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1. Introduction

We propose, analyze, and present experimental results with a stochastic inexact sequential quadratic optimization
(SISQO) algorithm for minimizing an objective function subject to (s.t.) nonlinear equality constraints. Specifically,
our algorithm is designed to solve problems of the form

mﬂi@r’} f(x)s.t. c(x) =0, with f(x) = E,[F(x, w)], (1)

where f : R" — R and c: R" — R" are continuously differentiable, w is a random variable with probability space
(Q,F,P),F:R"xQ— R, and E,|[-] represents expectation taken with respect to the distribution of w. Problems of
this type arise in numerous important application areas. A partial list is the following: (i) learning a deep convolu-
tional neural network for image recognition that imposes properties (e.g., smoothness) of the systems of partial dif-
ferential equations (PDEs) that the convolutional layers are meant to interpret (Ruthotto and Haber 2020); (ii)
multiple deep learning problems (see Marquez-Neila et al. 2017), including physics-constrained deep learning for
high-dimensional surrogate modeling and uncertainty quantification without labeled data (Zhu et al. 2019), natural
language processing with constraints on output labels (Nandwani et al. 2019), image classification, detection, and
localization (Ravi et al. 2019), deep reinforcement learning (Achiam et al. 2017), deep network compression (Chen
etal. 2018), and manifold-regularized deep learning (Tomar and Rose 2014, Kumar Roy et al. 2018); (iii) accelerating
the solution of PDE-constrained inverse problems by using a reduced-order model in place of a full-order model
coupled with techniques to learn the discrepancy between the reduced- and full-order models (Sheriffdeen et al.
2019); (iv) multistage modeling (Shapiro et al. 2014); (v) portfolio selection (Shapiro et al. 2014); (vi) optimal power
flow (Summers et al. 2015); and (vii) statistical problems, such as maximum likelihood estimation with constraints
(Geyer 1991, Chatterjee et al. 2016).
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Popular algorithmic approaches for solving problems of the form (1) when objective function and derivative
values can be computed deterministically include penalty methods (Courant 1943, Fletcher 2000) and sequential qua-
dratic optimization (SQO) methods (Wilson 1963, Powell 1978b). Penalty methods, which include popular strate-
gies such as the augmented Lagrangian method and its variants, handle the constraints indirectly by adding a
measure of constraint violation to the objective function, perhaps aided by information related to Lagrange multi-
plier estimates. The resulting unconstrained optimization problem, which can be nonsmooth depending on the
choice of the constraint violation measure, may be solved using a host of methods, such as line search, trust region,
cubic regularization, subgradient (Shor 2012), or proximal methods (Rockafellar 1976), where the appropriateness
of the method depends on whether the constraint violation measure is smooth or nonsmooth. It is often the case
that a sequence of such unconstrained problems needs to be solved to obtain appropriate Lagrange multiplier esti-
mates and/or to identify an adequate weighting between the original objective f and the measure of constraint vio-
lation so that the original constrained problem can be solved to reasonable accuracy.

SQO methods, on the other hand, handle the constraints directly by employing local derivative-based approx-
imations of the nonlinear constraints in explicit affine constraints in the subproblems employed to compute
search directions; see, for example, Gill et al. (2002). For example, so-called line-search-SQO methods are consid-
ered state of the art for solving equality constrained optimization problems (Han 1977, Powell 1978a, Han and
Mangasarian 1979). During each iteration of such a line-search-SQO method, a symmetric indefinite linear sys-
tem of equations is solved, followed by a line search on an appropriate merit function to compute the next iter-
ate. Here, the linear system is derived from applying Newton’s method to the stationarity conditions for the
nonlinear problem, and for this reason in the setting of equality constrained optimization, SQO methods are
often referred to as Newton or Newton-5QO methods. For solving large-scale problems, factorizing the matrix
in this linear system may be prohibitively expensive, in which case it may be preferable instead to apply an itera-
tive linear system solver, such as minimum residual (MINRES) (Paige and Saunders 1975). This, in turn, opens
the door to employing inexact subproblem solutions that may offer a better balance between per-iteration and
overall computational costs of the algorithm for solving the original nonlinear problem. Identifying appropriate
inexactness conditions that ensure that each search direction is sufficiently accurate so that the SQO algorithm is
well posed and converges to a solution under reasonable assumptions is a challenging task with relatively few
solutions in the literature (Heinkenschloss and Vicente 2002; Biros and Ghattas 2003; Byrd et al. 2008, 2010; Hein-
kenschloss and Ridzal 2008).

The success of SQO methods in the deterministic setting motivates us to study their extensions to the stochastic
setting, which is a very challenging task. We are aware of only a few papers (e.g., Berahas et al. 2021, 2023; Na et al.
2023) that present stochastic algorithms for solving optimization problems with nonlinear equality constraints that
offer convergence guarantees with respect to solving the constrained problem (rather than, say, merely a minimizer
of a penalty function derived from the constrained problem). The algorithm by Na et al. (2023) is a line-search
method that uses a differentiable exact augmented Lagrangian function as its merit function, whereas Berahas et al.
(2021) (respectively, Berahas et al. 2023) propose an SQO method that uses an {1-norm (respectively, {,-norm) pen-
alty function as its merit function. A similar algorithm but for a different setting is that by Oztoprak et al. (2023),
which considers the setting in which only noisy objective and constrained values are accessible. All of these meth-
ods must factorize a matrix during each iteration, which may not be tractable when solving large-scale problems.
This motivates us to extend the method in Berahas et al. (2021) to allow for using inexact subproblem solutions.
Recently, Curtis et al. (2024) analyzed the worst-case complexity of the method by Berahas et al. (2021); this work
makes it clear that such an analysis for constrained optimization is highly nontrivial.

1.1. Contributions

The contributions of this paper pertain to a new algorithm for solving Problem (1). (i) We design an SISQO method
for solving (1) that is built upon a set of conditions that determine what constitutes an acceptable inexact subprob-
lem solution along with an adaptive step size selection policy. The algorithm employs an £,-norm merit function,
the parameter of which is updated dynamically by a procedure that has been designed with considerable care
because it is this parameter that balances the emphasis between the objective function and the constraint violation
during the optimization. (ii) Under mild assumptions (that we justify) that include good behavior of the adaptive
merit parameter, we prove convergence guarantees for our algorithm. (iii) We present numerical results that com-
pare our SISQO algorithm with a stochastic “exact” SQO algorithm and a stochastic subgradient method that show
that our algorithm can outperform alternative techniques. In particular, we show that when all algorithms are given
equal computational budgets, SISQO finds points with lower feasibility and Karush-Kuhn-Tucker (KKT) stationar-
ity errors.
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1.2. Notation
Let R denote the set of real numbers, Ry, (respectively, R.,) denote the set of real numbers greater than or equal to
(respectively, strictly greater than) p € R, and N:={0,1,2,...} denote the set of natural numbers. Let R" denote the
set of n-dimensional real vectors, R™" denote the set of m- by n-dimensional real matrices, and S" denote the set of
n- by n-dimensional symmetric real matrices. For any p € N\ {0}, let [p] := {1,...,p}. The {,-norm is written simply
as |||

Any run of our algorithm generates a sequence of iterates {x;}, where x, € R" for all ke N. For all ke N, we
append the subscript k to other quantities defined with respect to the kth iteration, and for brevity, we define
Vi == Vf(xx), ¢k == c(xx), and Ve = Ve(xi). We refer to the range space of Ve as Range(Vcy) and refer to the null
space of V¢! as Null(Vc]). The fundamental theorem of linear algebra provides that these spaces are orthogonal
and Range(Vcy) + Null(Ve]) = R". Finally, recall (see, e.g., Nocedal and Wright 2006) that a primal point x € R"
and a dual point y € R" constitute a first-order stationary point for Problem (1) if and only if c¢(x) =0 and
Vf(x) + Ve(x)y = 0. These conditions are necessary for x to be a local minimizer when the constraint functions sat-
isfy a constraint qualification as is assumed in the paper; see Assumption 1.

1.3. Organization
Our algorithm is presented in Section 2, with a convergence analysis in Section 3. The results of numerical experi-
ments are presented in Section 4, and concluding remarks are presented in Section 5.

2. SISQO Algorithm

A run of our proposed SISQO algorithm generates a sequence

{(x, Vi Sk Ok i, A, O, P 1 T, T, &l & Qe ming O maxs %)} )
where for all k € N, (xx, 1x) € R” X R" is a primal-dual iterate pair; g € R" is a stochastic gradient estimate; v, € R" is
a normal primal direction that aims to reduced infeasibility by reducing a local derivative-based model of the
{>-norm constraint violation measure; uyx € R" is a tangential primal direction that aims to maintain the reduction in
linearized infeasibility achieved by the normal primal direction while also aiming to reduce the objective by reduc-
ing a stochastic gradient-based quadratic approximation of the objective; dj := v, + 1, € R" is a full primal direction;
5 € R™ is a dual direction; (p,, ) € R" X R™ is a primal-dual linear system residual pair; (7{", 7;) € R.o U {00} X
R is a pair of trial and employed merit parameter values; (£, &;) € Rs X R is a pair of trial and employed ratio
parameter values; and (@, min, ¥ max, %) € Rso X Rso X Ry is a tuple of minimum, maximum, and employed step
size values, the last of which aims to produce a subsequent iterate xy,; < xi + axdy yielding sufficient reduction in
the £>-norm merit function. We present our algorithm in the context of the generation of a realization of the
sequence (2), although our analysis ultimately considers the stochastic process defined by the algorithm, namely

{(Xk/ Yk/ Gk/ Vk/ uk/ Dk/ Dk/ mk! Rk/ T]t(rialr Tk/ E]t(riall E‘k/ -Ak,minr Ak, max7 Ak)}/ (3)

of which (2) is a realization. In the rest of this section, we present our algorithm in the context of the generation of a
realization (2) toward our complete statement of Algorithm 1.
For the remainder of the paper, we make the following assumption.

Assumption 1. Let X CR" be an open convex set containing {x} generated by every run of Algorithm 1. The objective f :
R" — R is continuously differentiable and bounded below over X, and its gradient Vf : R" — R" is Lipschitz continuous
with constant L € R (with respect to the £>-norm) and bounded over X. The constraint ¢ : R" — R™ (with m < n) is con-
tinuously differentiable and bounded over X, and its Jacobian Vc(-)T :R" — R™" is Lipschitz continuous with constant
I' € Ry (with respect to the vector-induced {,-norm) and bounded over X. In addition, for all x € X, the singular values of
Ve(x)" are bounded uniformly below by a positive real number.

The elements of this assumption are standard in the continuous constrained optimization literature. Note that it
does not include an assumption that X is bounded. One could relax the assumption to say that X contains {X;}
almost surely, but because such a relaxation would only make it necessary to remark constantly on the probability-
zero event that {X;} ¢ X without adding much value to our ultimate results, we employ Assumption 1 as it is
stated.

2.1. Merit Function
Motivated by the success of numerous line-search-SQO methods for solving deterministic equality constrained
optimization problems, our algorithm employs an exact penalty function as a merit function; in particular, it
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employs the £,-norm merit function ¢ : R" X R,y — R defined by ¢(x, 7) = 1f(x) + |[c(x)||, where 7 is a positive merit
parameter that is updated adaptively. (The choice of the £,-norm in ¢ is not essential. Another norm could be used.
The choice of the {,-norm merely makes certain calculations simpler for our presentation and analysis.) A model / :
R" X R.g X R" x R” — R of the merit function based on g~ Vf(x) and Vc(x) is I(x,7,,d) = ©(f(x) + g"d) + ||c(x) +
Ve(x)' d||, with which we define the model reduction function Al : R” X Rog X R” x R" — R by

Al(x,7,8,d)=1(x,7,8,0) —l(x,7,8,d) = —TgTd + |lcC)| = lle(x) + Vc(x)TdH. 4)

The merit and model reduction functions play critical roles in our inexactness conditions.

2.2. Computing a Search Direction
During the kth iteration, the algorithm computes a normal direction v, € Range(Vcy) based on

, 1
min =

e + Vel ol 5
veRange(Vey) 2” k k H ( )

Instead of solving (5) exactly, the algorithm allows for an inexact solution to be employed by only requiring the
computation of v, € Range(Vcy) satisfying the Cauchy decrease condition

licell = licx + Vegoill = ec(lleell = licx + agVeg oill), (6)

where €, € (0,1] is user defined. In (6), v} := — V¢ is the negative-gradient direction for the objective of (5) atv =0,
and aj, is the step size along v{ that minimizes ||c; + aVc,{v,C(H over a € R. If ¢y # 0, then under Assumption 1, it fol-
lows that Veie, # 0,

2 2
o = Vel */IVef Vel > 0, afof # 0, and. |legll — llex + ag Ve vl > 0; )

otherwise, if ¢, = 0, then Ve, = 0, and vy = 0 is the unique solution to (5). Popular choices for computing a normal
direction satisfying the aforementioned conditions include Krylov subspace methods, such as the linear conjugate
gradient (CG) method; see, for example, Nocedal and Wright (2006).

For describing the tangential direction computation, let us first describe what would be the computation in a
deterministic variant of our approach. Given (xx, yx), Vfx, vk € Range(Vcy), and Hy € S" satisfying Assumption 2, con-
sider the quadratic optimization subproblem

1
m]%gn (Vfr + Hkvk)Tu + EuTHku s.t. Vc,{u =0, (8)
ueRr”

which has the unique solution u™¢ € Null(Vc]) that satisfies, for some 6" € R",

Hk VCk u}t{rue _
Vel 0 [ o]

We make the following assumption pertaining to {Hy} throughout the paper.

ka + Hk?Jk + VCkyk
0 .

Assumption 2. There exists C € Ry and kg € Ru¢ such that for all k € N in any run of the algorithm, ||Hy|| < kg and
uTHyu > Cllull® for all u € Null(Vc]).

The introduction of (8) and (9) allows us to define, for the purposes of our analysis only (i.e., not for actual com-
putation), the true and exact primal-dual search direction conditioned on the behavior of the algorithm up to the kth
iteration as (d{™¢, 6y"*°), where di’® := v + u!™°. Because our algorithm only presumes access to a stochastic gradient
estimate g of Vf;, the corresponding exact, but not true, primal-dual search direction is (dy ., 0k .), where dy . :=

Uk + Uy . with (1 ., Ok .) satisfying

|: Hk VCk:| |:Mk,*:| _ |:gk + Hop + VCkyk (10)

VCE 0 6k, * 0

(For the description of our algorithm and our initial analysis, it suffices that g, € R". Our ultimate required assump-
tion about the stochastic gradient estimators is Assumption 6.)

Our algorithm, to avoid having to form or factorize the matrix in (10), computes a tangential direction by com-
puting (i, 0) through iterative linear algebra techniques applied to the symmetric indefinite system (10). In
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particular, our algorithm computes (1, 6;) such that the full primal search direction dy := vy + 14, dual direction
Ox, and residual

H, V
[Pk] o { kT Ck] {uk} N {gk+Hkvk+Vckyk a1
T Ve, 0 ][ 6 0

satisfy at least one of two sets of conditions. Next, we describe these conditions that the algorithm employs to deter-
mine what constitutes an acceptable search direction and corresponding residuals.

In the deterministic setting, line-search-5QO methods commonly combine the search direction with an updating
strategy for the merit parameter in a manner that ensures that the computed direction is one of sufficient descent
for the merit function. The required descent condition is guaranteed to be satisfied by choosing the merit parameter
to be sufficiently small so that the reduction in a model of the merit function (recall (4)) is sufficiently large; see, for
example, Byrd et al. (2008, lemma 3.1). Following such an approach, our algorithm requires that (uy, o) (yielding
dy := v + uy) be computed and 7 be set such that the model reduction condition

Al(xe, T, vk + ) = 0, T max{u] Hyttg, €l *} + oc(lleell — llck + Vel o)) (12)

holds for some user-defined o, € (0,1), €, € (0, C) (see Assumption 2), and o, € (0,1). The value for 7 for which (12)
is required to hold depends on one of two different situations as described next.

Condition (12) plays a central role in the conditions that we require (1, 0x) to satisfy. We define these in the con-
text of termination tests (TTs) because they dictate conditions that once satisfied, can cause termination of an iterative
linear system solver applied to (10). (The tests are inspired by the sufficient merit approximation reduction termination
tests developed in Byrd et al. (2008, 2010) and Curtis et al. (2009) for a deterministic SQO method.) Our first termina-
tion test states that an inexact solution is acceptable if (12) is satisfied with the current merit parameter value (i.e.,
T = T < Tg_1), the norms of the residuals satisfy certain upper bounds, and either the tangential direction is suffi-
ciently small in norm compared with the normal direction or the tangential direction is one of sufficiently positive
curvature for Hy and yields a sufficiently small objective value for (8) (with g in place of Vf;). The test makes use of
a sequence {f,} that will also play a critical role in our step size selection scheme that is described in the next
subsection.

2.2.1. Termination Test 1. Given x € (0,1), B, € (0,1], x, € Rso, x, € Ry, x, € Rsg, €, € (0,0), x, € Rsp, 0, € (0,1),
oc € (0,1), and v € Range(Vcy) computed to satisfy (6), the pair (uy, Ox) satisfies TT1 if with the pair (p,, ) defined

in (11), it holds that
+V +0 1+ Ve
llpell < Kmin{H 8k e k)} ’ [gk ! * 1}/1«} ’}, (13)
Ck Ck—1
“Pk” < Kp,Bk and ||| < KBy (14)

ul Huy > €, ||ue* and
llull < wullogl| or (15)

1
T
(8x + Hyxv) " i + EuEHkuk < ol lvgll

and (12) is satisfied with T = t;_. (In this case, T; « T;_1, so (12) holds with 7 = 7;.)

TT1 cannot be enforced in every iteration, even in the deterministic setting, because there may exist points in the
search space at which all of the conditions required cannot be satisfied simultaneously, even if the linear system
(10) is solved accurately. In short, the algorithm needs to allow for the computation of a search direction for which
(12) can only be satisfied with a decrease of the merit parameter. That said, the algorithm needs to be careful in
terms of the situations in which such a decrease is allowed, or else, the merit parameter sequence may behave in a
manner that ruins a convergence guarantee for solving the original constrained optimization problem. For our algo-
rithm, we employ the following termination test for this situation.

2.2.2. Termination Test 2. Given x € (0,1), f, € (0,1], x, € Rso, k € Ry, ky € Ry, €, € (0,0), ®, € Rsg, 0. € (0,1),
€ € (0¢,1), and v, € Range(Vc,) computed to satisfy (6), the pair (1, 6;) satisfies Termination Test 2 if with the pair
(py 7%) defined in (11), (13)—(15) and

llcell = llex + Vegog + rill = e(llcill = llex + Vegogl)) > 0 (16)
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hold. (In this case, for user-defined €; € (0, 1), the algorithm will set

T if 7 < vl
e o iy g (17)
min{(1 —e;)1_1, 77"} otherwise,
00 if gl dj + max{u] Hyuy, eulluglPY < 0
where 7 ¢ (1= &) (el - llei + Vel o+ el (18)

- = 5 otherwise,
Sy A + max{u Hyuy, €,/|ugl|™}

so (12) is satisfied with 7 = 7. See Lemma 3 for a proof.)

In Lemma 1, we show under a loose assumption about the iterative linear system solver that for all k € N, the
algorithm can compute a pair (1, 6;) satisfying at least one of TT1 or TT2. Therefore, the index of each iteration of
each realization of our method is contained in one of two index sets:

K1 :={k € N: (ug, 6;) satisfies TT1} or Ky :={k € N: (u, ) satisfies TT2, but not TT1}.

It is worthwhile to emphasize that in terms of the stochastic process defined by the algorithm, the index sets X7 and
KC; are random (i.e., they may contain different indices in different runs). This randomness is handled as part of our
convergence analysis.

2.3. Computing a Step Size
Upon computation of dy < vy + 1y, our algorithm computes a positive step size ay to set xy,;. Given positive
Lipschitz constants L and I' (recall Assumption 1), it follows for all @ € R that

1 1
flxx +ady) < fi +aVElde+ ELoz2||dk||2 and |lc(x; + ady)|| < lex + aVel di| + Eroﬂndkuz. (19)
Combining these with (4) yields

O + ady, 1) — P, r) = T f (i + ady) — Tifr + lle(xe + adi)|| — Ikl

1
< anVi di + (11— al = Dllcdl + allex + Vegdill + 5l + T)a?||d |

1
= —all(x, i, Vfi di) + (11 = a| = (1 = a)lieil] + 7 (zl + T)a?|ldy|. (20)

This derivation provides a convex piecewise quadratic upper-bounding function for the change in the merit func-
tion corresponding to a step from xi to xx + ady. Given user-defined 1 € (0,1) and the aforementioned sequence
{B,} € (0,1], our algorithm’s step size selection scheme makes use of

asuff .= min 2(1 - n)ﬁkAl(xk/ Tk/gk/dk) 1 (21)
¢ mL+DIE

The definition of a,i“ff can be motivated as follows. Its value, when 8, =1, is the largest in [0, 1] such that for all
aelo, aiuff], the right-hand side of (20) (with Vf; replaced by gx) is less than or equal to —naAl(xy, Tk, gk, dx). Such an
inequality is representative of one enforced in deterministic line-search-SQO methods. Otherwise, with f, € (0,1]
introduced and not necessarily equal to one, the value of a{*f can be diminished during the optimization, which
allows for step size control as is required for convergence guarantees for certain stochastic gradient-based methods;
see, for example, Bottou et al. (2018). The first term inside the min appearing in (21) is important for the convergence
guarantees that we prove for our method, but it can behave erratically because of the algorithm’s use of stochastic
gradients. To account for this, given user-defined €; € (0, 1), our algorithm defines

=M and & := {ékl if &g < cf,t(rial )
o trial

glt(rial . L
Tl i

min{(1 —eg)&_1, &} otherwise,

so that & < &Ml = Al(xy, 4, gx, dx)/ (Telldil[?) for all k € N. Combining this inequality with (21), the monotonically
nonincreasing behaviors of {{;} and {74}, and assuming that {8, } satisfies

2(1 —n)pé17-1/T€(0,1] forall k€N, (23)
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where & 1 and 7_; initialize the sequences {&;} and {74}, respectively, one finds that

grin .= 2A =&t 20— B AL Tro 8k dk) | st (24)
ko S (1eL + T)||dell? TR

The value aj™" serves as a minimum value (i.e., a lower bound) for our choice of step size. In our analysis, we show
that the sequence {&;} is bounded below and away from zero by a positive real number that is common to all runs
of the algorithm (see Lemma 9).

Next, let us derive a maximum value (i.e., an upper bound) for our algorithm’s choice of step size. If di = 0, then
without loss of generality, the algorithm can set @y «<— @y, min. Otherwise, if di # 0, consider the strongly convex func-
tion ¢ : R — R defined by

p(a) = (1 — DapAl(xx, T, gk, di) + llc + aVepdill —
1
+ allexll = llex + Vegdil) + 5l + T)a?|jdg|. (25)

Notice that when f, =1, it holds that ¢(a) < 0 for all & € Ry if and only if the right-hand side of (20) with Vf;
replaced by g is less than or equal to —naAl(x, T, gk, di). Thus, following a similar argument, one can be motivated
as to the fact that our algorithm never allows a step size larger than a := max{a € Ry : (@) < 0}. Finally, again to
mitigate adverse effects caused by the use of stochastic gradients, our algorithm employs the maximum step size

af™ := min{ay, o™ + 087}, (26)

where 0 € Ry is user defined. Overall, our algorithm allows any step size with a; € [, @{"*]. Lemma 4 in our
analysis shows that this interval is nonempty.

2.4. Updating the Primal-Dual Iterate

In the primal space, our algorithm employs the iterate update xxy1 < xx + axdi. However, in the dual space, it
allows additional flexibility. For consistency with the deterministic setting (see, e.g., Curtis et al. 2009, equation
2.19), our algorithm is stated to require vy to satisfy

gk + Veryrall < gk + Ver(yi + o)l (27)

Clearly, choosing 11 < yi + O is one particular option satisfying (27), although other choices, such as least-
squares multipliers, could also be used.

Algorithm 1 (Stochastic Inexact Sequential Quadratic Optimization (SISQQO))
Require: (xo,v0,7-1,&-1) ER" X R"” X R0 X Ryp; (L,T) €Rog X Ryg satisfying Assumption 1; €. €(0,1]; €, €
(0,0); {ou,0¢,%,€r,€¢,m} € (0,1); {xp, %7, K, K0, 0} C Rsp; €, € (0, 1)
1: forall ke Ndo
2:  choose f, € (0,1] satisfying (23)
3:  compute v, € Range(Vcy) satisfying (6)
4:  compute g; (see Assumption 6)
5:  compute Hy (see Assumption 2 and Assumption 6)
6:  compute (uy, Or) satisfying at least one of TT1 or TT2
7
8
9

if TT1 is satisfied then
set Tl co and Ty « Ty >kek;
:  else (TT2 is satisfied)
10: set 7l and 7, by (17) and (18) >k ek,
11:  endif

12:  setd; <« vp + uy

13:  compute & and & by (22)

14:  choose ay € [af™™, a"] using the definitions in (24) and (26)
15:  set Xy < Xx + aydy, and choose v satisfying (27)

16: end for

3. Analysis
Our analysis is presented in three parts. In Section 3.1, we show that Algorithm 1 is well posed, which is followed
by Section 3.2, in which a set of lemmas is proved that hold for every run of the algorithm. The analysis in
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Sections 3.1 and 3.2 is written generically in terms of a realization of a run of the algorithm. Then, in Section 3.3,
we prove convergence properties for the algorithm that are written in terms of the stochastic process defined by
the algorithm. This analysis focuses on an event that presumes certain behavior of the merit and ratio parameter
sequences.

3.1. Well-Posedness

Our aim in this subsection is to prove that each procedure in each iteration of every run of Algorithm 1 is performed
in a manner that terminates finitely under mild assumptions. Along the way, we establish other useful properties.
In this subsection and the following one, our analysis merely requires for all k € N that g, € R" and that Hy € S" satis-
fies Assumption 2.

For the sake of generality, we make the following assumption about the iterative linear system solver employed
in line 6 of Algorithm 1, which merely requires that the residual of the linear system solve vanishes asymptotically
over any run of the solver. We emphasize, however, that there exist approaches, such as MINRES (Paige and Saun-
ders 1975), that guarantee that an exact solution—which would satisfy our termination tests—can be computed in a
number of linear system solver iterations that is bounded uniformly for all linear systems arising throughout any
realization of the algorithm. However, we merely make the following assumption because it is all that is required
by our analysis, and it offers more flexibility in the choice of linear system solver.

Assumption 3. For all k € N in any run, the iterative linear system solver employed in line 7 of Algorithm 1 to compute
(ux, Ox) generates a sequence

Hy, V H \Y
‘Ok't} = [ . Ck} [uk’t] + {gk+ KO+ VY forallteN (28)

{ (g, 1, Okt Py 4 Th £ ey With { . vl 0 |6 0

Kt
such that limy—eo||(tix, £, Ok, t, Py 1 Tk t) — (Ui, «, Ok, +, 0, 0)|| = O, where (uy, ., O, ) uniquely solves (10).

We also make the following assumption concerning the algorithm iterates and corresponding stochastic gradient
estimates computed in each iteration.

Assumption 4. For all k € N in any run, it holds that c, # 0 or g ¢ Range(Vcy).

We justify Assumption 4 in the following manner. In the deterministic setting, the algorithm encounters a point
xi such that ¢, =0 and Vf; € Range(Vcy) if and only if there exists y, such that (xy, ) is first-order stationary for
Problem (1). In such a scenario, it is reasonable to require that an exact solution of (10) is computed or at least that a
sufficiently accurate solution is computed such that a practical termination condition for (10) is triggered and the
algorithm terminates. In the stochastic setting, the algorithm encounters ¢, = 0 and gx € Range(Vcy) if and only if x,
is exactly feasible and the stochastic gradient lies exactly in the range space of Vcy. Because g is a stochastic gradient,
we contend that it is unlikely that it will lie exactly in Range(Vcy), except in special circumstances. Thus, for simplic-
ity in our analysis, we impose Assumption 4. Note that if Assumption 4 did not hold, then one of the following
could be employed in a practical implementation. (i) If a sufficiently accurate solution of (10) satisfies neither TT1
nor TT2, then a new stochastic gradient could be sampled, perhaps following a procedure to ensure that if multiple
new stochastic gradients are computed, then each is computed with lower variance, or (ii) random (e.g., Gaussian)
noise could be added to g for all k € N so that Assumption 4 holds almost surely in all iterations, in which case the
convergence result that we prove holds almost surely.

We can now show that the search direction computation is well posed. We remark in passing that if one was to
employ a linear system solver, such as MINRES, that would produce an exact solution of the linear system within a
uniformly bounded number of iterations, then the arguments in the proof of the following lemma would show that
the linear system solver computes (1, Ox), satisfying at least one of TT1 or TT2 in a uniformly bounded number of
iterations.

Lemma 1. For all k e N in any run, the iterative linear system solver computes (uy, &) satisfying at least one of TT1 or
TT2 in a finite number of iterations.

Proof. We prove the result by considering two cases.

Case 1. cx # 0. For this case, we show that (uy, 6x) = (u 1, Ox 1) satisfies TT2 for sufficiently large t € N. Let us first
observe that it follows from Assumption 3, Assumption 4, and S, € (0,1] that (13) and (14) hold with (p,,7x) =
(g, 17k ¢) for all sufficiently large t € N.

Let us now show that (15) holds for all sufficiently large ¢ € N. Because ¢ # 0, it follows under Assumption 1 that
vk # 0. If 1y . = 0, then Assumption 3 implies {uy ;} — uy . = 0, in which case it follows from «, € R, that the former
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condition in (15) holds with u = uy; for all sufficiently large t € N. On the other hand, if u; . # 0, then (10) and
Assumption 2 imply

up (gx + Hiop) + %”}Z*Hkuk,* < uf (gk + Hyoy) + uf Hyty, o = —uf Vep(yy +0p,.) = 0. (29)
Combining this inequality with ¢, € (0, (), k, € Rso, v # 0, and Assumptions 2 and 3, it follows that the latter set of
conditions in (15) holds with u; = 1 ; for all sufficiently large t € N.

Finally, let us show that (16) holds for all sufficiently large ¢t € N, which combined with the previous conclusions,
shows that TT2 is satisfied by (u, 6x) = (uk 1, Ok ¢) for all sufficiently large t € N. By Assumption 3, (6), and vy # 0, it
follows that limy_e(lckll — llcx + Vel o + 7y ¢ll) = llekll — llek + Vel vgll > 0, which shows that (16) holds with 7, = ., for
all sufficiently large t € N.

Case 2. ¢ = 0. For this case, we show that (u, O0x) = (g t, Ok ¢) satisfies TT1 for all sufficiently large ¢ € N. First,
recall that ¢y =0 implies that vy =0. We also claim that 14 . # 0. To prove this by contradiction, suppose that
iy, » = 0. Combining this fact with v =0 and (10), it follows that g + Vcr(yx + 6k ») = 0, which with ¢, = 0, violates
Assumption 4. Thus, uy . # 0.

Next, notice that the argument used in the beginning of case (1) still applies in this case, which allows us to
conclude that both (13) and (14) hold with (p,7x) = (p; ., 7x+) for all sufficiently large t € N. Combining (29) with
Assumptions 2 and 3 and €, € (0, C) allows us to deduce that the second set of conditions in (15) holds with uy =
uy,; for all sufficiently large t € N. Next, from the fact that v, = 0 and (10), it follows that V¢l dy . = Vel (uy . + vk)
=0, which with Assumption 2 and ¢, € (0,(), gives u,Z*Hkuk,* > g J? > €ullitg o|*, from which we deduce that
max{u,f,*Hkuk,*,el,||uk,*||2} = uf Hywy . > Cllug, .| > 0. Combining this inequality with ¢; =0, v, =0, Vcldy, . = Vel v
=0, (10), and Assumption 2 shows that

AL, Te-1, 8k i, ) = — T8 i, + llcll = llcx + Vg dy, ol = =T 18 .«
T
= — Tp_1(—Hyttg,« — Hyop — Ver(ye + 0k,0)) hxe = Teoatt Hittg o
2
> 0y Ty max{ug Hity, o, €4l1tx, ||} + 0c(lleel| = llex + Ve{vel)) > 0,

meaning that (12) holds with 7 = 7,4 for all sufficiently large ¢ € N. In summary, we have shown that for all suffi-
ciently large t € N, the pair (1, 8¢) = (u 1, Ok 1) satisfies TT1. O

Next, we prove that every full primal direction is nonzero.
Lemma 2. For all k € N in any run, it holds that dj, # 0.

Proof. By contradiction, suppose that dy = 0. From this fact, dy = vy + 14, and (11), it follows that p, = g + Ver (v
+ Ok) + Hi(vx + ux) = g + Ver(yk + 6). If ¢, =0, then this shows that the inequality in (13) cannot hold, meaning
that (14, Ox) satisfies neither TT1 nor TT2, which contradicts Lemma 1. Hence, the only possibility is that ¢, # 0,
which we assume for the rest of the proof.

Notice that from di =0, di = vy + uy, and r, = Vcluy, it follows that ||cxl| — |lox + Vef ox + 7ill = llekll — llex + Vel dyl]
=0, meaning that (16) is not satisfied; thus, (ux, 6x) does not satisfy TT2. Also, observe from v, # 0 (which follows
from ¢; # 0 and Assumption 1), di =0, and (6) that Al(xy, Tx—1,8k dk) =0 < 0,Tk—1 max{u,{Hkuk,eullukHz} + ac(Jlexll
— |lex + Vel vg]]), meaning that (12) is not satisfied with 7 =1;_q; thus, (1, 6;) does not satisfy TT1. Overall, we
have reached a contradiction to Lemma 1, and because we have reached a contradiction in all cases, the original
supposition that di = 0 cannot be true. O

We now show that our update strategy for the merit parameter ensures that the model reduction condition (12)
always holds for 7 = 7;. We also show another important property of {7y}.

Lemma 3. For all k € N in any run, the inequality in (12) holds with T = ty. In addition, for all k € N such that T < Ty,
it holds that Ty < (1 — €)1y

Proof. The desired conclusion follows for k € 7 because of the manner in which TT1 is defined and the fact that
the algorithm sets 7 < 74_; for all k € K;. Hence, let us proceed under the assumption that k € K,. The inequality
in (12) holds for t = 7 with dy = vy + uy if and only if

2
T(gi i + 0w max{ug Hett, eullurll™}) < llewll = llex + Vegdill — oc(llexll = lie + Vegoxll).

We now proceed to show that this inequality holds by considering two cases.
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Case 1. g,fdk + max{uZHkuk, eu||uk||2} < 0. In this case, the algorithm sets 7 « 7x_1. Combining this with (16),
Velu, =, and €, € (o, 1) yields

IA

2 2
Ti(gf i + oumax{uf Hiug, €ullucl”}) < ti(gi die + max{uf Hiu, €ullugl*}) < 0

IA

lleell = llci + Veg dill — e-lleell — llci + Veg vgll)
< llewll = llew + Vegdll = aclicill = llex + Vegorll),

which establishes the desired inequality.
Case 2. g dy + max{u] Hyug, e,lluxl*} > 0. The update (17) yields 74 < ", which combined with (16), (18),
Velu, =i, and €, € (o, 1) yields

Ti(gr di + omax{uf Hyuy, €l *}) < te(gf die + max{u) Heutg, €,l|ux]*})

g,
< (12 ) e+ el < e~ e+ Vel ol e+ Ve,

7

as desired. Moreover, from (17), we have 7,1 < (1 — €;)1 whenever 74,1 < 7. O

We conclude this subsection by showing that the interval defining our step size selection scheme (i.e.,
[aM™, af2@X]) is positive and nonempty for all k € N. We also show a useful property of the computed step size that is
needed in our analysis.

Lemma 4. Forall k€ Nin any run, 0 < al™™ < o' < af, 0 < oM™ < o™, and ¢(ay) < 0.

Proof. It follows from (24) and the fact that {,}, {&}, and {t;} are positive sequences that af™™ > 0 for all k € N.
Hence, considering (24) and (26), to prove that 0 < o™ < af*f < oY and 0 < a™" < o™ for all k € N, it is suffi-
cient to show that a§* < af for all k € N. Consider arbitrary k € N. Because a] > 0 by construction and 5" > 0 as
a consequence of Lemmas 2 and 3, the inequality holds trivially if af"f = 0. Hence, we may proceed under the
assumption that a{" > 0. Moreover, one finds from the definition of a; that to establish af*f < o, it is sufficient
to show that p(a;") < 0. We consider two cases based on which term yields the minimum in (21). First, suppose

that a3 =1 < 2(17'7()5 kLAi(;f)k”’ ;k”’zgk’dk), which with (25), shows that
k k

1
(™) = (n — 1B Al(xr, Th, Gk, di) + E(TkL + 1)\l

< (= DB AN, T, &k di) + (1 — B ALk, Tk, 8k, d) =0,

as desired. Second, suppose a"f = 2(1*’7()?55;(;”’;“’2&’@) < 1. For this case, it follows from (25), a;"ff € (0,1], and the tri-
angle inequality that ‘ ‘

P(ag™) = (n — Dag™ B Al(xk, T, gk, di) + (1 — n)a "B Al(xx, Th, gk, di)
+ llex + o™ Vel dill — a"llex + Ve dill + (5™ — 1)kl
<11 = @ F)cgll + (@ — Dllexl| = 0.

Overall, a5"f < af because in both cases, we proved that p(a"f) < 0.

Finally, let us show @(ax) < 0 for all ke N. By (4) and (25), one finds (as previously mentioned) that ¢ is
strongly convex. In addition, one finds that ¢(0) = p(a!) =0, where af € R.o. Along with 0 < al" < q; < ™™
< ozf, it follows that p(ay) < 0, as desired. O

3.2. General Results

In this subsection, we prove general results about the behavior of Algorithm 1. As in the previous subsection, our
analysis here merely requires for all k € N that g, € R" and Hy € S" satisfy Assumption 2. The next lemma gives a
lower bound on |[ck|| — [lcx + V] ve| relative to |||

Lemma 5. There exists k1 € Ry (a constant common to all runs of the algorithm) such that for all k € N in any run, one
has that |\cill — llcx + Vel ogll > %1 lex|-

Proof. This result follows as in Curtis et al. (2009, lemma 3.5) but with small straightforward modifications to
account for the fact that in our analysis here, the singular values of {Vc] } are bounded away from zero uniformly
over all runs as part of Assumption 1. O
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The next lemma shows that ||vk|| is bounded below and above proportionally to ||ck||.

Lemma 6. There exists (k2,x3) € Ry X Ry (constants common to all runs of the algorithm) such that for all k € N in any
run, one has that 1o||cll < |lokll < wsllek]|-

Proof. Assumption 1 ensures the existence of Amin € Rog such that Vc,{Vck > Aminl for all k€N in any run. We
now prove each desired inequality. First, consider the former inequality. Because this holds trivially when c; =0,
let us proceed under the assumption that ¢, # 0. One finds

llexll® — llek + agVefvill® = el = llex + ag Vel ol led + llex + g Ve ol
< 2lleell(lleell = llex + agVeg vl
It follows from this inequality, the triangle inequality, and (6) that

T T T T
IIVCkII lloxll = IVer vell 2 llexll = llex + Vckvkll 2 ec(llcill = llex + e Ve vill)

2 2 2
S (el = llew + ag Ve vfl?) = 5 (=2aief Ve[ o} — (agIVef o).

_2II il 2I| Kl

Substituting in for the value of af (recall (7)) and v§ = —Vcre, shows that ||Vl || [logl| > (2H Ck”) ak||Vckck|| Again,
substituting the value of a} and using the definition of A, one finds

elVaed!'  _ eldgllalt el
;>
2l V] VereelP ™ 2leell IVe] VelPlled? ~ 21V ef Vel

IVeil ol = 3 llell.
It follows from these inequalities and Assumption 1 that there exists k, € R. as claimed.

Let us now turn to the latter inequality. It follows from the normal direction computation that |lck|| = [|cx +
Vel ol Wthh implies that ||Vc]vil| < 2|leg]l. Note that because v, € Range(Vcy), one has v = Vegwy, where wy =
(Vc{Vck) Vck vy. Putting these facts together shows that

2|Vl

Amin

lloxll = IVexwdll = IV ex(Vef Ver) ™ Vefol < Vel 1(Vef Ve " IHIVef ol < llcxll,

which combined with Assumption 1—namely, that the Jacobian function Vc(-)T is bounded over the set X’ contain-
ing the iterates—establishes the existence of k3 € R, as claimed. O
The next result gives a useful bound on the size of the search direction.

Lemma 7. There exists K4 € Rys (a constant common to all runs of the algorithm) such that for all k € N in any run, one
finds that |ld* < sl +llexl).

Proof. Observe that 0 < (|[ull — [[vxl)? = lluxl® + lloxll = 2kl [oxll- Using this fact, di = vy + 1, the triangle inequality,
and Lemma 6, it follows that

2 2 2 2
ltiell™ < (el + Nloid)™ = loell” + lfoidll” + 2l ol
2 2 2 2 2
< 2(|luell” + llogll?) < 2(lhuill® + 13llcel?) < max{2, 23 lexll} (el + llel)-

The existence of the required x4 € Rs» now follows from Assumption 1 because max{2,2x3|ct||} is uniformly
bounded for all k € N in any run, which completes the proof. [

The next lemma shows that the model reduction Al(xy, Tk, gk, Uk + 1) is bounded below by a similar quantity as
the upper bound for ||di|* in the previous lemma.

Lemma 8. There exists k5 € Ry (a constant common to all runs of the algorithm) such that for all k € N in any run, one
has that Al(xe, T, e, 0k + k) 2= K5 Te([lugl * + llcgll) = S5l |[* > 0.

Proof. Lemma 3 shows that (12) holds with 7 = 7;. Combining this fact with Lemma 5 and the monotonically
nonincreasing behavior of {7;} shows that

2
Al(xk, T, 8 Ok + ) > oy Temax{uf Hyuig, €luel*} + oc(lleell — llex + Vg oel))

K1 }qumkn +lleel)s

Oc
> autieulf + ol 2 mind e,
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which proves the existence of the claimed x5 € R, because oy, €,, 0¢, k1, and 7_; are positive real numbers. The
remaining inequalities follow from Lemmas2and 7. O

We next prove a lower bound for {&;} that is uniform over every run of the algorithm.

Lemma 9. There exists &min € Roo (a constant common to all runs of the algorithm) such that in any run, there exists k €
Nand &, € [Emin, 00) such that & = &, for all k > k.

Proof. For all k € N, it follows from (22) and Lemmas 7 and 8 that

2
Al(X, Tk, S, Are) S K Tre(|[ukll” + lleel) x5
2 = 2 T

Trl il Trerka([fugll” + llexll) - *a

glt(rial — (30)

Now, consider any iteration such that & < 1. For such iterations, it follows from (22) and (30) that & >
1- eg)éiﬂal > (1 — es)Ks/x4. Combining this fact with the initial choice of £_; shows that & > & := minf{(1 —
€:)ks5/Kk4,& 1} for all k€ N. Combining this result with the fact that & < &1 implies that & < (1 —eg)& 1 (it
decreases by at least a factor of 1 — e¢) gives the desired result. [

The next lemma gives a bound on the change in the merit function in each iteration.
Lemma 10. For all k € N in any run, one has that
(ke + agdy, 1) — P(xk, Tkt)
< —axAl(xg, T, Vi, di) + axte VA (di — dF®) + (1 — n)anB AL (xe, Tr, Sk, di)
+ agller + Vc{dkH — ayllex + Vc,{vkll.
Proof. By Lemma 4, one has (o) < 0. Hence, starting as in (20); adding and subtracting the terms a7, V£ di™e,

aglleell, axllee + Vel dive|, and aiB Al(xi, Tk, 8k, dk); using the definition of ¢(-); and using the fact that V] di™e =
Vel (v + ui™®) = Vel v, one finds that

O(x + agdy, k) — (X, Tk)
1
< VL di + ok + Ve dill — llexl + E(TkL +T)a?||dil

— o Al(x, T, Vi, di) + TV (dy — d) + (e = Dl

1
+ llex + e Ve dill — aller + Ve dire|| + E(TkL +D)adill”

— B Al (xk, Tr, Qs i) + i AL(Xx, Th, ks i)

— apA(x, T, Vi, d°) + T VL (dy — di®) + allex + Ve dill

A

— ak“Ck + VC,{d]t(rue” — nakﬁkAl(xk, Thkr &kr dk) + Oék‘BkAl(Xk, Tk, 8kr dk)

— a Al (xg, T, Vi, d) + itV (die — di) + (1 — maiB Al (xx, T, S di)

+ agllex + Ve dill — axllex + Veroell,

which completes the proof. O

3.3. Convergence Analysis

Our goal in this subsection is to prove a convergence result for our algorithm. In general, in a run of the algorithm,
one of three possible events can occur with respect to the merit parameter sequence. One possible event is that the
merit parameter sequence eventually remains constant at a value that is sufficiently small. This is the event that we
consider in our analysis here, where the meaning of sufficiently small is defined formally in the event £ that is intro-
duced shortly. The other two possible events are that the merit parameter sequence vanishes or eventually remains
constant at a value that is too large. As discussed in Berahas et al. (2021, section 3.2.2), the former of these two events
does not occur for the algorithm in that paper if the differences between the stochastic gradient estimates and the
true gradients of the objective are uniformly bounded in norm; in particular, see Berahas et al. (2021, proposition
3.18). It is straightforward to show that such a conclusion also holds for Algorithm 1 in this paper because the merit
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parameter update strategy follows the same kind of approach as for the algorithm in Berahas et al. (2021); in partic-
ular, see the consistency between Berahas et al. (2021, equations (3.3) and (3.4)) and in this paper, (17) and (18) as
well as Byrd et al. (2008, lemma 4.7), which considers the setting of inexact linear system solutions using inexactness
tolerance conditions of the same type as in this paper. Moreover, in Berahas et al. (2021, section 3.2.2), it is shown
that the latter type of event (namely, that the merit parameter remains constant at a value that is too large) occurs
with probability of zero if one makes a reasonable assumption about the influence of the stochastic gradient esti-
mates on the computed search directions; see also Berahas et al. (2023, section 4.3) for additional discussion of this
case in the context of an algorithm that employs a step decomposition approach, like in Algorithm 1. Again, it is straight-
forward to see that such a conclusion also holds for Algorithm 1 because the merit parameter update strategy is of the
same form. Consequently, for our purposes here, we do not consider these latter events because we contend that for
practical purposes, one can focus on the first event for the same reasons as in Berahas et al. (2021, 2023).

Our main convergence result for Algorithm 1 considers an assumption that combines all of the assumptions
required for our analysis until this point and assumes certain behavior of the merit parameter sequence through an
event denoted as £. For this event and the subsequent analysis, recall the stochastic process (3) defined by the algo-
rithm. Consider for each k € N the condition

VF(Xi)" DI + max{(Ue) H U, e, ||US |} < 0, (31)

similar to the one appearing in (18). (For the sake of brevity in our notation, we overload the meaning of Hy; here, it
may be a random variable satisfying Assumption 6 introduced shortly, which is consistent with the previously
introduced and employed Assumption 2.) With this condition, let us define the following trial value of the merit
parameter that would be computed in iteration k € N if the algorithm was to employ Vf(Xj) in place of G and solve
(8) exactly:

0o if (31) holds,
Tiebte 3 (1= %) (Xl — le(X) + Ve(X,) D)
VF (X)) DI + max{ (L) H U, e, U}

otherwise.

(To be clear, the quantity 7™ never needs to be computed by our algorithm; it is only used in our analysis.)
Using this quantity, we define our event of interest, namely &, as the following.

3.3.1. Event &. For some (Kmin, Tmin,fsup) € N X Roo X R, the event € := E(kmin, Tmin, foup) Occurs if and only if f(Xk,,.)
< feup, and there exists (K,77,E") € N X Ry X Rog with K < kmin, 77 > Tin, and &' > & (see Lemma 9) such
that

Ty=T < TMe and 5 =& forall ke N with k>K'. (32)

In other words, event £ is the event in which by iteration kmn, the merit and ratio parameter sequences become con-
stant at values at least Tmin and &, respectively, and the objective value at iteration kyin is bounded. With respect
to this event, we make the following assumption for the rest of our analysis, our ultimate focus of which will be on
the behavior of the algorithm starting in iteration kmin, at which point the adaptive merit and ratio parameters are
constant.

Assumption 5. For some (Kmin, Tmin, fsup) € N X Rog X R, the event € := E(kmin, Tmin, foup) 0ccuirs, and conditioned on the
occurrence of £, Assumptions 1,2, 3, and 4 hold. In addition, along with the restrictions that {f,} C (0,1] and (23) holds for
all k € N, the sequence {B }sy, . is chosen in a manner that is Fy, . -measurable.

A few remarks are in order with respect to Assumption 5. First, that the event £ includes that the merit parameter
sequence is bounded below can, as previously mentioned, be justified for the same reasons as in Berahas et al.
(2021); the additional requirement that it eventually remains constant can be justified by Lemma 3, which shows
that if the merit parameter is decreased, then it is decreased by at least a constant factor. Note that it is the inequality
7' < TV that represents the aforementioned notion of the merit parameter ultimately being sufficiently small
for all large k. Second, that £ includes that the ratio parameter sequence is bounded below and eventually remains
constant is not a strong assumption; it follows under our prior assumptions (that are carried forward in Assump-
tion 5) because of Lemma 9. That said, the critical aspect here is that £ requires that this sequence has become con-
stant by iteration kmin. Third, that £ includes that f(Xj, ) is bounded above is a relatively weak assumption but
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necessary for our purposes of ultimately showing that a sequence of stationarity measures vanishes in expectation.
Finally, with respect to {B, };-_., we state in Theorem 1 particular choices satisfying Assumption 5 for which our
convergence guarantees hold. Precise strategies for setting these values that are consistent with our convergence
guarantees are stated after Theorem 1.

Let Gy be the o-algebra defined by the initial conditions of Algorithm 1, and for all k € N, let G; be the o-algebra
generated by the initial conditions and {Go, ..., Gx_1}. In addition, for all k € N, let the trace g-algebra of £ on G be
Fr =GN E Hence, {F} is a filtration. For brevity, let

]Pk[] w[ |-7:k] and IEk[] Ea)['|fk]r

where P, denotes probability with respect to the distribution of w (and as for (1), E, denotes expectation with
respect to the distribution of w). Observe that conditioned on £, one has that

Toin < 7' <7 qand & < B < &4, (33)

and one has that the random variables 7’ and Z’ are Fj-measurable for k = kpin > K.

We make Assumption 6 about {G,} and {Hy}. That the stochastic gradient estimators are unbiased is standard for
algorithms based on stochastic approximation. One may be able to relax the so-called bounded-variance assump-
tion introduced here, but we contend that this assumption is sufficient for showing the general type of convergence
guarantee that our algorithm offers. Hence, we make a bounded-variance assumption here so as not to obfuscate
the other details.

Assumption 6. There exists My € R.q such that for all k € N, the gradient estimator Gy has that Ey[Gy] = Vf(X) and
Ex[lIGx — Vf (Xk)||2 <M. In addztzon for all k € N, the matrix Hy. (satisfying Assumption 5; i.e., the bounds in Assump-
tion 2) is Fr-measurable.

Combining Assumption 6 with Jensen’s inequality, it holds for all k € N that

ExlIG — VA0 < y/EilIGe — VAXOIP] < /M. (34)

We now return to our analysis. First, let us derive bounds on the expected difference between Uy and U;™®. To
that end, let us define Z; € R™"™ as an (F, k—measurable) matrix whose columns form an orthonormal basis
for Null(Ve(X,)T), which implies that Z] Z; = and Ve(Xi)'Z, = 0. Under Assumption 5 (namely, Assumption 1),
let U1 €R" and Ui, € R"™ be vectors forming the orthogonal decomposition of Uy into Range(Vc(Xk)) and
Null(Ve(X)") in the sense that U = Ve(Xi)Uy 1 + Zkllk 2. It follows from (11) that Uy 1 = = (Ve(Xe) ' Ve(Xi)) ' Ri and
Upo = —(ZTHeZy)~ 1ZT(Gk + H Vi + HeVe(X) (Ve(X) T Ve(Xi)) R — Ry), with which one can derive

Uy = Ve(Xi)(Ve(Xy) Ve(Xi) R
~ ZWZ{HZy) " 2 (Gie+ HyVie + HiVe(Xi)(Ve(Xe) ' Ve(Xe) ™ Re — %)

U = — ZW(Z{HiZy) " Z{(Vf(Xe) + Hi Vi), (35)

The corresponding values for D and D™ are found to be

Dp = —(Ve(Xe) ' Ve(Xi)) ' Ve(Xi) (G + Hi Vi + Helly — Re) — i
DI = —(Ve(Xi) ' VelXi) ™ Ve(Xi) (VF(Xi) + HiVi+ Hel™) = Y (36)
In the proof of our next lemma, we use the fact that

Il = ZWZ{HZ) " Z{HA < 1, (37)
which can be seen as follows. The nonzero elgenvalues of AB are equal to those of BA when the Froducts are valid,

meaning that the nonzero eigenvalues of Zy(Z HiZ;)~ ZTHk equal those of Z] HyZy(Z{HyZy) " = I, which are all
one; hence, the bound in (37) holds.
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Lemma 11. There exists k¢ € Rso such that for all k € N with k > kyn, one finds

B[ Uk — ULl < wepy and ExlllUx — Uil < T /Mg + KBy

Proof. It follows from (35) that

U — U™ = Ve(Xe) (Ve(Xe) Ve(Xp)) ' Ry
— ZW(ZTHZ) T ZE (G — VF(Xy) + HiVe(X) (Ve(Xi) Ve(Xe)) 'Ry — Ry),

which combined with Assumption 6, shows that
Er[Uy — U]
= (I - ZWZ{HyZi) ' Z{H) Ve(Xi)(Ve(Xi) V(X)) ExlRi] + Zi(Z{ HiZe) " Z{ B[R]

Combining this equation with the triangle inequality, Assumption 5 (specifically, Assumptions 1 and 2), (14),
and (37) ensures the existence of x4 € R. such that for all ke N,

IE[Uk — Ue|| < [IVe(Xe)(Ve(Xk) Ve(Xe)  IHEREI + ¢ IERe]I
< IVe(X)(Ve(Xe) Ve(Xe) ko + T oy < Koy

which is the first desired result. Next, to derive the desired bound on E[||U; — U{™¢||], one can combine the expres-
sion for Uy — U™ with the triangle inequality to obtain

Uy — U\l < 1Zi(ZEHZi) 7' ZE(Gi — VEXN + 1 Zk(ZEH Ze) ™ ZE R |
+1I(I = ZW(ZLHZy) " ZE H ) Ve(Xi) (Ve(Xi) T Ve(Xi) ™ Ryll.

Taking conditional expectation and using Assumption 6, (34), (37), and (14), one finds
B[ — Uell] < T /Mg + CERlIRN] + [IVe(X)(Ve(Xi) " Ve(Xe) ™ ExlR ]

< O M+ Tl + IVE(X)(Ve(X) Ve(X) iy < ¢ Mg + By,

where «; is the same value as used, which completes the proof. O
We now bound the difference in expectation between Vf (Xk)TD,tf“e and G/ Dy.

Lemma 12. There exists (17, kg) € Roo X Ry such that for all k € N with k > kyin, one finds
B [Vf(Xe) DI — GIDy]| < w7, + Ksﬁk\/ﬁg + M.
Proof. It follows from the triangle inequality that
|EVF(X0) D™ — G{Di| = [Ex[Vf(X0) (D" — Di)) + (VF(Xe) = Gi) D]
< | VF(Xi) "B D™ — De] | + [EL[(VF(Xk) — Gi) Dyl

For the first term on the right-hand side, the Cauchy-Schwarz inequality, D¢ = V. + U™, Dy = V) + Uy, Lemma 11,
and Assumption 5 (i.e., Assumption 1) imply that there exists x; € R with

|Vf (X)) "EDE* = Del| < IVf(XOUIELDE — Dill = IVF XOMEL U — Uil < w7y

Now, for the second term, first observe from Assumption 6 that E[(Vf (X)) — GV = VIE(VF(Xx) — G¢] =0.
Combining this fact with (35), the Cauchy-Schwarz inequality, Assumption 5 (namely, Assumptions 1 and 2),
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(37), and (34) shows that there exists (g, kg) € Rsg X Rsg giving

|E[(VF(Xx) — Gr) Dyl

= [Ex[(VF(Xi) — Go)" (I = Zi(Z HiZi) ™" Zf H)Ve(X)(Ve(Xi) Ve(Xp) 'Ry
— ZWZTHZy) " ZE(Gr — VF(Xk) — Ri)]|

< [BR[(VF(Xe) — Go)" (I = ZW(Z{ i Ze) ™ Z{ H) Ve(Xi) (Ve(X) T Ve(Xi)) ™ Rl |
+ B[ (VA(Xx) — Go) Z(ZE Hi Ze) T ZERe] |
+ | Ex[(VF(Xe) — G ZW(ZLHiZi) ' ZL(VF(X) — Go)

< B lIVF (Xe) = Gill T = Zi(Z{ HiZ) ™ Zf HOVe(Xi)(Ve(Xi) T Ve(Xe) | IRk]
+ Be[IIVF(X) — Gell 11Z6(Z{ HiZe) " ZE I IRell] + T BA[IVF(X5) — GilF]

< (Kgkr + C )y /Mg + T "My = kg /Mg + T ' M.
Combining the results gives the desired result. O

We now proceed to bound in expectation the last few terms appearing in the right-hand side of the inequality
proved in Lemma 10. The next lemma considers the last pair of terms.

Lemma 13. There exists k9 € Ry such that for all k € N with k > kyn, one finds

Ex[Ae(lle(Xi) + Ve(Xe) " Dill — lle(Xi) + Ve(Xe) 'Vil)] < wop.
Proof. From (11), (14), the fact that Ay € [A™", A™], (26), (24), (23), and the monotonically nonincreasing behav-
ior of {7} and {&;}, it follows that there exists kg € R.( such that

E[A(lle(Xe) + Ve(Xe) Dill — le(Xi) + Ve(Xi) " Vil)] < Ex[AellVe(Xe) Uxll] = Ex[AlIRell]

20 - MBETL ﬁm

< K BELAT™] < BB L AP + OBY] = BB K T(L+T

< w2 (% + ng) < 192,

which gives the desired conclusion. O

Our next result provides an upper bound in expectation for the second term appearing on the right-hand side of
the inequality in Lemma 10.

Lemma 14. There exists k19 € Rxq such that for all k € N with k > kmn, one finds

Ex[ Ay TV (Xe) (Dy — D)) < 102

Proof. Let Z; be the event that Vf(X;)"(Dy — D) > 0, and let 7} be its complementary event. It follows from
(32), the definition of Zj, the fact that Ay € [A™", A7®], and the law of total expectation that for all k > kpin, one
finds

B[ AT VF(Xi)" (Di — D) = Bx[AcT'VF(Xi)" (D — D) | Ze]Pe[ Z4]
+ B[ AT Vf (Xe)" (Dx — D) | IR T3]
< Ex[AP™T'VF(Xe)" (Di — D) | T Pl Zi]
+ B[ AP T VF(X))" (Dx — D) | ZEIPe[ Z5]
= E[(AP™ = ATV (Xe)" (Dg — D) | ZiJPi[Zi ]

+ B [AMTVE(X) (Dy — D).
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Combining this with the fact that (26) ensures AP — Akmm < Gﬁi, that 7’ and &’ are Fy-measurable for k > knin,
the Cauchy-Schwarz inequality, that 4™ =2(1 —1)B,E' 7' /(T'L +T) for all k > ki, and the law of total expecta-
tion shows for all k > k,,;, that

Ex[ ATk VF(Xp) (D — D)) < 02T |IVF(Xi)IE[IDx — D[ 21 Px[Z ]
2(1 - nBE'T’
T'L+T
< OB T IVF(XOIEIDx — D]
2(1—n)BET
TL+T

Combining this with Lemma 11, (23), ||Dx — D{™|| = ||V + Ui — (Vi + UM = [[Ux — U™||, and Assumption 1
shows that there exists «1g9 € Rsq such that for all k > ki, one finds

Ex[ ATk VF(Xx)" (Dy — Dirve)]

T,”vf(Xk)””Ek[Dk _ Dltcme]”

T'|IVf (Xi)lIEx[ Dy — D ]ll-

201 —n)BE'T’

P TINF(Xlkef < k1082,

< OBYT|IVF(XIC /Mg + xepy) +

which is the desired conclusion. O

We now use the model reduction based on the true step Di"* to show an upper bound on the expected reduction
in the model based on the step Dy.

Lemma 15. For all k € N with k > kuin, one finds

Ex[A(Xy, Tk, Gr, Di)] < AlXy, T/, VF(Xi), D) + 1B, + T (178, + KBy /Mg + T M),

Proof. It follows from Lemma 12; (4); the fact that Dy = V) + Uj; the fact that c(X;), Ve(Xi)', Vi, Vf(Xk), and Djrve
are all Fy-measurable for k > knin; (9); and (14) that for all k > kinin,

Ex[AN(Xy, Tr, G, Di)] = Ei[—T'GI Dy + [le(X)l — lle(Xx) + Ve(Xe) Dill]

< AU(Xy, T/, VE(X), D) + 16,8, + T (k7 + K/ Mg + C ' My),
which is the desired result. O

We now prove our main result. In the result, the quantity AI(Xj, Tk, Vf(Xk), Di’*) serves as a measure of statio-
narity with respect to (1); after all, the proof for Lemma 8 shows, with (Vf(X), Uj™, Di"*) in place of (G, Uk, Dy),
that by Assumption 5, it follows for k > ki, that

’ T / Tu K T’ TUe
A, T VF (X0, D) 2 kT (U1 +le(Xl) = == 1D 2 0. (38)

Thus, in a run, if there exists infinite & C N with limyeic, k00 Al(X, T, Vfi, dif*¢) = 0, then (38) and Lemma 6 imply
that limyex k—oollCkll = limer, k—ool[1f|| = limgex k—ool[vxll = 0, which combined with (9), shows that any limit of
{(xk, yi + 0,)} is a first-order stationary point for (1). In our stochastic setting, we prove for two different choices of
{B} ik, that an expected average measure of stationarity exhibits desirable properties. These properties match
those ensured by a stochastic gradient method in the unconstrained setting (where |[Vf(X;)|* is the measure of
stationarity).

Theorem 1. Define
A = 2(1 - 77):‘ T o = 2(1 - n)émin’tmm o = 2(1 - 77)57177—1

T'L+T 7 ~min’ TminL +T 7 ™7 7 L4+T

and
Mmax = (1 - n)(a;nax + 6)(Kr + Tfl(K7 + K8\/ Mg + C_lMg)) + K9 + K10.

Then, the following results hold.
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i Ifp,=B= mﬁ%for some 1 € (0,1) for all k > kunin, then

mm+k 1
Z AI(X;, T',Vf(X;), D) | €

j=Kmin

< (L= @i + OIS K TIE = Pi) | ) @i + )M (39)
klP(l ll))(amm) (1 17)(1 - l#)(amm) (amax + 9)2

ko0 P(@0)” (@i + O Mina
(1= (1 = ) @) (Wl + 0)*

where ¢, € R is a lower bound for ¢(-, T") over X by Assumption 5 (namely, Assumption 1).
ii. If {B Yok, is determined by iteration kmi such that > ;2 p=o00, 302 Bt < oo, and p, < (1_$(++6) for some
¥ €(0,1) for all k = kupin, then

Kenin+k—1
lim E mm+k — > BAIX;, T', VF(X), D)€ | =0. (40)
Z] Kmin ﬁ] j= =kmin

In either case, if in a run, there exists K C N with || = oo and limyer, koo Al (X, T, Vi, di¢) = 0, then any limit point of
{(xx, yx + O1")} is a first-order stationary point for (1).

Proof. By the definition of A’, {$,} C (0,1], and line 15 of Algorithm 1, it follows that A € [A'B,, (A" + 0)B,] for all
k > kin. It follows from this fact; AI(Xy, 77, Vf(Xi), Di¢) > 0 (see (38)); Lemmas 10, 14, 8, 13, and 15; and the fact
that {8, } € (0,1] that for all k > kpin, one finds
Ex[p(Xk + AxDr, T1)] — p(Xi, Ti)
< B[~ AA(Xi, T, Vf (X0, D) + ATV (Xi) " (Dg — D)l
+ (1 = E[ A Al(Xy, T, Gi, Di)]
+ B[ Ac(lle(Xe) + Ve(Xe) Dell = lle(Xi) + Ve(Xi) Vil
< —A'BAIXy, T, VF(Xk), D) + (ko + K10)Bi
+(1— (A" + O)BIE[AIXy, T', Gy, Dy)]
—Bu(A" = (1 —n)(A" + O)BIAIX, T, VF(Xx), D) + piM, (41)

where M" := (1 —n)(A" + 0)(x, + T' (k7 + k81 /Mg + T Mg)) + %9 + Ki1o- Observe that under Assumptlon 5, one has

that E[¢p(Xy, .., 7")|€] is bounded, M’ < Max, and o < A" < al . because of the monotonicity of 2 Lz)rd with
respect to both £ and 7. Consider now the theorem’” s two cases.
Case i. By the definition of f, it follows that W < m for all k > kuin. Hence, along with (41),

it follows for all k > k., that
Exlp(Xi + AxDi, T')] — p(Xi, T7)
—B(A" — (1 = (A" + O)B)AUX, T', VF (Xy), D) + M/

Y= ) (@) : Yo
: _<(1n)(9)> O T TP+ () Mo
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Then, taking total expectation conditioned only on the event &, it follows for k € N that
(ijn - ]E[¢)('kajn’ T/) | g]

< E[p(Xppst T) = ¢ (X, T €]

R AN
= T +0))"

After rearrangement, one finds that (39) holds, where the limit as k — oo holds because of the aforementioned fact
that E[¢p(Xk, ., 7")| €] is bounded under Assumption 5.
Case ii. By the conditions on {B, };-y. . , it follows in a similar manner as in case (i) that

Prnin — ElO X, T I€]
< E[@Kiokr T') = (X T €]

kenin+k—1

, 2
S T (S ) Mo

(1 =@ +0)

Kenin+k—1
SE[ Y (—BlA = (1= n)(A +O)B)AIX, T, VF(Xy), D) + BiM’) |

j=kmin

which after rearrangement and taking limits as k — oo, proves that (40) holds.
The final conclusion of the theorem follows by the arguments provided before the theorem. O

We close this section by remarking that as described in Berahas et al. (2021), the elements of {8, } can be chosen to
satisfy Assumption 5 and the conditions of Theorem 1. Specifically, to obtain the convergence guarantees in case (i) of

r Yoy 2
e T +9)} where a; « =[5 for all k € N, which clearly

ensures that §, € (0,1] and that (23) holds. In addition, assuming that event £ occurs, the value «;, for sufficiently large
k becomes the realization of A" stated in the theorem, in which case g, =  for all subsequent k satisfies the condition
stated in the theorem. To obtain the convergence guarantees in case (ii) of Theorem 1, the algorithm can “reset” a

diminishing sequence after each iteration, in which the merit parameter and/or the ratio parameter are decreased.
Specifically, in any iteration, say keN, in which the merit parameter and/or the ratio parameter were reduced
£rgr§}1t}}<)eggrlor iteration, one can set 8, < c;/(k — k+ 1) for all k > k, where cp = mm{l, Pl q) o T 17)(a o) } with
ATJFF” If the value for k is reset after every time the merit parameter and/or the ratio parameter are decreased,
under event &, the value for k eventually will not be reset, meaning that in subsequent iterates, {B,} will satisfy the

conditions of the theorem.

Theorem 1, the algorithm can set B, < min{1

4. Numerical Results

In this section, we demonstrate the performance of a MATLAB implementation of Algorithm 1 for solving (i) a sub-
set of the constrained and unconstrained testing environment with safe threads (CUTEst) set (Gould et al. 2015) and
(ii) two optimal control problems from Hintermiiller et al. (2003). The goal of our testing is to demonstrate the compu-
tational benefits of using inexact subproblem solutions obtained based on our termination tests from Section 2.2.

1. Iterative Solvers
To obtain the normal direction vy as an inexact solution of (5), we applied CG to Vcch,{v = —Vcick. Denoting the tth
CG iterate as vy; where v (=0, the method sets vy < vy; where t is the first CG iteration such that
||Vcch,ka,t + Ve < 1078 max{|[Vceek|l, 1}. The properties of CG as a Krylov subspace method ensure that vy ; €
Range(Vcy) for all t € N; hence, v, € Range(Vcy).

To obtain the tangential direction 1 and associated dual search direction 0, we applied the MINRES method
(Paige and Saunders 1975, Choi et al. 2011) to (10). (We discuss our choice of Hj along with each set of experiments.)
Letting (uy,t,0r+) denote the tth MINRES iterate, where (1, o,06r0) = (0,0), the method sets (uy, 6x) < (uk,t, Ok 1),
where t is the first MINRES iteration such that for some x € (0, 1) (recalling the definition of (p; ,, 7x,+) in (28)),

{Pk,t]
Tt ||

and TT1 and/or TT2 hold. The choice of k € (0,1) is discussed with each experiment.

< maX{K”gk + Hkvk”oo/ 10_12}/ (42)
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4.2. Choosing the Step Size

Algorithm 1 (see hne 15) stipulates that the step size o chosen for the kth iteration satisfies o € [af™, a]*®]. Keep-
ing in mind that a"™ < " < min{a{,1} (see Lemma 4), we take advantage of this flexibility in choosmg the step
size by defining

1 if amn =1
ax « { min{a™ + 02, (1.1)"* i} if o < 1 and min{ef™ + 062, (1.1)* " ain} < af
(1.1)"*agmin otherwise,

where # is the largest value of € N such that (1 1famn < mm{ak ,amin + B2, 1}. We do not explicitly compute a;
in our code. Instead, we can verify whether (1. 1)t ain < ozk (as needed) because it is equivalent to verifying whether
P((1.1)f M) < 0, which is computable.

4.3. Algorithm Variants Tested

To test the utility of using inexact subproblem solutions in Algorithm 1, we consider two algorithm variants: STSQO
and SISQO_exact. SISQO is Algorithm 1 with inexact solutions computed as described in Section 4.1 with a rela-
tively large value for x in (42). On the other hand, SISQO_exact is identical to SISQO with the exception that it
uses a relatively small value for x in (42). (Because of the similarities of the algorithms, SISQO_exact acts as a
proxy for the stochastic sequential quadratic programming (SQP) algorithm from Berahas et al. (2021), although
because it employs iterative linear algebra techniques, we are able to compare SISQO_exact with SISQO more
readily.) We specify the values of x € (0,1) used along with each of our tests in Sections 4.5 and 4.6. Our reason for
comparing these two variants is to focus attention on the numerical gains obtained as a result of using inexact sub-
problem solutions. Both variants use the same computation for the normal step, so the performance difference can
be attributed directly to the inexact tangential step computation.

Additionally, we compare SISQO with a stochastic subgradient method employed to minimize the merit func-
tion ¢ directly (for various fixed values of 7). We refer to our implementation of this algorithm as Subgrad.
Because Hy is a diagonal matrix for all k € N in all of our experiments, one CG or MINRES iteration is comparable
computationally with two iterations of Subgrad.

4.4. Metrics Used for Comparison

Our metrics of interest are infeasibility and stationarity. Given any iterate x; in a run of SISQO, we consider the ter-
mination conditions ||c(x;)|l < 107° and ||Vfi + Verye isllee < 1072, where vy | is the least-squares multiplier at x;. If
an iterate satisfying these conditions is found in the first 1,000 iterations, then SISQO terminates and returns
Xs1sgo < Xk- Otherwise, SISQO terminates after the 1,000th iteration and sets k" <— arg min;e(oyup1,000)llc(X)llo (50 Xi
is the most feasible iterate found). If ||c(xy )|l > 107, then it returns xXsrsq0 < Xi; Otherwise, it returns xgrsoo < Xi-,
where k" = arg min;c (1, 000) () <10~ Vi + JT: 16llee- This allows us to assoc1ate with each run of SISQO the
two measures erTfeasibility = ||C(Xs1s00 | and €ITstationarity = IVf (xs1s00) +] (XSISQO) Ys1soolleor Where ysrsoo € R™ is the
least-squares multiplier at xs15g0. We use the total number of CG and MINRES iterations performed by SISQO as a
budget for the total number of CG and MINRES iterations performed by SISQO_exact; no other termination con-
dition is used for SISQO_exact. Upon termination of SISQO_exact, we define Xeys.c—the iterate with which we
define the feasibility and stationarity errors—using the same strategy as for setting xsrsqo. Finally, we ran Subgrad
for multiple instances of 7. (Further details on the choices of 7 and the iteration budget for Subgrad are given with
each experiment.) Upon termination of Subgrad, we define Xsugraq—the iterate with which we define the feasibil-
ity and stationarity errors—using the same strategy as for setting xsrsqo. In all cases, we define the KKT error as the
maximum of the feasibility and stationarity errors.

4.5. Results on the CUTEst Problems
In the CUTEst set (Gould et al. 2015), there are 138 equality constrained problems with m < n. From these, we
selected those such that (i) (n +m) € [500,10,000], (ii) the objective function is not constant, (iii) the objective func-
tion remained above —10™ over the sequences of iterates generated by runs of our algorithm, and (iv) the linear
independence constraint qualification was satisfied at all iterates encountered in each run of our algorithm. This
process of elimination resulted in the following 11 test problems: ELEC, LCH, LUKVLELl, LUKVLE3, LUKVLE4,
LUKVLE6, LUKVLE7, LUKVLE9, LUKVLE10, LUKVLE13, and ORTHREGC.

The function and derivative evaluations from CUTEst are deterministic, and for the purpose of these experi-
ments, we exploited this fact to compute values as needed by our algorithm, including using function evaluations
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Figure 1. (Color online) Box Plots of CUTEst Problems for Feasibility (Left Panel) and KKT (Right Panel) Errors
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Note. Subgrad, stochastic subgradient method.

to estimate Lipschitz constants. However, we introduced noise into the computation of the objective gradients for
each application of our stochastic algorithm. In particular, we generated stochastic gradients as g = N'(Vfy, %NI),
where for testing purposes, we considered the three noise levels ey € {107*,1072,107"}. This particular choice for
defining the stochastic gradients ensured that an appropriate value for M, as indicated in Assumption 6 would be
given by M, = {107%,107%,1072}, corresponding to the values for ey.

We set k¥ = 0.1 for STSQ0 and x = 1077 for STSQO_exact. All of the remaining parameters were set identically:
T1=0=%,=01,1=05 €,=1,000, & =€=1, & =€ =0.01, x, =1, =100, £,=0.9, , =10°%, y=1-10"%,
0 =10*,and g, = 1 for all k € N. For all k € N, we randomly generated a sample point near x;, and then, we estimated
Ly and I'; using finite differences of the objective gradients and constraint Jacobians between x and the sampled
point. These values were used in place of L and I', respectively, in our step size selection. Here, Hy = I for all k € Nin
all runs.

For each test problem, we ran SISQO, SISQO_exact, and Subgrad with five different random seeds. As pre-
viously justified, the iteration budget for Subgrad was set to be twice the total numbers of CG and MINRES
iterations used by SISQO. Also, for Subgrad, we ran the algorithm with the 11 merit parameter values in 7 €
{10°,107%,...,1071°} with step sizes set as aj = m for all k € N, and then, we selected the best iterate over all
of these runs. We computed the feasibility and KKT errors for all algorithms as described in Section 4.4; see
Figure 1.

From Figure 1, one finds that STSQO performs better than SISQO_exact and Subgrad in terms of both feasibil-
ity and KKT errors. SISQO achieves smaller errors for smaller noise levels, which may be expected because of the
fact that these experiments are run with constant {8, }.

4.6. Results on Optimal Control Problems

In our second set of experiments, we considered two optimal control problems motivated by those in Hintermdiller
etal. (2003). In particular, we modified the problems to have equality constraints only and finite sum objective func-
tions. Specifically, given a domain E € R?, a constant N € N.,, reference functions w; € L?(E) and Zjj € L2(E) for
(i,7))€{1,...,N} x{1,...,N}, and a regularization parameter A € R, we first considered the problem

1 EXE . A - o -
min ﬁ; ]Zl: (§||w — Wil + EHZ - Zij||L2(5)> st.—Aw=zin E and w =0 on J=Z. (43)
Second, with the same notation but z;; € L%(9Z), we also considered
1T RN 1 0 A o o Jw _
1}3,1? ﬁ; ]Zl: (EHw = Wijll2z) + E”Z — Zij||L2(aE)> s.t. —Aw+w=0in & and B_p =z ondg, (44)

where p represents the unit outer normal to E along dZ. As reference functions for both problems, we chose z;=0
and w;(x1,x2) = sin((4+ e (i—2H))x1)+cos((3 + (j—N2))x) for all (i,j)e{l,...,N}x{1,...,N} for some
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Table 1. Numerical Results for Problems (43) and (44) Averaged over 10 Independent Runs

Problem (43) Problem (44)
Feasibility Feasibility

Strategy EN error KKT error C + M iter. (iter.) error KKT error C + M iter. (iter.)
SISQO 107* 6.30 x 1077 2.08x107° 61,225.8 (6) 7.96 x 1077 7.72x107° 96,684.4 (9)
SISQO_exact 1074 590x 1077 1.76 x 10° 61,225.8 (6) 391x10°° 829 x 1071 96,684.4 (8)
Subgrad 1074 498 x 10! 498 x 10! 0 (61,225.8) 1.00 x 10*2 1.00 x 10*2 0 (96,684.4)
SISQO 1072 6.37 %1077 210x107* 60,113 (6) 7.80x 1077 1.86 x 107 96,103.4 (9)
SISQO_exact 1072 5.82x1077 1.76 x 10° 60,113 (6) 1.44%x10°° 829 x 107! 96,103.4 (8.8)
Subgrad 1072 498 x 10! 498 x10! 0 (60,113) 1.00 x 10*2 1.00 x 10*2 0 (96,103.4)
SISQO 107! 6.81x1077 2.09x 1072 58,901.2 (6) 8.12x 1077 1.68 x 1072 96,914.6 (9.2)
SISQO_exact 1071 5.85x1077 1.76 x 10° 58,901.2 (6) 1.33x107° 829x 1071 96,914.6 (8.8)
Subgrad 107! 4.98 x 10! 498 x 10! 0 (58,901.2) 1.00 x 10*2 1.00 x 10*2 0 (96,914.6)

Note. C + M iter., CG and MINRES iteration; iter., iteration; Subgrad, stochastic subgradient method.

(€s,€n) € Rog X R5o. We selected the following values for the constants: N =3, A = 107°, €5 =50, and ey € {1074,
102,107 '}. Because the objective functions of (43) and (44) are finite sums, to generate stochastic gradients as unbi-
ased estimates of the true gradient, we first uniformly generated random (7,j) € {1,...,N} X {1,...,N}, and then, we
computed the gradient corresponding to the (7,/)th term in the objective function. We note that with the choice of
parameters, it follows that an appropriate value for M, in Assumption 6 is given by M, ~ {10~%,107*,10 %} to corre-
spond, respectively, to the values for ey.

Because the optimal control problems have a quadratic objective function and linear constraints, we used the
exact second derivative matrix Hy = diag(l,AI) for all k € N. For this choice, the curvature condition on Hj in
Assumption 2 is trivially satisfied.

In terms of algorithm parameters, we set x = 10* for STSQ0 and x = 1077 for STSQO_exact. All of the remain-
ing parameters were set identically for the two variants in the same manner as in the previous section with the fol-
lowing exceptions: T_1 = 10_4, L =1, and I' = 0, where the latter choice is valid because the objectives are quadratic
and the constraints are linear.

For each of the two optimal control problems in (43) and (44), we ran SISQO, SISQO_exact, and Subgrad with
five different random seeds, and then, we computed their average feasibility and KKT errors as described in Section
4.4. We observed that {1} was constant in all runs of STSQO0 and SISQO_exact. Therefore, we ran Subgrad with
only three merit parameter values, namely 7 € {107%,10~*,10~%}, and we choose step sizes as a; < —orforallk e N.
(In these experiments, the budget for Subgrad iterations was set to the total numbers of CG and MINRES iterations
used by SISQO because the constraint function evaluations, required in each iteration of Subgrad, are as expensive
computationally as each CG and MINRES iteration.) In Table 1, we report average feasibility and KKT errors as
well as the average number of iterations performed by Algorithm 1 before termination (“iter.”) and the number of
CG and MINRES iterations (“C + M iter.”), with the latter discussed in Section 4.1. The results are given in Table 1.
One can observe that STSQO performs better than the others in terms of average feasibility and KKT errors.

5. Conclusion

We have proposed, analyzed, and tested an inexact stochastic SQP algorithm for solving stochastic optimization
problems involving deterministic, smooth, nonlinear equality constraints. We proved a convergence guarantee (in
expectation) for our algorithm that is comparable with that proved for the exact stochastic SQP method recently pre-
sented by Berahas et al. (2021), which in turn, is comparable with that known for the stochastic gradient in uncon-
strained settings (Bottou et al. 2018). Our MATLAB implementation, STSQO, illustrated the benefits of allowing
inexact step computation for solving problems from the CUTEst set (Gould et al. 2015) and two optimal control
problems.
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