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A B S T R A C T   

NiTi shape memory alloys are promising elastocaloric materials owing to their substantial adiabatic temperature 
change (ΔTad). However, the simultaneous attainment of large ΔTad and low fatigue poses challenges due to the 
significant hysteresis and severe functional fatigue associated with the autocatalytic avalanche-like martensitic 
transformation. This study demonstrates a continuous two-step transition in Ni50.8Ti49.2 (at.%), showcasing 
cyclic-stable superelasticity with large recoverable strain (5.9 %), substantial ΔTad (19.1 K) and high coefficient 
of performance. In-situ loading analysis indicates a stress-induced continuous transition from the B2 to R and 
subsequently to B19′. Nanoscale lattice analysis exposes heterogeneous strain network, harboring metastable R 
phase preceding the B19′ phase. By exploiting differences in critical stress and transformation potential between 
R and B19′ phases, this study demonstrates the possibilities to synergistically integrate functional performances 
of different martensitic phases in NiTi into a sequential and continuous two-step transition to provide controlled 
strain release with unprecedented properties.   

Vapor compression cooling, prevalent in refrigeration technology, 
faces efficiency limit and, more importantly, environmental concerns 
like greenhouse gas emissions and toxic refrigerants [1,2]. Solid-state 
cooling, employing caloric materials and leveraging field-induced tem
perature changes during reversible phase transitions, emerges as an 
alternative [3,4]. Martensitic transformations (MTs) induced by tem
perature or stress in shape memory alloys (SMAs) are accompanied by 
heat absorption and elastocaloric effects [5]. By applying mechanical 
stress or strain, the elastocaloric effect in SMAs provides an alternative 
to vapor compression cooling with high energy conversion efficiency [6, 
7]. NiTi, a widely used SMA, exhibits a noteworthy adiabatic tempera
ture change (ΔTad) of up to 35 K [8], making it a promising elastocaloric 
cooling material. However, thermomechanical hysteresis and severe 
functional fatigue in NiTi SMAs hinder energy efficiency and long-term 
service in practical refrigeration applications. 

The conventional autocatalytic and avalanche-like B2 to B19′ MT in 
NiTi SMAs generates structural defects, including dislocations and sub- 
grain boundaries [9-14], leading to degradation of mechanical and 
functional properties during transformation cycling. Various strategies, 
such as lattice compatibility, precipitation (Ti3Ni4, Ti2Cu), grain 

refinement, and composites (TiNi/TiNi3, crystalline/amorphous), have 
been employed to mitigate the violent MT behavior and improve fatigue 
resistance in NiTi-based SMAs [15-24]. Although many efforts convert 
the plateau-shaped superelastic stress-strain behavior into quasi-linear 
superelasticity with slim hysteresis and high fatigue resistance, these 
approaches often compromise the overall transformability of the system, 
resulting in small recoverable strain and limited elastocaloric ΔTad as 
compared to the conventional NiTi SMAs [18-24]. For example, the 
introduction of coherent TiNi3 and Ti2Ni3 precipitates with a hetero
geneous microstructural design extends the fatigue life of bulk NiTi 
SMAs to millions of cycles, yet high-density intermetallic phases reduce 
the output elastocaloric ΔTad down to 4~6 K with superelastic recov
erable strain less than 3 % [23,24]. Recent investigations on 
cyclic-stable quasi-linear superelasticity by transforming autocatalytic 
MT into a highly reversible strain glass transition under local strain field 
network achieved through cold work of conventional superelastic NiTi 
SMA [25-27] show great promise on mitigating the functional fatigue 
problem. However, the pronounced structural confinement inherent in 
strain glasses imposes limitations on the overall work output and energy 
conversion efficiency, and increases significantly the stimulus stress 
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[28]. For instance, the strain glass transition in severely cold-worked 
Ni50.6Ti49.4 exhibits a diminished ΔTad of 5.5 K [29]. 

Drawing inspiration from the strategies enhancing electrostrain in 
relaxor ferroelectrics through the introduction of different ferroelectric 
phases with varying local polarizations [30,31], we propose a sequential 
transition pathway between distinct martensitic states with varying 
local strains to augment recoverable strain and thereby increase ΔTad. 
Incorporating an intermediate transition state, featuring a lower energy 
barrier between different martensitic states, has the potential to enhance 
superelastic recoverable strain. This is facilitated by the easier trans
formation and growth of local martensitic domains across various 
martensitic phases, promising an improved elastocaloric response. The 
minimal hysteresis observed in continuous transitions leads to decreased 
energy dissipation during stress-induced transition cycles, suggesting 
that a multi-stage strain glass transition could enhance the elastocaloric 
coefficient of performance (COP) [28]. 

To investigate the hypothesis, a slightly Ni-rich NiTi SMA, 
Ni50.8Ti49.2 (at.%) is used in this work, known to undergo B2-R-B19′ MTs 
under thermomechanical treatments [32]. The solutionized specimens 
are cold-rolled to 40 % thickness reduction, and then annealed at 
different temperatures (873 K and 473 K) for 2 h flowing water quench 
to room temperature, denoted as CR, A473K, and A873K in this work. For 
mechanical testing, dog-bone specimens are prepared and subjected to 
tensile tests using an Instron 5969 universal test machine at a 
loading-unloading strain rate of 10⁻3 s⁻1. Strain is recorded using a video 
extensometer with a 10 mm gauge length. Prior to cyclic loading tests 
and elastocaloric measurements, specimens are pre-tensile loaded to the 
maximum recoverable strain. After holding the sample at maximum 
strain to reach equilibrium room temperature, elastocaloric effects are 
evaluated through rapid unloading at a strain rate of 0.2 s⁻1 to maintain 
adiabatic conditions, with ΔTad measured by a T-type thermoelectric 
couple. Differential scanning calorimetry (DSC) measurements are 
conducted using a TA Q200 instrument with a cooling and heating rate 
of 10 K min⁻1 to analyze heat flow curves and transformation latent heat. 
Foils for transmission electron microscopic observations are prepared 
using twin jet electropolishing with an electrolyte comprising 20 % 
H2SO4 and 80 % CH3OH (vol.%) at 253 K. High-angle annular dark-field 
imaging (HAADF) is performed using a ThermoFisher Talos-F20 

scanning/transmission electron microscope (S/TEM) operating at 200 
kV with a field-emission gun. In-situ loading synchrotron-based high-
energy X-ray diffraction (HE-XRD) experiments are conducted at 
beamline 11-ID-C of the Advanced Photon Source at Argonne National 
Laboratory. A monochromatic X-ray beam with a wavelength of 0.1173 
Å and a size of 500 × 500 μm is utilized to monitor volume fraction 
changes during in-situ loading. DigitalMicrograph software (version 
3.43.3213.0) is used for fast Fourier transformation (FFT) processing. 
Geometric phase analysis (GPA) is used to measure the strain field from 
atomic HAADF image [33]. In the [100]B2 zone orientation, the (011)B2 
reflections in the FFT pattern were used for GPA. 

To assess and compare the superelastic and elastocaloric properties, 
cyclic tensile tests are conducted on CR, A473K, and A873K samples are 
measured spanning 100 cycles. Before the cyclic tests, due to the 
distinctive slim stress-strain loop characteristic, CR and A473K samples 
undergo pre-tensile loading under progressively increased strain and 
stress to assess the potential maximum recoverability, as shown in Fig. 1 
(a-b). In contrast, the A873K sample, which exhibits a plateau-like 
superelastic behavior indicative of conventional martensitic trans
formation, is directly tensile loaded to the end of stress plateau to obtain 
the maximum superelasticity without the training process under 
increased applying strain, as shown in Fig. 1(c). Fig. 1(d-f) illustrate the 
following 100 stress-strain cyclic tensile loops, with the first cycle 
depicted in black, the last in red, and intermediary cycles in grey for 
clarity. Elastocaloric ΔTad values for the first and last cycles of these 
samples are presented in Fig. 1(g). CR samples, known to undergo a B19′ 
strain glass transition [25], exhibit quasi-linear superelasticity with high 
strength. Conversely, A473K samples display non-linear superelasticity 
from the outset, characterized by modulus softening and slim 
stress-strain hysteresis loops, with no significant degradation observed 
over subsequent cycles. A873K samples, representing well-annealed 
specimens with B19′ MT [34], demonstrate typical stress-induced MT 
(SIMT) behavior, featuring a stress plateau and large stress-strain hys
teresis. Although A873K samples initially exhibit very large recoverable 
strain and elastocaloric ΔTad, these properties were significantly 
reduced after cyclic testing due to functional fatigue. Superior cyclic 
stability is observed in the CR and A473K samples, with no evident 
degradation in ΔTad after cyclic testing for both. Furthermore, A473K 

Fig. 1. Superelastic and elastocaloric properties of TiNi50.8 alloy under cold-rolling and different annealing treatments. (a-c) Pre-tensile tests to obtain the maximum 
recoverable strain of different sample. (d-f) Strain-stress loops measured by cyclic loading for 100 cycles with the first cycle in black, the last cycle in red and rest in 
grey. (g) Elastocaloric measurement of ΔTad for the first and last cycles. 
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samples display much larger superelastic recoverable strain (5.9 %) and 
ΔTad (19.1 K) compared to CR samples while maintaining cyclic sta
bility. This behavior deviates from both conventional MT, characterized 
by large recoverable strains but highly non-linear superelasticity with 
stress plateaus and severe functional fatigue, and strain glass transitions, 
characterized by quasi-linear superelasticity with slim hysteresis and 
small recoverable strains. The elastocaloric COP of material (COPmat) of 
the A473K samples is then determined by COPmat = ΔQ/ΔW =

ρCpΔTad/ΔW, where ΔQ, ρ, Cp, ΔTad, and ΔW represent the cooling ca
pacity, density, specific heat capacity, adiabatic temperature drop, and 
the stress-strain hysteresis loop area, respectively [35]. The COPmat and 
ΔTad of A473K sample are then plotted in Fig. 2 under a direct comparison 
to the summarization of values in literature of various NiTi-based elas
tocaloric materials obtained under similar adiabatic unloading condi
tion to maintain comparability [20,21,23,24,36-44], which highlight 
the exceptional performance of the A473K sample. 

To delve into the transition behavior underlying superelastic and 
elastocaloric properties, heat flow curves of different samples are 
measured and depicted in Fig. 3(a-c) during cooling and heating within 
the temperature range of 375 K to 125 K. In Fig. 3(a-b), both exothermic 

and endothermic peaks are absent in the CR and A473K samples, con
trasting with the conventional MT behavior observed in the A873K well 
annealed samples in Fig. 3(c). Similar to the CR sample previously 
identified as displaying strain glass transition [25,26], the A473K samples 
are anticipated to exhibit a similar continuous transition, triggering the 
detected cyclic-stable superelastic behavior. 

To establish a direct link between the stress-induced transition and 
the functional properties, in-situ loading synchrotron-based HE-XRD 
analysis is conducted at room temperature. Only B2-phase peaks are 
clearly visible without loading in Fig. 4(a). Three isolated diffraction 
peaks corresponding to (112)B2, (113)R and (001)B19′ are presented in 
Fig. 4(b) to show direct comparison under applied stress. Upon loading 
from 0 to 500 MPa, the intensity of the (112)B2 peak gradually decreases, 
while the (113)R peak initially increases and then decreases. Simulta
neously, the (001)B19′peak continues to increase during the decrease of 
the (113)R peak. Additionally, a slight shift in the peak positions of all 
the revealed peaks is observed under the applied stress. The relative 
volume fraction changes of the B2, R and B19′ phases are determined by 
comparing the integrated peak intensities under the applied stress, as 
shown in Fig. 4(c). The volume fraction indicates an initial continuous 
growth of the R phase, reaching a maximum near 350 MPa, followed by 
the growth of the B19′ phase at the expense of both the B2 and R phases. 
To evaluate the lattice elastic strain evolution during the stress-induced 
B2→R→B19′ transition, the d-spacing of the peaks under stress is 
compared to their initial values. This yield lattice strain εhkl = 100 % ×
(dhkl – d0)/d0, where dhkl and d0 are the interplanar spacing of the (hkl) 
planes with and without the external stress. Fig. 4(d) illustrates the 
changes in lattice strain for the B2, R and B19′ phases as a function of the 
applied strain. The results indicate that the lattice strain of the B2 phase 
responds rapidly to the applied strain. In contrast, the lattice strain of the 
R phase exhibits only a limited increase with a plateau after the decrease 
in volume fraction. The lattice strain of the B19′ phase shows a strong 
correlation with the volume fraction, exhibiting a slow increase during 
the R phase transition followed by increase during the B19′ transition. 

It should be noted that the stress-induced continuous transition 
behavior observed in our current work diverges from the conventional 
martensitic transformations typically detected by DSC. In conventional 
NiTi SMAs, such transformations, exemplified by the A873K sample in 
Fig. 1, are characterized by stress plateaus accompanied by significant 
stress-strain hysteresis and functional fatigue [45], readily detectable by 
DSC during cooling and heating cycles, as illustrated in Fig. 3. The 
absence of detectable martensitic transformations by DSC in our study 
does not negate the presence of a unique stress-induced continuous 
transition mechanism. This mechanism, evidenced by the sequential 
transition from the B2 phase to the R phase and subsequently to the B19′ 
phase under external loading, is indicative of a distinct mechanical 
response not governed by conventional thermal or stress-induced 

Fig. 2. Comparisons of the elastocaloric property. The elastocaloric perfor
mance of COPmat and ΔTad of A473K sample are compared with various NiTi- 
based elastocaloric materials, including conventional NiTi wires and tubes 
[36,37], nanocrystalline NiTi tubes and cylinders [21,38], nanocomposite 
(TiNi/TiNi3, TiNi/Ti2Ni3) [23,24], gradient structured NiTi [39-41], precipi
tated NiTi [20,42,43], and NiTi-based SMA with lattice compatibility 
(Ni50Ti45.3V4.7) [44]. 

Fig. 3. DSC transition behavior measurements of the TiNi50.8 SMA under cold rolling and different annealing conditions. (a-c) DSC heat flow loops upon cooling and 
heating of the CR, A473K, and A873K samples. 
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martensitic transformations. Our previous investigations [24-26], have 
similarly demonstrated the prevalence of continuous transition behavior 
under external loading in NiTi SMAs, even in samples where conven
tional martensitic transformations are not detected by DSC. Therefore, 
the confinement of conventional martensitic transformations is instru
mental in facilitating the superior cyclic stability and enhanced me
chanical properties observed in our study, wherein stress-induced 
continuous transitions predominate under external loading conditions. 
This B2→R→ B19′ continuous transition pathway directly contributes to 
the measured cyclic-stable non-linear slim superelasticity. 

Nano-scale lattice strain analysis is conducted to elucidate the origin 
of the stress-induced two-step continuous transition pathway through 
atomic STEM-HAADF observation. An HAADF image capturing nano
scale lattice distortions in the [100]B2 zone axis is obtained at 340 K, as 

shown in Fig. 5(a). The elevated temperature is used for HAADF 
observation to avoid the precursor phenomenon in the TiNi50.8 (at.%) 
generated by the external Ni content as point defect, which may produce 
R-like nanodomain structure hindering the accurate evaluation of local 
lattice strain in the B2 matrix [46,47]. The corresponding FFT re
flections exclusively reveal the B2 parent phase. Utilizing geometrical 
phase analysis (GPA) [33], lattice strain maps (εxx, εxy, εyy) corre
sponding to the HAADF image are obtained. The strain maps in Fig. 5 
(b-d) reveal a heterogeneous spatial distribution of lattice strain, with 
peak values above 10 %. Previous research has suggested that different 
martensitic phases can be guided into a continuous transition by nano
scale local lattice strain field [46]. For instance, R phase with small 
transformation strain (~1 %) can be confined by a percolated strain 
network with relatively low strength [46,48], whereas the B19′ phase 

Fig. 4. In-situ loading synchrotron-based HE-XRD analysis of stress-induced transition behavior. (a) Diffraction profile upon loading. (b) Isolated peaks in the 
diffraction profile corresponding to (112)B2, (113)R, and (001)B19′ plotted in relation to tensile stress. (c-d) The volume fraction and lattice strain of B2, R and B19′ 
under loading evaluated in relation to stress and strain, illustrating the stress-induced B2→R→B19′ TSGT behavior. The stress and stain are correlated in (c) and (d). 

Fig. 5. Nanoscale heterogeneous strain field underlying two-step transition pathway. (a) HAADF image of B2 parent phase in [100]B2 zone axis. FFT reflections 
corresponding to HAADF image is shown in the inset of (a). (b-d) lattice strain maps (εxx, εxy, εyy) obtained based on the lattice image in (a) by GPA. The heterogenous 
lattice strain map is depicted, showing areas with low and high lattice distortions indicated by black and red dashed circles. (e-f) Free-energy landscape under 
external loading of the stress-induced B2→R→B19′ transition pathway in comparison to the B2→B19′ pathway with much smaller energy barrier. 
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with much larger transformation strain (~10 %) necessitates a robust 
percolated strain network generated by cold-rolling in NiTi SMAs [25, 
26]. Consequently, R and B19′ phases may be sequentially confined in 
the same system within a given heterogeneous strain network. It is 
worth noting that the cold working and low-temperature annealing 
treatments utilized in this work may produce nanocrystalline structure 
with high-density defects [49,50]. Such nanocrystalline has also been 
observed to suppress B19′ phase while promote the intermediate R phase 
[51], contributing to the observed two-step transition behavior. The 
free-energy landscape under external loading to illustrate the transition 
pathway of B2→R→B19′ is shown in Fig. 5(e-f). Upon loading, the 
free-energy landscape tilt toward martensitic phases, yielding 
stress-induced transformation [52,53]. This two-step continuous tran
sition pathway presents a minimal energy barrier, facilitating enhanced 
transformability with slim hysteresis, resulting in large recoverable 
strain, substantial ΔTad, and high COPmat, while maintaining cyclic 
stability. This work provides a versatile approach to tailor the supere
lastic behavior of NiTi SMAs by simply using the traditional physical 
metallurgy trick, i.e., “beat and heat”. 

In conclusion, this study introduces a novel two-step continuous 
transition and unveils the associated cyclic-stable, low-fatigue supere
lastic functional properties in a Ni50.8Ti49.2 alloy subjected to 473 K 
annealing after a 40 % thickness reduction in cold rolling. This contin
uous and reversible pathway offers cyclic-stable superelasticity with a 
significant 5.9 % recoverable strain and a substantial 19.1 K elasto
caloric ΔTad. The stress-induced B2→R→ B19′ continuous transition is 
directly evidenced by in-situ loading synchrotron-based HE-XRD. This 
unique transition pathway is facilitated by a specific heterogeneous 
nanoscale strain network. By leveraging the continuous transitions 
among different martensitic phases, this research could pave the way for 
enhancing the multifunctional performance and enabling a broader 
range of applications of SMAs. 
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[6] L. Mañosa, A. Planes, Materials with Giant Mechanocaloric Effects: cooling by 
Strength, Adv. Mater. 29 (11) (2017) 1603607. 

[7] I. Takeuchi, K. Sandeman, Solid-state cooling with caloric materials, Phys. Today 
68 (12) (2015) 48–54. 

[8] L. Ding, Y. Zhou, Y. Xu, P. Dang, X. Ding, J. Sun, T. Lookman, D. Xue, Learning 
from superelasticity data to search for Ti-Ni alloys with large elastocaloric effect, 
Acta Mater. 218 (2021) 117200. 
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