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Abstract—As the phasor measurement unit (PMU) placement
problem involves a cost-benefit trade-off, more PMUs get
placed on higher-voltage buses. However, this leads to the fact
that many lower-voltage levels of the bulk power system cannot
be observed by PMUs. This lack of visibility then makes time-
synchronized state estimation of the full system a challenging
problem. In this paper, a deep neural network-based state esti-
mator (DeNSE) is proposed to solve this problem. The DeNSE
employs a Bayesian framework to indirectly combine the infer-
ences drawn from slow-timescale but widespread supervisory
control and data acquisition (SCADA) data with fast-timescale
but selected PMU data, to attain sub-second situational aware-
ness of the full system. The practical utility of the DeNSE is
demonstrated by considering topology change, non-Gaussian
measurement noise, and detection and correction of bad data.
The results obtained using the IEEE 118-bus system demon-
strate the superiority of the DeNSE over a purely SCADA state
estimator and a PMU-only linear state estimator from a techno-
economic viability perspective. Lastly, the scalability of the
DeNSE is proven by estimating the states of a large and realis-
tic 2000-bus synthetic Texas system.

Index Terms—Deep neural network (DNN), phasor measure-
ment unit (PMU), state estimation, unobservability.

1. INTRODUCTION

OWER utilities attain situational awareness of their
transmission system through the process of state estima-
tion. Particularly, state estimation provides the inputs for per-
forming real-time contingency analysis, optimal power flow,
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and even network expansion planning [1]. Traditionally, state
estimation is achieved using the supervisory control and data
acquisition (SCADA) system. With the introduction of pha-
sor measurement units (PMUs), SCADA-PMU hybrid state
estimators as well as PMU-only linear state estimators have
been proposed. Recently, it has become necessary to perform
state estimation at higher speeds (<0.1 s) to understand the
impacts of rapid fluctuations in outputs of converter-inter-
faced resources on the security of bulk power system (BPS)
[2]. However, purely SCADA state estimators and SCADA-
PMU hybrid state estimators are not able to provide sub-sec-
ond situational awareness, while PMU-only linear state esti-
mators require PMUs to be optimally placed throughout the
system. This paper proposes a novel Bayesian framework for
transmission system state estimation (TSSE) that indirectly
combines the inferences drawn from slow-timescale but
widespread SCADA data with fast-timescale but selected
PMU data, to attain high-speed (sub-second) situational
awareness of the full BPS (69 kV and above).

Due to the asynchronous nature of their inputs, purely
SCADA state estimators suffer from problems such as non-
linearity, divergence, and low accuracy [3]. These problems
will exacerbate with increase of the penetration level of re-
newable generation. Hybrid state estimators directly combine
data from the SCADA system and PMUs [4] - [6]. Hence,
they suffer from problems such as imperfect synchronization
and time-skew errors [7]. Moreover, strategies proposed to
overcome some of these problems (such as those developed
in [8]-[10]) are computationally intensive, which makes the
hybrid state estimators operate at slower timescales [11].
PMU-only linear state estimators provide time-synchronized
outputs and are extremely fast, but they require the system
to be fully observed by PMUs [12]. The unobservability is-
sue associated with PMU-only linear state estimation (LSE)
is typically relegated to solving an optimal PMU placement
(OPP) problem [13]-[18]. However, many OPP formulations
minimize the number of PMUs, which does not result in
minimization of PMU placement cost [19]. This happens be-
cause the PMU placement cost mainly includes communica-
tion, security, and labor [20], which increases with the num-
ber of substations that are upgraded for PMU placement,
and not necessarily with the number of devices. Now, as the
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highest-voltage buses/substations are the backbone of the
BPS, and these buses are fewer in number, they become the
natural choice for placing the PMUs. Conversely, placing
PMUs at lower voltage levels does not yield as many bene-
fits. This cost-benefit trade-off and law of diminishing re-
turns prevent the lower voltage levels from being fully ob-
served by PMUs.

We have investigated the reality of the PMU unobservabili-
ty problem by collecting data from two U. S. power utilities.
Table I shows the PMU coverage of a U.S. power utility in the
Eastern Interconnection (EI). This power utility has more than
1400 buses, but only 129 of them are equipped with PMUs.
Moreover, as the voltage levels decrease, there is a sharp drop
in the number of buses with PMUs to the total number of bus-
es at that voltage level. This confirms that PMUs are mostly
placed on higher-voltage buses. Lastly, from the last column
of Table I, it can be realized that none of the voltage levels are
fully observed by PMUs, implying that PMU-only LSE cannot
be performed at any voltage level of this power utility.

TABLE |
PMU COVERAGE OF A U.S. POWER UTILITY IN EI

Voltage level Number of Number of PMU- Percentage of
(kV) buses equipped buses observed buses (%)
500 52 28 79
230 15 5 53
161 1185 92 27
115 42 2 10
69 144 2 3

Table II shows the PMU coverage of a U.S. power utility
of the Western Electricity Coordinating Council (WECC). A
key difference compared with Table I is that the third col-
umn denotes the number of PMU devices, instead of the
number of PMU-equipped buses. Furthermore, it can be real-
ized from Table II that despite having a large number of
PMUs at different voltage levels, none of these levels are
completely observed by PMUs. This happens because PMUs
serve other functions than state estimation [13], and the cost
of adding more devices at one substation is incremental
[21], [22]. Therefore, power utilities add more PMUs to the
same location even if they do not aid state estimation. Thus,
high-speed time-synchronized state estimation for a transmis-
sion system that is only locally observed by PMUs is a chal-
lenging practical problem. In the rest of this paper, the terms
“locally observable” and “(PMU)- unobservable” will be
used interchangeably.

TABLE I
PMU COVERAGE OF A U.S. POWER UTILITY IN WECC

Voltage level Number of Number of PMU Percentage of
(kV) buses devices observed buses (%)
500 18 53 90
230 47 89 80
115 30 23 30
69 258 207 50
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To counteract the impact of unobservability on state esti-
mation, pseudo-measurements obtained by interpolated obser-
vations or forecasts obtained using historical data can be
used. However, as demonstrated in [23], such methods do not
ensure quality of the estimates. Recently, machine learning
(ML) has been used to address the observability issues w. . t.
high-speed state estimation [24]-[26]. Reference [24] propos-
es a Bayesian state estimator using deep neural networks
(DNNs) that is tailored for distribution systems. An ML-
based state estimator for incompletely observed transmission
systems is created in [25]. A state estimator with two DNNs
(one for observable part and the other for unobservable part
of the system) is proposed in [26]. However, [25], [26] do
not consider the practicality of PMU placement when creat-
ing the ML-based state estimators.

Motivated by the knowledge gaps outlined above, we pro-
pose a deep neural network-based state estimator (DeNSE)
that estimates all the transmission system voltages in a time-
synchronized manner from PMUs that are only placed at the
highest-voltage buses. By performing TSSE using very few
PMUs, the DeNSE also circumvents the need for a massive
supporting communication infrastructure [27]. Apart from
the unobservability issue, this paper addresses four other
practical challenges that exist w.r.t. high-speed time-synchro-
nized TSSE as summarized below.

The first is the scalability of the state estimator. Classical
LSE formulation involves a matrix inversion step, whose

computational complexity is 0(n2-3727) [28]. As such, the
time consumption of this implementation increases quadrati-
cally w. r. t. the number of states. Conversely, during online
implementation, the forward propagation of a neural network
(NN) only involves multiplication and addition operations,
whose complexity o (n In ”5) is much lower [29]. The second
is the presence of non-Gaussian noise in PMU measure-
ments [30]-[33]. The LSE formulation is the solution to the
maximum likelihood estimation (MLE) problem under
Gaussian noise environments. This means that its perfor-
mance can deteriorate in the presence of non-Gaussian noise.
However, an NN-based state estimator such as the DeNSE
does not have such a limitation. The third is the high-speed
bad data detection and correction (BDDC) [34]. Dearth of
measurements makes this challenge particularly acute for the
problem to be solved here. To address this challenge, a ro-
bust BDDC algorithm based on a combination of the Wald
test [35] and an extreme scenario filter is developed. The
fourth is topology change. This is a major concern for NN-
based state estimators because it results in the training and
testing environments (of the NNs) to differ, which can then
deteriorate their performance. This challenge is tackled by
combining DeNSE with topology processor outputs and
transfer learning [24], [36].

In summary, this paper advances the state-of-the-art for
time-synchronized state estimation in transmission systems
by making the following salient contributions.

1) A high-speed time-synchronized state estimator, i. e.,
DeNSE, is developed for the BPS that satisfies the need to
observe the full system by PMUs.

2) A robust BDDC algorithm is created that ensures the
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performance of DeNSE under diverse types of bad data and
loaﬂl &2 ll'ill%rflsbf the DeNSE to tackle topology changes
and non-Gaussian measurement noise_is demonstrated.

We also provide a logical explanation along with a numer-

ical example in Appendix A to illustrate how DeNSE can
perform state estimation for unobservable power systems.

II. PROPOSED FORMULATION OF DENSE

A. Bayesian Framework for TSSE

PMU-only LSE solves a variant of the MLE problem,
with the most common being the least squares formulation.
However, the least squares solution requires the system equa-
tions to have full rank, which translates to the constraint of
full system observability by PMUs. One way to circumvent
this constraint is to reformulate the TSSE problem within a
Bayesian framework, where the states x and the PMU mea-
surements z are treated as random variables. Then, the fol-
lowing minimum mean squared error (MMSE) estimator can
be formulated:

min E [ @g—xX . oy =E

i E (o (9 0) = () ~E ()
where X is the estimated value of the states; X ~ is the opti-
mal estimate; and E is the expectation operator. Equation (1)
directly minimizes the estimation error without the knowl-
edge of the physical model of the system. Note that in the
classical LSE formulation z = Hx + e, the modeling error is
minimized, which is embedded in the measurement matrix
H. By avoiding the explicit need for H, the observability re-
quirement is no longer necessary in the Bayesian framework.
Furthermore, by directly minimizing the estimation error, no
limitations (such as Gaussian or non-Gaussian) are imposed
on the characteristics of the measurement noise e.

However, there are two challenges in computing the ex-
pected conditional mean of (1). First, the conditional expecta-

+00
tion, defined by E (xlz ) = J'%)0 xp ( x|z )dx, requires the knowl-

edge of the joint probability distribution function (PDF) be-
tween x and z, denoted by p \ x@z ). When the number of
PMUs is scarce, p ( z) is unknown or impossible to speci-
fy, making the direct computation of X (z ) intractable. Sec-
ond, even if the under-lying joint PDF is known, it can be
difficult to find a closed-form solution for (1). The DNN
used in DeNSE overcomes these difficulties by providing an
approximation of the conditional expectation of the MMSE
estimator.

B. Architecture of DNN in DeNSE

The DNN has a feed-forward architecture with m inputs
and n outputs, where m is the number of measurements com-
ing from PMUs and # is the total number of states to be esti-
mated (i. e., z ER™ and x E R"). Due to incomplete observ-
ability of the system by PMUs, m 1. The DNN has & ht
den layers, in which the input vector entering the (i + 1)lh lay-
er is expressed in terms of the inputs from the i layer as:

¢~ I/Vz'+1idi+bi+]

(M

@
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where ¢;,, 15 the input vector entering the (i +1)lh layer;

W, is the weight between the i and the (i + l)m layer; d,

. th
is the gutput of the i layer; and b,,, is the bias value of the
(i + l) layer. Next, ¢ ;+; is passed through an activation func-

tion a,,, to yield d,_ |:

d[+|:“[+1(ci+|) 3)

This propagation continues through all the hidden layers

and the resulting value is obtained at the output layer. The

loss function compares the estimated output and correspond-
ing true output. The error between them is represented by:

&=( (0/ 'jj) “4)
where ¢ is the error; o; is the true value of the output; o is
the estimated value of the output by the DNN in the current
epoch; and { is an appropriate loss function that indicates
how well the DNN has been trained. To improve the training
accuracy, ¢ is minimized by optimally tuning the weights
and biases through a process called backpropagation. The

process is repeated until the loss becomes acceptable.

C. Creation of Training Database

A unique feature of the DeNSE that sets it apart from oth-
er ML-based state estimators (such as [37]) is that it does
not use the slow timescale measurements to directly train the
DNN. Instead, the discrete power injection measurements
from the SCADA system are first converted into continuous
functions by fitting an appropriate distribution to them.
Then, independent Monte Carlo (MC) sampling is employed
to randomly sample points from the distribution to feed as
inputs to a power flow solver. The power flow is solved a
large number of times, providing voltage and current phasor
values across all system buses under various operating condi-
tions. Then, for training, we use voltage and current phasors
(with added noise) of buses which are equipped with PMUs
as inputs to the DNN, while voltage phasors of all the buses
are set as outputs of the DNN. This process helps in captur-
ing the uncertainty introduced by the load variations and
makes the DNN aware of diverse loading conditions.

Training the DNN by using the above-mentioned process
of indirectly combining inferences from SCADA and PMU
data has two advantages: @ the problem of temporal differ-
ences and synchronization issues are completely circumvent-
ed, and (2) any reasonable errors in the SCADA data do not
impinge on the performance of the DeNSE. The DeNSE can
be impacted by noisy as well as bad PMU data since these
data are input to the trained DNN during online operation.
The effects of the quality of input data are investigated ana-
lytically in Section III-B, and experimentally in Sections IV-
B, IV-E, and IV-F.

III. ENHANCEMENTS TO PROPOSED DENSE FRAMEWORK
AND ONLINE IMPLEMENTATION

A. Transfer Learning to Handle Topology Changes

A DNN trained using the framework proposed in Section
IT will perform fast and accurate time-synchronized state esti-
mation for PMU-unobservable BPS during real-time opera-
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tion as long as the topology does not change. However, if
the topology used for training and testing changes, the joint
PDF between the measurements and the states will change;
this can deteriorate the performance of the DeNSE. A possi-
ble alternative is to train the DNN from scratch for the new
topology. However, it will take a very long time to do so. In-
stead, we use transfer learning to update the DNN of the
DeNSE when topology changes. Transfer learning refers to
utilizing models learned from an old problem and leveraging
them for a new problem, in order to maintain the learning
performance and accuracy. In the context of TSSE, transfer
learning is particularly useful because when a topology
changes, the mapping between measurements and states of
only a small portion of the system gets altered. This implies
that the re-learning will be localized.

We employ inductive transfer learning [38] to induce

knowledge transfer from the old (base) topology to the new
(current) topology. Four methods have been proposed for im-
plementing inductive transfer learning: feature-representation
transfer, instance transfer, relational-knowledge transfer, and
parameter transfer. We use parameter transfer to update the
parameters of the DNN when topology changes. Two well-
known parameter transfer methods are parameter-sharing and
fine-tuning. Parameter-sharing assumes that the parameters
are highly transferable due to which the parameters in the
source domain (old topology) can be directly copied to the
target domain (new topology), where they are kept “frozen”.
Fine-tuning assumes that the parameters in the source do-
main are useful, but they must be trained with limited target
domain data to better adapt to the target domain [39]. Since
there is no guarantee that the parameters of the DNN will be
highly transferable for different topologies, fine-tuning is
used in this paper for transfer learning.

To determine when transfer learning via fine-tuning
should be implemented, we make use of the topology proces-
sor of the BPS. After updating the DNN, the new topology
is designated as the base topology to make it consistent with
the DeNSE. The overall implementation of transfer learning
to handle topology changes is shown in Fig. 1.

Train DNN for base topology

Is current topology equal
0 base topology?

Implement
DeNSE

Fine-tune old DNN for
the new topology

!

Update base topology
[

Implementation of transfer learning to handle topology changes.

Fig. 1.

B. Robust BDDC

During online implementation, streaming PMU data will be
fed as inputs to the proposed DeNSE framework. However,
PMU data obtained from the field often suffer from bad data
in the form of data dropouts and outliers [40]. This is different
from measurement noise since bad data have very different
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amplitudes compared with normal noisy data. To prevent such
data from impacting the performance of the DeNSE, a robust
BDDC algorithm capable of operating at PMU timescales
(:: 33 ms) is devised as a precursor to this state estimator.
1) BDDC Using Wald Test

A technique to detect bad data before it enters an ML-
based state estimator is proposed in [23]. The technique re-
lies on the Wald test [35] to flag incoming measurements as
bad. To apply this test, two hypotheses must be defined first.
(D Hy: models the measurement without bad data and has a
distribution with mean yo and variance o ¢, both of which are
learned during training. @ H: models the measurement
with bad data, because of which its mean and variance are

v different from ,those of Hy. Mathematically, the Wald
test’can be expressed as:

|z—po | i
2=0
Ho

|, 2

®)

1 00 —M2
71 exp | ——|du is the tail of the distribu-
V2t Ty 2

Q, and o is a tunable parameter that specifies the

where 0 ( y) =
tion, y=

false positive limit. Essentially, the Wald test makes use of the
fact that DNN training is done using good quality data. Hence,
once the limits of good quality data become known during
training, any testing data that lie outside that limit can be
termed as bad. This bad data detection method based on Wald
test developed in [23] is found to be compatible with the high-
speed requirements of the DeNSE. However, [23] corrected
the identified bad data by simply replacing them with mean
value from the training database. The methodology for correct-
ing the bad data is different, as explained below.

Since the Wald test is applied independently and simulta-
neously to all the m input features of a given sample of the
testing dataset, it is unlikely that all the features will be bad
at the same time. For a given testing dataset sample z (&b,
the set of indices that correspond to features flagged as bad

b¥ the Wald test are called ibﬁ’s. Then, if iafs denotes the sct
ot indices corresponding to all the features of z'*' , the dif-

) . sample

indices correspond-
18 enoteg %}P ig/%.
Now, igfs can be used to find that operating condition (OC)

in the trainin%)datgbase Y'in that most closely resembles the
OC captured by z'' . Once that OC (called "the nearest OC

sample
(NOC)ﬁ is found, its entries corresponding to ibfs should re-
place the flagged features of z'' . The overall procedure is

sample

depicted in Algorithm 1 and is performed for every sample
of the testing dataset. The superiority of the proposed bad da-
ta correction method over the one where it is replaced with
mean values is demonstrated in Section IV-E.
2) Differentiating Between Bad Data and Extreme Scenarios

The Wald test is very sensitive to the choice of a. A very
small value of a may result in bad data being treated as
good data, while a large value may result in an extreme sce-
nario data being treated as bad data. This can happen be-
cause by definition, extreme scenarios are those OCs that are
unlikely to occur normally. In the worst case, data corre-
sponding to an extreme scenario will get flagged as bad data

ference of these two sets gives_the set.o
g to the goog tsgatures §% zf%s‘ , whic

sample
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and be replaced by normal data from the training database,
making the DeNSE produce an incorrect picture of the oper-
ating state of the system. We combine our knowledge of
how PMUs are placed in a power system with how extreme
OCs actually manifest to design an extreme scenario filter
that prevents this problem.

Algorithm 1: bad data correction using NOC in training dataset
TRput 2=, Y™
sampls

e test

utput: the corrected testing dataset sample |
?: &?eate array o ndices iafs Trom z‘fﬁplyp anésﬁﬁezqf:‘mple eret = 788l

2: Conduct Wald test on z* and flag the indices of bad data to create

. sample
3: €5} = {ias} — {infs}
4: k"= arg min I]‘m‘"[klzgﬁ] -z
k

ligs] O

sample

5 z:eaf:‘nple?crcl [lbfs] = Ymii“ [ k' Ebﬁ‘]

Furthermore, if PMUs are placed only at the highest volt-
age buses (which is the premise of this paper), they will be
automatically (electrically) close to each other even for
PMU-unobservable BPS. This is because the highest voltage
buses are connected to each other by the highest voltage
lines. Thus, when an extreme scenario manifests, measure-
ments of multiple PMUs will be simultaneously impacted.
Conversely, bad data occur randomly in both space and
time. This realization leads to the proposal of the following
logic for designing the extreme scenario filter: if one or
more features of the testing data sample are simultaneously
identified as bad by the Wald test for p different PMUs,
each of which is within p hops of each other, then the data
sample corresponds to an extreme OC and should not be
treated as bad data. This logic is implemented in the manner
shown in Algorithm 2.

Note that in Algorithm 2, p indicates the severity of the
extreme scenario. The higher the value of p, a greater num-
ber of hops to be considered. Lastly, the extreme scenario fil-
ter is combined with the BDDC algorithm in the following
way: whenever the filter gets activated, the results of the
Wald test are suppressed (i. e., no data correction occurs),
and the raw PMU measurements are fed as inputs to the
trained DNN of the DeNSE. The usefulness of extreme sce-
nario filter in the DeNSE is demonstrated in Section IV-F.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L e
'

Offline learning Online implementation
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Algorithm 2: implementation of extreme scenario filter

Input: features flagged as bad by Wald test, ibfs

Output: features passing extreme scenario filter, ibfSggp

1: ESF;,;=PMU locations corresponding to ibfs

2: p=length(ESF;;)

3: ibfSpsr=ibfs

4: ESF,=List of subsets of ESF,; with p elements

5: For (k = 1:length(ESF,)):

If (every element of ESF,[ k] is within p hops of each other):
Featygr=List of all features corresponding to ESFp[k]
{ibfs e J={ibfs e }—{Featysr}

End if

: End for
1p=p-1
8: If gbj&ESF—:ibﬁ) or (p<2):
9: nd

10: Else go to Step 3

C. Implementation of DeNSE

Figure 2 showDDs the B__ayesian framework for the proposed
DeNSE, where w and b represent the weights and bias pa-
rameters that the DNN learns during the training process, re-
spectively. It has an offline learning phase and an online im-
plementation phase. In the offline learning phase, appropri-
ate distributions are fitted to historical SCADA data using
Kernel density estimation (KDE). MC sampling is done
from the fitted distributions and set as inputs to a power
flow solver to generate training data for the DNN. The volt-
age and current phasors corresponding to actual PMU loca-
tions are used to train the DNN while all the voltage phasors
(states) are set as outputs of the DNN. The DNN approxi-
mates the conditional expectation shown in (1). While (1)
holds true for measurements in the polar or rectangular
form, the DeNSE is implemented in polar form, since @
PMUs report in that form, and @ DNN is capable of approx-
imating non-linear functions effectively (note that the rela-
tion between measurements and states in polar form is non-
linear). Once the optimized DNN parameters are found, the
DNN training is complete. In the online implementation
phase, streaming PMU data is passed through the Wald test
and a data preprocessing block (based on Section III-B), and
the resulting samples are sent to the trained DNN to produce
the state estimates.

Probability ; Trained DNN
distribution i = Exir ! ‘
1 " . o — ] .
y | learning from 1| Real-time PMU ald test XUICME Bad data i| Testing e f x(z) :
input data i1 measurements forbad [ scenario replacement [} o ° 0 & i el ST
data detection |: filter with NOC  [[53mPe i State
it 1 ; estimates |
‘ Data preprocessing
Fitting of e
appropriate "
diStributiOn iyl P iy
l o Neural network
Independent Training data generation Training parameters (w, b)!
; sampling . samples | o 4 ;
MC sampling Power flow | | Noise measurement e 0 ;
analysis addition o o :

Fig. 2. Bayesian framework for proposed DeNSE.
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IV. RESULTS AND DISCUSSION

A. State Estimation Results for IEEE 118-bus System

The effectiveness of the DeNSE is first illustrated using
the IEEE 118-bus system. Each bus of this system is
mapped to a bus in the 2000-bus synthetic Texas system
[41], [42] of similar mean power rating. This is done be-
cause the Texas system has one-year of SCADA data public-
ly available, and this mapping helps in obtaining realistic
variations in the active and reactive power for every bus of
the IEEE 118-bus system. Next, the power injection distribu-
tions are found using KDE. After picking samples indepen-
dently from the distributions, a power flow is solved to cre-
ate the training, validation, and testing data.

It is assumed that PMUs are only placed on the highest
voltage buses of this system, namely 8, 9, 10, 26, 30, 38,
63, 64, 65, 68, and 81. PMUs located at these 11 buses mea-
sure the voltage of the corresponding bus as well as the cur-
rents flowing in the lines emanating from that bus. The 41
PMU measurements (11 bus voltage phasors and 30 branch
current phasors) are the inputs to the DNN. The outputs of
the DNN are the 118 voltage magnitudes and angles of this
system.

The training and testing of the DNN is carried out using
Keras with TensorFlow as the backend library in Python
[43]. Training a DNN involves finding hyperparameter val-
ues that give desired performance. The basic hyperparame-
ters of a DNN are the number of hidden layers, the number
of neurons per layer, and the activation function. The activa-
tion function used in the hidden layers is rectified linear unit
(ReLU), while a linear function is used in the output layer.
To overcome the problem of internal covariate shift, batch
normalization is employed. Dropout regularization is used to
prevent DNN overfitting. The mean squared error (MSE)
loss function is used to calculate the error between the pre-
dicted and the true states. During back-propagation, the Ad-
am optimizer is used to update the weights of the DNN. Ta-
ble III summarizes the optimal values of the hyperparame-
ters and dataset size of the DeNSE for the IEEE 118-bus sys-
tem. Hyperparameter tuning is done using the ML platform
WANDB [44]. All simulations are performed on a computer
with 256 GB RAM, 3.40 GHz Intel Xeon 6246R CPU, Nvid-
ia Quadro RTX 5000 GPU (16 GB). All codes for this paper
can be accessed using the GitHub link provided in Appen-
dix B.

Figure 3 shows the performance evaluation of DeNSE for
the IEEE 118-bus system as a function of the distance from
the buses where the PMUs are placed. The error metrics
used are mean absolute percentage error (MAPE) of voltage
magnitudes and mean absolute error (MAE) of voltage an-
gles. The distance is expressed in terms of hops from the
bus where the PMU is placed; i. e, a hop of zero corre-
sponds to the 11 highest voltage buses of this system. It is
clear from Fig. 3 that in comparison to conventional meth-
ods (such as LSE) that are limited to hops of zero and one
(i. e., the observable regions of the system), the DeNSE is
able to give reasonable state estimates even for buses that
are six or seven hops away.
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TABLE III
HYPERPARAMETERS AND DATASET SIZE OF DENSE FOR IEEE 118-BUS
SYSTEM
Type Name Value
Number of hidden layers 4
Number of neurons per 500
hidden layer
Activation functions R?LU (hidden layers),
linear (output layer)
Loss function MSE
Hyperparameter Optimizer Adam
Batch size 128
Learning rate 0.0207
Number of epochs 2,000
Early stopping Patience =10
Dropout 30%
Training 7500
. Validation 2500
Dataset size .
Testing 4000
Total 14000
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Fig. 3. Performance evaluation of DeNSE for IEEE 118-bus system as a
function of distance from buses where PMUs are placed. (a) MAPE of volt-
age magnitude. (b) MAE of voltage angle.

B. Impact of Measurement Noise

The subplots shown in Fig. 3 are obtained under Gaussian
noise environment with 1% total vector error (TVE) [45].
Now, it is important to analyze the impact that different
types of noises have on the performance of a data-driven
state estimator such as the DeNSE. It has recently been
shown that PMU noises can have non-Gaussian characteris-
tics [30], [31]. Keeping this in mind, three types of noise
characteristics are considered in this paper, i. e., Gaussian
noise, Gaussian mixture model (GMM) noise [32], and La-
placian noise [33]. The Gaussian noise has zero mean, and
standard deviation of 0.0033% in magnitude and 0.0029 rad
in angle. The GMM noise has two components, with mean,
standard deviation, and weight vectors as [0, 0.005%],
[0.0015%, 0.0015%], and [0.3, 0.7] in magnitude, and [0,
0.0043]rad, [0.0014, 0.0014]rad, and [0.3, 0.7] in angle, re-



1816

spectively. The Laplacian noise has a location and scale of
0.001% and 0.0015% in magnitude, and 0.0009 rad and
0.0013 rad in angle, respectively. The above-mentioned
noise parameters correspond to a TVE of 1%. The results ob-
tained using the DeNSE in presence of one of these three
noise types are shown in Table IV. From the table, it is ob-
served that the DeNSE is robust enough to handle non-
Gaussian measurement noise in an effective manner as there
is only a very minor deterioration in performance as the
noise models change.
TABLE IV

PERFORMANCE OF DENSE UNDER DIFFERENT NOISE TYPES FOR IEEE
118-BUS SYSTEM

Noise type MAPE of voltage magnitude (%) MAE of voltage angle (rad)
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However, these locations are not optimally selected, result-
ing in five buses being unobservable in [26] for the IEEE
118-bus system. From Table VI, the following inferences are
drawn. (1) The proposed DeNSE has a higher root mean
squared error (RMSE). This is due to the fact that the num-
ber of locations where PMUs are placed is almost one-third
in our case. @ The proposed DeNSE is more robust to
noise. This is because with increase in noise amplitude (stan-
dard deviation of the noise), there is a two order of magni-
tude increase in the RMSE values of [26], whereas there is
only a 15% increase in the RMSE values of the proposed
DeNSE as the noise amplitude increases.

TABLE VI
COMPARISON OF DENSE WITH NN-BASED STATE ESTIMATOR [26] FOR
IEEE 118-BUS SYSTEM

Gaussian 0.1676 0.0042
GMM 0.1667 0.0047 Noise amp!itude (sta_n— RMSE of [26] with* RMSE of DeNSE with
dard deviation of noise) PMUs at 32 buses PMUs at 11 buses
Laplacian 0.1678 0.0049
0.000 228210° 6292107
cc ) 1 Other State Estimat 0.001 1.86E10° 6.602107
. Comparison wi er State Estimators
P 0.010 2.00=Z10"* 6.702107
The performance of the DeNSE is now compared with 0.030 5.00= 10 694 107
two other state estimators, namely a purely SCADA state es- 0.050 9.00= 10 7205107

timator and a PMU-only linear state estimator. For fairness
of comparison, 1% TVE Gaussian noise is added to all the
PMU measurements. The SCADA measurements comprise
all sending-end active power flows and voltage magnitudes
[46], corrupted by 10% additive Gaussian noise. The linear
state estimator receives PMU data from 32 buses identified
from OPP studies [13]. Table V presents the average MAPE
of voltage magnitudes and average MAE of voltage angles
for all three state estimators. It is clear from the table that
the purely SCADA-based state estimator has inferior perfor-
mance compared with the DeNSE in terms of both magni-
tude and angle estimation. Although the PMU-only linear
state estimator gives similar performance as the DeNSE, it
requires almost three times the number of PMUs; moreover,
these PMUs had to be placed at optimal locations in the sys-
tem. Thus, considering the practical implementation challeng-
es associated with time-synchronized TSSE, the DeNSE re-
sults are optimal from a techno-economic viability perspec-
tive.
TABLE V

COMPARISON OF DENSE WITH OTHER OPTIMIZATION-BASED STATE
ESTIMATORS FOR IEEE 118-BUS SYSTEM

Type Number Qf Average Average

PMU locations MAPE (%) MAE (rad)
Purely SCADA state estimator 0.9816 0.0079
PMU-only linear state estimator 32" 0.2709 0.0026
DeNSE 11 0.1676 0.0042

Note: * means that PMUs are optimally placed to ensure complete system
observability.

We have also compared the performance of DeNSE with
the NN-based state estimator developed in [26]. The results
are shown in Table VI. Note that in [26], PMUs are placed
at 32 locations (compared with 11 locations in our case).

Note: * means that PMUs are not optimally placed (five buses left unob-
served).

D. Impact of Topology Changes

Next, we investigate the ability of transfer learning in up-
dating the DNN of DeNSE after a topology change takes
place. A set of likely topologies is identified for the IEEE
118-bus system by removing one line at a time between any
two buses of the system such that an island is not formed.
177 such topologies have been identified. The training data
for these likely topologies are saved in the database. When a
topology change is detected by the topology processor in re-
al-time, transfer learning via fine-tuning is activated as de-
scribed in Fig. 1. The results obtained are as follows.

Let the base topology be denoted by T;. By opening differ-
ent lines, three new topologies are created from T,. T, is cre-
ated by opening the line between buses 75 and 77, neither
of which has a PMU. T; is obtained when the line between
buses 38 and 37 is removed; note that bus 38 has a PMU on
it. T4 is realized by opening the line between buses 26 and
30, both of which have a PMU on them. The changes in to-
pology and their influences on TSSE with and without trans-
fer learning are studied, as shown in Figs. 4 and 5.

When transfer learning is used to update the DNN, fine-
tuning only takes 30 s of re-training time to give similar re-
sults for the new topologies, as obtained for the base topolo-
gy (the heights of the green and blue bars are similar). Note
that if we had trained the DNN from scratch for every new
topology, it would have taken three hours for every topology
change, making the DeNSE inconsistent with the current
state of the system for a much longer time period. The rea-
son why fine-tuning is so fast is that it only needs 2000 sam-
ples and 90 epochs compared with 10000 samples and 2000
epochs that are needed to train the DNN from scratch (see
Table III). Conversely, if the DNN trained for T; is used
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throughout, the performance of DeNSE degrades significant-
ly (shown by the heights of blue and orange bars in Figs. 4
and 5).

0.25¢

0.20

<
—_
()

MAPE (%)
o
=)

0.05

Topology
= Fine tuning for 30 s; ® Without re-training; = Base topology

Fig. 4. Efficacy of transfer learning in terms of average MAPE of voltage
magnitudes.
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= Fine tuning for 30 s; = Without re-training; = Base topology

Fig. 5. Efficacy of transfer learning in terms of average MAE of voltage
angles.

It can also be observed from Figs. 4 and 5 that the deterio-
ration in estimation is more prominent for T; and T4. This

happened because the line that is opened for creating these
two topologies has PMUs placed on one and both ends of
the line, respectively. Due to this, when the line is opened,
the outputs of these PMUs would become very different
from what they were during the training of the DNN. This
culminates in the considerable difference in the training and
testing environments after the topology change occurs, caus-
ing increased deterioration in the performance of the trained
DNN.

E. Mitigation of Impact of Bad Data

To investigate the performance of the proposed NOC-
based BDDC algorithm, we simulate two different scenarios.
In the first scenario, we increase the amount of testing sam-
ples that are bad, while fixing the severity of the bad data.
To do this, the probability of bad data is randomly varied
from 7 =0% to  =50% in steps of 10%, while the severity
is kept at o = 309, where the standard deviation of good quali-
ty data oo is computed from the training dataset. The value
of a is set to be 0.05 to ensure that the false alarm (false
positive) probability does not exceed 5%. The results are
shown in Fig. 6 when the proposed algorithm is compared
with a case where the bad data are not replaced and a case
where the bad data are replaced with the mean value from
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the training dataset (as done in [23]), i. e., no-replacement
and replaced-by-mean cases. It is clear from Fig. 6 that in
the absence of BDDC, the results become progressively
worse as the amount of bad data increases (red line). More-
over, it can be observed that the bad data correction based
on the NOC consistently outperforms the one that based on
the mean value for both magnitude and angle estimation (the
green line always lays below the blue line).
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Fig. 6. Bad data replacement with increasing amount of bad data. (a) Aver-
age MAPE of voltage magnitude. (b) Average MAE of voltage angle.

In the second scenario, we increase the severity of the bad
data while fixing the amount of testing samples that are bad.
To do this, the severity is increased from o=30¢ to o= 70,
while setting #=30%. The results are shown in Fig. 7 when
the proposed algorithm is compared with the no-replacement
and replaced-by-mean cases). It is clear from Fig. 6 that the
proposed algorithm for correcting bad data (green line) per-
forms much better than the no-replacement case (red line),
and slightly better than the replaced-by-mean case (blue
line). Lastly, note that these studies are conducted on the
trained DNN created in Section IV-A, i.e., only the inputs to
the DNN in the testing phase are changed while its architec-
ture is left unaltered.

Considering the high speed at which DeNSE is expected
to operate during its online implementation (30 samples per
second), it must be ensured that the Wald test and data pre-
processing are performed within that time frame. The most
time-consuming portion in this regard is the proposed bad
data correction module, which must compare the current test-
ing sample with all the samples in the training database to
find the optimal replacement(s). It is observed that with
10000 training samples and 41 phasor measurements as in-
puts, the bad data replacement for the IEEE 118-bus system
could be carried out in (7.74 + 0.35)ms. As this is much less
than the speed at which a PMU produces an output (=33
ms), the proposed algorithm meets the high speed and high
accuracy expectations of purely PMU-based state estimation.
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Fig. 7. Bad data replacement with increasing severity of bad data. (a) Aver-
age MAPE of voltage magnitude. (b) Average MAE of voltage angle.

F. Tackling of Extreme Scenarios

In Section IV-E, the superiority of the BDDC based on
the Wald test and NOC is demonstrated. In this sub-section,
the need and impact of the extreme scenario filter are dis-
cussed. 1000 extreme scenarios are created for the IEEE 118-
bus system by significantly increasing the loading of buses 8
and 10. Due to the physics of the power system, PMUs lo-
cated at buses 8 and 10 as well as the ones located in the vi-
cinity of the two buses are impacted in these scenarios. Con-
sequently, one or more measurements coming from the im-
pacted PMUs (i.e., input features of the DeNSE) are flagged
as bad data by the Wald test. At the same time, bad data are
also added to the PMUs placed at buses 68 and 81, which
are far away from the stressed region of the system. The ex-
treme scenario filter identifies the set of features for which
the BDDC should be suppressed, using the logic described
in Section III-B. Three different outcomes are analyzed, as
shown in Table VII. Note that to obtain the results shown in
this table, Gaussian noise is added to all the measurements.

TABLE VII
DENSE PERFORMANCE WHEN BAD DATA AND EXTREME SCENARIO

MANIFEST SIMULTANEOUSLY IN IEEE 118-BUS SYSTEM
Average MAPE of Average MAE of
voltage magnitudes (%) voltage angles (rad)
Method
Standard Standard
Mean o Mean .
deviation deviation
DeNSE without BDDC 0.3337 0.0254 0.0267  0.0023
DeNSE with BDDCbut with- - 1053 9035 00059 0.0002
out extreme scenario filter
DeNSEwith BDDCandex- 1915 00037 00053 0.0002

treme scenario filter

The first row of Table VII depicts the outcome obtained
when bad data are not corrected. Comparing this row with
the first row of Table IV, it can be seen that the results are
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significantly worse. This considerable deterioration of the re-
sults is due to the presence of bad data in the measurements
coming from PMUs placed at buses 68 and 81. A large
amount of variability is also observed across the 1000 sce-
narios as captured by the high standard deviation values.
The second row of Table VII depicts the outcome that ob-
tained when BDDC takes place but without the extreme sce-
nario filter. The relatively high errors in this case are due to
the presence of extreme scenarios around buses 8 and 10,
whose corresponding PMU measurements are unnecessarily
replaced. The best outcome is obtained when the proposed
BDDC is applied to the PMU measurements coming from
buses 68 and 81, but is suppressed by the extreme scenario
filter for the PMU measurements coming from the region
around buses 8 and 10, as depicted in the third row of Table
VII. Thus, this analysis demonstrates the robust performance
of the proposed DeNSE under diverse OCs.

G. Impact of Different Database Sizes

In the proposed DeNSE, it is necessary to solve a variety
of power flows under different operating conditions to create
a comprehensive database for DNN training. The determina-
tion of the requisite number of samples is contingent upon
the accuracy of the DNN relative to the number of samples
utilized. In general, augmenting the training samples can fur-
ther diminish DNN error until a point of performance satura-
tion is reached. This is realized for the IEEE 118-bus system
by progressively training the DNN with an increasing num-
ber of samples. It is observed that beyond the threshold of
10000 samples, no discernible improvement occurs, as
shown in Fig. 8. Hence, we conclude that 10000 samples
(i.e., sum of number of training and validation samples in Ta-
ble III) are sufficient for robust performance of the DeNSE
for this system.

0.0060
0.0056
0.0052
0.0048
0.0044

0.0040
2000

---MAE of voltage angle 7040
-=- MAPE of voltage magnitude
10.30
10.25
£0.20
10.15

o
99
A

MAPE of voltage magnitude (%)

. . . 0.1
5000 7500 10000 12000

Number of samples

MAE of voltage angle (rad)

Fig. 8. Impact of database sizes on DNN performance.

H. State Estimation Results for 2000-bus Synthetic Texas
System

To demonstrate the applicability of the DeNSE to large
transmission systems, we use the publicly available 2000-
bus synthetic Texas system [41], [42]. The number of high-
est-voltage buses in this system is 120, and it is assumed
that PMUs are already placed on these buses such that the
voltage phasors of these buses as well as the current phasors
of the lines coming out of these buses are measured by
PMUs. By employing the time-series data available online
for this system, the training and testing data are generated
and a DNN is trained using the DeNSE framework ex-
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plained in Section III-C.

The error estimates obtained with PMUs placed at 120
buses and under different noise types are shown in Table
VIII and Fig. 9, respectively. The outcomes presented in Ta-
ble VIII correspond to a TVE of 1%, which is equivalent to
a signal-to-noise ratio lying between 52 dB to 49 dB for
Gaussian noise, 85 dB to 47 dB for GMM noise, and 90 dB
to 85 dB for Laplacian noise, respectively. Note that LSE
for this system requires the placement of PMUs at 512 opti-
mally selected buses. It can be observed from the table that
with PMUs placed at less than one-quarter of the buses
(120/512=0.234), the DeNSE has similar performance as
LSE even in presence of non-Gaussian noise in PMU mea-
surements. From Fig. 9, it can be realized that the deteriora-
tion in the estimation performance is small even for buses
that are 8 to 10 hops away. The hyperparameters and dataset
size of the DeNSE for this system are summarized in Table
I.  Note that the trained DNN takes only 2.6 ms on average
to produce the state estimates. This validates the ability of
the DeNSE to estimate the states of large systems at high
speeds.

TABLE VIII
PERFORMANCE OF DENSE AND LSE UNDER DIFFERENT NOISE TYPES FOR
2000-BUS SYNTHETIC TEXAS SYSTEM

. Average MAPE  Average MAE of  Number of
Method (noise . .
o) of voltage magni-  voltage angles buses with
P tudes (%) (tad) PMUs
LSE (Gaussian) 0.2809 0.0026 512°
DeNSE (Gaussian) 0.2800 0.0024 120
DeNSE (GMM) 0.2714 0.0024 120
DeNSE (Laplacian) 0.2890 0.0027 120

Note: * means that PMUs are optimally placed to ensure complete system
observability.
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Fig. 9. Performance evaluation of DeNSE for 2000-bus synthetic Texas
system as a function of distance from buses where PMUs are placed. (a)
Average MAPE of voltage magnitudes. (b) Average MAE of voltage angles.

Remark 1: note that for the test systems analyzed in this
paper, the DeNSE performs state estimation using (1) in real-
time based on a limited set of PMU measurements and with-
out requiring knowledge of the system model and parame-
ters. However, in the offline training phase, essential infor-
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mation is derived from power flow computations, which re-
quires knowledge of the system model and parameters. In
other words, the proposed DeNSE remains model-agnostic
during online operation but depends on system model and
parameters during offline training. One way to avoid this de-
pendency for an actual power system implementation is by
directly utilizing historical SCADA state estimator results for
creating the requisite training database of the DNN.

TABLE IX
HYPERPARAMETERS AND DATASET S1zE or DENSE FOR 2000-BUS
SYNTHETIC TEXAS SYSTEM

Type Name Value
Number of hidden layers 4
Number of neurons per hidden layer 500
Activation functions ﬁ?ﬁgr(?;i?;; 111 );/iis))’
Loss function MSE
Hyperpa- Optimizer ADAM
rameter
Batch size 256
Learning rate 0.001
Number of epochs 3000
Early stopping Patience=10
Dropout 30%
Training 7500
Dataset Validation 2500
size Testing 4000
Total 14000

Remark 2: when making additions to any existing system,
a variety of factors must be considered. Therefore, it is not
surprising that the final locations where PMUs would be
placed are often decided based on negotiations with the grid
operators, rather than through a purely mathematical optimi-
zation procedure (such as solving an OPP problem) [47],
[48]. However, this decision (of where to place the PMUs)
does not affect the DeNSE because the locations of the
PMUs are input to the DeNSE, and not determined by the
DeNSE. This means that the DeNSE is not limited to PMUs
being placed only at the highest voltage buses of the system.
In other words, even for a power system that has PMUs
placed at low-voltage buses, the DeNSE will simply take all
available PMU measurements into consideration during train-
ing to give the state estimates of all the buses of that system
during testing.

V. CONCLUSION

In this paper, a Bayesian framework for high-speed time-
synchronized TSSE is proposed, which does not require com-
plete observability of the system by PMUs for its successful
execution. The proposed state estimator, i. e., the DeNSE,
overcame unobservability by indirectly combining inferences
drawn from slow-timescale SCADA data with fast-timescale
PMU measurements. The robustness of the DeNSE is demon-
strated by its ability to successfully tackle practical challeng-
es such as topology changes, non-Gaussian measurement
noise, and different types of bad data under diverse operat-
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ing conditions.

The IEEE 118-bus system and the 2000-bus synthetic Tex-
as system are used as the test systems for the analysis con-
ducted here. In comparison to conventional methods, the pro-
posed DeNSE is able to bring the estimation errors of all the
buses to reasonable levels, which requires less than half the
number of PMUs required for full observability for the IEEE
118-bus system and less than one-quarter for the 2000-bus
Synthetic Texas system. The future scope of this study will
involve developing strategies to further improve accuracy of
the DeNSE by determining locations for adding new PMUs,
extending the proposed framework to handle events such as
faults and load/generation losses, and providing provable per-
formance guarantees [49].

APPENDIX A

A. Logical Explanation of DeNSE Functioning

The DeNSE is an MMSE estimator, in which the DNN ap-

proximates the conditional expectatign (x\z | For the i
state x, the conditional expectation E (x |z )" carl be written in

terms of the probability distributions as shown be)ow:
E )C‘z): wx plxz)dx = +00xp(xi|'z dx (A1)

J.fooi p(z) !

where p(x[|z) and p(xiz) are the conditional probability
and the joint probability between x; and z, respectively; and

p(z) is the probability distributipn, of z. Now, it can be in-
ferréd from (1) and (A1) that X ,();) can be obtained for any

i i i i
-00

value of m (where z E R"), as long as p (x,-|z) is known.
Moreover, increasing m can improve the estimation quality
only if the new measurements are not correlated with the ex-
isting measurements, or are constant.

To better understand these inferences in the context of
TSSE, consider the 3-bus system shown in Fig. Al. The ref-
erence bus (bus 1) has an angle of 0°, but its magnitude is
an unknown variable. Bus 2 has both load and generation,
while bus 3 has only load. The system has three sensors (de-
picted by blue boxes) that are measuring the magnitude of
the current flowing in lines 1-2 and 2-1, and the magnitude
of the current injection at bus 3.

Fig. Al. 3-bus system.

Let the goal be to estimate the voltage magnitude of bus
3,ie,x;= |V3 | The system is unobservable because |V3 | can-
not be estimated from the given measurements in the conven-
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tional least squares sense. Note that this example simply il-
lustrates how the Bayesian framework of DeNSE can be
used to estimate states that cannot be estimated using con-
ventional methods due to limited observability. In an actual
system, the DeNSE will estimate all bus voltage magnitudes
and angles without differentiating among unobserved buses,
directly observed buses, and indirectly observed buses as it
only relies on the joint PDF p| x; Bz| between the PMU mea-
surements and the states.

To generate p (x,-z) and p(z) for this system, F'=10000
power flows are solved. The simulation parameters used for
solving the power flows of the 3-bus system are provided in
Table Al

TABLE Al
SIMULATION PARAMETERS USED FOR SOLVING POWER FLOwWS OF 3-BUS
SYSTEM
Parameter Value (p.u.) Parameter Value (p.u.)
Series Imp_1-2 0.05+0.1 Ps 2+N (020.04)
Series Imp_2-3 0+j0.05 P 0.5+N (020.04)
Series Imp_3-1 0.02 +j0.05 o 0.1+ (020.04)
Shunt Imp_1 100 P 2+N (020.04)
Shunt Imp_2 Inf 0, 0.5+N (020.04)
Shunt Imp_3 40 ] 1+ (020.0001)

Due to the reasons mentioned in Section II-A, it is usually

not possible to analytically compute E x,-\z) for all x; and gz,
which is why its approximation by a DNN is needed in the
first place. However, for this 3-bus system, it is observed
that the probability distributions of the relevant random vari-
ables |V3 |, | 12 |, | b |, and | L | could be well-approximated by
multivariate normal distributions. In such a scenario, the con-
ditional probability of x; given z = [ z1 Bzy m] is wnas
[50]:

p(xl-\z= [zllzmmnl) = )
/ 1 .
1/ exp‘é——(y - ) E’l(y —-u )Lﬂ
y/ m+1 Yo Iy 2 )4 Yo W P Yo
(o) 5 & o )

/ . e 1 T
v (Zn) |qu eXp g 2 \ Vi, 2y, \ya—p, Q

where y, and y, are obtained from power flow solutions,
with y, comprising all variables in x; and z, and y, compris-
ing variables in z only; 4 and X' are the mean and covari-
ance, respectively, and | 2| is determinant of the covariance.

Now, using (A1) and (A2), we compare E (x,~|z) with the ac-
tual value of x; for five MMSE estimator cases: @ Case 1:

z={A'.V1}; @ Case 2:z={| I I}, @ Case 3: z={| L |}, @
Case 4: z= {l I || b |}, @ Case 5: z= {l[]z || L |} Note that
|V3 |, | I |, | by |, andl L | are dependent variables as they corre-

spond to converged power flow solutions, while A'.V; is a
constant. The estimation results are shown in Table All In
Case 1, z is a constant, and so H x|z) = E(x,-) which is the

mean value of |V3 | across all F' power flows. As this case is
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not able to track the variations in OCs across different pow-
er flows, its estimate is the worst. Cases 2 and 3 give simi-

lar results as they separately track the variations in |112| and

|I3| to estimate |V3 | Despite having two measurements, the
results of Case 4 are worse than those in Cases 2 and 3 be-
causel 112| andl I | are highly correlated. The expected val-
ues of Case 5 are closest to the ground-truth values as this
estimator is able to use both |112| and |I3| to estimate |V3 |

This analysis confirms that the knowledge of p gx|z) and a
non-large value of m are the basis for the DeNSE to over-
come unobservability. It is also worth mentioning that the es-
timation quality of the DeNSE improves if F is increased,
because with more training samples, the DNN will be able
to better approximate the probability distributions, and in
turn, E x|z 5)

TABLE All
STATE ESTIMATION RESULTS OF CASE STUDIES DONE ON 3-BUS SYSTEM

Case z MAE = s 21 ka_ E (x"l\z"”
k=1
! {nn} 0.00100
2 {| 7]} 0.00014
3 {In1} 0.00021
4 {| 1 chn [} 0.00094
5 {| 1o [ [} 0.00005

B. Python Resources for DeNSE Implementation

All the Python codes required for implementing the
DeNSE method developed in this paper can be accessed
through the following GitHub repository: https://github. com/
Anamitra-Pal-Lab/DeNSE. The Read Me file provided in
this repository contains all the information that is needed to
run the files and obtain the results.
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