encountered when starting ourselves. We specifically do not focus 

here on (distant) remote sensing methods such as airborne LiDAR 
or thermal infrared imagery because of the very contrasting meth-

ods associated with, for example, the data collection and analyses 
(reviewed in Zellweger et al., 2019). We also exclude most aquatic 
systems (both freshwater and marine) as they typically require very 
different methodologies, and we specifically do not consider finan-

cial aspects (including human resources, travelling and logistics).

F I G U R E  1  Graphical overview of guidelines 1–6 summarising why, what, how, when and where to monitor microclimate, and to consider 
site- specific characteristics. The colour shading of the landscape simulates a microclimatic gradient.

Why?

Where?

How?

Sites?

Diurnal Seasonal Decadal

Environmental space Geographic space

Guideline 6: Consider site-specific characteris

Guideline 5: Consider spa xtent

Guideline 3: Consider sensor and logger types

Guideline 4: Consider temporal r xtent

Guideline 2: Consider microclimate variables

Guideline 1: Consider importance of microclimate

What?

When?
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2  |  GUIDELINE 1:  IMPORTANCE OF 
MICROCLIMATE IN YOUR SYSTEM

The importance and necessity of collecting microcli-

mate data within a particular study may range from 

being: (i) ‘indispensable’, that is, microclimate is at the 
heart of the study and available resources should first 

go to microclimate monitoring; (ii) ‘relevant’, that is, 
basic microclimate monitoring could be considered to 

reach the aims of the study and address the research 

questions; and (iii) ‘optional’, that is, available re-

sources can first be spent elsewhere, but if resources 
are available they could go towards microclimate 

monitoring.

F I G U R E  2  Graphical overview of guidelines 7–10 as the final steps of a microclimate study: Choosing the right reference data, data 
compilation, data analysis and publication of open data.
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    |  5DE FRENNE et al.

Microclimates are challenging to measure and model because of 

their fine spatiotemporal resolutions and often complex underlying driv-

ers (Gates, 2012). Thus, it is important to first decide whether collecting 
microclimate data is even necessary. Sometimes, the combination of 
macroclimate variables based on weather station data (see Section 8) 

or gridded climate data, combined with static topographic variables 
at fine spatial resolutions, may be sufficiently informative (Kearney & 
Porter, 2009). The first key question is for the researchers to ask them-

selves whether macroclimate variables are adequate and meaningful 
predictors of the ecological response of interest (as they often are for 

understanding macroecological patterns such as species distributions). 

Microclimate is, for instance, needed when one wishes to get closer to 
the actual physiological constraints (Bennie et al., 2014). Hence, to de-

termine whether microclimate should be monitored, a first key question 
is whether correlative or mechanistic approaches to link microclimate 

and the study organism or process are desired (Figure 3).

Correlative approaches rely on statistical modelling to infer rela-

tionships between the focal study organism or ecosystem process (e.g. 

empirical data on the geographical distribution of a species) and its 

habitat or environment (including soil, climate, topography and other 
biotic and abiotic descriptors; Morin & Thuiller, 2009). Often in these 

studies, the focus is not on the exact microclimatic conditions experi-
enced by organisms. Instead, these studies aim to define a mean field 
approximation of the environmental conditions that explain or predict 

the potential occurrence of a focal species at a given location. It is 

nonetheless important to tailor micro-  or macroclimate monitoring to 

the process and ecosystem that is being studied. For instance, life cycle 
components, physiological properties and general natural history need 
to be known with enough detail to formulate precise research ques-

tions or hypotheses to decide whether microclimate is necessary, or 
if a combination of macroclimate with topography might be sufficient 

to meet the requirements (Figure 3). When climate data are used to 

explain or predict ecological processes, it might suffice to work with 
information- rich microclimate variables that are likely related to the 

studied object (see Section 3). These variables often combine a variety 

of climate factors, aggregated into one or two variables that make up 
the microclimate of the object and give sufficient information to de-

velop good explanatory or predictive models (e.g. Jonsson et al., 2008; 

Mathewson et al., 2017). Preliminary analyses of variation in specific 

microclimate variables from measurements, or comparison of models 
fit with different microclimate variables, can help to validate the choice 
of categories or variables to be included as factors in the statistical 

analyses. The relative necessity of microclimate data may also be de-

pendent on whether researchers want to extrapolate in time or space. 

In cases where predictions into novel conditions are needed, the in-

clusion of microclimate data can improve predictions (Haesen, Lenoir, 
et al., 2023) and mechanistic or process- based microclimate models 

forced with high- resolution data represent an exciting future research 

avenue (Briscoe et al., 2023; Klinges, Baecher, et al., 2024).

Mechanistic approaches aim to explicitly capture the physiologi-

cal links between (micro)climate conditions and the study organism or 

process. They are grounded in the application of biophysical models 

F I G U R E  3  Decision tree to guide researchers in their decision when and where to monitor microclimate and which microclimate variables 
to measure.

Do you want to use a mechanistic or 

correlative approach?

Mechanistic approach Correlative approach

Do you have a clear understanding of which microclimate variable is 

most important for your focal organism or process?

Think about physiology & ecology 

(see 2.1.1) 

Think about microhabitats 

(see 2.1.1)

Yes No

Do you need high precision (site/time specific) or high generality 

(inferences to other places or times) in your study approach?

Think about physics & 

micrometeorology (see 2.1.2)

Aim for information-rich variables 

Go for as specific measurements 

as possible such as operative 

temperature models (see 2.2.1)

Biophysical modelling

(see 2.2.2)

Specificity Generality

Do you want to model the 

microclimate as response 

variable?

Model and predict microclimate 

in the most important 

microhabitats

Model organism’s physiology or 

process dynamics with 

microclimate as predictor 

variable

yes no

E.g. aboveground:

Air temperature, wind speed, 

humidity, diffuse and direct 

solar radiation, up- & 

downwelling longwave radiation

E.g. plaster models for 

amphibians or 3D-printed 

models covered with bird 

plumage

E.g. height profiles of air 

temperature, wind speed, 

humidity, soil temperature, soil 

moisture, snow depth

E.g. where will you measure the 

most important variable? 

E.g. what is the size of the 

organism? 

E.g. how are different 

microclimate variables 

related to each other?

E.g. air temperature

Question Approach Example
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6  |    DE FRENNE et al.

of energy (heat) and mass (water, nutrients) exchange between the 
organism and its living environment (Briscoe et al., 2023; Kearney & 

Porter, 2009) and can be generalised to novel conditions with con-

fidence (Briscoe et al., 2023). This approach defines the functional 

traits that matter in the processes of energy and mass exchange and 

their relationship to survival, growth, development and reproduction 
(Kearney, Briscoe, et al., 2021; Kearney, Jusup, et al., 2021), making it 
suitable for fine- scale analysis of processes such as survival, phenology 
or decomposition (Helmuth et al., 2002; Jørgensen et al., 2022; Rezende 

et al., 2020). The scale at which these analyses should be undertaken 

depends on the intrinsic characteristics of the focal species, like body 
size (Pincebourde et al., 2021; Pincebourde & Woods, 2020), mobility 
or dispersal (Tigreros et al., 2023) and on the extrinsic characteristics 

of the (micro)habitat (Vives- Ingla et al., 2023). Therefore, incorporating 
microclimate data into a study does not always ensure that the correct 

scale of microclimate representing an organism's exposure is captured.

We recommend that any researcher performing a study that in-

volves climatic factors as a driver of biodiversity or ecosystem pro-

cesses should at least consider whether it is worthwhile to collect 

their own microclimate data or to rely on available reference data 

(see Section 8). It is impossible to say precisely when and where 

microclimate should be incorporated into any given study, because 
the significance of microclimate is contingent upon the study's ob-

jectives, the focal organisms and processes under investigation, the 
ecosystem in question, the spatial and temporal resolution and ex-

tent of the study and the available resources (financial, logistical and 
human) for microclimate monitoring.

3  |  GUIDELINE 2:  WHICH MICROCLIMATE 
VARIABLES TO ME A SURE?

The choice of which microclimate variables to measure 

depends mainly on (1) the level of mechanistic insight 

required in the study, (2) the ecology and physiology 
of the focal organism or the underlying drivers of the 

investigated process and (3) the physics of micromete-

orology and how microclimate variables are correlated.

The microclimate of terrestrial organisms and ecosystems results 

from the exchange of heat (energy) and water (mass) between the at-

mosphere and the land. Relevant variables involved in these exchanges 

include air temperature, substrate temperature, wind speed and direc-

tion, incoming and outgoing long-  (e.g. infrared light with wavelengths 
longer than 700–800 nm) and short- wave radiation (e.g. visible light 
with wavelengths of 400–700 nm), air humidity, precipitation and soil 
moisture. These variables can be combined and aggregated at different 

resolutions of space and time to generate predictors along a spectrum 

of proximal (e.g. hourly soil temperature or water potential) to distal 

(e.g. aridity indices). Thus, the choice of which microclimate variables 
to measure can be challenging. The most important consideration is 

the biological question being addressed. In this guideline, we again 
refer to the question- based decision tree in Figure 3.

3.1  |  Correlating measured microclimate variables 
to a biological process or pattern

For most approaches, the focus of measurements is mostly on 
efficiently capturing as much information as possible with a small set of 

easily measured variables. In a correlative approach, the physiological 
and physical processes are considered implicitly and a direct link 

between microclimatic measurements and the physiological processes 

is not necessarily needed. Correlative approaches can be especially 

useful for understanding species distributions and environmental 

conditions of species' (micro)habitats without the need to dive into 

the detailed mechanistic processes of the focal organism's physiology. 

However, good knowledge of the studied species' natural history 
helps in determining which microclimate variables strengthen the 

informative value and predictive power of models.

3.1.1  |  Know your organism's physiology & 
ecology and the drivers of ecosystem processes

First, it is necessary to consider the habitat of the study organism 
or the potential drivers of the investigated ecological process. Here, 
we draw attention to two guiding considerations: (1) body size and 

(2) microhabitats (Kearney, Briscoe, et al., 2021; Kearney, Jusup, 
et al., 2021).

In terms of body size, for very small organisms (<1 mm high, e.g. 
aphids, endophytic fungi), the body temperature is mainly determined 
by near- surface air temperature because these small organisms dwell 

within the surface boundary layer and have very thin boundary lay-

ers themselves, coupling them more closely to near- surface air tem-

perature (Pincebourde & Woods, 2020). As a result, the most relevant 
temperature to measure for these organisms is surface temperature 

(e.g. leaf surfaces, Pincebourde & Woods, 2020). For somewhat larger 

organisms that move or grow primarily on the ground surface, air tem-

perature near the ground might be a suitable proxy for body tempera-

ture (e.g. for carabid beetles, woodlice). However, for organisms with 
high levels of evaporative cooling (e.g. plants, amphibians, molluscs) 
and organisms exposed to solar radiation or clear night skies, the mi-
croclimate air temperature may be a poor proxy for body temperature 

(Gardner et al., 2024). For the latter, it might be more relevant to mea-

sure operative temperatures as a proxy for body temperature, or to 
compute body temperature with a heat exchange model (Bakken & 
Angilletta, 2014; Tracy et al., 2007; see also Section 3.2.1). For very 

large organisms, such as trees, individuals sample a large tempera-

ture gradient (from the surface to tens of metres below and above 

the ground) and this whole gradient may need to be characterised, 
or specific measurements may be needed depending on the research 

question (e.g. studying epiphytes on the full above- ground extent of 
the tree vs. below- ground root growth). Sampling such broad verti-

cal temperature gradients (e.g. from the ground to the top canopy of 

trees) may require novel methods such as distributed temperature 
sensing via fibre- optic technology (Krause et al., 2013). The micro-

climate requirements can also shift ontogenetically within the same 
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individual, for instance from germinating seeds and small tree seed-

lings on the shaded forest floor to dominant adult trees with the top 

canopy in full sunlight (Schouten et al., 2020).

Ideally, one characterises the full microclimate range experi-
enced by their study organism or process. If it occupies different 

microhabitats, it is important to understand which microclimate 
variables best describe the differences between these microhabi-

tats. For ectotherms in deserts that move between shade- providing 

bushes, for example, solar radiation drives microhabitat differences 
(Kearney, Briscoe, et al., 2021; Kearney, Jusup, et al., 2021). For 

bryophyte communities in forests, and litter decomposition, varia-

tion in soil moisture might be most important (Man et al., 2022).

3.1.2  |  Know the physics of the proximal 
environment and choose information- rich variables

To make good choices of microclimatic variables for correlative 

studies, it is important to understand the underlying physical prin-

ciples, and we refer readers to standard texts on this topic (Bramer 
et al., 2018; Campbell & Norman, 2012; Geiger et al., 2009). For 

example, relative humidity is often used as a predictor variable to 
capture aspects of water exchange. However, this metric, which ex-

presses the actual water content as a percentage of the saturated 

water content of the air, is very tightly correlated with air tempera-

ture. Vapour pressure deficit (VPD), the difference between actual 
and saturated water content, is easily calculated from relative hu-

midity and air temperature, and may be a more informative predic-

tor, as it is more directly linked to physiology (Grossiord et al., 2020; 

López et al., 2021; Trotsiuk et al., 2021). Temperature variables are 

also spatially and temporally autocorrelated, e.g. temperatures along 
an elevation gradient, or daytime temperatures of two consecutive 
days. However, covariation patterns can change through time. For 
example, minimum and maximum temperatures in forest understo-

ries may be negatively correlated in summer but positively in winter 

(Greiser et al., 2018; von Arx et al., 2012). Indices derived from one or 

two information- rich variables such as VPD, soil temperature or soil 
moisture may contain sufficient information to develop good predic-

tive models because they are a combination of many more primary 

microclimatic variables. However, interpreting the meaning of any 
correlations found can be difficult and for questions regarding cau-

sality, mechanistic approaches are required.

3.2  |  Using microclimate in mechanistic models

Mechanistic models explicitly characterise processes at the level of 

individual organisms or physical features that are driven by heat or 

water exchange, such as dew formation, snow melt, wilting points, 
desiccation thresholds, physiological thermal response curves or 
regulatory behavioural responses. Additionally, ecosystem pro-

cesses, for example, biogeochemical processes performed by soil 
microbial communities, can be mechanistically modelled.

3.2.1  |  When aiming for high specificity and 
precision: Consider operative temperature

For precise body temperature estimates of a specific organ-

ism, operative temperatures can be highly insightful as they in-

tegrate microclimate with the species' morphology (Bakken & 
Angilletta, 2014). This includes, for example, building 3D models 
that represent the shape, size and energy exchange characteristics 
of your organism (Leith et al., 2024), in which the temperature is 
measured (for some examples, see Section 4). Black or grey globe 
temperatures, and wet bulb globe temperatures, are other widely 
used methods to estimate operative temperatures for a broad 

range of animals (Hetem et al., 2007; Mitchell et al., 2024) and to 

calculate levels of human thermal comfort (Gillerot et al., 2022; 

Gillerot, Landuyt, et al., 2024).

3.2.2  |  Microclimate measurements for 
mechanistic models

When calculating body temperatures, ecosystem processes or physi-
cal processes with a biophysical model, microclimate measurements 
are a prerequisite and there are generally two options. First, the mi-
croclimate can be modelled with a physically explicit model (Kearney 

et al., 2020; Kearney, Briscoe, et al., 2021; Kearney, Jusup, et al., 2021; 

Maclean & Klinges, 2021), using either locally measured weather 
data or gridded data sets (see Section 8) as forcing variables (Meyer 

et al., 2023). In this case, we recommend testing the output of your 
model against many microclimate measurements in the field, covering 
height and depth profiles of air temperature, wind speed, air humidity, 
soil temperature, soil moisture and perhaps even snow depth (e.g. see 
Briscoe et al., 2022; Kearney, 2020; Maeno et al., 2021). Second, one 
can input measured microclimate variables directly into a biophysi-

cal model. For above- ground organisms or ecosystem processes, it is 
important to consider air temperature, wind speed, VPD, soil surface 
temperature (or upwelling long- wave radiation), ‘sky temperature’ (or 
downwelling long- wave radiation) and (ideally both direct and diffuse) 

solar radiation, at the location or height relevant for the study organ-

ism (e.g. Pincebourde et al., 2007; see also Section 3.1). For below- 

ground organisms and soil processes, important variables are soil 
temperature and soil water potential (rather than soil water content) 

(Kearney & Enriquez- Urzelai, 2023).

4  |  GUIDELINE 3:  MICROCLIMATE 
LOGGERS

Choosing the most appropriate logger to use depends 

on the study question and the organism or process 
one wants to investigate. The need for shielding, pro-

tection and data calibration are contingent on the 

type of logger, but careful consideration is needed to 
achieve the highest data quality.
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8  |    DE FRENNE et al.

Ecologists have used a variety of loggers to measure and moni-

tor the microclimatic conditions that organisms encounter. For sim-

plicity, we here further refer to the entire device that contains one 
or several sensors (e.g. a thermocouple) and logging system (‘mem-

ory’) as ‘logger’. Often, these loggers were originally engineered for 
industrial and commercial use, but there has been a growing trend 
towards developing devices better suited for ecological field studies 

(Wild et al., 2019; Wilmers et al., 2015). These efforts have resulted 

in a notable increase in the variety and accessibility but also the data 

quality (for instance in terms of shielding, see Section 4.2) of log-

gers to monitor microclimates, which makes the choice of loggers a 
challenge. Nevertheless, most microclimate loggers share common 
attributes essential for durable field deployment, including battery 
longevity, memory capacity and robustness to field conditions. In 
this guideline, we aim to outline the most frequently used micro-

climate loggers (noting that those most frequently used in the past 
might not actually be most suitable in future applications), shield-

ing methods and logger intercalibration. Specifically, we focus on 
battery- powered microclimate loggers that feature internal long- 

term memory storage suitable for ecological field studies.

4.1  |  Temperature loggers

There are many types of temperature loggers and they each ex-

hibit different advantages and shortcomings. In Table, we list the 
most commonly used loggers to measure temperature among the 

microclimate community as indicated by metadata submitted to 

the SoilTemp database (Lembrechts et al., 2020). The table details 

their characteristics including memory capacity, operating range, ac-

curacy, battery lifespan, as well as other strengths and limitations. 
Among the dozens of logger brands and many more logger models, 
the currently most often used loggers in ecology and evolution ac-

cording to the SoilTemp database include: (1) TOMST TMS, which 
measures simultaneously temperature at three heights but also soil 

moisture; (2) Maxim iButtons which have, for example, a tempera-

ture or humidity sensor; (3) Onset HOBO Pendant with several sen-

sor options (including temperature, light, air humidity); and (4) Lascar 
with mostly temperature and air humidity sensors. These four logger 

brands already include very different types of temperature meas-

urements for a variety of research needs. See Bramer et al. (2018) 

for more details outlining considerations when choosing loggers 

to measure different variables. Maclean et al. (2021, see especially 
their Table 1) compared several commonly used temperature loggers 

under a range of conditions making it a valuable initial resource for 

selecting loggers (see also Section 4.2).

Operative temperature models (Bakken & Angilletta, 2014) that 

mimic the thermal and hydric properties of an organism are often 

used in animal ecology (see Section 2). Early versions of these were 

made by making moulds of live lizards out of dental plaster and 

using them to create hollow copper (for fast response time) mod-

els that can be painted to match absorptivity (Porter et al., 1973). 

Heated taxidermic mounts have been used for endotherms (Bakken 

et al., 1983) and plaster or agar models have been used for amphib-

ians to capture evaporation (Tracy et al., 2007). Such models have 

been used to map thermal landscapes and to derive null models for 

assessing the extent of thermoregulation (Hertz et al., 1993). Grey 

and black bulb temperature loggers are often used to study animal 

and human thermal stress and comfort (see Section 3.2.1; Gillerot, 
Landuyt, et al., 2024; Gillerot, Rozario, et al., 2024). Now 3D printing 
with a variety of techniques and materials creates new opportuni-
ties for creating operative temperature models (Alujević et al., 2024; 

Hertz et al., 1993; Leith et al., 2024). Small thermocouples can also 

be inserted into or pressed against the surface of animals (e.g. onto 

the thorax of butterflies) and plants (e.g. into leaves, bark, fruits) to 
measure internal and/or surface temperatures (e.g. Berwaerts & 
Van Dyck, 2004). Each of these approaches has specific advantages 

and drawbacks; for instance, 3D printing can be expensive if a large 
number of models is needed; yet, such models are suited for long- 
term microclimate monitoring without the continuous presence of 

researchers in the field. The measurements of surface temperatures 

of the thorax of butterflies (e.g. for forest species that follow sun 

flecks) is reflecting realistic species behaviour but impractical to 

maintain for long time periods and many individuals.

4.2  |  Shielding air temperature loggers: To 
shield or not to shield?

In environments exposed to direct solar radiation (e.g. grasslands), 
unshielded air temperature loggers can cause significant tempera-

ture biases because of ‘logger overheating’. In other words, the log-

ger is heated by solar radiation and one records the temperature of 

the logger, not the air. This strongly depends on the type of logger 
used, and the issue is much smaller in forests (Maclean et al., 2021). 

In open habitats, we would generally recommend the use of ultra 
fine- wire thermocouples without a shield to accurately and pre-

cisely record air temperatures (e.g. type SurveyTag, ConceptShed; 
Maclean et al., 2021). Shielding can alter the microclimatic condi-

tions of interest in environments exposed to direct solar radiation. 

For example, direct contact between the logger and shield can influ-

ence temperature measurements by affecting the shield's tempera-

ture through radiation absorption. Additionally, the shield creates its 
own microclimate (lowering wind and air mixing), leading to notable 
differences in thermal conditions compared to the surrounding en-

vironment. This issue is especially pronounced on hot middays with 

high solar radiation and little wind, and near the ground surface, 
where heat transfer through conduction and convection results in 

substantial variations in air temperature. This is the exact reason 

why synoptic weather stations use ventilated Stevenson screens at 

2 m above the ground. On the contrary, when (often cheaper) tem-

perature loggers not relying on ultra fine- wire thermocouples are 

used, we recommended to shield loggers using standardised shield-

ing (to increase interoperability) to minimise the thermal influence of 

the logger. Shielding is of course not necessary for soil temperature 

measurements.
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    |  9DE FRENNE et al.

Waterproofing of loggers may increase reliability, yet also affect 
measurements by changing loggers' thermal properties. For exam-

ple, Roznik and Alford (2012) demonstrated that coating loggers 

(Thermochron iButtons) is an affordable and reliable method of wa-

terproofing. This approach prevents device failure and data loss, but 
can have considerable influence on temperature readings (Maclean 

et al., 2021).

It is also important to take the local fauna into consideration as 

animals can damage microclimate loggers or disrupt study settings 

by moving loggers. Therefore, it is advisable to consistently protect 
loggers (at all study sites including control plots to avoid confound-

ing effects among sites) with nets, cages or other means, of course 
avoiding or minimising the potential effects of these structures 

on radiation, air movement and other factors that regulate local 
microclimates.

4.3  |  Soil moisture, air humidity and other variables

In addition to temperature, measuring atmospheric humidity and 
soil moisture is often an important part of microclimate ecology. 

Currently, the most popular microclimatic loggers for measuring 
soil water content are based on dielectric permittivity—either 

measured through time domain reflectometry (TDR), capacitance 
technique, time domain transmission (TDT) or frequency domain 
reflectometry (FDR). For comprehensive reviews see, for example, 
Babaeian et al. (2019), Robinson et al. (2008) and Romano (2014). 

As all these sensors measure the propagation of electromagnetic 
signals through the soil, the raw measurements must be converted 
to soil water content through calibration, ideally specific for each 
measurement site or at least a specific soil type (Mane et al., 2024). 

Air humidity is usually measured as relative air humidity through 
specialised loggers, and several logger types are available (see 
examples in Table S1). Important to note is that air humidity loggers 

can suffer from saturation either due to water condensation or 

inappropriate shielding, which is difficult to correct afterwards 
(Ashcroft & Gollan, 2013a; Feld et al., 2013). Some microclimate 

variables (e.g. wind, long- wave radiation) have been measured much 
less often than temperatures in microclimate ecology. Yet, there 
are, for example, many recent developments of low- cost consumer- 
grade pyranometers and anemometers (e.g. Gillerot et al., 2022).

4.4  |  Calibrating microclimate loggers

Temperature logger (inter)calibration is a crucial aspect in ensuring 

accurate temperature measurements, particularly for low- cost 
loggers which generally have lower accuracy and precision (Caissie 

& El- Jabi, 2020; Hunt & Stewart, 2008). These loggers may exhibit 

systematic deviations from true temperatures. While technical 

calibration may pose challenges, post- measurement correction to 
mitigate measurement errors can be feasible if specific procedures 

are conducted before deploying the loggers in the field. Calibration 

methods generally fall into two main categories: (1) establishing a 

correlation between logger readings and those of a research- grade 

accurate sensor (such as an ultra fine- wire thermocouple or accurate 

mercury thermometer) to evaluate reference temperatures, or (2) 
deploying a multitude of loggers in stable and uniform conditions 

to intercalibrate them (Mena et al., 2021). Ideally, the procedure 
should be repeated across a range of temperatures (the same 

range as the one that will likely be measured in the field) to assess 

potential shifts under varying environmental conditions (Anacona 
et al., 2023). Calibration for other logger types may involve different 

processes (e.g. wind sensors can be installed at the site of official 

synoptic weather stations to allow logger intercalibration; Gillerot 

et al., 2022). Additionally, loggers' internal clocks may experience 
time drift, necessitating further data preprocessing and frequent 
clock recalibration to synchronise with, for instance, the laptop 
computer clock during data retrieval from the logger.

5  |  GUIDELINE 4:  TEMPOR AL 
RESOLUTION AND E X TENT

Due to battery life and memory size limitations, data 
loggers usually store a limited number of records. This 

limitation determines the interval and duration that 

can be covered with a time series. Hence, users face 
a trade- off between generating shorter time series at 

very high temporal resolution or generating coarser 

time series over longer periods of time.

Setting the appropriate temporal resolution and extent of a data 

logger in the field should first depend on the study question and the 
microclimatic variable of interest (see Section 3), as well as on logger 
specifications (see Section 4) and site properties (e.g. accessibility 

and risk of theft: see Section 7). The most- often applied temporal 

resolutions (in minutes) and extents (in months) in the SoilTemp data-

base are displayed in Figure 4. Microclimate datasets covering large 

temporal extents are still currently rare and there is a recent ten-

dency towards increasing the temporal resolution. Below, we pro-

vide specific guidelines on how to define the appropriate temporal 

resolution and extent of a logger in the field, focusing on tempera-

ture (for the sake of brevity). Note that the same overall reasoning 
applies to other microclimatic variables perhaps with slightly differ-

ent conclusions. For instance, if the focus is on wind speed, then one 
may put more emphasis on temporal resolution than extent.

5.1  |  Guidelines on temporal resolution

In sunny environments, air temperatures can fluctuate in the order 
of 10–15 degrees over milliseconds (Maclean et al., 2021). For many 

applications, species and objects of interest, however, this fine- scale 
temporal variation would be integrated. If using a device that can de-

tect these fluctuations—such as an ultra fine- wire thermocouple—this 
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10  |    DE FRENNE et al.

issue should be addressed by taking rapid burst measurements with 

either on- chip or off- chip averaging. More fundamentally, however, 
to set the right temporal resolution to record microclimatic tempera-

ture over time, one should consider the following questions: What to 
measure (air, water, soil, surface or operative temperature)? What is 
the thermal conductance and capacitance of the mixture, substance 
or surface I want to measure? How much is it exposed to direct solar 
radiation and dominant winds?

First, the thermal conductivity and capacitance of the measured 
mixture, substance or surface affect the rate at which temperature 

rises or falls and thus the magnitude or amplitude of the temperature 

fluctuations (Figure 5). For example, the surface of dry inorganic soil 
on a sandy beach conducts heat much more quickly than a moist 
organic soil layer inside a peatland leading to greater amplitudes 

of surface temperature fluctuations over the same time period in 

the former than in the latter (Bramer et al., 2018; Campbell, 1985; 

Johansen, 1977). Second, whether the studied location or organ-

ism is fully exposed or sheltered from direct solar radiation and the 

dominant winds will modulate those fluctuations over time, through 
either buffering or amplifying effects (Gril, Spicher, et al., 2023). For 

F I G U R E  4  Temporal resolution and extent covered by microclimate time series. Shown here is the density distribution of the number of 
temperature time series registered in the SoilTemp database as of April 2024 (Lembrechts et al., 2020) depending on the temporal resolution 

(in minutes) and extent (in months) of the focal time series as a function of the end date (i.e. last year) of the focal time series.
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    |  11DE FRENNE et al.

instance, a temperature logger installed near the soil surface in the 
understorey of a dense forest is far less exposed than a temperature 

logger installed on the surface of a rock or boulder located in an 

open area next to the forest (Figure 5; Fragnière et al., 2024). The 
underlying basic principle is that one should always record the tem-

perature at a finer temporal resolution, to be able to capture both 
extremes of a diurnal cycle (i.e. daily maximum and minimum values), 
when the focal location or organism is climatically more exposed as 

well as if the thermal conductance of the measured mixture, sub-

stance or surface is higher and the capacitance lower.

It is also advised to record temperature at a temporal resolution 

that is finer than the frequency of the biological or ecological signal of 
interest to be able to capture this signal in temperature fluctuations. 

The frequency of a signal depends on the recurrence rate of the stud-

ied event over time, with a high frequency signal meaning that the 
focal event repeats many times over a fixed period. Ecophysiologists, 
studying how physiological processes scale with microclimate con-

ditions, usually focus on biological signals at high frequency, such as 

body temperature and leaf surface temperature in response to diur-

nal cycles (Fauset et al., 2019; Tosini & Menaker, 1995), thus requir-
ing time series at fine temporal resolutions. By contrast, foresters or 
biogeographers studying how environmental conditions affect lower 

frequency signals such as tree mortality or distribution of species, 
respectively, have historically emphasised aggregated microclimatic 
data such as annual or monthly summary statistics to capture sea-

sonal cycles (Haesen, Lembrechts, et al., 2023). However, research-

ers should still exhibit caution to avoid being over- reliant on coarse 

temporal resolution climate time series. This is because temporally 

coarse data may not capture physiologically meaningful variables 

that can better explain even low- frequency signals, such as species' 
distributions (Gardner et al., 2019; Klinges, Baecher, et al., 2024), and 
temporally averaged climate is rarely indicative of average biological 

responses that tend to non- linearly vary with climate (see discussions 

of Jensen's Inequality; Bütikofer et al., 2020).

It should be noted that the measurement of temperature fluc-

tuations in the high- frequency range may be limited by the thermal 

F I G U R E  5  Setting the right temporal resolution for the right spatial location when installing microclimate data loggers in the field 
depends on the thermal conductance of the focal mixture, substance (e.g. ambient air or topsoil layer) or surface (e.g. leaf surface or rock 
surface) as well as its exposure to direct solar radiation and the dominant winds. The left panels depict two distinct habitats (i.e. a forest 

on top and a boulder field at the bottom) where different organisms (e.g. bees, ants, lizards, earthworms) share different microhabitats. 
The temporal axis of the plots in the right panels depicts diurnal temperature fluctuations over three consecutive days. The blue arrows, 
throughout the course of the second day, show the density of temperature readings, or the temporal resolution between consecutive 
measurements, that is adjusted relative to the daily range, with finer temporal resolutions for highly conductive surfaces that are highly 
exposed to direct solar radiation and the dominant winds. From the perspective of a bee, leaf surface temperature at the top of a tree 
canopy fluctuates more than air temperature near the ground in the understorey, where ants are foraging, which calls for finer temporal 
resolutions in the former (e.g. every 10 min) than in the latter (e.g. every hour). Similarly, for a lizard basking in a boulder field and exposed 
to direct solar radiation and dominant winds, rock surface temperature fluctuates more than subsurface soil temperature as perceived 
by earthworms, which also calls for finer temporal resolutions in the former (e.g. every minute) than in the latter (e.g. every 2 h). Animal 
silhouettes were downloaded from phylo pic. org.
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12  |    DE FRENNE et al.

inertia of loggers, that is, a temporal lag of logger energy change after 
external energy change (Maclean et al., 2021; Mercier et al., 2019). 

For low- cost loggers and to improve measurement accuracy, it is 
thus advised to consider data aggregation of consecutive records 

resulting in more reliable mean estimates. For example, recording 
temperature every 5 min and aggregating every 12 consecutive 
measurements can yield hourly estimates, which are more robust 
than a single hourly record.

5.2  |  Guidelines on temporal extent

The minimum duration to set for a logger to record temperature 

should span the full period during which key physiological pro-

cesses and/or species interactions happen (e.g. the growing, mat-
ing or breeding season; Kim et al., 2022). However, since year- round 
conditions may still be important (e.g. winter temperatures may af-

fect dormant plants and invertebrates or nutrient cycling; Niittynen 
et al., 2020), collecting data across seasons is recommended to de-

tect unexpected impacts.

Due to inter- annual variation in macroclimate (including multi- 

year trends and cycles), there is considerable use in collecting mi-
croclimate data over multiple years (Kim et al., 2022). For example, 
data collected during contrasting El Niño and La Niña phases would 
provide insight into how strongly these long- term cycles (i.e. low- 

frequency signal) impact microclimate. Microclimate data from even 
longer durations (and particularly from multiple different habitats) 

are especially valuable to test whether microclimatic changes are 

decoupled from long- term macroclimate trends, certainly within 
the context of microrefugia (Lenoir et al., 2017). As a result, micro-

climate data sets with large temporal extent, which are currently 
rare (Figure 4), can provide a fuller understanding of microclimate 

and maximise the use of the data collected. Collecting microclimate 

data over long time periods is, however, challenging. For example, 
microclimate loggers have not often been designed for long- term 

field deployment (e.g. sensor drift, non- durable materials, frequent 
battery replacement necessary), and the current scientific funding 
model typically does not support long- term monitoring.

6  |  GUIDELINE 5:  SPATIAL RESOLUTION 
AND LOGGER REPLIC ATION

Where to install microclimate loggers? The density 
and distance between loggers determine how envi-

ronmental variation is captured. Loggers inherently 
measure highly localised conditions that are influ-

enced by hierarchical biometeorology across spatial 

scales.

Regional macroclimate is modulated by landscape- scale to-

pography to shape mesoclimate, within which there can be 
multiple nested sets of microclimates (Figure 6; Pincebourde & 

Woods, 2020). Even a single spatial point (horizontally) may express 

different amounts of thermal variability above-  or below- ground 

(vertically). For instance, soil or substrate surface temperature 
tends to vary more in space but less in time than air temperature 

(see examples given in Figure 5; Campbell & Norman, 2012). How 
much the climate varies across scales within a landscape is thus 

core knowledge for determining the number and placement of 

microclimate loggers, further determined by the specific study 
aims (e.g. which spatial or environmental gradients are of interest). 

Given this, there is no fixed spatial resolution for monitoring mi-
croclimate across all contexts. Yet, recognising such hierarchies of 

F I G U R E  6  The nested nature of microclimates. Locally measured microclimate (e.g. temperature, moisture, wind) always represents a 
combination of local, regional and global climate signals. At each scale from macro to micro, climatic gradients can be unfolded, just like 
replicated geometric shapes in a fractal. (a) At macro- scales, latitudinal gradients, continentality and global circulation patterns control 
macroclimate. (b) At meso- scales, topography is the dominant driver and this can reverse macro- scale temperature trends (e.g. via lapse 
rates, cold air pooling, solar radiation exposure). Indeed, a high- elevation location in the tropics can be cooler, on average, than a high- 
latitude location at sea level (c and d). At micro- scales, vegetation patterns, such as canopy cover, but also microtopographic gradients 
become the most dominant drivers. For instance, a forested location at low elevations may be cooler than an open grassland at high 
elevations. Depending on the spatial resolution and extent of the measurements, the micro- scale signals can be filtered out more easily than 
the macro-  and meso- scale variation. Frog and seedling icons downloaded from flati con. com.
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environmental variation known to drive microclimate conditions 

can substantially inform microclimate logger placement (see dis-

cussions of Jensen's Inequality, Bütikofer et al., 2020). To achieve 

this, we recommend first identifying proximal microclimates of in-

terest for the research questions (Klinges, Baecher, et al., 2024), 
and then using stratified random sampling to place loggers within 

such proximal microclimates. If spatial patterns of species' pres-

ences and absences are of interest, an alternative is to deploy sen-

sors in both occupied and unoccupied (or avoided) microhabitats 

to better understand species distributions.

6.1  |  Identifying proximal microclimates

Relevant microclimates, and the associated biophysical forc-

ing, are determined by a study's fundamental goals. If microcli-
mate measurements are to be used to understand the ecology 

of a particular organism or process, then logger replication and 
placement should maximise microclimate proximity: the degree to 

which microclimate data represent the actual conditions that an 

organism or system is exposed to, distinct from the spatiotempo-

ral resolution of the climate data (Klinges, Baecher, et al., 2024). 

Well- placed loggers in an animal's habitat can be used, for exam-

ple, to infer its behaviour (Briscoe et al., 2022; Moore et al., 2018). 

Known mechanistic links between the ecological response of in-

terest and particular microclimates, or specific hypotheses that 
are to be tested concerning such links, can then further constrain 
logger placement. For example, studies of the tolerance of am-

phibians and insects to heat extremes required placing tempera-

ture loggers in tree holes and phytotelmata within forest canopies 

(Scheffers et al., 2014) or inside pitcher plants (Kingsolver, 1979). 

Having an understanding of the spatial frequency distribution of 
microclimate suitability is often adequate to know the spatial con-

figuration. This avoids the task of exhaustively sampling disparate 

microclimates within a landscape, as not all may be relevant to the 
study of a focal organism or process. Yet, if microclimate is consid-

ered a correlate to ecological responses across broader taxonomy, 
for instance, with a focus on general forest biodiversity responses, 
or without an a priori understanding of its mechanistic role, then 
greater environmental representation may be necessary. For 

example, it may be important to sample microclimates of many 
habitats within a landscape or region to understand habitat suita-

bility for an entire bird or amphibian community (Frey et al., 2016; 

Nowakowski et al., 2015).

6.2  |  Deploying loggers via stratified random 
sampling

After identifying which environmental gradients dictate relevant 
microclimates for a given research study, it is time to establish an 
optimal network of loggers to adequately sample these gradients 
(Lembrechts et al., 2021). Pragmatically, the number of loggers for 

a study is often set by budgetary constraints. To maximise variation 

sampled with a limited set of resources and loggers, we encourage 
the use of stratified random sampling via multivariate ordination 

of environmental data to place loggers across the target landscape 

(Klinges, Lembrechts, et al., 2024). This approach entails the use 

of spatial gridded layers that quantify the environmental drivers 
of microclimate most important to one's landscape and study (e.g. 

ambient macroclimate, elevation, plant area index, human land use, 
distances from water bodies, soil characteristics, etc.). While such 
gridded layers may be fine- resolution for some inputs such as digi-

tal elevation models, the coarse resolution of other layers may con-

strain logger site selection; to address this, statistical or mechanistic 
downscaling of some variables may be needed (Klinges et al., 2022; 

Kusch & Davy, 2022; Ovakoglou et al., 2022). Then with such grid-

ded layers in hand, multivariate ordination can be used to quantify 
‘bins’ of possible logger locations, each representing a different stra-

tum of the available environmental space. A given number of spatial 
points are then randomly chosen from each bin to serve as deploy-

ment locations. It is advisable to include some redundancy in logger 

representation, so that sampling is not overly reliant on any single 
logger given the likelihood of logger malfunction or failure. Loggers 
at multiple heights/depths may need to be deployed at some or 

all locations, depending on vegetation height/complexity and soil 
composition as well as target applications. We point the reader to 

specific recommendations and software (see Klinges, Lembrechts, 
et al., 2024; Lembrechts et al., 2021) that facilitate stratified random 

sampling given a study area and a predetermined budget or logger 

count.

The density and representation of loggers across a region in turn 

determine the transferability of data or insights to future studies. 

Microclimate logger measurements can be augmented with spa-

tial interpolation (Ashcroft & Gollan, 2013b; Stark & Fridley, 2022) 

or mechanistic microclimate modelling (Kearney & Porter, 2017; 

Maclean et al., 2019) to map microclimate across broader spatiotem-

poral representation (see also Section 10).

7  |  GUIDELINE 6:  THE STUDY SITES

Deploying microclimate loggers in the field across 

many sites requires planning. We discuss natural and 
anthropogenic events, logistics, as well as health and 
safety. In general, we advise researchers to collabo-

rate with local researchers to gain in- depth knowl-

edge in site- specific characteristics for planning 

successful fieldwork.

7.1  |  Landscape features at the study site

Landscape features of the site (e.g. topography, elevation, land 
cover, water bodies) are drivers of microclimates but can also 
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strongly affect the practicalities of logger installation. For exam-

ple, different logger types and installation methods may be re-

quired to securely install loggers in rocks, sand or substrates rich 
in clay, organic material or water. Depending on the site, there are 
also additional risks of logger and data loss from, for instance, ani-
mals, fires, flooding, avalanches, sandstorms or people. Distances 
from roads and trails, if present within the landscape, should be 
considered during study planning and deployment, both to facili-
tate access to deployment locations and to identify the areas of 

frequent human visitation.

7.2  |  Humans at the study site

Human presence can increase the risk of losing loggers and data, 
particularly in urban areas, managed lands or natural areas with 
tourism activities (Dyson et al., 2019). Yet, it can be important to 
consider microclimates on land impacted by human activities, such as 
controlled fires, tree logging and mowing, or close to roads, buildings 
and forest edges. Visible loggers may attract unwanted attention, 
but labelling loggers with personalised and polite messages 

informing about the ongoing research reduces theft and vandalism 

(Clarin et al., 2014). Labels can contain contact information to help 
retrieve lost loggers. Alternatively, loggers can be hidden from sight 
to reduce theft and then retrieved using an attached Bluetooth 
signalling device (e.g. an Apple AirTag), a metal detector or a piece 
of wire or cable tie connecting the sensor to the soil surface. For 

researchers working abroad, we recommend consulting local 
collaborators and other partners to navigate relevant legislation, 
permission protocols and sensitivities as these are site- specific and 

may be a fundamental constraint on research (e.g. INTERACT, 2019a, 
2019b). Obtaining permissions and consent from local landowners 

or managers is necessary, and they should be given appropriate 
credit or an opportunity to participate in the research to avoid 

helicopter research (Adame, 2021; Nuñez et al., 2021). Research 

ethics (Adame, 2021) and cultural sensitivity (Ramos, 2018) are an 

inseparable part of developing sustainable microclimate research.

7.3  |  Logistics at the study site

Logistics require planning ahead to minimise logger and data loss. 
We recommend visiting sites frequently even if the memory and 
battery of the loggers do not require this. Increasing visit frequency 
decreases potential data loss from logger loss or failure and allows 

monitoring of any changes at the site. However, accessibility and 
funding set limits and remote sites require more planning and 
resources for access. Having more loggers results also in more time 
to get around them, meaning each one is visited less frequently. In 
general, increasing the visiting frequency for remote locations can 
be nearly impossible (e.g. remote islands, mountains). Therefore, 
we recommend collaborating with local researchers or other local 

partners to monitor loggers and retrieve data when necessary. 

Another solution is using smart IoT (Internet of Things) devices 
(Andreadis et al., 2023; Pieters et al., 2021; Rebaudo et al., 2023), 
which is especially promising for remote locations or study sites 

where one wants to reduce visitor frequency to protect vulnerable 
biodiversity. However, IoT cannot (yet) always be deployed due to 
costs and lack of internet or power supply, although new solutions 
are rapidly being developed (see Conclusions). Lastly, site- specific 
characteristics should also be considered when locating loggers, 
particularly in dense vegetation and soft or unstable substrates such 

as sand dunes, where loggers may be lost even in the presence of 
centimetre- accuracy GPS documentation. Thus, we recommend 
exploring different practical solutions, such as markers, flags and 
metal tags detectable with metal detectors.

7.4  |  Health and safety at the study site and the 
leave- no- trace

As in any ecological study, health and safety precautions are inher-
ently part of planning successful microclimate fieldwork and fruitful 

collaborations. Thus, we recommend investing in in- depth education 
in fieldwork safety and considering site- specific practices (Araya 
et al., 2023; Daniels & Lavallee, 2014). Sufficient planning can pre-

vent many natural and anthropogenic risks. Importantly, health and 
safety of researchers, especially early- career researchers (Clancy 
et al., 2014) and at- risk individuals (Coon et al., 2023; Demery & 

Pipkin, 2021; Rudzki et al., 2022) as well as the leave- no- trace and 

no- significant- harm principle in terms of environmental impacts (e.g. 

lost loggers and batteries; Frendrup et al., 2021) should be priorities.

8  |  GUIDELINE 7:  REFERENCE DATA

Reference data are standardised data against which 

one's own collected microclimate data can be com-

pared and interpreted (Figure 2). Those data can 

come, for instance, from nearby standardised weather 
stations and/or modelled or interpolated gridded 

products for the same study sites. Reference data are 

useful, or even necessary to quantify, contextualise 
and predict microclimate. Yet, reference data can 
come from a multitude of sources.

8.1  |  Choosing a reference

Climatic conditions at fine spatiotemporal resolution can be highly 

variable and idiosyncratic, and may need a comparison to a suitable 
and standardised reference. There are many types of reference data 

(listed in Table S2), and the choice depends on the research aims and 
the specific characteristics of the reference. For instance, reference 
data can represent macroclimate dynamics that set microclimate 
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data as local anomalies in a broader context. Global macroclimate 

data quantify temperature trends over time (hours to centuries) and 
space (such as those brought about by large- scale variations in lati-

tude and elevation). Alternatively, reference data might represent 
climate at a relatively fine spatiotemporal scale, yet, characterise the 
ambient conditions in open, unshaded areas, well away from trees 
and buildings, and as such are the relevant standardised compara-

tor for highly localised microclimates. Reference data are important 

when the goal is to predict microclimate in space or time (Gril, Laslier, 
et al., 2023; Zellweger et al., 2024) or to compare microclimatic 

anomalies, relative to macroclimate, across large spatiotemporal ex-

tents. References should be matched sensibly to the target microcli-

mate variable, accounting for temporal resolution and extent, which 
may determine the best source to use. Entirely different conclusions 

can be reached depending on the reference (Figure 7), highlighting 
the importance of a well- considered choice of reference.

8.2  |  Three categories of reference data

Reference data can be obtained from (i) single, existing weather 
stations; (ii) own, custom loggers in a reference location; and (iii) 
gridded products.

First, synoptic weather stations are distributed across the 
world and are highly standardised (WMO, 2020). They are op-

erated by national meteorological institutes and coordinated by 

regional/global organisations (e.g. WMO), with data collection 

following established guidelines and rigorous quality- control 
schemes to ensure the accuracy and comparability of measure-

ments. However, national networks of synoptic weather stations 
are not evenly distributed across the globe, are in open areas and 
their time series can be subject to inhomogeneities, such as sta-

tion relocation.

Second, researchers may instead opt to use their own refer-
ence, which could be a weather station operated by the research-

ers themselves, or it could be the same logger type as the one used 
to measure microclimate in different microhabitats. However, the 
reference logger should follow strict rules to allow fair compari-

sons across microhabitats. If all studied microclimates are in the 

shade (e.g. below trees or shrubs), and the reference is in open 
habitat, direct solar radiation on the logger should be treated 
carefully (see Section 4.2). A benefit of using one's own reference 
is the ability to customise the location and operation of the ref-

erence, such that what is measured is the appropriate reference 
tailored for the research question.

Climatic grids are a third source of reference data. We list spe-

cific examples of such reference data and their associated strengths 

and limitations in Table S2. These refer to a spatial representation of 

climate variables in a regularly spaced grid system in two or more di-

mensions (when time and/or multiple horizontal layers are included). 

In many cases, they represent conditions at 1.5–2 m above- ground, 
the same as synoptic weather stations. Gridded macroclimate data 

typically derive from statistical interpolation (e.g. using meth-

ods such as kriging or splines) of empirical observations, using 

F I G U R E  7  The importance of the choice of reference data. Shown are daily mean forest temperature offset values (below- canopy forest 
minus a reference temperature, such that negative values denote cooler forest temperatures) calculated from June 2018 to October 2018 
for a single forest plot in Poland, calculated using different sources of reference data (easyclimate, EOBS, ERA5, ERA5Land and custom 
Lascar loggers located outside the forest in a passively ventilated radiation shield). For more information regarding the reference data and 
their characteristics, we refer to Table S2. Different letters denote statistically significant differences according to a Kruskal–Wallis test with 

post hoc Dunn's test. Data from Meeussen et al. (2021).
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external predictors such as topography, land cover and/or proximity 
of water bodies (Cressie, 1990; Goovaerts, 1997). When based on a 

representative observation network, interpolated climate grids can 
provide a highly accurate picture of regional climatologies (Aalto 
et al., 2016). Several factors can introduce uncertainties, however, 
from insufficient coverage of observations (e.g. uneven distribution 

of synoptic weather stations) to the choice of interpolation method 

(Hofstra et al., 2010; Li & Heap, 2011). Additional sources of grid-

ded climate data include atmospheric reanalysis data that assimilate 

observational data (e.g. weather stations, meteorological sound-

ings, remote sensing) into a numerical weather prediction model, 
to provide a comprehensive, physically consistent spatiotemporal 
depiction of the atmospheric state (Dee et al., 2011). The result is 

a high temporal resolution array of meteorological variables, over 
multiple vertical layers (from soil to surface to stratosphere). Spatial 

resolution is often coarse (>25 km), though higher spatial resolu-

tion products exist (e.g. ERA5- Land; Muñoz- Sabater et al., 2021). 

Non- temperature variables (e.g. rainfall, snow) can be more chal-
lenging to derive. In general, careful consideration of the data set 
and its underlying uncertainties is advised, and some advantages 
and drawbacks of specific reference data are available in Table S2. 

Finally, for temperature specifically, gridded reference data should 
be corrected by an adiabatic lapse rate if recorded at a different 

elevation than the study site. Lapse rates themselves can vary 
and should ideally be adapted to the region and season (Greiser 

et al., 2024). There are tools available to do this in the mechanistic 

model microclimf (Maclean, 2022).

9  |  GUIDELINE 8:  DATA COMPIL ATION

The recent surge in microclimate data availability ne-

cessitates standardisation of data preparation and 

compilation prior to analyses. We here propose a 

four- tier guideline starting from data sourcing, quality 
control, alignment, to database finalisation ready for 
analyses (Figure 8).

9.1  |  Data sources

Microclimate and reference data can thus come from a multitude 

of logger types and data sources. Direct in situ measurements (e.g. 

from loggers) offer measurements at specific locations. However, 
these measurements are often purpose- driven, complicating com-

parisons across different data sets (Kemppinen et al., 2024). Indirect 

sources of microclimate data can be added to the direct measure-

ments, and can include, for instance, remote- sensing data (e.g. ther-
mal imagery from unoccupied aerial vehicles; Zellweger et al., 2019) 

or come from mechanistic and/or statistical models. In addition 

to the microclimate data, reference data (Guideline 7) can also be 
added in the data compilation step.

9.2  |  Data quality control

To ensure the reliability of microclimate time series, measure-

ment errors, outliers, temporal gaps, duplications and time- 
series inversions need to be addressed. First and foremost, one 
should plot the time series to visually detect potential anoma-

lies, focusing on gaps or unexpected outliers (e.g. flat tempera-

ture lines and sharp peaks). Additionally, comparing multiple 
related time series (e.g. from nearby locations) against refer-

ence data (Guideline 7) helps to identify potential outliers or 

divergences due to malfunctioning loggers. Non- relevant re-

cordings may result from, for instance, soil moisture recordings 
from frozen soils or wind measurements from periods when the 

anemometer was covered by snow. Beyond visual inspection, 
automated time- series control can identify finer issues like 

missing data, irregular time steps, incorrect chronological order 
or duplicated records. For automated data control, algorithms 
such as those available in the myClim and lubridate packages 

F I G U R E  8  The four steps in the data compilation process: From 
sourcing to database finalisation. In the alignment step, the red 
arrow refers to the climatic grid used as reference data, the blue 
arrow denotes the logger location.
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in R (Grolemund & Wickham, 2011; Man et al., 2023) or the 

darts,etna and MetObs packages in Python (Herzen et al., 2022; 

Vergauwen et al., 2024) have been developed. Data cleaning 

and outlier removal can increase the number of missing values, 
thus creating gaps in the time series. Small gaps can be filled 

using simple linear approximation, while longer gaps might be 
filled using more sophisticated interpolation methods (von 

Schmalensee, 2023), or similar time series to reconstruct the 
temporal dynamics, such as data from another study plot or 
reference data (Tonini et al., 2016). However, gap- filling meth-

ods should be used carefully, as they can impact the results of 
subsequent analyses.

9.3  |  Data alignment

Microclimate and reference data, sourced from diverse origins, are 
formatted in various standards concerning the coordinate system, 
resolution and file format. To achieve alignment, common standards 
must be defined. Temporal reference alignment is crucial, especially 
on larger scales or when dealing with seasonal time shifts that can 

cause local time disparities. Two viable approaches are aligning all 

dates to the UTC time zone or to solar time, determined by setting 
noon when the sun reaches its zenith (see the lubridate and myClim 

packages in R). Similarly, aligning spatial coordinate systems, such as 
EPSG codes, is essential before data compilation. The second critical 
aspect involves navigating spatiotemporal resolutions. Various 
measurement intervals require temporal thinning, interpolation 
or aggregation before data set compilation. The optimal approach 

depends on the study questions and intended variables. Likewise, 
aligning spatial raster with point data necessitates considerations 

of data upscaling and downscaling before alignment. Caution 

must be considered when downscaling, as it tends to overlook 
local processes and drivers like microtopography and vegetation 

spatial heterogeneity, while upscaling sacrifices spatial resolution 
(Lembrechts et al., 2020). This spatial alignment issue should also 

consider the vertical dimension, as microclimate shifts with height 
(Geiger et al., 2009). Once aligned in space, the final step entails 
cropping time series to align them temporally, ensuring comparability 
between data sets.

9.4  |  Data compilation and storage

The compilation and storage of ‘ready- to- use’ data can vary 

depending on the dataset size. Small data sets, comprising a few 
dozen time series, may not require any specific treatment and can be 
stored locally in a simple table format. Larger data sets, containing 
hundreds of time series, might need to be split into multiple files and 
compressed (e.g. using .gzip) to prevent overloading local memory. 

Extra- large data sets, with thousands of time series, will require 
appropriate database toolkits, such as SQL databases, to facilitate 
easy data navigation (Figure 8).

10  |  GUIDELINE 9:  DATA ANALYSES

Once the microclimate data have been compiled and 

curated, it is time to analyse the data, starting with 
techniques for summarising and visualising the mul-
tidimensional information stored in multiple micro-

climatic time series. Understanding key drivers of 
microclimate variations is essential before data anal-

yses using either correlative or mechanistic models. 

Finally, we discuss the importance of incorporating 
microclimatic conditions into ecological models to im-

prove predictions of ecosystem responses to climate 

change.

10.1  |  Summarise and visualise microclimate data

Prior to data analyses, it can help to explore some summary statis-

tics using aggregation and visualisation tools (Man et al., 2023). Data 

aggregation condenses temporal data sets into easily interpretable 

units, typically by computing summary statistics. Visualisation ap-

proaches can involve plotting, for instance, raw temperature data 
or temperature offsets in comparison to reference data, such as 
macroclimate, which provides insights into potential drivers of these 
temperature differences. Microclimatic extremes (minimum and 

maximum) warrant careful consideration due to their high sensitivity 

to outliers (see also Section 9). Common approaches include assess-

ing instead the 5th and 95th percentile of the entire distribution.
Visualising temporal microclimate data can become complex as 

the number of loggers and length of time series increases. While 

a simple visualisation over time offers a broad understanding of 

temporal dynamics, it may obscure finer scale patterns like diurnal 
cycles amidst interannual variations (see Text S1). Thermal isocline 

heat maps, which display microclimatic variables across two tem-

poral scales, offer a solution by showing, for example, months on 
the x- axis, hours on the y- axis and colour- coding by average tem-

perature across loggers (see Text S1 for some examples including R 

code). Plotting logger locations in space aids in understanding spa-

tial autocorrelation, and plotting logger locations on a ‘Mean Annual 
Precipitation’ versus ‘Mean Annual Temperature’ graph allows ex-

ploration of macroclimatic context (Lembrechts et al., 2020). For 

spatially oriented data like wind, light or rainfall direction, a circular 
plot representing event density provides an initial understanding of 

data distribution.

10.2  |  Make inferences about microclimate in 
space and time

Most models used by microclimate ecologists to make inferences 

about microclimates in space and time are empirical in nature, di-
rectly describing the observed patterns or relationships between 
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predictors and the microclimate variable of interest (Haesen, 
Lembrechts, et al., 2023). They are often simpler to develop and re-

quire less computational resources compared to mechanistic mod-

els. The flexibility of statistical approaches means that they can be 

applied to a broad range of problems without explicit knowledge 

of the constraints on the system (Dormann et al., 2012). However, 
they may oversimplify the underlying processes and lack gener-

alizability beyond the range of observed conditions. Moreover, 
simpler methods like linear regression or spatial interpolation 

techniques (e.g. kriging) may fail to capture nonlinear relation-

ships or interactions among microclimate drivers accurately (Gril, 
Spicher, et al., 2023). Machine learning models like boosted re-

gression trees, random forests and neural networks enhance pre-

dictive accuracy by easily fitting complex patterns, interactions 
and nonlinear relationships frequently found in natural systems 
(Haesen et al., 2021; Haesen, Lembrechts, et al., 2023; Haesen, 
Lenoir, et al., 2023; Lembrechts et al., 2020). Nevertheless, these 
models may operate as black boxes and require substantial training 
data to prevent overfitting. Importantly, analysing microclimate 
time- series data with empirical models often necessitates ac-

counting for both spatial and temporal autocorrelation (Dormann 

et al., 2007; Mitchell et al., 2019).

Mechanistic models, based on physical principles, are grounded 
in a deeper understanding of the underlying processes governing 

microclimates, allowing for more accurate predictions in diverse sce-

narios. These models can incorporate interactions between various 

factors such as solar radiation, topography and vegetation, provid-

ing detailed insights into microclimate dynamics (Kearney, Briscoe, 
et al., 2021; Kearney, Jusup, et al., 2021; Maclean et al., 2019). 

Additionally, mechanistic models can extrapolate beyond observed 
data, enabling predictions in locations or times where empirical data 
may be lacking. However, mechanistic models require extensive 
data and knowledge of input parameters and often involve complex 

mathematical formulations, which can be challenging to implement 
and interpret without specialised expertise. Furthermore, uncertain-

ties in model parameters or assumptions may affect the reliability of 

predictions. Mechanistic and statistical approaches represent either 

end of a continuum (Dormann et al., 2012). The integration of statis-

tical and mechanistic techniques and model emulation hold poten-

tial for creating computationally efficient microclimate models that 

are grounded in mechanistic understanding (Kemppinen et al., 2024; 

Perry et al., 2022; Reichstein et al., 2019).

10.3  |  Biotic responses to microclimates

Ecophysiological processes, species distributions and ecosystem 
functions, in general, do not directly respond to macroclimate condi-
tions but rather to microclimatic dynamics that are altered by local 

habitat conditions (Beugnon et al., 2024). Therefore, we recom-

mend that models of ecological responses to macroclimate change 

incorporate those microclimatic variables as covariates in addition 

to the traditional set of bioclimatic variables used in most modelling 

studies. Such models do not necessarily need to replace the tradi-

tional set of bioclimatic variables with microclimatic equivalents, as 
this may not necessarily improve the predictive power of the models. 

In fact, microclimatic variables may even have a lower explanatory 
power if not carefully matched with the response variable of inter-

est in terms of spatiotemporal resolution. For instance, the response 
variable of interest, a binary variable of the spatial distribution of an 
understorey plant species, might not be available at a sufficiently 
fine spatial resolution (e.g. presence–absence data at 1 km resolu-

tion) to match the fine spatial resolution of the microclimatic predic-

tor variables that are available for use in a species distribution model 

tailored for understorey forest species (e.g. ForestClim variables 

available at 25- m resolution; Haesen, Lembrechts, et al., 2023). This 

mismatch in spatial resolution between the response and predictor 

variables prevents predicting a meaningful distribution of the focal 

species of interest at the right spatial resolution. Although it is still 
possible to aggregate the raw microclimate predictor variables at a 

coarser resolution matching the response variable, this may lead to a 
loss of predictive accuracy compared to a model for which both the 

response variable and the microclimate predictor variables are avail-

able at finer and matching resolutions (Haesen, Lenoir, et al., 2023). 

Besides, aggregated microclimatic conditions are likely to be highly 
correlated with their traditional bioclimatic counterparts, which can 
be problematic for some correlative- based models (Klinges, Baecher, 
et al., 2024). Instead, a more pragmatic solution would be to gener-
ate carefully considered variables grounded in mechanistic under-

standing and capturing microclimate conditions in space and time 

by relying on the raw microclimatic time series. For instance, one 
can compute the offset between macroclimate and microclimate, 
which can later be aggregated at the spatiotemporal resolution that 

matches with the traditional set of bioclimatic variables, to capture 
microclimatic conditions (Haesen et al., 2021). Alternatively, as 
a proxy of microclimatic modulations, the slope coefficient of the 
linear relationship between microclimate and macroclimate data 

can be extracted at a temporal resolution, for example, monthly, 
seasonally or yearly, that matches with the temporal resolution of 
traditional bioclimatic variables used in ecological modelling (Gril, 
Spicher, et al., 2023). Once calculated, these microclimatic variables 
can be integrated into ecological models, unlocking new research 
pathways for mechanistically understanding biological responses to 

global change.

11  |  GUIDELINE 10:  DATA AND CODE 
DEPOSITION

We support open access to microclimate data and 

code. To enable this efficiently and ethically, special 
attention must be paid to the structure of the da-

tabase, data and metadata formats, but also to pre-

serving sensitive data, as well as obtaining consent by 
stakeholders, and deciding on ownership rights in an 
inclusive way.
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Open access to microclimate data facilitates easy access for 

researchers working within the same study system, supports 
larger- scale collaborative analyses for understanding the role of mi-

croclimatic processes in ecology (e.g. Risch et al., 2023) and enables 

regional or global microclimate mapping, which all in all enhances 
baseline data availability (Haesen, Lembrechts, et al., 2023; Haesen, 
Lenoir, et al., 2023; Lembrechts et al., 2022). Openly sharing such 

data also contributes to the creation of long- term data sets, essential 
for assessing microclimate changes over recent decades (Lembrechts 
& Nijs, 2020) (see Section 5), and stimulates interdisciplinary or 
transdisciplinary research. Obviously, reaching a consensus on data 
ownership rights is needed beforehand and any potentially sensi-

tive information, such as exact coordinates of private or ecologically 
vulnerable locations, are anonymised or aggregated before data 
sharing.

For reproducibility, microclimate data should always be pub-

lished open access alongside their associated scientific articles, 
according to the ‘FAIR’ principle, that is, that data are Findable, 
Accessible, Interoperable and Reusable (Wilkinson et al., 2016). 

Submitting microclimate data to SoilTemp, the (soon) open- access, 
global, integrated microclimate database can facilitate all of the 
points made above (Lembrechts et al., 2020). Additionally, targeted 
alternatives exist for specific data types, like the International Soil 
Moisture Network (ISMN; Dorigo et al., 2021).

When sharing microclimate data, we recommend using standard 
or well- documented, non- proprietary formats (e.g. csv, txt and/
or myClim R objects) (Man et al., 2023) with distinct separators of 

columns (tabulators, commas, semicolons), dates (ISO formats) and 
decimals (dots). Unfortunately, commercial software (that can be 
necessary for downloading data from loggers) may not always follow 

such rules and reshaping original files may thus be necessary (e.g. 

via the myClim package, see Section 9). For larger microclimate data 

sets, specialised formats such as the open- source TubeDB might be 

useful (Wöllauer et al., 2021). Microclimate files dedicated to data 

sharing should be cleaned, error- free and trustworthy, and merged 
into a single data file in cases of repeated data downloads from the 

exact same logger at a given locality through time.

Metadata should also be considered an integral part of microcli-

mate time series, especially so for data sharing. To facilitate re- use, 
self- explanatory headers or clear indication of column identity is key. 

When sharing data through existing databases such as SoilTemp, 
TubeDB, ISMN or others, it is expected that metadata is filled out in 
predefined fields with limited flexibility. It is also important to ensure 

compatibility (i.e. keep unique ID keys to enable spatiotemporal pair-
ing), and if possible, to include additional associated proximal bio-

diversity or environmental information. Relevant metadata indeed 

includes information on soil and substrate properties, canopy cover 
(e.g. with camera traps, Chianucci et al., 2021) and the biophysical 

properties of the loggers themselves.

Finally, sharing data is a major step towards efficient scien-

tific collaboration, but the same argument can be made for any 
microclimate- related code or script to handle and analyse the data. 

To share such code in a useful way, time should be invested to 

structure and label codes as much as possible. Sharing codes can be 

done via data repositories (e.g. Figshare) or on dedicated public plat-

forms (e.g. GitHub). Ultimately, broadly applicable code should be 
compiled into dedicated packages with custom functions to warrant 

interoperability. In terms of microclimate data, the recent packages 
myClim in R (Man et al., 2023) and MetObs in Python (Vergauwen 
et al., 2024) are useful examples to follow.

12  |  CONCLUSIONS: THE WAY FORWARD

Microclimate monitoring has rapidly gained popularity over recent 

decades because of the increasing availability of low- cost micro-

climate loggers and because it is increasingly accepted that micro-

climate plays a critical role in ecology, biogeography, evolution and 
related fields (Kemppinen et al., 2024). While our 10 practical guide-

lines highlight that each microclimate- related research question is 
unique and, consequently, will require tailored sampling designs and 
measurement solutions, we aimed to provide not only a conceptual 
framework but also the hands- on tools necessary to make these 

tailored decisions as standardised and quantitative as possible. We 
therefore aim for this paper to represent a step towards increased 

global standardisation of microclimate studies. However, this is just 
one step towards harmonising microclimate research. There are still 

important areas for scientific advancements in this field.

First of all, real- time data collection through the Internet of 
Things (IoT) or related technologies is becoming more accessible and 

available in more remote environments (Pieters et al., 2021; Rebaudo 

et al., 2023). Such remote data transfer would facilitate monitoring, 
reduce resources necessary for fieldwork, limit data loss and provide 
immediate data for analysing microweather events as they happen 

in real time. We also urgently need more high- quality, affordable 
microclimate loggers for various microclimatic parameters beyond 

temperature (e.g. for wind and solar radiation, affordable sensors 
are not yet widely available; Gillerot, Landuyt, et al., 2024; Gillerot, 
Rozario et al., 2024). Similarly, there is an increasing need to mea-

sure a more diverse array of microclimatic parameters, including soil 
water potential, dew, vertical profiles of air temperature and wind 
speed, solar radiation and organism- specific microclimate data, for 
example, data relevant to animal and human health (Guideline 3). For 
all these, the development of reliable, low- cost loggers will be key 
for big data and scaling microclimate- related phenomena from or-

ganism level to global levels.

Although microclimate ecology is a well- established field of re-

search, the relatively recent compilation of autonomous data loggers 
across many locations on Earth (Lembrechts et al., 2020) has led to 

an explosion of microclimate time- series availability at fine tempo-

ral resolutions, usually focusing on relatively short- term periods and 
chiefly concentrated during the last decade (Figure 4; Section 5). 

However, long- term microclimatic time- series spanning several de-

cades, in a wider range of habitats (current bias to temperate forests) 
and throughout the world (current bias to the northern hemisphere) 

(see Section 6) are deeply needed to understand long- term dynamics 
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in microclimate changes and to address key questions related to the 
impact of global warming on biodiversity redistribution. Therefore, 
the establishment of long- term microclimate monitoring networks, 
similar to national networks of weather stations, should become a 
research priority.

Microclimate can also feedback to the macroclimate (De Frenne 

et al., 2021). For instance, microclimate can drive local vegetation 
patterns and ecosystem processes, which affect surface conditions 
(e.g. surface albedo and roughness), heat fluxes and carbon cycling 
over a larger extent. The dynamics of these relationships could be 

especially important for moderate to long- term studies focusing on, 
e.g. species range dynamics and future scenarios of ecosystem func-

tioning and services. Many microclimate processes (e.g. canopy or 

soil surface processes, such as feedbacks of below- canopy micro-

climates in forests) are not yet being represented in macroclimate 

models. However, understanding microclimate variability is import-
ant when investigating sub- pixel variability, at least to constrain the 
uncertainty levels in macroclimate grids or remotely sensed data 

of surface temperature and moisture. Such microclimate variabil-

ity has useful applications in highlighting regions with particularly 

high uncertainty in the macroscale product, thus providing guidance 
on which variables to focus for further model development (see 

Section 10).

Finally, harmonised data monitoring will facilitate integration 
into global databases (see Guideline 10), such as the SoilTemp da-

tabase (Lembrechts et al., 2020), which has recently expanded be-

yond temperature and soil moisture to include all in situ measured 

microclimate parameters. To optimise ecological research and be-

yond, however, it remains crucial to improve the integration of the 
SoilTemp database with other ecological databases focused on spe-

cies distributions and ecological patterns. Standardisation could 

further pave the way for a harmonised global network—or network 

of networks—of standardised microclimate loggers, in line with the 
existing global weather station network (WMO, 2023). This further 

unification is urgently needed in ecology and evolution, which in-

creasingly depend on large- scale, high- resolution and long- term data 
on microclimates and their changes in response to global changes, 
such as climate warming, land use change and biodiversity loss.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

Figure S1. The workflow of this manuscript, providing a detailed 
description of how this manuscript was developed, how work tasks 
were divided and the general flow of the process.

Figure S2. Demographics of the authors of this manuscript. We 

provide background information on all 27 authors of the manuscript. 

 2
0

4
1

2
1

0
x

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://b
esjo

u
rn

als.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

1
/2

0
4

1
-2

1
0

X
.1

4
4

7
6

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [0
6

/0
1

/2
0

2
5

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



26  |    DE FRENNE et al.

Note that authors could indicate all options regarding their discipline, 
most often studied biome and study object.

Text S1. R- code and visuals for the four steps in the data compilation 

process (see Figure 8) in Guideline 8.
Table S1. Overview of a selection of currently available and most 

often used (according to the SoilTemp database) microclimate logger 

types, powered by batteries and suitable for field studies in ecology 
and evolution.

Table S2. Overview of available reference data, and their 
characteristics such as spatiotemporal resolution and extent, and 
some advantages and drawbacks of each type of reference.
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