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Abstract—Recently, we demonstrated the success of a time-
synchronized state estimator using deep neural networks
(DNNs) for real-time unobservable distribution systems. In this
paper, we provide analytical bounds on the performance of the
state estimator as a function of perturbations in the input mea-
surements. It has already been shown that evaluating perfor-
mance based only on the test dataset might not effectively indi-
cate the ability of a trained DNN to handle input perturbations.
As such, we analytically verify the robustness and trustworthi-
ness of DNNs to input perturbations by treating them as mixed-
integer linear programming (MILP) problems. The ability of
batch normalization in addressing the scalability limitations of
the MILP formulation is also highlighted. The framework is val-
idated by performing time-synchronized distribution system
state estimation for a modified IEEE 34-node system and a real-
world large distribution system, both of which are incompletely
observed by micro-phasor measurement units.

Index Terms—Deep neural network (DNN), distribution sys-
tem state estimation (DSSE), mixed-integer linear programming
(MILP), robustness, trustworthiness.

1. INTRODUCTION

ISTRIBUTION system state estimation (DSSE) utiliz-

ing micro-phasor measurement units (uPMUs) and
deep neural networks (DNNSs) is currently a topic of active
research interest in the power system community. This is be-
cause their combination can provide high-speed situational
awareness in real-time unobservable distribution systems, as
already demonstrated in [1] and [2]. However, DNNs are vul-
nerable to perturbations in their inputs that lead to errors in
their outputs, many of which are not captured during DNN
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training/validation [3], [4]. This is because DNN hyper-pa-
rameters are chosen to minimize validation loss and not to
be robust against input perturbations. In this paper, we estab-
lish formal guarantees of DNN performance to theoretically
prove that for a bounded perturbation in the inputs, the er-
rors in the outputs of a trained DNN are also bounded.

Providing performance guarantees to machine learning
(ML) algorithms (DNN being a type of ML algorithm) is
particularly important for power system problems as the elec-
tric power grid is a mission-critical system. In line with this
realization, [5] and [6] provided performance guarantees to
ML algorithms for power system classification problems,
while [7] focused on a power system regression problem.
However, the ML algorithms investigated in [S] - [7] were
shallow models. For example, [5] and [6] used support vec-
tor classification and decision trees, respectively, while [7]
used linear regression and support vector regression. These
shallow ML algorithms are not suitable for performing time-
synchronized DSSE in modern distribution systems due to
the severity of real-time unobservability and the increased
uncertainty caused by behind-the-meter generation. Recently,
a nontrivial certified lower bound of the minimum adversari-
al distortion has been derived for a general class of ML
problems involving DNNs in [8]-[11], and for a DNN-based
classification problem of power systems in [12]. The method-
ology developed in [12] was extended in [13] to provide
worst-case performance guarantees by integrating physics-
based constraints directly into the trained DNN. However,
the scarcity of uPMUs in the distribution system makes it
impossible to analytically relate their measurements with ev-
ery state. In summary, to the best of our knowledge, no prior
work has investigated the verification of DNNs for power
system regression problems in which the underlying analyti-
cal relation between inputs and outputs is unavailable.

In this paper, we exploit the piecewise linear nature of the
rectified linear unit (ReLU) activation function, which is one
of the most commonly used activation functions, to analyti-
cally examine robustness and trustworthiness of a trained
DNN for performing time-synchronized DSSE in pnPMU-un-
observable distribution systems. We first express the ReLU
operation integrated with batch normalization (BN) as a
mixed-integer linear programming (MILP) problem. We then
introduce two sets of verification formulations. For robust-
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ness verification, we show that for a prespecified range of
perturbation in the input, the deviation in the output from its
reference value is guaranteed to lie within a bounded region.
For trustworthiness verification, we find the minimum pertur-
bation required in the input to generate a given error in the
output. Extensive simulations carried out using a modified
IEEE 34-node distribution system demonstrate that the pro-
posed formulations ensure robustness and trustworthiness of
DNNs for time-synchronized DSSE. We have also tested our
verification formulations on a real-world large distribution
system to demonstrate their scalability and widespread appli-
cability.

The salient contributions of this letter are as follows.

1) Providing bounds on the estimation error of a DNN-
based time-synchronized distribution system state estimator
given a bounded perturbation in the input measurements (ro-
bustness verification).

2) Quantifying the minimum perturbation in the input mea-
surements required to create a given amount of error in the
state estimates (trustworthiness verification).

3) Integrating BN with the verification formulations to im-
prove scalability.

The rest of the paper is structured as follows. Section II
presents the time-synchronized DSSE using DNNs. The pro-
posed formulations are developed in Section III. The results
and discussion are presented in Section IV, while the conclu-
sion is presented in Section V.

II. TIME-SYNCHRONIZED DSSE USING DNNS

In [1], we formulated a Bayesian approach to perform
time-synchronized DSSE for the systems that are incomplete-
ly observed by pPMUs. The resulting minimum mean
squared error (MMSE) estimator minimized the estimation
error of each state, x;, for a given pPMU measurement vec-

tor, z, as shown belqw: ) - )
min E (|b—x,(2)[P) =5 @=E (x}z) "iE[18M]
£ i 9]
where xAl.* is the optimal answer to the optimization problem;
and M denotes the total number of states to be estimated.
The conditional expectation of (1% can be expressed in terms
of the joint probability density of x and z, p(x [z), as shown
in (2).
+00 +00 Q!x g}
E(f)= [Lxptidi= [ 5 pe) & @)

For uPMU-unobservable distribution systems, the probabil-

ity densitﬁl function (PDF) between pPMU data and all the
voltage phasors (states) is unknown or impossible to specify,

making direct computation of X ;(z) intractable. Even if the
underlying joint PDF is known, finding a closed-form solu-
tion to (2% can be hard. The role of D 1S to approximate

the MMSE estimator as it has excellent approximation capa-
bilities [14], i.e., the DNN for DSSE finds a mapping func-
tion that relates x; and z.

III. PROPOSED FORMULATIONS

A well-trained DNN that gives satisfactory response for
unseen test data cannot necessarily ensure similar perfor-
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mance for all possible combinations of its inputs. This
brings into question the rationale of using DNNs for deci-
sion-making in mission-critical systems. The goals of this pa-
per are to address this concern through verification-based
methodologies and build credibility of DNNs for time-syn-
chronized DSSE.

A. Reformulating ReLU Activation Function with BN Based
on MILP

The DNN used in this analysis is a fully-connected feed-
forward neural network with K hidden layers integrated with
BN, each having N neurons, as shown in Fig. 1, where x de-
notes the outputs obtained from the inputs z. The inputs and
outputs are denoted by z E R¥ and x E R¥, respectively, and
Ny M for unobservable distribution systems.

(W, by)
W.b) pi h HBN;\
zl D) xl
h? h BNy

Z X

: n B, ——BN; ?
zy, Xm

Fig. 1. DNN architecture with K hidden layers.

The hidden layers, denoted by h, E R, are equipped with
ReLU activation function. The input to the ReLU activation
function is a linear transformation of the output of the previ-
ous layer denoted by h + E R"Y. The output of each neuron in
FXFLY, hiddgn dayer is sent to a BN operator. Hence, for each

It =W, (BN, ,)+b, "KE[1EK] (3)
h:=max(h’;0) "k E[1RK]&"n E[1EN] 4)
P (T N
BN,=_* * * 4+p, "kE[1EK]@"n E[1EN] )
Vovari+e

where W, is the weight matrix; b, is the bias vector; ¢ is a
small configurable constant; 1, and var, are the moving av-
erage and variance of the batches observed during the train-
ing process, respectively; and )} and f’ are the scaling and
offset factors, respectively. The values of these hyperparame-
ters are obtained during the training process. Note that in
3), BNy=z. i} and var’, are non-trainable variables that are
updated each time the layer is called during the training pro-
cess based on the given batch.

u=nu+(1=nE (batch) (6)
var=n x var+(1 - n)(E(batch® )— E? (batch)) @)

where # is a configurable constant called momentum. In ac-
cordance with [8] and [9], the ReLU activation function de-
fined in (4) is reformulated as an MILP problem. Defining
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the binary variable, » ",E{OR1}, for all hidden layers k£ E[1BK],
and each neuron n E[1BN ], we can rewrite the ReLU activa-
tion function as: . L
W'-=Xh"—h" (1-r"
Th'=max(h'@o) Tk ke F
©oo Iy

.k ®)
FriE03; W -xh"

Tk ke k

the20

where r} indicates whether the corresponding ReLU neuron
is active (equals 1) or inactive (equals 0); and 4, and i}

are the upper and lower bounds of the ReLU activation func-
tion, respectively. The two bounds are calculated using the
following equations:

h,_=max (W,[@)xmax (b, @)+ min (W,[@)x max (4 _0)+b;
(9a)

xxxxxxxxxx

(9b)
where hAk and hAk are vectors that contain the maximum

and minimum input values for all the neurons in layer £, re-
spectively.

For example, for the first hidden layer, A, and A, will
correspond to the normalized inputs, implying that A, =1

layer will be h, = max (W,B0)+ b, and h, = min (W,R0) + b,,
respectively. The bounds for the remaining layers can be ob-
tained by applying (9a) and (9b) sequentially. Lastly, x is cal-
culated based on the linear transformation of the output of
the BN operator in the last hidden layer, B/Vy.

In the proposed formulation, one integer variable is as-
signed to each neuron for the linearization of the ReLU acti-
vation function. Hence, the number of integer variables
quickly increases as deeper and wider DNNs are used. BN
enables us to significantly reduce the number of integer vari-
ables while maintaining the high accuracy of the DNN. This
is due to three main reasons [15], [16]. Firstly, the BN layer
combats the vanishing gradient problem by normalizing acti-
vations, which prevents the creation of very small gradients
during training. Secondly, it counters internal covariate shift
by maintaining a consistent input distribution in each layer,
which promotes stable and efficient training. Lastly, it acts
as a form of regularization by introducing noise, which
helps prevent overfitting and enhancing the ability of DNN
to generalize to new data. These abilities of the BN layer
help reduce the size of the DNN without compromising its
accuracy, resulting in a direct improvement in the efficacy of
the proposed formulations.

B. Formulating Robustness for Regression Problems

In this subsection, we examine the robustness of DNNs
for time-synchronized DSSE. Given a prespecified bounded
perturbation in the input that deviates it from the actual val-
ue (reference), a DNN will be deemed robust if the output
deviation is guaranteed to be within an acceptable threshold.
This is pictorially depicted in Fig. 2 for a two-input one-out-
put DNN.
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Fig. 2. Robustness analysis for an operating condition described by z,,.

The distortion-free input measurement, z,s can be per-
turbed in either or both dimensions, with the maximum per-
turbation limit indicated by the black rectangle. For the time-
synchronized DSSE application, the limit is specified in
terms of permissible error in pPMU measurements (denoted
by a). Now, for any randomly selected perturbed sample ob-
tained during training/validation (purple dot), there can be a
perturbed adversarial sample (black dot) encountered during
testing that causes the maximum error in the output (red
oval). The goal of the robustness analysis is to quantify this

maximum output error given the prespecified input perturba-
tion limit, a. The following formulations are proposed to this

end as:
max fe—x,,l, (10a)
s.t.
”z_zrq/”p -Xa (IOb)
G E5)=B) (10c)

where x,,,is a known output (e.g., true value of the state);
and p'?1 is an appropriate norm. Equations (3) and (5) are
DNN and BN constraints, respectively, and (8) denotes the
linearized constraints of the ReLU activation function. By its
very definition, (10) finds the maximum perturbation in the
outputs corresponding to an input perturbation that is bound-
ed by a. Consequently, it provides formal guarantees of ro-
bustness of a DNN for any regression problem involving Re-
LU activation function.

To verify the robustness of the trained DNN for all possi-
ble input combinations, we choose p to be the infinity norm
as it ensures that the DNN error is bounded throughout. For
infinity norm maximization, we rewrite the objective func-
tion of (10a) as: max max(pvi —x,, B, —x,,, By, —X,,0).

Next, we convert the overall maximization problem to one
maximization problem and one minimization problem for
each state. Finally, we pick the maximum absolute value be-

tween the twnola%(s-(x -x ) min(x—-x )

i iref |

] |) "i E[18M] (11a)

max
s.t.
"j E[1EN, ] (11b)

-0-Lz-z,-La
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C. Formulating Trustworthiness of a DNN Trained for Re-
gression Problems

(11c)

In this subsection, we present a formulation for analyzing
trustworthiness of a DNN trained for regression problems. If
a perturbation in the input vector is denoted by J, the objec-
tive of trustworthiness analysis is to determine the smallest
input perturbation (i. €., min (d) = J,,;,,) that can create errone-
ous results exceeding a threshold, f, in the output. After-
wards, we compare the resulting J,,;, with the actual level of
perturbation allowed in the given application. For the time-
synchronized DSSE problem, this will be the permissible er-
ror in uPMU measurements, specified by a. If J,,, consis-
tently surpasses a, we can have trust in the ability of our
trained DNN to provide erroneous estimates that are always
within f.

The above-mentioned logic is pictorially depicted in Fig.
3 for a two-input, one-output DNN.

min

Ix=x,11,

Prespecified S

Perturbation magnitude
specified by a

Y

N

Z, Lres Omin CAUSING estimation

error to reach S

Fig. 3.
Zrep

Trustworthiness analysis for an operating condition described by

In Fig. 3, the blue arrow represents the smallest input per-
turbation, d,,;,, which yields an error of £ in the output,
while the green arrow represents a. As long as the blue ar-
row is longer than the green arrow for all scenarios, we can
say with certainty that the estimation error will never sur-
pass f. To find 0, the following verification formulations
are proposed.

min ¢ (12a)
2=z, 16 (12b)
S.t.
e —x,l,"? B (12¢)
OIENE) (12d)

Equation (12) is solved in a manner similar to how (11) is
solved in the previous subsection.

D. Data Preparation and Implementation of Proposed For-
mulations

The DNN described in Section II is trained on historical
smart meter data in the offline learning stage and tested us-
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ing uPMU measurements in the online execution stage [1].
As the proposed formulations provide guarantees to the per-
formance of this trained DNN, it is important to ensure that
the learning and execution are done properly. For example,
bad or missing data present in the smart meter measure-
ments must be corrected, which was done by employing the
data cleaning procedures described in [17]. Similarly, a Wald
test-based bad data detection and correction procedure [18]
was used to identify bad/missing uPMU measurements in re-
al time. These two procedures ensured that inaccurate or in-
complete data did not limit the performance of the proposed
formulation.

To implement the proposed formulation, the following
steps were performed.

Step I: cleaned smart meter data were used to create a big
dataset by solving many power flows. The voltage phasors
obtained from the power flow solution were saved as X,
The voltage and current phasors corresponding to uPMU lo-
cations were saved as z,,. z was obtained from z,, by using
an appropriate perturbation limit, a.

Step 2: the big dataset was split into training and testing
datasets, and the former was used to train a DNN that finds
a mapping function that relates x,, and z. Cleaned uPMU da-
ta were then fed into the trained DNN during the test to de-
termine x, and calculate the maximum testing dataset error.

Step 3: the robustness verification formulation given by
(11) was solved. The solution gave the maximum error that
the trained DNN would have for an input perturbation that
was bounded by a. If this solution is greater than the testing
error found in Step 2, it means that the robustness formula-
tion has found an input perturbation for which the trained
DNN performs worse than what the testing accuracy indi-
cates.

Step 4: the trustworthiness verification formulation given
by (12) was solved for every node to determine J,,, that was
needed to create an error greater than f in any of the state
estimates. If no perturbation is found for a given node or the
smallest perturbation found is greater than o used in Step 1,
the DNN is deemed trustworthy in the sense that it will not
give an error greater than f for any input perturbation that is
bounded by o.

IV. RESULTS AND DISCUSSION

The DNNs created based on the logic proposed in [1]
were able to estimate the voltage magnitude and angle of ev-
ery phase of all the nodes of pPMU-unobservable distribu-
tion systems. We used these DNNs to demonstrate the validi-
ty of the formulations proposed in Section IIl. The simula-
tions were performed on a modified IEEE 34-node distribu-
tion system (henceforth, called System S1) and a real-world
distribution system located in a metropolitan city of USA
(henceforth, called System S2 [19]). The optimization prob-
lems were solved using the branch and bound approach in
Pyomo coding environment with Gurobi 10.0.1 as the solver
on a computer with 384 GB RAM, Intel Xeon Platinum
8368 CPU @ 2.40 GHz.
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A. System S1

1) Robustness Results

System S1 has three distributed generation units with rat-
ings of 135 kW, 60 kW, and 60 kW placed on nodes 822,
848, and 860, respectively. To train a DNN for DSSE, we
created a database comprising input, z, and output, x,,. The
database was then split into training and testing datasets.
Note that according to the sensor placement algorithm of
[1], three uPMUs placed on nodes 800, 850, and 832 of Sys-
tem S1 are sufficient for performing time-synchronized
DSSE using DNNs. A total vector error (TVE) of 0.05%
[20] was employed to simulate erroneous voltage and cur-
rent phasor measurements for these three pPMUs and deter-
mine a. For a TVE of 0.05% , a was equal to 0.05% and
0.0005 for angle and magnitude, respectively. Next, the mea-
surements were normalized and fed as inputs to the DNN,
which had two hidden layers with BN, and 30 neurons/lay-
ers. Lastly, to verify the robustness of the trained DNN for
every node of the system, the optimization problem in (11)
was solved 2M times for each operating condition.

In the first set of simulations, we compared the output of
(11) obtained from the trained DNN using the test dataset
with the estimation errors produced by the same DNN for
the same (test) dataset. Due to space limitation, we only
present the results for phase A voltage magnitude estimation.
However, similar observations are made when analysis of
magnitudes of other phases as well as angles are conducted.
The maximum absolute error of all the test samples is
shown in Fig. 4. The blue line shows the maximum absolute
error in the output of the DNN for every node where phase
A is present. The orange line shows the maximum absolute
error for the same nodes, found using (11). It is observed
from the figure that for all the nodes, the maximum absolute

Icul h th
e galutated wsing e AoPusets Stk BB Ban
put. This signifies the importance of robustness analysis for
trained DNNs, as evaluating the performance of a trained
DNN based only on the testing dataset may give more opti-
mistic results (as shown by the blue line). In addition, the
maximum absolute errors found by (11) ensures that as long
as the perturbation in the input is less than a (= 0.05%), the
error in the state estimates is guaranteed to be less than the
values indicated by the orange line of Fig. 4.

~ 0.0035
0.0030 + '
0.0025 | .
0.0020 |
0.0015
0.0010 |

0.0005

(1)
800 806 812 850 818 822 828 854 832 890 864 842 846 860 840
802 808 814 816 820 824 830 852 888 858 834 844 848 836 862
Node No.

The maximum absolute error (p.u

Fig. 4. Comparison of DNN-based voltage magnitude estimation error and
DNN robustness analysis for phase A of System S1.
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Next, we tested the sensitivity of the proposed formula-
tion to different sample sizes. The results presented in Fig. 5
were obtained from a dataset of 7500, 10000, and 12500
samples, respectively, each of which is divided into 80% for
training and 20% for testing. It can be observed from the fig-
ure that the maximum absolute errors found by robustness
analysis progressively decrease as the number of samples in-
crease, with the decrease magnitude becoming smaller with
increase in sample sizes. Since the computational complexity
of the proposed formulation is a function of the number of
samples (and we did not see much improvement after 12500
samples), we deduced from this analysis that a sample size
of 12500 is sufficient for drawing valid conclusions for this
system.

-+ 7500 samples
--#..10000 samples
--=-- 12500 samples

i 0.007 [
0.006 :
0.005 i
0.004
0.003
0.002}
0.001 AR
800 806 812 850 818 822 828 854 832 890 864 842 846 860 840

802 808 814 816 820 824 830 852 888 858 834 844 848 836 862
Node No.

The maximum absolute error (p u.)

Fig. 5. Robustness analysis for System S1 with different data sizes.

2) Trustworthiness Results

To identify the minimum perturbation in pPMU measure-
ments capable of inducing a prespecified error in the state es-
timates, (12) was employed. We assumed a maximum allow-
able error of 1% in voltage magnitude estimation, i.e., f=

Odhlitibaehat credgtesmingdg o %noipw@%ﬂ%@%ﬁpwm

D) we must verify whether o,,, consis-
tesitrg ¥ 23 ify whether & i

%). The results obtained are shown
in Table 1.

TABLE I
TRUSTWORTHINESS RESULTS FOR PHASE A VOLTAGE MAGNITUDE
ESTIMATION FOR EACH NODE OF SYSTEM S1

Node No. Omin (%) | Node No. 4, (%) | Node No.  d,,, (%)
800 822 4.6729 864 0.9582
802 824 834 0.9667
806 828 842 0.9668
808 10.5745 830 844 0.9671
812 6.2330 854 846 0.9665
814 4.7759 852 6.8931 848 0.9664
850 832 0.9553 860 0.9684
816 888 0.9445 836 0.9691
818 890 0.8169 840 0.9692
820 3.5278 858 0.9591 862 0.9692

Table I shows the least amount of input perturbation, ex-
pressed as a percentage of the magnitude measurement, that
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is required to achieve a phase A voltage magnitude estima-
tion error greater than 1% for every node in System S1. For
example, node 814 necessitates a perturbation of at least
4.7759% in the uPMU measurements to generate a 1% error
in its phase A voltage magnitude estimation. For the nodes
shown without any value, a J,,;, value that can create a 1%
voltage magnitude estimation error in phase A could not be
found, implying that it is not possible to induce an error of
£ =0.01 in them. However, it should be noted that by lower-
ing the value of f, a corresponding J,,;, could be found for
these nodes.

The findings presented in Table I instill trust in the trained
DNN since for the nodes for which J.,, was found, it always
exceeded the value of a (=0.05%). It can be further implied
from Table I that based on the assumed TVE accuracy of the
uPMUs, we can be confident that the trained DNN will con-
sistently provide estimates with a voltage magnitude error of
no more than 1%. Finally, the results obtained in Fig. 4 and
Table I prove the robustness and trustworthiness of the creat-
ed DNN for System S1 and its ability to give accurate volt-
age magnitude estimations within the prespecified measure-
ment error bounds.

B. System S2

1) Robustness Results

In this test system, uPMU measurements were only possi-
ble at the feeder-head (see Fig. 6 for a depiction of this sys-
tem).

) }\»-}
] Phase A
‘(:: “'-\__.4.
NEE #\, j~— Phase B
f 1;?( b
Ny P Phase C
X VN7
b &
TR
Lo '
R Nk ﬁ* Three-phase main feeder
= <%
¢ S W v
by 3
& 2
N ) /
-+ "- - ‘f
‘ N 4
;rf A Substation
—uPMU
vlr* 1

Fig. 6. System S2 with one uPMU available at feeder-head.

Note that having real-time measurements only at the feed-
er-head is common for most distribution systems. Therefore,
it is of interest to evaluate the DNN performance of time-
synchronized DSSE in situations where additional puPMU
placement cannot be done due to budget constraints. There
are 642, 665, and 637 nodes in phase A, phase B, and phase
C of this system, respectively, whose voltages must be esti-
mated under different operating conditions. Additionally, this
feeder has 766 house-hold/commercial roof-top solar photo-
voltaic units, implying that it has a high penetration of re-
newable energy resources. Thus, this was an ideal test sys-
tem for investigating the scalability as well as the handling
capability of the renewable-rich system.
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Due to the sheer number of nodes in this system, we
show the difference between robustness analysis and DNN
testing dataset for phase A voltage magnitude estimation as a
histogram, as shown in Fig. 7. We display the maximum ab-
solute error found by robustness analysis for the i node, de-
noted by R, and the maximum absolute error based on the
testing dataset for the same node, denoted by 7. The histo-
gram shows the numerical difference between R; and T, i.e.,
R,— T, The X-axis indicates the ranges of the differences,
while the Y-axis denotes the number of nodes belonging to a
given range. For example, there are 188 nodes for which the
iin R and 7 lie between 0.6x10  p.u. and 2.6x
10~ p.u.. It is evident from the histogram that, for all nodes,
the difference is always positiveL1 as there are zero nodes for
which R;—T; is less than 0.6x10 p.u.. This indicates that ro-
bustness analysis consistently finds adversarial examples that
could result in more errors compared with the testing datas-
et. Similar observations were made when the analyses were
conducted for the other phase magnitudes and angles. This
implies that when reporting the accuracy of the trained DNN
for DSSE, it is more appropriate to present the robustness
analysis results than just represent the testing dataset results.
In summary, the proposed robustness analysis offers a means
to provide guarantees for ReLU-based regression DNNs by
accounting for the existence of potential errors beyond what
is evident from the testing dataset alone.
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Fig. 7. Difference in maximum absolute errors obtained using R; and 7;
for all 642 nodes.

2) Trustworthiness Results

The trustworthiness result analysis for System S2 is pre-
sented in the form of a histogram in Fig. 8. Since System S2
is a real-world distribution system that requires reliable oper-
ation, we have chosen a smaller value of f = 0.002 to ensure
that the estimation error for all nodes and operating condi-
tions never exceeds 0.2%. For 527 nodes of this system, no
Omin Was found using (12), similar to the nodes without any
value in Table I. As such, they are not included in the fig-
ure. Hence, Fig. 8 shows the number of nodes for which a
Omin Was found, as well as the corresponding value intervals.
For example, the first non-zero bar indicates that there are
16 nodes in System S2 for which d,,, lies between 5.4% and
8.6%. The fact that the minimum value in Fig. 8 is 5.4%
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proves that in order to have a 0.2% error in voltage magni-
tude estimation, an error of at least 5.4% must be injected in-
to the input data. Since this value is much higher than the «
value of 0.05%, this analysis instills trust in our trained
DNN for DSSE as it ensures that the estimation error will al-
ways be less than 0.2%.
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Fig. 8. Trustworthiness results for phase A voltage magnitude estimation
for 115 nodes of System S2.

C. Discussion

1) Strategies to Address Computational Burden

The proposed formulation is built on an MILP-based for-
mulation whose worst-case run-time complexity is exponen-
tial. For example, the computational burden of the verifica-
tion formulations developed in Section III is of the order of
O(KN S), where S denotes the total number of samples. Since
optimization formulations with exponential time complexity
face scalability issues when applied to the problems involv-
ing large numbers of variables, we employed three strategies
to lower the severity of this issue for the proposed formula-
tion, namely, time-synchronized DSSE in pPMU-unobserv-
able distribution systems.

1) Strategy 1: incorporation of BN layer. It was observed
that by incorporating BN layers within the DNN, a smaller-
sized DNN could give similar validation accuracy as a larger-
sized DNN that did not have BN layers. For example, in the
absence of BN, a DNN with eight hidden layers and 500
neurons/layer was needed for System S1 for achieving simi-
lar accuracy as the DNN with BN described in Section IV-
A. This considerable reduction in the size of the DNN also
reduced the number of integer variables in the proposed for-
mulation by a significant amount, resulting in faster conver-
gence of the optimization process.

2) Strategy 2: identifying always-dead and always-active
neurons. During the training process, the output of each neu-
ron was monitored. It was observed that some neurons were
always-active, while others became always-dead, outputting
zero. For these neurons, the corresponding binary integer
variable, r,”, was fixed to 1 and 0, respectively, reducing the
number of integer variables required for post-training robust-
ness and trustworthiness analyses. This strategy improves the
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efficacy of the proposed formulation even for large DNNs.

3) Strategy 3: effective parallelization. This was done in
two ways. First, the verification formulations were imple-
mented parallelly for the three phases (since DSSE is per-
formed on a per-phase basis). Second, the verification formu-
lations were specific to a given power system node and
could be performed independently of any other node. There-
fore, different nodes of the test system were grouped togeth-
er into clusters (e. g., 100 nodes for System S2), and these
clusters were solved in parallel. Since both of these ways are
agnostic of the DNN size, they can be easily applied to large
DNNs for DSSE.

2) Practical Significance of Proposed Formulations

Trained ML models are prone to poor performance due to
the presence of adversarial examples that can be present in
the input space domain but not seen during training and test-
ing stages. In the context of the DSSE using DNN applica-
tion, this can be due to the presence of non-Gaussian noise
in the pPMU measurements. Most studies have modeled the
noise as a zero-mean Gaussian distribution, but in reality,
the noise model could be non-Gaussian [21]. In such a sce-

nario, if a DNN is trained for a Gaussian measurement
noise, but is tested on a non-Gaussian measurement noise,
then relying on the testing accuracy alone may not give the
correct picture (in the worst case, it may give a sense of
false security). Moreover, as long as the noise amount is
low, it will not be detected/corrected by any bad data detec-
tion/correction module.

This is precisely the scenario where the proposed formula-
tions become crucial. Consider the robustness verification
formulation that calculates the maximum error in the state es-
timation caused by a perturbation bounded by « in the input
measurements, once this maximum error is found, one can
say with certainty that as long as the input is corrupted by a
perturbation bounded by a (irrespective of the distribution
that the perturbation may have), the DNN-based DSSE error
will be less than or equal to this calculated maximum error
value. This is a powerful result that clearly indicates the
practical significance of the proposed formulation for mis-
sion-critical systems such as the electric power grid.

V. CONCLUSION

The black box nature of a DNN often makes power sys-
tem operators question the validity of the obtained results.
This is because although a well-trained DNN can make accu-
rate predictions, it might lack requisite robustness to (adver-
sarial) input perturbations. Therefore, providing formal guar-
antees of DNN performance is necessary for ensuring their
acceptability in the power system. To this end, we formulat-
ed two verification problems, namely, robustness and trust-
worthiness, for DNN-based time-synchronized DSSE using
MILP. The robustness formulation finds the maximum error
in the output for a given bounded perturbation in the input,
while the trustworthiness formulation finds the minimum per-
turbation in the input that is required to produce a given er-
ror in the output. The proposed formulations are also applica-
ble to DNN-based regression problems in other domains.

The analytical verification of DNN-based time-synchro-
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nized DSSE was first performed on a modified IEEE 34-
node system. It was confirmed that the robustness analysis
conducted using the testing data on a DNN resulted in a
higher error than what was observed when the same data
were fed as an input into that DNN. This implied that rely-
ing on the outputs of the testing data alone (i. e., without a
robustness analysis) might result in a sense of false security,
which is dangerous for mission-critical systems such as pow-
er systems. Through trustworthiness analysis, it was ob-
served that we could verify the adherence of the estimation
error to a prespecified threshold that was based on the char-
acteristics of the inputs (e. g., permissible error in pPMU
measurements). Lastly, the applicability of the proposed for-
mulation to a real-world, large-scale, and renewable-rich dis-
tribution system was demonstrated, confirming its practical
utility. A future scope of this work will be to address the ex-
ponential run-time complexity of the proposed formulations
by creating verification problems that do not involve MILP.
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