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Abstract

Climate associated ecological phenomena that occur approximately once per decade suggest the
influence of decadal climate oscillations. However, the consistency and origins of such climate
patterns in the Atlantic and Pacific regions is currently under debate. Here, we propose a
probabilistic explanation for episodic ecological events based on the likelihood of multiple climate
patterns converging in a particular phase combination. To illustrate, we apply this model to
continental scale facultative migration of seed-eating finches out of the boreal forest. This irruption
phenomenon is triggered by seed crop failures stemming from two weakly correlated climate
patterns occurring simultaneously in their positive phases—the North Atlantic Oscillation (NAO)
and the North Pacific Oscillation (NPO). The joint probability of NAO and NPO both being
positive (above upper tercile) is about (1/3)? 2 0.11, illustrating a simple probabilistic explanation
for quasi-decadal finch irruption and potentially other episodic ecological events in regions

affected by multiple climate modes.

1. Introduction

Episodic ecological events are recognized as poten-
tially high-impact drivers of dynamics in a broad
range of settings [1-3]. Climate-triggered events
occurring approximately once per decade suggest the
presence of decadal climate oscillations, but recent
research is casting doubt on the physical robustness
of such climate patterns. For example, the Pacific
Decadal Oscillation (PDO) is no longer viewed as an
intrinsic oceanic mode, but is instead interpreted as a
combination of different physical processes including
remote tropical forcing and local atmosphere-ocean
interactions [4]. As another prominent example, the
Atlantic Multidecadal Oscillation (AMO) was previ-
ously believed to be a coherent internal oscillation of
the climate system, but is now understood to stem

© 2024 The Author(s). Published by IOP Publishing Ltd

from competing time-varying effects of anthropo-
genic greenhouse gases and sulfate aerosols [5-7].

The preceding motivates a hypothesis to explain
episodic ecological events that allows for, but does not
rely on the existence of decadal climate oscillations.
To illustrate, we examine continental-scale facultat-
ive migration of pine siskins (Spinus pinus) out of the
boreal forest, a phenomenon referred to as irruption.
This species exhibits mass migration of large numbers
of individuals in response to synchronized geographic
fluctuations in seed production, moving away from
regions with anomalously low seed production [8, 9].
The irruption of pine siskins southward out of the
boreal forest is referred to as the North—South Mode
(NSM) (figure 1(a)), where the NSM is defined as the
leading principal component of pine siskin density
and accounts for 40% of the total variance [8].
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Notably, the NSM captures only two irrup-
tions in the past three decades, indicating a quasi-
decadal periodicity (figure 1(b)). The precipitation
and temperature anomalies conducive to low seed
production appear during late spring to early summer
(May-June) in the previous year over the Canadian
boreal forest and Great Lakes region [8], but the cli-
mate modes that cause these anomalies to occur only
about once per decade are unknown. Potentially rel-
evant patterns active in this region include the North
American Dipole (NAD) recently linked to a West-
East Mode of pine siskin irruption [ 10, 1 1], along with
the North Pacific Oscillation (NPO) [12] and North
Atlantic Oscillation (NAO) [13], but these pressure
oscillations are largely interannual in nature and lack
significant energy on decadal time scales [14, 15].
This leaves open the important question of what trig-
gers intermittent, high-impact events like irruption,
and what climate patterns should therefore be stud-
ied to predict their future changes.

2. Materials and methods

The significance of correlations and anomalies was
assessed through #-tests with an assumption of one
degree of freedom per year. Patterns of variability
were examined using principal component analysis
(PCA), alternatively referred to as empirical ortho-
gonal function (EOF) analysis [16].

2.1. Bird data

The magnitude and periodicity of bird irruptions
were analyzed using observations collected during
Project FeederWatch (PFW) [17]. Bird (e.g. pine sis-
kin) counts consist of a 2-day observation period sep-
arated by 5 days and begin on the second Saturday in
November and run for 21 weeks during the winter.
We totaled the bird counts over that period for
each site and year in which the collection period
ended (e.g. FeederWatch year 1989 corresponds to
November 1988 through April 1989). PFW has been
collecting data since 1989 and over 25000 parti-
cipants regularly enlist annually across the United
States and Canada [18, 19]. We chose pine siskins
as focal species, because they are one of the most
visible and widespread North American seed-eating
birds and they also engage in irruptive movements
[20]. Data for 1989-2021 were analyzed to obtain
the North-South spatial pattern and index follow-
ing the methods detailed in our prior work [8, 10,
21]. The temporal pattern of pine siskin’s irruption
was displayed by plotting the standardized (z-score)
principal component versus year, indicating the sign
and magnitude of the mode. Here, the time series of
the leading principal component (PC1) was determ-
ined as the North-South mode (NSM) of bird irrup-
tion (figure 1(b)) and referred to as the NSM index
(NSM;).

H Bai et al

2.2. Seed data

Data on annual conifer seed production were primar-
ily obtained from the MASTREE+ mast-seeding
database [22], and we extracted data focusing on
Canada and the continental United States; the analysis
period is 1987-2021, overlapping the bird records. We
synthesized data from the family Pinaceae including
Abies spp., Picea spp., and Tsuga spp. (n=711 time
series) to investigate the lagged correlation between
bird NSM irruption and the atmospheric circulation
patterns. To ensure robust analysis, only time series
with a minimum length of six years were included,
and all data were standardized to a scale of 0-100 prior
to analysis [21].

2.3. Climate data

For analysis of historical atmospheric variability, we
used reanalysis data from 1940 to 2022 for monthly
averaged 300hPa geopotential height (Zs) and
sea level pressure (SLP) from the European Centre
for Medium Range Weather Forecasts (ECMWF)
Reanalysis (ERAS5) on a 30 km grid [23]. The NAR
index was developed by projecting May—June Z3yg
anomalies onto the pattern shown in figure A1, which
is the lagged correlation between bird NSM index and
ERA5 May—TJune Z3yy over the domain of 35° — 65°
N, 240° —290° E (i.e. Z3go data are from the sum-
mer preceding the NSM index). For the conventional
NAO and NPO indices [12, 24], we used the domains
indicated by red boxes in figures A2(a) and (b) in sup-
plementary information, respectively, but we calcu-
lated the indices for the May—June period from 1940
to 2022 to ensure temporal overlap with our study
time span.

2.4. Principal component analysis (PCA)

The variability patterns of bird density data and
the atmospheric circulation data were examined
through the application of principal component ana-
lysis (PCA), also known as empirical orthogonal
function (EOF) analyiss [16].

NSM was defined as in our prior work [8], but
here extended to a longer time period. Specifically,
the NSM is the leading principal component (PC1)
of bird counts during the period from 1989 to 2021
[25]. The spatial pattern of the NSM is the first eigen-
vector of the spatial correlation matrix, illustrated by
the correlation between bird counts and the NSM in
figure 1(a). The associated index is the bird count data
projected onto the NSM spatial patterns (blue curve
in figure 1(b)).

All climate data were detrended prior to the ana-
lysis. The first two principal components of observed
historical Z3y9 were derived from ERA5 data within
the domain 35°-65°N, 170°-340°E, averaged over
May-June for the years 1940-2022. The spatial pat-
terns of these principal components corresponds
to eigenvectors of the spatial correlation matrix
(figures 3(b) and (c)). The time series of the principal
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Figure 1. The North-South irruption mode (NSM) (a) NSM spatial pattern shown by the correlation between the NSM index
(NSM;) and and pine siskin counts, where the NSM,; is the leading principal component of pine siskin counts, accounting for 40%
of variance. (b) The NSM; time series corresponding to the analysis period 1989-2019, with red circles indicating irruption.

components were produced by projecting the climate
data onto the spatial pattern of each principle com-
ponent (blue curves, figures 3(e) and (f)).

3. Results

The first two columns in figure 2 illustrate a
two-summer climate-masting sequence that is com-
mon over the boreal forest—a west-east dipole of
masting anomalies [26] paired with a west-east dipole
of atmospheric pressure referred to as the North
Atlantic Dipole [10, 11]. This characteristic sequence
features a summer of anomalously high pressure and
masting over the eastern boreal forest (red shading,
figures 2(a) and (d)) followed by a summer of the
same over the western boreal forest (red shading,
figures 2(b) and (e)). The NSM occurs in the winter
after this west-east dipole is interrupted, meaning
masting is simultaneously weak over both the western
and eastern boreal forest (blue shading, figure 2(f)).
The associated climate driver is a dipole of low pres-
sure over the Gulf of Alaska paired with strong high
pressure over the central boreal forest (dark blue
and red shading, figure 2(c)), and the central ques-
tion here focuses on why this NSM-triggering pattern
occurs only about once per decade.

We developed an index to track the circula-
tion pattern in figure 2(c), referred to as the North
American Ridging (NAR) index (see section 2). The
NAR index is significantly correlated with the NSM
irruption index (r > 0.63,p < 0.01) during the over-
lapping period of 1989-2021 (figure 3(d)), and is
extended to the longer period 1940-2022 to provide a
more robust sample size for climate analysis. Positive
values of the NAR correspond to higher than aver-
age atmospheric pressures over central Canada, vis-
ible as anomalously high 300 hPa geopotential heights
(Z300; red shading, figure 3(a)). This central Canadian
ridging is associated with a positive NPO-like cir-
culation pattern to the west over the gulf of Alaska,
paired with a positive NAO-like pattern to the east
around Greenland and the subtropical North Atlantic

3

(figure 3(a)) (spatial patterns of positive NAO and
NPO are shown for reference in figure A2).

The pattern in figure 3(a) can thus be inter-
preted as a superposition of positive NAO with posit-
ive NPO. To illustrate quantitatively, we use the first
principal component (PC1) of Z3 to represent the
NAO (figure 3(b)) and corresponding PC2 to rep-
resent the NPO (figure 3(c)), noting that these PC-
based indices are significantly correlated with con-
ventionally defined indices of the NAO (r = 0.68,p <
0.01; figure 3(e)) and NPO (r = 0.48,p < 0.01; 3(f)).
[lustrating the concept of climate mode superposition,
a linear combination of PC1 and PC2 accounts for
more than 70% of the variance of the NAR index
(figure A2(c)). As a key point, the NAO and NPO
are uncorrelated (r = —0.09; p = 0.41). In a discrete
time joint probability model, the joint probability
of them simultaneously occurring in positive phase
(above their upper terciles) is about (1/3)? ~0.11,
meaning this is expected to occur on average about
once per decade.

4, Discussion and conclusion

If an ecological event is infrequent but tends to recur
at some interval (i.e. is intermittent or episodic), it
may seem logical to seek or assume the existence of
an oscillation at the same frequency in the climate sys-
tem. A singular ecological event can be triggered by a
climate extreme, which is rare by definition. However,
recent work casts doubt on the physical mechanism of
such low frequency oscillations [4-7], meaning that
a complete explanation for such episodic ecological
events should allow for, but not be reliant on, their
existence.

Across the northern hemisphere, over 20 ver-
tebrate species undergo high-amplitude oscillations
in population numbers that exhibit 10year cyclic
dynamics [27, 28]. Many of these population cycles
for northerly species, such as snowshoe hares (Lepus
americanus) and ruffed grouse (Bonasa umbellus), are
some of the most widely recognized examples of pop-
ulation dynamics in ecology [29-31]. The underlying
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Figure 2. Composite atmospheric conditions and mast seeding preceding irruption. For high values of the North-South Mode
irruption index (NSM; > 2.0; red circle in figure 1(b)), composite anomalies of the 300 hPa geopotential height (Z309) in (a) three
summers prior to irruption (Y_3), (b) two summers prior to irruption (Y_5), and (c) one summer prior to irruption (Y_;).
(d)—(e) Similar as (a)—(c) but for the composite anomalies of the standardized masting index (d) Y_,, (e) Y_1, and (f) during the
summer immediately before irruption (Yo). Green shading indicates the boreal forest region. The analysis period corresponds to
the overlap of the masting data with the pine siskin record, 1989-2021.
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Figure 3. Climate mode superposition (a) The circulation pattern that precedes irruption, shown as the correlation of the North
American Ridge index (NAR) with ERA5 May—June 300 hPa geopotential height (Z3q9). Stippling indicates statistical significance
at the 95% confidence level. (b) The circulation pattern of the leading principal component (PC1) of the Z3p over the NAR
domain. (c) As in (b), but for the second principal component (PC2). (d) Time series indices of the NSM irruption index and
North American Ridge (NAR) index. (e) Time series of PC1 and North Atlantic Oscillation (NAO) index, and (f) time series of
PC2 and North Pacific Oscillation (NPO) index. The analysis period for the NAR and PCA is 1940-2022.
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cause of these population cycles has been the subject
of much debate, and although the tri-trophic inter-
action of food resources-prey-predators is tradition-
ally considered the primary mechanism [32], climate
variability is a critical component producing and sus-
taining the periodicity of population cycles [33, 34].
For example, modes of climate variability are critical
for explaining the cyclic and time-lagged interactions
between snowshoe hare and their primary predator,
Canada lynx (Lynx canadensis), by mediating winter
conditions [33]. Like the irruption dynamics of pine

siskins and other boreal birds, it is possible that mul-
tiple climate patterns converge in a phase combina-
tion that entrain some of the most classical examples
of population cycles in ecology.

The straightforward consideration of joint prob-
abilities presented here explains how episodic ecolo-
gical events can be triggered without requiring the
existence of intrinsic decadal climate oscillations. In
this probabilistic explanation for episodic ecological
events, quasi-decadal occurrence stems from the like-
lihood of two or more climate patterns converging in

4
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a particular phase combination. This was illustrated
by examining how convergence of positive NAO and
NPO drives continental-scale facultative migration
of seed-eating finches southward out of the boreal
forest, but the model can apply more broadly because
most regions are affected by multiple climate modes.

In the irruption example presented here, the
event trigger was NAO and NPO both being posit-
ive (above upper tercile), yielding a likelihood con-
sistent with decadal periodicity [(1/3)* ~ 0.1]. More
generally, any phase combination for any two inde-
pendent indices (one negative while other is neutral,
both neutral, both negative, etc) has the same likeli-
hood which is consistent with approximately decadal
occurrence. For three independent indices, the likeli-
hood of any particular phase combination reduces to
(1/3)? ~ 0.04, corresponding to on average one event
every 27 years.

The two patterns considered here (NAO and
NPO) happened to lack strong correlation (r=
—0.09; p = 0.41), which is not uncommon for cli-
mate modes detected using methods like principal
components analysis. However, our approach to
understanding periodicity can accommodate more
elaborate joint probability scenarios. For example,
one or more of the modes of variability considered
could be influenced by a third mode such as the El
Nino Southern Oscillation [35]. We can also consider,
for example, two indices that are strongly positively
correlated. If the ecological event is triggered by both
occurring in the same phase, the likelihood could be
closer to 1/3, meaning the event is expected every
three years on average; if the event is triggered by the

H Bai et al

indices occurring in opposite phases, the likelihood
could be closer to zero, rendering the event rare or
singular.
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Appendix. Supporting figures

rd

Figure Al. Correlation pattern. Lagged one-year correlation of Z3p with NSM index, which is used to defined the North
American Ridging index (NAR; red curve in figure 3(d)).
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Figure A2. Pattern match between the North Atlantic Oscillation (NAO), North Pacific Oscillation (NPO), and bird’s NSM
relevant atmospheric circulation—North American Ridging (NAR). The correlation of Z3yo with the (a) NAO pattern and (b)
NPO pattern, where the red box indicates the analysis region for each index. (c) Time series for the NAR index and linear model
of the NAR using the NAO and NPO as predictors.
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