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Abstract—As the phasor measurement unit (PMU) placement 

problem involves a cost-benefit trade-off, more PMUs get 

placed on higher-voltage buses. However, this leads to the fact 

that many lower-voltage levels of the bulk power system cannot 

be observed by PMUs. This lack of visibility then makes time- 

synchronized state estimation of the full system a challenging 

problem. In this paper, a deep neural network-based state esti‐ 

mator (DeNSE) is proposed to solve this problem. The DeNSE 

employs a Bayesian framework to indirectly combine the infer‐ 

ences drawn from slow-timescale but widespread supervisory 

control and data acquisition (SCADA) data with fast-timescale 

but selected PMU data, to attain sub-second situational aware‐ 

ness of the full system. The practical utility of the DeNSE is 

demonstrated by considering topology change, non-Gaussian 

measurement noise, and detection and correction of bad data. 

The results obtained using the IEEE 118-bus system demon‐ 

strate the superiority of the DeNSE over a purely SCADA state 

estimator and a PMU-only linear state estimator from a techno- 

economic viability perspective. Lastly, the scalability of the 

DeNSE is proven by estimating the states of a large and realis‐ 

tic 2000-bus synthetic Texas system. 

Index Terms—Deep neural network (DNN), phasor measure‐ 

ment unit (PMU), state estimation, unobservability. 

 

 

I. INTRODUCTION 

OWER utilities attain situational awareness of their 

transmission system through the process of state estima‐ 

tion. Particularly, state estimation provides the inputs for per‐ 

forming real-time contingency analysis, optimal power flow, 
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and even network expansion planning [1]. Traditionally, state 

estimation is achieved using the supervisory control and data 

acquisition (SCADA) system. With the introduction of pha‐ 

sor measurement units (PMUs), SCADA-PMU hybrid state 

estimators as well as PMU-only linear state estimators have 

been proposed. Recently, it has become necessary to perform 

state estimation at higher speeds (<0.1 s) to understand the 

impacts of rapid fluctuations in outputs of converter-inter‐ 

faced resources on the security of bulk power system (BPS) 

[2]. However, purely SCADA state estimators and SCADA- 

PMU hybrid state estimators are not able to provide sub-sec‐ 

ond situational awareness, while PMU-only linear state esti‐ 

mators require PMUs to be optimally placed throughout the 

system. This paper proposes a novel Bayesian framework for 

transmission system state estimation (TSSE) that indirectly 

combines the inferences drawn from slow-timescale but 

widespread SCADA data with fast-timescale but selected 

PMU data, to attain high-speed (sub-second) situational 

awareness of the full BPS (69 kV and above). 
Due to the asynchronous nature of their inputs, purely 

SCADA state estimators suffer from problems such as non- 

linearity, divergence, and low accuracy [3]. These problems 

will exacerbate with increase of the penetration level of re‐ 

newable generation. Hybrid state estimators directly combine 

data from the SCADA system and PMUs [4] - [6]. Hence, 

they suffer from problems such as imperfect synchronization 

and time-skew errors [7]. Moreover, strategies proposed to 

overcome some of these problems (such as those developed 

in [8]-[10]) are computationally intensive, which makes the 

hybrid state estimators operate at slower timescales [11]. 

PMU-only linear state estimators provide time-synchronized 

outputs and are extremely fast, but they require the system 

to be fully observed by PMUs [12]. The unobservability is‐ 

sue associated with PMU-only linear state estimation (LSE) 

is typically relegated to solving an optimal PMU placement 

(OPP) problem [13]-[18]. However, many OPP formulations 

minimize the number of PMUs, which does not result in 

minimization of PMU placement cost [19]. This happens be‐ 

cause the PMU placement cost mainly includes communica‐ 

tion, security, and labor [20], which increases with the num‐ 

ber of substations that are upgraded for PMU placement, 

and not necessarily with the number of devices. Now, as the 
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highest-voltage buses/substations are the backbone of the 

BPS, and these buses are fewer in number, they become the 

natural choice for placing the PMUs. Conversely, placing 

PMUs at lower voltage levels does not yield as many bene‐ 

fits. This cost-benefit trade-off and law of diminishing re‐ 

turns prevent the lower voltage levels from being fully ob‐ 

served by PMUs. 

We have investigated the reality of the PMU unobservabili‐ 

ty problem by collecting data from two U. S. power utilities. 

Table I shows the PMU coverage of a U.S. power utility in the 

Eastern Interconnection (EI). This power utility has more than 

1400 buses, but only 129 of them are equipped with PMUs. 

Moreover, as the voltage levels decrease, there is a sharp drop 

in the number of buses with PMUs to the total number of bus‐ 

es at that voltage level. This confirms that PMUs are mostly 

placed on higher-voltage buses. Lastly, from the last column 

of Table I, it can be realized that none of the voltage levels are 

fully observed by PMUs, implying that PMU-only LSE cannot 

be performed at any voltage level of this power utility. 

TABLE I 

PMU COVERAGE OF A U.S. POWER UTILITY IN EI 

To counteract the impact of unobservability on state esti‐ 

mation, pseudo-measurements obtained by interpolated obser‐ 

vations or forecasts obtained using historical data can be 

used. However, as demonstrated in [23], such methods do not 

ensure quality of the estimates. Recently, machine learning 

(ML) has been used to address the observability issues w. r. t. 

high-speed state estimation [24]-[26]. Reference [24] propos‐ 

es a Bayesian state estimator using deep neural networks 

(DNNs) that is tailored for distribution systems. An ML- 

based state estimator for incompletely observed transmission 

systems is created in [25]. A state estimator with two DNNs 

(one for observable part and the other for unobservable part 

of the system) is proposed in [26]. However, [25], [26] do 

not consider the practicality of PMU placement when creat‐ 

ing the ML-based state estimators. 

Motivated by the knowledge gaps outlined above, we pro‐ 

pose a deep neural network-based state estimator (DeNSE) 

that estimates all the transmission system voltages in a time- 

synchronized manner from PMUs that are only placed at the 

highest-voltage buses. By performing TSSE using very few 

PMUs, the DeNSE also circumvents the need for a massive 

supporting communication infrastructure [27]. Apart from 

the unobservability issue, this paper addresses four other 

practical challenges that exist w.r.t. high-speed time-synchro‐ 

nized TSSE as summarized below. 

The first is the scalability of the state estimator. Classical 

LSE formulation involves a matrix inversion step, whose 

computational complexity is o (n2.3727 ) [28]. As such, the 

 

 

Table II shows the PMU coverage of a U.S. power utility 

of the Western Electricity Coordinating Council (WECC). A 

key difference compared with Table I is that the third col‐ 

umn denotes the number of PMU devices, instead of the 

number of PMU-equipped buses. Furthermore, it can be real‐ 

ized from Table II that despite having a large number of 

PMUs at different voltage levels, none of these levels are 

completely observed by PMUs. This happens because PMUs 

serve other functions than state estimation [13], and the cost 

of adding more devices at one substation is incremental 

[21], [22]. Therefore, power utilities add more PMUs to the 

same location even if they do not aid state estimation. Thus, 

high-speed time-synchronized state estimation for a transmis‐ 

sion system that is only locally observed by PMUs is a chal‐ 

lenging practical problem. In the rest of this paper, the terms 

“locally observable” and “(PMU)- unobservable” will be 

used interchangeably. 

TABLE II 

PMU COVERAGE OF A U.S. POWER UTILITY IN WECC 

 

Voltage level 
(kV) 

Number of 
buses 

Number of PMU 
devices 

Percentage of 
observed buses (%) 

500 18 53 90 

230 47 89 80 

115 30 23 30 

69 258 207 50 

time consumption of this implementation increases quadrati‐ 

cally w. r. t. the number of states. Conversely, during online 

implementation, the forward propagation of a neural network 

(NN) only involves multiplication and addition operations, 

whose complexity o (n ln n) is much lower [29]. The second 

is the presence of non-Gaussian noise in PMU measure‐ 

ments [30]-[33]. The LSE formulation is the solution to the 

maximum likelihood estimation (MLE) problem under 

Gaussian noise environments. This means that its perfor‐ 

mance can deteriorate in the presence of non-Gaussian noise. 

However, an NN-based state estimator such as the DeNSE 

does not have such a limitation. The third is the high-speed 

bad data detection and correction (BDDC) [34]. Dearth of 

measurements makes this challenge particularly acute for the 

problem to be solved here. To address this challenge, a ro‐ 

bust BDDC algorithm based on a combination of the Wald 

test [35] and an extreme scenario filter is developed. The 

fourth is topology change. This is a major concern for NN- 

based state estimators because it results in the training and 

testing environments (of the NNs) to differ, which can then 

deteriorate their performance. This challenge is tackled by 

combining DeNSE with topology processor outputs and 

transfer learning [24], [36]. 

In summary, this paper advances the state-of-the-art for 

time-synchronized state estimation in transmission systems 

by making the following salient contributions. 

1) A high-speed time-synchronized state estimator, i. e., 

DeNSE, is developed for the BPS that satisfies the need to 

observe the full system by PMUs. 

2) A robust BDDC algorithm is created that ensures the 

Voltage level 
(kV) 

Number of 
buses 

Number of PMU- 
equipped buses 

Percentage of 
observed buses (%) 

500 52 28 79 

230 15 5 53 

161 1185 92 27 

115 42 2 10 

69 144 2 3 
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performance of DeNSE under diverse types of bad data and where c 
 

 
i + 1 

is the input vector entering the (i + 1)th 
layer; 

loading conditions. 
3) The ability of the DeNSE to tackle topology changes Wi + 1i is the weight between the ith and the (i + 1)th 

layer; d 
th 

and non-Gaussian measurement noise is demonstrated. 
We also provide a logical explanation along with a numer‐ 

is the output of the i 

(i + 1)th 
layer. Next, c 

layer; and bi + 1 is the bias value of the 

i + 1 is passed through an activation func‐ 

ical example in Appendix A to illustrate how DeNSE can 

perform state estimation for unobservable power systems. 

tion ai + 1 to yield di + 1: 
 

di + 1 = ai + 1 (ci + 1 ) (3) 

 

II. PROPOSED FORMULATION OF DENSE 

 

A. Bayesian Framework for TSSE 

PMU-only LSE solves a variant of the MLE problem, 

with the most common being the least squares formulation. 

However, the least squares solution requires the system equa‐ 

tions to have full rank, which translates to the constraint of 

full system observability by PMUs. One way to circumvent 

this constraint is to reformulate the TSSE problem within a 

Bayesian framework, where the states x and the PMU mea‐ 

surements z are treated as random variables. Then, the fol‐ 

lowing minimum mean squared error (MMSE) estimator can 

be formulated: 

min E x − x̂ z 
2  

 x̂ * z = E x|z (1) 
x̂ () 

where x̂ is the estimated value of the states; x̂ * is the opti‐ 

mal estimate; and E is the expectation operator. Equation (1) 

directly minimizes the estimation error without the knowl‐ 

edge of the physical model of the system. Note that in the 

classical LSE formulation z = Hx + e, the modeling error is 

minimized, which is embedded in the measurement matrix 

H. By avoiding the explicit need for H, the observability re‐ 

quirement is no longer necessary in the Bayesian framework. 

Furthermore, by directly minimizing the estimation error, no 

limitations (such as Gaussian or non-Gaussian) are imposed 

on the characteristics of the measurement noise e. 

However, there are two challenges in computing the ex‐ 

pected conditional mean of (1). First, the conditional expecta‐ 

tion, defined by E (x|z ) = ∫
+ 

xp ( x|z )dx, requires the knowl‐ 

edge of the joint probability distribution function (PDF) be‐ 

tween x and z, denoted by p ( x z ). When the number of 

PMUs is scarce, p ( x z ) is unknown or impossible to speci‐ 

fy, making the direct computation of x̂ * (z ) intractable. Sec‐ 
ond, even if the under-lying joint PDF is known, it can be 

difficult to find a closed-form solution for (1). The DNN 

used in DeNSE overcomes these difficulties by providing an 

approximation of the conditional expectation of the MMSE 

estimator. 

B. Architecture of DNN in DeNSE 

The DNN has a feed-forward architecture with m inputs 

and n outputs, where m is the number of measurements com‐ 

ing from PMUs and n is the total number of states to be esti‐ 

mated (i. e., z  Rm and x  Rn). Due to incomplete observ‐ 

ability of the system by PMUs, m  n. The DNN has h hid‐ 

den layers, in which the input vector entering the (i + 1)th 
lay‐ 

er is expressed in terms of the inputs from the ith layer as: 

ci + 1 = Wi + 1 i di + bi + 1 (2) 

This propagation continues through all the hidden layers 

and the resulting value is obtained at the output layer. The 

loss function compares the estimated output and correspond‐ 

ing true output. The error between them is represented by: 

εj = ζ (oj ô j ) (4) 

where εj is the error; oj is the true value of the output; ô 
j is 

the estimated value of the output by the DNN in the current 

epoch; and ζ is an appropriate loss function that indicates 

how well the DNN has been trained. To improve the training 

accuracy, ζ is minimized by optimally tuning the weights 

and biases through a process called backpropagation. The 

process is repeated until the loss becomes acceptable. 

C. Creation of Training Database 

A unique feature of the DeNSE that sets it apart from oth‐ 

er ML-based state estimators (such as [37]) is that it does 

not use the slow timescale measurements to directly train the 

DNN. Instead, the discrete power injection measurements 

from the SCADA system are first converted into continuous 

functions by fitting an appropriate distribution to them. 

Then, independent Monte Carlo (MC) sampling is employed 

to randomly sample points from the distribution to feed as 

inputs to a power flow solver. The power flow is solved a 

large number of times, providing voltage and current phasor 

values across all system buses under various operating condi‐ 

tions. Then, for training, we use voltage and current phasors 

(with added noise) of buses which are equipped with PMUs 

as inputs to the DNN, while voltage phasors of all the buses 

are set as outputs of the DNN. This process helps in captur‐ 

ing the uncertainty introduced by the load variations and 

makes the DNN aware of diverse loading conditions. 

Training the DNN by using the above-mentioned process 

of indirectly combining inferences from SCADA and PMU 

data has two advantages: ① the problem of temporal differ‐ 

ences and synchronization issues are completely circumvent‐ 

ed, and ② any reasonable errors in the SCADA data do not 

impinge on the performance of the DeNSE. The DeNSE can 

be impacted by noisy as well as bad PMU data since these 

data are input to the trained DNN during online operation. 

The effects of the quality of input data are investigated ana‐ 

lytically in Section III-B, and experimentally in Sections IV- 

B, IV-E, and IV-F. 

 

III. ENHANCEMENTS TO PROPOSED DENSE FRAMEWORK 

AND ONLINE IMPLEMENTATION 
 

A. Transfer Learning to Handle Topology Changes 

A DNN trained using the framework proposed in Section 

II will perform fast and accurate time-synchronized state esti‐ 

mation for PMU-unobservable BPS during real-time opera‐ 

i 
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0 

( ) ∫ exp 
y 2 

du is the tail of the distribu‐ 

sample 

tion as long as the topology does not change. However, if 

the topology used for training and testing changes, the joint 

PDF between the measurements and the states will change; 

this can deteriorate the performance of the DeNSE. A possi‐ 

ble alternative is to train the DNN from scratch for the new 

topology. However, it will take a very long time to do so. In‐ 

stead, we use transfer learning to update the DNN of the 

DeNSE when topology changes. Transfer learning refers to 

utilizing models learned from an old problem and leveraging 

them for a new problem, in order to maintain the learning 

performance and accuracy. In the context of TSSE, transfer 

learning is particularly useful because when a topology 

changes, the mapping between measurements and states of 

only a small portion of the system gets altered. This implies 

that the re-learning will be localized. 

amplitudes compared with normal noisy data. To prevent such 

data from impacting the performance of the DeNSE, a robust 

BDDC algorithm capable of operating at PMU timescales 

( 33 ms) is devised as a precursor to this state estimator. 

1) BDDC Using Wald Test 

A technique to detect bad data before it enters an ML- 

based state estimator is proposed in [23]. The technique re‐ 

lies on the Wald test [35] to flag incoming measurements as 

bad. To apply this test, two hypotheses must be defined first. 

① H0: models the measurement without bad data and has a 

distribution with mean μ0 and variance σ 2, both of which are 

learned during training. ② H1: models the measurement 

with bad data, because of which its mean and variance are 

very different from those of H0. Mathematically, the Wald 
test can be expressed as: 

We employ inductive transfer learning [38] to induce | z − μ0 | 
H1

 −1 (α  ) 
knowledge transfer from the old (base) topology to the new 

(current) topology. Four methods have been proposed for im‐ 

plementing inductive transfer learning: feature-representation 

| 
| 

1  

| ≷ = Q  

0 | H0 
2 

−u2 
 

 

(5) 

 

parameter transfer. We use parameter transfer to update the 

parameters of the DNN when topology changes. Two well- 

known parameter transfer methods are parameter-sharing and 

fine-tuning. Parameter-sharing assumes that the parameters 

are highly transferable due to which the parameters in the 

source domain (old topology) can be directly copied to the 

target domain (new topology), where they are kept “frozen”. 

Fine-tuning assumes that the parameters in the source do‐ 

main are useful, but they must be trained with limited target 

domain data to better adapt to the target domain [39]. Since 

there is no guarantee that the parameters of the DNN will be 

highly transferable for different topologies, fine-tuning is 

used in this paper for transfer learning. 

To determine when transfer learning via fine-tuning 

should be implemented, we make use of the topology proces‐ 

sor of the BPS. After updating the DNN, the new topology 

is designated as the base topology to make it consistent with 

the DeNSE. The overall implementation of transfer learning 

to handle topology changes is shown in Fig. 1. 

tion, y = 
α 

, and α is a tunable parameter that specifies the 
2 

false positive limit. Essentially, the Wald test makes use of the 

fact that DNN training is done using good quality data. Hence, 

once the limits of good quality data become known during 

training, any testing data that lie outside that limit can be 

termed as bad. This bad data detection method based on Wald 

test developed in [23] is found to be compatible with the high- 

speed requirements of the DeNSE. However, [23] corrected 

the identified bad data by simply replacing them with mean 

value from the training database. The methodology for correct‐ 

ing the bad data is different, as explained below. 

Since the Wald test is applied independently and simulta‐ 

neously to all the m input features of a given sample of the 

testing dataset, it is unlikely that all the features will be bad 

at the same time. For a given testing dataset sample z test , 

the set of indices that correspond to features flagged as bad 

by the Wald test are called ibfs. Then, if iafs denotes the set 
of indices corresponding to all the features of z test , the dif‐ 

sample 

ference of these two sets gives the set of indices correspond‐ 
ing to the good features of z test  , which is denoted by igfs. 

sample 

Now, igfs can be used to find that operating condition (OC) 

in the training database Y train that most closely resembles the 
OC captured by z test  . Once that OC (called the nearest OC 

sample 

(NOC)) is found, its entries corresponding to ibfs should re‐ 
place the flagged features of z test  . The overall procedure is 

 

 

 

 

 

Fig. 1.  Implementation of transfer learning to handle topology changes. 

 

B. Robust BDDC 

During online implementation, streaming PMU data will be 

fed as inputs to the proposed DeNSE framework. However, 

PMU data obtained from the field often suffer from bad data 

in the form of data dropouts and outliers [40]. This is different 

from measurement noise since bad data have very different 

sample 

depicted in Algorithm 1 and is performed for every sample 

of the testing dataset. The superiority of the proposed bad da‐ 

ta correction method over the one where it is replaced with 

mean values is demonstrated in Section IV-E. 

2) Differentiating Between Bad Data and Extreme Scenarios 

The Wald test is very sensitive to the choice of α. A very 

small value of α may result in bad data being treated as 

good data, while a large value may result in an extreme sce‐ 

nario data being treated as bad data. This can happen be‐ 

cause by definition, extreme scenarios are those OCs that are 

unlikely to occur normally. In the worst case, data corre‐ 

sponding to an extreme scenario will get flagged as bad data 

transfer, instance transfer, relational-knowledge transfer, and 2π 

Is current topology equal 
to base topology? 

N 

Fine-tune old DNN for 

the new topology 

Y 

 

Implement 

DeNSE 

Update base topology 

Train DNN for base topology 

where Q ( y ) = 

σ 



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 12, NO. 6, November 2024 1814 
 

Offline learning Online implementation 

Trained DNN 

y Real-time PMU 
measurements 

Extreme 
scenario 

filter 

Bad data 
replacement 
with NOC 

Testing 
samples 

x?(z) 

State 
estimates 

Fitting of 
appropriate 
distribution 

Data preprocessing 

Independent 

sampling 

DNN 

Training data generation 

Neural network 

parameters (w, b ) 

MC sampling 

Training 

samples 

Probability 
distribution 

learning from 
input data 

Wald test 
for bad 

data detection 

and be replaced by normal data from the training database, 

making the DeNSE produce an incorrect picture of the oper‐ 

ating state of the system. We combine our knowledge of 

how PMUs are placed in a power system with how extreme 

OCs actually manifest to design an extreme scenario filter 

that prevents this problem. 
 

Algorithm 1: bad data correction using NOC in training dataset 
 

 

 
 

Algorithm 2: implementation of extreme scenario filter 
 

 

Input: features flagged as bad by Wald test, ibfs 
Output: features passing extreme scenario filter, ibfsESF 

1: ESFini = PMU locations corresponding to ibfs 

2: p = length(ESFini ) 

3: ibfsESF=ibfs 
4: ESFp=List of subsets of ESFini with p elements 

5: For (k = 1:length(ESFp )): 
If (every element of ESFp[ k ] is within p hops of each other): 

Input: z test  , Y train 

sample  test FeatESF=List of all features corresponding to ESFp[ k ] 
Output: the corrected testing dataset sample zsample_crct 
1: Create array of indices iafs from z test , and set z test 

 

= z test {ibfs  ESF }={ibfs  ESF }–{FeatESF} 
sample sample_crct sample 

2: Conduct Wald test on z test and flag the indices of bad data to create End if 

ibfs 
3: {igfs} = {iafs} − {ibfs} 

sample 6: End for 
7: p = p − 1 

4: k * = arg min Y train[ k igfs ] − z test [igfs ]  8: If (ibfsESF − ibfs) or ( p  2): 
sample 

k 9: End 
test 
sample_crct [ibfs ] = Y train[ k * ibfs ] 10: Else go to Step 3 

 
 

 

 

Furthermore, if PMUs are placed only at the highest volt‐ 

age buses (which is the premise of this paper), they will be 

automatically (electrically) close to each other even for 

PMU-unobservable BPS. This is because the highest voltage 

buses are connected to each other by the highest voltage 

lines. Thus, when an extreme scenario manifests, measure‐ 

ments of multiple PMUs will be simultaneously impacted. 

Conversely, bad data occur randomly in both space and 

time. This realization leads to the proposal of the following 

logic for designing the extreme scenario filter: if one or 

more features of the testing data sample are simultaneously 

identified as bad by the Wald test for p different PMUs, 

each of which is within p hops of each other, then the data 

sample corresponds to an extreme OC and should not be 

treated as bad data. This logic is implemented in the manner 

shown in Algorithm 2. 

Note that in Algorithm 2, p indicates the severity of the 

extreme scenario. The higher the value of p, a greater num‐ 

ber of hops to be considered. Lastly, the extreme scenario fil‐ 

ter is combined with the BDDC algorithm in the following 

way: whenever the filter gets activated, the results of the 

Wald test are suppressed (i. e., no data correction occurs), 

and the raw PMU measurements are fed as inputs to the 

trained DNN of the DeNSE. The usefulness of extreme sce‐ 

nario filter in the DeNSE is demonstrated in Section IV-F. 

C. Implementation of DeNSE 

Figure 2 show s the B～ayesian framework for the proposed 

DeNSE, where w and b represent the weights and bias pa‐ 

rameters that the DNN learns during the training process, re‐ 

spectively. It has an offline learning phase and an online im‐ 

plementation phase. In the offline learning phase, appropri‐ 

ate distributions are fitted to historical SCADA data using 

Kernel density estimation (KDE). MC sampling is done 

from the fitted distributions and set as inputs to a power 

flow solver to generate training data for the DNN. The volt‐ 

age and current phasors corresponding to actual PMU loca‐ 

tions are used to train the DNN while all the voltage phasors 

(states) are set as outputs of the DNN. The DNN approxi‐ 

mates the conditional expectation shown in (1). While (1) 

holds true for measurements in the polar or rectangular 

form, the DeNSE is implemented in polar form, since ① 

PMUs report in that form, and ② DNN is capable of approx‐ 

imating non-linear functions effectively (note that the rela‐ 

tion between measurements and states in polar form is non- 

linear). Once the optimized DNN parameters are found, the 

DNN training is complete. In the online implementation 

phase, streaming PMU data is passed through the Wald test 

and a data preprocessing block (based on Section III-B), and 

the resulting samples are sent to the trained DNN to produce 

the state estimates. 

 

 

 

 

 

 

 

 

 

 

 

 
Power flow 

analysis 
 Noise measurement 

addition 

 

Fig. 2.  Bayesian framework for proposed DeNSE. 

5: z 
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IV. RESULTS AND DISCUSSION 

 

A. State Estimation Results for IEEE 118-bus System 

TABLE III 

HYPERPARAMETERS AND DATASET SIZE OF DENSE FOR IEEE 118-BUS 

SYSTEM 

The effectiveness of the DeNSE is first illustrated using 

the IEEE 118-bus system. Each bus of this system is 

mapped to a bus in the 2000-bus synthetic Texas system 

[41], [42] of similar mean power rating. This is done be‐ 

cause the Texas system has one-year of SCADA data public‐ 

ly available, and this mapping helps in obtaining realistic 

variations in the active and reactive power for every bus of 

the IEEE 118-bus system. Next, the power injection distribu‐ 

tions are found using KDE. After picking samples indepen‐ 

dently from the distributions, a power flow is solved to cre‐ 

ate the training, validation, and testing data. 

It is assumed that PMUs are only placed on the highest 

voltage buses of this system, namely 8, 9, 10, 26, 30, 38, 

63, 64, 65, 68, and 81. PMUs located at these 11 buses mea‐ 

sure the voltage of the corresponding bus as well as the cur‐ 

rents flowing in the lines emanating from that bus. The 41 

PMU measurements (11 bus voltage phasors and 30 branch 

current phasors) are the inputs to the DNN. The outputs of 

the DNN are the 118 voltage magnitudes and angles of this 

system. 

The training and testing of the DNN is carried out using 

Keras with TensorFlow as the backend library in Python 

[43]. Training a DNN involves finding hyperparameter val‐ 

ues that give desired performance. The basic hyperparame‐ 

Type 

 

 

 

 

 

 

 

Hyperparameter 

 

 

 

 

 

 

 

 

 

Dataset size 

Name 

Number of hidden layers 

Number of neurons per 
hidden layer 

Activation functions 

Loss function 

Optimizer 

Batch size 

Learning rate 

Number of epochs 

Early stopping 

Dropout 

Training 

Validation 

Testing 

Total 

 

18 

12 

6 

Value 

4 

500 

ReLU (hidden layers), 
linear (output layer) 

MSE 

Adam 

128 

0.0207 

2,000 

Patience = 10 

30% 

7500 

2500 

4000 

14000 

ters of a DNN are the number of hidden layers, the number 
0  

0 1 2 3 4 5 6 7 

of neurons per layer, and the activation function. The activa‐ 

tion function used in the hidden layers is rectified linear unit 

(ReLU), while a linear function is used in the output layer. 

To overcome the problem of internal covariate shift, batch 

normalization is employed. Dropout regularization is used to 

prevent DNN overfitting. The mean squared error (MSE) 

loss function is used to calculate the error between the pre‐ 

dicted and the true states. During back-propagation, the Ad‐ 

am optimizer is used to update the weights of the DNN. Ta‐ 

 

0.005 

0.004 

0.003 

0.002 

0.001 

0 

Distance from buses with PMUs (hops) 
(a) 

 

 
0 1 2 3 4 5 6 7 
Distance from buses with PMUs (hops) 

(b) 

ble III summarizes the optimal values of the hyperparame‐ 

ters and dataset size of the DeNSE for the IEEE 118-bus sys‐ 

tem. Hyperparameter tuning is done using the ML platform 

WANDB [44]. All simulations are performed on a computer 

with 256 GB RAM, 3.40 GHz Intel Xeon 6246R CPU, Nvid‐ 

ia Quadro RTX 5000 GPU (16 GB). All codes for this paper 

can be accessed using the GitHub link provided in Appen‐ 

dix B. 

Figure 3 shows the performance evaluation of DeNSE for 

the IEEE 118-bus system as a function of the distance from 

the buses where the PMUs are placed. The error metrics 

used are mean absolute percentage error (MAPE) of voltage 

magnitudes and mean absolute error (MAE) of voltage an‐ 

gles. The distance is expressed in terms of hops from the 

bus where the PMU is placed; i. e., a hop of zero corre‐ 

sponds to the 11 highest voltage buses of this system. It is 

clear from Fig. 3 that in comparison to conventional meth‐ 

ods (such as LSE) that are limited to hops of zero and one 

(i. e., the observable regions of the system), the DeNSE is 

able to give reasonable state estimates even for buses that 

are six or seven hops away. 

Fig. 3. Performance evaluation of DeNSE for IEEE 118-bus system as a 

function of distance from buses where PMUs are placed. (a) MAPE of volt‐ 

age magnitude. (b) MAE of voltage angle. 

 

B. Impact of Measurement Noise 

The subplots shown in Fig. 3 are obtained under Gaussian 

noise environment with 1% total vector error (TVE) [45]. 

Now, it is important to analyze the impact that different 

types of noises have on the performance of a data-driven 

state estimator such as the DeNSE. It has recently been 

shown that PMU noises can have non-Gaussian characteris‐ 

tics [30], [31]. Keeping this in mind, three types of noise 

characteristics are considered in this paper, i. e., Gaussian 

noise, Gaussian mixture model (GMM) noise [32], and La‐ 

placian noise [33]. The Gaussian noise has zero mean, and 

standard deviation of 0.0033% in magnitude and 0.0029 rad 

in angle. The GMM noise has two components, with mean, 

standard deviation, and weight vectors as [0, 0.005%], 

[0.0015%, 0.0015%], and [0.3, 0.7] in magnitude, and [0, 

0.0043]rad, [0.0014, 0.0014]rad, and [0.3, 0.7] in angle, re‐ 
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spectively. The Laplacian noise has a location and scale of 

0.001% and 0.0015% in magnitude, and 0.0009 rad and 

0.0013 rad in angle, respectively. The above-mentioned 

noise parameters correspond to a TVE of 1%. The results ob‐ 

tained using the DeNSE in presence of one of these three 

noise types are shown in Table IV. From the table, it is ob‐ 

served that the DeNSE is robust enough to handle non- 

Gaussian measurement noise in an effective manner as there 

is only a very minor deterioration in performance as the 

noise models change. 

TABLE IV 

PERFORMANCE OF DENSE UNDER DIFFERENT NOISE TYPES FOR IEEE 

118-BUS SYSTEM 

 
 

However, these locations are not optimally selected, result‐ 

ing in five buses being unobservable in [26] for the IEEE 

118-bus system. From Table VI, the following inferences are 

drawn. ① The proposed DeNSE has a higher root mean 

squared error (RMSE). This is due to the fact that the num‐ 

ber of locations where PMUs are placed is almost one-third 

in our case. ② The proposed DeNSE is more robust to 

noise. This is because with increase in noise amplitude (stan‐ 

dard deviation of the noise), there is a two order of magni‐ 

tude increase in the RMSE values of [26], whereas there is 

only a 15% increase in the RMSE values of the proposed 

DeNSE as the noise amplitude increases. 

TABLE VI 

COMPARISON OF DENSE WITH NN-BASED STATE ESTIMATOR [26] FOR 

Noise type MAPE of voltage magnitude (%) MAE of voltage angle (rad) IEEE 118-BUS SYSTEM 

Gaussian 0.1676 0.0042   

GMM 0.1667 0.0047 Noise amplitude (stan‐ 
dard deviation of noise) 

RMSE of [26] with 
PMUs at 32 buses* 

RMSE of DeNSE with 
PMUs at 11 buses 

Laplacian 0.1678 0.0049   
 

 

C. Comparison with Other State Estimators 

The performance of the DeNSE is now compared with 

two other state estimators, namely a purely SCADA state es‐ 

timator and a PMU-only linear state estimator. For fairness 

of comparison, 1% TVE Gaussian noise is added to all the 

PMU measurements. The SCADA measurements comprise 

all sending-end active power flows and voltage magnitudes 

[46], corrupted by 10% additive Gaussian noise. The linear 

state estimator receives PMU data from 32 buses identified 

from OPP studies [13]. Table V presents the average MAPE 

of voltage magnitudes and average MAE of voltage angles 

for all three state estimators. It is clear from the table that 

the purely SCADA-based state estimator has inferior perfor‐ 

mance compared with the DeNSE in terms of both magni‐ 

tude and angle estimation. Although the PMU-only linear 

state estimator gives similar performance as the DeNSE, it 

requires almost three times the number of PMUs; moreover, 

these PMUs had to be placed at optimal locations in the sys‐ 

tem. Thus, considering the practical implementation challeng‐ 

es associated with time-synchronized TSSE, the DeNSE re‐ 

sults are optimal from a techno-economic viability perspec‐ 

tive. 

TABLE V 

COMPARISON OF DENSE WITH OTHER OPTIMIZATION-BASED STATE 

ESTIMATORS FOR IEEE 118-BUS SYSTEM 

 

Type 
Number of 

PMU locations 
Average 

MAPE (%) 
Average 

MAE (rad) 

Purely SCADA state estimator  0.9816 0.0079 

PMU-only linear state estimator 32* 0.2709 0.0026 

DeNSE 11 0.1676 0.0042 

Note: * means that PMUs are optimally placed to ensure complete system 

observability. 

 

We have also compared the performance of DeNSE with 

the NN-based state estimator developed in [26]. The results 

are shown in Table VI. Note that in [26], PMUs are placed 

at 32 locations (compared with 11 locations in our case). 

 

 

 

 

 

Note: * means that PMUs are not optimally placed (five buses left unob‐ 

served). 

 

D. Impact of Topology Changes 

Next, we investigate the ability of transfer learning in up‐ 

dating the DNN of DeNSE after a topology change takes 

place. A set of likely topologies is identified for the IEEE 

118-bus system by removing one line at a time between any 

two buses of the system such that an island is not formed. 

177 such topologies have been identified. The training data 

for these likely topologies are saved in the database. When a 

topology change is detected by the topology processor in re‐ 

al-time, transfer learning via fine-tuning is activated as de‐ 

scribed in Fig. 1. The results obtained are as follows. 

Let the base topology be denoted by T1. By opening differ‐ 

ent lines, three new topologies are created from T1. T2 is cre‐ 

ated by opening the line between buses 75 and 77, neither 

of which has a PMU. T3 is obtained when the line between 

buses 38 and 37 is removed; note that bus 38 has a PMU on 

it. T4 is realized by opening the line between buses 26 and 

30, both of which have a PMU on them. The changes in to‐ 

pology and their influences on TSSE with and without trans‐ 

fer learning are studied, as shown in Figs. 4 and 5. 

When transfer learning is used to update the DNN, fine- 

tuning only takes 30 s of re-training time to give similar re‐ 

sults for the new topologies, as obtained for the base topolo‐ 

gy (the heights of the green and blue bars are similar). Note 

that if we had trained the DNN from scratch for every new 

topology, it would have taken three hours for every topology 

change, making the DeNSE inconsistent with the current 

state of the system for a much longer time period. The rea‐ 

son why fine-tuning is so fast is that it only needs 2000 sam‐ 

ples and 90 epochs compared with 10000 samples and 2000 

epochs that are needed to train the DNN from scratch (see 

Table III). Conversely, if the DNN trained for T1 is used 

0.000 2.28  10−6 6.29  10−3 

0.001 1.86  10−5 6.60  10−3 

0.010 2.00  10−4 6.70  10−3 

0.030 5.00  10−4 6.94  10−3 

0.050 9.00  10−4 7.22  10−3 
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throughout, the performance of DeNSE degrades significant‐ 

ly (shown by the heights of blue and orange bars in Figs. 4 

and 5). 

0.25 

0.20 

0.15 

0.10 

0.05 

0 

T1 T2 T3 T4 

Topology 

 Fine tuning for 30 s;  Without re-training;  Base topology 

Fig. 4. Efficacy of transfer learning in terms of average MAPE of voltage 

magnitudes. 

the training dataset (as done in [23]), i. e., no-replacement 

and replaced-by-mean cases. It is clear from Fig. 6 that in 

the absence of BDDC, the results become progressively 

worse as the amount of bad data increases (red line). More‐ 

over, it can be observed that the bad data correction based 

on the NOC consistently outperforms the one that based on 

the mean value for both magnitude and angle estimation (the 

green line always lays below the blue line). 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 
0.1

0 10 20 30 40 50 

Amount of bad data (%) 
(a) 

0.009 

0.008 

0.007 

0.006 

0.005 

0.004 

0.003 

0.002 

0.001 

0 

 

 
T1 T2 T3 T4 

0.06 

0.05 

0.04 

0.03 

0.02 

0.01 

 

 
0 10 20 30 40 50 

Amount of bad data (%) 
(b) 

Topology 

 Fine tuning for 30 s;  Without re-training;  Base topology 

Fig. 5. Efficacy of transfer learning in terms of average MAE of voltage 

angles. 

 

It can also be observed from Figs. 4 and 5 that the deterio‐ 

ration in estimation is more prominent for T3 and T4. This 

 No-replacement;  Replaced-by-mean;  Proposed algorithm 

Fig. 6. Bad data replacement with increasing amount of bad data. (a) Aver‐ 

age MAPE of voltage magnitude. (b) Average MAE of voltage angle. 

 

 

In the second scenario, we increase the severity of the bad 

data while fixing the amount of testing samples that are bad. 

To do this, the severity is increased from σ = 3σ0 to σ = 7σ0, 

happened because the line that is opened for creating these 

two topologies has PMUs placed on one and both ends of 

the line, respectively. Due to this, when the line is opened, 

the outputs of these PMUs would become very different 

from what they were during the training of the DNN. This 

culminates in the considerable difference in the training and 

testing environments after the topology change occurs, caus‐ 

ing increased deterioration in the performance of the trained 

DNN. 

E. Mitigation of Impact of Bad Data 

To investigate the performance of the proposed NOC- 

based BDDC algorithm, we simulate two different scenarios. 

In the first scenario, we increase the amount of testing sam‐ 

ples that are bad, while fixing the severity of the bad data. 

To do this, the probability of bad data is randomly varied 

from η = 0% to η = 50% in steps of 10%, while the severity 

is kept at σ = 3σ0, where the standard deviation of good quali‐ 

ty data σ0 is computed from the training dataset. The value 

of α is set to be 0.05 to ensure that the false alarm (false 

positive) probability does not exceed 5%. The results are 

shown in Fig. 6 when the proposed algorithm is compared 

with a case where the bad data are not replaced and a case 

where the bad data are replaced with the mean value from 

while setting η = 30%. The results are shown in Fig. 7 when 

the proposed algorithm is compared with the no-replacement 

and replaced-by-mean cases). It is clear from Fig. 6 that the 

proposed algorithm for correcting bad data (green line) per‐ 

forms much better than the no-replacement case (red line), 

and slightly better than the replaced-by-mean case (blue 

line). Lastly, note that these studies are conducted on the 

trained DNN created in Section IV-A, i.e., only the inputs to 

the DNN in the testing phase are changed while its architec‐ 

ture is left unaltered. 

Considering the high speed at which DeNSE is expected 

to operate during its online implementation (30 samples per 

second), it must be ensured that the Wald test and data pre‐ 

processing are performed within that time frame. The most 

time-consuming portion in this regard is the proposed bad 

data correction module, which must compare the current test‐ 

ing sample with all the samples in the training database to 

find the optimal replacement(s). It is observed that with 

10000 training samples and 41 phasor measurements as in‐ 

puts, the bad data replacement for the IEEE 118-bus system 

could be carried out in (7.74 ± 0.35)ms. As this is much less 

than the speed at which a PMU produces an output (≈33 

ms), the proposed algorithm meets the high speed and high 

accuracy expectations of purely PMU-based state estimation. 
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0.55 

0.50 

0.45 

0.40 

0.35 

0.30 

0.25 

0.20 

0.15 

 

 

0.040 

0.035 

0.030 

0.025 

0.020 

0.015 

0.010 

0.005 

 

 
3 4 5 6 7 

Severity of bad data 
(a) 

 

3 4 5 6 7 
Severity of bad data 

(b) 

significantly worse. This considerable deterioration of the re‐ 

sults is due to the presence of bad data in the measurements 

coming from PMUs placed at buses 68 and 81. A large 

amount of variability is also observed across the 1000 sce‐ 

narios as captured by the high standard deviation values. 

The second row of Table VII depicts the outcome that ob‐ 

tained when BDDC takes place but without the extreme sce‐ 

nario filter. The relatively high errors in this case are due to 

the presence of extreme scenarios around buses 8 and 10, 

whose corresponding PMU measurements are unnecessarily 

replaced. The best outcome is obtained when the proposed 

BDDC is applied to the PMU measurements coming from 

buses 68 and 81, but is suppressed by the extreme scenario 

filter for the PMU measurements coming from the region 

around buses 8 and 10, as depicted in the third row of Table 

VII. Thus, this analysis demonstrates the robust performance 

of the proposed DeNSE under diverse OCs. 

 No-replacement;  Replaced-by-mean;  Proposed algorithm 

Fig. 7. Bad data replacement with increasing severity of bad data. (a) Aver‐ 

age MAPE of voltage magnitude. (b) Average MAE of voltage angle. 

 

F. Tackling of Extreme Scenarios 

In Section IV-E, the superiority of the BDDC based on 

the Wald test and NOC is demonstrated. In this sub-section, 

the need and impact of the extreme scenario filter are dis‐ 

cussed. 1000 extreme scenarios are created for the IEEE 118- 

bus system by significantly increasing the loading of buses 8 

and 10. Due to the physics of the power system, PMUs lo‐ 

cated at buses 8 and 10 as well as the ones located in the vi‐ 

cinity of the two buses are impacted in these scenarios. Con‐ 

sequently, one or more measurements coming from the im‐ 

pacted PMUs (i.e., input features of the DeNSE) are flagged 

as bad data by the Wald test. At the same time, bad data are 

also added to the PMUs placed at buses 68 and 81, which 

G. Impact of Different Database Sizes 

In the proposed DeNSE, it is necessary to solve a variety 

of power flows under different operating conditions to create 

a comprehensive database for DNN training. The determina‐ 

tion of the requisite number of samples is contingent upon 

the accuracy of the DNN relative to the number of samples 

utilized. In general, augmenting the training samples can fur‐ 

ther diminish DNN error until a point of performance satura‐ 

tion is reached. This is realized for the IEEE 118-bus system 

by progressively training the DNN with an increasing num‐ 

ber of samples. It is observed that beyond the threshold of 

10000 samples, no discernible improvement occurs, as 

shown in Fig. 8. Hence, we conclude that 10000 samples 

(i.e., sum of number of training and validation samples in Ta‐ 

ble III) are sufficient for robust performance of the DeNSE 

for this system. 

are far away from the stressed region of the system. The ex‐ 

treme scenario filter identifies the set of features for which 

the BDDC should be suppressed, using the logic described 

in Section III-B. Three different outcomes are analyzed, as 

shown in Table VII. Note that to obtain the results shown in 

this table, Gaussian noise is added to all the measurements. 

0.0060 

0.0056 

0.0052 

0.0048 

0.0044 

0.0040 

0.40 

0.35 
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TABLE VII 

DENSE PERFORMANCE WHEN BAD DATA AND EXTREME SCENARIO 

MANIFEST SIMULTANEOUSLY IN IEEE 118-BUS SYSTEM 

2000 5000 7500 10000 12000 
Number of samples 

Fig. 8.  Impact of database sizes on DNN performance. 

 
 

 

 

 

DeNSE without BDDC 

DeNSE with BDDC but with‐ 
out extreme scenario filter 

DeNSE with BDDC and ex‐ 

treme scenario filter 

 

 

 

 

0.3337 

0.1853 

 

0.1812 

 

 

 

 

0.0254 

0.0035 

 

0.0037 

 

 

 

 

0.0267 

0.0059 

 

0.0053 

 

 

 

 

0.0023 

0.0002 

 

0.0002 

H. State Estimation Results for 2000-bus Synthetic Texas 

System 

To demonstrate the applicability of the DeNSE to large 

transmission systems, we use the publicly available 2000- 

bus synthetic Texas system [41], [42]. The number of high‐ 

est-voltage buses in this system is 120, and it is assumed 

that PMUs are already placed on these buses such that the 

voltage phasors of these buses as well as the current phasors 

of the lines coming out of these buses are measured by 

The first row of Table VII depicts the outcome obtained 

when bad data are not corrected. Comparing this row with 

the first row of Table IV, it can be seen that the results are 

PMUs. By employing the time-series data available online 

for this system, the training and testing data are generated 

and a DNN is trained using the DeNSE framework ex‐ 

MAE of voltage angle 
MAPE of voltage magnitude 
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Standard 
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plained in Section III-C. 

The error estimates obtained with PMUs placed at 120 

buses and under different noise types are shown in Table 

VIII and Fig. 9, respectively. The outcomes presented in Ta‐ 

ble VIII correspond to a TVE of 1%, which is equivalent to 

a signal-to-noise ratio lying between 52 dB to 49 dB for 

Gaussian noise, 85 dB to 47 dB for GMM noise, and 90 dB 

to 85 dB for Laplacian noise, respectively. Note that LSE 

for this system requires the placement of PMUs at 512 opti‐ 

mally selected buses. It can be observed from the table that 

with PMUs placed at less than one-quarter of the buses 

(120/512 = 0.234), the DeNSE has similar performance as 

mation is derived from power flow computations, which re‐ 

quires knowledge of the system model and parameters. In 

other words, the proposed DeNSE remains model-agnostic 

during online operation but depends on system model and 

parameters during offline training. One way to avoid this de‐ 

pendency for an actual power system implementation is by 

directly utilizing historical SCADA state estimator results for 

creating the requisite training database of the DNN. 

TABLE IX 

HYPERPARAMETERS AND DATASET SIZE OF DENSE FOR 2000-BUS 

SYNTHETIC TEXAS SYSTEM 

LSE even in presence of non-Gaussian noise in PMU mea‐ 

surements. From Fig. 9, it can be realized that the deteriora‐ 

tion in the estimation performance is small even for buses 

that are 8 to 10 hops away. The hyperparameters and dataset 

size of the DeNSE for this system are summarized in Table 

I. Note that the trained DNN takes only 2.6 ms on average 

to produce the state estimates. This validates the ability of 

the DeNSE to estimate the states of large systems at high 

speeds. 

TABLE VIII 

PERFORMANCE OF DENSE AND LSE UNDER DIFFERENT NOISE TYPES FOR 

2000-BUS SYNTHETIC TEXAS SYSTEM 

Type 

 

 

 

 

 

 
Hyperpa‐ 
rameter 

 

 

 

 

 

 

 

 
Dataset 

size 

Name 

Number of hidden layers 

Number of neurons per hidden layer 

Activation functions 

Loss function 

Optimizer 

Batch size 

Learning rate 

Number of epochs 

Early stopping 

Dropout 

Training 

Validation 

Testing 

Total 

Value 

4 

500 

ReLU (hidden layers), 
linear (output layer) 

MSE 

ADAM 

256 

0.001 

3000 

Patience=10 

30% 

7500 

2500 

4000 

14000 

 
 

 

Note: * means that PMUs are optimally placed to ensure complete system 

observability. 

 

0.3 

0.2 

0.1 

Remark 2: when making additions to any existing system, 

a variety of factors must be considered. Therefore, it is not 

surprising that the final locations where PMUs would be 

placed are often decided based on negotiations with the grid 

operators, rather than through a purely mathematical optimi‐ 

zation procedure (such as solving an OPP problem) [47], 

[48]. However, this decision (of where to place the PMUs) 

does not affect the DeNSE because the locations of the 

PMUs are input to the DeNSE, and not determined by the 
0 

0  1  2  3  4  5  6  7 8  9  10 DeNSE. This means that the DeNSE is not limited to PMUs 

 

0.025 

0.020 

0.015 

0.010 

0.005 

Distance from buses with PMUs (hops) 
(a) 

being placed only at the highest voltage buses of the system. 

In other words, even for a power system that has PMUs 

placed at low-voltage buses, the DeNSE will simply take all 

available PMU measurements into consideration during train‐ 

ing to give the state estimates of all the buses of that system 

during testing. 

0 
0  1  2  3  4  5  6  7  8  9  10 

Distance from buses with PMUs (hops) 
(b) 

Fig. 9. Performance evaluation of DeNSE for 2000-bus synthetic Texas 

system as a function of distance from buses where PMUs are placed. (a) 

Average MAPE of voltage magnitudes. (b) Average MAE of voltage angles. 

 

Remark 1: note that for the test systems analyzed in this 

paper, the DeNSE performs state estimation using (1) in real- 

time based on a limited set of PMU measurements and with‐ 

out requiring knowledge of the system model and parame‐ 

ters. However, in the offline training phase, essential infor‐ 

V. CONCLUSION 

In this paper, a Bayesian framework for high-speed time- 

synchronized TSSE is proposed, which does not require com‐ 

plete observability of the system by PMUs for its successful 

execution. The proposed state estimator, i. e., the DeNSE, 

overcame unobservability by indirectly combining inferences 

drawn from slow-timescale SCADA data with fast-timescale 

PMU measurements. The robustness of the DeNSE is demon‐ 

strated by its ability to successfully tackle practical challeng‐ 

es such as topology changes, non-Gaussian measurement 

noise, and different types of bad data under diverse operat‐ 
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Method (noise 
type) 

Average MAPE 
of voltage magni‐ 

tudes (%) 

Average MAE of 
voltage angles 

(rad) 

Number of 
buses with 

PMUs 

LSE (Gaussian) 0.2809 0.0026 512* 

DeNSE (Gaussian) 0.2800 0.0024 120 

DeNSE (GMM) 0.2714 0.0024 120 

DeNSE (Laplacian) 0.2890 0.0027 120 
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ing conditions. 

The IEEE 118-bus system and the 2000-bus synthetic Tex‐ 

as system are used as the test systems for the analysis con‐ 

ducted here. In comparison to conventional methods, the pro‐ 

posed DeNSE is able to bring the estimation errors of all the 

buses to reasonable levels, which requires less than half the 

number of PMUs required for full observability for the IEEE 

118-bus system and less than one-quarter for the 2000-bus 

Synthetic Texas system. The future scope of this study will 

involve developing strategies to further improve accuracy of 

the DeNSE by determining locations for adding new PMUs, 

extending the proposed framework to handle events such as 

faults and load/generation losses, and providing provable per‐ 

formance guarantees [49]. 

tional least squares sense. Note that this example simply il‐ 

lustrates how the Bayesian framework of DeNSE can be 

used to estimate states that cannot be estimated using con‐ 

ventional methods due to limited observability. In an actual 

system, the DeNSE will estimate all bus voltage magnitudes 

and angles without differentiating among unobserved buses, 

directly observed buses, and indirectly observed buses as it 

only relies on the joint PDF p xi z between the PMU mea‐ 

surements and the states. 

To generate p xi z  and p (z ) for this system, F = 10000 

power flows are solved. The simulation parameters used for 

solving the power flows of the 3-bus system are provided in 

Table AI. 

 

APPENDIX A 
 

A. Logical Explanation of DeNSE Functioning 

The DeNSE is an MMSE estimator, in which the DNN ap‐ 

proximates the conditional expectation E x|z . For the ith 
state x , the conditional expectation E (x |z ) can be written in 

TABLE AI 

SIMULATION PARAMETERS USED FOR SOLVING POWER FLOWS OF 3-BUS 

SYSTEM 

i i 

terms of the probability distributions as shown below: 

E (x |z ) =  
+ x p (x |z )dx = + x 

p (x i  z 
) 

dx (A1) 

i ∫
− 

i i i ∫
− 

i p ( z ) i
 

where p (xi|z ) and p (x i  z ) are the conditional probability 
and the joint probability between xi and z, respectively; and Due to the reasons mentioned in Section II-A, it is usually 

p (z ) is the probability distribution of z. Now, it can be in‐ 
ferred from (1) and (A1) that x̂ i (z ) can be obtained for any not possible to analytically compute E (xi|z ) for all xi and z, 

value of m (where z  Rm), as long as p (xi|z ) is known. 

Moreover, increasing m can improve the estimation quality 

only if the new measurements are not correlated with the ex‐ 

isting measurements, or are constant. 

To better understand these inferences in the context of 

TSSE, consider the 3-bus system shown in Fig. A1. The ref‐ 

erence bus (bus 1) has an angle of 0, but its magnitude is 

an unknown variable. Bus 2 has both load and generation, 

while bus 3 has only load. The system has three sensors (de‐ 

picted by blue boxes) that are measuring the magnitude of 

the current flowing in lines 1-2 and 2-1, and the magnitude 

of the current injection at bus 3. 

which is why its approximation by a DNN is needed in the 

first place. However, for this 3-bus system, it is observed 

that the probability distributions of the relevant random vari‐ 

ables |V3 |, | I12 |, | I21 |, and | I3 | could be well-approximated by 

multivariate normal distributions. In such a scenario, the con‐ 

ditional probability of xi given z = [ z1 z2 zm ] is written as 

[50]: 

p (xi|z = [ z1 z2 zm ] ) = 

 

(A2) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S L 

3 
 

Fig. A1.  3-bus system. 

where yp and yq are obtained from power flow solutions, 
2 with yp comprising all variables in xi and z, and yq compris‐ 

ing variables in z only; μ and Σ are the mean and covari‐ 

ance, respectively, and | Σ | is determinant of the covariance. 

Now, using (A1) and (A2), we compare E (xi|z ) with the ac‐ 
tual value of xi for five MMSE estimator cases: ① Case 1: 

z = {V1}; ② Case 2: z = {| I12 |}; ③ Case 3: z = {| I3 |}; ④ 

Case 4: z = {| I12 | | I21 |}; ⑤ Case 5: z = {| I12 | | I3 |}. Note that 

|V3 |, | I12 |, | I21 |, and | I3 | are dependent variables as they corre‐ 

spond to converged power flow solutions, while V1 is a 

Let the goal be to estimate the voltage magnitude of bus 

3, i.e., xi = |V3 |. The system is unobservable because |V3 | can‐ 

not be estimated from the given measurements in the conven‐ 

constant. The estimation results are shown in Table AII. In 

Case 1, z is a constant, and so E xi|z = E xi , which is the 

mean value of |V3 | across all F power flows. As this case is 

S 
g 

 
S 

g 

1 
 

3 

Parameter Value (p.u.) Parameter Value (p.u.) 

Series Imp_1-2 0.05 + j0.1 Pg 
2 2+N (0 0.04) 

0.5+N (0 0.04) 
0.1+N (0 0.04) 
2+N (0 0.04) 

0.5+N (0 0.04) 
1+N (0 0.0001) 

Series Imp_2-3 0 + j0.05 Pl 
2 

Series Imp_3-1 0.02 + j0.05 Ql 
2 

Shunt Imp_1 −j100 Pl 
3 

Shunt Imp_2 Inf Ql 
3 

Shunt Imp_3 −j40 |V1 | 
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( ) 

F 

not able to track the variations in OCs across different pow‐ 
er flows, its estimate is the worst. Cases 2 and 3 give simi‐ 

lar results as they separately track the variations in | I12 | and 

| I3 | to estimate |V3 |. Despite having two measurements, the 

results of Case 4 are worse than those in Cases 2 and 3 be‐ 

cause | I12 | and | I21 | are highly correlated. The expected val‐ 

ues of Case 5 are closest to the ground-truth values as this 

estimator is able to use both | I12 | and | I3 | to estimate |V3 |. 

This analysis confirms that the knowledge of p (x|z ) and a 
non-large value of m are the basis for the DeNSE to over‐ 

come unobservability. It is also worth mentioning that the es‐ 

timation quality of the DeNSE improves if F is increased, 

because with more training samples, the DNN will be able 

to better approximate the probability distributions, and in 

turn, E x|z . 

TABLE AII 

STATE ESTIMATION RESULTS OF CASE STUDIES DONE ON 3-BUS SYSTEM 

[8] P. Yang, Z. Tan, A. Wiesel et al., “Power system state estimation us‐ 
ing PMUs with imperfect synchronization,” IEEE Transactions on 
Power Systems, vol. 28, no. 4, pp. 4162-4172, Nov. 2013. 

[9] J. Zhao, G. Zhang, K. Das et al., “Power system real-time monitoring 
by using PMU-based robust state estimation method,” IEEE Transac‐ 
tions on Smart Grid, vol. 7, no. 1, pp. 300-309, Jan. 2016. 

[10] N. M. Manousakis and G. N. Korres, “A hybrid power system state es‐ 
timator using synchronized and unsynchronized sensors,” International 
Transactions on Electrical Energy Systems, vol. 38, no. 8, p. e2580, 
Aug. 2018. 

[11] Z. Jin, P. Wall, Y. Chen et al., “Analysis of hybrid state estimators: ac‐ 
curacy and convergence of estimator formulations,” IEEE Transac‐ 
tions on Power Systems, vol. 34, no. 4, pp. 2565-2576, Jul. 2019. 

[12] T. Chen, H. Ren, Y. Sun et al., “Optimal placement of phasor measure‐ 
ment unit in smart grids considering multiple constraints,” Journal of 
Modern Power Systems and Clean Energy, vol. 11, no. 2, pp. 479-488, 
Mar. 2023. 

[13] A. Pal, G. A. Sanchez-Ayala, V. A. Centeno et al., “A PMU placement 
scheme ensuring real-time monitoring of critical buses of the net‐ 
work,” IEEE Transactions on Power Delivery, vol. 29, no. 2, pp. 510- 
517, Apr. 2014. 

[14] N. P. Theodorakatos, M. Lytras, and R. Babu, “Towards smart energy 
grids: a box-constrained nonlinear underdetermined model for power 
system observability using recursive quadratic programming,” Ener‐ 
gies, vol. 13, no. 7, pp. 1-17, Apr. 2020. 

 
Case 

 
z MAE = 

1 ∑| xk − E (xk|zk )| [15] M. A. R. S. Cruz, H. R. O. Rocha, M. H. M. Paiva et al., “PMU 
placement with multi-objective optimization considering resilient com‐ 

F 
k = 1  

i i 

 

1 {V1} 0.00100 

2 {| I12 |} 0.00014 

3 {| I3 |} 0.00021 

4 {| I12 | | I21 |} 0.00094 

5 {| I12 | | I3 |} 0.00005 

 

 

 

B. Python Resources for DeNSE Implementation 

All the Python codes required for implementing the 

DeNSE method developed in this paper can be accessed 

through the following GitHub repository: https://github. com/ 

Anamitra-Pal-Lab/DeNSE. The Read Me file provided in 

this repository contains all the information that is needed to 

run the files and obtain the results. 
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