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Abstract—Recently, we demonstrated the success of a time- 
synchronized state estimator using deep neural networks 
(DNNs) for real-time unobservable distribution systems. In this 
paper, we provide analytical bounds on the performance of the 
state estimator as a function of perturbations in the input mea‐ 
surements. It has already been shown that evaluating perfor‐ 
mance based only on the test dataset might not effectively indi‐ 
cate the ability of a trained DNN to handle input perturbations. 
As such, we analytically verify the robustness and trustworthi‐ 
ness of DNNs to input perturbations by treating them as mixed- 
integer linear programming (MILP) problems. The ability of 
batch normalization in addressing the scalability limitations of 
the MILP formulation is also highlighted. The framework is val‐ 
idated by performing time-synchronized distribution system 
state estimation for a modified IEEE 34-node system and a real- 
world large distribution system, both of which are incompletely 
observed by micro-phasor measurement units. 

Index Terms—Deep neural network (DNN), distribution sys‐ 
tem state estimation (DSSE), mixed-integer linear programming 
(MILP), robustness, trustworthiness. 

 

 

I. INTRODUCTION 

ISTRIBUTION system state estimation (DSSE) utiliz‐ 

ing  micro-phasor  measurement  units  (µPMUs)  and 

deep neural networks (DNNs) is currently a topic of active 

research interest in the power system community. This is be‐ 

cause their combination can provide high-speed situational 

awareness in real-time unobservable distribution systems, as 

already demonstrated in [1] and [2]. However, DNNs are vul‐ 

nerable to perturbations in their inputs that lead to errors in 

their outputs, many of which are not captured during DNN 
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training/validation [3], [4]. This is because DNN hyper-pa‐ 

rameters are chosen to minimize validation loss and not to 

be robust against input perturbations. In this paper, we estab‐ 

lish formal guarantees of DNN performance to theoretically 

prove that for a bounded perturbation in the inputs, the er‐ 

rors in the outputs of a trained DNN are also bounded. 

Providing performance guarantees to machine learning 

(ML) algorithms (DNN being a type of ML algorithm) is 

particularly important for power system problems as the elec‐ 

tric power grid is a mission-critical system. In line with this 

realization, [5] and [6] provided performance guarantees to 

ML algorithms for power system classification problems, 

while [7] focused on a power system regression problem. 

However, the ML algorithms investigated in [5] - [7] were 

shallow models. For example, [5] and [6] used support vec‐ 

tor classification and decision trees, respectively, while [7] 

used linear regression and support vector regression. These 

shallow ML algorithms are not suitable for performing time- 

synchronized DSSE in modern distribution systems due to 

the severity of real-time unobservability and the increased 

uncertainty caused by behind-the-meter generation. Recently, 

a nontrivial certified lower bound of the minimum adversari‐ 

al distortion has been derived for a general class of ML 

problems involving DNNs in [8]-[11], and for a DNN-based 

classification problem of power systems in [12]. The method‐ 

ology developed in [12] was extended in [13] to provide 

worst-case performance guarantees by integrating physics- 

based constraints directly into the trained DNN. However, 

the scarcity of µPMUs in the distribution system makes it 

impossible to analytically relate their measurements with ev‐ 

ery state. In summary, to the best of our knowledge, no prior 

work has investigated the verification of DNNs for power 

system regression problems in which the underlying analyti‐ 

cal relation between inputs and outputs is unavailable. 

In this paper, we exploit the piecewise linear nature of the 

rectified linear unit (ReLU) activation function, which is one 

of the most commonly used activation functions, to analyti‐ 

cally examine robustness and trustworthiness of a trained 

DNN for performing time-synchronized DSSE in µPMU-un‐ 

observable distribution systems. We first express the ReLU 

operation integrated with batch normalization (BN) as a 

mixed-integer linear programming (MILP) problem. We then 

introduce two sets of verification formulations. For robust‐ 
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ness verification, we show that for a prespecified range of 

perturbation in the input, the deviation in the output from its 

reference value is guaranteed to lie within a bounded region. 

For trustworthiness verification, we find the minimum pertur‐ 

bation required in the input to generate a given error in the 

output. Extensive simulations carried out using a modified 

IEEE 34-node distribution system demonstrate that the pro‐ 

posed formulations ensure robustness and trustworthiness of 

DNNs for time-synchronized DSSE. We have also tested our 

verification formulations on a real-world large distribution 

system to demonstrate their scalability and widespread appli‐ 

cability. 

The salient contributions of this letter are as follows. 

1) Providing bounds on the estimation error of a DNN- 

based time-synchronized distribution system state estimator 

given a bounded perturbation in the input measurements (ro‐ 

bustness verification). 

2) Quantifying the minimum perturbation in the input mea‐ 

surements required to create a given amount of error in the 

state estimates (trustworthiness verification). 

3) Integrating BN with the verification formulations to im‐ 

prove scalability. 

The rest of the paper is structured as follows. Section II 

presents the time-synchronized DSSE using DNNs. The pro‐ 

posed formulations are developed in Section III. The results 

and discussion are presented in Section IV, while the conclu‐ 

sion is presented in Section V. 

 

II. TIME-SYNCHRONIZED DSSE USING DNNS 

In [1], we formulated a Bayesian approach to perform 

time-synchronized DSSE for the systems that are incomplete‐ 

ly observed by µPMUs. The resulting minimum mean 

squared error (MMSE) estimator minimized the estimation 

error of each state, xi, for a given µPMU measurement vec‐ 

tor, z, as shown below: 
min E ( ||xi − x̂ 

i (z) ||2 )  x̂ * (z) = E (xi|z) i [1 M ] 

mance for all possible combinations of its inputs. This 

brings into question the rationale of using DNNs for deci‐ 

sion-making in mission-critical systems. The goals of this pa‐ 

per are to address this concern through verification-based 

methodologies and build credibility of DNNs for time-syn‐ 

chronized DSSE. 

A. Reformulating ReLU Activation Function with BN Based 

on MILP 

The DNN used in this analysis is a fully-connected feed- 

forward neural network with K hidden layers integrated with 

BN, each having N neurons, as shown in Fig. 1, where x de‐ 

notes the outputs obtained from the inputs z. The inputs and 

outputs are denoted by z  RN0 and x  RM, respectively, and 

N0  M for unobservable distribution systems. 
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Fig. 1.  DNN architecture with K hidden layers. 

 

The hidden layers, denoted by hk  RN, are equipped with 

ReLU activation function. The input to the ReLU activation 
function is a linear transformation of the output of the previ‐ 

ous layer denoted by ĥ 
k  RN. The output of each neuron in 

every hidden layer is sent to a BN operator. Hence, for each layer, we have: 
x̂ i () (1) 

where x̂ * is the optimal answer to the optimization problem; 

and M denotes the total number of states to be estimated. 

h ̂ 
k = Wk (BNk − 1 ) + bk  k [1 K] (3) 

hn = max (ĥ n 0)  k [1 K] n [1 N ] (4) 
The conditional expectation of (1) can be expressed in terms k k 
of the joint probability density of x and z, p(x |z), as shown n γn (hn − μn ) n 

in (2). 
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BNk =  k k k  + βk  k [1 K] n [1 N ] (5) 

E (xi|z) = ∫  − xi p(xi|z)dxi = ∫ xi − 

i 

p(z) dxi (2) where Wk is the weight matrix; bk n 
is the bias vector; ε is a 

n 

For µPMU-unobservable distribution systems, the probabil‐ 

ity density function (PDF) between µPMU data and all the 

small configurable constant; μk and vark are the moving av‐ 

erage and variance of the batches observed during the train‐ 
ing process, respectively; and γn and βn are the scaling and 

voltage phasors (states) is unknown or impossible to specify, k k 

making direct computation of x̂ * (z) intractable. Even if the 

underlying joint PDF is known, finding a closed-form solu‐ 

offset factors, respectively. The values of these hyperparame‐ 

ters are obtained during the training process. Note that in 
(3), BN0 = z. μn and varn are non-trainable variables that are 

tion to (2) can be hard. The role of DNN is to approximate k k 

the MMSE estimator as it has excellent approximation capa‐ 

bilities [14], i.e., the DNN for DSSE finds a mapping func‐ 

tion that relates xi and z. 

III. PROPOSED FORMULATIONS 

A well-trained DNN that gives satisfactory response for 

unseen test data cannot necessarily ensure similar perfor‐ 

updated each time the layer is called during the training pro‐ 

cess based on the given batch. 

μ = ημ + (1 − η)E (batch) (6) 

var = η  var + (1 − η)(E(batch2 ) − E2 (batch)) (7) 

where η is a configurable constant called momentum. In ac‐ 

cordance with [8] and [9], the ReLU activation function de‐ 

fined in (4) is reformulated as an MILP problem. Defining 
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the binary variable, r n {0 1}, for all hidden layers k [1 K], 

and each neuron n [1 N ], we can rewrite the ReLU activa‐ 

tion function as: 
ìhn − ĥ n − ĥ n (1 − r n ) 

ï k k ìïh n = max (ĥ n 0) n ̂ n 
kmin k 

k  
ïhk  hk 

n 
(8) 

ïî r k  {0 1} ïhn − ĥ n r n 
ï k kmax k 

ïîh n  0 

where r n indicates whether the corresponding ReLU neuron 

is active (equals 1) or inactive (equals 0); and ĥ n
 

max 

and ĥ n
 
min 

are the upper and lower bounds of the ReLU activation func‐ 

tion, respectively. The two bounds are calculated using the 

following equations: 

 

 

Fig. 2.  Robustness analysis for an operating condition described by z 
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(9a) 

0) + bk 

(9b) 

turbed in either or both dimensions, with the maximum per‐ 

turbation limit indicated by the black rectangle. For the time- 

synchronized DSSE application, the limit is specified in 

terms of permissible error in µPMU measurements (denoted 

where ĥ 
k and ĥ 

k are vectors that contain the maximum by α). Now, for any randomly selected perturbed sample ob‐ 
max min 

and minimum input values for all the neurons in layer k, re‐ tained during training/validation (purple dot), there can be a 

spectively. perturbed adversarial sample (black dot) encountered during 

For example, for the first hidden layer, hk and hk will testing that causes the maximum error in the output (red 
max min 

correspond to the normalized inputs, implying that h1 = 1 
max 

oval). The goal of the robustness analysis is to quantify this 

and h1  = 0. This means that the bounds on the first hidden maximum output error given the prespecified input perturba‐ 
min ̂ ̂ tion limit, α. The following formulations are proposed to this 

layer will be h1 = max (W1 0)+ b1 and h1 = min (W1 0) + b1, 

respectively. The bounds for the remaining layers can be ob‐ 

tained by applying (9a) and (9b) sequentially. Lastly, x is cal‐ 

culated based on the linear transformation of the output of 
the BN operator in the last hidden layer, BNK. 

end as: 

 

 

s.t. 

 
max ||x − x 

x 

 

ref||p (10a) 

In the proposed formulation, one integer variable is as‐ 

signed to each neuron for the linearization of the ReLU acti‐ 

vation function. Hence, the number of integer variables 

quickly increases as deeper and wider DNNs are used. BN 

enables us to significantly reduce the number of integer vari‐ 

ables while maintaining the high accuracy of the DNN. This 

is due to three main reasons [15], [16]. Firstly, the BN layer 

combats the vanishing gradient problem by normalizing acti‐ 

vations, which prevents the creation of very small gradients 

during training. Secondly, it counters internal covariate shift 

by maintaining a consistent input distribution in each layer, 

which promotes stable and efficient training. Lastly, it acts 

as a form of regularization by introducing noise, which 

helps prevent overfitting and enhancing the ability of DNN 

to generalize to new data. These abilities of the BN layer 

help reduce the size of the DNN without compromising its 

||z − zref||p − α (10b) 

(3)  (5)  (8) (10c) 

where xref is a known output (e. g., true value of the state); 

and p  1 is an appropriate norm. Equations (3) and (5) are 

DNN and BN constraints, respectively, and (8) denotes the 

linearized constraints of the ReLU activation function. By its 

very definition, (10) finds the maximum perturbation in the 

outputs corresponding to an input perturbation that is bound‐ 

ed by α. Consequently, it provides formal guarantees of ro‐ 

bustness of a DNN for any regression problem involving Re‐ 

LU activation function. 

To verify the robustness of the trained DNN for all possi‐ 

ble input combinations, we choose p to be the infinity norm 

as it ensures that the DNN error is bounded throughout. For 

infinity norm maximization, we rewrite the objective func‐ 
accuracy, resulting in a direct improvement in the efficacy of 
the proposed formulations. 

tion of (10a) as: max max(|x1 
x 

− x1ref | |x2 − x2ref | |xM − xMref |). 

B. Formulating Robustness for Regression Problems 

In this subsection, we examine the robustness of DNNs 

for time-synchronized DSSE. Given a prespecified bounded 

perturbation in the input that deviates it from the actual val‐ 

Next, we convert the overall maximization problem to one 

maximization problem and one minimization problem for 

each state. Finally, we pick the maximum absolute value be‐ 

tween the two as: 
max (x − x ) min (x − x ) 

ue (reference), a DNN will be deemed robust if the output 

deviation is guaranteed to be within an acceptable threshold. 

This is pictorially depicted in Fig. 2 for a two-input one-out‐ 

 

s.t. 

max | xi

 
i iref | | xi

 i iref  | i [1 M ] (11a) 

put DNN. −α − zj − zjref − α j [1 N0 ] (11b) 

 

The maximum error 

found by robustness 

analysis 
Perturbation limits 

prespecified by α 

DNN output error 

for test dataset 

z 
1 

Randomly 

perturbed input 

z 
2 

Adversarial sample zref 
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(3)  (5)  (8) (11c) 

C. Formulating Trustworthiness of a DNN Trained for Re‐ 

gression Problems 

In this subsection, we present a formulation for analyzing 

trustworthiness of a DNN trained for regression problems. If 

a perturbation in the input vector is denoted by δ, the objec‐ 

tive of trustworthiness analysis is to determine the smallest 

input perturbation (i. e., min (δ) = δmin) that can create errone‐ 

ous results exceeding a threshold, β, in the output. After‐ 

wards, we compare the resulting δmin with the actual level of 

perturbation allowed in the given application. For the time- 

synchronized DSSE problem, this will be the permissible er‐ 

ror in µPMU measurements, specified by α. If δmin consis‐ 

tently surpasses α, we can have trust in the ability of our 

trained DNN to provide erroneous estimates that are always 

within β. 

The above-mentioned logic is pictorially depicted in Fig. 

3 for a two-input, one-output DNN. 

ing µPMU measurements in the online execution stage [1]. 

As the proposed formulations provide guarantees to the per‐ 

formance of this trained DNN, it is important to ensure that 

the learning and execution are done properly. For example, 

bad or missing data present in the smart meter measure‐ 

ments must be corrected, which was done by employing the 

data cleaning procedures described in [17]. Similarly, a Wald 

test-based bad data detection and correction procedure [18] 

was used to identify bad/missing µPMU measurements in re‐ 

al time. These two procedures ensured that inaccurate or in‐ 

complete data did not limit the performance of the proposed 

formulation. 

To implement the proposed formulation, the following 

steps were performed. 

Step 1: cleaned smart meter data were used to create a big 

dataset by solving many power flows. The voltage phasors 

obtained from the power flow solution were saved as xref. 

The voltage and current phasors corresponding to µPMU lo‐ 

cations were saved as zref. z was obtained from zref by using 

an appropriate perturbation limit, α. 

Step 2: the big dataset was split into training and testing 

datasets, and the former was used to train a DNN that finds 

a mapping function that relates x ref and z. Cleaned µPMU da‐ 
 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Trustworthiness analysis for an operating condition described by 

zref. 
 

 

In Fig. 3, the blue arrow represents the smallest input per‐ 

turbation, δmin, which yields an error of β in the output, 

while the green arrow represents α. As long as the blue ar‐ 

row is longer than the green arrow for all scenarios, we can 

say with certainty that the estimation error will never sur‐ 

pass β. To find δmin, the following verification formulations 

are proposed. 

ta were then fed into the trained DNN during the test to de‐ 

termine x, and calculate the maximum testing dataset error. 

Step 3: the robustness verification formulation given by 

(11) was solved. The solution gave the maximum error that 

the trained DNN would have for an input perturbation that 

was bounded by α. If this solution is greater than the testing 

error found in Step 2, it means that the robustness formula‐ 

tion has found an input perturbation for which the trained 

DNN performs worse than what the testing accuracy indi‐ 

cates. 

Step 4: the trustworthiness verification formulation given 

by (12) was solved for every node to determine δmin that was 

needed to create an error greater than β in any of the state 

estimates. If no perturbation is found for a given node or the 

smallest perturbation found is greater than α used in Step 1, 

the DNN is deemed trustworthy in the sense that it will not 

give an error greater than β for any input perturbation that is 

bounded by α. 

min δ (12a) IV. RESULTS AND DISCUSSION 

 

 

s.t. 

||z − z ref||p − δ (12b) 
The DNNs created based on the logic proposed in [1] 

were able to estimate the voltage magnitude and angle of ev‐ 

ery phase of all the nodes of µPMU-unobservable distribu‐ 

||x − xref||p  β (12c) 

(3)  (5)  (8) (12d) 

Equation (12) is solved in a manner similar to how (11) is 

solved in the previous subsection. 

D. Data Preparation and Implementation of Proposed For‐ 

mulations 

The DNN described in Section II is trained on historical 

smart meter data in the offline learning stage and tested us‐ 

tion systems. We used these DNNs to demonstrate the validi‐ 

ty of the formulations proposed in Section III. The simula‐ 

tions were performed on a modified IEEE 34-node distribu‐ 

tion system (henceforth, called System S1) and a real-world 

distribution system located in a metropolitan city of USA 

(henceforth, called System S2 [19]). The optimization prob‐ 

lems were solved using the branch and bound approach in 

Pyomo coding environment with Gurobi 10.0.1 as the solver 

on a computer with 384 GB RAM, Intel Xeon Platinum 

8368 CPU @ 2.40 GHz. 

]]x-xref]]p 

 

Prespecified β 

Perturbation magnitude 

specified by α 

z 
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 δ  causing estimation  

error to reach β 
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A. System S1 

1) Robustness Results 

System S1 has three distributed generation units with rat‐ 

ings of 135 kW, 60 kW, and 60 kW placed on nodes 822, 

848, and 860, respectively. To train a DNN for DSSE, we 

created a database comprising input, z, and output, xref. The 

database was then split into training and testing datasets. 

Note that according to the sensor placement algorithm of 

[1], three µPMUs placed on nodes 800, 850, and 832 of Sys‐ 

tem S1 are sufficient for performing time-synchronized 

DSSE using DNNs. A total vector error (TVE) of 0.05% 

[20] was employed to simulate erroneous voltage and cur‐ 

rent phasor measurements for these three µPMUs and deter‐ 

mine α. For a TVE of 0.05% , α was equal to 0.05% and 

0.0005 for angle and magnitude, respectively. Next, the mea‐ 

surements were normalized and fed as inputs to the DNN, 

which had two hidden layers with BN, and 30 neurons/lay‐ 

ers. Lastly, to verify the robustness of the trained DNN for 

every node of the system, the optimization problem in (11) 

was solved 2M times for each operating condition. 

In the first set of simulations, we compared the output of 

(11) obtained from the trained DNN using the test dataset 

with the estimation errors produced by the same DNN for 

the same (test) dataset. Due to space limitation, we only 

present the results for phase A voltage magnitude estimation. 

However, similar observations are made when analysis of 

magnitudes of other phases as well as angles are conducted. 

The maximum absolute error of all the test samples is 

shown in Fig. 4. The blue line shows the maximum absolute 

error in the output of the DNN for every node where phase 

A is present. The orange line shows the maximum absolute 

error for the same nodes, found using (11). It is observed 

from the figure that for all the nodes, the maximum absolute 

Next, we tested the sensitivity of the proposed formula‐ 

tion to different sample sizes. The results presented in Fig. 5 

were obtained from a dataset of 7500, 10000, and 12500 

samples, respectively, each of which is divided into 80% for 

training and 20% for testing. It can be observed from the fig‐ 

ure that the maximum absolute errors found by robustness 

analysis progressively decrease as the number of samples in‐ 

crease, with the decrease magnitude becoming smaller with 

increase in sample sizes. Since the computational complexity 

of the proposed formulation is a function of the number of 

samples (and we did not see much improvement after 12500 

samples), we deduced from this analysis that a sample size 

of 12500 is sufficient for drawing valid conclusions for this 

system. 
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0.002 

0.001 
800 806 812 850 818 822 828 854 832 890 864 842 846 860 840 

802 808 814 816 820 824 830 852 888 858 834 844 848 836 862 
Node No. 

Fig. 5.  Robustness analysis for System S1 with different data sizes. 

 

2) Trustworthiness Results 

To identify the minimum perturbation in µPMU measure‐ 

ments capable of inducing a prespecified error in the state es‐ 

timates, (12) was employed. We assumed a maximum allow‐ 

able error of 1% in voltage magnitude estimation, i. e., β = 
error calculated using the robustness analysis is greater than 
the maximum absolute error calculated from the DNN out‐ 0.01. Then, we determined δ condition that resulted in β 

 
min specific to each operating . To ensure trust in our 

put. This signifies the importance of robustness analysis for 

trained DNNs, as evaluating the performance of a trained 

= 0.01 

trained DNN for DSSE, we must verify whether δ tently exceeds α (= 0.05 

 

 
min 

 

consis‐ 

DNN based only on the testing dataset may give more opti‐ 

mistic results (as shown by the blue line). In addition, the 

maximum absolute errors found by (11) ensures that as long 

in Table I. 

% ). The results obtained are shown 

 
TABLE I 

as the perturbation in the input is less than α (= 0.05%), the 

error in the state estimates is guaranteed to be less than the 

values indicated by the orange line of Fig. 4. 

0.0035 

0.0030 

0.0025 

0.0020 

0.0015 

0.0010 

0.0005 

0 
800 806 812 850 818 822 828 854 832 890 864 842 846 860 840 

802 808 814 816 820 824 830 852 888 858 834 844 848 836 862 
Node No. 

Fig. 4. Comparison of DNN-based voltage magnitude estimation error and 

DNN robustness analysis for phase A of System S1. 

TRUSTWORTHINESS RESULTS FOR PHASE A VOLTAGE MAGNITUDE 

ESTIMATION FOR EACH NODE OF SYSTEM S1 

 

Node No. δmin (%) Node No. δmin (%) Node No. δmin (%) 

800  822 4.6729 864 0.9582 

802  824  834 0.9667 

806  828  842 0.9668 

808 10.5745 830  844 0.9671 

812 6.2330 854  846 0.9665 

814 4.7759 852 6.8931 848 0.9664 

850  832 0.9553 860 0.9684 

816  888 0.9445 836 0.9691 

818  890 0.8169 840 0.9692 

820 3.5278 858 0.9591 862 0.9692 
 

 

Table I shows the least amount of input perturbation, ex‐ 

pressed as a percentage of the magnitude measurement, that 
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is required to achieve a phase A voltage magnitude estima‐ 

tion error greater than 1% for every node in System S1. For 

example, node 814 necessitates a perturbation of at least 

4.7759% in the µPMU measurements to generate a 1% error 

in its phase A voltage magnitude estimation. For the nodes 

shown without any value, a δmin value that can create a 1% 

voltage magnitude estimation error in phase A could not be 

found, implying that it is not possible to induce an error of 

β = 0.01 in them. However, it should be noted that by lower‐ 

ing the value of β, a corresponding δmin could be found for 

these nodes. 
The findings presented in Table I instill trust in the trained 

Due to the sheer number of nodes in this system, we 

show the difference between robustness analysis and DNN 

testing dataset for phase A voltage magnitude estimation as a 

histogram, as shown in Fig. 7. We display the maximum ab‐ 

solute error found by robustness analysis for the ith node, de‐ 

noted by Ri, and the maximum absolute error based on the 

testing dataset for the same node, denoted by Ti. The histo‐ 

gram shows the numerical difference between Ri and Ti, i.e., 

Ri − Ti. The X-axis indicates the ranges of the differences, 

while the Y-axis denotes the number of nodes belonging to a 
given range. For example, there are 188 nodes for which the 
−4differences  in  R  and  T  lie  between  0.6×10   p. u.  and  2.6× 

DNN since for the nodes for which δ  min was found, it always 10−4 p.u.. It is evident from the histogram that, for all nodes, 

exceeded the value of α (=0.05%). It can be further implied the difference is always positive, as there are zero nodes for 
−4 

from Table I that based on the assumed TVE accuracy of the which Ri − Ti is less than 0.6×10  p.u.. This indicates that ro‐ 

µPMUs, we can be confident that the trained DNN will con‐ 

sistently provide estimates with a voltage magnitude error of 

no more than 1%. Finally, the results obtained in Fig. 4 and 

Table I prove the robustness and trustworthiness of the creat‐ 

ed DNN for System S1 and its ability to give accurate volt‐ 

age magnitude estimations within the prespecified measure‐ 

ment error bounds. 

B. System S2 

1) Robustness Results 

In this test system, µPMU measurements were only possi‐ 

ble at the feeder-head (see Fig. 6 for a depiction of this sys‐ 

tem). 

bustness analysis consistently finds adversarial examples that 

could result in more errors compared with the testing datas‐ 

et. Similar observations were made when the analyses were 

conducted for the other phase magnitudes and angles. This 

implies that when reporting the accuracy of the trained DNN 

for DSSE, it is more appropriate to present the robustness 

analysis results than just represent the testing dataset results. 

In summary, the proposed robustness analysis offers a means 

to provide guarantees for ReLU-based regression DNNs by 

accounting for the existence of potential errors beyond what 

is evident from the testing dataset alone. 
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Fig. 6.  System S2 with one µPMU available at feeder-head. 
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Fig. 7.  Difference in maximum absolute errors obtained using Ri 

for all 642 nodes. 

 

2) Trustworthiness Results 

 

 

and Ti 

Note that having real-time measurements only at the feed‐ 

er-head is common for most distribution systems. Therefore, 

it is of interest to evaluate the DNN performance of time- 

synchronized DSSE in situations where additional µPMU 

placement cannot be done due to budget constraints. There 

are 642, 665, and 637 nodes in phase A, phase B, and phase 

C of this system, respectively, whose voltages must be esti‐ 

mated under different operating conditions. Additionally, this 

feeder has 766 house-hold/commercial roof-top solar photo‐ 

voltaic units, implying that it has a high penetration of re‐ 

newable energy resources. Thus, this was an ideal test sys‐ 

tem for investigating the scalability as well as the handling 

capability of the renewable-rich system. 

The trustworthiness result analysis for System S2 is pre‐ 

sented in the form of a histogram in Fig. 8. Since System S2 

is a real-world distribution system that requires reliable oper‐ 

ation, we have chosen a smaller value of β = 0.002 to ensure 

that the estimation error for all nodes and operating condi‐ 

tions never exceeds 0.2%. For 527 nodes of this system, no 

δmin was found using (12), similar to the nodes without any 

value in Table I. As such, they are not included in the fig‐ 
ure. Hence, Fig. 8 shows the number of nodes for which a 
δmin was found, as well as the corresponding value intervals. 

For example, the first non-zero bar indicates that there are 
16 nodes in System S2 for which δmin lies between 5.4% and 

8.6%. The fact that the minimum value in Fig. 8 is 5.4% 
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k 

proves that in order to have a 0.2% error in voltage magni‐ 

tude estimation, an error of at least 5.4% must be injected in‐ 

to the input data. Since this value is much higher than the α 

value of 0.05%, this analysis instills trust in our trained 

DNN for DSSE as it ensures that the estimation error will al‐ 

ways be less than 0.2%. 
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efficacy of the proposed formulation even for large DNNs. 

3) Strategy 3: effective parallelization. This was done in 

two ways. First, the verification formulations were imple‐ 

mented parallelly for the three phases (since DSSE is per‐ 

formed on a per-phase basis). Second, the verification formu‐ 

lations were specific to a given power system node and 

could be performed independently of any other node. There‐ 

fore, different nodes of the test system were grouped togeth‐ 

er into clusters (e. g., 100 nodes for System S2), and these 

clusters were solved in parallel. Since both of these ways are 

agnostic of the DNN size, they can be easily applied to large 

DNNs for DSSE. 

2) Practical Significance of Proposed Formulations 

Trained ML models are prone to poor performance due to 

the presence of adversarial examples that can be present in 

the input space domain but not seen during training and test‐ 

ing stages. In the context of the DSSE using DNN applica‐ 

tion, this can be due to the presence of non-Gaussian noise 

in the µPMU measurements. Most studies have modeled the 

noise as a zero-mean Gaussian distribution, but in reality, 

the noise model could be non-Gaussian [21]. In such a sce‐ 
<5.4 [5.4, 8.6]  (8.6, 11.8] (11.8, 15.0] >15 

δ 
min 

(%) nario, if a DNN is trained for a Gaussian measurement 

Fig. 8. Trustworthiness results for phase A voltage magnitude estimation 

for 115 nodes of System S2. 

 

C. Discussion 

1) Strategies to Address Computational Burden 

The proposed formulation is built on an MILP-based for‐ 

mulation whose worst-case run-time complexity is exponen‐ 

tial. For example, the computational burden of the verifica‐ 

tion formulations developed in Section III is of the order of 

O(2KN S), where S denotes the total number of samples. Since 

optimization formulations with exponential time complexity 

face scalability issues when applied to the problems involv‐ 

ing large numbers of variables, we employed three strategies 

to lower the severity of this issue for the proposed formula‐ 

tion, namely, time-synchronized DSSE in µPMU-unobserv‐ 

able distribution systems. 

1) Strategy 1: incorporation of BN layer. It was observed 

that by incorporating BN layers within the DNN, a smaller- 

sized DNN could give similar validation accuracy as a larger- 

sized DNN that did not have BN layers. For example, in the 

absence of BN, a DNN with eight hidden layers and 500 

neurons/layer was needed for System S1 for achieving simi‐ 

lar accuracy as the DNN with BN described in Section IV- 

A. This considerable reduction in the size of the DNN also 

reduced the number of integer variables in the proposed for‐ 

mulation by a significant amount, resulting in faster conver‐ 

gence of the optimization process. 

2) Strategy 2: identifying always-dead and always-active 

neurons. During the training process, the output of each neu‐ 

ron was monitored. It was observed that some neurons were 

always-active, while others became always-dead, outputting 

zero. For these neurons, the corresponding binary integer 

variable, r n, was fixed to 1 and 0, respectively, reducing the 

number of integer variables required for post-training robust‐ 

ness and trustworthiness analyses. This strategy improves the 

noise, but is tested on a non-Gaussian measurement noise, 

then relying on the testing accuracy alone may not give the 

correct picture (in the worst case, it may give a sense of 

false security). Moreover, as long as the noise amount is 

low, it will not be detected/corrected by any bad data detec‐ 

tion/correction module. 

This is precisely the scenario where the proposed formula‐ 

tions become crucial. Consider the robustness verification 

formulation that calculates the maximum error in the state es‐ 

timation caused by a perturbation bounded by α in the input 

measurements, once this maximum error is found, one can 

say with certainty that as long as the input is corrupted by a 

perturbation bounded by α (irrespective of the distribution 

that the perturbation may have), the DNN-based DSSE error 

will be less than or equal to this calculated maximum error 

value. This is a powerful result that clearly indicates the 

practical significance of the proposed formulation for mis‐ 

sion-critical systems such as the electric power grid. 

 

V. CONCLUSION 

The black box nature of a DNN often makes power sys‐ 

tem operators question the validity of the obtained results. 

This is because although a well-trained DNN can make accu‐ 

rate predictions, it might lack requisite robustness to (adver‐ 

sarial) input perturbations. Therefore, providing formal guar‐ 

antees of DNN performance is necessary for ensuring their 

acceptability in the power system. To this end, we formulat‐ 

ed two verification problems, namely, robustness and trust‐ 

worthiness, for DNN-based time-synchronized DSSE using 

MILP. The robustness formulation finds the maximum error 

in the output for a given bounded perturbation in the input, 

while the trustworthiness formulation finds the minimum per‐ 

turbation in the input that is required to produce a given er‐ 

ror in the output. The proposed formulations are also applica‐ 

ble to DNN-based regression problems in other domains. 

The analytical verification of DNN-based time-synchro‐ 
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nized DSSE was first performed on a modified IEEE 34- 

node system. It was confirmed that the robustness analysis 

conducted using the testing data on a DNN resulted in a 

higher error than what was observed when the same data 

were fed as an input into that DNN. This implied that rely‐ 

ing on the outputs of the testing data alone (i. e., without a 

robustness analysis) might result in a sense of false security, 

which is dangerous for mission-critical systems such as pow‐ 

er systems. Through trustworthiness analysis, it was ob‐ 

served that we could verify the adherence of the estimation 

error to a prespecified threshold that was based on the char‐ 

acteristics of the inputs (e. g., permissible error in µPMU 

measurements). Lastly, the applicability of the proposed for‐ 

mulation to a real-world, large-scale, and renewable-rich dis‐ 

tribution system was demonstrated, confirming its practical 

utility. A future scope of this work will be to address the ex‐ 

ponential run-time complexity of the proposed formulations 

by creating verification problems that do not involve MILP. 
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