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Abstract. A sequential quadratic optimization algorithm for minimizing an objective function
defined by an expectation subject to nonlinear inequality and equality constraints is proposed, an-
alyzed, and tested. The context of interest is when it is tractable to evaluate constraint function
and derivative values in each iteration, but it is intractable to evaluate the objective function or
its derivatives in any iteration, and instead, an algorithm can only make use of stochastic objective
gradient estimates. Under loose assumptions, including that the gradient estimates are unbiased,
the algorithm is proved to possess convergence guarantees in expectation. The results of numerical
experiments are presented to demonstrate that the proposed algorithm can outperform an alternative
approach that relies on the ability to compute more accurate gradient estimates and can outperform
a stochastic algorithm that employs a penalty method to enforce the constraints.
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1. Introduction. We propose a sequential quadratic optimization (commonly
known as SQP) algorithm for minimizing an objective function defined by an expec-
tation subject to nonlinear inequality and equality constraints. Such optimization
problems arise in a plethora of application areas, including, but not limited to, ma-
chine learning [30], network optimization [7], resource allocation [27], portfolio op-
timization [39], risk-averse partial-differential-equation-constrained optimization [29],
maximum-likelihood estimation [26], and multistage optimization [43].

The design and analysis of deterministic algorithms for solving continuous
optimization problems involving inequality and equality constraints has been a well-
studied topic for decades. Numerous types of such algorithms, such as penalty meth-
ods, interior-point methods, and SQP methods, have been designed to solve such
problems. Penalty methods are based on the idea of using unconstrained optimization
algorithms to minimize a weighted sum---determined by a penalty parameter---of the
objective and a measure of constraint violation; e.g., see [11, 20, 49] for algorithms
that make use of nondifferentiable (exact) penalty functions, and see [15, 16, 22, 50]
for algorithms that make use of differentiable (exact) penalty functions. While they
are able to offer convergence guarantees from remote starting points, the numeri-
cal performance of penalty methods often suffers from ill-conditioning of the penalty
functions and/or sensitivity of the algorithm's performance on the particular scheme
employed for updating the penalty parameter [36]. Interior-point methods [17] are
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SQP FOR DETERMINISTIC CONSTRAINED STOCHASTIC OPT. 3593

designed to use barrier functions to guide the algorithm along a central path through
the interior of the feasible region (or, at least, the interior of a set defined by bounds
on a subset of the variables) to a solution [9, 10, 31, 32, 47, 48]. Such algorithms
have been shown to be very effective in practice, which is why many state-of-the-art
software packages for continuous nonlinear optimization are built on interior-point
methods; see, e.g., [10, 45]. Overall, both penalty and interior-point methods involve
the use of additional objective terms to handle the presence of inequality constraints.

Alternatively, in this paper, we present, analyze, and demonstrate the numerical
performance of an SQP method for solving continuous nonlinear optimization prob-
lems. The SQP paradigm is based on the idea of, at each iterate, solving a subproblem
(or subproblems) defined based on a local linearization of the constraint function and
a local quadratic approximation of the objective or Lagrangian. Unlike in the de-
terministic setting, for which numerous SQP algorithms have been proposed (see,
e.g., [19, 21, 25, 36]), there have been few stochastic algorithms proposed for solving
optimization problems with nonlinear constraints. That said, in the past few years,
a couple of classes of stochastic SQP methods have been designed for optimization
subject to nonlinear equality constraints. For example, [3] proposes an SQP algo-
rithm that uses stochastic objective gradient estimates for solving such problems that
employs an adaptive step-size policy based on Lipschitz constants (or estimates of
them). For an alternative setting in which one is willing to compute objective value
estimates as well, and to refine objective function and gradient estimates within a
given iteration until probabilistic conditions of accuracy are satisfied, [33] proposes a
line-search stochastic SQP method. There have subsequently been multiple extensions
of the methods in [3] and [33], as well as work on different but related algorithmic
strategies---still for the setting of only nonlinear equality constraints. There has been
work on relaxing constraint qualifications [2], allowing matrix-free and inexact solves
of the arising linear systems [14], using a trust-region methodology [18], incorpo-
rating noisy (potentially biased) function and gradient estimates [5, 37], employing
variance-reduction strategies [1, 4], considering sketch-and-project techniques [35],
and analyzing the worst-case complexity (see [13]) of the method proposed in [3].

Unlike the setting of equality constraints only, to our knowledge, there has been
very little work on the design and analysis of stochastic algorithms for optimization
subject to nonlinear (nonconvex) inequality and equality constraints. Three excep-
tions are the active-set line-search SQP algorithms proposed in [34] and (very recently)
in [41] and the momentum-based augmented Lagrangian method (a penalty method)
proposed in [44]. We expect that our proposed SQP algorithm will perform well in
comparison to a stochastic--gradient-based penalty method. We demonstrate with nu-
merical experiments that our approach can outperform the algorithm proposed in [34].
We remark in passing that interior-point methods often outperform SQP methods in
the deterministic setting, but as far as we are aware, there exists no interior-point
method designed for the stochastic setting that we consider.

1.1. Contributions. In this paper, we build on the algorithmic strategy and
analysis in [3] to propose and analyze an adaptive stochastic SQP algorithm for solv-
ing nonlinear optimization problems subject to (deterministic) inequality and equality
constraints. This work involves significant advancements beyond [3] that are neces-
sary since, unlike in the setting of only having equality constraints, the presence of
inequality constraints automatically guarantees that, at a given iterate, the search di-
rection computed in a stochastic SQP method will be a biased estimate of the ``true""
search direction, i.e., the one that would be computed if the actual gradient of the
objective function were available. This necessitates a distinct change in the design
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3594 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

of the algorithm, as well as distinct alterations to the convergence analysis, since the
analysis in [3] relies heavily on the search directions being (conditionally) unbiased
estimators of their ``true"" counterparts. The algorithm from the literature that can be
seen as the nearest alternative approach is the algorithm in [34]. However, there are
substantial differences between the algorithm and analysis in [34] and those presented
in this paper. Like in [33] for the equality-only case, the algorithm in [34] is de-
signed for the setting in which one is willing to refine function and gradient estimates
within an iteration until probabilistic conditions of accuracy are satisfied, and in this
manner, the analysis of that algorithm offers guarantees that are relatively closer to
those offered for a deterministic algorithm. By contrast, the algorithm in this paper,
like the algorithm in [3], is designed to allow the stochastic gradient estimates to be
potentially much less accurate, and in such a context, we are satisfied with offer-
ing convergence guarantees in expectation. We compare the numerical performance
of our proposed algorithm with that in [34] to demonstrate that there are settings
in which our proposed approach has advantages in practice. We also compare our
method with that in [46] and a stochastic subgradient method employed to minimize
a penalty function.

1.2. Notation. We use \BbbR to denote the set of real numbers, \BbbR to denote the set
of extended-real numbers (i.e., \BbbR := \BbbR \cup \{  - \infty ,\infty \} ), and \BbbR \geq a (resp., \BbbR >a) to denote
the set of real numbers greater than or equal to (resp., greater than) a\in \BbbR . We append
a superscript to such a set to denote the space of vectors or matrices whose elements
are restricted to the indicated set; e.g., we use \BbbR n to denote the set of n-dimensional
real vectors and \BbbR m\times n to denote the set of m-by-n-dimensional real matrices. We
use \BbbN := \{ 1,2, . . .\} to denote the set of positive integers, and, given n \in \BbbN , we use
[n] := \{ 1, . . . , n\} to denote the set of positive integers less than or equal to n. Given
(a, b)\in \BbbR n\times \BbbR n, we write a\bot b to mean---with ai and bi denoting the ith elements of
a and b, respectively---that ai = 0 and/or bi = 0 for all i \in [n]. Given real symmetric
matrices A \in \BbbR n\times n and B \in \BbbR n\times n, we write A \succeq B (resp., A \succ B) to indicate that
A - B is positive semidefinite (resp., positive definite). Given H \in \BbbR n\times n with H \succ 0
and a\in \BbbR n, we denote the norm \| a\| H :=

\surd 
aTHa.

Our problem of interest is defined with respect to a variable x \in \BbbR n, and the
algorithm that we propose and analyze is iterative, meaning that, in any run, it
generates an iterate sequence that we denote as \{ xk\} with xk \in \BbbR n for all generated
k \in \BbbN ; i.e., \{ xk\} \subset \BbbR n. (We use such notation throughout the paper when the elements
of sequence are contained within a given set. We say ``for all generated k \in \BbbN "" since
our proposed algorithm might terminate finitely. Whether a subscript is being used
to indicate the element of a vector or the index number of a sequence is always made
clear by the context. The ith element of an iterate xk is denoted [xk]i.) We use
subscripts similarly to denote other quantities corresponding to each iteration of the
algorithm; e.g., we introduce a merit parameter denoted as \tau \in \BbbR >0 whose value in
iteration k \in \BbbN is denoted as \tau k \in \BbbR >0, and, corresponding to a constraint function c
(see problem (2.1) below), we denote its value at xk as ck := c(xk).

The iteration-dependent quantities mentioned in the previous paragraph---and
additional ones introduced in the description of our algorithm---represent realizations
of the random variables in a stochastic process generated by the algorithm. Specifi-
cally, the behavior of our algorithm is dictated by prescribed initial conditions and a
sequence of stochastic objective gradient estimators that we denote by \{ Gk\} . After
proving preliminary results that hold for every run of the algorithm, we present our
ultimate convergence theory for our algorithm in terms of a filtration defined in terms
of \sigma -algebras dependent on the initial conditions of the algorithm and \{ Gk\} .
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SQP FOR DETERMINISTIC CONSTRAINED STOCHASTIC OPT. 3595

1.3. Organization. A statement of our problem of interest and preliminary as-
sumptions about its objective and constraint functions, as well as about user-defined
quantities in our proposed algorithm, are given in section 2. A description of our
proposed algorithm is provided in section 3. Convergence in expectation of the algo-
rithm is proved under reasonable assumptions in section 4. The results of numerical
experiments are presented in section 5, and concluding remarks are given in section 6.

2. Setting. We formulate our problem of interest as

min
x\in \BbbR n

f(x) subject to (s.t.) c(x) = 0 and x\geq 0 with f(x) =\BbbE \omega [F (x,\omega )],(2.1)

where f : \BbbR n \rightarrow \BbbR and c : \BbbR n \rightarrow \BbbR m are continuously differentiable, \omega is a random
variable with associated probability space (\Omega ,\scrF ,\BbbP \omega ), F :\BbbR n\times \Omega \rightarrow \BbbR , and \BbbE \omega denotes
expectation taken with respect to \BbbP \omega . Our algorithm and analysis extend easily to
the setting in which the nonnegativity constraint in (2.1) is generalized to l \leq x \leq u
for some (l, u)\in \BbbR n\times \BbbR n with li \leq ui for all i\in [n]; we merely consider nonnegativity
in (2.1) for the sake of notational simplicity. It is also worth mentioning that any
smooth constrained optimization problem can be reformulated as (2.1) (or at least
as such a problem with generalized bound constraints); e.g., inequality constraints
c\scrI (x)\leq 0, where c\scrI :\BbbR n\rightarrow \BbbR m\scrI is continuously differentiable, can be reformulated to
fit into the form of (2.1) through the incorporation of slack variables, say, s \in \BbbR m\scrI ,
to have the constraints c\scrI (x) + s\scrI = 0 and s\scrI \geq 0.

We make the following assumption throughout the remainder of the paper per-
taining to the functions in problem (2.1) and our proposed algorithm. As seen in the
following section, our algorithm seeks feasibility and stationarity with respect to (2.1)
by generating an iterate sequence that stays feasible with respect to the bound con-
straints, meaning that, in any run of the algorithm, xk \in \BbbR n\geq 0 for all generated k \in \BbbN .

Assumption 2.1. Let \scrX \subset \BbbR n be an open convex set that almost surely contains
the iterate sequence \{ xk\} \subset \BbbR n\geq 0 generated in any realization of a run of the algorithm.
The objective function f : \BbbR n\rightarrow \BbbR is continuously differentiable and bounded below
over \scrX , and the objective gradient function \nabla f : \BbbR n \rightarrow \BbbR n is Lipschitz continuous
and bounded in norm over \scrX . Similarly, for all i \in [m], the constraint function
ci : \BbbR n \rightarrow \BbbR is continuously differentiable and bounded over \scrX , and the constraint
gradient function \nabla ci : \BbbR n \rightarrow \BbbR n is Lipschitz continuous and bounded in norm over
\scrX . Finally, the constraint Jacobian \nabla cT :\BbbR n\rightarrow \BbbR m\times n has full row rank over \scrX .

Under Assumption 2.1, there exists finf \in \BbbR and a tuple of positive constants
(\kappa \nabla f , \kappa c, \kappa \nabla c,L,\Gamma )\in \BbbR >0\times \BbbR >0\times \BbbR >0\times \BbbR >0\times \BbbR >0 such that, for all x\in \scrX , one has that

f(x)\geq finf , \| \nabla f(x)\| 2 \leq \kappa \nabla f , \| c(x)\| 2 \leq \kappa c, and \| \nabla c(x)\| 2 \leq \kappa \nabla c(2.2)

and, for all (x, \=x)\in \scrX \times \scrX , one has that

\| \nabla f(x) - \nabla f(\=x)\| 2 \leq L\| x - \=x\| 2 and \| \nabla c(x)T  - \nabla c(\=x)T \| 2 \leq \Gamma \| x - \=x\| 2.(2.3)

In addition, due to the continuous differentiability of the objective and constraint
functions, it follows that, at any local minimizer of (2.1) at which the Jacobian of the
active constraints (i.e., equality constraints and inequality constraints active at their
bounds) has full row rank, call it x \in \BbbR n, there exists y \in \BbbR m and z \in \BbbR n such that
the following Karush--Kuhn--Tucker (KKT) conditions are satisfied:

\nabla f(x) +\nabla c(x)y - z = 0, c(x) = 0, 0\leq x\bot z \geq 0.(2.4)
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3596 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

We refer to any x \in \BbbR n such that there exists (y, z) \in \BbbR m \times \BbbR n satisfying (2.4) as a
first-order stationary point (or KKT point) with respect to (2.1).

Since our algorithm generates iterates that are feasible with respect to the bound
constraints, but not necessarily with respect to the equality constraints, we need
to account for the possible existence of points that are infeasible for (2.1) but are
stationary with respect to the minimization of a constraint violation measure over
\BbbR n\geq 0. We refer to a point that is infeasible for (2.1) as an infeasible stationary point if it

is stationary with respect to the minimization of 1
2\| c(x)\| 

2
2 subject to x\in \BbbR n\geq 0, meaning

0\leq x\bot \nabla c(x)c(x)\geq 0.(2.5)

Each iteration of our algorithm requires a stochastic estimate of the gradient of
the objective at the current iterate. In a given run at iteration k \in \BbbN , the realization of
the iterate and gradient estimate is (xk, gk), which, later in our analysis, we denote as
a realization of the pair of random variables (Xk,Gk). (See section 4.3 for a complete
description of a stochastic process that we analyze.) With respect to the gradient
estimators, we make Assumption 2.2 below. For the prescribed (i.e., not random)
sequence \{ \rho k\} \subset \BbbR >0 referenced in the assumption, we state precise conditions that
it must satisfy in section 4.3. In the assumption and throughout the remainder of the
paper, we use \BbbE k[\cdot ] to denote expectation taken with respect to the distribution of \omega 
conditioned on a trace \sigma -algebra of an event \scrE , denoted by \scrF k; see section 4.3.

Assumption 2.2. For a prescribed \{ \rho k\} \subset \BbbR >0, one finds, for all k \in \BbbN , that

\BbbE k[Gk] =\nabla f(Xk) and \BbbE k[\| Gk  - \nabla f(Xk)\| 22]\leq \rho k.(2.6)

One might relax the latter condition in (2.6) and obtain guarantees that are
similar to those that we prove; see, e.g., [38]. We employ (2.6) for simplicity since it
is sufficient for demonstrating the guarantees that our algorithmic approach can offer.
We remark that our introduction of the sequence \{ \rho k\} ---rather than a constant---is
needed since one of our main theoretical results requires \{ \rho k\} \rightarrow 0. We further discuss
this requirement, which is stronger than is needed for the equality-constrained setting
(see, e.g., [2, 3]), immediately after Lemma 4.20, where it can be best explained.

Each iteration of our algorithm also makes use of a symmetric and positive-definite
(SPD) matrix, denoted as Hk \in \BbbR n\times n for iteration k \in \BbbN , to define a quadratic term
in the subproblem that is solved for computing the search direction. For simplicity,
we assume that the sequence \{ Hk\} is prescribed; e.g., one may consider Hk = I for
all k \in \BbbN . More generally, one could consider a more sophisticated scheme such as
setting, for all k \in \BbbN , the matrix Hk as a stochastic estimate of the Hessian of the
objective function and/or a Lagrangian function as long as it is sufficiently positive
definite and bounded and the choice is made to be conditionally uncorrelated with
the stochastic gradient estimate. However, since considering such a loose requirement
would only obfuscate our analysis without adding significant value, we assume, for
simplicity, that \{ Hk\} is prescribed and merely satisfies the following.

Assumption 2.3. There exists (\kappa H , \zeta )\in \BbbR >0 \times \BbbR >0 with \kappa H \geq \zeta such that, for all
k \in \BbbN , the SPD matrix Hk \in \BbbR n\times n has \kappa HI \succeq Hk \succeq \zeta I.

Observe from Assumption 2.3 that we are not assuming that accurate second-
order information is being used by the algorithm. Hence, our convergence guarantees
are of the type that may be expected for a first--order-type algorithm, although, in
situations when it is computationally tractable, one might find better performance if
Hk incorporates some (approximate) second-order derivative information.
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3. Algorithm. In this section, we present our proposed algorithm. We state the
algorithm in terms of a particular realization of it (e.g., denoting the iterate for each
k \in \BbbN as xk), although our subsequent analysis of it (starting in section 4.3) will be
written in terms of the stochastic process that the algorithm defines.

Each iteration of our algorithm proceeds as follows. First, given the current
iterate xk \in \BbbR n\geq 0, the algorithm computes a direction whose purpose is to deter-
mine the progress that can be made in terms of reducing a measure of violation of
a linearization of the equality constraints subject to the bound constraints. This
is done in a manner that regularizes the component of the direction that lies in
the null space of the constraint Jacobian. Specifically, the iteration commences by
computing a direction vk := uk + \nabla c(xk)wk \in \BbbR n, where uk \in Null(\nabla c(xk)T ) and
\nabla c(xk)wk \in Range(\nabla c(xk)), by solving the quadratic optimization subproblem

min
u\in \BbbR n,w\in \BbbR m

1

2
\| ck +\nabla c(xk)T\nabla c(xk)w\| 22 +

1

2
\mu k\| u\| 22

s. t. \nabla c(xk)Tu= 0 and xk + u+\nabla c(xk)w\geq 0,

(3.1)

where \mu k \in \BbbR >0 is a user-prescribed parameter. Observe that, since xk \in \BbbR n\geq 0,
this subproblem is always feasible, and by construction, it is convex. Generally, the
solution of (3.1) might not be unique, but in our setting, it is unique since \nabla c(xk)T
has full row rank. In our analysis, we show that the solution of subproblem (3.1)
is given by (uk,wk) = (0,0) if and only if the current iterate xk is stationary with
respect to the minimization of 1

2\| c(x)\| 
2
2 over x\in \BbbR n\geq 0. This means, e.g., that if ck \not = 0,

but the solution of (3.1) is (uk,wk) = (0,0)---which, by the fundamental theorem of
linear algebra, occurs if and only if vk = uk +\nabla c(xk)wk = 0---then it is reasonable to
terminate since xk is an infeasible stationary point (see (2.5)), as in our algorithm.

We do not expect the value of the regularization parameter \mu k \in \BbbR >0 to have
a significant impact on the performance of the algorithm as long as it is set small
relative to the constraint violation. (If \mu k is set too large relative to the constraint
violation, then the regularization term might cause the algorithm to compute normal
steps that are small in norm, which might slow progress.) The primary role of positive
\mu k is to ensure that subproblem (3.1) has a unique solution since it might not if this
parameter were set to zero. Nonetheless, for the sake of generality in the statement
of our algorithm and analysis, we introduce the generic sequence \{ \mu k\} .

After computing vk \in \BbbR n by solving (3.1) and generating a stochastic objective
gradient estimate gk \in \BbbR n (see Assumption 2.2), the algorithm next computes a search
direction dk \in \BbbR n by solving the quadratic optimization subproblem

min
d\in \BbbR n

gTk d+
1

2
dTHkd s. t. \nabla c(xk)T d=\nabla c(xk)T vk and xk + d\geq 0.(3.2)

By construction, this subproblem is feasible---indeed, by construction of (3.1) and vk =
uk+\nabla c(xk)wk, it follows that d= vk is feasible for (3.2)---and, under Assumption 2.3,
it is convex. The search direction dk is designed to achieve the same progress toward
linearized feasibility within the nonnegative orthant that is achieved by vk; then,
within the null space of \nabla c(xk)T and the nonnegative orthant, it aims to minimize a
(stochastically estimated) local quadratic approximation of the objective at xk.

The remainder of the kth iteration proceeds in a similar manner as in [3, 14]
with the primary goal of setting parameters and choosing a step size so as to achieve
expected decrease in a merit function. In an algorithmic framework such as ours,
one could employ an \ell p-norm merit function for any p \in [1,\infty ) and achieve similar
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3598 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

algorithmic behavior. Common choices in the literature are p = 1 and p = 2. For
example, in [3], the \ell 1-norm merit function is used. For our purposes here, we employ
the \ell 2-norm merit function, namely, \phi : \BbbR n \times \BbbR >0\rightarrow \BbbR defined by \phi (x, \tau ) = \tau f(x) +
\| c(x)\| 2. We make this choice since it simplifies expressions in our analysis; e.g.,
since subproblem (3.1) employs a squared \ell 2-norm for the first term in its objective
function, it is consistent to employ an \ell 2-norm merit function.

Back to the description of our algorithm, with the \ell 2-norm merit function in mind,
the algorithm next sets a value for the merit parameter \tau k \in \BbbR >0. This is done by
considering a local model of this merit function, namely, l :\BbbR n\times \BbbR >0\times \BbbR n\times \BbbR n\rightarrow \BbbR 
defined by l(x, \tau , g, d) = \tau (f(x) + gT d) + \| c(x) +\nabla c(x)T d\| 2 and, in particular, the
reduction in this model defined for all k \in \BbbN by

\Delta l(xk, \tau k, gk, dk) := l(xk, \tau k, gk,0) - l(xk, \tau k, gk, dk)
=  - \tau kgTk dk + \| ck\| 2  - \| ck +\nabla c(xk)T dk\| 2

(3.3)

and setting \tau k such that this reduction is sufficiently large. Specifically, with user-
prescribed (\epsilon \tau , \sigma )\in (0,1)\times (0,1), the algorithm first sets

\tau trialk \leftarrow 

\left\{     
\infty if gTk dk +

1

2
dTkHkdk \leq 0,

(1 - \sigma )(\| ck\| 2  - \| ck +\nabla c(xk)T dk\| 2)
gTk dk +

1
2d
T
kHkdk

, otherwise,
(3.4)

then sets the merit parameter value as

\tau k\leftarrow 

\Biggl\{ 
\tau k - 1 if \tau k - 1 \leq \tau trialk ,

min\{ (1 - \epsilon \tau )\tau k - 1, \tau 
trial
k \} , otherwise.

(3.5)

(The value \tau 0 \in \BbbR >0 is also prescribed by the user.) We show in our analysis (see
Lemma 4.9) that this procedure for setting \tau k ensures that \Delta l(xk, \tau k, gk, dk) is suffi-
ciently large relative to the squared norm of the search direction and the improvement
offered toward linearized feasibility. For use in the step-size procedure, the algorithm
next sets a value \xi k \in \BbbR >0 (referred to as the ratio parameter) that acts as an esti-
mate for a lower bound of the ratio between the model reduction and a multiple of
the squared norm of the search direction. Specifically, if dk \not = 0, it sets

\xi trialk \leftarrow \Delta l(xk, \tau k, gk, dk)

\tau k\| dk\| 22
, then \xi k\leftarrow 

\Biggl\{ 
\xi k - 1 if \xi k - 1 \leq \xi trialk ,

min\{ (1 - \epsilon \xi )\xi k - 1, \xi 
trial
k \} , otherwise,

(3.6)

where (\xi 0, \epsilon \xi ) \in \BbbR >0 \times (0,1) are user-prescribed parameters; see [3, 14] for further
motivation. On the other hand, if dk = 0, then it sets \xi trialk \leftarrow \infty and \xi k\leftarrow \xi k - 1.

The step-size selection procedure, which, for all k \in \BbbN , chooses the step size
\alpha k \in \BbbR >0, can now be summarized as follows. First, if dk = 0, then the algorithm
simply sets all step-size values to 1. Second, suppose that dk \not = 0. With user-prescribed
\eta \in (0,1), \theta \in \BbbR >0, and \{ \beta k\} with \beta k \in (0,1] for all k \in \BbbN such that

\alpha min
k \leftarrow 2(1 - \eta )\beta k\xi k\tau k

\tau kL+\Gamma 
\in (0,1] for all k \in \BbbN (3.7)

and with the strongly convex function \varphi k :\BbbR \geq 0\rightarrow \BbbR defined by

\varphi k(\alpha ) = (\eta  - 1)\alpha \beta k\Delta l(xk, \tau k, gk, dk) + \| ck + \alpha \nabla c(xk)T dk\| 2  - \| ck\| 2

+ \alpha (\| ck\| 2  - \| ck +\nabla c(xk)T dk\| 2) +
1

2
(\tau kL+\Gamma )\alpha 2\| dk\| 22,

(3.8)
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Algorithm 3.1. Stochastic SQP.

Require: x1 \in \BbbR n\geq 0; \{ \mu k\} \subset \BbbR >0; \{ Hk\} \subset \BbbR n\times n satisfying Assumption 2.3; \tau 0 \in \BbbR >0;
\xi 0 \in \BbbR >0; \{ \sigma , \eta , \epsilon \tau , \epsilon \xi \} \subset (0,1); \{ \beta k\} \subset (0,1] satisfying (3.7); \theta \in \BbbR >0; \{ \rho k\} \subset \BbbR >0;
Lipschitz constants L\in \BbbR >0 and \Gamma \in \BbbR >0 (see (2.3))

1: for k \in \BbbN , do
2: compute vk \in \BbbR n by solving (3.1)
3: if ck \not = 0 and vk = 0, then terminate and return xk (infeasible stationary)
4: compute gk \in \BbbR n (recall Assumption 2.2)
5: compute dk \in \BbbR n by solving (3.2)
6: set \tau trialk by (3.4) and \tau k by (3.5)
7: if dk = 0, then
8: set \xi trialk \leftarrow \infty , \xi k\leftarrow \xi k - 1, \alpha 

min
k \leftarrow 1, \alpha \varphi k \leftarrow 1, \alpha max

k \leftarrow 1, and \alpha k\leftarrow 1
9: else
10: set \xi trialk and \xi k by (3.6), \alpha min

k by (3.7), and both \alpha \varphi k and \alpha max
k by (3.9)

11: choose \alpha k \in [\alpha min
k , \alpha max

k ]
12: end if
13: Set xk+1\leftarrow xk + \alpha kdk
14: end for

the algorithm sets the values

\alpha \varphi k \leftarrow max\{ \alpha \in \BbbR \geq 0 :\varphi k(\alpha )\leq 0\} and \alpha max
k \leftarrow min\{ 1, \alpha \varphi k , \alpha 

min
k + \theta \beta k\} .(3.9)

The algorithm then chooses the step size \alpha k as any value in [\alpha min
k , \alpha max

k ]. Over-
all, this strategy involves the computation of a minimal, conservative step-size value
(\alpha min
k ) that could simply be used as the step size to ensure our convergence guaran-

tees. However, so that the algorithm may take larger step sizes to improve practi-
cal performance while still ensuring our convergence guarantees, the procedure com-
putes a maximal step-size value (\alpha max

k ) that ensures that the resulting step satisfies
a sufficient--decrease-type condition. This can be seen in our analysis in Lemma 4.12.

A complete statement of our algorithm is given as Algorithm 3.1.

4. Analysis. In this section, we provide theoretical results for Algorithm 3.1.
We begin by introducing common assumptions under which one can establish sta-
tionarity measures for problem (2.1) that are defined by solutions of (3.1) and/or
(3.2). These stationarity measures allow us to connect our convergence guarantees for
Algorithm 3.1 with stationarity conditions for (2.1). Then, under Assumptions 2.1
and 2.3, we prove generally applicable results pertaining to the behavior of algorith-
mic quantities in any run of the algorithm. These results reveal that the algorithm is
well defined in the sense that any run will either terminate and return an infeasible
stationary point or generate an infinite sequence of iterates. We then consider the
convergence properties of the algorithm in the event that the (monotonically nonin-
creasing) merit parameter sequence eventually produces values that are sufficiently
small, yet bounded away from zero, which, as shown in our analysis, means that
the sequence ultimately becomes constant at a sufficiently small value. This analy-
sis, which includes our main convergence results for the algorithm, is provided under
Assumption 4.15 stated in section 4.3. We follow this analysis with a section on theo-
retical results related to the occurrence of the event in Assumption 4.15. As in [3] for
the equality-constraints-only setting, this discussion illuminates the fact that, while
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3600 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

the event in Assumption 4.15 is not always guaranteed to occur due to the looseness
of our assumptions about properties of the stochastic gradient estimates, the event
represents likely behavior in practice, which shows that our convergence results about
the algorithm are meaningful for real-world situations. We conclude this section with
a discussion of the behavior of the algorithm in the deterministic setting, i.e., when the
true gradient of the objective is employed in all iterations. This discussion is meant to
provide confidence to a user that our algorithm is based on one that has state-of-the-
art convergence properties under common assumptions in the deterministic setting.

4.1. Subproblems and stationarity measures. We begin by showing that
subproblem (3.1) yields a zero solution if and only if the point defining the subproblem
is feasible for problem (2.1) or an infeasible stationary point.

Lemma 4.1. Suppose that Assumption 2.1 holds and x \in \scrX \cap \BbbR n\geq 0, and, given
\mu \in \BbbR >0, consider the quadratic optimization problem (recall (3.1))

min
u\in \BbbR n,w\in \BbbR m

1

2
\| c(x) +\nabla c(x)T\nabla c(x)w\| 22 +

1

2
\mu \| u\| 22

s. t. \nabla c(x)Tu= 0 and x+ u+\nabla c(x)w\geq 0.

(4.1)

Then, the unique optimal solution of problem (4.1) is (u,w) = (0,0) if and only if x
is feasible for problem (2.1) or an infeasible stationary point (i.e., it satisfies (2.5)),
whereas (u,w) \not = (0,0) if and only if \| c(x)\| 2 > \| c(x) +\nabla c(x)T\nabla c(x)w\| 2.

Proof. Suppose that the conditions of the lemma hold, and let (u,w) be the
unique optimal solution of (4.1). Since x \in \BbbR n\geq 0, it follows that (0,0) is feasible for
(4.1). In addition, necessary and sufficient optimality conditions for (4.1) are that,
corresponding to (u,w)\in \BbbR n \times \BbbR m, there exists (\gamma , \delta )\in \BbbR m \times \BbbR n with

\nabla c(x)T\nabla c(x)c(x) +\nabla c(x)T\nabla c(x)\nabla c(x)T\nabla c(x)w - \nabla c(x)T \delta = 0,

\mu u+\nabla c(x)\gamma  - \delta = 0, \nabla c(x)Tu= 0, and 0\leq \delta \bot x+ u+\nabla c(x)w\geq 0.
(4.2)

If (u,w) = (0,0), then it follows from (4.2) that

\nabla c(x)T\nabla c(x)c(x) - \nabla c(x)T \delta = 0, \nabla c(x)\gamma  - \delta = 0, and 0\leq \delta \bot x\geq 0.(4.3)

Since \nabla c(x)T has full row rank, (4.3) implies that \gamma = (\nabla c(x)T\nabla c(x)) - 1\nabla c(x)T \delta =
c(x), \delta = \nabla c(x)c(x), and 0 \leq \nabla c(x)c(x) \bot x \geq 0, which, from (2.5), means that x is
either feasible or an infeasible stationary point, as desired. On the other hand, if x is
either feasible or an infeasible stationary point, meaning that 0\leq \nabla c(x)c(x)\bot x\geq 0,
then u = 0, w = 0, \gamma = c(x), and \delta = \nabla c(x)c(x) satisfy (4.2), and this solution (i.e.,
(u,w) = (0,0)) is unique since the objective of (4.1) is strongly convex.

Now, let us show that the unique optimal solution of (4.1) is (u,w) \not = (0,0) if and
only if \| c(x)\| 2 > \| c(x)+\nabla c(x)T\nabla c(x)w\| 2. If \| c(x)\| 2 > \| c(x)+\nabla c(x)T\nabla c(x)w\| 2, then
w \not = 0 follows trivially, giving the desired conclusion. To prove the reverse implication,
let us consider two cases. If u \not = 0, then, since (0,0) is feasible for (4.1), we have that
1
2\| c(x)\| 

2
2 \geq 1

2\| c(x) + \nabla c(x)T\nabla c(x)w\| 22 + 1
2\mu \| u\| 

2
2 >

1
2\| c(x) + \nabla c(x)T\nabla c(x)w\| 22, as

desired. Second, if u = 0 and w \not = 0, then w is the minimizer of the strongly convex
objective 1

2\| c(x)+\nabla c(x)
T\nabla c(x)w\| 22 subject to x+\nabla c(x)w\geq 0. Since 0 is feasible for

this problem, w \not = 0 means that 1
2\| c(x)\| 

2
2 >

1
2\| c(x) +\nabla c(x)

T\nabla c(x)w\| 22, as desired.
We now show that, under common assumptions and given xk \in \BbbR n\geq 0, the quantity

\| vk\| 22, where vk \in \BbbR n solves subproblem (3.1), represents a stationarity measure with
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respect to the problem to minimize 1
2\| c(x)\| 

2
2 subject to x\in \BbbR n\geq 0. (The assumption in

the lemma that \mu k = \mu \in \BbbR >0 for all k \in \BbbN could be relaxed; see Remark 4.6 at the
end of this subsection. We consider this case for the sake of brevity.)

Lemma 4.2. Suppose that Assumption 2.1 holds and there exists infinite \scrS \subseteq \BbbN 
such that, for some sequence \{ xk\} \subset \scrX \cap \BbbR n\geq 0, one finds that \{ xk\} k\in \scrS \rightarrow x\ast for
some x\ast \in \scrX \cap \BbbR n\geq 0, where, with \scrA (x) := \{ i \in [n] : xi = 0\} , I\scrA (x) denoting the
matrix composed of rows of I \in \BbbR n\times n corresponding to indices in \scrA (x), and \nabla c(x)\scrA (x)

denoting the matrix composed of rows of \nabla c(x) corresponding to indices in \scrA (x), one
finds that

(i) [\nabla c(x\ast )c(x\ast )]i > 0 for all i\in \scrA (x\ast ) and
(ii) the following matrix has full row rank: [ 0 \nabla c(x\ast )

T

\nabla c(x\ast )\scrA (x\ast ) I\scrA (x\ast )
].

Then, with \mu k = \mu \in \BbbR >0 for all k \in \BbbN and with (uk,wk) solving subproblem (3.1) and
vk := uk+\nabla c(x)wk for all k \in \BbbN , it follows that x\ast satisfies the stationarity conditions
(2.5) if and only if \{ vk\} k\in \scrS \rightarrow 0.

Proof. Let \scrA \ast :=\scrA (x\ast ) and j(x) :=\nabla c(x)T , and consider the linear system\left[    
j(x)j(x)T j(x)j(x)T 0 0  - j(x)\scrA \ast 

0 \mu I j(x)T  - IT\scrA \ast 
0 j(x) 0 0

j(x)T\scrA \ast 
I\scrA \ast 0 0

\right]    
\left[    
w
u
\gamma 
\delta \scrA \ast 

\right]    =

\left[    
 - j(x)j(x)T c(x)

0
0
 - x\scrA \ast 

\right]    .
Since, under the conditions of the lemma, the matrix in this linear system is nonsin-
gular when x= x\ast (e.g., this follows from [42, Theorem 1.5.1] and (ii)), it follows that
there exists an open ball \scrB \ast centered at x\ast such that, for each x \in \scrB \ast \cap \scrX \cap \BbbR n\geq 0,
this linear system has a unique solution, call it (w(x), u(x), \gamma (x), \delta \scrA \ast (x)), and---due
to continuity of the left-hand-side matrix and right-hand-side vector with respect to
x---this solution varies continuously over \scrB \ast \cap \scrX \cap \BbbR n\geq 0. If x\ast satisfies (2.5), then
it follows that (0,0, c(x\ast ), [j(x\ast )

T c(x\ast )]\scrA \ast ) (with [j(x\ast )
T c(x\ast )]\scrA \ast > 0) is the unique

solution of the system at x = x\ast and, for all x \in \scrB \ast \cap \scrX \cap \BbbR n\geq 0, the solution of
the system in conjunction with \delta i = 0 for all i /\in \scrA \ast satisfies (4.2), meaning that
the components (u(x),w(x)) represent the unique optimal solution of problem (4.1).
Hence, with respect to the quantities in the lemma and using Assumption 2.1, one
finds that \{ vk\} k\in \scrS \rightarrow 0, as desired. To prove the reverse inclusion, suppose that
\{ vk\} k\in \scrS \rightarrow 0, from which it follows by the fundamental theorem of linear algebra and
(ii) in Lemma 4.2 that \{ (uk,wk)\} k\in \scrS \rightarrow 0. For all k \in \scrS , let (uk,wk, \gamma k, \delta k) be a
primal-dual optimal solution of (3.1) (satisfying optimality conditions of the form in
(4.2)). One finds, under the conditions of the lemma, that, for all sufficiently large
k \in \scrS , this solution has [\delta k]i = 0 for all i /\in \scrA (x\ast ) whereas (uk,wk, \gamma k, [\delta k]\scrA \ast ) solves
the linear system above at x= xk. Since, by the arguments above, this solution varies
continuously within \scrB \ast \cap \scrX \cap \BbbR n\geq 0, the fact that \{ xk\} k\in \scrS \rightarrow x\ast implies that x\ast satisfies
(2.5), as desired.

In fact, under the conditions of the prior lemma, the quantity \| ck\| 2  - \| ck +
\nabla c(xk)T vk\| 2 also represents a stationarity measure for the problem to minimize
1
2\| c(x)\| 

2
2 subject to x\in \BbbR n\geq 0. This is shown in the following lemma.

Lemma 4.3. Suppose that Assumption 2.1 holds, \mu k = \mu \in \BbbR >0 for all k \in \BbbN , and
there exist \lambda \in \BbbR >0 and infinite \scrS \lambda \subseteq \BbbN such that, for some \{ xk\} \subset \scrX \cap \BbbR n\geq 0, one finds
that \nabla c(xk)T\nabla c(xk)\succeq \lambda I for all k \in \scrS \lambda . Then, there exists \kappa v,2 \in \BbbR >0 such that

\| ck\| 2  - \| ck +\nabla c(xk)T vk\| 2 \geq \kappa v,2\| vk\| 22 for all k \in \scrS \lambda ,(4.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

2/
24

 to
 1

28
.1

80
.2

47
.2

23
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y
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where vk = uk +\nabla c(xk)wk with (uk,wk) being the unique optimal solution of (3.1).
Consequently, under the conditions of Lemma 4.2, if \scrS is defined as in Lemma 4.2
and there exists \lambda \in \BbbR >0 and infinite \scrS \lambda \subseteq \scrS such that, for some \{ xk\} \subset \scrX \cap \BbbR n\geq 0,
one finds that \nabla c(xk)T\nabla c(xk)\succeq \lambda I for all k \in \scrS \lambda , then it follows that \{ vk\} k\in \scrS \rightarrow 0 if
and only if \{ \| ck\| 2  - \| ck +\nabla c(xk)T vk\| 2\} k\in \scrS \rightarrow 0.

Proof. Consider arbitrary k \in \scrS \lambda . Under the stated conditions with jk :=
\nabla c(xk)T , Lemma 4.1 implies that \| ck + jkvk\| 2 \leq \| ck\| 2. Hence, by Assumption 2.1,

\| ck\| 22  - \| ck + jkvk\| 22 = (\| ck\| 2 + \| ck + jkvk\| 2)(\| ck\| 2  - \| ck + jkvk\| 2)
\leq 2\| ck\| 2(\| ck\| 2  - \| ck + jkvk\| 2)\leq 2\kappa c(\| ck\| 2  - \| ck + jkvk\| 2).

(4.5)

If vk = 0, then (4.4) follows trivially. Hence, we may proceed under the assumption
that vk \not = 0, which, by vk = uk+j

T
k wk and the fundamental theorem of linear algebra,

means that uk \not = 0 and/or wk \not = 0. If wk = 0, then it follows, by construction of (3.1),
that uk = 0 as well. Hence, we may conclude from vk \not = 0 that, in fact, wk \not = 0. Since
(uk,wk) is the unique optimal solution of (3.1), it follows that \alpha \ast 

k = 1 is the optimal
solution of the strongly convex quadratic optimization problem

min
\alpha \in [0,1]

1

2
\| ck + \alpha jkj

T
k wk\| 22 +

1

2
\mu k\| \alpha uk\| 22,(4.6)

which further implies (since an optimality condition of (4.6) is that the derivative of
its objective function with respect to \alpha is less than or equal to zero at \alpha \ast 

k = 1) that
 - cTk jkjTk wk \geq \| jkjTk wk\| 22 + \mu k\| uk\| 22. Consequently, one finds that

\| ck\| 22  - \| ck + jkvk\| 22 = \| ck\| 22  - \| ck + jkj
T
k wk\| 22

= - 2cTk jkjTk wk  - \| jkjTk wk\| 22 \geq \| jkjTk wk\| 22 + 2\mu k\| uk\| 22.
(4.7)

With (4.5) and (4.7), it follows from Assumption 2.1, the conditions of the lemma,
and the Cauchy--Schwarz inequality implying that \| wk\| 2 \geq \| jTk wk\| 2/\| jTk \| 2 that

\| ck\| 2  - \| ck + jkvk\| 2 \geq (2\kappa c)
 - 1(\| ck\| 22  - \| ck + jkvk\| 22)

\geq (2\kappa c)
 - 1(\| jkjTk wk\| 22 + 2\mu k\| uk\| 22)\geq (2\kappa c)

 - 1(\lambda 2\| wk\| 22 + 2\mu k\| uk\| 22)

\geq (2\kappa c)
 - 1

\biggl( 
\lambda 2

\kappa 2\nabla c
\| jTk wk\| 22 + 2\mu k\| uk\| 22

\biggr) 
\geq (2\kappa c)

 - 1min

\biggl\{ 
\lambda 2

\kappa 2\nabla c
,2\mu k

\biggr\} 
(\| jTk wk\| 22 + \| uk\| 22)

= (2\kappa c)
 - 1min

\biggl\{ 
\lambda 2

\kappa 2\nabla c
,2\mu 

\biggr\} 
\| vk\| 22 =: \kappa v,2\| vk\| 22,

which gives (4.4), as desired.

Next, we show that, if the point defining subproblem (3.2) is not an infeasible
stationary point for problem (2.1), then the subproblem with gk = \nabla f(xk) yields a
zero solution if and only if the point defining the subproblem is stationary for (2.1).

Lemma 4.4. Suppose that Assumption 2.1 holds and, with respect to x\in \scrX \cap \BbbR n\geq 0,
one finds that c(x) = 0. Given H \in \BbbR n\times n with H \succ 0, consider (recall (3.2))

min
d\in \BbbR n

\nabla f(x)T d+ 1

2
dTHd s. t. c(x) +\nabla c(x)T d= 0 and x+ d\geq 0.(4.8)

Then, one finds that the optimal solution of problem (4.8) is d= 0 if and only if x is
a KKT point (i.e., first-order stationary point) for problem (2.1).
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Proof. Suppose that the conditions of the lemma hold, and let d be the optimal
solution of (4.8). Since x\in \BbbR n\geq 0 and c(x) = 0, it follows that the zero vector is feasible
for (4.8). In addition, necessary and sufficient optimality conditions for subproblem
(4.8) are that, corresponding to d\in \BbbR n, there exist y \in \BbbR m and z \in \BbbR n such that

\nabla f(x) +Hd+\nabla c(x)y - z = 0, \nabla c(x)T d= 0, and 0\leq x+ d\bot z \geq 0.(4.9)

If d= 0, then, since c(x) = 0, it follows that (x, y, z) satisfies (2.4), as desired. On the
other hand, if x is a KKT point for (2.1), then there exist y \in \BbbR m and z \in \BbbR n such that
(x, y, z) satisfies (2.4), which, in turn, means that d = 0, along with (y, z), satisfies
(4.9), and this solution is unique since the objective of (4.8) is strongly convex.

We conclude this subsection by showing that, under common assumptions and
given xk \in \BbbR n\geq 0, the quantity \| dk\| 22, where dk \in \BbbR n solves subproblem (3.2) with
gk =\nabla f(xk), represents a stationarity measure with respect to (2.1). (The assumption
in the lemma that Hk = H for some H \succ 0 for all k \in \BbbN could be relaxed; see
Remark 4.6 at the end of this subsection. We consider this case for the sake of brevity.)

Lemma 4.5. Suppose that Assumption 2.1 holds and there exists infinite \scrS \subseteq \BbbN 
such that, for some sequence \{ xk\} \subset \scrX \cap \BbbR n\geq 0, one finds that \{ xk\} k\in \scrS \rightarrow x\ast for some
x\ast \in \scrX \cap \BbbR n\geq 0 with c(x\ast ) = 0 and, with the notation in Lemma 4.2, one finds that

(i)  - \nabla f(x\ast ) =\nabla c(x\ast )y - IT\scrA (x\ast )
z\scrA (x\ast ) for some (y, z\scrA (x\ast ))\in \BbbR m \times \BbbR | \scrA (x\ast )| 

>0 and

(ii) the following matrix has full row rank: [\nabla c(x\ast )
T

I\scrA (x\ast )
].

Then, with Hk = H for some H \succ 0 for all k \in \BbbN and with dk solving (3.2) with
gk =\nabla f(xk) for all k \in \BbbN , x\ast satisfies (2.4) if and only if \{ \| dk\| 22\} k\in \scrS \rightarrow 0.

Proof. Letting \scrA \ast :=\scrA (x\ast ) and considering the linear system of equations\left[  H \nabla c(x)  - IT\scrA \ast 
\nabla c(x)T 0 0
I\scrA \ast 0 0

\right]  \left[  d
y
z\scrA \ast 

\right]  =

\left[   - \nabla f(x)0
 - x\scrA \ast 

\right]  ,
the proof follows under the conditions of the lemma using the same line of deduction
as the proof of Lemma 4.2, which we omit for the sake of brevity.

Remark 4.6. One might relax the condition in Lemma 4.2 that \mu = \mu k for all
k \in \BbbN and similarly relax the condition in Lemma 4.5 that Hk =H \succ 0 for all k \in \BbbN ,
such as by requiring merely that \{ \mu k\} k\in \scrS and \{ Hk\} k\in \scrS have bounded subsequences
that converge to some \mu \in \BbbR >0 and H \succ 0, respectively. In these cases, the ``if and
only if"" statements would be replaced by ``if"" statements, which, in fact, is all that is
needed for our subsequent analysis and discussions. Nevertheless, for brevity in the
proofs, we provide the conditions that offer the stronger conclusions in these lemmas.

4.2. General algorithm behavior. We now prove generally applicable results
that hold for arbitrary k \in \BbbN in every run of Algorithm 3.1. Our initial results in
this section presume that iteration k \in \BbbN is reached, at which point certain properties
hold, e.g., xk \in \BbbR n\geq 0. Ultimately, we combine these results to prove inductively that,
in fact, these properties are guaranteed in any run for any generated k \in \BbbN ; see
Lemma 4.14. It is worthwhile to emphasize that the results in this section merely
require that gk \in \BbbR n for all k \in \BbbN , which means, for example, that Assumption 2.2 is
not needed in this section. All results that depend on the properties and effects of the
stochastic gradient estimates are found in the subsequent subsection, i.e., section 4.3.

Our first lemma follows directly from Lemma 4.1, so it is stated without proof.
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3604 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

Lemma 4.7. Suppose that Assumption 2.1 holds. Then, in any run of the algo-
rithm such that iteration k \in \BbbN is reached and xk \in \BbbR n\geq 0, it holds that vk = 0 if and
only if xk satisfies (2.5); i.e., xk is either feasible or an infeasible stationary point,
whereas vk \not = 0 if and only if \| ck\| 2 > \| ck +\nabla c(xk)T vk\| 2.

Our next result shows that, in any iteration in which the current iterate xk is
in the nonnegative orthant and \tau k - 1 > 0, the merit parameter is either kept at the
same value or decreased, and, if it is decreased, then it is decreased below a constant
fraction times its former value. As in other SQP methods with such a feature, this
ensures that, if the merit parameter sequence does not vanish (i.e., its limiting value
is nonzero), then it eventually remains at a constant positive value; see Lemma 4.14.

Lemma 4.8. Suppose that Assumption 2.1 holds. In any run of the algorithm
such that line 4 of iteration k \in \BbbN is reached, xk \in \BbbR n\geq 0, and \tau k - 1 \in \BbbR >0, it holds that
0< \tau k \leq \tau k - 1, where, if \tau k < \tau k - 1, then \tau k \leq (1 - \epsilon \tau )\tau k - 1.

Proof. Consider an arbitrary run in which line 4 of iteration k \in \BbbN is reached,
xk \in \BbbR n\geq 0, and \tau k - 1 \in \BbbR >0. Let us show that 0 < \tau k \leq \tau k - 1, in which case the fact
that \tau k < \tau k - 1 implies \tau k \leq (1 - \epsilon \tau )\tau k - 1 follows from (3.5). Toward this end, let us
next show that \tau trialk > 0. By the constraints of (3.2), (3.4), and Lemma 4.7, one finds
that \tau trialk > 0 whenever \| ck\| 2  - \| ck +\nabla c(xk)T vk\| 2 > 0. Hence, to show that one
always finds \tau trialk > 0, all that remains is to consider the case when \| ck\| 2  - \| ck +
\nabla c(xk)T vk\| 2 = 0. In this case, it follows from Lemma 4.7 that vk = 0, meaning that
d= 0 is feasible for (3.2). This, in turn, means that gTk dk+

1
2d
T
kHkdk \leq 0, so, by (3.4),

one finds that \tau trialk =\infty > 0. Since it has been shown that \tau trialk > 0, the fact that
0< \tau k \leq \tau k - 1 now follows directly from (3.5), completing the proof.

We now show that the model reduction offered by the computed search direction
satisfies a lower bound with the properties stated in our algorithm development.

Lemma 4.9. Suppose that Assumptions 2.1 and 2.3 hold. In any run of the al-
gorithm such that line 4 is reached in iteration k \in \BbbN , xk \in \BbbR n\geq 0, and \tau k \in \BbbR >0, one
finds, with \zeta from Assumption 2.3, that

\Delta l(xk, \tau k, gk, dk)\geq 
1

2
\tau k\zeta \| dk\| 22 + \sigma (\| ck\| 2  - \| ck +\nabla c(xk)T dk\| 2),(4.10)

and, if dk \not = 0, then \Delta l(xk, \tau k, gk, dk)> 0.

Proof. Consider an arbitrary run in which line 4 of iteration k \in \BbbN is reached,
xk \in \BbbR n\geq 0, and \tau k \in \BbbR >0. By (3.3) and Assumption 2.3, (4.10) is implied by

(1 - \sigma )(\| ck\| 2  - \| ck +\nabla c(xk)T dk\| 2)\geq \tau k
\biggl( 
gTk dk +

1

2
dTkHkdk

\biggr) 
.(4.11)

If gTk dk +
1
2d
T
kHkdk \leq 0, then (4.11) holds due to Lemma 4.7 and the fact that (3.2)

ensures \nabla c(xk)T vk = \nabla c(xk)T dk. On the other hand, if gTk dk +
1
2d
T
kHkdk > 0, then

one finds, by (3.4) and (3.5), that \tau k \leq \tau trialk = (1 - \sigma )(\| ck\| 2 - \| ck+\nabla c(xk)
T dk\| 2)

gTk dk+
1
2d

T
kHkdk

, from

which (4.11) follows again. Finally, that dk \not = 0 implies \Delta l(xk, \tau k, gk, dk) > 0 follows
from (4.10), \tau k \in \BbbR >0, and \zeta \in \BbbR >0 in Assumption 2.3.

Our next result is that, under the same conditions as Lemma 4.9 and under the
assumption that \xi k - 1 \in \BbbR >0, the ratio parameter is either kept at the same value or
decreased, and, like the merit parameter, if it is decreased, then it is decreased at
least below a constant fraction times its previous value.
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SQP FOR DETERMINISTIC CONSTRAINED STOCHASTIC OPT. 3605

Lemma 4.10. Suppose that Assumptions 2.1 and 2.3 hold. In any run of the
algorithm such that line 4 is reached in iteration k \in \BbbN , xk \in \BbbR n\geq 0, \tau k \in \BbbR >0, and
\xi k - 1 \in \BbbR >0, it holds that 0< \xi k \leq \xi k - 1, where, if \xi k < \xi k - 1, then \xi k \leq (1 - \epsilon \xi )\xi k - 1.

Proof. Consider an arbitrary run in which line 4 of iteration k \in \BbbN is reached,
xk \in \BbbR n\geq 0, \tau k \in \BbbR >0, and \xi k - 1 \in \BbbR >0. Let us show that 0 < \xi k \leq \xi k - 1, in which case
the fact that \xi k < \xi k - 1 implies \xi k \leq (1 - \epsilon \xi )\xi k - 1 follows from (3.6). Toward this end,
observe that, if dk = 0, then the algorithm sets \xi k \leftarrow \xi k - 1 > 0, which is consistent
with the desired conclusion. On the other hand, if dk \not = 0, then, by (3.6), \tau k \in \BbbR >0,
Lemma 4.7, the fact that (3.2) ensures \nabla c(xk)T vk =\nabla c(xk)T dk, and Lemma 4.9,

\xi trialk =
\Delta l(xk, \tau k, gk, dk)

\tau k\| dk\| 22
\geq 

1
2\tau k\zeta \| dk\| 

2
2

\tau k\| dk\| 22
=

1

2
\zeta > 0.(4.12)

Hence, by (3.6), the desired conclusion follows.

Next, we prove bounds for the step size computed in the algorithm.

Lemma 4.11. Suppose that Assumptions 2.1 and 2.3 hold. In any run of the
algorithm such that line 4 is reached in iteration k \in \BbbN , xk \in \BbbR n\geq 0, \tau k \in \BbbR >0, and
\xi k \in \BbbR >0, it holds that 0<\alpha min

k \leq \alpha max
k \leq min\{ 1, \alpha \varphi k \} , and so, xk+1 \in \BbbR n\geq 0.

Proof. Consider an arbitrary run of the algorithm in which line 4 of iteration
k \in \BbbN is reached, xk \in \BbbR n\geq 0, \tau k \in \BbbR >0, and \xi k \in \BbbR >0. Let us show that 0 < \alpha min

k \leq 
\alpha max
k \leq 1, in which case the fact that xk+1 \in \BbbR n\geq 0 follows from xk \in \BbbR n\geq 0, the fact

that the constraints of (3.2) ensure that xk + dk \in \BbbR n\geq 0, and the step size having
\alpha k \in [\alpha min

k , \alpha max
k ]\subset (0,1]. Toward this end, observe that, if dk = 0, then the algorithm

yields \alpha k = \alpha min
k = \alpha max

k = \alpha \varphi k = 1, so the conclusion follows trivially. Hence, let us
assume dk \not = 0. Observe that, from (3.7), the algorithm uses \alpha min

k with

0<\alpha min
k =

2(1 - \eta )\beta k\xi k\tau k
\tau kL+\Gamma 

\leq 1.(4.13)

Now, observing (3.9), which shows that \alpha max
k \leq min\{ 1, \alpha \varphi k \} , one finds that all that re-

mains is to prove that \alpha min
k \leq \alpha \varphi k . Let us introduce \alpha suff

k :=min\{ 1, 2(1 - \eta )\beta k\Delta l(xk,\tau k,gk,dk)
(\tau kL+\Gamma )\| dk\| 2

2
\} ,

where \alpha suff
k \in (0,1] follows by \beta k \in (0,1], Lemma 4.9, and dk \not = 0. To show that

\alpha min
k \leq \alpha \varphi k , our aim is to show that \alpha min

k \leq \alpha suff
k \leq \alpha \varphi k . First, from (3.6), one finds

that

\alpha min
k =

2(1 - \eta )\beta k\xi k\tau k
\tau kL+\Gamma 

\leq 2(1 - \eta )\beta k\xi trialk \tau k
\tau kL+\Gamma 

=
2(1 - \eta )\beta k\Delta l(xk, \tau k, gk, dk)

(\tau kL+\Gamma )\| dk\| 22
.(4.14)

Combining (4.13) and (4.14), one finds that \alpha min
k \leq \alpha suff

k , as desired. Now, toward
proving that \alpha suff

k \leq \alpha \varphi k , let us first show that \varphi k(\alpha 
suff
k ) \leq 0. From the triangle

inequality, the fact that \alpha suff
k \in (0,1], and (3.8), it follows that

\varphi k(\alpha 
suff
k ) = (\eta  - 1)\alpha suff

k \beta k\Delta l(xk, \tau k, gk, dk) + \| ck + \alpha suff
k \nabla c(xk)T dk\| 2  - \| ck\| 2

+ \alpha suff
k (\| ck\| 2  - \| ck +\nabla c(xk)T dk\| 2) +

1

2
(\tau kL+\Gamma )(\alpha suff

k )2\| dk\| 22
\leq (\eta  - 1)\alpha suff

k \beta k\Delta l(xk, \tau k, gk, dk)+(1 - \alpha suff
k )\| ck\| 2 + \alpha suff

k \| ck+\nabla c(xk)T dk\| 2
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3606 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

 - \| ck\| 2 + \alpha suff
k (\| ck\| 2  - \| ck +\nabla c(xk)T dk\| 2) +

1

2
(\tau kL+\Gamma )(\alpha suff

k )2\| dk\| 22

= (\eta  - 1)\alpha suff
k \beta k\Delta l(xk, \tau k, gk, dk) +

1

2
(\tau kL+\Gamma )(\alpha suff

k )2\| dk\| 22
\leq (\eta  - 1)\alpha suff

k \beta k\Delta l(xk, \tau k, gk, dk)

+
1

2
\alpha suff
k (\tau kL+\Gamma )\| dk\| 22

\biggl( 
2(1 - \eta )\beta k\Delta l(xk, \tau k, gk, dk)

(\tau kL+\Gamma )\| dk\| 22

\biggr) 
= 0.

Therefore, by (3.9), it follows that \alpha suff
k \leq \alpha \varphi k .

Our next lemma shows an upper bound on the change in the merit function. In
the next lemma and throughout the rest of the paper, for any k \in \BbbN such that line 4 is
reached, we let dtruek \in \BbbR n denote the solution of (3.2) when gk is replaced by \nabla f(xk).

Lemma 4.12. Suppose that Assumptions 2.1 and 2.3 hold. In any run of the
algorithm such that line 4 is reached in iteration k \in \BbbN , xk \in \BbbR \geq 0, \tau k \in \BbbR >0, and
\alpha k \in (0, \alpha \varphi k ], it holds that

\phi (xk + \alpha kdk, \tau k) - \phi (xk, \tau k)\leq  - \alpha k\Delta l(xk, \tau k,\nabla f(xk), dtruek )+\alpha k\tau k\nabla f(xk)T (dk - dtruek )

+ (1 - \eta )\alpha k\beta k\Delta l(xk, \tau k, gk, dk).

Proof. Consider an arbitrary run of the algorithm in which line 4 of iteration
k \in \BbbN is reached, xk \in \BbbR n\geq 0, \tau k \in \BbbR >0, and \alpha k \in (0, \alpha \varphi k ]. By Assumption 2.1 (which led
to (2.3)), (3.2) (which implies that ck+\nabla c(xk)T dk = ck+\nabla c(xk)T dtruek ), (3.3), (3.8),
and the fact that 0<\alpha k \leq \alpha \varphi k (which means that \varphi k(\alpha k)\leq 0), it follows that

\phi (xk + \alpha kdk, \tau k) - \phi (xk, \tau k)
= \tau k(f(xk + \alpha kdk) - fk) + \| c(xk + \alpha kdk)\| 2  - \| ck\| 2

\leq \alpha k\tau k\nabla f(xk)T dk + \| ck + \alpha k\nabla c(xk)T dk\| 2  - \| ck\| 2 +
1

2
(\tau kL+\Gamma )\alpha 2

k\| dk\| 22
= - \alpha k\Delta l(xk, \tau k,\nabla f(xk), dtruek )+\alpha k\tau k\nabla f(xk)T (dk  - dtruek )+\| ck+\alpha k\nabla c(xk)T dk\| 2

 - \| ck\| 2 + \alpha k(\| ck\| 2  - \| ck +\nabla c(xk)T dk\| 2) +
1

2
(\tau kL+\Gamma )\alpha 2

k\| dk\| 22
\leq  - \alpha k\Delta l(xk, \tau k,\nabla f(xk), dtruek ) + \alpha k\tau k\nabla f(xk)T (dk  - dtruek )

+ (1 - \eta )\alpha k\beta k\Delta l(xk, \tau k, gk, dk),

which shows the desired conclusion.

We now show that each search direction---and, similarly, the search direction that
would be computed if the true gradient of the objective function were used in place of
the stochastic gradient estimate---can be viewed as a projection of the unconstrained
minimizer of the objective of (3.2) onto the feasible region of (3.2).

Lemma 4.13. Suppose that Assumptions 2.1 and 2.3 hold. In any run of the
algorithm such that line 4 is reached in iteration k \in \BbbN , xk \in \BbbR \geq 0, and with

\scrD k := \{ d\in \BbbR n :\nabla c(xk)T (d - vk) = 0, xk+d\geq 0\} and Projk( \=D) := argmin
d\in \scrD k

\| d - \=D\| 2Hk
,

it holds that dk =Projk( - H - 1
k gk) and d

true
k =Projk( - H - 1

k \nabla f(xk)).
Proof. Consider an arbitrary run of the algorithm in which line 4 of iteration

k \in \BbbN is reached and xk \in \BbbR \geq 0. The desired conclusion follows from the facts that \scrD k
is convex and, under Assumption 2.3, Hk is SPD; in particular, one finds that
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SQP FOR DETERMINISTIC CONSTRAINED STOCHASTIC OPT. 3607

dk = argmin
d\in \scrD k

gTk d+
1

2
dTHkd= argmin

d\in \scrD k

1

2
\| d+H - 1

k gk\| 2Hk
=Projk( - H - 1

k gk),

and similarly with respect to dtruek with gk replaced by \nabla f(xk).
We are now prepared to prove Lemma 4.14, which shows that the algorithm is well

defined and either terminates finitely with an infeasible stationary point or generates
an infinite sequence of iterates with certain critical properties of the simultaneously
generated algorithmic sequences. Lemma 4.14 also reveals that the monotonically
nonincreasing merit parameter sequence either vanishes or ultimately remains con-
stant, and it reveals that the monotonically nonincreasing ratio parameter sequence
ultimately remains constant at a value that is greater than or equal to a positive real
number that is defined uniformly across all runs of the algorithm.

Lemma 4.14. Suppose that Assumptions 2.1 and 2.3 hold. In any run, either the
algorithm terminates finitely with an infeasible stationary point, or it performs an
infinite number of iterations such that, for all k \in \BbbN , it holds that

(a) xk \in \BbbR n\geq 0,
(b) vk = 0 if and only if xk satisfies (2.5),
(c) vk \not = 0 if and only if \| ck\| 2 > \| ck +\nabla c(xk)T vk\| 2,
(d) 0< \tau k \leq \tau k - 1 <\infty ,
(e) \tau k < \tau k - 1 if and only if \tau k \leq (1 - \epsilon \tau )\tau k - 1,
(f) (4.10) holds,
(g) dk \not = 0 if and only if \Delta l(xk, \tau k, gk, dk)> 0,
(h) 0< \xi k \leq \xi k - 1 <\infty ,
(i) \xi k < \xi k - 1 if and only if \xi k \leq (1 - \epsilon \xi )\xi k - 1, and
(j) 0<\alpha min

k \leq \alpha max
k \leq min\{ 1, \alpha \varphi k \} .

In addition, in any run that does not terminate finitely, it holds that
(k) either \{ \tau k\} \searrow 0 or there exists k\tau \in \BbbN and \tau min \in \BbbR >0 such that \tau k = \tau min for

all k \in \BbbN with k\geq k\tau , and
(l) there exist k\xi \in \BbbN and \xi min \in \BbbR >0 with \xi min \geq 1

2\zeta (1 - \epsilon \xi ) such that \xi k = \xi min

for all k \in \BbbN with k\geq k\xi .
Proof. Given the initialization of the algorithm, statements (a)--(j) follow by in-

duction from Lemmas 4.7--4.11. Statement (k) follows from statements (d) and (e).
Finally, to prove statement (l), consider arbitrary k \in \BbbN in a run that does not ter-
minate finitely and note that, if dk = 0, then \xi trialk \leftarrow \infty , and if dk \not = 0, then \xi trialk

satisfies (4.12), meaning that \xi trialk \geq 1
2\zeta . Consequently, by (3.6), \xi k < \xi k - 1 only if

\xi k - 1 >
1
2\zeta . This, along with statements (h) and (i), leads to the conclusion.

4.3. Convergence guarantees. We now turn to prove convergence results un-
der Assumption 4.15 below. Recalling the role of 1

2\zeta (1 - \epsilon \xi )\in \BbbR >0 in Lemma 4.14(l),
the assumption focuses on the following event for some (kmin, \tau min, fsup)\in \BbbN \times \BbbR >0 \times 
\BbbR , where, for all generated k \in \BbbN , we denote \tau true,trialk as the value of \tau trialk that would
be computed in iteration k if (3.2) were solved with \nabla f(xk) in place of gk:

\scrE (kmin, \tau min, fsup)

:= \{ An infinite number of iterations are performed, f(xk\mathrm{m}\mathrm{i}\mathrm{n})\leq fsup, and
there exist k\prime \in \BbbN with k\prime \leq kmin, \tau 

\prime \in \BbbR >0 with \tau \prime \geq \tau min,

and \xi \prime \in \BbbR >0 with \xi \prime \geq 1
2\zeta (1 - \epsilon \xi ) such that

\tau k = \tau \prime \leq \tau true,trialk and \xi k = \xi \prime for all k \in \BbbN with k\geq k\prime \} .

(4.15)
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3608 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

The following assumption is made in this subsection. We present a discussion and
supporting theoretical results about this assumption in section 4.4.

Assumption 4.15. For some (kmin, \tau min, fsup) \in \BbbN \times \BbbR >0 \times \BbbR , the event \scrE :=
\scrE (kmin, \tau min, fsup) occurs and, conditioned on the occurrence of \scrE , Assumption 2.1
holds (with the same constants as previously presented in (2.2) and (2.3)).

It is not a shortcoming of our analysis that Assumption 4.15, through the defi-
nition of \scrE , assumes that (i) an infinite number of iterations are performed, (ii) the
objective value is bounded above in iteration kmin, and (iii) \{ \xi k\} ultimately becomes
a constant sequence with value at least 1

2\zeta (1 - \epsilon \xi ) \in \BbbR >0. After all, (i) Lemma 4.14
shows that the only alternative to an infinite number of iterations being performed
is that the algorithm terminates finitely with an infeasible stationary point, in which
case there is nothing else to prove; (ii) fsup \in \BbbR can be arbitrarily large, and knowledge
of it is not required by the algorithm, so assuming that it exists is a very loose require-
ment; and (iii) Lemma 4.14(l) shows that, in any run that does not terminate finitely,
\{ \xi k\} is monotonically nonincreasing and bounded below by 1

2\zeta (1 - \epsilon \xi ) \in \BbbR >0, which
is a constant (i.e., it is not run-dependent). Overall, the only important restriction
of our analysis in this section is the fact that \scrE includes the requirement that \{ \tau k\} 
ultimately becomes constant at a value at least \tau min that is sufficiently small relative
to \{ \tau true,trialk \} . This restriction is the subject of section 4.4.

For the remainder of this subsection, we consider the stochastic process corre-
sponding to the statement of Algorithm 3.1. Specifically, the sequence

\{ (xk, vk, gk, dk, dtruek , \tau trialk , \tau true,trialk , \tau k, \xi 
trial
k , \xi k, \alpha 

min
k , \alpha \varphi k , \alpha 

max
k , \alpha k)\} 

generated in any run can be viewed as a realization of the stochastic process

\{ (Xk, Vk,Gk,Dk,D
true
k ,\scrT trial

k ,\scrT true,trial
k ,\scrT k,\Xi trial

k ,\Xi k,\scrA min
k ,\scrA \varphi k ,\scrA 

max
k ,\scrA k)\} .

Let \scrG 1 denote the \sigma -algebra defined by the initial conditions of the algorithm and, for
all k \in \BbbN with k \geq 2, let \scrG k denote the \sigma -algebra generated by the initial conditions
and the random variables \{ G1, . . . ,Gk - 1\} . Then, with respect to the event \scrE in
Assumption 4.15, denote the trace \sigma -algebra of \scrE on \scrG k as \scrF k := \scrG k \cap \scrE for all
k \in \BbbN . It follows that \{ \scrF k\} is a filtration, and we proceed in our analysis under
Assumptions 2.2, 2.3, and 4.15 (which subsumes Assumption 2.1) with the definitions
that \BbbP k[\cdot ] := \BbbP \omega [\cdot | \scrF k] and \BbbE k[\cdot ] := \BbbE \omega [\cdot | \scrF k]. We also define, with respect to \scrE , the
random variables K \prime \leq kmin, \scrT \prime \geq \tau min, and \Xi \prime \geq 1

2\zeta (1 - \epsilon \xi ), which, for a given run of
the algorithm, have the realized values k\prime , \tau \prime , and \xi \prime , respectively, defined in (4.15).
Conditioned on \scrE , one has, in any run, that

\tau min \leq \scrT \prime \leq \tau 0 and
1

2
\zeta (1 - \epsilon \xi )\leq \Xi \prime \leq \xi 0(4.16)

and that \scrT \prime and \Xi \prime are \scrF k-measurable for k= kmin \geq K \prime .
Our next lemma shows upper bounds on the norm of the difference between the

computed search direction and the search direction that would be computed with the
true gradient of the objective. (The conclusion of this lemma would hold even without
assuming that the event \scrE occurs, but in the result, we condition on \scrF k := \scrG k \cap \scrE so
that it may be used directly in our ultimate results under \scrE .)

Lemma 4.16. Suppose that Assumptions 2.2, 2.3, and 4.15 hold. For all k \in \BbbN ,

\| Dk  - Dtrue
k \| 2 \leq \zeta  - 1\| Gk  - \nabla f(Xk)\| 2

and \BbbE k[\| Dk  - Dtrue
k \| 2]\leq \zeta  - 1\BbbE k[\| Gk  - \nabla f(Xk)\| 2]\leq \zeta  - 1\surd \rho k.
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SQP FOR DETERMINISTIC CONSTRAINED STOCHASTIC OPT. 3609

Proof. Consider arbitrary k \in \BbbN under the stated conditions. Lemma 4.13
and the obtuse angle lemma for projections [6, Proposition 1.1.9] imply that (Dk  - 
Dtrue
k )THk( - H - 1

k \nabla f(Xk)  - Dtrue
k ) \leq 0 and (Dtrue

k  - Dk)
THk( - H - 1

k Gk  - Dk) \leq 0.
Summing these inequalities yields

0\geq (Dk  - Dtrue
k )THk( - H - 1

k \nabla f(Xk) - Dtrue
k ) + (Dtrue

k  - Dk)
THk( - H - 1

k Gk  - Dk)

= \| Dk  - Dtrue
k \| 2Hk

 - (Dk  - Dtrue
k )T (\nabla f(Xk) - Gk).

Hence, by the Cauchy--Schwarz inequality, it follows that \| Dk  - Dtrue
k \| 2Hk

\leq (Dk  - 
Dtrue
k )T (\nabla f(Xk) - Gk)\leq \| Dk - Dtrue

k \| 2\| \nabla f(Xk) - Gk\| 2, which shows, under Assump-
tion 2.3, that \| Dk  - Dtrue

k \| 2 \leq \zeta  - 1\| Gk  - \nabla f(Xk)\| 2, as desired. Then, from this in-
equality, Assumption 2.2, and Jensen's inequality, one has that \BbbE k[\| Gk - \nabla f(Xk)\| 2]\leq \sqrt{} 

\BbbE k[\| Gk  - \nabla f(Xk)\| 22]\leq 
\surd 
\rho k, from which the remainder of the conclusion follows.

We now show an upper bound on the expected difference between inner products
involving the true and stochastic gradients and the true and stochastic directions.

Lemma 4.17. Suppose that Assumptions 2.2, 2.3, and 4.15 hold. For all k\geq kmin,

| \BbbE k[GTkDk  - \nabla f(Xk)
TDtrue

k ]| \leq \zeta  - 1(\rho k + \kappa \nabla f
\surd 
\rho k)

and \BbbE k[\Delta l(Xk,\scrT k,Gk,Dk)] - \Delta l(Xk,\scrT \prime ,\nabla f(Xk),D
true
k )\leq \scrT \prime \zeta  - 1(\rho k + \kappa \nabla f

\surd 
\rho k).

Proof. Consider arbitrary k\geq kmin under the stated conditions. From the triangle
and Cauchy--Schwarz inequalities and Lemma 4.16, it holds that

| \BbbE k[GTkDk  - \nabla f(Xk)
TDtrue

k ]| 
= | \BbbE k[(Gk  - \nabla f(Xk))

TDtrue
k + (Gk  - \nabla f(Xk))

T (Dk  - Dtrue
k )

+\nabla f(Xk)
T (Dk  - Dtrue

k )]| 
= | \BbbE k[(Gk  - \nabla f(Xk))

T (Dk  - Dtrue
k )] +\BbbE k[\nabla f(Xk)

T (Dk  - Dtrue
k )]| 

\leq \BbbE k[\| Gk  - \nabla f(Xk)\| 2\| Dk  - Dtrue
k \| 2] + \| \nabla f(Xk)\| 2\BbbE k[\| Dk  - Dtrue

k \| 2]
\leq \zeta  - 1\BbbE k[\| Gk  - \nabla f(Xk)\| 22] + \zeta  - 1\kappa \nabla f\BbbE k[\| Gk - \nabla f(Xk)\| 2]\leq \zeta  - 1\rho k + \zeta  - 1\kappa \nabla f

\surd 
\rho k,

which gives the first result. Then, for k\geq kmin, (3.3) and the equation above give

\BbbE k[\Delta l(Xk,\scrT k,Gk,Dk)] - \Delta l(Xk,\scrT \prime ,\nabla f(Xk),D
true
k )

= \scrT \prime \BbbE k[\nabla f(Xk)
TDtrue

k  - GTkDk]\leq \scrT \prime \zeta  - 1(\rho k + \kappa \nabla f
\surd 
\rho k),

which completes the proof.

Our next lemma shows a lower bound on the true model reduction. In Lemma 4.18
and our subsequent results, we define Jk :=\nabla c(Xk)

T for the sake of brevity.

Lemma 4.18. Suppose that Assumptions 2.2, 2.3, and 4.15 hold. For all k\geq kmin,

\Delta l(Xk,\scrT k,\nabla f(Xk),D
true
k )\geq 1

2
\scrT \prime \zeta \| Dtrue

k \| 22 + \sigma (\| c(Xk)\| 2  - \| c(Xk) + JkD
true
k \| 2)\geq 0.

Proof. Consider arbitrary k \geq kmin under the stated conditions. By (3.3), the
fact that \scrT k = \scrT \prime , and Assumption 2.3, the first desired conclusion is implied by

(1 - \sigma )(\| c(Xk)\| 2  - \| c(Xk) + JkD
true
k \| 2)\geq \scrT \prime (\nabla f(Xk)

TDtrue
k +

1

2
(Dtrue

k )THkD
true
k ).

If \nabla f(Xk)
TDtrue

k + 1
2 (D

true
k )THkD

true
k \leq 0, then the above holds due to Lemma 4.14

and the fact that JkD
true
k = JkVk; else, \nabla f(Xk)

TDtrue
k + 1

2 (D
true
k )THkD

true
k > 0,

in which case one finds, from the conditions of Lemma 4.18, (3.4), and (3.5), that
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3610 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

\scrT k = \scrT \prime \leq \scrT true,trial
k =

(1 - \sigma )(\| c(Xk)\| 2 - \| c(Xk)+JkD
\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}
k \| 2)

\nabla f(Xk)TD\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}
k + 1

2 (D
\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}
k )THkD\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}

k

, from which the displayed

inequality above follows again. Finally, the remaining desired conclusion follows from
the first conclusion, Lemma 4.14, and JkD

true
k = JkVk.

Next, we prove a critical upper bound on the expected value of the second term
on the right-hand side of the upper bound proved in Lemma 4.12.

Lemma 4.19. Suppose that Assumptions 2.2, 2.3, and 4.15 hold. For all k\geq kmin,

\BbbE k[\scrA k\scrT k\nabla f(Xk)
T (Dk  - Dtrue

k )]\leq ( 2(1 - \eta )\Xi 
\prime \scrT \prime 

\scrT \prime L+\Gamma + \theta )\beta k\scrT \prime \kappa \nabla f\zeta 
 - 1\surd \rho k.

Proof. For arbitrary k\geq kmin under the conditions of Lemma 4.19, (3.7) and (3.9)
yield

\scrA min
k = \beta k\scrA \prime and \scrA max

k \leq \scrA min
k + \theta \beta k, where \scrA \prime =

2(1 - \eta )\Xi \prime \scrT \prime 

\scrT \prime L+\Gamma 
.(4.17)

Letting \scrP k denote the event that \nabla f(Xk)
T (Dk  - Dtrue

k ) \geq 0 and letting \scrP ck denote
the event that \nabla f(Xk)

T (Dk  - Dtrue
k ) < 0, the law of total expectation and the fact

that \scrT \prime and \Xi \prime are \scrF k-measurable for k\geq kmin show that

\BbbE k[\scrA k\scrT k\nabla f(Xk)
T (Dk  - Dtrue

k )]

= \BbbP k[\scrP k] \cdot \BbbE k[\scrA k\scrT \prime \nabla f(Xk)
T (Dk  - Dtrue

k )| \scrP k]
+ \BbbP k[\scrP ck] \cdot \BbbE k[\scrA k\scrT \prime \nabla f(Xk)

T (Dk  - Dtrue
k )| \scrP ck]

\leq (\scrA min
k + \theta \beta k)\scrT \prime \BbbP k[\scrP k] \cdot \BbbE k[\nabla f(Xk)

T (Dk  - Dtrue
k )| \scrP k]

+\scrA min
k \scrT \prime \BbbP k[\scrP ck] \cdot \BbbE k[\nabla f(Xk)

T (Dk  - Dtrue
k )| \scrP ck]

=\scrA min
k \scrT \prime \BbbE k[\nabla f(Xk)

T (Dk - Dtrue
k )]+\theta \beta k\scrT \prime \BbbP k[\scrP k] \cdot \BbbE k[\nabla f(Xk)

T (Dk - Dtrue
k )| \scrP k].

The Cauchy--Schwarz inequality and law of total expectation show that

\BbbP k[\scrP k] \cdot \BbbE k[\nabla f(Xk)
T (Dk  - Dtrue

k )| \scrP k]\leq \BbbP k[\scrP k] \cdot \BbbE k[\| \nabla f(Xk)\| 2\| Dk  - Dtrue
k \| 2| \scrP k]

=\BbbE k[\| \nabla f(Xk)\| 2\| Dk  - Dtrue
k \| 2] - \BbbP k[\scrP ck] \cdot \BbbE k[\| \nabla f(Xk)\| 2\| Dk  - Dtrue

k \| 2| \scrP ck]
\leq \BbbE k[\| \nabla f(Xk)\| 2\| Dk  - Dtrue

k \| 2],

so from the above, the Cauchy--Schwarz inequality, Assumption 4.15, and Lemma 4.16,

\BbbE k[\scrA k\scrT k\nabla f(Xk)
T (Dk  - Dtrue

k )]\leq (\scrA min
k + \theta \beta k)\scrT \prime \| \nabla f(Xk)\| 2\BbbE k[\| Dk  - Dtrue

k \| 2]

\leq 
\biggl( 
2(1 - \eta )\Xi \prime \scrT \prime 

\scrT \prime L+\Gamma 
+ \theta 

\biggr) 
\beta k\scrT \prime \kappa \nabla f\zeta 

 - 1\surd \rho k,

which gives the desired conclusion.

We now present, as Lemma 4.20, results pertaining to the asymptotic behavior
of the model reductions generated by the algorithm. In the subsequent theorem after
Lemma 4.20, these results will be translated in terms of quantities that, as seen in
section 4.1, can be connected to stationarity measures related to problem (2.1). We
remark that the conditions of the lemma can be satisfied in a run-dependent man-
ner if, every time the merit or ratio parameter is decreased, say, in iteration \^k \in \BbbN ,
the sequence \{ \beta k\} is ``restarted"" such that, with \alpha \prime = 2(1  - \eta )\xi \^k\tau \^k/(\tau \^kL + \Gamma ) and

some (run-independent) \psi \in (0,1], one chooses \beta k = \beta = \psi \alpha \prime 

2(1 - \eta )(\alpha \prime +\theta ) for part (a) of

Lemma 4.20 and \beta k =
1

k - \^k+1
\psi \alpha \prime 

2(1 - \eta )(\alpha \prime +\theta ) for part (b); such a scheme was described

in [3] as well. Notice that, in this situation, \beta and \{ \beta k\} k\geq \^k in parts (a) and (b), respec-
tively, are random variables, but importantly, they are \scrF k-measurable for k \geq kmin.
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Alternatively, one could choose \{ \beta k\} using the same formulas, but with \xi min and \tau min

in place of \xi k and \tau k, respectively, in the formula for \alpha \prime , in which case the choices are
run independent. The downside of relying on this latter situation is that it requires
knowledge of \xi min and \tau min, which would not typically be known a priori. Hence,
we analyze the former scheme but use run-dependent bounds that, under \scrE , are de-
fined with respect to \xi min and \tau min. These values are unknown by the algorithm but
nonetheless can be employed for our theoretical analysis.

We also remark that, for case (a) in Lemma 4.20, the sequence \{ \rho k\} , which bounds
the expected squared error in the stochastic gradient estimates, can be a constant
sequence. However, for case (b), the relationship between \{ \rho k\} and \{ \beta k\} means that
the expected squared error in the gradient estimates must vanish as k \rightarrow \infty . This
requirement, which is stronger than the requirement for the equality-constraints-only
case in [3], is needed to overcome the fact that, in the presence of bound constraints,
the search directions can be biased estimates of their true counterparts. We discuss
this further with an illustrative example after the proof of Lemma 4.20.

Lemma 4.20. Under Assumptions 2.2, 2.3, and 4.15, suppose that \{ \rho k\} is chosen
such that there exists \iota \in \BbbR >0 with \rho k \leq \iota \beta 2

k for all k \in \BbbN with k \geq kmin, and define

\alpha \prime 
min = 2(1 - \eta )\xi \mathrm{m}\mathrm{i}\mathrm{n}\tau \mathrm{m}\mathrm{i}\mathrm{n}

\tau \mathrm{m}\mathrm{i}\mathrm{n}L+\Gamma , \alpha \prime 
max = 2(1 - \eta )\xi 0\tau 0

\tau 0L+\Gamma , and \rho \prime max = (\alpha \prime 
max + \theta )\tau 0\zeta 

 - 1(\kappa \nabla f
\surd 
\iota + (1 - 

\eta )(\iota + \kappa \nabla f
\surd 
\iota )). Then, with \scrA \prime defined in (4.17) and \BbbE [\cdot | \scrE ] denoting expectation over

all realizations of the algorithm conditioned on \scrE , the following statements hold true.
(a) If \beta k = \beta =\psi \scrA \prime 

2(1 - \eta )(\scrA \prime +\theta ) for some \psi \in (0,1] for all k\geq kmin, then

limsup
k\rightarrow \infty 

\BbbE 

\left[  1
k

k\mathrm{m}\mathrm{i}\mathrm{n}+k - 1\sum 
j=k\mathrm{m}\mathrm{i}\mathrm{n}

\Delta l(Xj ,\scrT \prime ,\nabla f(Xj),D
true
j )

\bigm| \bigm| \bigm| \bigm| \bigm| \scrE 
\right]  

\leq \psi (\alpha \prime 
max)

2(\alpha \prime 
min + \theta )\rho \prime max

2(1 - \eta )(1 - \psi 
2 )(\alpha 

\prime 
min)

2(\alpha \prime 
max + \theta )2

;

(b) if
\sum \infty 
k=k\mathrm{m}\mathrm{i}\mathrm{n}

\beta k = \infty ,
\sum \infty 
k=k\mathrm{m}\mathrm{i}\mathrm{n}

\beta 2
k < \infty , and \beta k \leq \psi \scrA \prime 

2(1 - \eta )(\scrA \prime +\theta ) for some

\psi \in (0,1] for all k\geq kmin, it holds that

\BbbE 

\left[  1\sum k\mathrm{m}\mathrm{i}\mathrm{n}+k - 1
j=k\mathrm{m}\mathrm{i}\mathrm{n}

\beta j

k\mathrm{m}\mathrm{i}\mathrm{n}+k - 1\sum 
j=k\mathrm{m}\mathrm{i}\mathrm{n}

\beta j\Delta l(Xj ,\scrT \prime ,\nabla f(Xj),D
true
j )

\bigm| \bigm| \bigm| \bigm| \bigm| \scrE 
\right]  k\rightarrow \infty  -  -  -  - \rightarrow 0.

Proof. For arbitrary k \geq kmin under the conditions, it follows from Lemma 4.12,
Lemma 4.18 (which shows that \Delta l(Xk,\scrT k,\nabla f(Xk),D

true
k ) \geq 0), (4.17), the fact that

\scrA k \geq \scrA min
k =\scrA \prime \beta k, Lemma 4.19, the fact that \scrA k \leq \scrA max

k \leq \scrA min
k + \theta \beta k = (\scrA \prime + \theta )\beta k,

Lemma 4.16, Lemma 4.17, and \beta k \in (0,1] that

\BbbE k[\phi (Xk+1,\scrT k) - \phi (Xk,\scrT k)] =\BbbE k[\phi (Xk +\scrA kDk,\scrT k) - \phi (Xk,\scrT k)]
\leq \BbbE k[ - \scrA k\Delta l(Xk,\scrT k,\nabla f(Xk),D

true
k )

+\scrA k\scrT k\nabla f(Xk)
T (Dk  - Dtrue

k ) + (1 - \eta )\scrA k\beta k\Delta l(Xk,\scrT k,Gk,Dk)]

\leq  - \scrA \prime \beta k\Delta l(Xk,\scrT \prime ,\nabla f(Xk),D
true
k ) + (\scrA \prime + \theta )\beta k\scrT \prime \kappa \nabla f\zeta 

 - 1\surd \rho k
+ (1 - \eta )(\scrA \prime + \theta )\beta 2

k(\Delta l(Xk,\scrT \prime ,\nabla f(Xk),D
true
k ) + \scrT \prime \zeta  - 1(\rho k + \kappa \nabla f

\surd 
\rho k))

\leq  - \scrA \prime \beta k\Delta l(Xk,\scrT \prime ,\nabla f(Xk),D
true
k ) + (\scrA \prime + \theta )\beta k\scrT \prime \kappa \nabla f\zeta 

 - 1
\surd 
\iota \beta k

+ (1 - \eta )(\scrA \prime + \theta )\beta 2
k(\Delta l(Xk,\scrT \prime ,\nabla f(Xk),D

true
k ) + \scrT \prime \zeta  - 1(\iota \beta 2

k + \kappa \nabla f
\surd 
\iota \beta k))

\leq  - \beta k(\scrA \prime  - (1 - \eta )(\scrA \prime + \theta )\beta k)\Delta l(Xk,\scrT \prime ,\nabla f(Xk),D
true
k ) +R\prime \beta 2

k,

(4.18)
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3612 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

where R\prime = (\scrA \prime + \theta )\scrT \prime \zeta  - 1(\kappa \nabla f
\surd 
\iota +(1 - \eta )(\iota +\kappa \nabla f

\surd 
\iota )). Now, from Assumption 4.15

(which subsumes Assumption 2.1), there exists \phi min \in \BbbR such that \phi (Xk,\scrT \prime )\geq \phi min

for all k \geq kmin. One also finds that \alpha \prime 
min \leq \scrA \prime \leq \alpha \prime 

max due to the monotonicity of
2(1 - \eta )\Xi \prime \tau 
\tau L+\Gamma with respect to \tau . Therefore, under part (a), in which case one finds, for

k\geq kmin, that \psi 
\alpha \prime 

\mathrm{m}\mathrm{i}\mathrm{n}

2(1 - \eta )(\alpha \prime 
\mathrm{m}\mathrm{i}\mathrm{n}+\theta )

\leq \beta \leq \psi \alpha \prime 
\mathrm{m}\mathrm{a}\mathrm{x}

2(1 - \eta )(\alpha \prime 
\mathrm{m}\mathrm{a}\mathrm{x}+\theta )

, it follows from above that

\BbbE k[\phi (Xk+1,\scrT k) - \phi (Xk,\scrT k)]

\leq  - 
\psi (1 - \psi 

2 )(\alpha 
\prime 
min)

2

2(1 - \eta )(\alpha \prime 
min + \theta )

\Delta l(Xk,\scrT \prime ,\nabla f(Xk),D
true
k )

+ \rho \prime max

\biggl( 
\psi 

\alpha \prime 
max

2(1 - \eta )(\alpha \prime 
max + \theta )

\biggr) 2

;

so, by taking total expectation conditioned on the event \scrE , one finds that

\phi min  - \BbbE [\phi (Xk\mathrm{m}\mathrm{i}\mathrm{n}
,\scrT \prime )| \scrE ]

\leq \BbbE [\phi (Xk\mathrm{m}\mathrm{i}\mathrm{n}+k,\scrT \prime ) - \phi (Xk\mathrm{m}\mathrm{i}\mathrm{n}
,\scrT \prime )| \scrE ] =\BbbE 

\left[  k\mathrm{m}\mathrm{i}\mathrm{n}+k - 1\sum 
j=k\mathrm{m}\mathrm{i}\mathrm{n}

(\phi (Xj+1,\scrT \prime ) - \phi (Xj ,\scrT \prime ))

\bigm| \bigm| \bigm| \bigm| \bigm| \scrE 
\right]  

\leq  - 
\psi (1 - \psi 

2 )(\alpha 
\prime 
min)

2

2(1 - \eta )(\alpha \prime 
min + \theta )

\BbbE 

\left[  k\mathrm{m}\mathrm{i}\mathrm{n}+k - 1\sum 
j=k\mathrm{m}\mathrm{i}\mathrm{n}

\Delta l(Xj ,\scrT \prime ,\nabla f(Xj),D
true
j )

\bigm| \bigm| \bigm| \bigm| \bigm| \scrE 
\right]  

+
k\rho \prime max(\psi \alpha 

\prime 
max)

2

(2(1 - \eta )(\alpha \prime 
max + \theta ))2

.

Observing that \BbbE [\phi (Xk\mathrm{m}\mathrm{i}\mathrm{n}
,\scrT \prime )| \scrE ] is bounded above under Assumption 4.15 and con-

sidering k \rightarrow \infty , the conclusion of part (a) follows. On the other hand, under the
conditions of part (b), it follows in a similar manner that, for any k \in \BbbN , one finds

\phi min  - \BbbE [\phi (Xk\mathrm{m}\mathrm{i}\mathrm{n}
,\scrT \prime )| \scrE ]

\leq \BbbE [\phi (Xk\mathrm{m}\mathrm{i}\mathrm{n}+k,\scrT \prime ) - \phi (Xk\mathrm{m}\mathrm{i}\mathrm{n}
,\scrT \prime )| \scrE ] =\BbbE 

\left[  k\mathrm{m}\mathrm{i}\mathrm{n}+k - 1\sum 
j=k\mathrm{m}\mathrm{i}\mathrm{n}

(\phi (Xj+1,\scrT \prime ) - \phi (Xj ,\scrT \prime ))

\bigm| \bigm| \bigm| \bigm| \bigm| \scrE 
\right]  

\leq \BbbE 

\left[  k\mathrm{m}\mathrm{i}\mathrm{n}+k - 1\sum 
j=k\mathrm{m}\mathrm{i}\mathrm{n}

( - \beta j(\scrA \prime  - (1 - \eta )(\scrA \prime + \theta )\beta j)\Delta l(Xj ,\scrT \prime ,\nabla f(Xj),D
true
j ) +R\prime \beta 2

j )

\bigm| \bigm| \bigm| \bigm| \bigm| \scrE 
\right]  .

Taking limits as k\rightarrow \infty , the conclusion of part (b) follows.

Let us now provide further justification for the introduction of the sequence \{ \rho k\} 
in Assumption 2.2, specifically, the need for this sequence to vanish in part (b) of
Lemma 4.20. Algebraically, the need for this sequence to vanish in part (b) can be
seen in (4.18), wherein the requirement that \rho k \leq \iota \beta 2

k for all k \in \BbbN with k \geq kmin

is relevant. In particular, this choice ensures that the expected value of the inner
product term, namely, \scrA k\scrT k\nabla f(Xk)

T (Dk  - Dtrue
k ), can be bounded as \scrO (\beta 2

k); see
Lemma 4.19 as the preliminary result for bounding this term in this manner. A
similar bound is needed for such a term in the equality-constrained setting in [3];
see Lemma 3.11 in that paper. However, in the equality-constrained setting, the fact
that the search directions are unbiased estimates of their true counterparts allows the
expected value of this inner product term to be bounded more tightly in terms of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

2/
24

 to
 1

28
.1

80
.2

47
.2

23
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



SQP FOR DETERMINISTIC CONSTRAINED STOCHASTIC OPT. 3613

error in the stochastic gradient estimates. By contrast, in our present setting, the bias
in the search directions allows us only to prove Lemma 4.16, where the latter bound
involves

\surd 
\rho k. Consequently, in the present setting, in order to ensure convergence for

diminishing \{ \beta k\} , the algorithm requires diminishing \{ \rho k\} as well.
To understand the bias in the search directions that arises in the presence of

inequality constraints, various examples can be constructed. For example, suppose
that xk = (1,0) and the linearized equality constraints require that [xk+dk]1 = 0; i.e.,
the search direction moves to the vertical axis in \BbbR 2. Suppose also that, with only
equality constraints, the search direction takes the value ( - 1, - 1) with probability 0.5
and takes the value ( - 1,1), otherwise. This means that the expected search direction
is ( - 1,0), which means that xk + dk = 0. However, if the inequality constraints xk +
dk \geq 0 are present, then, with the same stochastic gradient distribution, the expected
search direction is ( - 1,0.5), which is a biased estimate of the true search direction. In
Lemma 4.20(b), \{ \rho k\} needs to vanish in order to account for the presence of this bias.

We now present our main convergence theorem for Algorithm 3.1, which is es-
sentially a translation of Lemma 4.20 from results about model reductions to results
about quantities connected to measures of stationarity for problem (2.1).

Theorem 4.21. Suppose that the conditions of Lemma 4.20 hold. Then,
(a) under the conditions of Lemma 4.20(a), there exists C \in \BbbR >0 such that

limsup
k\rightarrow \infty 

\BbbE 

\Biggl[ 
1

k

k\mathrm{m}\mathrm{i}\mathrm{n}+k - 1\sum 
j=k\mathrm{m}\mathrm{i}\mathrm{n}

\Biggl( 
1

2
\scrT \prime \zeta \| Dtrue

j \| 22 + \sigma (\| c(Xj)\| 2

 - \| c(Xj) + JjD
true
j \| 2)

\biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \scrE 
\Biggr] 
=C;

(b) under the conditions of Lemma 4.20(b) with Bk :=
\sum k\mathrm{m}\mathrm{i}\mathrm{n}+k - 1
j=k\mathrm{m}\mathrm{i}\mathrm{n}

\beta j,

\BbbE 

\Biggl[ 
1

Bk

k\mathrm{m}\mathrm{i}\mathrm{n}+k - 1\sum 
j=k\mathrm{m}\mathrm{i}\mathrm{n}

\beta j

\Biggl( 
1

2
\scrT \prime \zeta \| Dtrue

j \| 22 + \sigma (\| c(Xj)\| 2

 - \| c(Xj) + JjD
true
j \| 2)

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| \scrE 
\Biggr] 
k\rightarrow \infty  -  -  -  - \rightarrow 0,

which further implies that lim infk\rightarrow \infty \BbbE [\| Dtrue
k \| 22 + (\| c(Xk)\| 2  - \| c(Xk) +

JkD
true
k \| 2)| \scrE ] = 0.

Proof. The desired conclusions follow from Lemmas 4.18 and 4.20.

One might be able to strengthen the conclusion in Theorem 4.21(b), say, to an
almost-sure convergence guarantee; see, e.g., [8]. However, we are satisfied with
Theorem 4.21(b), which is sufficient for revealing the favorable properties of Algo-
rithm 3.1 under Assumptions 2.2, 2.3, and 4.15. Theorem 4.21(a) shows, under As-
sumptions 2.2, 2.3, and 4.15, that if the latter condition in (2.6) holds with \rho k = \rho 
for some \rho \in \BbbR >0 for all k \in \BbbN and \{ \beta k\} = \{ \beta \} is chosen as a (sufficiently small) con-
stant sequence, then the limit superior of the expectation of the average of quantities
connected to stationarity measures for problem (2.1) is bounded above by a constant
proportional to \beta . Intuitively, this shows that the iterates generated by the algorithm
ultimately remain in a region in which these stationarity measures are small. On the
other hand, Theorem 4.21(b) shows, under Assumption 4.15, that if \{ \rho k\} and \{ \beta k\} 
vanish with \rho k =\scrO (\beta 2

k), then a subsequence of iterates exists over which the expected
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3614 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

values of these stationarity measures vanish. As seen in Lemma 4.3, if there exists a
subsequence of iterates, say, indexed by \scrS \subseteq \BbbN , that converges to a point satisfying
certain regularity conditions, then \{ \| ck\| 2  - \| ck +\nabla c(xk)T vk\| 2\} k\in \scrS \rightarrow 0 means that
the limit point is stationary with respect to the problem to minimize 1

2\| c(x)\| 
2
2 sub-

ject to x \in \BbbR n\geq 0. Similarly, as seen in Lemma 4.5, if there exists such a subsequence
and the limit point is feasible with respect to problem (2.1), then \{ dtruek \} k\in \scrS \rightarrow 0
means that the limit point is stationary with respect to (2.1). These situations are
not guaranteed to occur, but this discussion shows that Theorem 4.21 is meaningful.

4.4. Nonvanishing merit parameter. Our main convergence result in the
previous section, namely, Theorem 4.21, requires Assumption 4.15, which, in turn,
requires that the merit parameter sequence ultimately becomes a sufficiently small,
positive constant sequence. (Recall the discussion after Assumption 4.15.) To show
that this corresponds to a realistic event for practical purposes, we next show condi-
tions under which one finds that the merit parameter would not vanish.

We begin by showing a generally applicable result about the solution of (3.1). It
is related to that in Lemma 4.3 but is stronger due to an additional assumption.

Lemma 4.22. Suppose that the conditions of Lemma 4.3 hold and there exists
\kappa w \in [0,1) such that, for all generated k \in \BbbN in any run of the algorithm, one has
\| ck +\nabla c(xk)T vk\| 2 \leq \kappa w\| ck\| 2. Then, there exists \kappa v \in \BbbR >0 such that, in any run of
the algorithm such that iteration k \in \BbbN is reached, one finds that

\| ck\| 2  - \| ck +\nabla c(xk)T vk\| 2 \geq \kappa v\| vk\| 2.(4.19)

Proof. Consider an arbitrary run of the algorithm in which the conditions of the
lemma hold and iteration k \in \BbbN is reached. If ck = 0, then it follows by construction of
(3.1) that vk = 0, in which case (4.19) follows trivially. Hence, we may proceed under
the assumption that ck \not = 0, which, by the conditions of Lemma 4.22, Assumption 2.1
(see (2.2)), and the triangle inequality gives \kappa \nabla c\| vk\| 2 \geq \| \nabla c(xk)T vk\| 2 \geq \| ck\| 2  - 
\| ck +\nabla c(xk)T vk\| 2 \geq (1  - \kappa w)\| ck\| 2. Consequently, from (4.6), (4.7), and a similar
derivation as in Lemma 4.3, one finds that 2\| ck\| 2(\| ck\| 2  - \| ck + \nabla c(xk)T vk\| 2) \geq 
\| ck\| 22  - \| ck +\nabla c(xk)T vk\| 22 \geq min\{ \lambda 

2

\kappa 2
\nabla c
,2\mu \} \| vk\| 22 \geq min\{ \lambda 

2

\kappa 2
\nabla c
,2\mu \} ( 1 - \kappa w

\kappa \nabla c
)\| ck\| 2\| vk\| 2,

from which the desired conclusion in (4.19) follows.

We now show that, under common conditions and when the norm of the stochastic
gradient estimate is bounded uniformly, the denominator of the formula for \tau trialk in
(3.4) is bounded proportionally to \| vk\| 2.

Lemma 4.23. Suppose that Assumptions 2.1 and 2.3 hold and that there exist
(\lambda ,\mu ,\kappa g) \in \BbbR >0 \times \BbbR >0 \times \BbbR >0 such that, for all generated k \in \BbbN in any run, one has
\nabla c(xk)T\nabla c(xk) \succeq \lambda I, \mu k \geq \mu , and \| gk\| 2 \leq \kappa g. Then, there exists \kappa g,H \in \BbbR >0 such
that, in any run such that iteration k \in \BbbN is reached, gTk dk +

1
2d
T
kHkdk \leq \kappa g,H\| vk\| 2.

Proof. Consider an arbitrary run in which the conditions of Lemma 4.23 hold and
iteration k \in \BbbN is reached. By Lemma 4.14, (u,w) = (0,0) is feasible for (3.1), so

max

\biggl\{ 
1

2
\| ck +\nabla c(xk)T\nabla c(xk)wk\| 22,

1

2
\mu k\| uk\| 22

\biggr\} 
\leq 1

2
\| ck +\nabla c(xk)T\nabla c(xk)wk\| 22 +

1

2
\mu k\| uk\| 22 \leq 

1

2
\| ck\| 22.

Since 1
2\| ck +\nabla c(xk)

T\nabla c(xk)wk\| 22 \leq 1
2\| ck\| 

2
2, it follows that \| \nabla c(xk)T\nabla c(xk)wk\| 22 \leq 

 - 2cTk\nabla c(xk)T\nabla c(xk)wk \leq 2\| ck\| 2\| \nabla c(xk)T\nabla c(xk)wk\| 2, which, along with Assump-
tion 2.1 (see (2.2)), shows that \| \nabla c(xk)wk\| 2 \leq \kappa \nabla c\| wk\| 2 \leq \kappa \nabla c

\lambda \| \nabla c(xk)
T\nabla c(xk)wk\| 2
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\leq 2\kappa \nabla c

\lambda \| ck\| 2 \leq 2\kappa \nabla c

\lambda \kappa c. On the other hand, since 1
2\mu k\| uk\| 

2
2 \leq 1

2\| ck\| 
2
2, it follows,

under Assumption 2.1, that \| uk\| 2 \leq 1\surd 
\mu k
\| ck\| 2 \leq 1\surd 

\mu \kappa c. Therefore, we have that

\| vk\| 2 =
\sqrt{} 
\| \nabla c(xk)wk\| 22 + \| uk\| 22 \leq (

\sqrt{} 
4(\kappa \nabla c

\lambda )2 + 1
\mu )\kappa c. Now, since vk =\nabla c(xk)wk+uk

is a feasible solution of (3.2) while dk is the optimal solution of (3.2), under the con-
ditions of Lemma 4.23,

gTk dk +
1

2
dTkHkdk \leq gTk vk +

1

2
vTkHkvk

\leq \kappa g\| vk\| 2 +
1

2
\kappa H\| vk\| 22 \leq 

\biggl( 
\kappa g +

1

2
\kappa H

\biggl( \sqrt{} 
4(
\kappa \nabla c
\lambda 

)2 +
1

\mu 

\biggr) 
\kappa c

\biggr) 
\| vk\| 2,

which leads to the desired conclusion.

We now prove conditions under which the merit parameter does not vanish.

Theorem 4.24. Suppose that Assumptions 2.1 and 2.3 hold and that there exist
(\lambda ,\mu ,\kappa g, \kappa w) \in \BbbR >0 \times \BbbR >0 \times \BbbR >0 \times [0,1) such that, for all generated k \in \BbbN in any
run of the algorithm, one has that \nabla c(xk)T\nabla c(xk) \succeq \lambda I, \mu k \geq \mu , \| gk\| 2 \leq \kappa g, and
\| ck + \nabla c(xk)T vk\| 2 \leq \kappa w\| ck\| 2. Then, in any run that does not terminate finitely,
the latter event in Lemma 4.14(k) occurs (i.e., \{ \tau k\} does not vanish) with \tau min \geq 
(1 - \sigma )\kappa v

\kappa g,H
(1 - \epsilon \tau ).

Proof. Consider arbitrary k \in \BbbN in a run that does not terminate finitely, and
note that, if dk = 0 or gTk dk +

1
2d
T
kHkdk \leq 0, then \tau trialk \leftarrow \infty , and otherwise, \tau trialk

is set by (3.4). Hence, under the conditions of Theorem 4.24 and by Lemmas 4.22
and 4.23,

\tau trialk \geq (1 - \sigma )(\| ck\| 2  - \| ck +\nabla c(xk)T dk\| 2)
gTk dk +

1
2d
T
kHkdk

=
(1 - \sigma )(\| ck\| 2  - \| ck +\nabla c(xk)T vk\| 2)

gTk dk +
1
2d
T
kHkdk

\geq (1 - \sigma )\kappa v
\kappa g,H

=: \tau \ast .

Consequently, by the merit parameter update in (3.5), \tau k < \tau k - 1 only if \tau k - 1 > \tau \ast .
This, along with Lemma 4.14(d)--(e), leads to the conclusion.

Since \nabla f is bounded in norm over the set \scrX in Assumption 2.1, Theorem 4.24
shows that, among the other stated conditions, if \| gk - \nabla f(xk)\| 2 is bounded uniformly
over all k \in \BbbN in any, then the merit parameter sequence always remains bounded
below by a positive number. Under such conditions, the only potentially poor behavior
of the merit parameter sequence is that, in a given run, it ultimately remains constant
at a value that is too large. We claim that, under certain assumptions about the
distribution of the stochastic gradient estimates, this behavior can be shown to occur
with probability zero. (We do not prove such a result here, but refer the interested
reader to Proposition 3.16 in [3] to see such a result for the equality-constraints-only
setting, in which case the behavior of the merit parameter is similar.) On the other
hand, if \| gk  - \nabla f(xk)\| 2 is not bounded uniformly in this manner, then it is possible
for the merit parameter sequence to vanish unnecessarily. This issue is one that should
be noted by a user of the algorithm. In particular, if, in a run of the algorithm, one
chooses \mu k \geq \mu for some \mu \in \BbbR >0 for all k \in \BbbN and finds, for some (\lambda ,\kappa w)\in \BbbR >0\times (0,1),
that generated k \in \BbbN yield \nabla c(xk)T\nabla c(xk) \succeq \lambda I and \| ck +\nabla c(xk)T vk\| 2 \leq \kappa w\| ck\| 2,
yet \tau k has become exceedingly small, then Theorem 4.24 shows that this must be due
to the stochastic gradient estimates tending to become significantly large in norm,
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3616 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

in which case the performance of the algorithm may improve with more accurate
stochastic gradient estimates.

4.5. Deterministic algorithm. We conclude this section with a statement of
a convergence result that we claim to hold for Algorithm 3.1 if it were to be run with
gk =\nabla f(xk) for all k \in \BbbN . Due to space considerations, we do not provide a proof of
the result, although we offer the proposition for reference for the reader and claim that
it holds from results proved in this paper for the stochastic setting as well as other
similar results for SQP methods for deterministic continuous nonlinear optimization.

Proposition 4.25. Suppose that Assumptions 2.1 and 2.3 hold and Algorithm 3.1
is run with gk =\nabla f(xk) for all k \in \BbbN . If, for all large k \in \BbbN , there exists \kappa w \in [0,1)
such that \| ck +\nabla c(xk)T vk\| 2 \leq \kappa w\| ck\| 2, then \{ xk\} \subset \BbbR n\geq 0, \{ \tau k\} is bounded away from
zero, and, with yk \in \BbbR m and zk \in \BbbR n\geq 0 defined as the optimal multipliers corresponding
to the solution of subproblem (3.2) for all k \in \BbbN , it follows that\bigl\{ \bigm\| \bigm\| \bigl[ (\nabla f(xk) +\nabla c(xk)yk  - zk)T cTk xTk zk

\bigr] \bigm\| \bigm\| \bigr\} \rightarrow 0.

Otherwise, \{ xk\} \subset \BbbR n\geq 0, \{ min\{ \nabla c(xk)ck,0\} \} \rightarrow 0, and \{ | xTk\nabla c(xk)ck| \} \rightarrow 0, and, if

\{ \tau k\} is bounded away from zero, then
\bigl\{ \bigm\| \bigm\| \bigl[ (\nabla f(xk) +\nabla c(xk)yk  - zk)T xTk zk

\bigr] \bigm\| \bigm\| \bigr\} \rightarrow 0.

5. Numerical results. In this section, we provide results demonstrating the
performance of a MATLAB implementation of Algorithm 3.1 when solving a subset of
problems from CUTEst [23] and a couple of fair machine learning test problems, where
Gurobi is used to solve the arising subproblems [24]. The purposes of our experiments
with the CUTEst problems are twofold. First, on a subset of problems, we compare
the performance of our method against that of the Julia implementation provided by
the authors of [34, Algorithm 1]. Second, on a larger subset, we demonstrate that, for
our method, one should aim to trade off the cost of more accurate gradient estimates
and the cost of solving the arising subproblems. These experiments also allow us
to demonstrate that there are settings in which our approach with relatively less
accurate gradient estimates can be more computationally efficient than one that relies
on highly accurate gradient estimates (i.e., an approach that is nearly deterministic).
From all inequality-constrained problems in CUTEst, we selected those such that (i)
m \leq n \leq 1000, (ii) f(xk) \geq  - 1020 for all k \in \BbbN in all runs of our algorithm, and (iii)
Gurobi did not report any errors. This resulted in a set of 323 test problems. The
purpose of our experiments with fair machine learning test problems is to demonstrate
the performance of our algorithm on problems derived from a real-world application
and to show that, on such problems, it can outperform approaches that handle the
constraints by moving them to the objective through penalty terms.

We begin by presenting our results pertaining to CUTEst. For each test problem,
both our code and that for the Julia implementation of [34, Algorithm 1] used the
same initial iterate and generated stochastic gradient estimates in the same manner.
Specifically, for all k \in \BbbN in each run, the codes set gk = \scrN (\nabla f(xk), \epsilon g(I + eeT )),
where e is the all-ones vector and \epsilon g \in \{ 10 - 8,10 - 4,10 - 2,10 - 1\} was fixed for each
run (see below). If a problem had only inequality constraints (i.e., m= 0), then our
code explicitly computed \alpha \varphi k (as defined in (3.9)) and set \alpha k \leftarrow \alpha max

k for all k \in \BbbN .
Otherwise, the code set \alpha k\leftarrow min\{ 1, (1.1)tk\alpha min

k , \alpha min
k +\theta \beta k\} , where tk\leftarrow max\{ t\in \BbbN :

\varphi k((1.1)
t\alpha min
k )\leq 0\} . This guaranteed that \alpha k \in [\alpha min

k , \alpha max
k ] for all k \in \BbbN . The other

user-defined parameters of Algorithm 3.1 were selected as \sigma = \tau 0 = 0.1, \eta = 0.5, \xi 0 = 1,
\epsilon \tau = \epsilon \xi = 10 - 2, \theta = 104, \mu k =max\{ 10 - 8,10 - 4\| ck\| 22\} , \beta k = 1, and Hk = I for all k \in \BbbN .
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The Lipschitz constants L and \Gamma were estimated every 100 iterations by differences
of stochastic gradients at 10 samples around the current iterate. Meanwhile, we ran
the Julia code for [34, Algorithm 1] with the AdapGD option and its default parameter
settings as described in [34, section 4].

For our comparison of our code with the Julia implementation of [34, Algorithm
1], each code terminated as soon as 104 stochastic gradient samples were evaluated
or a 12-hour CPU time limit was reached. Let FeasErr(x) be the \infty -norm constraint
violation at x, and let KKTErr(x, y, z) be the\infty -norm violation of the KKT conditions
(recall (2.4)) at a primal-dual iterate (x, y, z). Each run of our MATLAB implemen-
tation of Algorithm 3.1 generates \{ xk\} \subset \BbbR n. For each k \in \BbbN , let ytruek \in \BbbR m and
ztruek \in \BbbR n denote the optimal Lagrange multipliers corresponding to the equality
and inequality constraints when (3.2) is solved with gk = \nabla f(xk). For each run of
Algorithm 3.1, we determined the best iterate as xkbest , where

kbest =

\left\{   argmin
k\in \BbbN 

FeasErr(xk) if FeasErr(xk)> 10 - 4 for all k \in \BbbN ,

argmin
k\in \BbbN 
\{ KKTErr(xk, ytruek , ztruek ) : FeasErr(xk)\leq 10 - 4\} , otherwise.

We determined the best iterate in a run of [34, Algorithm 1] using the same formula
with the sequence of iterates and Lagrange multiplier estimates that are computed
as part of the algorithm. Our results for four noise levels, provided in Figure 5.1
below, are presented in terms of FeasErr(xkbest) as the feasibility error and
KKTErr(xkbest , y

true
kbest

, ztruekbest
) as the KKT error for each run of both algorithms.

Since the Julia code for [34, Algorithm 1] is only set up to solve CUTEst problems
without simple bound constraints, the plots in Figure 5.1 are only based on problems
that code was able to handle. In particular, there are 57 problems for which both
algorithms were set up to run, and in Figure 5.1, the two box plots show the best
feasibility and KKT errors achieved by both codes, where each problem is run 5 times
each (since the behaviors of the algorithms are stochastic). These results show that
our approach performs very well in comparison to the method from [34].

Let us now provide some additional results for the implementation of our algo-
rithm employed to solve all 323 problems in our subset from CUTEst. Our aim in this
experiment is to demonstrate potential trade-offs between accuracy in the gradient
estimates and the cost of solving the subproblems in our algorithm. We set up the
experiment as follows. First, we defined a unit as the cost of a stochastic gradient
estimate with noise level \epsilon g = 10 - 1. Second, to represent the extra cost of more
accurate estimates, we suppose that the cost of a stochastic gradient estimate with

Fig. 5.1. Box plots comparing the best feasibility errors (left) and KKT errors (right) of a
MATLAB implementation of Algorithm 3.1 (``Stochastic SQP"") and the Julia implementation pro-
vided by the authors of [34, Algorithm 1] (``Active-set SQP"") when solving 57 CUTEst problems.
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Fig. 5.2. Histogram of final log10(\tau ).

\epsilon g = 10 - 2 is 10 units and that with \epsilon g = 10 - 4 is 1000 units. (These relative costs are
not exact in general; we simply made these choices for the purposes of demonstrat-
ing one realistic setting.) Third, we considered two relative costs for the subproblem
solves in an iteration: two units (``2x"") or five units (``5x""). These represent two rea-
sonable possibilities in practice. Recall that, generally speaking, the cost of solving
the subproblems depends on the numbers of variables and constraints, whereas the
cost of more accurate gradient estimates depends on the variance of the estimates,
which, for example, when f is defined by an average of functions, could depend on
the number of terms in the average---which could be extremely large---and the cost
of evaluating the gradient for each term in the average. We consider here situations
when the cost of obtaining accurate gradient estimates is not trivial so that the relative
cost of a subproblem solve is a few times that of a stochastic gradient estimate with
\epsilon g = 10 - 1.

For each setting, namely, 2x and 5x, we ran our algorithm with noise levels
\epsilon g \in \{ 10 - 4,10 - 2,10 - 1\} with the same computational budget in terms of units. For ex-
ample, for the 2x case, the cost per iteration with \epsilon g = 10 - 1 is 1+2= 3 units, whereas
the cost per iteration with \epsilon g = 10 - 2 is 10 + 2= 12 units. This means that the latter
run (with more accurate gradient estimates) is only able to run 1/4th the number of
iterations as the former run (with less accurate gradient estimates). We always ran
2\times 105 iterations for the \epsilon g = 10 - 1 setting, and we determined computational unit
budgets for the 2x and 5x settings based on this benchmark iteration budget for the
\epsilon g = 10 - 1 setting. The results are presented in Figure 5.2, where again, we present box
plots for feasibility errors and KKT errors for the best iterates found using the same
criteria as our comparisons earlier in this section. Overall, the results show that there
exist settings---namely, the ones that we consider here---where one does not obtain the
best results by employing highly accurate gradient estimates. Instead, the trade-off
between gradient accuracy and subproblem cost can be such that, for a limited com-
putational budget, one obtains the best results by allowing some inaccuracy in the
stochastic gradient estimates. We remark that, in these experiments, our algorithm
regularly did not reduce the merit parameter to small values. Rather, low feasibility
errors were generally attained with moderate \tau values; see Figure 5.3 for a histogram
of final log10(\tau ) values with respect to the noisiest setting, namely, \epsilon g = 10 - 1.

We close this section with the results of experiments on a couple of fair machine
learning test problems. In particular, we consider logistic regression problems where
the constraints bound a surrogate for disparate impact; specifically, we consider prob-
lem (3) from [12] with \epsilon = 0.1. We use the Adult and German datasets that are avail-
able from [28], where gender is the sensitive feature. For each dataset, we randomly

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 5.3. Box plots comparing the best feasibility errors and KKT errors of a MATLAB im-
plementation of Algorithm 3.1 (``Stochastic SQP"") with different noise levels all subject to the same
computational budget. For the results on the left, the cost of solving the subproblems in an iteration
is presumed to be twice that of a relatively inaccurate stochastic gradient estimate, and on the right,
the cost of the subproblem solves is presumed to be five times the cost of such a gradient estimate.

Table 5.1
Performance of ``Stochastic SQP"" versus the algorithm of Wang and Spall [46] and a stochas-

tic subgradient method applied to minimize a penalty function for the fairness-constrained logistic
regression problem (3) from [12], here using the Adult data with gender as the sensitive attribute.

Training infeasibility Training Testing infeasibility Testing
Algorithm error accuracy error accuracy

Stochastic SQP 1.9e-08 83.3\% 5.1e-02 82.9\%

Wang and Spall [46] 5.8e-02 63.9\% 1.3e-01 63.2\%
Subgradient (10 - 1) 8.8e-05 63.7\% 0.0e+00 63.1\%

Subgradient (10 - 4) 3.5e-05 72.4\% 0.0e+00 72.3\%

Subgradient (10 - 7) 6.5e-05 72.4\% 0.0e+00 72.3\%

selected data points for a training set (to define the optimization problem that we
solve) and a testing set: For Adult, of the 45222 data points, 35000 were selected for
training with the remaining used for testing, and for German, of the 1000 data points,
800 were selected for training, and the remaining were used for testing. For Adult,
1000 of the training data points were randomly selected to define the constraints, and
a minibatch size of 1000 was used for stochastic gradient estimates. For German, 100
of the training data points were randomly selected to define the constraints, and a
minibatch size of 100 was used for stochastic gradient estimates. Since our stochastic
SQP method has already been shown to compare favorably against [34, Algorithm 1]
in our experiments with CUTEst problems (see Figure 5.1), in this set of experiments,
we compare our proposed method with two other algorithms: (i) the algorithm pro-
posed by Wang and Spall in [46] with the settings from section 4 of that paper (see
also [40]) and (ii) a stochastic subgradient method employed to minimize an \ell 2-norm
exact penalty function when the logistic loss objective is weighted by 10 - 1, 10 - 4, or
10 - 7. For a fixed budget of 10000 iterations for stochastic SQP and 100000 iterations
for each of the other algorithms, the results for the best iterates in terms of training
infeasibility, training classification accuracy, testing infeasibility, and testing accuracy
are provided in Tables 5.1 and 5.2. The results show that, despite the additional itera-
tions offered to the other methods, our stochastic SQP method generally outperforms
them in terms of these metrics. In addition, we provide in Figures 5.4 and 5.5 plots
of these metrics as a function of CPU time for a single representative run of a few of
the algorithms with each dataset. (We do not plot the performance of ``subgradient

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Table 5.2
Performance of ``Stochastic SQP"" versus the algorithm of Wang and Spall [46] and a stochas-

tic subgradient method applied to minimize a penalty function for the fairness-constrained logistic
regression problem (3) from [12], here using the German data with gender as the sensitive attribute.

Training infeasibility Training Testing infeasibility Testing
Algorithm error accuracy error accuracy

Stochastic SQP 3.2e-08 73.8\% 0.0e+00 75.0\%

Wang and Spall 4.5e-01 60.6\% 3.1e-01 70.0\%
Subgradient (10 - 1) 5.5e-01 56.6\% 5.5e-01 58.0\%

Subgradient (10 - 4) 5.7e-01 49.8\% 6.4e-01 48.0\%

Subgradient (10 - 7) 5.7e-01 49.8\% 6.4e-01 48.0\%

Fig. 5.4. CPU time versus training accuracy, training infeasibility error, testing accuracy, and
testing infeasibility error for a representative run of SQP, Wang and Spall [46], subgradient (10 - 1),
and subgradient (10 - 4) with the Adult dataset.

Fig. 5.5. CPU time versus training accuracy, training infeasibility error, testing accuracy, and
testing infeasibility error for a representative run of SQP, Wang and Spall [46], subgradient (10 - 1),
and subgradient (10 - 4) with the German dataset.

(10 - 7)"" since its performance was similar to that of ``subgradient (10 - 4)"" in terms of
these plots.) These results further show that our SQP method has desirable practical
performance.

6. Conclusion. We have proposed, analyzed, and tested an algorithm for solving
continuous optimization problems. The algorithm requires that constraint function
and derivative values can be computed in each iteration but does not require exact
objective function and derivative values; rather, the algorithm merely requires that
a stochastic objective gradient estimate is computed to satisfy relatively loose as-
sumptions in each iteration. The theoretical convergence guarantees of the algorithm
require knowledge of Lipschitz constants for the objective gradient and constraint
Jacobian, although, in practice, these constants can be estimated. Our numerical ex-
periments show that our proposed algorithm can outperform an alternative algorithm
that relies on the ability to compute more accurate gradient estimates. We have pro-
vided comments throughout the paper on how the assumptions that are required for
our theoretical convergence guarantees might be loosened further.

Acknowledgments. The authors are grateful to Sen Na for providing consul-
tation about the Julia implementation provided by the authors of [34, Algorithm 1].
The authors also thank the editors and reviewers for their helpful comments.
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