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Abstract— A new control paradigm using angular momen-
tum and foot placement as state variables in the linear inverted
pendulum model has expanded the realm of possibilities for the
control of bipedal robots. This new paradigm, known as the
ALIP model, has shown effectiveness in cases where a robot’s
center of mass height can be assumed to be constant or near
constant as well as in cases where there are no non-kinematic
restrictions on foot placement. Walking up and down stairs
violates both of these assumptions, where center of mass height
varies significantly within a step and the geometry of the stairs
restrict the effectiveness of foot placement. In this paper, we
explore a variation of the ALIP model that allows the length
of the virtual pendulum formed by the robot’s stance foot and
center of mass to follow smooth trajectories during a step. We
couple this model with a control strategy constructed from a
novel combination of virtual constraint-based control and a
model predictive control algorithm to stabilize a stair climbing
gait that does not soley rely on foot placement. Simulations
on a 20-degree of freedom model of the Cassie biped in the
SimMechanics simulation environment show that the controller
is able to achieve periodic gait.

I. INTRODUCTION

Every day, situations arise that put people’s safety and
health at risk. As roboticists, we hope that robots will one day
offer a means to alleviate some of these risks by taking over
dangerous/difficult tasks. Many challenges are preventing us
from realizing this hope. One of those is mobility in human-
centric spaces.

We live in a world built for bipedal creatures, and thus
bipedal robots are a necessary and fundamental addition
to a more robot-assisted world. Stairs pose a complicated
problem for humans and bipedal robots alike. This paper
proposes a method that allows an underactuated bipedal
robot to climb a uniform set of stairs. The method employs
a variation of the classical inverted pendulum model with
a varying center of mass height and a novel combination
of virtual constraint-based control and Model Predictive
Control (MPC) to achieve a locally exponentially stable stair
climbing gait. We first outlined this method in an extended
abstract at the Agile Robotics: Perception, Learning, Plan-
ning, and Control Workshop for the International Conference
on Intelligent Robots and Systems in 2022 [1]. This paper
expands on the initial presentation.

A. Background

There is a common saying coined by the British statistician
George E. P. Box that goes “all models are wrong, but some
are useful.” In the context of bipedal robotics, roboticists
have used a range of models to achieve agile movement
in their robots. Full-order dynamical models have proven

to be too computationally expensive for practical online
control calculations and/or it has proven hard to transfer
among different robots of similar morphology. More granular
models make it easier to apply a variety of control schemes
and perform real-time computations, however, they can also
be ineffective in capturing the dominant dynamics of a robot,
thus limiting the agility of the closed-loop system (robot plus
the controller). In addition, the sim-to-real gap can be hard
to manage.

The Linear Inverted Pendulum (LIP) model is a popular
approach to modeling bipedal locomotion [2], [3]. The LIP
model assumes a point mass fixed on massless legs. Ap-
proaches that use the LIP model typically assume a constant
center of mass height and use center of mass (CoM) velocity
as a means to quantify “balance” (e.g., speed stabilization).
These assumptions fail to effectively capture impacts associ-
ated with gaits where the CoM height undergoes significant
variation [4]. Recent research shows that angular momentum
about the contact point of the stance foot has higher fidelity
when applied to realistic robots [5]. This newer paradigm,
called the Angular Momentum Linear Inverted Pendulum
(ALIP) model, has been used in control strategies to de-
termine foot placement. Critically, angular momentum about
the support foot has relative degree three with respect to all
motor torques except the stance ankle, where it has relative
degree one. Consequently, angular momentum about the
support foot is directly controllable via ankle torque and only
weakly affected by distal motor torques throughout a step.
Furthermore, the transfer of angular momentum property at
impact shows that angular momentum about a given contact
point is invariant to the impulsive force generated at the

Fig. 1: The underactuated Cassie biped walking up stairs in the SimMechanics
Simulation environment.
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contact point.
While the ALIP model has proven to be an effective means

of achieving agile locomotion over flat ground [5], the model
has not yet been demonstrated on tasks that involve rapid
changes to CoM height such as stair climbing or climbing
onto or off objects. Truly agile bipedal robots must be fitted
with a controller that is able to handle rapid changes to
CoM height to make them capable of navigating cluttered
environments.

Model Predictive Control (MPC) is a practical approach to
controlling a robot through cluttered environments. By letting
the robot “see ahead of time”–much like humans do when
similarly moving through cluttered environments–it is easier
to plan control actions that ensure the robot does not fall. The
idea of using MPC for bipedal locomotion on non-flat terrain
is not new. In [6], [7], the authors generated trajectories
for bipedal locomotion on stairs using MPC. Meanwhile, in
[8], the authors implemented an MPC-based stair walking
controller on a planar robot that had 5 degrees of freedom
(DOF).

The study of bipedal robot locomotion over stairs is also
not new. Several scholars, such as Fu et al. [9] and Caron et
al. [10], have delved into this field by creating stair-walking
controllers for fully actuated humanoid robots with 32 and 34
DOF respectively. In [11], the authors generated open-loop
stair gaits for the 3D underactuated 20 DOF Cassie bipedal
robot studied in this report; closed-loop control was not
explored. In [12], the authors were able to apply human data
of planned and unplanned downsteps on the Cassie biped in
simulation. Our paper seeks to further expand the capabilities
of the Cassie biped by achieving an asymptotically stable
periodic gait on stairs. Prior work by Siekmann et al. [13]
made use of reinforcement learning to design a closed-
loop controller for the Cassie bipedal robot, perceiving stair
height as an unseen perturbation to the controller. Although
this achievement is noteworthy, the resulting gait appears to
provoke severe impacts, potentially damaging the robot. In
this paper, we assume the robot is able to perceive terrain
geometry at least one-step ahead, enabling the design of
a controller that produces smoother locomotion. Dai et al.
[14] approached the issue by developing a dynamic walking
controller for constrained footholds (including on stairs) by
regulating an underactuated robot’s vertical CoM. We seek
an alternative approach to stair climbing using the often-
overlooked stance ankle motor.

B. Contributions

This paper develops a controller that allows the Cassie
biped shown in Fig. 1 to climb stairs. Novel contributions
include the exploitation of a variation of the ALIP model
that allows CoM height to vary within a step, and a novel
combination of virtual constraint-based control and MPC to
stabilize a stair-climbing gait.

If the ultimate goal is to have a bipedal robot navigate
through cluttered environments, speed may not be the first
priority. Rather, precision in balance is a necessity. We show
the ability to modulate a robot’s closed-loop behavior in

real-time so as to smoothly handle stairs as well as reject
perturbations on flat ground in SimMechanics simulation.

II. DYNAMIC MODEL OF THE CASSIE ROBOT

The Cassie robot (shown in Fig. 1) is a 32 kg bipedal
robot that was designed and built by the company Agility
Robotics. Each of its 10 kg legs are actuated at five joints
and have two passive joints constrained by springs.

A. Floating Base Model

Bipedal locomotion, such as with stair climbing, can be
best characterized using a hybrid system–a system that dis-
plays both continuous and discrete behavior. The continuous
phase describes the dynamics of one foot supporting the
robot and the other swinging forward, while the discrete
phase describes the transitions between left and right feet.
The “stance leg” is defined as the leg that is planted on the
ground during walking motion. Conversely, the “swing leg”
refers to the leg whose foot is progressing forward.

Using Lagrangian mechanics, one obtains a second-order
differential equation to describe the continuous dynamics for
the Cassie biped:

D(q)q̈+C(q, q̇)q̇+G(q) = JT
st F + JT

s Fs +Bu (1)

where D ∈R20×20 is the mass inertial matrix, C ∈R20×20 is
the centrifugal and coriolis forces matrix, G ∈ R20×1 is the
gravitational vector, Jst ∈ R5×20 is the stance foot jacobian
(we assume that the blade foot has two points of contact),
F ∈ R5×1 is the ground reaction force acting on the stance
foot, Js ∈R4×20 is the jacobian of the springs, FS ∈R4×1 are
the forces acting from the springs, B ∈ R20×10 is the input
matrix, u ∈R10×1 is the motor torque vector, and q ∈R20×1

is the generalized coordinate vector.
For reasons discussed in the next section, we reformulate

the equations of motion defined in (1) such that the stance
ankle torque term is isolated from the rest of the input terms.
Thus,

D(q)q̈+C(q, q̇)q̇+G(q) = JT
st F + JT

s Fs +B1u1 +B9u9 (2)

where B9 ∈ R20×9 and u9 ∈ R9×1 are the input matrix and
control vector without the stance ankle terms, respectively,
and B1 ∈ R20×1 and u1 ∈ R1×1 correspond to the column in
the input matrix and value in the control vector relating to
the stance ankle torque, respectively.

III. CONTROL DESIGN RATIONALE

The Cassie biped has 20 DOF to control. This section
breaks down how we chose to regulate these degrees of
freedom.

During single support (one foot on the ground and the
other free of contact), 9 DOF have holonomic constraints
imposed on them: four from Cassie’s springs (two springs
on each leg), and five from the stance foot. Thus, we are
left with 11 DOF to control and 10 actuators. The robot is
therefore underactuated.

Previous work that has successfully achieved stable walk-
ing on level, inclined, and gently rolling terrain consistently



used only nine of the ten actuators to achieve stable walking
[15], [16], excluding the stance ankle motor. The stance ankle
torque is not used in walking because the small ankle motor
saturates easily on the real robot in the presence of distur-
bances, leading to falling. The remaining two uncontrolled
degrees of freedom correspond to rotations of the robot about
the stance foot in the sagittal and frontal planes and are
stabilized via foot placement. As noted by Raibert in [17], if
a robot’s CoM spends more time in front of the stance foot
than behind it, then it generally accelerates, and conversely,
it decelerates. This property has been used by many authors
to propose foot placement control algorithms [5], [18], [19],
[20], [21], [22], [23] for stabilization of pendulum models.

We follow [15], [16] and use nine actuators to enforce
nine virtual constraints, leaving two degrees of freedom
uncontrolled. We adopt the foot placement strategy of [5] to
stabilize the degree of freedom related to rotation about the
stance foot in the frontal plane. Stairs offer limited geometry
for sagittal foot placement and therefore foot placement in
this plane is impractical. Instead, we use intelligent ankle
torque control in a manner such that saturation will not
destabilize the robot. This is developed in Sec. VI.

IV. PASSIVITY-BASED CONTROL

Passivity-Based Control (PBC) is a powerful control strat-
egy used to control nonlinear systems such as bipedal robots
[24]. It has practical use for hardware applications because
it does not require an accurate model of the system. This
is a key feature that adds a layer of robustness to shield
from imperfect sensors and uncertain kinematic and dynamic
properties within the robot.

We impose a spring constraint such that

Jsq̈+ J̇sq̇ =−Kspring
D Jsq̇−Kspring

P Perror
s (3)

where Perror
s is the spring position error and Kspring

D and Kspring
P

are user-defined derivative and proportional controller gains
for the springs, respectively.

We additionally impose a non-slip constraint such that

Jst q̈+ J̇st q̇ = 0. (4)

From (2), (3), and (4) we get

D̃ f + H̃ = B̃u9 (5)

where

D̃ =

D −J⊤st −J⊤s
Jst 0 0
Js 0 0

 , f =

 q̈
Fst
Fs

 , B̃ =

B9
0
0

 , and

H̃ =

Cq̇+G−B1u1
J̇st q̇
J̇q̇

−

 0
0

−Kspring
D Jsq̇−Kspring

P Perror
s

 .

(6)
We order the generalized coordinate vector q such that

q = [qc qu]
⊤, where qc are the controlled joints and qu are

the uncontrolled joints. We define λ = [qu Fst Fs]
⊤ and

partition (6) such that

D̃11q̈c + D̃12λ + H̃1 = B̃1u9

D̃21q̈c + D̃22λ + H̃2 = B̃2u9.
(7)

That is, [
D̃11 D̃12
D̃21 D̃22

][
q̈c
λ

]
+

[
H̃1
H̃2

]
=

[
B̃1
B̃2

]
u9. (8)

We eliminate λ by using Schur Complement, resulting in

D̄q̈c + H̄ = B̄u9 (9)

where
D̄ = D̃11 − D̃12D̃−1

22 D21

H̄ = H̃1 − D̃12D̃−1
22 H̃2

B̄ = B̃1 − D̃12D̃−1
22 B̃2.

(10)

We define the output function as

y(x) = h0(q)−hd(q, px des
sw , py des

sw , pz des
sw , t) (11)

where h0 is the collection of virtual constraints and hd
provides the desired trajectories for the virtual constraints.
In part due to precedent [5], [16], [25] and in part due to the
new ALIP model of Sec. V that is being used for this paper,
the virtual constraints are defined as follows:

h0(q) =



absolute torso pitch
absolute torso roll

stance hip yaw
swing hip yaw

pendulum length
px

st→sw
py

st→sw
pz

st→sw
absolute swing toe pitch


(12)

where the pendulum length describes the vector rc from the
stance foot to the CoM and pst→sw is the vector emanating
from the stance foot and ending at the swing foot.

We design a passivity-based controller such that

D̄ÿ+(C̄+KD)ẏ+KPy = 0 (13)

where KD and KP are user-defined derivative and proportional
controller gains, respectively. When designing the controller,
we check that the decoupling matrix is full rank and we
assume that the stance ankle torque is known. The required
value of the ankle torque is developed in Sec. VI.

V. A VARIATION OF THE ALIP MODEL

The ALIP model is a reparameterization of the LIP model
where the linear velocity of the CoM is replaced by the
angular momentum about the contact point as a key variable
to “summarize” the state of a robot. For robot models
consisting of a single point mass suspended on massless
legs, the ALIP model is equivalent to the LIP model. For
real robots, with links having distributed mass, reference [5]
shows that the ALIP model is superior for making predictions
about future state values.



Fig. 2: Schematic of an inverted pendulum to derive a variation on the ALIP model.

A. Derivation of the new ALIP Model

The derivation of the new ALIP model is as follows.
Assume an inverted pendulum as shown in Fig. 2, where
(xc,zc) are the Cartesian position of the CoM with respect
to the stance foot. It follows that the angle of the CoM with
respect to the stance foot is

θc = arctan
(

xc

zc

)
. (14)

Taking the derivative with respect to time yields

θ̇c =
1

1+( xc
zc
)2

(
ẋczc − żcxc

z2
c

)
=

1
z2

c + x2
c
(ẋczc − żcxc)

=
1
r2

c
(ẋczc − żcxc)

(15)

where rc =
√

x2
c + z2

c is the length of the pendulum. For later
use, we rewrite (15) as

θ̇c =
1

mr2
c
(mẋczc −mżcxc) (16)

where m denotes total mass.
Given the angular momentum about the contact point L

and the angular momentum about the CoM, Lc, the angular
momentum transfer formula [15] gives

L−Lc = m

[
xc
zc

]
∧

[
ẋc
żc

]
= mzcẋc −mxcżc (17)

where [
xc
zc

]
∧

[
ẋc
żc

]
:=


xc

0
zc

×

ẋc
0
żc


•

0
1
0

 .

Using (17), (16) becomes

θ̇c =
L−Lc

mr2
c

. (18)

To complete the model, the time derivative of L, the
angular momentum about the stance leg is

L̇ = mgxc + τ

= mgrc sin(θc)+ τ,
(19)

where τ is the torque about the contact point, which we will
call stance ankle torque. Note that τ here is equivalent to

u1 in (2). Combining (18) and (19), the dynamical model
becomes

θ̇c =
L−Lc

mr2
c

L̇ = mgrcsin(θc)+ τ.

(20)

In [15], it is shown that Lc can be neglected for Cassie-like
robots. For the nominal stair climbing trajectory, −0.21 ≤
θc ≤ 0.13 radians, and hence we can make the approximation
sin(θc)≈ θc. This results in the linear time-varying model

θ̇c =
L

mr2
c(t)

L̇ = mgrcθc + τ,

(21)

which we refer to as the ALIP. The model is time-varying
because we will assume that rc(t) evolves according to the
nominal periodic orbit.

B. Remarks on the ALIP Model

When the CoM is controlled to a constant height, the ALIP
model becomes linear and time-invariant, and hence admits
a closed-form solution. When walking on level ground, a
constant CoM assumption renders the impact map linear in
the planned horizontal swing foot position.

Walking on stairs violates two of the key assumptions
made above: a) the CoM height of the robot must vary
to pass from one step to the next, and b) the run of each
step of the stair severely restricts horizontal foot placement,
effectively eliminating it as a control decision variable.
This new version of the ALIP model from [15] facilitates
accounting for varying pendulum length. We also introduced
stance-leg ankle torque into the model so that it can be used
as a control variable.

VI. MODEL PREDICTIVE CONTROL USING QUADRATIC
PROGRAMMING

The premise of Model Predictive Control (MPC) is to use
a model of a system to predict how the system will evolve
over an interval of time to determine an optimal set of control
inputs to achieve a desired goal state.

A. Discrete-time Model Formulation

We define the state of (21) to be x(t) =
[
θc(t) L(t)

]⊤ and
convert the differential equation into a discrete-time model
via

ẋ(t)≈ x(t +∆t)− x(t)
∆t

. (22)

We let xk = x(k∆t) so that the model can be expressed as

xk+1 = Axk +bkuk (23)

where

Ak =

[
1 0
0 1

]
+∆t

[
0 1

mrc(k∆t)2

mgrc(k∆t) 0

]

bk = ∆t

[
0
1

]
uk = τ(k∆t).



While bk does not vary with time, it is convenient to know
which control signal it is distributing in the formulas below.
Equation (23) defines our model for MPC.

B. Predictive Step

Given our model as well as values for our current state
at time k, we can calculate the state k+N at the end of a
horizon of length N,

xk = given or measured from the robot
xk+1 = Akxk +bkuk

xk+2 = Ak+1xk+1 +bk+1uk+1

= Ak+1Akxk +Ak+1bkuk +bk+1uk+1

...
xk+N = Ak+N−1 · · ·Akxk +Ak+N−1 · · ·Ak+1bkuk+

· · ·Ak+N−1bk+N−2uk+N−2 +bk+N−1uk+N−1.

(24)

For compactness, we rewrite this as

xk+N = Skxk +Γkuseq
k (25)

where

Sk := Ak+N−1 · · ·Ak

useq
k :=

[
uk uk+1 · · · uk+N−2 uk+N−1

]⊤ (26)

and Γk can be computed recursively by

Bk := bk

Bk+ j :=
[
Ak+ jBk+ j−1 bk+ j

]
,1 ≤ j ≤ N −1

Γk := Bk+N−1.

(27)

We note that Γk is a 2×N matrix. For N ≥ 2, it can be
checked that Γk is full rank, that is, det(Γk ·Γ⊤

k ) ̸= 0.
With this predictive model, we seek to compute useq

k such
that

xdes
k+N = Skxk +Γkuseq

k (28)

where we’ll select N to correspond to the duration of one
robot step (i.e., a prediction horizon of 400 ms) and we’ll
choose xdes

k+N to be the corresponding value on the nominal
periodic orbit at time t = (k+N)∆T, mod T , where T =
400ms is the step period.

C. Control Computation

To minimize the torque sequence useq
k such that the dy-

namics hold, we implement a Quadratic Program and arrive
at the following optimization problem:

min
useq

uT
seq H(t)useq +(x− xdes)⊤Q(t)(x− xdes)


subject to
Γkuseq

k = xdes
k+N −Skxk

umin < uk < umax

(29)

where H(t) and Q(t) are weighting matrices, and umin and
umax are the lower and upper bounds imposed on the torque

Fig. 3: 3D model of the Cassie robot in the SimMechanics simulation environment.

input, respectively. We select H(t) and Q(t) such that values
toward the end of the step are weighted more, with the value
at impacts being weighted the most heavily.

VII. LATERAL STABILIZATION OF THE ROBOT

We stabilized the lateral motion of the Cassie biped by
using the angular momentum-based foot placement strategy
developed in [5], but with the new ALIP model derived in
Sec. V.

VIII. RESULTS

This section discusses the implementation of the con-
trollers from Sections IV, VI and VII on the 20 DOF
simulation model of the Cassie robot using Matlab and
Simulink. Fig. 3 shows the Cassie robot in the SimMechanics
environment on stairs. Note the direction of the positive x−
and z−axes, which means that a negative rotation about
the y−axis corresponds to walking up the stairs. This is an
important observation for interpreting later plots.

A. Walking on Flat Ground

As a first check, we evaluated our controller on flat ground.
We know from previous work [17] that foot placement alone
on flat ground is enough to stabilize the system. Removing
foot placement in the sagittal plane and instead using a
fixed step length value (that is, setting the desired swing
foot position to a predefined nominal value, similar to what
needs to happen on stairs where the sagittal step length
is constrained to a constant) results in an unstable closed-
loop system. We posited that using ankle torque would then
stabilize the system.

Simulations showed this hypothesis to be correct. Turning
off ankle torque while the robot walked with fixed step
lengths resulted in the robot falling. Adding ankle torque
control not only allowed the robot to walk continuously
with fixed steps, but also made the system robust against
perturbations.

Fig. 4 shows two sets of plots for the total angular
momentum and CoM angle for a simulation where the robot
stands for the first two seconds, transitions to stepping in
place for the next four simulation seconds, and then walks
forward for the remainder of the simulation, activating the
fixed step gait at the 12-second mark in the simulation time.
The first set of plots correspond to the simulation where



Fig. 4: Angular momentum and CoM angle during simulation where robot stands for
two seconds, steps in place for the next four seconds, and then is commanded to walk
forward at 0.5 m/s for the remainder of the simulation runtime. Fixed step gait is turned
on at the 12 second mark. Two test results are shown, (a) not using ankle torque during
fixed step, and (b) using ankle torque during fixed step.

ankle torque was not used during the fixed step portion of
runtime. The second set of plots correspond to the simulation
where ankle torque was used during fixed step. Note that
the robot falls after just two steps when ankle torque is
not engaged during the fixed step gait. This is because the
fixed step trajectory does not allow the robot to maintain a
periodic angular momentum trajectory, causing the angular
momentum to lag behind the desired nominal trajectory and
eventually falling. Absent of the intelligent foot placement
method that could ensure that a angular momentum trajectory
is followed, the system requires a force to maintain stability.
Ankle torque supplies this necessary force to the system,
pushing the robot back on to the nominal trajectory.

In Fig.5 and Fig.6, we demonstrate the robustness of our
ankle torque controller. Following the same gait transitions
as aforementioned, we perturb the system at simulation time
t = 3 seconds (while the robot is walking in place) and t = 14
seconds (while the robot is walking forward in fixed steps)
by reducing all motor torque inputs by one-fifth (1/5) of their
desired value for 50 milliseconds. The perturbations resulted
in a disturbance equivalent to a shift of 0.1 rad in the CoM
angle and 5 kg-m2/sec in angular momentum. In both cases,
ankle torque control was able to prevent a fall and return the
robot to a periodic gait. In the absence of ankle torque, the
robot falls.

Fig. 5: Angular momentum and CoM angle over time with and without ankle torque to
stabilize marching in place with perturbations at t = 3 sec (a) without ankle torque and
(b) with ankle torque. Note, that only the relevant time portion of the plot is shown
(2 < t < 8) to highlight the effects of the perturbation. In (a), there is no data after
∼ 3.8 sec because the simulation fails at this time. Data continues until the end of the
simulation for (b) because the robot is able to fully recover after the perturbation.

Fig. 6: Angular momentum and CoM angle over time with and without ankle torque to
stabilize walking forward with perturbations at t = 14 sec (a) without ankle torque and
(b) with ankle torque. Note, that only the relevant time portion of the plot is shown
(13 < t < 17) to highlight the effects of the perturbation. In (a), there is no data after
∼ 14.7 sec because the simulation fails at this time. Data continues until the end of
the simulation for (b) because the robot is able to fully recover after the perturbation.

B. Walking up Stairs

At each step, the swing foot is regulated to place the new
stance foot near the center of the stair’s tread; without this,
small errors accumulate and result in the robot not respecting
the stair’s geometry. In simulations, this is straightforward
to achieve. In future experiments, we’ll use the perception
system design for Cassie in [26].

Using the Passivity Based Controller of Sec. IV alone
to enforce fixed step lengths, without other control in the
sagittal plane, resulted in the robot taking two steps and then
falling backward. Activating the MPC controller for ankle
torque resulted in the 20 DOF simulation model being able
to walk an unbounded number of steps.

Fig. 7 shows the stance ankle torque inputs calculated
via the MPC approach throughout the simulation period.



Fig. 7: Simulated stance ankle torque vs time using MPC for stair climbing.

Fig. 8: Nominal and simulated angular momentum and CoM angle over time using
MPC to determine stance ankle torque to stabilize sagittal motion and (lateral) foot
placement to stabilize lateral motion during stair climbing.

We enforced a stance ankle torque limit of ±23 Nm in the
quadratic program solver. This value was decided based on
the max torque limit of the ankle motor and the gear ratio
of 50. Throughout the simulation, the stance ankle torque
is predominantly negative, which means it is “pushing” in
the direction of motion. Without the additional ankle torque,
the robot falls backward, which results in a positive rotation
about the y−axis.

Fig. 8 shows the angular momentum and CoM angle as the
robot walks up 10 stairs. The plots show both the nominal
trajectory that was used to set the desired values for the
MPC when determining stance ankle torque, as well as the
actual simulated values. Note that even though the simulated
trajectory is not exactly following the nominal trajectory, it
is still able to achieve a stable periodic orbit. The optimized
nominal trajectory was developed on a model of the Cassie
biped that does not factor in Cassie’s springs. We applied our
controller on a full order model of the Cassie biped in the
SimMechanics simulation environment that includes Cassie’s
springs as a more faithful representation of the hardware
model. Furthermore, we approximate Cassie’s states using
a Kalman Filter, exactly as we would on hardware, which
adds more noise to the system. In the presence of all of these
uncertainties and perturbations, our controller is still able to
achieve a stable walking gait up stairs. This is discussed
further in the next section.

IX. DISCUSSION

The nominal trajectory used for stair climbing was de-
signed with the Fast Robot Optimization and Simulation

Fig. 9: CoM angle and angular momentum over time steps for a horizon length N = 5T
on the planar nonlinear ALIP model.

Fig. 10: Stance ankle torque over a horizon length N = 5T on the planar nonlinear
ALIP model.

Toolkit (FROST) [27] using a model of Cassie that does
not factor in the springs. In effect, the springs, therefore, act
as perturbations to the system that the MPC-generated ankle
torque must overcome/accommodate at each impact.

At impact, the relatively stiff springs in the stance leg
come into play, leading to oscillations in the “knee joint”
that are not present in the controller design model. This
leads to the short-duration spikes in ankle torque seen in
Fig. 7. To confirm this is the source of the torque spikes,
we show in Fig. 9 a simulation of the planar nonlinear ALIP
model in (21) in closed-loop with the identical controller
used on the full-order model of Cassie over a horizon length
N = 5T . As expected, we achieved near perfect tracking with
this simplified model compared to the poorer tracking on
the full order model shown in Fig. 8. Fig 10 shows the
corresponding ankle torques for the simulation on the planar
nonlinear ALIP model. Note the marginal torque values that
evolve to become almost negligible by the fifth step in the
horizon. This matches what we would expect. The optimized
trajectories generated by FROST was computed by placing
a constraint to minimize stance ankle torque. The planar
nonlinear ALIP model is thus able to follow the optimized
trajectory using minimal torque input.

While our controller has proven to be robust enough to
handle the perturbations caused by the springs, we anticipate
that enhanced robustness and agility will require a nominal
trajectory that accounts for spring deflection. We can fur-
ther improve the robustness of our controller by 1) using
trajectories that are optimized over a model that factors in



Cassie’s springs, and 2) upgrading our ALIP model used
in MPC to also factor in springs–in effect, using an A-
SLIP model. With these changes, our novel control paradigm
would not only be able to better handle perturbations to the
system during flat ground walking and stair climbing, but
also be able to used as the basis of a controller that can
help a robot maintain balance while navigating through semi-
cluttered environments.

X. CONCULSIONS AND FUTURE WORK

We have presented a model-based control strategy for
walking up a flight of stairs. The control strategy uses virtual
constraints to control the robot’s posture. A foot placement
strategy ensures lateral stability because standard stair width
does not impose any geometric limitations in the lateral
direction. In the sagittal plane, however, stair tread depth
makes foot placement impractical, and thus we adopted a
strategy relying on ankle torque computed via a linearized
time-varying model and MPC. Steady-state walking for a 20
DOF simulation model of the Cassie robot was demonstrated
in SimMechanics for both flat ground walking and stair
climbing.

The next step will be to apply this strategy on the physical
Cassie robot, incorporating a perception system [26], so that
Cassie is able to navigate stairs autonomously.
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