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Abstract. A stochastic algorithm is proposed, analyzed, and tested experimentally for 
solving continuous optimization problems with nonlinear equality constraints. It is 
assumed that constraint function and derivative values can be computed but that only 
stochastic approximations are available for the objective function and its derivatives. 
The algorithm is of the sequential quadratic optimization variety. Distinguishing fea-
tures of the algorithm are that it only employs stochastic objective gradient estimates 
that satisfy a relatively weak set of assumptions (while using neither objective function 
values nor estimates of them) and that it allows inexact subproblem solutions to be 
employed, the latter of which is particularly useful in large-scale settings when the 
matrices defining the subproblems are too large to form and/or factorize. Conditions 
are imposed on the inexact subproblem solutions that account for the fact that only sto-
chastic objective gradient estimates are employed. Convergence results are established 
for the method. Numerical experiments show that the proposed method vastly outper-
forms a stochastic subgradient method and can outperform an alternative sequential 
quadratic programming algorithm that employs highly accurate subproblem solutions 
in every iteration.

Funding: This material is based upon work supported by the National Science Foundation [Awards 
CCF-1740796 and CCF-2139735] and the Office of Naval Research [Award N00014-21-1-2532]. 

Keywords: nonlinear optimization • stochastic optimization • sequential quadratic optimization • inexact subproblem solves •
iterative linear algebra techniques

1. Introduction
We propose, analyze, and present experimental results with a stochastic inexact sequential quadratic optimization 
(SISQO) algorithm for minimizing an objective function subject to (s.t.) nonlinear equality constraints. Specifically, 
our algorithm is designed to solve problems of the form

min
x∈Rn

f (x) s:t: c(x) � 0, with f (x) � Eω[F(x,ω)], (1) 

where f : Rn→ R and c : Rn→ Rm are continuously differentiable, ω�is a random variable with probability space 
(Ω,F , P), F : Rn ×Ω→ R, and Eω[·] represents expectation taken with respect to the distribution of ω. Problems of 
this type arise in numerous important application areas. A partial list is the following: (i) learning a deep convolu-
tional neural network for image recognition that imposes properties (e.g., smoothness) of the systems of partial dif-
ferential equations (PDEs) that the convolutional layers are meant to interpret (Ruthotto and Haber 2020); (ii) 
multiple deep learning problems (see Márquez-Neila et al. 2017), including physics-constrained deep learning for 
high-dimensional surrogate modeling and uncertainty quantification without labeled data (Zhu et al. 2019), natural 
language processing with constraints on output labels (Nandwani et al. 2019), image classification, detection, and 
localization (Ravi et al. 2019), deep reinforcement learning (Achiam et al. 2017), deep network compression (Chen 
et al. 2018), and manifold-regularized deep learning (Tomar and Rose 2014, Kumar Roy et al. 2018); (iii) accelerating 
the solution of PDE-constrained inverse problems by using a reduced-order model in place of a full-order model 
coupled with techniques to learn the discrepancy between the reduced- and full-order models (Sheriffdeen et al. 
2019); (iv) multistage modeling (Shapiro et al. 2014); (v) portfolio selection (Shapiro et al. 2014); (vi) optimal power 
flow (Summers et al. 2015); and (vii) statistical problems, such as maximum likelihood estimation with constraints 
(Geyer 1991, Chatterjee et al. 2016).
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Popular algorithmic approaches for solving problems of the form (1) when objective function and derivative 
values can be computed deterministically include penalty methods (Courant 1943, Fletcher 2000) and sequential qua-
dratic optimization (SQO) methods (Wilson 1963, Powell 1978b). Penalty methods, which include popular strate-
gies such as the augmented Lagrangian method and its variants, handle the constraints indirectly by adding a 
measure of constraint violation to the objective function, perhaps aided by information related to Lagrange multi-
plier estimates. The resulting unconstrained optimization problem, which can be nonsmooth depending on the 
choice of the constraint violation measure, may be solved using a host of methods, such as line search, trust region, 
cubic regularization, subgradient (Shor 2012), or proximal methods (Rockafellar 1976), where the appropriateness 
of the method depends on whether the constraint violation measure is smooth or nonsmooth. It is often the case 
that a sequence of such unconstrained problems needs to be solved to obtain appropriate Lagrange multiplier esti-
mates and/or to identify an adequate weighting between the original objective f and the measure of constraint vio-
lation so that the original constrained problem can be solved to reasonable accuracy.

SQO methods, on the other hand, handle the constraints directly by employing local derivative-based approx-
imations of the nonlinear constraints in explicit affine constraints in the subproblems employed to compute 
search directions; see, for example, Gill et al. (2002). For example, so-called line-search-SQO methods are consid-
ered state of the art for solving equality constrained optimization problems (Han 1977, Powell 1978a, Han and 
Mangasarian 1979). During each iteration of such a line-search-SQO method, a symmetric indefinite linear sys-
tem of equations is solved, followed by a line search on an appropriate merit function to compute the next iter-
ate. Here, the linear system is derived from applying Newton’s method to the stationarity conditions for the 
nonlinear problem, and for this reason in the setting of equality constrained optimization, SQO methods are 
often referred to as Newton or Newton–SQO methods. For solving large-scale problems, factorizing the matrix 
in this linear system may be prohibitively expensive, in which case it may be preferable instead to apply an itera-
tive linear system solver, such as minimum residual (MINRES) (Paige and Saunders 1975). This, in turn, opens 
the door to employing inexact subproblem solutions that may offer a better balance between per-iteration and 
overall computational costs of the algorithm for solving the original nonlinear problem. Identifying appropriate 
inexactness conditions that ensure that each search direction is sufficiently accurate so that the SQO algorithm is 
well posed and converges to a solution under reasonable assumptions is a challenging task with relatively few 
solutions in the literature (Heinkenschloss and Vicente 2002; Biros and Ghattas 2003; Byrd et al. 2008, 2010; Hein-
kenschloss and Ridzal 2008).

The success of SQO methods in the deterministic setting motivates us to study their extensions to the stochastic 
setting, which is a very challenging task. We are aware of only a few papers (e.g., Berahas et al. 2021, 2023; Na et al. 
2023) that present stochastic algorithms for solving optimization problems with nonlinear equality constraints that 
offer convergence guarantees with respect to solving the constrained problem (rather than, say, merely a minimizer 
of a penalty function derived from the constrained problem). The algorithm by Na et al. (2023) is a line-search 
method that uses a differentiable exact augmented Lagrangian function as its merit function, whereas Berahas et al. 
(2021) (respectively, Berahas et al. 2023) propose an SQO method that uses an ℓ1-norm (respectively, ℓ2-norm) pen-
alty function as its merit function. A similar algorithm but for a different setting is that by Oztoprak et al. (2023), 
which considers the setting in which only noisy objective and constrained values are accessible. All of these meth-
ods must factorize a matrix during each iteration, which may not be tractable when solving large-scale problems. 
This motivates us to extend the method in Berahas et al. (2021) to allow for using inexact subproblem solutions. 
Recently, Curtis et al. (2024) analyzed the worst-case complexity of the method by Berahas et al. (2021); this work 
makes it clear that such an analysis for constrained optimization is highly nontrivial.

1.1. Contributions
The contributions of this paper pertain to a new algorithm for solving Problem (1). (i) We design an SISQO method 
for solving (1) that is built upon a set of conditions that determine what constitutes an acceptable inexact subprob-
lem solution along with an adaptive step size selection policy. The algorithm employs an ℓ2-norm merit function, 
the parameter of which is updated dynamically by a procedure that has been designed with considerable care 
because it is this parameter that balances the emphasis between the objective function and the constraint violation 
during the optimization. (ii) Under mild assumptions (that we justify) that include good behavior of the adaptive 
merit parameter, we prove convergence guarantees for our algorithm. (iii) We present numerical results that com-
pare our SISQO algorithm with a stochastic “exact” SQO algorithm and a stochastic subgradient method that show 
that our algorithm can outperform alternative techniques. In particular, we show that when all algorithms are given 
equal computational budgets, SISQO finds points with lower feasibility and Karush–Kuhn–Tucker (KKT) stationar-
ity errors.
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1.2. Notation
Let R denote the set of real numbers, R≥p (respectively, R>p) denote the set of real numbers greater than or equal to 
(respectively, strictly greater than) p ∈ R, and N :� {0, 1, 2, : : : } denote the set of natural numbers. Let Rn denote the 
set of n-dimensional real vectors, Rm×n denote the set of m- by n-dimensional real matrices, and Sn denote the set of 
n- by n-dimensional symmetric real matrices. For any p ∈ N \ {0}, let [p] :� {1, : : : , p}. The ℓ2-norm is written simply 
as ‖ · ‖.

Any run of our algorithm generates a sequence of iterates {xk}, where xk ∈ Rn for all k ∈ N. For all k ∈ N, we 
append the subscript k to other quantities defined with respect to the kth iteration, and for brevity, we define 
∇fk :� ∇f (xk), ck :� c(xk), and ∇ck � ∇c(xk). We refer to the range space of ∇ck as Range(∇ck) and refer to the null 
space of ∇cT

k as Null(∇cT
k ). The fundamental theorem of linear algebra provides that these spaces are orthogonal 

and Range(∇ck) +Null(∇cT
k ) � R

n. Finally, recall (see, e.g., Nocedal and Wright 2006) that a primal point x ∈ Rn 

and a dual point y ∈ Rm constitute a first-order stationary point for Problem (1) if and only if c(x) � 0 and 
∇f (x) + ∇c(x)y � 0. These conditions are necessary for x to be a local minimizer when the constraint functions sat-
isfy a constraint qualification as is assumed in the paper; see Assumption 1.

1.3. Organization
Our algorithm is presented in Section 2, with a convergence analysis in Section 3. The results of numerical experi-
ments are presented in Section 4, and concluding remarks are presented in Section 5.

2. SISQO Algorithm
A run of our proposed SISQO algorithm generates a sequence

{(xk, yk, gk, vk, uk, dk, δk,ρk, rk, τtrial
k , τk, ξtrial

k , ξk,αk, min,αk, max,αk)}, (2) 

where for all k ∈ N, (xk, yk) ∈ Rn × Rm is a primal-dual iterate pair; gk ∈ Rn is a stochastic gradient estimate; vk ∈ Rn is 
a normal primal direction that aims to reduced infeasibility by reducing a local derivative-based model of the 
ℓ2-norm constraint violation measure; uk ∈ Rn is a tangential primal direction that aims to maintain the reduction in 
linearized infeasibility achieved by the normal primal direction while also aiming to reduce the objective by reduc-
ing a stochastic gradient-based quadratic approximation of the objective; dk :� vk + uk ∈ Rn is a full primal direction; 
δk ∈ Rm is a dual direction; (ρk, rk) ∈ Rn × Rm is a primal-dual linear system residual pair; (τtrial

k ,τk) ∈ R>0 ∪ {∞} ×

R>0 is a pair of trial and employed merit parameter values; (ξtrial
k ,ξk) ∈ R>0 × R>0 is a pair of trial and employed ratio 

parameter values; and (αk, min,αk, max,αk) ∈ R>0 × R>0 × R>0 is a tuple of minimum, maximum, and employed step 
size values, the last of which aims to produce a subsequent iterate xk+1← xk + αkdk yielding sufficient reduction in 
the ℓ2-norm merit function. We present our algorithm in the context of the generation of a realization of the 
sequence (2), although our analysis ultimately considers the stochastic process defined by the algorithm, namely

{(Xk, Yk, Gk, Vk, Uk, Dk,Dk,Rk, Rk,T trial
k ,T k,Ξtrial

k ,Ξk,Ak, min,Ak, max,Ak)}, (3) 

of which (2) is a realization. In the rest of this section, we present our algorithm in the context of the generation of a 
realization (2) toward our complete statement of Algorithm 1.

For the remainder of the paper, we make the following assumption.

Assumption 1. Let X ⊆ Rn be an open convex set containing {xk} generated by every run of Algorithm 1. The objective f :
Rn→ R is continuously differentiable and bounded below over X , and its gradient ∇f : Rn→ Rn is Lipschitz continuous 
with constant L ∈ R>0 (with respect to the ℓ2-norm) and bounded over X . The constraint c : Rn→ Rm (with m ≤ n) is con-
tinuously differentiable and bounded over X , and its Jacobian ∇c(·)T : Rn→ Rm×n is Lipschitz continuous with constant 
Γ ∈ R>0 (with respect to the vector-induced ℓ2-norm) and bounded over X . In addition, for all x ∈ X , the singular values of 
∇c(x)T are bounded uniformly below by a positive real number.

The elements of this assumption are standard in the continuous constrained optimization literature. Note that it 
does not include an assumption that X is bounded. One could relax the assumption to say that X contains {Xk}

almost surely, but because such a relaxation would only make it necessary to remark constantly on the probability- 
zero event that {Xk}⊄X without adding much value to our ultimate results, we employ Assumption 1 as it is 
stated.

2.1. Merit Function
Motivated by the success of numerous line-search-SQO methods for solving deterministic equality constrained 
optimization problems, our algorithm employs an exact penalty function as a merit function; in particular, it 
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employs the ℓ2-norm merit function φ : Rn × R>0→ R defined by φ(x,τ) � τf (x) + ‖c(x)‖, where τ�is a positive merit 
parameter that is updated adaptively. (The choice of the ℓ2-norm in φ�is not essential. Another norm could be used. 
The choice of the ℓ2-norm merely makes certain calculations simpler for our presentation and analysis.) A model l :
Rn × R>0 × Rn × Rn→ R of the merit function based on g ≈ ∇f (x) and ∇c(x) is l(x,τ, g, d) � τ(f (x) + gTd) + ‖c(x) +
∇c(x)Td‖, with which we define the model reduction function ∆l : Rn × R>0 × Rn × Rn→ R by

∆l(x,τ, g, d) � l(x,τ, g, 0)� l(x,τ, g, d) ��τgTd+ ‖c(x)‖� ‖c(x) + ∇c(x)Td‖: (4) 

The merit and model reduction functions play critical roles in our inexactness conditions.

2.2. Computing a Search Direction
During the kth iteration, the algorithm computes a normal direction vk ∈ Range(∇ck) based on

min
v∈Range(∇ck)

1

2
‖ck +∇cT

k v‖2: (5) 

Instead of solving (5) exactly, the algorithm allows for an inexact solution to be employed by only requiring the 
computation of vk ∈ Range(∇ck) satisfying the Cauchy decrease condition

‖ck‖� ‖ck +∇cT
k vk‖ ≥ ɛc(‖ck‖� ‖ck + α

c
k∇cT

k vc
k‖), (6) 

where ɛc ∈ (0, 1] is user defined. In (6), vc
k :��∇ckck is the negative-gradient direction for the objective of (5) at v � 0, 

and αc
k is the step size along vc

k that minimizes ‖ck + α∇cT
k vc

k‖ over α ∈ R. If ck ≠ 0, then under Assumption 1, it fol-
lows that ∇ckck ≠ 0,

αc
k � ‖∇ckck‖

2=‖∇cT
k∇ckck‖

2 > 0, αc
kvc

k ≠ 0, and ‖ck‖� ‖ck + α
c
k∇cT

k vc
k‖ > 0; (7) 

otherwise, if ck � 0, then ∇ckck � 0, and vk � 0 is the unique solution to (5). Popular choices for computing a normal 
direction satisfying the aforementioned conditions include Krylov subspace methods, such as the linear conjugate 
gradient (CG) method; see, for example, Nocedal and Wright (2006).

For describing the tangential direction computation, let us first describe what would be the computation in a 
deterministic variant of our approach. Given (xk, yk), ∇fk, vk ∈ Range(∇ck), and Hk ∈ Sn satisfying Assumption 2, con-
sider the quadratic optimization subproblem

min
u∈Rn
(∇fk +Hkvk)

Tu+
1

2
uTHku s:t: ∇cT

k u � 0, (8) 

which has the unique solution utrue
k ∈Null(∇cT

k ) that satisfies, for some δtrue
k ∈ Rm,

Hk ∇ck

∇cT
k 0

� �

utrue
k

δtrue
k

� �

��
∇fk +Hkvk +∇ckyk

0

� �

: (9) 

We make the following assumption pertaining to {Hk} throughout the paper.

Assumption 2. There exists ζ ∈ R>0 and κH ∈ R>ζ�such that for all k ∈ N in any run of the algorithm, ‖Hk‖ ≤ κH and 
uTHku ≥ ζ‖u‖2 for all u ∈Null(∇cT

k ).

The introduction of (8) and (9) allows us to define, for the purposes of our analysis only (i.e., not for actual com-
putation), the true and exact primal-dual search direction conditioned on the behavior of the algorithm up to the kth 
iteration as (dtrue

k ,δtrue
k ), where dtrue

k :� vk + utrue
k

. Because our algorithm only presumes access to a stochastic gradient 
estimate gk of ∇fk, the corresponding exact, but not true, primal-dual search direction is (dk, ∗,δk, ∗), where dk, ∗ :�
vk + uk, ∗ with (uk, ∗,δk, ∗) satisfying

Hk ∇ck

∇cT
k 0

� �

uk, ∗

δk, ∗

� �

��

gk +Hkvk +∇ckyk

0

� �

: (10) 

(For the description of our algorithm and our initial analysis, it suffices that gk ∈ Rn. Our ultimate required assump-
tion about the stochastic gradient estimators is Assumption 6.)

Our algorithm, to avoid having to form or factorize the matrix in (10), computes a tangential direction by com-
puting (uk,δk) through iterative linear algebra techniques applied to the symmetric indefinite system (10). In 
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particular, our algorithm computes (uk,δk) such that the full primal search direction dk :� vk + uk, dual direction 
δk, and residual

ρk

rk

� �

:�
Hk ∇ck

∇cT
k 0

� �

uk

δk

� �

+
gk +Hkvk +∇ckyk

0

� �

(11) 

satisfy at least one of two sets of conditions. Next, we describe these conditions that the algorithm employs to deter-
mine what constitutes an acceptable search direction and corresponding residuals.

In the deterministic setting, line-search-SQO methods commonly combine the search direction with an updating 
strategy for the merit parameter in a manner that ensures that the computed direction is one of sufficient descent 
for the merit function. The required descent condition is guaranteed to be satisfied by choosing the merit parameter 
to be sufficiently small so that the reduction in a model of the merit function (recall (4)) is sufficiently large; see, for 
example, Byrd et al. (2008, lemma 3.1). Following such an approach, our algorithm requires that (uk,δk) (yielding 
dk :� vk + uk) be computed and τ�be set such that the model reduction condition

∆l(xk,τ, gk, vk + uk) ≥ σuτ max{uT
k Hkuk,ɛu‖uk‖

2} + σc(‖ck‖� ‖ck +∇cT
k vk‖) (12) 

holds for some user-defined σu ∈ (0, 1), ɛu ∈ (0,ζ) (see Assumption 2), and σc ∈ (0, 1). The value for τ�for which (12) 
is required to hold depends on one of two different situations as described next.

Condition (12) plays a central role in the conditions that we require (uk,δk) to satisfy. We define these in the con-
text of termination tests (TTs) because they dictate conditions that once satisfied, can cause termination of an iterative 
linear system solver applied to (10). (The tests are inspired by the sufficient merit approximation reduction termination 
tests developed in Byrd et al. (2008, 2010) and Curtis et al. (2009) for a deterministic SQO method.) Our first termina-
tion test states that an inexact solution is acceptable if (12) is satisfied with the current merit parameter value (i.e., 
τ ≡ τk← τk�1), the norms of the residuals satisfy certain upper bounds, and either the tangential direction is suffi-
ciently small in norm compared with the normal direction or the tangential direction is one of sufficiently positive 
curvature for Hk and yields a sufficiently small objective value for (8) (with gk in place of ∇fk). The test makes use of 
a sequence {βk} that will also play a critical role in our step size selection scheme that is described in the next 
subsection.

2.2.1. Termination Test 1. Given κ ∈ (0, 1), βk ∈ (0, 1], κρ ∈ R>0, κr ∈ R>0, κu ∈ R>0, ɛu ∈ (0,ζ), κv ∈ R>0, σu ∈ (0, 1), 
σc ∈ (0, 1), and vk ∈ Range(∇ck) computed to satisfy (6), the pair (uk,δk) satisfies TT1 if with the pair (ρk, rk) defined 
in (11), it holds that

‖ρk‖ ≤ κ min

�

�

�

�

�

�

�

�

�

�

gk +∇ck(yk + δk)

ck

� �

�

�

�

�

�

�

�

�

�

�

,

�

�

�

�

�

�

�

�

�

�

gk�1 +∇ck�1yk

ck�1

� �

�

�

�

�

�

�

�

�

�

�

( )

; (13) 

‖ρk‖ ≤ κρβk and ‖rk‖ ≤ κrβk; (14) 

‖uk‖ ≤ κu‖vk‖ or
uT

k Hkuk ≥ ɛu‖uk‖
2 and

(gk +Hkvk)
Tuk +

1

2
uT

k Hkuk ≤ κv‖vk‖

8

<

:

9

=

;

, (15) 

and (12) is satisfied with τ ≡ τk�1. (In this case, τk← τk�1, so (12) holds with τ ≡ τk.)
TT1 cannot be enforced in every iteration, even in the deterministic setting, because there may exist points in the 

search space at which all of the conditions required cannot be satisfied simultaneously, even if the linear system 
(10) is solved accurately. In short, the algorithm needs to allow for the computation of a search direction for which 
(12) can only be satisfied with a decrease of the merit parameter. That said, the algorithm needs to be careful in 
terms of the situations in which such a decrease is allowed, or else, the merit parameter sequence may behave in a 
manner that ruins a convergence guarantee for solving the original constrained optimization problem. For our algo-
rithm, we employ the following termination test for this situation.

2.2.2. Termination Test 2. Given κ ∈ (0, 1), βk ∈ (0, 1], κρ ∈ R>0, κr ∈ R>0, κu ∈ R>0, ɛu ∈ (0,ζ), κv ∈ R>0, σc ∈ (0, 1), 
ɛr ∈ (σc, 1), and vk ∈ Range(∇ck) computed to satisfy (6), the pair (uk,δk) satisfies Termination Test 2 if with the pair 
(ρk, rk) defined in (11), (13)–(15) and

‖ck‖� ‖ck +∇cT
k vk + rk‖ ≥ ɛr(‖ck‖� ‖ck +∇cT

k vk‖) > 0 (16) 

Curtis, Robinson, and Zhou: Stochastic Inexact Sequential Quadratic Optimization 
INFORMS Journal on Optimization, Articles in Advance, pp. 1–23, © 2024 INFORMS 5 

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

9
8
.7

.2
0
9
.7

] 
o
n
 2

4
 M

ay
 2

0
2
4
, 
at

 0
9
:4

0
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



hold. (In this case, for user-defined ɛτ ∈ (0, 1), the algorithm will set

τk←
τk�1 if τk�1 ≤ τ

trial
k

min{(1� ɛτ)τk�1,τtrial
k } otherwise,

(

(17) 

where τtrial
k ←

∞ if gT
k dk +max{uT

k Hkuk,ɛu‖uk‖
2} ≤ 0

1� σc

ɛr

� �

(‖ck‖� ‖ck +∇cT
k vk + rk‖)

gT
k dk +max{uT

k Hkuk,ɛu‖uk‖
2}

otherwise,

8

>

>

<

>

>

:

(18) 

so (12) is satisfied with τ ≡ τk. See Lemma 3 for a proof.)
In Lemma 1, we show under a loose assumption about the iterative linear system solver that for all k ∈ N, the 

algorithm can compute a pair (uk,δk) satisfying at least one of TT1 or TT2. Therefore, the index of each iteration of 
each realization of our method is contained in one of two index sets:

K1 :� {k ∈ N : (uk,δk) satisfies TT1} or K2 :� {k ∈ N : (uk,δk) satisfies TT2, but not TT1}:

It is worthwhile to emphasize that in terms of the stochastic process defined by the algorithm, the index sets K1 and 
K2 are random (i.e., they may contain different indices in different runs). This randomness is handled as part of our 
convergence analysis.

2.3. Computing a Step Size
Upon computation of dk← vk + uk, our algorithm computes a positive step size αk to set xk+1. Given positive 
Lipschitz constants L and Γ�(recall Assumption 1), it follows for all α ∈ R>0 that

f (xk +αdk) ≤ fk +α∇f T
k dk +

1

2
Lα2‖dk‖

2 and ‖c(xk + αdk)‖ ≤ ‖ck + α∇cT
k dk‖ +

1

2
Γα2‖dk‖

2: (19) 

Combining these with (4) yields

φ(xk + αdk, τk)� φ(xk, τk) � τk f (xk + αdk)� τk fk + ‖c(xk + αdk)‖� ‖ck‖

≤ ατk∇f T
k dk + (|1 � α | � 1)‖ck‖ + α‖ck + ∇cT

k dk‖ +
1

2
(τkL + Γ)α2‖dk‖

2

� �α∆l(xk, τk,∇fk, dk) + ( |1 � α | � (1 � α))‖ck‖ +
1

2
(τkL + Γ)α2‖dk‖

2: (20) 

This derivation provides a convex piecewise quadratic upper-bounding function for the change in the merit func-
tion corresponding to a step from xk to xk +αdk. Given user-defined η ∈ (0, 1) and the aforementioned sequence 
{βk} ⊂ (0, 1], our algorithm’s step size selection scheme makes use of

αsuff
k :�min

2(1� η)βk∆l(xk,τk, gk, dk)

(τkL+ Γ)‖dk‖
2

, 1

( )

: (21) 

The definition of αsuff
k can be motivated as follows. Its value, when βk � 1, is the largest in [0, 1] such that for all 

α ∈ [0,αsuff
k ], the right-hand side of (20) (with ∇fk replaced by gk) is less than or equal to �ηα∆l(xk,τk, gk, dk). Such an 

inequality is representative of one enforced in deterministic line-search-SQO methods. Otherwise, with βk ∈ (0, 1]
introduced and not necessarily equal to one, the value of αsuff

k can be diminished during the optimization, which 
allows for step size control as is required for convergence guarantees for certain stochastic gradient-based methods; 
see, for example, Bottou et al. (2018). The first term inside the min appearing in (21) is important for the convergence 
guarantees that we prove for our method, but it can behave erratically because of the algorithm’s use of stochastic 
gradients. To account for this, given user-defined ɛξ ∈ (0, 1), our algorithm defines

ξtrial
k :�

∆l(xk,τk, gk, dk)

τk‖dk‖
2

and ξk :�
ξk�1 if ξk�1 ≤ ξ

trial
k

min{(1� ɛξ)ξk�1,ξtrial
k } otherwise,

(

(22) 

so that ξk ≤ ξ
trial
k � ∆l(xk,τk, gk, dk)=(τk‖dk‖

2) for all k ∈ N. Combining this inequality with (21), the monotonically 
nonincreasing behaviors of {ξk} and {τk}, and assuming that {βk} satisfies

2(1� η)βkξ�1τ�1=Γ ∈ (0, 1] for all k ∈ N, (23) 
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where ξ
�1 and τ

�1 initialize the sequences {ξk} and {τk}, respectively, one finds that

αmin
k :�

2(1� η)βkξkτk

τkL+ Γ
≤ min

2(1� η)βk∆l(xk,τk, gk, dk)

(τkL+ Γ)‖dk‖
2

, 1

( )

≡ αsuff
k : (24) 

The value αmin
k serves as a minimum value (i.e., a lower bound) for our choice of step size. In our analysis, we show 

that the sequence {ξk} is bounded below and away from zero by a positive real number that is common to all runs 
of the algorithm (see Lemma 9).

Next, let us derive a maximum value (i.e., an upper bound) for our algorithm’s choice of step size. If dk � 0, then 
without loss of generality, the algorithm can set αk← αk, min. Otherwise, if dk ≠ 0, consider the strongly convex func-
tion φ : R→ R defined by

φ(α) :� (η� 1)αβk∆l(xk,τk, gk, dk) + ‖ck + α∇cT
k dk‖� ‖ck‖

+ α(‖ck‖� ‖ck +∇cT
k dk‖) +

1

2
(τkL+ Γ)α2‖dk‖

2: (25) 

Notice that when βk � 1, it holds that φ(α) ≤ 0 for all α ∈ R≥0 if and only if the right-hand side of (20) with ∇fk 

replaced by gk is less than or equal to �ηα∆l(xk,τk, gk, dk). Thus, following a similar argument, one can be motivated 
as to the fact that our algorithm never allows a step size larger than α

φ
k :�max{α ∈ R≥0 : φ(α) ≤ 0}. Finally, again to 

mitigate adverse effects caused by the use of stochastic gradients, our algorithm employs the maximum step size

αmax
k :�min{α

φ
k ,αmin

k +θβ2
k}, (26) 

where θ ∈ R≥0 is user defined. Overall, our algorithm allows any step size with αk ∈ [α
min
k ,αmax

k ]. Lemma 4 in our 
analysis shows that this interval is nonempty.

2.4. Updating the Primal-Dual Iterate
In the primal space, our algorithm employs the iterate update xk+1← xk +αkdk. However, in the dual space, it 
allows additional flexibility. For consistency with the deterministic setting (see, e.g., Curtis et al. 2009, equation 
2.19), our algorithm is stated to require yk+1 to satisfy

‖gk +∇ckyk+1‖ ≤ ‖gk +∇ck(yk + δk)‖: (27) 

Clearly, choosing yk+1← yk + δk is one particular option satisfying (27), although other choices, such as least- 
squares multipliers, could also be used.

Algorithm 1 (Stochastic Inexact Sequential Quadratic Optimization (SISQO))
Require: (x0, y0,τ

�1,ξ
�1) ∈ Rn × Rm × R>0 × R>0; (L,Γ) ∈ R>0 × R>0 satisfying Assumption 1; ɛc ∈ (0, 1]; ɛu ∈

(0,ζ); {σu,σc,κ,ɛτ,ɛξ,η} ⊂ (0, 1); {κρ,κr,κu,κv,θ} ⊂ R>0; ɛr ∈ (σc, 1)
1: for all k ∈ N do

2: choose βk ∈ (0, 1] satisfying (23)
3: compute vk ∈ Range(∇ck) satisfying (6)
4: compute gk (see Assumption 6)
5: compute Hk (see Assumption 2 and Assumption 6)
6: compute (uk,δk) satisfying at least one of TT1 or TT2
7: if TT1 is satisfied then

8: set τtrial
k ←∞ and τk← τk�1 . k ∈K1

9: else (TT2 is satisfied)
10: set τtrial

k and τk by (17) and (18) . k ∈K2

11: end if

12: set dk← vk + uk

13: compute ξk and ξtrial
k by (22)

14: choose αk ∈ [α
min
k ,αmax

k ] using the definitions in (24) and (26)
15: set xk+1← xk + αkdk, and choose yk+1 satisfying (27)
16: end for

3. Analysis
Our analysis is presented in three parts. In Section 3.1, we show that Algorithm 1 is well posed, which is followed 
by Section 3.2, in which a set of lemmas is proved that hold for every run of the algorithm. The analysis in 
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Sections 3.1 and 3.2 is written generically in terms of a realization of a run of the algorithm. Then, in Section 3.3, 
we prove convergence properties for the algorithm that are written in terms of the stochastic process defined by 
the algorithm. This analysis focuses on an event that presumes certain behavior of the merit and ratio parameter 
sequences.

3.1. Well-Posedness
Our aim in this subsection is to prove that each procedure in each iteration of every run of Algorithm 1 is performed 
in a manner that terminates finitely under mild assumptions. Along the way, we establish other useful properties. 
In this subsection and the following one, our analysis merely requires for all k ∈ N that gk ∈ Rn and that Hk ∈ Sn satis-
fies Assumption 2.

For the sake of generality, we make the following assumption about the iterative linear system solver employed 
in line 6 of Algorithm 1, which merely requires that the residual of the linear system solve vanishes asymptotically 
over any run of the solver. We emphasize, however, that there exist approaches, such as MINRES (Paige and Saun-
ders 1975), that guarantee that an exact solution—which would satisfy our termination tests—can be computed in a 
number of linear system solver iterations that is bounded uniformly for all linear systems arising throughout any 
realization of the algorithm. However, we merely make the following assumption because it is all that is required 
by our analysis, and it offers more flexibility in the choice of linear system solver.

Assumption 3. For all k ∈ N in any run, the iterative linear system solver employed in line 7 of Algorithm 1 to compute 
(uk,δk) generates a sequence

{(uk, t,δk, t,ρk, t, rk, t)}t∈N with
ρk, t

rk, t

� �

�
Hk ∇ck

∇cT
k 0

� �

uk, t

δk, t

� �

+
gk +Hkvk +∇ckyk

0

� �

for all t ∈ N (28) 

such that limt→∞‖(uk, t,δk, t,ρk, t, rk, t)� (uk, ∗,δk, ∗, 0, 0)‖ � 0, where (uk, ∗,δk, ∗) uniquely solves (10).

We also make the following assumption concerning the algorithm iterates and corresponding stochastic gradient 
estimates computed in each iteration.

Assumption 4. For all k ∈ N in any run, it holds that ck ≠ 0 or gk ∉ Range(∇ck).

We justify Assumption 4 in the following manner. In the deterministic setting, the algorithm encounters a point 
xk such that ck � 0 and ∇fk ∈ Range(∇ck) if and only if there exists yk such that (xk, yk) is first-order stationary for 
Problem (1). In such a scenario, it is reasonable to require that an exact solution of (10) is computed or at least that a 
sufficiently accurate solution is computed such that a practical termination condition for (10) is triggered and the 
algorithm terminates. In the stochastic setting, the algorithm encounters ck � 0 and gk ∈ Range(∇ck) if and only if xk 

is exactly feasible and the stochastic gradient lies exactly in the range space of ∇ck. Because gk is a stochastic gradient, 
we contend that it is unlikely that it will lie exactly in Range(∇ck), except in special circumstances. Thus, for simplic-
ity in our analysis, we impose Assumption 4. Note that if Assumption 4 did not hold, then one of the following 
could be employed in a practical implementation. (i) If a sufficiently accurate solution of (10) satisfies neither TT1 
nor TT2, then a new stochastic gradient could be sampled, perhaps following a procedure to ensure that if multiple 
new stochastic gradients are computed, then each is computed with lower variance, or (ii) random (e.g., Gaussian) 
noise could be added to gk for all k ∈ N so that Assumption 4 holds almost surely in all iterations, in which case the 
convergence result that we prove holds almost surely.

We can now show that the search direction computation is well posed. We remark in passing that if one was to 
employ a linear system solver, such as MINRES, that would produce an exact solution of the linear system within a 
uniformly bounded number of iterations, then the arguments in the proof of the following lemma would show that 
the linear system solver computes (uk,δk), satisfying at least one of TT1 or TT2 in a uniformly bounded number of 
iterations.

Lemma 1. For all k ∈ N in any run, the iterative linear system solver computes (uk,δk) satisfying at least one of TT1 or 
TT2 in a finite number of iterations.

Proof. We prove the result by considering two cases. 
Case 1. ck ≠ 0. For this case, we show that (uk,δk) ≡ (uk, t,δk, t) satisfies TT2 for sufficiently large t ∈ N. Let us first 

observe that it follows from Assumption 3, Assumption 4, and βk ∈ (0, 1] that (13) and (14) hold with (ρk, rk) ≡

(ρk, t, rk, t) for all sufficiently large t ∈ N.
Let us now show that (15) holds for all sufficiently large t ∈ N. Because ck ≠ 0, it follows under Assumption 1 that 

vk ≠ 0. If uk, ∗ � 0, then Assumption 3 implies {uk, t}→ uk, ∗ � 0, in which case it follows from κu ∈ R>0 that the former 
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condition in (15) holds with uk ≡ uk, t for all sufficiently large t ∈ N. On the other hand, if uk, ∗ ≠ 0, then (10) and 
Assumption 2 imply

uT
k, ∗(gk +Hkvk) +

1

2
uT

k, ∗Hkuk, ∗ < uT
k, ∗(gk +Hkvk) + uT

k, ∗Hkuk, ∗ ��uT
k, ∗∇ck(yk + δk, ∗) � 0: (29) 

Combining this inequality with ɛu ∈ (0,ζ), κv ∈ R>0, vk ≠ 0, and Assumptions 2 and 3, it follows that the latter set of 
conditions in (15) holds with uk ≡ uk, t for all sufficiently large t ∈ N.

Finally, let us show that (16) holds for all sufficiently large t ∈ N, which combined with the previous conclusions, 
shows that TT2 is satisfied by (uk,δk) ≡ (uk, t,δk, t) for all sufficiently large t ∈ N. By Assumption 3, (6), and vk ≠ 0, it 
follows that limt→∞(‖ck‖� ‖ck +∇cT

k vk + rk, t‖) � ‖ck‖� ‖ck +∇cT
k vk‖ > 0, which shows that (16) holds with rk ≡ rk, t for 

all sufficiently large t ∈ N.
Case 2. ck � 0. For this case, we show that (uk,δk) ≡ (uk, t,δk, t) satisfies TT1 for all sufficiently large t ∈ N. First, 

recall that ck � 0 implies that vk � 0. We also claim that uk, ∗ ≠ 0. To prove this by contradiction, suppose that 
uk, ∗ � 0. Combining this fact with vk � 0 and (10), it follows that gk +∇ck(yk + δk, ∗) � 0, which with ck � 0, violates 
Assumption 4. Thus, uk, ∗ ≠ 0.

Next, notice that the argument used in the beginning of case (1) still applies in this case, which allows us to 
conclude that both (13) and (14) hold with (ρk, rk) � (ρk, t, rk, t) for all sufficiently large t ∈ N. Combining (29) with 
Assumptions 2 and 3 and ɛu ∈ (0,ζ) allows us to deduce that the second set of conditions in (15) holds with uk ≡

uk, t for all sufficiently large t ∈ N. Next, from the fact that vk � 0 and (10), it follows that ∇cT
k dk, ∗ � ∇cT

k (uk, ∗ + vk)

� 0, which with Assumption 2 and ɛu ∈ (0,ζ), gives uT
k, ∗Hkuk, ∗ ≥ ζ‖uk, ∗‖

2 > ɛu‖uk, ∗‖
2, from which we deduce that 

max{uT
k, ∗Hkuk, ∗,ɛu‖uk, ∗‖

2} � uT
k, ∗Hkuk, ∗ ≥ ζ‖uk, ∗‖

2 > 0. Combining this inequality with ck � 0, vk � 0, ∇cT
k dk, ∗ � ∇cT

k vk 

� 0, (10), and Assumption 2 shows that

∆l(xk,τk�1, gk, dk, ∗) ��τk�1gT
k dk, ∗ + ‖ck‖� ‖ck +∇cT

k dk, ∗‖ ��τk�1gT
k uk, ∗

� � τk�1(�Hkuk, ∗ �Hkvk �∇ck(yk + δk, ∗))
Tuk, ∗ � τk�1uT

k, ∗Hkuk, ∗

>σuτk�1 max{uT
k, ∗Hkuk, ∗,ɛu‖uk, ∗‖

2} + σc(‖ck‖� ‖ck +∇cT
k vk‖) > 0, 

meaning that (12) holds with τ ≡ τk�1 for all sufficiently large t ∈ N. In summary, we have shown that for all suffi-
ciently large t ∈ N, the pair (uk,δk) ≡ (uk, t,δk, t) satisfies TT1. w

Next, we prove that every full primal direction is nonzero.

Lemma 2. For all k ∈ N in any run, it holds that dk ≠ 0.

Proof. By contradiction, suppose that dk � 0. From this fact, dk � vk + uk, and (11), it follows that ρk � gk +∇ck(yk 

+ δk) +Hk(vk + uk) � gk +∇ck(yk + δk). If ck � 0, then this shows that the inequality in (13) cannot hold, meaning 
that (uk,δk) satisfies neither TT1 nor TT2, which contradicts Lemma 1. Hence, the only possibility is that ck ≠ 0, 
which we assume for the rest of the proof.

Notice that from dk � 0, dk � vk + uk, and rk � ∇cT
k uk, it follows that ‖ck‖� ‖ck +∇cT

k vk + rk‖ � ‖ck‖� ‖ck +∇cT
k dk‖

� 0, meaning that (16) is not satisfied; thus, (uk,δk) does not satisfy TT2. Also, observe from vk ≠ 0 (which follows 
from ck ≠ 0 and Assumption 1), dk � 0, and (6) that ∆l(xk,τk�1, gk, dk) � 0 < σuτk�1 max{uT

k Hkuk,ɛu‖uk‖
2} + σc(‖ck‖

� ‖ck +∇cT
k vk‖), meaning that (12) is not satisfied with τ � τk�1; thus, (uk,δk) does not satisfy TT1. Overall, we 

have reached a contradiction to Lemma 1, and because we have reached a contradiction in all cases, the original 
supposition that dk � 0 cannot be true. w

We now show that our update strategy for the merit parameter ensures that the model reduction condition (12) 
always holds for τ ≡ τk. We also show another important property of {τk}.

Lemma 3. For all k ∈ N in any run, the inequality in (12) holds with τ ≡ τk. In addition, for all k ∈ N such that τk+1 < τk, 
it holds that τk+1 ≤ (1� ɛτ)τk.

Proof. The desired conclusion follows for k ∈K1 because of the manner in which TT1 is defined and the fact that 
the algorithm sets τk← τk�1 for all k ∈ K1. Hence, let us proceed under the assumption that k ∈K2. The inequality 
in (12) holds for τ ≡ τk with dk � vk + uk if and only if

τk(g
T
k dk + σu max{uT

k Hkuk,ɛu‖uk‖
2}) ≤ ‖ck‖� ‖ck +∇cT

k dk‖� σc(‖ck‖� ‖ck +∇cT
k vk‖):

We now proceed to show that this inequality holds by considering two cases. 
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Case 1. gT
k dk +max{uT

k Hkuk,ɛu‖uk‖
2} ≤ 0. In this case, the algorithm sets τk← τk�1. Combining this with (16), 

∇cT
k uk � rk, and ɛr ∈ (σc, 1) yields

τk(g
T
k dk + σumax{uT

k Hkuk,ɛu‖uk‖
2}) ≤ τk(g

T
k dk +max{uT

k Hkuk,ɛu‖uk‖
2}) ≤ 0

≤ ‖ck‖� ‖ck +∇cT
k dk‖� ɛr(‖ck‖� ‖ck +∇cT

k vk‖)

< ‖ck‖� ‖ck +∇cT
k dk‖� σc(‖ck‖� ‖ck +∇cT

k vk‖), 

which establishes the desired inequality.

Case 2. gT
k dk +max{uT

k Hkuk,ɛu‖uk‖
2} > 0. The update (17) yields τk ≤ τ

trial
k , which combined with (16), (18), 

∇cT
k uk � rk, and ɛr ∈ (σc, 1) yields

τk(g
T
k dk + σumax{uT

k Hkuk,ɛu‖uk‖
2}) ≤ τk(g

T
k dk +max{uT

k Hkuk,ɛu‖uk‖
2})

≤ 1�
σc

ɛr

� �

(‖ck‖� ‖ck +∇cT
k dk‖) ≤ ‖ck‖� ‖ck +∇cT

k dk‖� σc(‖ck‖� ‖ck +∇cT
k vk‖), 

as desired. Moreover, from (17), we have τk+1 ≤ (1� ɛτ)τk whenever τk+1 < τk. w

We conclude this subsection by showing that the interval defining our step size selection scheme (i.e., 
[αmin

k ,αmax
k ]) is positive and nonempty for all k ∈ N. We also show a useful property of the computed step size that is 

needed in our analysis.

Lemma 4. For all k ∈ N in any run, 0 < αmin
k ≤ αsuff

k ≤ α
φ
k , 0 < αmin

k ≤ αmax
k , and φ(αk) ≤ 0.

Proof. It follows from (24) and the fact that {βk}, {ξk}, and {τk} are positive sequences that αmin
k > 0 for all k ∈ N. 

Hence, considering (24) and (26), to prove that 0 < αmin
k ≤ αsuff

k ≤ α
φ
k and 0 < αmin

k ≤ αmax
k for all k ∈ N, it is suffi-

cient to show that αsuff
k ≤ α

φ
k for all k ∈ N. Consider arbitrary k ∈ N. Because α

φ
k ≥ 0 by construction and αsuff

k ≥ 0 as 
a consequence of Lemmas 2 and 3, the inequality holds trivially if αsuff

k � 0. Hence, we may proceed under the 
assumption that αsuff

k > 0. Moreover, one finds from the definition of α
φ
k that to establish αsuff

k ≤ α
φ
k , it is sufficient 

to show that φ(αsuff
k ) ≤ 0. We consider two cases based on which term yields the minimum in (21). First, suppose 

that αsuff
k � 1 ≤

2(1�η)βk∆l(xk,τk,gk,dk)

(τkL+Γ)‖dk‖
2 , which with (25), shows that

φ(αsuff
k ) � (η� 1)βk∆l(xk,τk, gk, dk) +

1

2
(τkL+ Γ)‖dk‖

2

≤ (η� 1)βk∆l(xk,τk, gk, dk) + (1� η)βk∆l(xk,τk, gk, dk) � 0, 

as desired. Second, suppose αsuff
k �

2(1�η)βk∆l(xk,τk,gk,dk)

(τkL+Γ)‖dk‖
2 < 1. For this case, it follows from (25), αsuff

k ∈ (0, 1], and the tri-
angle inequality that

φ(αsuff
k ) � (η� 1)αsuff

k βk∆l(xk,τk, gk, dk) + (1� η)α
suff
k βk∆l(xk,τk, gk, dk)

+ ‖ck + α
suff
k ∇cT

k dk‖� α
suff
k ‖ck +∇cT

k dk‖ + (α
suff
k � 1)‖ck‖

≤ ‖(1� αsuff
k )ck‖ + (α

suff
k � 1)‖ck‖ � 0:

Overall, αsuff
k ≤ α

φ
k because in both cases, we proved that φ(αsuff

k ) ≤ 0.
Finally, let us show φ(αk) ≤ 0 for all k ∈ N. By (4) and (25), one finds (as previously mentioned) that φ is 

strongly convex. In addition, one finds that φ(0) � φ(α
φ
k ) � 0, where α

φ
k ∈ R>0. Along with 0 < αmin

k ≤ αk ≤ α
max
k 

≤ α
φ
k , it follows that φ(αk) ≤ 0, as desired. w

3.2. General Results
In this subsection, we prove general results about the behavior of Algorithm 1. As in the previous subsection, our 
analysis here merely requires for all k ∈ N that gk ∈ Rn and Hk ∈ Sn satisfy Assumption 2. The next lemma gives a 
lower bound on ‖ck‖� ‖ck +∇cT

k vk‖ relative to ‖ck‖.

Lemma 5. There exists κ1 ∈ R>0 (a constant common to all runs of the algorithm) such that for all k ∈ N in any run, one 
has that ‖ck‖� ‖ck +∇cT

k vk‖ ≥ κ1‖ck‖.

Proof. This result follows as in Curtis et al. (2009, lemma 3.5) but with small straightforward modifications to 
account for the fact that in our analysis here, the singular values of {∇cT

k } are bounded away from zero uniformly 
over all runs as part of Assumption 1. w
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The next lemma shows that ‖vk‖ is bounded below and above proportionally to ‖ck‖.

Lemma 6. There exists (κ2,κ3) ∈ R>0 × R>0 (constants common to all runs of the algorithm) such that for all k ∈ N in any 
run, one has that κ2‖ck‖ ≤ ‖vk‖ ≤ κ3‖ck‖.

Proof. Assumption 1 ensures the existence of λmin ∈ R>0 such that ∇cT
k∇ck ≽ λminI for all k ∈ N in any run. We 

now prove each desired inequality. First, consider the former inequality. Because this holds trivially when ck � 0, 
let us proceed under the assumption that ck ≠ 0. One finds

‖ck‖
2
� ‖ck + α

c
k∇cT

k vc
k‖

2 � (‖ck‖� ‖ck +α
c
k∇cT

k vc
k‖)(‖ck‖ + ‖ck + α

c
k∇cT

k vc
k‖)

≤ 2‖ck‖(‖ck‖� ‖ck + α
c
k∇cT

k vc
k‖):

It follows from this inequality, the triangle inequality, and (6) that

‖∇cT
k ‖ ‖vk‖ ≥ ‖∇cT

k vk‖ ≥ ‖ck‖� ‖ck + ∇cT
k vk‖ ≥ ɛc(‖ck‖� ‖ck + α

c
k∇cT

k vc
k‖)

≥
ɛc

2‖ck‖
(‖ck‖

2
� ‖ck + α

c
k∇cT

k vc
k‖

2) �
ɛc

2‖ck‖
(�2αc

kcT
k∇cT

k vc
k � (α

c
k)

2‖∇cT
k vc

k‖
2):

Substituting in for the value of αc
k (recall (7)) and vc

k ��∇ckck shows that ‖∇cT
k ‖ ‖vk‖ ≥

ɛc

2‖ck‖

� �

αc
k‖∇ckck‖

2. Again, 
substituting the value of αc

k and using the definition of λmin, one finds

‖∇cT
k ‖ ‖vk‖ ≥

ɛc‖∇ckck‖
4

2‖ck‖ ‖∇cT
k∇ckck‖

2
≥

ɛcλ
2
min‖ck‖

4

2‖ck‖ ‖∇cT
k∇ck‖

2‖ck‖
2
�

ɛcλ
2
min

2‖∇cT
k∇ck‖

2
‖ck‖:

It follows from these inequalities and Assumption 1 that there exists κ2 ∈ R>0 as claimed.
Let us now turn to the latter inequality. It follows from the normal direction computation that ‖ck‖ ≥ ‖ck+
∇cT

k vk‖, which implies that ‖∇cT
k vk‖ ≤ 2‖ck‖. Note that because vk ∈ Range(∇ck), one has vk � ∇ckwk, where wk �

(∇cT
k∇ck)

�1∇cT
k vk. Putting these facts together shows that

‖vk‖ � ‖∇ckwk‖ � ‖∇ck(∇cT
k∇ck)

�1
∇cT

k vk‖ ≤ ‖∇ck‖ ‖(∇cT
k∇ck)

�1
‖ ‖∇cT

k vk‖ ≤
2‖∇ck‖

λmin
‖ck‖, 

which combined with Assumption 1—namely, that the Jacobian function ∇c(·)T is bounded over the set X contain-
ing the iterates—establishes the existence of κ3 ∈ R>0 as claimed. w

The next result gives a useful bound on the size of the search direction.

Lemma 7. There exists κ4 ∈ R≥2 (a constant common to all runs of the algorithm) such that for all k ∈ N in any run, one 
finds that ‖dk‖

2 ≤ κ4(‖uk‖
2 + ‖ck‖).

Proof. Observe that 0 ≤ (‖uk‖� ‖vk‖)
2
� ‖uk‖

2 + ‖vk‖
2
� 2‖uk‖ ‖vk‖. Using this fact, dk � vk + uk, the triangle inequality, 

and Lemma 6, it follows that

‖dk‖
2 ≤ (‖uk‖ + ‖vk‖)

2
� ‖uk‖

2 + ‖vk‖
2 + 2‖uk‖ ‖vk‖

≤ 2(‖uk‖
2 + ‖vk‖

2) ≤ 2(‖uk‖
2 + κ2

3‖ck‖
2) ≤ max{2, 2κ2

3‖ck‖}(‖uk‖
2 + ‖ck‖):

The existence of the required κ4 ∈ R≥2 now follows from Assumption 1 because max{2, 2κ2
3‖ck‖} is uniformly 

bounded for all k ∈ N in any run, which completes the proof. w

The next lemma shows that the model reduction ∆l(xk,τk, gk, vk + uk) is bounded below by a similar quantity as 
the upper bound for ‖dk‖

2 in the previous lemma.

Lemma 8. There exists κ5 ∈ R>0 (a constant common to all runs of the algorithm) such that for all k ∈ N in any run, one 
has that ∆l(xk,τk, gk, vk + uk) ≥ κ5τk(‖uk‖

2 + ‖ck‖) ≥
κ5τk

κ4
‖dk‖

2 > 0.

Proof. Lemma 3 shows that (12) holds with τ ≡ τk. Combining this fact with Lemma 5 and the monotonically 
nonincreasing behavior of {τk} shows that

∆l(xk,τk, gk, vk + uk) ≥ σuτkmax{uT
k Hkuk,ɛu‖uk‖

2} + σc(‖ck‖� ‖ck +∇cT
k vk‖)

≥ σuτkɛu‖uk‖
2 + σcκ1‖ck‖ ≥min σuɛu,

σcκ1

τ
�1

� �

τk(‖uk‖
2 + ‖ck‖), 
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which proves the existence of the claimed κ5 ∈ R>0 because σu, ɛu, σc, κ1, and τ
�1 are positive real numbers. The 

remaining inequalities follow from Lemmas 2 and 7. w

We next prove a lower bound for {ξk} that is uniform over every run of the algorithm.

Lemma 9. There exists ξmin ∈ R>0 (a constant common to all runs of the algorithm) such that in any run, there exists kξ ∈
N and ξkξ ∈ [ξmin,∞) such that ξk � ξkξ�for all k ≥ kξ.

Proof. For all k ∈ N, it follows from (22) and Lemmas 7 and 8 that

ξtrial
k �

∆l(xk,τk, gk, dk)

τk‖dk‖
2

≥
κ5τk(‖uk‖

2 + ‖ck‖)

τkκ4(‖uk‖
2 + ‖ck‖)

�
κ5

κ4
: (30) 

Now, consider any iteration such that ξk < ξk�1. For such iterations, it follows from (22) and (30) that ξk ≥

(1� ɛξ)ξ
trial
k ≥ (1� ɛξ)κ5=κ4. Combining this fact with the initial choice of ξ

�1 shows that ξk ≥ ξmin :�min{(1�
ɛξ)κ5=κ4,ξ

�1} for all k ∈ N. Combining this result with the fact that ξk < ξk�1 implies that ξk ≤ (1� ɛξ)ξk�1 (it 
decreases by at least a factor of 1� ɛξ) gives the desired result. w

The next lemma gives a bound on the change in the merit function in each iteration.

Lemma 10. For all k ∈ N in any run, one has that

φ(xk + αkdk,τk)�φ(xk,τk)

≤ �αk∆l(xk,τk,∇fk, dtrue
k ) + αkτk∇f T

k (dk � dtrue
k ) + (1� η)αkβk∆l(xk,τk, gk, dk)

+ αk‖ck +∇cT
k dk‖� αk‖ck +∇cT

k vk‖:

Proof. By Lemma 4, one has φ(αk) ≤ 0. Hence, starting as in (20); adding and subtracting the terms αkτk∇f T
k dtrue

k , 
αk‖ck‖, αk‖ck +∇cT

k dtrue
k ‖, and αkβk∆l(xk,τk, gk, dk); using the definition of φ(·); and using the fact that ∇cT

k dtrue
k �

∇cT
k (vk + utrue

k ) � ∇cT
k vk, one finds that

φ(x+ αkdk,τk)�φ(xk,τk)

≤ αkτk∇f T
k dk + ‖ck + αk∇cT

k dk‖� ‖ck‖ +
1

2
(τkL+ Γ)α2

k‖dk‖
2

� � αk∆l(xk,τk,∇fk, dtrue
k ) + αkτk∇f T

k (dk � dtrue
k ) + (αk � 1)‖ck‖

+ ‖ck + αk∇cT
k dk‖� αk‖ck +∇cT

k dtrue
k ‖ +

1

2
(τkL+ Γ)α2

k‖dk‖
2

� αkβk∆l(xk,τk, gk, dk) + αkβk∆l(xk,τk, gk, dk)

≤ � αk∆l(xk,τk,∇fk, dtrue
k ) + αkτk∇f T

k (dk � dtrue
k ) +αk‖ck +∇cT

k dk‖

� αk‖ck +∇cT
k dtrue

k ‖� ηαkβk∆l(xk,τk, gk, dk) + αkβk∆l(xk,τk, gk, dk)

� � αk∆l(xk,τk,∇fk, dtrue
k ) + αkτk∇f T

k (dk � dtrue
k ) + (1� η)αkβk∆l(xk,τk, gk, dk)

+αk‖ck +∇cT
k dk‖� αk‖ck +∇cT

k vk‖, 

which completes the proof. w

3.3. Convergence Analysis
Our goal in this subsection is to prove a convergence result for our algorithm. In general, in a run of the algorithm, 
one of three possible events can occur with respect to the merit parameter sequence. One possible event is that the 
merit parameter sequence eventually remains constant at a value that is sufficiently small. This is the event that we 
consider in our analysis here, where the meaning of sufficiently small is defined formally in the event E that is intro-
duced shortly. The other two possible events are that the merit parameter sequence vanishes or eventually remains 
constant at a value that is too large. As discussed in Berahas et al. (2021, section 3.2.2), the former of these two events 
does not occur for the algorithm in that paper if the differences between the stochastic gradient estimates and the 
true gradients of the objective are uniformly bounded in norm; in particular, see Berahas et al. (2021, proposition 
3.18). It is straightforward to show that such a conclusion also holds for Algorithm 1 in this paper because the merit 
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parameter update strategy follows the same kind of approach as for the algorithm in Berahas et al. (2021); in partic-
ular, see the consistency between Berahas et al. (2021, equations (3.3) and (3.4)) and in this paper, (17) and (18) as 
well as Byrd et al. (2008, lemma 4.7), which considers the setting of inexact linear system solutions using inexactness 
tolerance conditions of the same type as in this paper. Moreover, in Berahas et al. (2021, section 3.2.2), it is shown 
that the latter type of event (namely, that the merit parameter remains constant at a value that is too large) occurs 
with probability of zero if one makes a reasonable assumption about the influence of the stochastic gradient esti-
mates on the computed search directions; see also Berahas et al. (2023, section 4.3) for additional discussion of this 
case in the context of an algorithm that employs a step decomposition approach, like in Algorithm 1. Again, it is straight-
forward to see that such a conclusion also holds for Algorithm 1 because the merit parameter update strategy is of the 
same form. Consequently, for our purposes here, we do not consider these latter events because we contend that for 
practical purposes, one can focus on the first event for the same reasons as in Berahas et al. (2021, 2023).

Our main convergence result for Algorithm 1 considers an assumption that combines all of the assumptions 
required for our analysis until this point and assumes certain behavior of the merit parameter sequence through an 
event denoted as E. For this event and the subsequent analysis, recall the stochastic process (3) defined by the algo-
rithm. Consider for each k ∈ N the condition

∇f (Xk)
TDtrue

k +max{(Utrue
k )

THkUtrue
k ,ɛu‖U

true
k ‖

2} ≤ 0, (31) 

similar to the one appearing in (18). (For the sake of brevity in our notation, we overload the meaning of Hk; here, it 
may be a random variable satisfying Assumption 6 introduced shortly, which is consistent with the previously 
introduced and employed Assumption 2.) With this condition, let us define the following trial value of the merit 
parameter that would be computed in iteration k ∈ N if the algorithm was to employ ∇f (Xk) in place of Gk and solve 
(8) exactly:

T
trial, true
k ←

∞ if (31) holds,

1� σc

ɛr

� �

(‖c(Xk)‖� ‖c(Xk) +∇c(Xk)
TDtrue

k ‖)

∇f (Xk)
TDtrue

k +max{(Utrue
k )

THkUtrue
k ,ɛu‖U

true
k ‖

2}
otherwise:

8

>

>

<

>

>

:

(To be clear, the quantity T trial, true
k never needs to be computed by our algorithm; it is only used in our analysis.) 

Using this quantity, we define our event of interest, namely E, as the following.

3.3.1. Event E. For some (kmin,τmin, fsup) ∈ N × R>0 × R, the event E :� E(kmin,τmin, fsup) occurs if and only if f (Xkmin
)

≤ fsup, and there exists (K,T ′,Ξ′) ∈ N × R>0 × R>0 with K′ ≤ kmin, T ′ ≥ τmin, and Ξ′ ≥ ξmin (see Lemma 9) such 
that

T k � T ′ ≤ T
trial, true
k and Ξk � Ξ

′ for all k ∈ N with k ≥ K′: (32) 

In other words, event E is the event in which by iteration kmin, the merit and ratio parameter sequences become con-
stant at values at least τmin and ξmin, respectively, and the objective value at iteration kmin is bounded. With respect 
to this event, we make the following assumption for the rest of our analysis, our ultimate focus of which will be on 
the behavior of the algorithm starting in iteration kmin, at which point the adaptive merit and ratio parameters are 
constant.

Assumption 5. For some (kmin,τmin, fsup) ∈ N × R>0 × R, the event E :� E(kmin,τmin, fsup) occurs, and conditioned on the 
occurrence of E, Assumptions 1, 2, 3, and 4 hold. In addition, along with the restrictions that {βk} ⊂ (0, 1] and (23) holds for 
all k ∈ N, the sequence {βk}k≥kmin 

is chosen in a manner that is F kmin
-measurable.

A few remarks are in order with respect to Assumption 5. First, that the event E includes that the merit parameter 
sequence is bounded below can, as previously mentioned, be justified for the same reasons as in Berahas et al. 
(2021); the additional requirement that it eventually remains constant can be justified by Lemma 3, which shows 
that if the merit parameter is decreased, then it is decreased by at least a constant factor. Note that it is the inequality 
T ′ ≤ T

trial, true
k that represents the aforementioned notion of the merit parameter ultimately being sufficiently small 

for all large k. Second, that E includes that the ratio parameter sequence is bounded below and eventually remains 
constant is not a strong assumption; it follows under our prior assumptions (that are carried forward in Assump-
tion 5) because of Lemma 9. That said, the critical aspect here is that E requires that this sequence has become con-
stant by iteration kmin. Third, that E includes that f (Xkmin

) is bounded above is a relatively weak assumption but 
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necessary for our purposes of ultimately showing that a sequence of stationarity measures vanishes in expectation. 
Finally, with respect to {βk}k≥kmin

, we state in Theorem 1 particular choices satisfying Assumption 5 for which our 
convergence guarantees hold. Precise strategies for setting these values that are consistent with our convergence 
guarantees are stated after Theorem 1.

Let G0 be the σ-algebra defined by the initial conditions of Algorithm 1, and for all k ∈ N, let Gk be the σ-algebra 
generated by the initial conditions and {G0, : : : , Gk�1}. In addition, for all k ∈ N, let the trace σ-algebra of E on Gk be 
F k :� Gk ∩ E. Hence, {F k} is a filtration. For brevity, let

Pk[·] :� Pω[· |F k] and Ek[·] :� Eω[· |F k], 

where Pω�denotes probability with respect to the distribution of ω�(and as for (1), Eω�denotes expectation with 
respect to the distribution of ω). Observe that conditioned on E, one has that

τmin ≤ T ′ ≤ τ
�1 and ξmin ≤ Ξ

′ ≤ ξ
�1, (33) 

and one has that the random variables T ′ and Ξ′ are F k-measurable for k � kmin ≥ K′.
We make Assumption 6 about {Gk} and {Hk}. That the stochastic gradient estimators are unbiased is standard for 

algorithms based on stochastic approximation. One may be able to relax the so-called bounded-variance assump-
tion introduced here, but we contend that this assumption is sufficient for showing the general type of convergence 
guarantee that our algorithm offers. Hence, we make a bounded-variance assumption here so as not to obfuscate 
the other details.

Assumption 6. There exists Mg ∈ R>0 such that for all k ∈ N, the gradient estimator Gk has that Ek[Gk] � ∇f (Xk) and 
Ek[‖Gk �∇f (Xk)‖

2
2] ≤ Mg. In addition, for all k ∈ N, the matrix Hk (satisfying Assumption 5; i.e., the bounds in Assump-

tion 2) is F k-measurable.

Combining Assumption 6 with Jensen’s inequality, it holds for all k ∈ N that

Ek[‖Gk �∇f (Xk)‖] ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ek[‖Gk �∇f (Xk)‖
2]

q

≤
ffiffiffiffiffiffiffi

Mg

q

: (34) 

We now return to our analysis. First, let us derive bounds on the expected difference between Uk and Utrue
k . To 

that end, let us define Zk ∈ Rn×(n�m) as an (F k-measurable) matrix whose columns form an orthonormal basis 
for Null(∇c(Xk)

T), which implies that ZT
k Zk � I and ∇c(Xk)

TZk � 0. Under Assumption 5 (namely, Assumption 1), 
let Uk, 1 ∈ Rm and Uk, 2 ∈ Rn�m be vectors forming the orthogonal decomposition of Uk into Range(∇c(Xk)) and 
Null(∇c(Xk)

T) in the sense that Uk � ∇c(Xk)Uk, 1 +ZkUk, 2. It follows from (11) that Uk, 1 � (∇c(Xk)
T∇c(Xk))

�1Rk and 
Uk, 2 ��(Z

T
k HkZk)

�1ZT
k (Gk +HkVk +Hk∇c(Xk)(∇c(Xk)

T
∇c(Xk))

�1Rk �Rk), with which one can derive

Uk �∇c(Xk)(∇c(Xk)
T∇c(Xk))

�1Rk

�Zk(Z
T
k HkZk)

�1ZT
k (Gk +HkVk +Hk∇c(Xk)(∇c(Xk)

T
∇c(Xk))

�1Rk �Rk)

Utrue
k � �Zk(Z

T
k HkZk)

�1ZT
k (∇f (Xk) +HkVk): (35) 

The corresponding values for Dk and Dtrue
k are found to be

Dk ��(∇c(Xk)
T∇c(Xk))

�1∇c(Xk)
T(Gk +HkVk +HkUk �Rk)�Yk

D
true
k ��(∇c(Xk)

T∇c(Xk))
�1∇c(Xk)

T(∇f (Xk) +HkVk +HkUtrue
k )�Yk: (36) 

In the proof of our next lemma, we use the fact that

‖I � Zk(Z
T
k HkZk)

�1ZT
k Hk‖ ≤ 1, (37) 

which can be seen as follows. The nonzero eigenvalues of AB are equal to those of BA when the products are valid, 
meaning that the nonzero eigenvalues of Zk(Z

T
k HkZk)

�1ZT
k Hk equal those of ZT

k HkZk(Z
T
k HkZk)

�1
� I, which are all 

one; hence, the bound in (37) holds.
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Lemma 11. There exists κ6 ∈ R>0 such that for all k ∈ N with k ≥ kmin, one finds

‖Ek[Uk �Utrue
k ]‖ ≤ κ6βk and Ek[‖Uk �Utrue

k ‖] ≤ ζ
�1

ffiffiffiffiffiffiffi

Mg

q

+ κ6βk:

Proof. It follows from (35) that

Uk � Utrue
k �∇c(Xk)(∇c(Xk)

T
∇c(Xk))

�1Rk

� Zk(Z
T
k HkZk)

�1ZT
k (Gk � ∇f (Xk) +Hk∇c(Xk)(∇c(Xk)

T
∇c(Xk))

�1Rk � Rk), 

which combined with Assumption 6, shows that

Ek[Uk � Utrue
k ]

� (I � Zk(Z
T
k HkZk)

�1ZT
k Hk)∇c(Xk)(∇c(Xk)

T∇c(Xk))
�1Ek[Rk] + Zk(Z

T
k HkZk)

�1ZT
kEk[Rk]:

Combining this equation with the triangle inequality, Assumption 5 (specifically, Assumptions 1 and 2), (14), 
and (37) ensures the existence of κ6 ∈ R>0 such that for all k ∈ N,

‖Ek[Uk �Utrue
k ]‖ ≤ ‖∇c(Xk)(∇c(Xk)

T∇c(Xk))
�1‖ ‖Ek[Rk]‖ + ζ

�1‖Ek[Rk]‖

≤ ‖∇c(Xk)(∇c(Xk)
T∇c(Xk))

�1‖κrβk + ζ
�1κρβk ≤ κ6βk, 

which is the first desired result. Next, to derive the desired bound on Ek[‖Uk �Utrue
k ‖], one can combine the expres-

sion for Uk �Utrue
k with the triangle inequality to obtain

‖Uk �Utrue
k ‖ ≤ ‖Zk(Z

T
k HkZk)

�1ZT
k (Gk �∇f (Xk))‖ + ‖Zk(Z

T
k HkZk)

�1ZT
k Rk‖

+ ‖(I �Zk(Z
T
k HkZk)

�1ZT
k Hk)∇c(Xk)(∇c(Xk)

T∇c(Xk))
�1Rk‖:

Taking conditional expectation and using Assumption 6, (34), (37), and (14), one finds

Ek[‖Uk � Utrue
k ‖] ≤ ζ

�1
ffiffiffiffiffiffiffi

Mg

q

+ ζ�1Ek[‖Rk‖] + ‖∇c(Xk)(∇c(Xk)
T∇c(Xk))

�1‖Ek[‖Rk‖]

≤ ζ�1
ffiffiffiffiffiffiffi

Mg

q

+ ζ�1κρβk + ‖∇c(Xk)(∇c(Xk)
T∇c(Xk))

�1‖κrβk ≤ ζ
�1

ffiffiffiffiffiffiffi

Mg

q

+ κ6βk, 

where κ6 is the same value as used, which completes the proof. w

We now bound the difference in expectation between ∇f (Xk)
TDtrue

k and GT
k Dk.

Lemma 12. There exists (κ7,κ8) ∈ R>0 × R>0 such that for all k ∈ N with k ≥ kmin, one finds

|Ek[∇f (Xk)
TDtrue

k �GT
k Dk] | ≤ κ7βk + κ8βk

ffiffiffiffiffiffiffi

Mg

q

+ ζ�1Mg:

Proof. It follows from the triangle inequality that

|Ek[∇f (Xk)
TDtrue

k � GT
k Dk] | � |Ek[∇f (Xk)

T
(Dtrue

k � Dk) + (∇f (Xk)� Gk)
TDk] |

≤ |∇f (Xk)
TEk[D

true
k � Dk] | + |Ek[(∇f (Xk)� Gk)

TDk] | :

For the first term on the right-hand side, the Cauchy–Schwarz inequality, Dtrue
k � Vk +Utrue

k , Dk � Vk +Uk, Lemma 11, 
and Assumption 5 (i.e., Assumption 1) imply that there exists κ7 ∈ R>0 with

|∇f (Xk)
TEk[D

true
k �Dk] | ≤ ‖∇f (Xk)‖‖Ek[D

true
k �Dk]‖ � ‖∇f (Xk)‖‖Ek[U

true
k �Uk]‖ ≤ κ7βk:

Now, for the second term, first observe from Assumption 6 that Ek[(∇f (Xk)�Gk)
TVk] � VT

k Ek[∇f (Xk)�Gk] � 0. 
Combining this fact with (35), the Cauchy–Schwarz inequality, Assumption 5 (namely, Assumptions 1 and 2), 
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(37), and (34) shows that there exists (κ8,κ8) ∈ R>0 × R>0 giving

|Ek[(∇f (Xk)�Gk)
TDk] |

� |Ek[(∇f (Xk)�Gk)
T((I �Zk(Z

T
k HkZk)

�1ZT
k Hk)∇c(Xk)(∇c(Xk)

T∇c(Xk))
�1Rk

�Zk(Z
T
k HkZk)

�1ZT
k (Gk �∇f (Xk)�Rk))] |

≤ |Ek[(∇f (Xk)�Gk)
T
(I �Zk(Z

T
k HkZk)

�1ZT
k Hk)∇c(Xk)(∇c(Xk)

T
∇c(Xk))

�1Rk] |

+ |Ek[(∇f (Xk)�Gk)
TZk(Z

T
k HkZk)

�1ZT
k Rk] |

+ |Ek[(∇f (Xk)�Gk)
TZk(Z

T
k HkZk)

�1ZT
k (∇f (Xk)�Gk)] |

≤ Ek[‖∇f (Xk)�Gk‖ ‖(I �Zk(Z
T
k HkZk)

�1ZT
k Hk)∇c(Xk)(∇c(Xk)

T∇c(Xk))
�1‖ ‖Rk‖]

+Ek[‖∇f (Xk)�Gk‖ ‖Zk(Z
T
k HkZk)

�1ZT
k ‖ ‖Rk‖] + ζ

�1Ek[‖∇f (Xk)�Gk‖
2]

≤ (κ8κr + ζ
�1κρ)βk

ffiffiffiffiffiffiffi

Mg

q

+ ζ�1Mg � κ8βk

ffiffiffiffiffiffiffi

Mg

q

+ ζ�1Mg:

Combining the results gives the desired result. w

We now proceed to bound in expectation the last few terms appearing in the right-hand side of the inequality 
proved in Lemma 10. The next lemma considers the last pair of terms.

Lemma 13. There exists κ9 ∈ R>0 such that for all k ∈ N with k ≥ kmin, one finds

Ek[Ak(‖c(Xk) + ∇c(Xk)
TDk‖� ‖c(Xk) +∇c(Xk)

TVk‖)] ≤ κ9β
2
k :

Proof. From (11), (14), the fact that Ak ∈ [A
min
k ,Amax

k ], (26), (24), (23), and the monotonically nonincreasing behav-
ior of {T k} and {Ξk}, it follows that there exists κ9 ∈ R>0 such that

Ek[Ak(‖c(Xk) + ∇c(Xk)
TDk‖� ‖c(Xk) + ∇c(Xk)

TVk‖)] ≤ Ek[Ak‖∇c(Xk)
TUk‖] � Ek[Ak‖Rk‖]

≤ κrβkEk[A
max
k ] ≤ κrβkEk[A

min
k +θβ2

k] � κrβkEk
2(1� η)βkΞkT k

T kL+ Γ
+θβ2

k

� �� �

≤ κrβ
2
k

2(1� η)ξ
�1τ�1

Γ
+θβk

� �

≤ κ9β
2
k , 

which gives the desired conclusion. w

Our next result provides an upper bound in expectation for the second term appearing on the right-hand side of 
the inequality in Lemma 10.

Lemma 14. There exists κ10 ∈ R>0 such that for all k ∈ N with k ≥ kmin, one finds

Ek[AkT k∇f (Xk)
T(Dk �Dtrue

k )] ≤ κ10β
2
k :

Proof. Let I k be the event that ∇f (Xk)
T(Dk �Dtrue

k ) ≥ 0, and let I c
k be its complementary event. It follows from 

(32), the definition of I k, the fact that Ak ∈ [A
min
k ,Amax

k ], and the law of total expectation that for all k ≥ kmin, one 
finds

Ek[AkT k∇f (Xk)
T
(Dk �Dtrue

k )] � Ek[AkT
′∇f (Xk)

T
(Dk �Dtrue

k ) |I k]Pk[I k]

+Ek[AkT
′∇f (Xk)

T(Dk �Dtrue
k ) |I

c
k]Pk[I

c
k]

≤ Ek[A
max
k T ′∇f (Xk)

T
(Dk �Dtrue

k ) |I k]Pk[I k]

+Ek[A
min
k T ′∇f (Xk)

T(Dk �Dtrue
k ) |I

c
k]Pk[I

c
k]

� Ek[(A
max
k �A

min
k )T

′∇f (Xk)
T
(Dk �Dtrue

k ) |I k]Pk[I k]

+Ek[A
min
k T ′∇f (Xk)

T(Dk �Dtrue
k )]:
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Combining this with the fact that (26) ensures Amax
k �A

min
k ≤ θβ2

k , that T ′ and Ξ′ are F k-measurable for k ≥ kmin, 
the Cauchy–Schwarz inequality, that Amin

k � 2(1� η)βkΞ
′T ′=(T ′L+ Γ) for all k ≥ kmin, and the law of total expecta-

tion shows for all k ≥ kmin that

Ek[AkT k∇f (Xk)
T(Dk �Dtrue

k )] ≤ θβ
2
kT
′‖∇f (Xk)‖Ek[‖Dk �Dtrue

k ‖ |I k]Pk[I k]

+
2(1� η)βkΞ

′T ′

T ′L+ Γ
T ′‖∇f (Xk)‖‖Ek[Dk �Dtrue

k ]‖

≤ θβ2
kT
′‖∇f (Xk)‖Ek[‖Dk �Dtrue

k ‖]

+
2(1� η)βkΞ

′T ′

T ′L+ Γ
T ′‖∇f (Xk)‖‖Ek[Dk �Dtrue

k ]‖:

Combining this with Lemma 11, (23), ‖Dk �Dtrue
k ‖ � ‖Vk +Uk � (Vk +Utrue

k )‖ � ‖Uk �Utrue
k ‖, and Assumption 1

shows that there exists κ10 ∈ R>0 such that for all k ≥ kmin, one finds

Ek[AkT k∇f (Xk)
T(Dk �Dtrue

k )]

≤ θβ2
kT
′‖∇f (Xk)‖(ζ

�1 ffiffiffiffiffiffiffi

Mg

p

+ κ6βk) +
2(1� η)βkΞ

′T ′

T ′L+ Γ
T ′‖∇f (Xk)‖κ6βk ≤ κ10β

2
k , 

which is the desired conclusion. w

We now use the model reduction based on the true step Dtrue
k to show an upper bound on the expected reduction 

in the model based on the step Dk.

Lemma 15. For all k ∈ N with k ≥ kmin, one finds

Ek[∆l(Xk,T k, Gk, Dk)] ≤ ∆l(Xk,T ′,∇f (Xk), Dtrue
k ) + κrβk + T ′(κ7βk + κ8βk

ffiffiffiffiffiffiffi

Mg

q

+ ζ�1Mg):

Proof. It follows from Lemma 12; (4); the fact that Dk � Vk +Uk; the fact that c(Xk), ∇c(Xk)
T, Vk, ∇f (Xk), and Dtrue

k 
are all F k-measurable for k ≥ kmin; (9); and (14) that for all k ≥ kmin,

Ek[∆l(Xk,T k, Gk, Dk)] � Ek[�T ′GT
k Dk + ‖c(Xk)‖� ‖c(Xk) + ∇c(Xk)

TDk‖]

≤ ∆l(Xk,T ′,∇f (Xk), Dtrue
k ) + κrβk + T ′(κ7βk + κ8βk

ffiffiffiffiffiffiffi

Mg

p

+ ζ�1Mg), 

which is the desired result. w

We now prove our main result. In the result, the quantity ∆l(Xk,T k,∇f (Xk), Dtrue
k ) serves as a measure of statio-

narity with respect to (1); after all, the proof for Lemma 8 shows, with (∇f (Xk), Utrue
k , Dtrue

k ) in place of (Gk, Uk, Dk), 
that by Assumption 5, it follows for k ≥ kmin that

∆l(Xk,T ′,∇f (Xk), Dtrue
k ) ≥ κ5T

′(‖Utrue
k ‖

2 + ‖c(Xk)‖) ≥
κ5T

′

κ4
‖Dtrue

k ‖
2 ≥ 0: (38) 

Thus, in a run, if there exists infinite K ⊆ N with limk∈K, k→∞∆l(xk,τk,∇fk, dtrue
k ) � 0, then (38) and Lemma 6 imply 

that limk∈K, k→∞‖ck‖ � limk∈K, k→∞‖u
true
k ‖ � limk∈K, k→∞‖vk‖ � 0, which combined with (9), shows that any limit of 

{(xk, yk + δ
true
k )} is a first-order stationary point for (1). In our stochastic setting, we prove for two different choices of 

{βk}k≥kmin 
that an expected average measure of stationarity exhibits desirable properties. These properties match 

those ensured by a stochastic gradient method in the unconstrained setting (where ‖∇f (Xk)‖
2 is the measure of 

stationarity).

Theorem 1. Define

A
′
:�

2(1 � η)Ξ′T ′

T ′L + Γ
, α′min :�

2(1 � η)ξminτmin

τminL + Γ
, α′max :�

2(1 � η)ξ
�1τ�1

τ
�1L + Γ�

and

Mmax � (1 � η)(α′max + θ)(κr + τ�1(κ7 + κ8

ffiffiffiffiffiffiffi

Mg

q

+ ζ�1Mg)) + κ9 + κ10:

Then, the following results hold. 
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i. If βk � β �
ψA
′

(1�η)(A′+θ)
for some ψ ∈ (0, 1) for all k ≥ kmin, then

E
1

k

X

kmin+k�1

j�kmin

∆l(Xj,T
′,∇f (Xj), Dtrue

j )

�

�

�

�

�

E

2

4

3

5

≤
(1� η)(α′min +θ)(E[φ(Xkmin

,T ′) |E]�φmin)

kψ(1�ψ)(α′min)
2

+
ψ(α′max)

2(α′min +θ)Mmax

(1� η)(1�ψ)(α′min)
2
(α′max +θ)

2

→
k→∞ ψ(α′max)

2(α′min +θ)Mmax

(1� η)(1�ψ)(α′min)
2
(α′max +θ)

2
,

(39) 

where φmin ∈ R is a lower bound for φ(·,T ′) over X by Assumption 5 (namely, Assumption 1).

ii. If {βk}k≥kmin 
is determined by iteration kmin such that 

P∞
k�kmin

βk �∞, 
P∞

k�kmin
β2

k < ∞, and βk ≤
ψA
′

(1�η)(A′+θ)
for some 

ψ ∈ (0, 1) for all k ≥ kmin, then

lim
k→∞

E
1

Pkmin+k�1
j�kmin

βj

X

kmin+k�1

j�kmin

βj∆l(Xj,T
′,∇f (Xj), Dtrue

j )

�

�

�

�

�

E

2

4

3

5 � 0: (40) 

In either case, if in a run, there exists K ⊆ N with |K | � ∞ and limk∈K, k→∞∆l(xk,τk,∇fk, dtrue
k ) � 0, then any limit point of 

{(xk, yk + δ
true
k )} is a first-order stationary point for (1).

Proof. By the definition of A′, {βk} ⊂ (0, 1], and line 15 of Algorithm 1, it follows that Ak ∈ [A
′βk, (A′ +θ)βk] for all 

k ≥ kmin. It follows from this fact; ∆l(Xk,T ′,∇f (Xk), Dtrue
k ) ≥ 0 (see (38)); Lemmas 10, 14, 8, 13, and 15; and the fact 

that {βk} ⊂ (0, 1] that for all k ≥ kmin, one finds

Ek[φ(Xk +AkDk,T k)]�φ(Xk,T k)

≤ Ek[�Ak∆l(Xk,T k,∇f (Xk), Dtrue
k ) +AkT k∇f (Xk)

T(Dk �Dtrue
k )]

+ (1� η)Ek[Akβk∆l(Xk,T k, Gk, Dk)]

+Ek[Ak(‖c(Xk) +∇c(Xk)
TDk‖� ‖c(Xk) + ∇c(Xk)

TVk‖)]

≤ �A
′βk∆l(Xk,T ′,∇f (Xk), Dtrue

k ) + (κ9 + κ10)β
2
k

+ (1� η)(A′ +θ)β2
kEk[∆l(Xk,T ′, Gk, Dk)]

≤ �βk(A
′
� (1� η)(A′ +θ)βk)∆l(Xk,T ′,∇f (Xk), Dtrue

k ) + β
2
kM′, (41) 

where M′ :� (1� η)(A′ +θ)(κr + T ′(κ7 + κ8

ffiffiffiffiffiffiffi

Mg

p

+ ζ�1Mg)) + κ9 + κ10. Observe that under Assumption 5, one has 
that E[φ(Xkmin

,T ′) |E] is bounded, M′ ≤ Mmax, and α′min ≤ A
′ ≤ α′max because of the monotonicity of 

2(1�η)ξτ
τL+Γ�with 

respect to both ξ�and τ. Consider now the theorem’s two cases. 

Case i. By the definition of β, it follows that 
ψα′min

(1�η)(α′min+θ)
≤ β ≤

ψα′max

(1�η)(α′max+θ)
for all k ≥ kmin. Hence, along with (41), 

it follows for all k ≥ kmin that

Ek[φ(Xk +AkDk,T ′)]�φ(Xk,T ′)

≤ �β(A′� (1� η)(A′ +θ)β)∆l(Xk,T ′,∇f (Xk), Dtrue
k ) + β

2M′

≤ �

ψ(1�ψ)(α′min)
2

(1� η)(α′min +θ)

 !

∆l(Xk,T ′,∇f (Xk), Dtrue
k ) +

ψα′max

(1� η)(α′max +θ)

� �2

Mmax:

Curtis, Robinson, and Zhou: Stochastic Inexact Sequential Quadratic Optimization 
18 INFORMS Journal on Optimization, Articles in Advance, pp. 1–23, © 2024 INFORMS 

D
o
w

n
lo

ad
ed

 f
ro

m
 i

n
fo

rm
s.

o
rg

 b
y
 [

9
8
.7

.2
0
9
.7

] 
o
n
 2

4
 M

ay
 2

0
2
4
, 
at

 0
9
:4

0
 .
 F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

, 
al

l 
ri

g
h
ts

 r
es

er
v
ed

. 



Then, taking total expectation conditioned only on the event E, it follows for k ∈ N that

φmin �E[φ(Xkmin
,T ′) |E]

≤ E[φ(Xkmin+k,T ′)�φ(Xkmin
,T ′) |E]

≤ �

ψ(1�ψ)(α′min)
2

(1� η)(α′min +θ)

 !

E
X

kmin+k�1

j�kmin

∆l(Xj,T
′,∇f (Xj), Dtrue

j )

�

�

�

�

�

E

2

4

3

5+ k
ψα′max

(1� η)(α′max +θ)

� �2

Mmax:

After rearrangement, one finds that (39) holds, where the limit as k→∞ holds because of the aforementioned fact 
that E[φ(Xkmin

,T ′) |E] is bounded under Assumption 5.
Case ii. By the conditions on {βk}k≥kmin

, it follows in a similar manner as in case (i) that

φmin �E[φ(Xkmin
,T ′) |E]

≤ E[φ(Xkmin+K,T ′)�φ(Xkmin
,T ′) |E]

≤ E
X

kmin+k�1

j�kmin

(�βk(A
′
� (1� η)(A′ +θ)βk)∆l(Xk,T ′,∇f (Xk), Dtrue

k ) + β
2
kM′)

�

�

�

�

�

E

2

4

3

5, 

which after rearrangement and taking limits as k→∞, proves that (40) holds.
The final conclusion of the theorem follows by the arguments provided before the theorem. w

We close this section by remarking that as described in Berahas et al. (2021), the elements of {βk} can be chosen to 
satisfy Assumption 5 and the conditions of Theorem 1. Specifically, to obtain the convergence guarantees in case (i) of 

Theorem 1, the algorithm can set βk←min
�

1, Γ

2(1�η)ξ
�1τ�1

,
ψα′

k

(1�η)(α′
k
+θ)

�

, where α′k←
2(1�η)ξkτk

τkL+Γ� for all k ∈ N, which clearly 

ensures that βk ∈ (0, 1] and that (23) holds. In addition, assuming that event E occurs, the value α′k for sufficiently large 
k becomes the realization of A′ stated in the theorem, in which case βk � β�for all subsequent k satisfies the condition 
stated in the theorem. To obtain the convergence guarantees in case (ii) of Theorem 1, the algorithm can “reset” a 
diminishing sequence after each iteration, in which the merit parameter and/or the ratio parameter are decreased. 
Specifically, in any iteration, say k̂ ∈ N, in which the merit parameter and/or the ratio parameter were reduced 
from the prior iteration, one can set βk← ck̂=(k� k̂ + 1) for all k ≥ k̂, where ck̂ :�min

�

1, Γ

2(1�η)ξ
�1τ�1

,
ψα′

k̂

(1�η)(α′
k̂
+θ)

�

with 
α′

k̂
←2(1�η)ξk̂τk̂

τk̂ L+Γ . If the value for k̂ is reset after every time the merit parameter and/or the ratio parameter are decreased, 

under event E, the value for k̂ eventually will not be reset, meaning that in subsequent iterates, {βk} will satisfy the 
conditions of the theorem.

4. Numerical Results
In this section, we demonstrate the performance of a MATLAB implementation of Algorithm 1 for solving (i) a sub-
set of the constrained and unconstrained testing environment with safe threads (CUTEst) set (Gould et al. 2015) and 
(ii) two optimal control problems from Hintermüller et al. (2003). The goal of our testing is to demonstrate the compu-
tational benefits of using inexact subproblem solutions obtained based on our termination tests from Section 2.2.

4.1. Iterative Solvers
To obtain the normal direction vk as an inexact solution of (5), we applied CG to ∇ck∇cT

k v ��∇ckck. Denoting the tth 
CG iterate as vk, t, where vk, 0 � 0, the method sets vk← vk, t, where t is the first CG iteration such that 
‖∇ck∇cT

k vk, t +∇ckck‖ ≤ 10�8 max{‖∇ckck‖, 1}. The properties of CG as a Krylov subspace method ensure that vk, t ∈

Range(∇ck) for all t ∈ N; hence, vk ∈ Range(∇ck).
To obtain the tangential direction uk and associated dual search direction δk, we applied the MINRES method 

(Paige and Saunders 1975, Choi et al. 2011) to (10). (We discuss our choice of Hk along with each set of experiments.) 
Letting (uk, t,δk, t) denote the tth MINRES iterate, where (uk, 0,δk, 0) � (0, 0), the method sets (uk,δk) ← (uk, t,δk, t), 
where t is the first MINRES iteration such that for some κ ∈ (0, 1) (recalling the definition of (ρk, t, rk, t) in (28)),

�

�

�

�

�

�

�

�

�

�

ρk, t

rk, t

� �

�

�

�

�

�

�

�

�

�

�

∞

≤ max{κ‖gk +Hkvk‖∞, 10�12}, (42) 

and TT1 and/or TT2 hold. The choice of κ ∈ (0, 1) is discussed with each experiment.
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4.2. Choosing the Step Size
Algorithm 1 (see line 15) stipulates that the step size αk chosen for the kth iteration satisfies αk ∈ [α

min
k ,αmax

k ]. Keep-
ing in mind that αmin

k ≤ αsuff
k ≤ min{α

φ
k , 1} (see Lemma 4), we take advantage of this flexibility in choosing the step 

size by defining

αk←

1 if αmin
k � 1

min{αmin
k +θβ2

k , (1:1)tk+1αmin
k } if αmin

k < 1 and min{αmin
k +θβ2

k , (1:1)tk+1αmin
k } ≤ α

φ
k

(1:1)tkαmin
k otherwise,

8

>

<

>

:

where tk is the largest value of t ∈ N such that (1:1)tαmin
k ≤ min{α

φ
k ,αmin

k +θβ2
k , 1}. We do not explicitly compute α

φ
k 

in our code. Instead, we can verify whether (1:1)tαmin
k ≤ α

φ
k (as needed) because it is equivalent to verifying whether 

φ((1:1)tαmin
k ) ≤ 0, which is computable.

4.3. Algorithm Variants Tested
To test the utility of using inexact subproblem solutions in Algorithm 1, we consider two algorithm variants: SISQO 
and SISQO_exact. SISQO is Algorithm 1 with inexact solutions computed as described in Section 4.1 with a rela-
tively large value for κ�in (42). On the other hand, SISQO_exact is identical to SISQO with the exception that it 
uses a relatively small value for κ�in (42). (Because of the similarities of the algorithms, SISQO_exact acts as a 
proxy for the stochastic sequential quadratic programming (SQP) algorithm from Berahas et al. (2021), although 
because it employs iterative linear algebra techniques, we are able to compare SISQO_exact with SISQO more 
readily.) We specify the values of κ ∈ (0, 1) used along with each of our tests in Sections 4.5 and 4.6. Our reason for 
comparing these two variants is to focus attention on the numerical gains obtained as a result of using inexact sub-
problem solutions. Both variants use the same computation for the normal step, so the performance difference can 
be attributed directly to the inexact tangential step computation.

Additionally, we compare SISQO with a stochastic subgradient method employed to minimize the merit func-
tion φ�directly (for various fixed values of τ). We refer to our implementation of this algorithm as Subgrad. 
Because Hk is a diagonal matrix for all k ∈ N in all of our experiments, one CG or MINRES iteration is comparable 
computationally with two iterations of Subgrad.

4.4. Metrics Used for Comparison
Our metrics of interest are infeasibility and stationarity. Given any iterate xk in a run of SISQO, we consider the ter-
mination conditions ‖c(xk)‖∞ ≤ 10�6 and ‖∇fk +∇ckyk, ls‖∞ ≤ 10�2, where yk, ls is the least-squares multiplier at xk. If 
an iterate satisfying these conditions is found in the first 1,000 iterations, then SISQO terminates and returns 
xSISQO← xk. Otherwise, SISQO terminates after the 1,000th iteration and sets k′← arg mini∈{0}∪[1, 000]‖c(xi)‖∞ (so xk′

is the most feasible iterate found). If ‖c(xk′)‖∞ > 10�6, then it returns xSISQO← xk′ ; otherwise, it returns xSISQO← xk′′ , 
where k′′ � arg min{i∈{0}∪[1, 000]:‖c(xi)‖∞ ≤10�6}‖∇fi + JT

i yi, ls‖∞. This allows us to associate with each run of SISQO the 
two measures errfeasibility � ‖c(xSISQO)‖∞ and errstationarity � ‖∇f (xSISQO) + J(xSISQO)

TySISQO‖∞, where ySISQO ∈ Rm is the 
least-squares multiplier at xSISQO. We use the total number of CG and MINRES iterations performed by SISQO as a 
budget for the total number of CG and MINRES iterations performed by SISQO_exact; no other termination con-
dition is used for SISQO_exact. Upon termination of SISQO_exact, we define xexact—the iterate with which we 
define the feasibility and stationarity errors—using the same strategy as for setting xSISQO. Finally, we ran Subgrad 
for multiple instances of τ. (Further details on the choices of τ�and the iteration budget for Subgrad are given with 
each experiment.) Upon termination of Subgrad, we define xsubgrad—the iterate with which we define the feasibil-
ity and stationarity errors—using the same strategy as for setting xSISQO. In all cases, we define the KKT error as the 
maximum of the feasibility and stationarity errors.

4.5. Results on the CUTEst Problems
In the CUTEst set (Gould et al. 2015), there are 138 equality constrained problems with m ≤ n. From these, we 
selected those such that (i) (n+m) ∈ [500, 10,000], (ii) the objective function is not constant, (iii) the objective func-
tion remained above �1050 over the sequences of iterates generated by runs of our algorithm, and (iv) the linear 
independence constraint qualification was satisfied at all iterates encountered in each run of our algorithm. This 
process of elimination resulted in the following 11 test problems: ELEC, LCH, LUKVLE1, LUKVLE3, LUKVLE4, 
LUKVLE6, LUKVLE7, LUKVLE9, LUKVLE10, LUKVLE13, and ORTHREGC.

The function and derivative evaluations from CUTEst are deterministic, and for the purpose of these experi-
ments, we exploited this fact to compute values as needed by our algorithm, including using function evaluations 
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to estimate Lipschitz constants. However, we introduced noise into the computation of the objective gradients for 
each application of our stochastic algorithm. In particular, we generated stochastic gradients as gk �N

�

∇fk,
ɛ2

N

n I
�

, 
where for testing purposes, we considered the three noise levels ɛN ∈ {10�4, 10�2, 10�1}. This particular choice for 
defining the stochastic gradients ensured that an appropriate value for Mg as indicated in Assumption 6 would be 
given by Mg � {10�8, 10�4, 10�2}, corresponding to the values for ɛN.

We set κ � 0:1 for SISQO and κ � 10�7 for SISQO_exact. All of the remaining parameters were set identically: 
τ
�1 � σ � κv � 0:1, η � 0:5, ɛuv � 1, 000, ξ

�1 � ɛc � 1, ɛτ � ɛξ � 0:01, κρ � κr � 100, ɛ2 � 0:9, κu � 10�8, χ � 1� 10�8, 
θ � 104, and βk � 1 for all k ∈ N. For all k ∈ N, we randomly generated a sample point near xk, and then, we estimated 
Lk and Γk using finite differences of the objective gradients and constraint Jacobians between xk and the sampled 
point. These values were used in place of L and Γ, respectively, in our step size selection. Here, Hk � I for all k ∈ N in 
all runs.

For each test problem, we ran SISQO, SISQO_exact, and Subgrad with five different random seeds. As pre-
viously justified, the iteration budget for Subgrad was set to be twice the total numbers of CG and MINRES 
iterations used by SISQO. Also, for Subgrad, we ran the algorithm with the 11 merit parameter values in τ ∈
{100, 10�1, : : : , 10�10} with step sizes set as αk �

τ
τLk+Γk 

for all k ∈ N, and then, we selected the best iterate over all 
of these runs. We computed the feasibility and KKT errors for all algorithms as described in Section 4.4; see 
Figure 1.

From Figure 1, one finds that SISQO performs better than SISQO_exact and Subgrad in terms of both feasibil-
ity and KKT errors. SISQO achieves smaller errors for smaller noise levels, which may be expected because of the 
fact that these experiments are run with constant {βk}.

4.6. Results on Optimal Control Problems
In our second set of experiments, we considered two optimal control problems motivated by those in Hintermüller 
et al. (2003). In particular, we modified the problems to have equality constraints only and finite sum objective func-
tions. Specifically, given a domain Ξ ∈ R2, a constant N ∈ N>0, reference functions wij ∈ L2(Ξ) and zij ∈ L2(Ξ) for 
(i, j) ∈ {1, : : : , N} × {1, : : : , N}, and a regularization parameter λ ∈ R>0, we first considered the problem

min
w, z

1

N2

X

N

i�1

X

N

j�1

1

2
‖w�wij‖

2
L2(Ξ) +

λ

2
‖z� zij‖

2
L2(Ξ)

� �

s:t:�∆w � z in Ξ and w � 0 on ∂Ξ: (43) 

Second, with the same notation but zij ∈ L2(∂Ξ), we also considered

min
w, z

1

N2

X

N

i�1

X

N

j�1

1

2
‖w�wij‖

2
L2(Ξ) +

λ

2
‖z� zij‖

2
L2(∂Ξ)

� �

s:t:�∆w+w � 0 in Ξ and
∂w

∂p
� z on ∂Ξ, (44) 

where p represents the unit outer normal to Ξ�along ∂Ξ. As reference functions for both problems, we chose zij � 0 
and wij(x1, x2) � sin

��

4+ ɛN

ɛS

�

i� N+1
2

��

x1)+cos
��

3+ ɛN

ɛS

�

j� N+1
2

��

x2

�

for all (i, j) ∈ {1, : : : , N} × {1, : : : , N} for some 

Figure 1. (Color online) Box Plots of CUTEst Problems for Feasibility (Left Panel) and KKT (Right Panel) Errors 

Note. Subgrad, stochastic subgradient method.
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(ɛS,ɛN) ∈ R>0 × R>0. We selected the following values for the constants: N � 3, λ � 10�5, ɛS � 50, and ɛN ∈ {10�4, 
10�2, 10�1}. Because the objective functions of (43) and (44) are finite sums, to generate stochastic gradients as unbi-
ased estimates of the true gradient, we first uniformly generated random (i, j) ∈ {1, : : : , N} × {1, : : : , N}, and then, we 
computed the gradient corresponding to the (i, j)th term in the objective function. We note that with the choice of 
parameters, it follows that an appropriate value for Mg in Assumption 6 is given by Mg ≈ {10�8, 10�4, 10�2} to corre-
spond, respectively, to the values for ɛN.

Because the optimal control problems have a quadratic objective function and linear constraints, we used the 
exact second derivative matrix Hk � diag(I,λI) for all k ∈ N. For this choice, the curvature condition on Hk in 
Assumption 2 is trivially satisfied.

In terms of algorithm parameters, we set κ � 10�4 for SISQO and κ � 10�7 for SISQO_exact. All of the remain-
ing parameters were set identically for the two variants in the same manner as in the previous section with the fol-
lowing exceptions: τ

�1 � 10�4, L � 1, and Γ � 0, where the latter choice is valid because the objectives are quadratic 
and the constraints are linear.

For each of the two optimal control problems in (43) and (44), we ran SISQO, SISQO_exact, and Subgrad with 
five different random seeds, and then, we computed their average feasibility and KKT errors as described in Section 
4.4. We observed that {τk}was constant in all runs of SISQO and SISQO_exact. Therefore, we ran Subgrad with 
only three merit parameter values, namely τ ∈ {10�2, 10�4, 10�6}, and we choose step sizes as αk←

τ
τL+Γ�for all k ∈ N. 

(In these experiments, the budget for Subgrad iterations was set to the total numbers of CG and MINRES iterations 
used by SISQO because the constraint function evaluations, required in each iteration of Subgrad, are as expensive 
computationally as each CG and MINRES iteration.) In Table 1, we report average feasibility and KKT errors as 
well as the average number of iterations performed by Algorithm 1 before termination (“iter.”) and the number of 
CG and MINRES iterations (“C+M iter.”), with the latter discussed in Section 4.1. The results are given in Table 1. 
One can observe that SISQO performs better than the others in terms of average feasibility and KKT errors.

5. Conclusion
We have proposed, analyzed, and tested an inexact stochastic SQP algorithm for solving stochastic optimization 
problems involving deterministic, smooth, nonlinear equality constraints. We proved a convergence guarantee (in 
expectation) for our algorithm that is comparable with that proved for the exact stochastic SQP method recently pre-
sented by Berahas et al. (2021), which in turn, is comparable with that known for the stochastic gradient in uncon-
strained settings (Bottou et al. 2018). Our MATLAB implementation, SISQO, illustrated the benefits of allowing 
inexact step computation for solving problems from the CUTEst set (Gould et al. 2015) and two optimal control 
problems.
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