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Abstract. A sequential quadratic optimization algorithm for minimizing an objective function
defined by an expectation subject to nonlinear inequality and equality constraints is proposed, an-
alyzed, and tested. The context of interest is when it is tractable to evaluate constraint function
and derivative values in each iteration, but it is intractable to evaluate the objective function or
its derivatives in any iteration, and instead, an algorithm can only make use of stochastic objective
gradient estimates. Under loose assumptions, including that the gradient estimates are unbiased,
the algorithm is proved to possess convergence guarantees in expectation. The results of numerical
experiments are presented to demonstrate that the proposed algorithm can outperform an alternative
approach that relies on the ability to compute more accurate gradient estimates and can outperform
a stochastic algorithm that employs a penalty method to enforce the constraints.
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1. Introduction. We propose a sequential quadratic optimization (commonly
known as SQP) algorithm for minimizing an objective function defined by an expec-
tation subject to nonlinear inequality and equality constraints. Such optimization
problems arise in a plethora of application areas, including, but not limited to, ma-
chine learning [30], network optimization [7], resource allocation [27], portfolio op-
timization [39], risk-averse partial-differential-equation-constrained optimization [29],
maximum-likelihood estimation [26], and multistage optimization [43].

The design and analysis of deterministic algorithms for solving continuous
optimization problems involving inequality and equality constraints has been a well-
studied topic for decades. Numerous types of such algorithms, such as penalty meth-
ods, interior-point methods, and SQP methods, have been designed to solve such
problems. Penalty methods are based on the idea of using unconstrained optimization
algorithms to minimize a weighted sum—determined by a penalty parameter—of the
objective and a measure of constraint violation; e.g., see [11, 20, 49] for algorithms
that make use of nondifferentiable (exact) penalty functions, and see [15, 16, 22, 50]
for algorithms that make use of differentiable (exact) penalty functions. While they
are able to offer convergence guarantees from remote starting points, the numeri-
cal performance of penalty methods often suffers from ill-conditioning of the penalty
functions and/or sensitivity of the algorithm’s performance on the particular scheme
employed for updating the penalty parameter [36]. Interior-point methods [17] are
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designed to use barrier functions to guide the algorithm along a central path through
the interior of the feasible region (or, at least, the interior of a set defined by bounds
on a subset of the variables) to a solution [9, 10, 31, 32, 47, 48]. Such algorithms
have been shown to be very effective in practice, which is why many state-of-the-art
software packages for continuous nonlinear optimization are built on interior-point
methods; see, e.g., [10, 45]. Overall, both penalty and interior-point methods involve
the use of additional objective terms to handle the presence of inequality constraints.

Alternatively, in this paper, we present, analyze, and demonstrate the numerical
performance of an SQP method for solving continuous nonlinear optimization prob-
lems. The SQP paradigm is based on the idea of, at each iterate, solving a subproblem
(or subproblems) defined based on a local linearization of the constraint function and
a local quadratic approximation of the objective or Lagrangian. Unlike in the de-
terministic setting, for which numerous SQP algorithms have been proposed (see,
e.g., [19, 21, 25, 36]), there have been few stochastic algorithms proposed for solving
optimization problems with nonlinear constraints. That said, in the past few years,
a couple of classes of stochastic SQP methods have been designed for optimization
subject to nonlinear equality constraints. For example, [3] proposes an SQP algo-
rithm that uses stochastic objective gradient estimates for solving such problems that
employs an adaptive step-size policy based on Lipschitz constants (or estimates of
them). For an alternative setting in which one is willing to compute objective value
estimates as well, and to refine objective function and gradient estimates within a
given iteration until probabilistic conditions of accuracy are satisfied, [33] proposes a
line-search stochastic SQP method. There have subsequently been multiple extensions
of the methods in [3] and [33], as well as work on different but related algorithmic
strategies—still for the setting of only nonlinear equality constraints. There has been
work on relaxing constraint qualifications [2], allowing matrix-free and inexact solves
of the arising linear systems [14], using a trust-region methodology [18], incorpo-
rating noisy (potentially biased) function and gradient estimates [5, 37], employing
variance-reduction strategies [1, 4], considering sketch-and-project techniques [35],
and analyzing the worst-case complexity (see [13]) of the method proposed in [3].

Unlike the setting of equality constraints only, to our knowledge, there has been
very little work on the design and analysis of stochastic algorithms for optimization
subject to nonlinear (nonconvex) inequality and equality constraints. Three excep-
tions are the active-set line-search SQP algorithms proposed in [34] and (very recently)
in [41] and the momentum-based augmented Lagrangian method (a penalty method)
proposed in [44]. We expect that our proposed SQP algorithm will perform well in
comparison to a stochastic-gradient-based penalty method. We demonstrate with nu-
merical experiments that our approach can outperform the algorithm proposed in [34].
We remark in passing that interior-point methods often outperform SQP methods in
the deterministic setting, but as far as we are aware, there exists no interior-point
method designed for the stochastic setting that we consider.

1.1. Contributions. In this paper, we build on the algorithmic strategy and
analysis in [3] to propose and analyze an adaptive stochastic SQP algorithm for solv-
ing nonlinear optimization problems subject to (deterministic) inequality and equality
constraints. This work involves significant advancements beyond [3] that are neces-
sary since, unlike in the setting of only having equality constraints, the presence of
inequality constraints automatically guarantees that, at a given iterate, the search di-
rection computed in a stochastic SQP method will be a biased estimate of the “true”
search direction, i.e., the one that would be computed if the actual gradient of the
objective function were available. This necessitates a distinct change in the design

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/12/24 to 128.180.247.223 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3594 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

of the algorithm, as well as distinct alterations to the convergence analysis, since the
analysis in [3] relies heavily on the search directions being (conditionally) unbiased
estimators of their “true” counterparts. The algorithm from the literature that can be
seen as the nearest alternative approach is the algorithm in [34]. However, there are
substantial differences between the algorithm and analysis in [34] and those presented
in this paper. Like in [33] for the equality-only case, the algorithm in [34] is de-
signed for the setting in which one is willing to refine function and gradient estimates
within an iteration until probabilistic conditions of accuracy are satisfied, and in this
manner, the analysis of that algorithm offers guarantees that are relatively closer to
those offered for a deterministic algorithm. By contrast, the algorithm in this paper,
like the algorithm in [3], is designed to allow the stochastic gradient estimates to be
potentially much less accurate, and in such a context, we are satisfied with offer-
ing convergence guarantees in expectation. We compare the numerical performance
of our proposed algorithm with that in [34] to demonstrate that there are settings
in which our proposed approach has advantages in practice. We also compare our
method with that in [46] and a stochastic subgradient method employed to minimize
a penalty function.

1.2. Notation. We use R to denote the set of real numbers, R to denote the set
of extended-real numbers (i.e., R := RU{—00,00}), and R>, (resp., R>,) to denote
the set of real numbers greater than or equal to (resp., greater than) a € R. We append
a superscript to such a set to denote the space of vectors or matrices whose elements
are restricted to the indicated set; e.g., we use R™ to denote the set of n-dimensional
real vectors and R"*" to denote the set of m-by-n-dimensional real matrices. We
use N := {1,2,...} to denote the set of positive integers, and, given n € N, we use
[n] :=={1,...,n} to denote the set of positive integers less than or equal to n. Given
(a,b) e R™ x R™, we write a L b to mean—with a; and b; denoting the ith elements of
a and b, respectively—that a; = 0 and/or b; =0 for all i € [n]. Given real symmetric
matrices A € R™*™ and B € R"*", we write A = B (resp., A > B) to indicate that
A — B is positive semidefinite (resp., positive definite). Given H € R™*" with H > 0
and a € R™, we denote the norm ||a| g :=VaT Ha.

Our problem of interest is defined with respect to a variable z € R", and the
algorithm that we propose and analyze is iterative, meaning that, in any run, it
generates an iterate sequence that we denote as {z)} with z; € R™ for all generated
keN;ie., {z;} CR™. (We use such notation throughout the paper when the elements
of sequence are contained within a given set. We say “for all generated k € N” since
our proposed algorithm might terminate finitely. Whether a subscript is being used
to indicate the element of a vector or the index number of a sequence is always made
clear by the context. The ith element of an iterate xj is denoted [zy];.) We use
subscripts similarly to denote other quantities corresponding to each iteration of the
algorithm; e.g., we introduce a merit parameter denoted as 7 € R~y whose value in
iteration k € N is denoted as 7 € R+, and, corresponding to a constraint function ¢
(see problem (2.1) below), we denote its value at xy, as cg := c(xy).

The iteration-dependent quantities mentioned in the previous paragraph—and
additional ones introduced in the description of our algorithm—represent realizations
of the random variables in a stochastic process generated by the algorithm. Specifi-
cally, the behavior of our algorithm is dictated by prescribed initial conditions and a
sequence of stochastic objective gradient estimators that we denote by {G}. After
proving preliminary results that hold for every run of the algorithm, we present our
ultimate convergence theory for our algorithm in terms of a filtration defined in terms
of o-algebras dependent on the initial conditions of the algorithm and {Gj}.
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1.3. Organization. A statement of our problem of interest and preliminary as-
sumptions about its objective and constraint functions, as well as about user-defined
quantities in our proposed algorithm, are given in section 2. A description of our
proposed algorithm is provided in section 3. Convergence in expectation of the algo-
rithm is proved under reasonable assumptions in section 4. The results of numerical
experiments are presented in section 5, and concluding remarks are given in section 6.

2. Setting. We formulate our problem of interest as

(2.1) fléigri f(z) subject to (s.t.) c¢(z) =0 and x >0 with f(z) =E,[F(z,w)],
where f: R™ — R and ¢ : R” — R™ are continuously differentiable, w is a random
variable with associated probability space (2, F,P,), F: R" x Q — R, and E,, denotes
expectation taken with respect to P,,. Our algorithm and analysis extend easily to
the setting in which the nonnegativity constraint in (2.1) is generalized to | <z <wu
for some (I,u) € R" x R" with I; <u;, for all i € [n]; we merely consider nonnegativity
n (2.1) for the sake of notational simplicity. It is also worth mentioning that any
smooth constrained optimization problem can be reformulated as (2.1) (or at least
as such a problem with generalized bound constraints); e.g., inequality constraints
cz(z) <0, where ¢z : R” — R™7 is continuously differentiable, can be reformulated to
fit into the form of (2.1) through the incorporation of slack variables, say, s € R™Z,
to have the constraints cz(x) + sz =0 and sz > 0.

We make the following assumption throughout the remainder of the paper per-
taining to the functions in problem (2.1) and our proposed algorithm. As seen in the
following section, our algorithm seeks feasibility and stationarity with respect to (2.1)
by generating an iterate sequence that stays feasible with respect to the bound con-
straints, meaning that, in any run of the algorithm, z; € R%, for all generated k € N.

Assumption 2.1. Let X C R™ be an open convex set that almost surely contains
the iterate sequence {x) } C RZ, generated in any realization of a run of the algorithm.
The objective function f:R"™ — R is continuously differentiable and bounded below
over X', and the objective gradient function V f : R™ — R"™ is Lipschitz continuous
and bounded in norm over X. Similarly, for all ¢ € [m], the constraint function
¢; : R™ — R is continuously differentiable and bounded over X, and the constraint
gradient function Ve¢; : R® — R” is Lipschitz continuous and bounded in norm over
X. Finally, the constraint Jacobian VT : R™ — R™*" has full row rank over X.

Under Assumption 2.1, there exists fi,r € R and a tuple of positive constants
(kv f, ke, Bve, L, T') € Ry xR0 xR0 xR 9 xR such that, for all z € X, one has that

(2.2) f(@) = finr, V(@) <wvyp, [le(@)lls < ke, and [[Ve(z)2 < rve
and, for all (x,Z) € X x X, one has that
(23)  Vf(2) = Vf(@)|2 < Lllz — 2]z and [[Ve(z)" - Ve(@) ||l < Tllz - z])2.

In addition, due to the continuous differentiability of the objective and constraint
functions, it follows that, at any local minimizer of (2.1) at which the Jacobian of the
active constraints (i.e., equality constraints and inequality constraints active at their
bounds) has full row rank, call it 2 € R™, there exists y € R™ and z € R™ such that
the following Karush—-Kuhn—Tucker (KKT) conditions are satisfied:

(2.4) Vi(@)+Ve(z)y—2=0, c¢(z)=0, 0<zLz>0.

Copyright (C) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/12/24 to 128.180.247.223 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3596 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

We refer to any x € R™ such that there exists (y,z) € R™ x R™ satisfying (2.4) as a
first-order stationary point (or KKT point) with respect to (2.1).

Since our algorithm generates iterates that are feasible with respect to the bound
constraints, but not necessarily with respect to the equality constraints, we need
to account for the possible existence of points that are infeasible for (2.1) but are
stationary with respect to the minimization of a constraint violation measure over
RZ,. We refer to a point that is infeasible for (2.1) as an infeasible stationary point if it
is stationary with respect to the minimization of |c(z)||3 subject to z € R%, meaning

(2.5) 0<z L Ve(z)e(x) >0.

Each iteration of our algorithm requires a stochastic estimate of the gradient of
the objective at the current iterate. In a given run at iteration k € N, the realization of
the iterate and gradient estimate is (zy, gr), which, later in our analysis, we denote as
a realization of the pair of random variables (X, Gy). (See section 4.3 for a complete
description of a stochastic process that we analyze.) With respect to the gradient
estimators, we make Assumption 2.2 below. For the prescribed (i.e., not random)
sequence {pg} C Rsq referenced in the assumption, we state precise conditions that
it must satisfy in section 4.3. In the assumption and throughout the remainder of the
paper, we use Eg[-] to denote expectation taken with respect to the distribution of w
conditioned on a trace o-algebra of an event £, denoted by Fy; see section 4.3.

Assumption 2.2. For a prescribed {pr} CRxg, one finds, for all k € N, that
(2.6) Ex[Gr] = Vf(Xy) and E4[|G — VF(Xi)[3] < pr-

One might relax the latter condition in (2.6) and obtain guarantees that are
similar to those that we prove; see, e.g., [38]. We employ (2.6) for simplicity since it
is sufficient for demonstrating the guarantees that our algorithmic approach can offer.
We remark that our introduction of the sequence {pj}—rather than a constant—is
needed since one of our main theoretical results requires {p } — 0. We further discuss
this requirement, which is stronger than is needed for the equality-constrained setting
(see, e.g., [2, 3]), immediately after Lemma 4.20, where it can be best explained.

Each iteration of our algorithm also makes use of a symmetric and positive-definite
(SPD) matrix, denoted as Hy € R™*" for iteration k € N, to define a quadratic term
in the subproblem that is solved for computing the search direction. For simplicity,
we assume that the sequence {Hy} is prescribed; e.g., one may consider Hy = I for
all £ € N. More generally, one could consider a more sophisticated scheme such as
setting, for all k € N, the matrix Hj as a stochastic estimate of the Hessian of the
objective function and/or a Lagrangian function as long as it is sufficiently positive
definite and bounded and the choice is made to be conditionally uncorrelated with
the stochastic gradient estimate. However, since considering such a loose requirement
would only obfuscate our analysis without adding significant value, we assume, for
simplicity, that {Hy} is prescribed and merely satisfies the following.

Assumption 2.3. There exists (kp,() € Rso X Ry with k5 > ¢ such that, for all
k €N, the SPD matrix H € R"*" has kgl = Hj = (1.

Observe from Assumption 2.3 that we are not assuming that accurate second-
order information is being used by the algorithm. Hence, our convergence guarantees
are of the type that may be expected for a first—order-type algorithm, although, in
situations when it is computationally tractable, one might find better performance if
Hj, incorporates some (approximate) second-order derivative information.
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3. Algorithm. In this section, we present our proposed algorithm. We state the
algorithm in terms of a particular realization of it (e.g., denoting the iterate for each
k € N as xy), although our subsequent analysis of it (starting in section 4.3) will be
written in terms of the stochastic process that the algorithm defines.

Each iteration of our algorithm proceeds as follows. First, given the current
iterate xp € RY,, the algorithm computes a direction whose purpose is to deter-
mine the progress that can be made in terms of reducing a measure of violation of
a linearization of the equality constraints subject to the bound constraints. This
is done in a manner that regularizes the component of the direction that lies in
the null space of the constraint Jacobian. Specifically, the iteration commences by
computing a direction vy := u + Ve(zg)wy € R™, where uy € Null(Ve(zg)T) and
Ve(zg)wy € Range(Ve(x)), by solving the quadratic optimization subproblem

(3.1) ueRrTLI}iuneRm
s.t. Ve(zp)Tu=0 and xp, +u+ Ve(rg)w >0,

1 1
Sllex + Ve(an) T Ve(eywl + 5ullul}

where p € Ry is a user-prescribed parameter. Observe that, since z, € RZ,
this subproblem is always feasible, and by construction, it is convex. Generally, the
solution of (3.1) might not be unique, but in our setting, it is unique since Ve(zg)?
has full row rank. In our analysis, we show that the solution of subproblem (3.1)
is given by (ug,wr) = (0,0) if and only if the current iterate zj is stationary with
respect to the minimization of ||c(z)||3 over z € RZ. This means, e.g., that if ¢; #0,
but the solution of (3.1) is (ug,wy) = (0,0)—which, by the fundamental theorem of
linear algebra, occurs if and only if vy = ur + Ve(ag)wi, = 0—then it is reasonable to
terminate since xy is an infeasible stationary point (see (2.5)), as in our algorithm.

We do not expect the value of the regularization parameter pp € Ry to have
a significant impact on the performance of the algorithm as long as it is set small
relative to the constraint violation. (If py is set too large relative to the constraint
violation, then the regularization term might cause the algorithm to compute normal
steps that are small in norm, which might slow progress.) The primary role of positive
k. is to ensure that subproblem (3.1) has a unique solution since it might not if this
parameter were set to zero. Nonetheless, for the sake of generality in the statement
of our algorithm and analysis, we introduce the generic sequence {py,}.

After computing v € R™ by solving (3.1) and generating a stochastic objective
gradient estimate g € R™ (see Assumption 2.2), the algorithm next computes a search
direction di € R™ by solving the quadratic optimization subproblem

1
(3.2) 52]% grd+ idTde s.t. Ve(zp)Td=Ve(zy) v and xp +d > 0.

By construction, this subproblem is feasible—indeed, by construction of (3.1) and vy, =
up+ Ve(zk)ws, it follows that d = vy, is feasible for (3.2)—and, under Assumption 2.3,
it is convex. The search direction dj is designed to achieve the same progress toward
linearized feasibility within the nonnegative orthant that is achieved by wvy; then,
within the null space of Ve(xy)?T and the nonnegative orthant, it aims to minimize a
(stochastically estimated) local quadratic approximation of the objective at xy.

The remainder of the kth iteration proceeds in a similar manner as in [3, 14]
with the primary goal of setting parameters and choosing a step size so as to achieve
expected decrease in a merit function. In an algorithmic framework such as ours,
one could employ an ¢,-norm merit function for any p € [1,00) and achieve similar
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algorithmic behavior. Common choices in the literature are p =1 and p = 2. For
example, in [3], the ¢£;-norm merit function is used. For our purposes here, we employ
the fo-norm merit function, namely, ¢ : R™ x Ryg — R defined by ¢(z,7) = 7f(z) +
lle(x)]]2. We make this choice since it simplifies expressions in our analysis; e.g.,
since subproblem (3.1) employs a squared ¢o-norm for the first term in its objective
function, it is consistent to employ an fo-norm merit function.

Back to the description of our algorithm, with the ¢o-norm merit function in mind,
the algorithm next sets a value for the merit parameter 7, € Ryo. This is done by
considering a local model of this merit function, namely, [ : R™ x Ryg x R” x R" - R
defined by I(z,7,g,d) = 7(f(x) + g7 d) + ||c(z) + Ve(z)Td|2 and, in particular, the

reduction in this model defined for all £ € N by
(3.3) Al(, Tes G, die) 2= Uk, Ty Gr, 0) — L2k, Ty g, i)
' = —7igi, di + llell2 = llex + Ve(zr) il

and setting 7 such that this reduction is sufficiently large. Specifically, with user-
prescribed (e,,0) € (0,1) x (0,1), the algorithm first sets

1
- S if gFdy + 5d{mdk <0,
B4) T (1= o) (el — ller + Ve(er) Tdill2)
gFdi + %dngdk '

otherwise,

then sets the merit parameter value as

trial
b

(3.5) sy St . 71 =7y
min{(1 — ;)7x—1, 7"}, otherwise.

(The value 19 € Rsg is also prescribed by the user.) We show in our analysis (see
Lemma 4.9) that this procedure for setting 75 ensures that Al(zy, 7k, gk, dk) is suffi-
ciently large relative to the squared norm of the search direction and the improvement
offered toward linearized feasibility. For use in the step-size procedure, the algorithm
next sets a value & € Ry (referred to as the ratio parameter) that acts as an esti-
mate for a lower bound of the ratio between the model reduction and a multiple of
the squared norm of the search direction. Specifically, if dy # 0, it sets

(3.6)

trial Al(xkaTkagkvdk)
e A
|k |3

Er—1 if &g < lrial)
min{(1 — €¢)&k—1,£52},  otherwise,

, then f;ge{

where (§o,€¢) € Rsg x (0,1) are user-prescribed parameters; see [3, 14] for further
motivation. On the other hand, if dj =0, then it sets fltfial o0 and & < Ek_1-

The step-size selection procedure, which, for all k& € N, chooses the step size
ar € Ry, can now be summarized as follows. First, if di = 0, then the algorithm
simply sets all step-size values to 1. Second, suppose that dj # 0. With user-prescribed
ne(0,1), 8 € Rsg, and {fBx} with 8 € (0,1] for all k¥ € N such that

2(1 —n)Br&rTr
L +T

and with the strongly convex function ¢y : R>9 — R defined by
or(e) = (n—1)aBrAl(@g, Th, gk, di) + llcx + aVe(zr) " dillz — [k |2
1
+allexllz = llex + Ve(zr) T dill2) + 5 (reL + T)a®[[d 3,

(3.7) oin ¢ €(0,1] forall k€N

(3.8)
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Algorithm 3.1. Stochastic SQP.

Require: z1 € RY; {ur} CRuo; {Hr} C R™*™ satisfying Assumption 2.3; 79 € Rso;
o € R0 {0, €r,6¢} C (0,1); {Br} C (0,1] satisfying (3.7); 6 € Ruo; {pr} CRso;
Lipschitz constants L € Rsg and T' € R (see (2.3))

1: for k€N, do

2 compute v, € R™ by solving (3.1)

3 if ¢ #0 and v =0, then terminate and return z; (infeasible stationary)

4: compute g € R” (recall Assumption 2.2)

5: compute d € R™ by solving (3.2)

6.

7

8

9

set 7y by (3.4) and 7 by (3.5)
if d;, =0, then
set £l v 00, € &g, a1, af 1, a1, and oy, < 1

: else
10: set £118l and &, by (3.6), oM™ by (3.7), and both af and ai"®* by (3.9)
11: choose ay, € [a™, ]
12: end if
13: Set xpy1 ¢ xx + ardy
14: end for

the algorithm sets the values
(3.9) af +max{a €Rsq: pp(a) <0} and o™ < min{l,af, o™ + 65}

The algorithm then chooses the step size oy as any value in [af", o], Over-
all, this strategy involves the computation of a minimal, conservative step-size value
(agli“) that could simply be used as the step size to ensure our convergence guaran-
tees. However, so that the algorithm may take larger step sizes to improve practi-
cal performance while still ensuring our convergence guarantees, the procedure com-
putes a maximal step-size value (a)'®*) that ensures that the resulting step satisfies
a sufficient—decrease-type condition. This can be seen in our analysis in Lemma 4.12.
A complete statement of our algorithm is given as Algorithm 3.1.

4. Analysis. In this section, we provide theoretical results for Algorithm 3.1.
We begin by introducing common assumptions under which one can establish sta-
tionarity measures for problem (2.1) that are defined by solutions of (3.1) and/or
(3.2). These stationarity measures allow us to connect our convergence guarantees for
Algorithm 3.1 with stationarity conditions for (2.1). Then, under Assumptions 2.1
and 2.3, we prove generally applicable results pertaining to the behavior of algorith-
mic quantities in any run of the algorithm. These results reveal that the algorithm is
well defined in the sense that any run will either terminate and return an infeasible
stationary point or generate an infinite sequence of iterates. We then consider the
convergence properties of the algorithm in the event that the (monotonically nonin-
creasing) merit parameter sequence eventually produces values that are sufficiently
small, yet bounded away from zero, which, as shown in our analysis, means that
the sequence ultimately becomes constant at a sufficiently small value. This analy-
sis, which includes our main convergence results for the algorithm, is provided under
Assumption 4.15 stated in section 4.3. We follow this analysis with a section on theo-
retical results related to the occurrence of the event in Assumption 4.15. As in [3] for
the equality-constraints-only setting, this discussion illuminates the fact that, while
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the event in Assumption 4.15 is not always guaranteed to occur due to the looseness
of our assumptions about properties of the stochastic gradient estimates, the event
represents likely behavior in practice, which shows that our convergence results about
the algorithm are meaningful for real-world situations. We conclude this section with
a discussion of the behavior of the algorithm in the deterministic setting, i.e., when the
true gradient of the objective is employed in all iterations. This discussion is meant to
provide confidence to a user that our algorithm is based on one that has state-of-the-
art convergence properties under common assumptions in the deterministic setting.

4.1. Subproblems and stationarity measures. We begin by showing that
subproblem (3.1) yields a zero solution if and only if the point defining the subproblem
is feasible for problem (2.1) or an infeasible stationary point.

LEMMA 4.1. Suppose that Assumption 2.1 holds and x € X NRY,, and, given
€ Rsq, consider the quadratic optimization problem (recall (3.1))

1 1
i = Ve(z)'V 24 = w2
(4.1) ue]anr}iuneRm 2 l[e(x) + Ve(z)" Ve(z)wllz + 2#”““2

s.t. Ve(x)Tu=0 and x4 u+ Ve(z)w > 0.

Then, the unique optimal solution of problem (4.1) is (u,w) = (0,0) if and only if x
is feasible for problem (2.1) or an infeasible stationary point (i.e., it satisfies (2.5)),
whereas (u,w) # (0,0) if and only if ||c(x)|2 > |lc(z) + Ve(x)TVe(z)w]|2.

Proof. Suppose that the conditions of the lemma hold, and let (u,w) be the
unique optimal solution of (4.1). Since x € R%, it follows that (0,0) is feasible for
(4.1). In addition, necessary and sufficient optimality conditions for (4.1) are that,
corresponding to (u,w) € R™ x R™ there exists (v,d) € R™ x R™ with

Ve(z)'Ve(x)e(x) + Ve(z) ' Ve(z)Velx) ' Ve(z)w — Ve(x)Ts =0,

4.2
(4.2) pu+Ve(z)y —6=0, Ve(@)Tu=0, and 0<6 La+u+ Ve(x)w > 0.

If (u,w)=(0,0), then it follows from (4.2) that
(4.3) Ve(z)I'Ve(x)e(z) — Ve(z)T6 =0, Ve(x)y—6=0, and 0<6 Lz >0.

Since Ve(x)T has full row rank, (4.3) implies that v = (Ve(z)TVe(x)) " Ve(z)T6 =
c(z), § = Ve(x)e(x), and 0 < Ve(z)e(x) L x > 0, which, from (2.5), means that x is
either feasible or an infeasible stationary point, as desired. On the other hand, if x is
either feasible or an infeasible stationary point, meaning that 0 < Ve(z)c(z) Lz >0,
then u =0, w =0, v=c¢(x), and 6 = Vc(z)c(x) satisty (4.2), and this solution (i.e.,
(u,w) =(0,0)) is unique since the objective of (4.1) is strongly convex.

Now, let us show that the unique optimal solution of (4.1) is (u,w) # (0,0) if and
only if [|c(z)]|2 > ||c(x)+Ve(z)T Ve(z)w||o. If||c(x)|2 > |le(z)+Ve(z)T Ve(x)w||z, then
w # 0 follows trivially, giving the desired conclusion. To prove the reverse implication,
let us consider two cases. If u# 0, then, since (0,0) is feasible for (4.1), we have that
Yle(@)[3 > Lle(z) + Ve(@) Vel + Sululf > le(z) + Ve() Ve(@)wl3, as
desired. Second, if © =0 and w # 0, then w is the minimizer of the strongly convex
objective 1||c(z)+ Ve(2)T Ve(z)wl|3 subject to z+ Ve(z)w > 0. Since 0 is feasible for
this problem, w # 0 means that $||lc(z)3 > i||c(z) + Ve(z)TVe(z)w|3, as desired. O

We now show that, under common assumptions and given z;, € RY, the quantity
lvk||3, where vy € R™ solves subproblem (3.1), represents a stationarity measure with
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respect to the problem to minimize 3||c(z)||3 subject to 2 € R%. (The assumption in
the lemma that pr = u € Ry for all k£ € N could be relaxed; see Remark 4.6 at the
end of this subsection. We consider this case for the sake of brevity.)

LEMMA 4.2. Suppose that Assumption 2.1 holds and there exists infinite S C N
such that, for some sequence {xr} C X NRYL,, one finds that {xitres — . for
some x, € X NRL,, where, with A(x) := {i € [n] : &, = 0}, Ly denoting the
matriz composed of rows of I € R"*™ corresponding to indices in A(x), and V() A
denoting the matriz composed of rows of Ve(x) corresponding to indices in A(x), one
finds that

(i) [Ve(zy)e(xy)]; >0 for all i € A(zy) and

(ii) the following matriz has full row rank: [VC(E*O)A( ) ijf*)T],
Then, with p, = p € Rsg for all k € N and with (ug,wy) s*olm'ng ;ubproblem (3.1) and
vg = uk+ Ve(x)wyg for all k €N, it follows that x. satisfies the stationarity conditions

(2.5) if and only if {vg}tres — 0.
Proof. Let A, :=A(z,) and j(z):= Ve(z)T, and consider the linear system

J@I@Ti@I@T 0 0 —j@a] [w] [~ )
0 pl  j@)" 1% u | 0
0 j(x) 0 0 v | 0
i)k, Ia, 0 0 A, —Z4,

Since, under the conditions of the lemma, the matrix in this linear system is nonsin-
gular when = = x, (e.g., this follows from [42, Theorem 1.5.1] and (ii)), it follows that
there exists an open ball B, centered at z, such that, for each x € B, N X N RY,
this linear system has a unique solution, call it (w(z),u(x),v(x),54, (7)), and—due
to continuity of the left-hand-side matrix and right-hand-side vector with respect to
xz—this solution varies continuously over B, N X NRZ,. If z, satisfies (2.5), then
it follows that (0,0, c(2.), [j(+)Te(2s)]a,) (With [§(z.)Tc(z4)]a, > 0) is the unique
solution of the system at x = z, and, for all z € B, N X NRY,, the solution of
the system in conjunction with §; = 0 for all i ¢ A, satisfies (4.2), meaning that
the components (u(x),w(x)) represent the unique optimal solution of problem (4.1).
Hence, with respect to the quantities in the lemma and using Assumption 2.1, one
finds that {vk}res — 0, as desired. To prove the reverse inclusion, suppose that
{vk }kes — 0, from which it follows by the fundamental theorem of linear algebra and
(ii) in Lemma 4.2 that {(ug,wi)}res — 0. For all k € S, let (ug,ws, Vi, k) be a
primal-dual optimal solution of (3.1) (satisfying optimality conditions of the form in
(4.2)). One finds, under the conditions of the lemma, that, for all sufficiently large
k € S, this solution has [0;]; = 0 for all ¢ ¢ A(x,) whereas (ug,wg, ¥k, [0k]4,) solves
the linear system above at © = zj. Since, by the arguments above, this solution varies
continuously within B, NA'NRZ, the fact that {x)}res — . implies that z, satisfies
(2.5), as desired. N 0

In fact, under the conditions of the prior lemma, the quantity |[ckll2 — ||cx +
Ve(zg) vz also represents a stationarity measure for the problem to minimize
1{le(z) |13 subject to x € R%,. This is shown in the following lemma.

LEMMA 4.3. Suppose that Assumption 2.1 holds, ur = p € Rsg for all k €N, and
there exist A € Rsg and infinite Sy CN such that, for some {xy} C XNRZ,, one finds
that Ve(xp)TVe(zr) = M for all k € Sx. Then, there exists Kuv,2 € Ryg such that

(4.4) leklle — llex + Vc(mk)Tkag > K2 lvg||3 for all k€ Sy,
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where vy, = ug, + Ve(xg)wy with (ug, wy) being the unique optimal solution of (3.1).
Consequently, under the conditions of Lemma 4.2, if S is defined as in Lemma 4.2
and there exists A € Ry and infinite Sy C S such that, for some {xx} C X NRY,,
one finds that Ve(xy,)TVe(xy) = M for all k € Sy, then it follows that {vi }res — 0 if
and only if {||ckll2 — llcx + Ve(xr) Tvgll2 }res — 0.

Proof. Consider arbitrary k& € S). Under the stated conditions with j; :=
Ve(xy)T, Lemma 4.1 implies that |cx + jxvkll2 < ||ck 2. Hence, by Assumption 2.1,

llexll3 = llex + grvrll3 = (lellz + ller + grvell2) (lexllz = llex + jrvill2)

(4.5) . .
<2|ekllz(liekllz = llex + drvkllz) < 2kc(llekll2 — [lex + Jrvrll2)-

If v, =0, then (4.4) follows trivially. Hence, we may proceed under the assumption
that vy # 0, which, by vg = ug + j,{wk and the fundamental theorem of linear algebra,
means that ug # 0 and/or wy # 0. If wg =0, then it follows, by construction of (3.1),
that uy =0 as well. Hence, we may conclude from vy, # 0 that, in fact, wy # 0. Since
(uk,wy) is the unique optimal solution of (3.1), it follows that of =1 is the optimal
solution of the strongly convex quadratic optimization problem

1

2ﬂk||0mk\|§,

1
4.6 min = ||ex + ajejt wi||? +
(16) min 5w+ asif un
which further implies (since an optimality condition of (4.6) is that the derivative of
its objective function with respect to « is less than or equal to zero at af = 1) that
—cFiitwr > |ljkiE w3 + e llukl|3. Consequently, one finds that

lexll3 = llex + grvrll3 = llerll3 = llex + guii wrll3

(4.7) . . -
= —2ci ki wr = lindi well3 > ljkgc well3 + 2p0 uxl13.

With (4.5) and (4.7), it follows from Assumption 2.1, the conditions of the lemma,
and the Cauchy-Schwarz inequality implying that [Jwg||2 > |57 wk|l2/||F ]2 that

llerllz = llew + drorllz = (26e) " (lerll3 = lle + jrorll3)
> (2ke) ™ (1w wll3 + 2mnlluxl3) = (2re) ™ (N w13 + 2u k] [3)

A
> (2n0) ™ (o T el + 20
Ve
2

A .

> (2ne)Hmin {2y (1Tl + o)
Ve
2

1 A
= (2k.) "' min { o

Ve
which gives (4.4), as desired. |

2u} o2 = moallon 2

Next, we show that, if the point defining subproblem (3.2) is not an infeasible
stationary point for problem (2.1), then the subproblem with g, = V f(x) yields a
zero solution if and only if the point defining the subproblem is stationary for (2.1).

LEMMA 4.4. Suppose that Assumption 2.1 holds and, with respect to x € X NRY,
one finds that c(x) =0. Given H € R™*™ with H > 0, consider (recall (3.2))

1
(4.8) ;n%g}b Vi(x)'d+ §dTHd s.t. c(z) +Ve(x)'d=0 and z+d>0.

Then, one finds that the optimal solution of problem (4.8) is d=0 if and only if x is
a KKT point (i.e., first-order stationary point) for problem (2.1).
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Proof. Suppose that the conditions of the lemma hold, and let d be the optimal
solution of (4.8). Since z € R%;, and c(z) =0, it follows that the zero vector is feasible

for (4.8). In addition, necessary and sufficient optimality conditions for subproblem
(4.8) are that, corresponding to d € R™, there exist y € R™ and z € R™ such that

(4.9) Vf(x)+Hd+Ve(z)y—2=0, Ve(x)'d=0, and 0<z+d L z>0.

If d =0, then, since ¢(z) =0, it follows that (x,y, z) satisfies (2.4), as desired. On the
other hand, if = is a KKT point for (2.1), then there exist y € R™ and z € R™ such that
(z,y,2) satisfies (2.4), which, in turn, means that d = 0, along with (y, z), satisfies
(4.9), and this solution is unique since the objective of (4.8) is strongly convex. 0

We conclude this subsection by showing that, under common assumptions and
given z, € RZ,, the quantity ||dx||3, where di, € R™ solves subproblem (3.2) with
gr = Vf(xy), represents a stationarity measure with respect to (2.1). (The assumption
in the lemma that Hy = H for some H > 0 for all kK € N could be relaxed; see
Remark 4.6 at the end of this subsection. We consider this case for the sake of brevity.)

LEMMA 4.5. Suppose that Assumption 2.1 holds and there exists infinite S C N
such that, for some sequence {xx} C X NRY, one finds that {zx}res — .« for some
T, E€X ﬂRgo with ¢(z) =0 and, with the notation in Lemma 4.2, one finds that

. m A(z.

(i) =V f(zs)=Ve(z)y — Iﬁ(l_*)zA(z*) for some (gé, ZA(z.)) ER™ X RLO( I and
(ii) the following matriz has full row rank: [v{f(x*)) ].
Then, with Hy = H for some H > 0 for all k € N and with dy solving (3.2) with
gr =V f(zx) for all k €N, z, satisfies (2.4) if and only if {||dx||3}res — 0.

Proof. Letting A, := A(z.) and considering the linear system of equations

H Ve(z) —Ih d -V f(z)
Ve 0 0 yl=| o |,
Ia, 0 0 ZA, —TA,

the proof follows under the conditions of the lemma using the same line of deduction
as the proof of Lemma 4.2, which we omit for the sake of brevity. 0

Remark 4.6. One might relax the condition in Lemma 4.2 that p = pg for all
k € N and similarly relax the condition in Lemma 4.5 that Hy = H > 0 for all k € N,
such as by requiring merely that {ug}res and {Hj}res have bounded subsequences
that converge to some p € Rso and H > 0, respectively. In these cases, the “if and
only if” statements would be replaced by “if” statements, which, in fact, is all that is
needed for our subsequent analysis and discussions. Nevertheless, for brevity in the
proofs, we provide the conditions that offer the stronger conclusions in these lemmas.

4.2. General algorithm behavior. We now prove generally applicable results
that hold for arbitrary & € N in every run of Algorithm 3.1. Our initial results in
this section presume that iteration k € N is reached, at which point certain properties
hold, e.g., z;, € RY,. Ultimately, we combine these results to prove inductively that,
in fact, these properties are guaranteed in any run for any generated k € N; see
Lemma 4.14. It is worthwhile to emphasize that the results in this section merely
require that g, € R™ for all k € N, which means, for example, that Assumption 2.2 is
not needed in this section. All results that depend on the properties and effects of the
stochastic gradient estimates are found in the subsequent subsection, i.e., section 4.3.

Our first lemma follows directly from Lemma 4.1, so it is stated without proof.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/12/24 to 128.180.247.223 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3604 FRANK E. CURTIS, DANIEL P. ROBINSON, AND BAOYU ZHOU

LEMMA 4.7. Suppose that Assumption 2.1 holds. Then, in any run of the algo-
rithm such that iteration k € N is reached and x; € RY,, it holds that v, =0 if and
only if xi satisfies (2.5); i.e., xy 1is either feasible or an infeasible stationary point,
whereas vy # 0 if and only if ||ck|l2 > ||k + Ve(zg) o2

Our next result shows that, in any iteration in which the current iterate xj is
in the nonnegative orthant and 7,_; > 0, the merit parameter is either kept at the
same value or decreased, and, if it is decreased, then it is decreased below a constant
fraction times its former value. As in other SQP methods with such a feature, this
ensures that, if the merit parameter sequence does not vanish (i.e., its limiting value
is nonzero), then it eventually remains at a constant positive value; see Lemma 4.14.

LEMMA 4.8. Suppose that Assumption 2.1 holds. In any run of the algorithm
such that line 4 of iteration k € N is reached, x, € R%, and 7,1 € R, it holds that
0< 7k <71, where, if T, < Tx_1, then 7, < (1 — €, )Tp_1.

Proof. Consider an arbitrary run in which line 4 of iteration k € N is reached,
Ty € R>0, and 7,1 € R>0 Let us show that 0 < 7, < 7;_1, in which case the fact
that 7, < 7x—1 implies 7 < (1 — €;)7x—1 follows from (3.5). Toward this end, let us
next show that 77 > 0. By the constraints of (3.2), (3.4), and Lemma 4.7, one finds
that r{ral > 0 Whenever llekllz = llex + Ve(xg)Tog|l2 > 0. Hence, to show that one
always finds 7{al > 0, all that remains is to consider the case when ||ck|l2 — ||cx +
Ve(zg)Tvg|l2 = 0. In this case, it follows from Lemma 4.7 that v;, = 0, meaning that
d =0 is feasible for (3.2). This, in turn, means that gi di + 3df Hy.dx < 0, so, by (3.4),
one finds that 7" = 0o > 0. Since it has been shown that Tt“al > 0, the fact that
0 < 1 < 7,1 now follows directly from (3.5), completing the proof. 0

We now show that the model reduction offered by the computed search direction
satisfies a lower bound with the properties stated in our algorithm development.

LEMMA 4.9. Suppose that Assumptions 2.1 and 2.3 hold. In any run of the al-
gorithm such that line 4 is reached in iteration k € N, xj, € RY,, and T € Rsg, one
finds, with ¢ from Assumption 2.3, that

1
(4.10) Al i, gk di) = 5iCllde5 + o (lexlla = llex + V() dil2),

and, if di #£0, then Al(xg, Tk, gk, dr) > 0.

Proof. Consider an arbitrary run in which line 4 of iteration k € N is reached,
rr € RY), and 74 € R>p. By (3.3) and Assumption 2.3, (4.10) is implied by

1
(4.11) (1 — 0’)(||Ck||2 — ||Ck) + VC(J?k)TdkHQ) > Tk (g;{dk + 2d£dek) .

If gF'dy, + 2df Hydy, <0, then (4.11) holds due to Lemma 4.7 and the fact that (3.2)
ensures Vc(xk) T Vc(xk)Tdk On the other hand, if g{ di + df Hydi > 0, then

one finds, by (3.4) and (3.5), that 75, < rjrial = (= U)(HC’“|‘§k_ﬂc"d+21(;k")Td"Hz) from

which (4.11) follows again. Finally, that dj # 0 implies Al(mk,ﬂc,gk,dk) > 0 follows
from (4.10), 7 € R<g, and ¢ € R+ in Assumption 2.3. O

Our next result is that, under the same conditions as Lemma 4.9 and under the
assumption that &,_; € Ry, the ratio parameter is either kept at the same value or
decreased, and, like the merit parameter, if it is decreased, then it is decreased at
least below a constant fraction times its previous value.
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LEMMA 4.10. Suppose that Assumptions 2.1 and 2.3 hold. In any run of the
algorithm such that line 4 is reached in iteration k € N, z € RY,, 7 € Rso, and
Ek—1 € R, it holds that 0 < & < &k_1, where, if { < Ek—1, then & < (1 —€)&k—1.

Proof. Consider an arbitrary run in which line 4 of iteration k € N is reached,
zr € RY, 7 € Ryp, and &—1 € Ryo. Let us show that 0 < &, < &,—1, in which case
the fact that & < &_1 implies & < (1 — e¢)&,—1 follows from (3.6). Toward this end,
observe that, if dr = 0, then the algorithm sets & < &,_1 > 0, which is consistent
with the desired conclusion. On the other hand, if dy # 0, then, by (3.6), 7% € R,
Lemma 4.7, the fact that (3.2) ensures Ve(zy) v = Ve(xy)T dy, and Lemma 4.9,

o AUy, 7 gi,di) _ 3TRClldRlE 1
4.12 trial __ s 'kyJk> > 2 = 2¢>0.
(4.12) ¢ a3 2°

7|l dr |3

Hence, by (3.6), the desired conclusion follows. |
Next, we prove bounds for the step size computed in the algorithm.

LEMMA 4.11. Suppose that Assumptions 2.1 and 2.3 hold. In any run of the
algorithm such that line 4 is reached in iteration k € N, x), € RY,, 7, € R>o, and
& € R, it holds that 0 < o™ < o™ <min{l,af}, and so, Ty41 € RE,.

Proof. Consider an arbitrary run of the algorithm in which line 4 of iteration
k € N is reached, z, € R%,, 7 € Ry, and & € R-o. Let us show that 0 < ot <
o™ < 1, in which case the fact that xp,; € R%,, follows from x € R%,, the fact
that the constraints of (3.2) ensure that zj + dy € RZ%, and the step size having
ay, € [adin oiax] < (0,1]. Toward this end, observe that, if dj, = 0, then the algorithm
yields ap = ag““ = o = of =1, so the conclusion follows trivially. Hence, let us
assume dj, # 0. Observe that, from (3.7), the algorithm uses o)™ with

mi 2(1 - n)ﬁkngk
4.13 O<afm=—— """ " 1,
(4.13) < ag L+ T =

Now, observing (3.9), which shows that aj*** <min{1, o]}, one finds that all that re-
=min{l 2(1*77)ﬁk,Al(Ik,Tk,yk,dk)}
’ (mi AT [l di 13 ’

where o5 € (0,1] follows by B, € (0,1], Lemma 4.9, and dy # 0. To show that
it < ¥ our aim is to show that o < o5 < of. First, from (3.6), one finds
that

mains is to prove that ag‘i“ <aj. Let us introduce ai‘“cfs

2(1 — 1) BrérTr < 2(1 —n) Bpéirialn, _ 2(1 —n)BrAl(xk, T, G, di)
7L +T - 7L +T (T L+ T)||dk 13

(4.14)  oin =

Combining (4.13) and (4.14), one finds that o® < o3" as desired. Now, toward
proving that o' < af, let us first show that ¢ (aj"®) < 0. From the triangle
inequality, the fact that o5 € (0,1], and (3.8), it follows that
suffy _ suff suff T
er(ai™) = (n = 1)ag™ BeAl(@k, T, grs die) + [lek + o™ Ve(an)” dill2 — [|exl|2
1
+ai " (lexllz = llex + Ve(ar) dill2) + Sl + ) (@)% || dll3
< (n=1)a  Br Al zk, Th, giy die) + (L= lex 2 + o™ lex+Ve(ar) T2
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Su 1 Su
— llewllz + a3 (llexll2 = llex + Ve(zr) " dil2) + 5 (7L + ) (g )2\ I3

1
= (= V)i Be Ay, T, grer di) + (L + ) (a3 )? |13
S (77 - 1)QZUH5kAZ(xkaTkagkvdk)

[ 2 (2(1—U)/Bkﬁl(ﬂﬁk,Tk,gmdk))
+ o™ (1, L +T1)||d =0.

Therefore, by (3.9), it follows that o <a?. 0

Our next lemma shows an upper bound on the change in the merit function. In
the next lemma and throughout the rest of the paper, for any k € N such that line 4 is
reached, we let d§™"® € R™ denote the solution of (3.2) when gy, is replaced by V f(zy).

LEMMA 4.12. Suppose that Assumptions 2.1 and 2.3 hold. In any run of the
algorithm such that line 4 is reached in iteration k € N, z € R>o, 7 € Ry, and
ayp € (0,af], it holds that
¢((£k + Ozkdk, Tk) —¢($k, Tk) S —OékAl((Ek, Tk, Vf((tk), d;crue)-l-()ékaVf(:L'k)T(dk _erue)

+ (1 = n)arBeAl(zk, Tk, gk, di).-

Proof. Consider an arbitrary run of the algorithm in which line 4 of iteration
k € N is reached, z, € RL, 7x € Rxo, and ay, € (0,af]. By Assumption 2.1 (which led
to (2.3)), (3.2) (which implies that cx + Ve(zg)Tdy = o + Ve(zy) T dire), (3.3), (3.8),
and the fact that 0 < a <} (which means that ¢ () <0), it follows that

¢(xr + ardi, k) — G(Tk, k)
=7k (f (@x + ardr) = fr) + lle(@r + ardi) |2 = llexl2
1
< akaVf(xk)Tdk + ||Ck + ach(:rk)Tdng — HckHQ + §(TkL + F)ainkH%
= —OzkAl(l'k, Tk, Vf(xk), dfﬂr“e)—&-akaVf(xk)T(dk — d‘;@rue)_i_ ||ck+ach(xk)TdkH2
1
—llexllz + arllerllz = llex + Ve(wr) T dill2) + 5 (Tl + D)ail|dy 3
S —OzkAl(l'k, Tk, Vf(l’k), dirue) + OékaVf(:Ck)T(dk — d}qrue)
+ (L —n)axBeAl(zk, T, Gr, i)
which shows the desired conclusion. ]

We now show that each search direction—and, similarly, the search direction that
would be computed if the true gradient of the objective function were used in place of
the stochastic gradient estimate—can be viewed as a projection of the unconstrained
minimizer of the objective of (3.2) onto the feasible region of (3.2).

LEMMA 4.13. Suppose that Assumptions 2.1 and 2.3 hold. In any run of the
algorithm such that line 4 is reached in iteration k € N, z, € R>q, and with

Dy, :={d€R": Ve(zy,)" (d—vy) =0, z+d >0} and Proj,(D):=argmin ||d—D||3,,
de€Dy '

it holds that dy, = Proj,(—H, 'gx) and di™® = Proj, (—H, 'V f(x)).

Proof. Consider an arbitrary run of the algorithm in which line 4 of iteration
k € N is reached and z;, € R>(. The desired conclusion follows from the facts that Dy,
is convex and, under Assumption 2.3, Hy is SPD; in particular, one finds that
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dy = argmin gid+ = dTde—argmm ||d+lelgk||qu :Projk(—lelgk),
deDy, deDy,

and similarly with respect to d{"¢ with gj replaced by V f(zx). 0

We are now prepared to prove Lemma 4.14, which shows that the algorithm is well
defined and either terminates finitely with an infeasible stationary point or generates
an infinite sequence of iterates with certain critical properties of the simultaneously
generated algorithmic sequences. Lemma 4.14 also reveals that the monotonically
nonincreasing merit parameter sequence either vanishes or ultimately remains con-
stant, and it reveals that the monotonically nonincreasing ratio parameter sequence
ultimately remains constant at a value that is greater than or equal to a positive real
number that is defined uniformly across all runs of the algorithm.

LEMMA 4.14. Suppose that Assumptions 2.1 and 2.3 hold. In any run, either the
algorithm terminates finitely with an infeasible stationary point, or it performs an
infinite number of iterations such that, for all k € N, it holds that

(a) =1 € R’ZLO,

b) vk =0 if and only if zi. satisfies (2.5),

) vp # 0 if and only if |lcxll2 > |lcr + Ve(zr) Toglz,
) 0< 7k <Tp—1 < 00,

) T <Tk—1 if and only if T, < (1 —€;)TK_1,

) (4 10) holds,

) di #0 if and only if Al(zk, Tk, gk, dr) >0

) 0 <& <&p1 < o0,

) &k < &k—1 if and only if & < (1 —€¢)€k—1, and

(j) 0 < arin <P <min{l,af}.

In addition, in any run that does not terminate finitely, it holds that

(k) either {7} \( O or there exists k; € N and Tmin € Rso such that T = Tmin for

all ke N with k> k., and

(1) there exist ke € N and &min € Rso with &min > %C(l —€¢) such that & = &min

for all k €N with k > k.

@

Proof. Given the initialization of the algorithm, statements (a)—(j) follow by in-
duction from Lemmas 4.7-4.11. Statement (k) follows from statements (d) and (e).
Finally, to prove statement (1), consider arbitrary & € N in a run that does not ter-
minate finitely and note that, if dy = 0, then &8l « oo, and if dj, # 0, then £pial
satisfies (4.12), meaning that ¢rial > %C. Consequently, by (3.6), & < &x—1 only if
&—1> 3(. This, along with statements (h) and (i), leads to the conclusion. |

4.3. Convergence guarantees. We now turn to prove convergence results un-
der Assumption 4.15 below. Recalling the role of %C(l —€¢) € Ry in Lemma 4.14(1),
the assumption focuses on the following event for some (kmin, Tmin, fsup) € N X Rsq X
R, where, for all generated k € N, we denote 7, rial a5 the value of el that would
be computed in iteration k if (3.2) were solved with V f(xy) in place of gi:

5(kmin77-min7fsup)
:={An infinite number of iterations are performed, f(zg,,,) < fsup, and
(4.15) there exist &' € N with k' < ki, 7 € Ryg with 7/ > min,
and £ € Ry with & > %{(1 — €¢) such that
=7 <7 and ¢, = ¢ for all ke N with k> k'}.
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The following assumption is made in this subsection. We present a discussion and
supporting theoretical results about this assumption in section 4.4.

Assumption 4.15. For some (kmin, Tmin, fsup) € N X R5g X R, the event & :=
E(Kkmin, Tmin, fsup) occurs and, conditioned on the occurrence of £, Assumption 2.1
holds (with the same constants as previously presented in (2.2) and (2.3)).

It is not a shortcoming of our analysis that Assumption 4.15, through the defi-
nition of £, assumes that (i) an infinite number of iterations are performed, (ii) the
objective value is bounded above in iteration kmin, and (iii) {£x} ultimately becomes
a constant sequence with value at least (1 — €¢) € Rso. After all, (i) Lemma 4.14
shows that the only alternative to an infinite number of iterations being performed
is that the algorithm terminates finitely with an infeasible stationary point, in which
case there is nothing else to prove; (ii) fsup € R can be arbitrarily large, and knowledge
of it is not required by the algorithm, so assuming that it exists is a very loose require-
ment; and (iii) Lemma 4.14(l) shows that, in any run that does not terminate finitely,
{&} is monotonically nonincreasing and bounded below by 1¢(1 — €¢) € Rxg, which
is a constant (i.e., it is not run-dependent). Overall, the only important restriction
of our analysis in this section is the fact that £ includes the requirement that {75}
ultimately becomes constant at a value at least 7y, that is sufficiently small relative
to {r}""™a}  This restriction is the subject of section 4.4.

For the remainder of this subsection, we consider the stochastic process corre-
sponding to the statement of Algorithm 3.1. Specifically, the sequence

dtrue trial __true,trial trial
k

{(xkav/wgkadkv 7Tk aTk; s Tk k 7£k7a;€nln7af7a;€nax7ak)}

generated in any run can be viewed as a realization of the stochastic process
true rial true,trial —=trial — min © max
{(Xk7Vk7GkHDk7Dk: ’7;5 77; 77765_‘]@ 7—']€7Ak: >AkaAk 7Ak)}

Let G; denote the o-algebra defined by the initial conditions of the algorithm and, for
all k € N with k > 2, let G, denote the o-algebra generated by the initial conditions
and the random variables {G1,...,Gr_1}. Then, with respect to the event £ in
Assumption 4.15, denote the trace o-algebra of & on Gy as Fi := G N E for all
k € N. It follows that {Fy} is a filtration, and we proceed in our analysis under
Assumptions 2.2, 2.3, and 4.15 (which subsumes Assumption 2.1) with the definitions
that P[] := P, [-|Fx] and Eg[] := E,[-|Fr]. We also define, with respect to &, the
random variables K’ < kuin, 77 > Tmin, and Z' > %C(l — €¢), which, for a given run of
the algorithm, have the realized values k', 7/, and &', respectively, defined in (4.15).
Conditioned on &, one has, in any run, that

1
(4.16) Tmin < T’ <7 and 54(1 —e) <E' <&

and that 7’ and E’ are Fj,-measurable for k = kpin > K'.

Our next lemma shows upper bounds on the norm of the difference between the
computed search direction and the search direction that would be computed with the
true gradient of the objective. (The conclusion of this lemma would hold even without
assuming that the event £ occurs, but in the result, we condition on Fj :=Gr NE so
that it may be used directly in our ultimate results under £.)

LEMMA 4.16. Suppose that Assumptions 2.2, 2.3, and 4.15 hold. For all k € N,
Dy = Di¢ll2 < CTHIG — V(X3 2
and Ey[|| Dy — Di®|l2] < CTER[|Gr — VF(Xp)[l2] < ¢/
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Proof. Consider arbitrary k£ € N under the stated conditions. Lemma 4.13
and the obtuse angle lemma for projections [6, Proposition 1.1.9] imply that (Dj —
DT [ (—Hy 'V f(Xy) — DEFe) < 0 and (D8 — D) Hy(—H, 'Gy — Dy) < 0.
Summing these inequalities yields

0 2 (Dk _ Dzrue)THk(_Hk—lvf(Xk) _ Dzrue) + (Dzrue _ Dk:)THk:(_Hk_le: _ Dk})
=Dk — D™, — (Di — D) (VF(Xx) = Gi).-
Hence, by the Cauchy-Schwarz inequality, it follows that ||Dy — Dy¢[|;, < (Dy —
DT (V f(Xy)—Gy) < || Dk, — Dl ||V f(Xk) — G ||2, which shows, under Assump-
tion 2.3, that || Dy — Dive||y < (7Y|G — Vf(Xk)|2, as desired. Then, from this in-

equality, Assumption 2.2, and Jensen’s inequality, one has that E;[||Gr —V f(Xi)||2] <
VEL[Gr — Vf(X1)|I2] < \/Pk, from which the remainder of the conclusion follows. O

We now show an upper bound on the expected difference between inner products
involving the true and stochastic gradients and the true and stochastic directions.

LEMMA 4.17. Suppose that Assumptions 2.2, 2.3, and 4.15 hold. For all k > kpypin,

Bk (G D = V f(Xi) " D) < CHpw + kv v/px)
and Ek[Al(kaﬁvaka)} - Al(kaTlvvf(Xk)aDltcrue) < Tlé-il(pk + KVf\/ka)'

Proof. Consider arbitrary k > ki, under the stated conditions. From the triangle
and Cauchy—Schwarz inequalities and Lemma 4.16, it holds that

[E4[GT Dy, — V f(X5,) T Dy
= |Ex[(Gr, — VF(Xg))T D™ + (Gy, — V£(Xi))" (Dy, — DiF°)
+ V(X)) (Dy — D)]|
= [Ex[(Gr = VF(Xp) T (Dy, — D)) 4+ Ex [V f(X3)T (Dy — Die)]|
<Eg[|Gr = VF(X)ll2[1Dr. = Dy ll2] + IV F (X |2Ex [[| D — Dy |l2]
< CER[IGE = VX3 + ¢ rosErl| Ge =V A(Xi) 2] < ¢ ok + (v v/or,

which gives the first result. Then, for k > ku,in, (3.3) and the equation above give
Ey[Al(X, Ty, G, D)) — AUXE, T', V f(Xy), D)
= T'Ex[V f(X3)" D" — G D] < T'¢CHpow + kv s v/0k)s
which completes the proof. 0

Our next lemma shows a lower bound on the true model reduction. In Lemma 4.18
and our subsequent results, we define Jj, := Ve(Xj)T for the sake of brevity.

LEMMA 4.18. Suppose that Assumptions 2.2, 2.3, and 4.15 hold. For all k > kpypp,
1
AUX, Toi, VF(Xx), D) 2 ST'CDE N3 + o (le(Xe)ll2 = le(Xk) + Je D™ |l2) > 0.

Proof. Consider arbitrary k > kpin under the stated conditions. By (3.3), the
fact that T =7, and Assumption 2.3, the first desired conclusion is implied by

1
(1= o) (le(Xill2 = le(Xk) + Te D™ ll2) = T'(V f(Xi)" D™ + 5 (D) T Hi DiF™).
If Vf(Xi)TDire + L(Dire)T Hy Die < 0, then the above holds due to Lemma 4.14

and the fact that Jp D' = J,Vi; else, Vf(Xy)TDirve + %(Dzr“e)THkfo“e > 0,
in which case one finds, from the conditions of Lemma 4.18, (3.4), and (3.5), that
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] true,trial _ (1—0) (le(Xn) ll2—|le(Xp)+Jk Dy l2)
776 - T S 7;; - Vf(Xk)TDtkruc+%(D;tcruc)THkletcruc )
inequality above follows again. Finally, the remaining desired conclusion follows from

the first conclusion, Lemma 4.14, and JkD,tCrUle = J V. 0

from which the displayed

Next, we prove a critical upper bound on the expected value of the second term
on the right-hand side of the upper bound proved in Lemma 4.12.

LEMMA 4.19. Suppose that Assumptig@s,2.2, 2.3, and 4.15 hold. For all k > kyin,
Ex[ATeV f(X0) T (Dy, — D)) < U220 1 0)Bu T ko s /-

Proof. For arbitrary k > ki, under the conditions of Lemma 4.19, (3.7) and (3.9)
yield

min max min 2(1 — U)E/T/
(417) Ak = Bk)A/ and Ak a S Ak + Hﬁk, where A/ = W

Letting Py denote the event that V f(X)T (D — D) > 0 and letting P§ denote
the event that V f(X)T (Dy — DiF'°) < 0, the law of total expectation and the fact
that 77 and = are Fj-measurable for k> knin, show that

Ex[ Ak TV f(Xi)" (Dy, — D))
=P [Py] - Ex[AT'V £ (X5)" (Dy, — D) | Py
+ P [Pg] - Ex[Ax T’V (Xi)" (Dy, — D) | Py
< (AP 4 081)T'Pr[Pr] - B [V f(Xi) " (Dy — D) Py]
+ APPTRLPE] - Ex[V f(Xi) " (Dy — D) [Py
= AP T'ER[V £ (X)) (D= D)+ 08T Pr[Pr] - Ex[V £ (Xi)" (D — Dy ) [P).

The Cauchy—Schwarz inequality and law of total expectation show that

Pr[Pr] - Ex[V f(Xx)" (Di — D) Pi] < Pr[Pr] - Ex[l[V f (Xi)l2l| D — D 2| P]
=Ex[[IVf(Xp) 2l D — D¢ ||2] — Pe[Pg] - B[V f (X&) ll2]| Di — Dy |l2|PF]
SEx[[IVF(Xi)ll2ll D — Dy l2],

so from the above, the Cauchy—Schwarz inequality, Assumption 4.15, and Lemma 4.16,
Ex[Ax TV f(Xe) " (D — D)) < (AR +608) T' |V £ (Xi) || 2B [ Di. — D]

2(1—n)=E'T’ ) -
< (’T’Ljrr +9) BT fin( 1\/@;

which gives the desired conclusion. 0

We now present, as Lemma 4.20, results pertaining to the asymptotic behavior
of the model reductions generated by the algorithm. In the subsequent theorem after
Lemma 4.20, these results will be translated in terms of quantities that, as seen in
section 4.1, can be connected to stationarity measures related to problem (2.1). We
remark that the conditions of the lemma can be satisfied in a run-dependent man-
ner if, every time the merit or ratio parameter is decreased, say, in iteration k£ € N,
the sequence {f} is “restarted” such that, with o/ = 2(1 —n)&;7;/(7,L +T) and
some (run-independent) v € (0,1], one chooses S =8 = wm for part (a) of
Lemma 4.20 and [y = k71£+1w2(1—nc)¥(/a’+9) for part (b); such a scheme was described
in [3] as well. Notice that, in this situation, § and {fx},~; in parts (a) and (b), respec-
tively, are random variables, but importantly, they are Fji-measurable for k > kpi,.
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Alternatively, one could choose {8} using the same formulas, but with &uin and Timin
in place of &, and 7, respectively, in the formula for o/, in which case the choices are
run independent. The downside of relying on this latter situation is that it requires
knowledge of &min and Tmin, which would not typically be known a priori. Hence,
we analyze the former scheme but use run-dependent bounds that, under &, are de-
fined with respect to £min and Tiin. These values are unknown by the algorithm but
nonetheless can be employed for our theoretical analysis.

We also remark that, for case (a) in Lemma 4.20, the sequence {px }, which bounds
the expected squared error in the stochastic gradient estimates, can be a constant
sequence. However, for case (b), the relationship between {py} and {8} means that
the expected squared error in the gradient estimates must vanish as k& — oo. This
requirement, which is stronger than the requirement for the equality-constraints-only
case in [3], is needed to overcome the fact that, in the presence of bound constraints,
the search directions can be biased estimates of their true counterparts. We discuss
this further with an illustrative example after the proof of Lemma 4.20.

LEMMA 4.20. Under Assumptions 2.2, 2.3, and 4.15, suppose that {py} is chosen

such that there exists © € Rsg with pi < Lﬂ]% for all k € N with k > k‘mm, and define
1—7)&min Tmin 1
Oé;mn = X 77)5 a ’ O‘;nax =X Lﬂ_)flg‘ro ) and pmax = ( Opax T O)TOC (va\[ + (1 -

Trmin L

n)(t+ nvf\f)). Then with A’ deﬁned in (4.17) and E[-|€] denoting expectation over
all realizations of the algorithm conditioned on &, the following statements hold true.

(a) If Br=B= qpﬁw for some Y € (O, 1] for all k > kmin, then

k]lll]l+k 1
limsup E |+ g AUX;, T,V f(X;), D)€
k— o0

J=kmin

/(b(a;nax)Q(ainin + G)pinax .
721 =) (1= ) (Vi) (A +6)2

(b) if Spe ko Be = 00, Z;i.kmm B2 < oo, and By < wﬁw for some
P €(0,1] for all k > kuyin, it holds that

kmintk—1

W S BAUX,, T, VF(X,), D)

Z] Kmin J J=Fmin

gl =2y,

Proof. For arbitrary k > ki, under the conditions, it follows from Lemma 4.12,
Lemma 4.18 (which shows that Al(Xy, Ty, V f(X%), Di¢) > 0), (4.17), the fact that
Aj > AP = A’ B, Lemma 4.19, the fact that Ay < AP < AP 408, = (A +0) 6y,
Lemma 4.16, Lemma 4.17, and S € (0,1] that
(4.18)

Ep[¢(Xkt1, Te) — ¢(Xk, Te)] = Ex[p(Xg + Ax Di, Te) — (X, Tr)]
< E[—ApAl(Xy, Te, V. f(Xk), DiM)
+ ATV f(X) T (Dr = D) + (1= 0) AxprAU(X, T, G, Di)]
< —A'BLAUXE, T,V F(X1), D) + (A + 0) 8T v ¢ /ox
+ (1= n) (A +0)BANXk, T,V f(Xk), D) + T'¢ Hpw + kv sv/Pr))
< —A'BRAUXy, T,V f(Xi), D) + (A" + 0) 81T v s ¢ iy
+ (1= n)(A +0)BL(AUXy, T, VF(Xy), Di) + T'¢H B + kv Vb))
< —Bre(A" = (1 =n) (A" +0)B) AUXk, T, V f(Xi), D) + R' B,
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where R’ = (A" +0)T'¢ (kv s+ (1—n)(t+ kv sy/t)). Now, from Assumption 4.15
(which subsumes Assumption 2.1), there exists ¢min € R such that ¢(Xk, T’) > dmin

for all £ > kyin. One also finds that of ;, <A’ < al . due to the monotonicity of
% with respect to 7. Therefore, under part (a), in which case one finds, for

k > kmin, that zpm <B< wm it follows from above that

Ex[o(Xk+1, Tr) — ¢( Xk, Te)]
(1= ) (i)
2(1 = n)(ogyin +6)

o 2
+ / . max ) .
Pma <w2(1 —1)(Opax +0) )
so, by taking total expectation conditioned on the event £, one finds that

¢min - E[d)( Kmin» T/) |5]

Al(Xy,, T,V f(Xg), Die)

kmin+k—1

< E[¢(Xk;nixl+k7 T/) - d)( 11;;1;77—/)'6] Z (¢(Xj+177-/) - ¢(Xj7 T/)) &

J=Kmin

) I2 Emintk—1
1/)(1 2)(O‘m1n) E Z Al(Xj,T/ Vf( )Dtrue)

J=kmin

&

ko (Y 0ma)?
(2(1 - n)(a/rnax + 9))2 .
Observing that E[¢(Xy,.. ,T")|€] is bounded above under Assumption 4.15 and con-

sidering k — oo, the conclusion of part (a) follows. On the other hand, under the
conditions of part (b), it follows in a similar manner that, for any k € N, one finds

¢min - E[QS( Kmin T,) |€}

kmin+k—1
S]E[QS(kahrHﬁT/) - ¢( mmle)|g] Z (¢(Xj+177-l> - ¢(XjaT/))‘g
J=Kmin
Emin+k—1
SE| Y (B(A = (L=n)(A +0)8,)AUX;, T, VF(X;), D) + R 53)|€
J=kKmin
Taking limits as k — oo, the conclusion of part (b) follows. 0

Let us now provide further justification for the introduction of the sequence {px}
in Assumption 2.2, specifically, the need for this sequence to vanish in part (b) of
Lemma 4.20. Algebraically, the need for this sequence to vanish in part (b) can be
seen in (4.18), wherein the requirement that p, < Lﬁg for all £ € N with & > knin
is relevant. In particular, this choice ensures that the expected value of the inner
product term, namely, AyTV f(Xi)T (D) — D), can be bounded as O(B%); see
Lemma 4.19 as the preliminary result for bounding this term in this manner. A
similar bound is needed for such a term in the equality-constrained setting in [3];
see Lemma 3.11 in that paper. However, in the equality-constrained setting, the fact
that the search directions are unbiased estimates of their true counterparts allows the
expected value of this inner product term to be bounded more tightly in terms of the
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error in the stochastic gradient estimates. By contrast, in our present setting, the bias
in the search directions allows us only to prove Lemma 4.16, where the latter bound
involves /pi. Consequently, in the present setting, in order to ensure convergence for
diminishing {8}, the algorithm requires diminishing {py} as well.

To understand the bias in the search directions that arises in the presence of
inequality constraints, various examples can be constructed. For example, suppose
that xx = (1,0) and the linearized equality constraints require that [z, +dg]; = 0; i.e.,
the search direction moves to the vertical axis in R2. Suppose also that, with only
equality constraints, the search direction takes the value (—1, —1) with probability 0.5
and takes the value (—1,1), otherwise. This means that the expected search direction
is (—1,0), which means that x; + d = 0. However, if the inequality constraints xj +
dy, > 0 are present, then, with the same stochastic gradient distribution, the expected
search direction is (—1,0.5), which is a biased estimate of the true search direction. In
Lemma 4.20(b), {pr} needs to vanish in order to account for the presence of this bias.

We now present our main convergence theorem for Algorithm 3.1, which is es-
sentially a translation of Lemma 4.20 from results about model reductions to results
about quantities connected to measures of stationarity for problem (2.1).

THEOREM 4.21. Suppose that the conditions of Lemma 4.20 hold. Then,
(a) under the conditions of Lemma 4.20(a), there exists C € Rsq such that

limsup E

k— o0

kmin+k_l 1
z > (27"C||D§me||§+0(C(Xj)||2
J=kmin

= [le(X;) + JjDﬁ-mez)) M =0

(b) wunder the conditions of Lemma 4.20(b) with By := Zk“‘“‘+k_1 Bj,

J=Kmin
1 Kkmin+k—1 1
I ERSY m(g’c|D;we||§+o(||c<xj>||2
J=Fmin

= [le(X;) + Jﬂ?“lz))

5] ko),

which further implies that liminfy_oo E[||DI)|3 + ([le(Xk)|l2 — le(Xk) +
JiDiI|2)|€] = 0.

Proof. The desired conclusions follow from Lemmas 4.18 and 4.20. 0

One might be able to strengthen the conclusion in Theorem 4.21(b), say, to an
almost-sure convergence guarantee; see, e.g., [8]. However, we are satisfied with
Theorem 4.21(b), which is sufficient for revealing the favorable properties of Algo-
rithm 3.1 under Assumptions 2.2, 2.3, and 4.15. Theorem 4.21(a) shows, under As-
sumptions 2.2, 2.3, and 4.15, that if the latter condition in (2.6) holds with p = p
for some p € Ry for all k€ N and {8} = {S} is chosen as a (sufficiently small) con-
stant sequence, then the limit superior of the expectation of the average of quantities
connected to stationarity measures for problem (2.1) is bounded above by a constant
proportional to 8. Intuitively, this shows that the iterates generated by the algorithm
ultimately remain in a region in which these stationarity measures are small. On the
other hand, Theorem 4.21(b) shows, under Assumption 4.15, that if {px} and {8k}
vanish with py, = O(8%), then a subsequence of iterates exists over which the expected
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values of these stationarity measures vanish. As seen in Lemma 4.3, if there exists a
subsequence of iterates, say, indexed by & C N, that converges to a point satisfying
certain regularity conditions, then {|c|l2 — |lcx + Ve(zk)Tvk|l2}kes — 0 means that
the limit point is stationary with respect to the problem to minimize 3||c(z)||3 sub-
ject to x € RY,. Similarly, as seen in Lemma 4.5, if there exists such a subsequence
and the limit point is feasible with respect to problem (2.1), then {di™"}recs — 0
means that the limit point is stationary with respect to (2.1). These situations are
not guaranteed to occur, but this discussion shows that Theorem 4.21 is meaningful.

4.4. Nonvanishing merit parameter. Our main convergence result in the
previous section, namely, Theorem 4.21, requires Assumption 4.15, which, in turn,
requires that the merit parameter sequence ultimately becomes a sufficiently small,
positive constant sequence. (Recall the discussion after Assumption 4.15.) To show
that this corresponds to a realistic event for practical purposes, we next show condi-
tions under which one finds that the merit parameter would not vanish.

We begin by showing a generally applicable result about the solution of (3.1). It
is related to that in Lemma 4.3 but is stronger due to an additional assumption.

LEMMA 4.22. Suppose that the conditions of Lemma 4.3 hold and there exists
Kw € [0,1) such that, for all generated k € N in any run of the algorithm, one has
llek + Ve(zr)Tokll2 < kwllckllz. Then, there exists k, € Rsq such that, in any run of
the algorithm such that iteration k € N is reached, one finds that

(4.19) lexll2 = llew + V(@) Torll2 > kollvel2.

Proof. Consider an arbitrary run of the algorithm in which the conditions of the
lemma hold and iteration k£ € N is reached. If ¢, =0, then it follows by construction of
(3.1) that v, =0, in which case (4.19) follows trivially. Hence, we may proceed under
the assumption that ci # 0, which, by the conditions of Lemma 4.22, Assumption 2.1
(see (2.2)), and the triangle inequality gives kve||vill2 > |[Ve(zr)Tvellz > llekll2 —
llek + Ve(xr)Togll2 > (1 — k) ||lek]|2. Consequently, from (4.6), (4.7), and a similar

derivation as in Lemma 4.3, one finds that 2||ck|l2(||ckll2 — |lcx + Ve(zr)Tvg|l2) >
2 2 1=k

lewll3 = llex + V(@) Tvrll3 = min{3—, 2p} o3 > min{ 2, 20} (52) [lew 2 lve 2,

c Rve
from which the desired conclusion in (4.19) follows. ad

We now show that, under common conditions and when the norm of the stochastic
gradient estimate is bounded uniformly, the denominator of the formula for 7%l in

(3.4) is bounded proportionally to ||vg||2.

LEMMA 4.23. Suppose that Assumptions 2.1 and 2.3 hold and that there exist
(A, i, kg) € Ryg X Ry X Ry such that, for all generated k € N in any run, one has
Ve(zp)TVe(zg) = M, g > p, and ||gkll2 < ky. Then, there exists kg g € Rso such
that, in any run such that iteration k € N is reached, ggdk + %dekdk <Kg mllvL|2-

Proof. Consider an arbitrary run in which the conditions of Lemma 4.23 hold and
iteration k € N is reached. By Lemma 4.14, (u,w) = (0,0) is feasible for (3.1), so

1 1
e { 3w+ Vetn) " Ve(awun 3, ol }

1 1 1
< §||Ck + V()" Ve(ze)we |3 + §Mk||uk||§ < §||Ck|\§-

Since %lci + V()T Ve(zy)wil3 < $llex]|3, it follows that [|[Ve(zy) T Ve(zy)wi |3 <
—2cIVe(zk)TVe(zg)wy < 2||ckll2||Ve(zg)T Ve(zy w2, which, along with Assump-
tion 2.1 (see (2.2)), shows that || Ve(zr)will2 < kvellwill2 < 552 (| Ve(ar) ! Ve(ar) w2

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/12/24 to 128.180.247.223 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SQP FOR DETERMINISTIC CONSTRAINED STOCHASTIC OPT. 3615

< 25%¢|c|l2 < 25%¢k. On the other hand, since u|uxll3 < 3llcxl|3, it follows,

under Assumption 2.1, that ||uglls < \/%”Ckng < ke Therefore, we have that

lvgll2 = \/||Vc(a:k)wk||% + [Jurl3 < (4 [4(5%=)? + %)/{C. Now, since vy, = Ve(zg )wy +up
is a feasible solution of (3.2) while dj, is the optimal solution of (3.2), under the con-
ditions of Lemma 4.23,

1 1
gl dy, + §dszdk <gpvk+ §UngUk

1 1 1
<ol + prallonld < (s + oo (245 ) e ol

which leads to the desired conclusion. ]
We now prove conditions under which the merit parameter does not vanish.

THEOREM 4.24. Suppose that Assumptions 2.1 and 2.3 hold and that there exist
(A Kgy Kw) € Rsg X Ryg X Ry % [0,1) such that, for all generated k € N in any
run of the algorithm, one has that Ve(xy)"Ve(xy) = N, we > w, ||grll2 < kg, and
llew + Ve(zr)Tvkllz < Kuwllekll2- Then, in any run that does not terminate finitely,
the latter event in Lemma 4.14(k) occurs (i.e., {11} does not vanish) with Tmin >

(A=0)kw (1 _
e (1—€;).
Proof. Consider arbitrary k € N in a run that does not terminate finitely, and
note that, if d = 0 or g,{dk + %dkT,dek <0, then T,?ial + oo, and otherwise, T,zrial
is set by (3.4). Hence, under the conditions of Theorem 4.24 and by Lemmas 4.22
and 4.23,
trial > (1 —o)llerll2 — llex + Ve(@r) T dill2) _ (1 —o)(llekllz — llex + V(@) vll2)
- g;{dk + %d%H}cdk ggdk + %dngdk
S (1—0)ky

— Tx.

Kg,H

Consequently, by the merit parameter update in (3.5), 7% < Tx—1 only if 7,_1 > 7.
This, along with Lemma 4.14(d)—(e), leads to the conclusion. |

Since Vf is bounded in norm over the set X in Assumption 2.1, Theorem 4.24
shows that, among the other stated conditions, if || gy —V f (zx)||2 is bounded uniformly
over all £ € N in any, then the merit parameter sequence always remains bounded
below by a positive number. Under such conditions, the only potentially poor behavior
of the merit parameter sequence is that, in a given run, it ultimately remains constant
at a value that is too large. We claim that, under certain assumptions about the
distribution of the stochastic gradient estimates, this behavior can be shown to occur
with probability zero. (We do not prove such a result here, but refer the interested
reader to Proposition 3.16 in [3] to see such a result for the equality-constraints-only
setting, in which case the behavior of the merit parameter is similar.) On the other
hand, if ||gr — V f(2)]||2 is not bounded uniformly in this manner, then it is possible
for the merit parameter sequence to vanish unnecessarily. This issue is one that should
be noted by a user of the algorithm. In particular, if, in a run of the algorithm, one
chooses py > p for some p € Ry for all k£ € N and finds, for some (A, k) € Rs9x (0, 1),
that generated k € N yield Ve(zy)T Ve(ry,) = M and || + Ve(ar)Torlle < kwllekl|2,
yet 7, has become exceedingly small, then Theorem 4.24 shows that this must be due
to the stochastic gradient estimates tending to become significantly large in norm,
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in which case the performance of the algorithm may improve with more accurate
stochastic gradient estimates.

4.5. Deterministic algorithm. We conclude this section with a statement of
a convergence result that we claim to hold for Algorithm 3.1 if it were to be run with
g = V f(zg) for all k€ N. Due to space considerations, we do not provide a proof of
the result, although we offer the proposition for reference for the reader and claim that
it holds from results proved in this paper for the stochastic setting as well as other
similar results for SQP methods for deterministic continuous nonlinear optimization.

PROPOSITION 4.25. Suppose that Assumptions 2.1 and 2.3 hold and Algorithm 3.1
is run with g, =V f(xg) for all k € N. If, for all large k € N, there exists k,, € [0,1)
such that ||c + Ve(zg) T ogll2 < kwllekll2, then {zx} CRZ, {7k} is bounded away from
zero, and, with y, € R™ and z, € RY, defined as the optimal multipliers corresponding
to the solution of subproblem (3.2) for all k €N, it follows that

{I[(Vf (@) + Velaye —=)" o afa]l]} »o.

Otherwise, {x} C Ry, {min{Ve(zs)cr,0}} = 0, and {|zf Ve(zg)er|} — 0, and, if
{7k} is bounded away from zero, then {H [(Vf(xr) + Velzr)ye — 21)" @i 2] H} — 0.

5. Numerical results. In this section, we provide results demonstrating the
performance of a MATLAB implementation of Algorithm 3.1 when solving a subset of
problems from CUTEst [23] and a couple of fair machine learning test problems, where
Gurobi is used to solve the arising subproblems [24]. The purposes of our experiments
with the CUTESst problems are twofold. First, on a subset of problems, we compare
the performance of our method against that of the Julia implementation provided by
the authors of [34, Algorithm 1]. Second, on a larger subset, we demonstrate that, for
our method, one should aim to trade off the cost of more accurate gradient estimates
and the cost of solving the arising subproblems. These experiments also allow us
to demonstrate that there are settings in which our approach with relatively less
accurate gradient estimates can be more computationally efficient than one that relies
on highly accurate gradient estimates (i.e., an approach that is nearly deterministic).
From all inequality-constrained problems in CUTEst, we selected those such that (i)
m <n <1000, (ii) f(xy) > —10%° for all k € N in all runs of our algorithm, and (iii)
Gurobi did not report any errors. This resulted in a set of 323 test problems. The
purpose of our experiments with fair machine learning test problems is to demonstrate
the performance of our algorithm on problems derived from a real-world application
and to show that, on such problems, it can outperform approaches that handle the
constraints by moving them to the objective through penalty terms.

We begin by presenting our results pertaining to CUTEst. For each test problem,
both our code and that for the Julia implementation of [34, Algorithm 1] used the
same initial iterate and generated stochastic gradient estimates in the same manner.
Specifically, for all k¥ € N in each run, the codes set gy = N(V f(zy),e5(I + eeT)),
where e is the all-ones vector and ¢, € {107%,107%,1072,10~ !} was fixed for each
run (see below). If a problem had only inequality constraints (i.e., m = 0), then our
code explicitly computed «j (as defined in (3.9)) and set ay « a?®* for all k € N.
Otherwise, the code set ay + min{1, (1.1)"*a™i® oin 403} where ¢, + max{t € N:
or((1.1)'aim) < 0}. This guaranteed that ay € [, o] for all k € N. The other
user-defined parameters of Algorithm 3.1 were selected as 0 =19=0.1,7=0.5,§, =1,
e =€ =1072,0=10%, pp, = max{1078,107%||cx |3}, B =1, and Hy, =1 for all k € N.
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The Lipschitz constants L and I' were estimated every 100 iterations by differences
of stochastic gradients at 10 samples around the current iterate. Meanwhile, we ran
the Julia code for [34, Algorithm 1] with the AdapGD option and its default parameter
settings as described in [34, section 4].

For our comparison of our code with the Julia implementation of [34, Algorithm
1], each code terminated as soon as 10% stochastic gradient samples were evaluated
or a 12-hour CPU time limit was reached. Let FeasErr(z) be the oo-norm constraint
violation at x, and let KKTErr(z,y, z) be the co-norm violation of the KKT conditions
(recall (2.4)) at a primal-dual iterate (x,y,z). Each run of our MATLAB implemen-
tation of Algorithm 3.1 generates {z} C R™. For each k € N, let yj™° € R™ and
zime € R™ denote the optimal Lagrange multipliers corresponding to the equality
and inequality constraints when (3.2) is solved with g = V f(z). For each run of
Algorithm 3.1, we determined the best iterate as xy,,,, where

arg inilg FeasErr(zy) if FeasErr(xy) > 107* for all k€N,
€

k =
pest argmin {KKTErr(zg,yi™, 217 : FeasErr(z;) < 1074 otherwise.
ngN 7yk »“k )

We determined the best iterate in a run of [34, Algorithm 1] using the same formula
with the sequence of iterates and Lagrange multiplier estimates that are computed
as part of the algorithm. Our results for four noise levels, provided in Figure 5.1
below, are presented in terms of FeasErr(zy,.) as the feasibility error and
KKTErT (g, i, 271"¢) as the KKT error for each run of both algorithms.

Since the Julia code for [34, Algorithm 1] is only set up to solve CUTESst problems
without simple bound constraints, the plots in Figure 5.1 are only based on problems
that code was able to handle. In particular, there are 57 problems for which both
algorithms were set up to run, and in Figure 5.1, the two box plots show the best
feasibility and KKT errors achieved by both codes, where each problem is run 5 times
each (since the behaviors of the algorithms are stochastic). These results show that
our approach performs very well in comparison to the method from [34].

Let us now provide some additional results for the implementation of our algo-
rithm employed to solve all 323 problems in our subset from CUTEst. Our aim in this
experiment is to demonstrate potential trade-offs between accuracy in the gradient
estimates and the cost of solving the subproblems in our algorithm. We set up the
experiment as follows. First, we defined a unit as the cost of a stochastic gradient
estimate with noise level ¢, = 107!, Second, to represent the extra cost of more
accurate estimates, we suppose that the cost of a stochastic gradient estimate with
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F1G. 5.1. Boz plots comparing the best feasibility errors (left) and KKT errors (right) of a
MATLAB implementation of Algorithm 3.1 (“Stochastic SQP”) and the Julia implementation pro-
vided by the authors of [34, Algorithm 1] (“Active-set SQP”) when solving 57 CUTEst problems.
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€,=1072 is 10 units and that with ¢, =107% is 1000 units. (These relative costs are
not exact in general; we simply made these choices for the purposes of demonstrat-
ing one realistic setting.) Third, we considered two relative costs for the subproblem
solves in an iteration: two units (“2x”) or five units (“5x”). These represent two rea-
sonable possibilities in practice. Recall that, generally speaking, the cost of solving
the subproblems depends on the numbers of variables and constraints, whereas the
cost of more accurate gradient estimates depends on the variance of the estimates,
which, for example, when f is defined by an average of functions, could depend on
the number of terms in the average—which could be extremely large—and the cost
of evaluating the gradient for each term in the average. We consider here situations
when the cost of obtaining accurate gradient estimates is not trivial so that the relative
cost of a subproblem solve is a few times that of a stochastic gradient estimate with
€g = 1071

For each setting, namely, 2x and 5x, we ran our algorithm with noise levels
€4 € {1074,1072,107!} with the same computational budget in terms of units. For ex-
ample, for the 2x case, the cost per iteration with €, = 107! is 1+ 2 = 3 units, whereas
the cost per iteration with e, = 1072 is 10 + 2 = 12 units. This means that the latter
run (with more accurate gradient estimates) is only able to run 1/4th the number of
iterations as the former run (with less accurate gradient estimates). We always ran
2 x 10° iterations for the €g = 10! setting, and we determined computational unit
budgets for the 2x and 5x settings based on this benchmark iteration budget for the
€5 = 107" setting. The results are presented in Figure 5.2, where again, we present box
plots for feasibility errors and KKT errors for the best iterates found using the same
criteria as our comparisons earlier in this section. Overall, the results show that there
exist settings—namely, the ones that we consider here—where one does not obtain the
best results by employing highly accurate gradient estimates. Instead, the trade-off
between gradient accuracy and subproblem cost can be such that, for a limited com-
putational budget, one obtains the best results by allowing some inaccuracy in the
stochastic gradient estimates. We remark that, in these experiments, our algorithm
regularly did not reduce the merit parameter to small values. Rather, low feasibility
errors were generally attained with moderate 7 values; see Figure 5.3 for a histogram
of final log,(7) values with respect to the noisiest setting, namely, €, =107".

We close this section with the results of experiments on a couple of fair machine
learning test problems. In particular, we consider logistic regression problems where
the constraints bound a surrogate for disparate impact; specifically, we consider prob-
lem (3) from [12] with e =0.1. We use the Adult and German datasets that are avail-
able from [28], where gender is the sensitive feature. For each dataset, we randomly
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F1G. 5.3. Boz plots comparing the best feasibility errors and KKT errors of a MATLAB im-
plementation of Algorithm 3.1 (“Stochastic SQP”) with different noise levels all subject to the same
computational budget. For the results on the left, the cost of solving the subproblems in an iteration
is presumed to be twice that of a relatively inaccurate stochastic gradient estimate, and on the right,
the cost of the subproblem solves is presumed to be five times the cost of such a gradient estimate.

TABLE 5.1
Performance of “Stochastic SQP” versus the algorithm of Wang and Spall [46] and a stochas-
tic subgradient method applied to minimize a penalty function for the fairness-constrained logistic
regression problem (3) from [12], here using the Adult data with gender as the sensitive attribute.

Training infeasibility Training Testing infeasibility Testing

Algorithm error accuracy error accuracy
Stochastic SQP 1.9e-08 83.3% 5.1e-02 82.9%
Wang and Spall [46] 5.8e-02 63.9% 1.3e-01 63.2%
Subgradient (10~1) 8.8e-05 63.7% 0.0e+-00 63.1%
Subgradient (10~%) 3.5e-05 72.4% 0.0e+00 72.3%
Subgradient (10~7) 6.5e-05 72.4% 0.0e+00 72.3%

selected data points for a training set (to define the optimization problem that we
solve) and a testing set: For Adult, of the 45222 data points, 35000 were selected for
training with the remaining used for testing, and for German, of the 1000 data points,
800 were selected for training, and the remaining were used for testing. For Adult,
1000 of the training data points were randomly selected to define the constraints, and
a minibatch size of 1000 was used for stochastic gradient estimates. For German, 100
of the training data points were randomly selected to define the constraints, and a
minibatch size of 100 was used for stochastic gradient estimates. Since our stochastic
SQP method has already been shown to compare favorably against [34, Algorithm 1]
in our experiments with CUTEst problems (see Figure 5.1), in this set of experiments,
we compare our proposed method with two other algorithms: (i) the algorithm pro-
posed by Wang and Spall in [46] with the settings from section 4 of that paper (see
also [40]) and (ii) a stochastic subgradient method employed to minimize an ¢s-norm
exact penalty function when the logistic loss objective is weighted by 10~1, 1074, or
10~7. For a fixed budget of 10000 iterations for stochastic SQP and 100000 iterations
for each of the other algorithms, the results for the best iterates in terms of training
infeasibility, training classification accuracy, testing infeasibility, and testing accuracy
are provided in Tables 5.1 and 5.2. The results show that, despite the additional itera-
tions offered to the other methods, our stochastic SQP method generally outperforms
them in terms of these metrics. In addition, we provide in Figures 5.4 and 5.5 plots
of these metrics as a function of CPU time for a single representative run of a few of
the algorithms with each dataset. (We do not plot the performance of “subgradient
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TABLE 5.2
Performance of “Stochastic SQP” versus the algorithm of Wang and Spall [46] and a stochas-
tic subgradient method applied to minimize a penalty function for the fairness-constrained logistic
regression problem (3) from [12], here using the German data with gender as the sensitive attribute.

Training infeasibility Training Testing infeasibility Testing

Algorithm error accuracy error accuracy
Stochastic SQP 3.2e-08 73.8% 0.0e 4+ 00 75.0%
Wang and Spall 4.5e-01 60.6% 3.1e-01 70.0%
Subgradient (10~1) 5.5e-01 56.6% 5.5e-01 58.0%
Subgradient (10~%) 5.7e-01 49.8% 6.4e-01 48.0%
Subgradient (10~7) 5.7e-01 49.8% 6.4e-01 48.0%
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Fic. 5.4. CPU time versus training accuracy, training infeasibility error, testing accuracy, and
testing infeasibility error for a representative run of SQP, Wang and Spall [46], subgradient (10~1),
and subgradient (10~%) with the Adult dataset.
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Fic. 5.5. CPU time versus training accuracy, training infeasibility error, testing accuracy, and
testing infeasibility error for a representative run of SQP, Wang and Spall [46], subgradient (1071),
and subgradient (10~%) with the German dataset.

b2

(10=7)” since its performance was similar to that of “subgradient (10~)” in terms of
these plots.) These results further show that our SQP method has desirable practical
performance.

6. Conclusion. We have proposed, analyzed, and tested an algorithm for solving
continuous optimization problems. The algorithm requires that constraint function
and derivative values can be computed in each iteration but does not require exact
objective function and derivative values; rather, the algorithm merely requires that
a stochastic objective gradient estimate is computed to satisfy relatively loose as-
sumptions in each iteration. The theoretical convergence guarantees of the algorithm
require knowledge of Lipschitz constants for the objective gradient and constraint
Jacobian, although, in practice, these constants can be estimated. Our numerical ex-
periments show that our proposed algorithm can outperform an alternative algorithm
that relies on the ability to compute more accurate gradient estimates. We have pro-
vided comments throughout the paper on how the assumptions that are required for
our theoretical convergence guarantees might be loosened further.

Acknowledgments. The authors are grateful to Sen Na for providing consul-
tation about the Julia implementation provided by the authors of [34, Algorithm 1].
The authors also thank the editors and reviewers for their helpful comments.
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