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Abstract—Future robots will boast mutable morphology, prop-
erties, and behavioral control policies to adapt to changing tasks
and environments. Soft robots offer an appealing platform for
adaptive shape change, as the constituent soft components may
stretch and reform into new target shapes. Typical soft robot
proprioception and control are achieved by embedding stretch
sensors into a robot’s body at locations of anticipated strain
during task performance. By mapping the neutral length of
those sensors to the neutral (unactuated) shape of the robot,
shape changes are detected when the sensors deviate from those
positions. However, this approach relies on a fixed neutral shape
and corresponding mechanics model, which is not the case
for shape-changing robots. To introduce a mechanics-model-free
approach to shape estimation for shape-changing robots, we
report a sensory ribbon that fuses stretch and orientation data to
reconstruct the 3D shape of the ribbon in free space and apply
it to the surface of arbitrary host objects.

Index Terms—shape sensing, soft robotics, shape-change

I. INTRODUCTION

It is generally accepted that there are optimal forms for
any desired function [1], which has led to the pursuit of
shape-changing robots that can adapt their morphology and
behavioral control policy towards changing tasks and environ-
ments [2]. Such adaptive shape-change is uniquely possible
with soft robot platforms, due to the inherent stretchability
and morphability of soft materials and components [3]-[7].

Shape-changing robots require closed-loop shape control.
However, current soft robot proprioception, state estimation,
and control approaches are not amenable to changes in neutral
body shape. The typical approach is to 1) embed stretchable
sensors—either resistive or capacitive [8]-[10]—into the body
or surface of a soft robot, 2) note the sensor readings when
the robot is unactuated and in its neutral shape, and 3)
infer actuation and motion from sensor readings that deviate
from those corresponding to the neutral shape. Coupled with
mechanics and kinematics models of the robot’s shape, this
simple approach is effective when the neutral shape of the
robot is unchanging. However, for robots with mutable shapes,
a new model-free approach is needed.

A model-free approach is possible: a surface shape can be
reconstructed with measurements of orientation at multiple
points along the surface and the distance between each of
the points [11], [12]. This approach has previously been
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used to construct inextensible shape-sensing arrays [13]-
[15]. However, for inextensible arrays, information is lost
when the subject stretches or deforms (i.e., if the underlying
body stretches—thereby changing the distance between the
sensors—the approach fails). Mathematically, the Nyquist-
Shannon sampling theorem states that for any single curve,
at least two tangents pointing along the curve are required
to determine the curvature , but this yields no information
about scale [16]. We, therefore, surmise that introducing
stretchable strain sensors between orientation sensors should
yield extensible shape-sensing arrays that can measure both
the surface shape and scale of an underlying body.

In previous work, we attempted to realize robust shape
estimation via a platform fusing orientation sensors and
stretchable circuits. Our work used embedded liquid-metal
capacitive strain sensors that dynamically measure the distance
between orientation sensors [17]. However, interfacing the
silicon integrated circuits with soft substrates and conductors
proved challenging—a problem that has been independently
addressed in the literature [18]—and we were previously
unable to measure curvatures and stretch simultaneously.

Herein, we present a sensing platform that positions stretch-
able, textile-based capacitive strain sensors that can be easily
fabricated from readily accessible materials [19] between off-
the-shelf 9-axis orientation sensor breakout boards (BNOOS5S5,
Adafruit, Inc.) (Fig. la-c). Using this platform, for the first
time, we illustrate the benefits of stretch in surface-based
shape sensing and demonstrate the platform’s potential utility
in closed-loop shape control for emerging shape-changing
systems. We validate the platform’s accuracy on shapes with
increasing sinusoidal frequency, as well as increasing feature
amplitudes and correspondingly increased perimeter lengths.
Our results show that the incorporation of the stretch sensors
between the orientation sensors allows the system to fully
reconstruct the target shapes and length scales.

II. FABRICATION AND EXPERIMENTAL METHODS

Our sensing system is a ribbon consisting of six stretch
sensors and six orientation sensors (Fig. 1c-d). The ribbon of
stretchable sensors was fabricated first. As illustrated in Fig. le
(and further detailed in [19]), each sensor is multi-layered: an
outer electrode made of stretchable, conductive fabric wraps
around two layers of a stretchable, non-conductive fabric
dielectric and an inner electrode. All layers are adhered with
a stretchable textile adhesive. This layering architecture forms
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Fig. 1. Overview and fabrication. a, Un-stretched and b, stretched sensor ribbon and measured shape. ¢, Sensor ribbon laid flat. d, Strain sensor stretched.
e, Exploded view of strain sensor; SLL denotes strain-limiting layer. f, Velcro attachment of orientation sensor to sensing ribbon.

a parallel plate capacitor such that when the sensor undergoes
strain, the capacitance increases. The five-layer design shields
the sensor from sensitivity to twisting or external pressures.

To derive the relation between capacitance change and dis-
placement (sensor length), five sensor samples were strained
on a mechanical testing device (Instron 3345) while measuring
capacitance, and a quadratic equation was fit to the averaged
data (Fig. 2). In the full ribbon system, one dielectric fabric
layer is common across each of the six sensors. Strain-limiting
layers of inextensible woven fabric were placed at the ends of
each sensor to support the orientation sensor breakout boards,
which were secured by Velcro (Fig. 1f). The ends of the ribbon
also had Velcro to close the ribbon during testing.

To collect data and estimate shape, each strain sensor was
interfaced with a capacitive sensor processing board (MPR121,
Adafruit, Inc.; rise time = 1 ps, charge current = 39 pA),
and each orientation sensor was interfaced with a multiplexer
(TCA9548A, Adafruit, Inc.). The processing board and the
multiplexer were connected to a microprocessor breakout
board (Arduino Nano, Arduino). The shape estimations were
obtained using spherical interpolation (commonly referred to
as “Slerp,” [20]) between the six orientations, with the strain
sensor providing the distance between each orientation.

To evaluate the utility and accuracy of the shape-sensing
ribbon, we generated twelve shapes with various radial fre-
quencies and amplitudes/perimeters, mimicking the effects of
expansion of soft actuators on a robot body. We generated
these shapes using Equation (1), where 7(©) gives the polar
coordinates of the output shape, r,cqr 1S the mean radius of
a circle, A is the amplitude of surface features, w is the radial
frequency of surface features, ¢ is the phase (always zero for
our shapes), and © is the angle from the polar axis.

7(0) = rmean (1 + Asin(w® + ¢)) (1)

In Fig. 3, from left to right, radial frequency increases from
0 to 2, 3, and 4; From top to bottom, the amplitude of the
radial features and shape perimeter length are increased to set
the ribbon’s strain to 0%, 20%, and 40%, respectively. In more

detail, the dimensions of the two-dimensional shapes are as
follows. Fig. 3a-d: perimeter of 480 mm (the unstrained length
of the ribbon, thus the ribbon is at 0% strain applied around
the perimeter) and amplitude of 0.2; Fig. 3e-h: perimeter of
580 mm (20% strain) and amplitude of 0.3; Fig. 3i-1: perimeter
of 680 mm (40% strain) and amplitude of 0.4. The shapes were
laser cut out of acrylic (ULS VLS 2.30DT).

The sensing ribbon was wrapped around each shape five
times. The shape measurement was calculated during post-
processing, along with finding the mean absolute error (MAE)
between the experimentally measured shape and the ground
truth shape, provided by the CAD model. The smallest Eu-
clidean distance was found between each data point in the
measured shape and points along the ground truth shape.
These distances were averaged to find the MAE of each trial.
The MAE values were then averaged across the five samples,
yielding the reported cumulative MAE value in Fig. 3.
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—Quadratic Fit R R
Fig. 2. Sensor characterization.

Capacitance vs. displacement from
five sensor samples, and the quadratic
fit (R? = 0.999) used to approximate
stretch in the sensing ribbon. Cloud
represents one standard deviation.
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III. RESULTS

The sensing ribbon is able to capture sinusoidal curvatures
with radial frequencies 0, 2, and 3 with relatively low MAEs,
even as the amplitude and perimeter increase. We note a sharp
increase in the MAE for a radial frequency of 4, which is
expected, as there are no longer enough orientation sensors to
capture the additional curvatures.

Average MAE increases across each radial frequency as
strain increases. This loss of accuracy at higher strains could
be due to increased sensor-to-sensor variation at displacements
greater than 10 mm, as seen in Fig. 2. Despite the increase
in MAE, the system is still able to reasonably capture the
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Fig. 3. Average MAE with increasing strain/amplitude, and radial frequency. Representative samples of the shape measurements (blue curves) compared
to the ground truth shapes (dotted lines), for each shape tested. Locations of the orientation sensors (OS) are denoted on the estimated shape, and their true
location is also shown in the schematic of the ground-truth shape above each test. MAE values were averaged over five trials, and the axes and scale in (a)

apply to all subplots.

curvature and size of shapes with <3 radial sinusoids and with
amplitudes and/or perimeters that correspond to <40% ribbon
strain. With an inextensible system, only the shapes in Fig. 3a-
¢ (0% strain) would have been accurately captured. Using
stretchable sensors, the shapes in Fig. 3e-g,i-k are measurable.

IV. DISCUSSION

The results herein indicate that, as long as the number of
orientation sensors is at least double that of the target object’s
radial frequency, the stretchable sensing ribbon can capture
changes in both shape and scale of shape-changing hosts.

Because the sensor ribbon is designed to be general-purpose,
we did not tailor sensor placement to best capture each
tested shape. Consequently, we noticed difficulties capturing
both shallow curvatures, as in Figs. 3c, f, & j, and very
sharp curvatures, as in Fig. 3k. We suspect that capturing
shallow curvatures with the sensor ribbon was difficult because
compliance in the Velcro attachment of the orientation sensors
led to the orientation sensors not lying perfectly tangent to the
shape. Capturing sharp curvatures was difficult because the
orientation sensors were not placed intentionally close to sharp

curves, and the measurement method smoothly interpolates
between the orientation measurements. With a higher sensor
density, sharper curvatures could be captured, but at the cost
of an increasingly complex system.

The inextensible attachment mechanism that linked the ends
of the sensing ribbon led to the slightly asymmetric placement
of orientation sensors, which may have affected the accuracy
of reconstructing concave curvatures, as in Fig. 3c, between
orientation sensor 0 and orientation sensor 5. Without the
asymmetry, this concave curvature would have been cap-
turable, as validated by the concave curvatures in Fig. 3g & k,
where the asymmetry is minimized with higher strains.

This work serves as a step towards shape estimation for
topologically complex systems and will enable closed-loop
shape control of next-generation shape-changing robots. In
future work, we will improve upon the sensor ribbon design by
augmenting the hardware and shape reconstruction algorithms
to work for three-dimensional (3D) shape estimation. Future
experiments will include expanded sensor arrays and tests on
dynamically shape-shifting 3D platforms.
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