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Abstract—Traditional smart meters, which measure energy usage
every 15 minutes or more and report it at least a few hours later,
lack the granularity needed for real-time decision-making. To
address this practical problem, we introduce a new method using
generative adversarial networks (GAN) that enforces temporal
consistency on its high-resolution outputs via hard inequality
constraints using convex optimization. A unique feature of our
GAN model is that it is trained solely on slow timescale
aggregated historical energy data obtained from smart meters.
The results demonstrate that the model can successfully create
minute-by-minute temporally correlated profiles of power usage
from 15-minute interval average power consumption information.
This innovative approach, emphasizing inter-neuron constraints,
offers a promising avenue for improved high-speed state
estimation in distribution systems and enhances the applicability
of data-driven solutions for monitoring and subsequently
controlling such systems.

Index Terms—Convex optimization, Generative adversarial
networks (GAN), Load injection profile, Smart meters.

1. INTRODUCTION AND MOTIVATION

Distribution systems were once considered passive
components of the grid due to the absence of generation within
them. However, with the increasing installation of distributed
energy resources (DERs), distribution systems are trans-
forming from passive elements to active market-ready entities.
At the same time, the inherent variability of DERs poses a
significant challenge to the reliable operation of active
distribution systems [1], necessitating an evolution of their
monitoring infrastructure. In this regard, the introduction of
advanced metering infrastructure (AMI) in the form of smart
meters has ushered in a new era, furnishing additional
measurement sources that significantly amplify the
observability of distribution systems. At the same time, it must
be pointed out that AMI data is primarily used to perform
energy-related tasks, such as monthly billing calculations. As
such, their records capture the average power consumption
over 15 or 60-minute intervals [2]. However, this aggregated
reading is unable to capture the fast variations in instantaneous
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power usage values. More importantly, smart meters send data
after a latency period that can range from a few hours to a day
[3]. This means that AMI data are not available for real-time
decision-making, which limits their use for important
applications such as high-speed distribution system state
estimation (DSSE) and voltage control [4]. Note that the terms
averaged power and aggregated power used in this paper refer
to the same thing, namely, power reported by smart
meters/AMI over a given time interval.

Recently, it has been demonstrated that learning-based
methods can enhance utilization of all available measurements
in distribution systems by segregating the use of different time
resolution data between offline training and real-time
operation [3]-[6]. Historical AMI data can be employed in the
offline training stage, thus overcoming the aforementioned
limitations of smart meter measurements, while a limited set
of high-speed data coming from sensors such as supervisory
control and data acquisition (SCADA), phasor measurement
unit (PMU), or micro-PMU, located at the feeder-head, can be
used exclusively during online operation to bypass the need to
fully observe the system in real-time using the high-speed
sensors alone. In this way, the learning-based methods can
provide fast and accurate state estimates for real-time
unobservable distribution systems [7], while out-performing
conventional methods that rely on pseudo-measurements
achieved from load forecasting techniques [8].

A vital component of these learning-based methods that
rely on fast timescale measurements during their online
operation, is their training database. This is because the
scenarios present in the database must effectively represent the
load profile variations occurring at those fast timescales.
Unfortunately, for creating such a database, one needs load
injection profiles at a higher resolution than what AMI can
provide. To address this practical problem, data-driven
generative models can be employed to create fast timescale
measurements from slow timescale measurements, similar to
the concept of super-resolution [9]. Super-resolution, a well-
known theory in image processing, involves generating high-
resolution images from low-resolution images. In power
system applications, Liu et al. introduced super-resolution
perception for processing AMI data [10]. However, they
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oversmoothed the reconstructed high-resolution data resulting
in unrealistic profiles.

There is a growing body of literature that is employing
generative adversarial networks (GAN) to create load profiles
[11]. For instance, Song et al. proposed ProfileSRGAN, which
aims to up-sample load profiles from low-resolution to high-
resolution, thereby restoring high-frequency components lost
during the down-sampling process [12]. However, the physics
of the system were not considered in their formulation. If we
overlook the inherent dynamics of the power system (such as
the temporal correlations), the generated dataset may exhibit
significant fluctuations for a given time frame, making them
unrealistic. Thus, embedding the system’s knowledge into the
learning model by incorporating appropriate constraints during
training of the generative models is crucial.

In the context of deep learning, constrained optimization is
receiving significant attention as it is being widely recognized
that simple constraints can be effectively incorporated within
deep learning models to improve performance [13].
Constrained optimization can be done by adding penalty terms
to the loss function of the deep learning model in order to
enforce soft boundary constraints [14]. However, such
approaches only penalize infeasibility without guaranteeing
feasibility. Alternatively, hard constraints can be enforced by
either processing the output of an unconstrained model [15],
or designing a model that inherently produces feasible
predictions [16]. Most recent works have investigated
differentiable optimization layers for neural networks (NNs),
as such approaches could be used to directly enforce the
constraints, e.g., by projecting NN outputs onto a constraint set
using quadratic programming layers in the case of linear
constraints [17], or convex optimization layers in the case of
convex constraints [18].

A. Summary of Our Contributions

In this study, we introduce an innovative approach using
GAN to create high-resolution temporally correlated power
consumption datasets that mimic actual load injections. This
method is particularly beneficial when the available training
data lacks detail or frequency. Our main contributions are:

1. Incorporating constraints within the GAN: By using a
convex optimization (CVXPY) layer, we embed a set of
rules within our GAN that dictate how its internal
components should interact. This ensures that the data
produced by the GAN adheres closely to realistic patterns
and constraints, enhancing the quality and applicability of
the generated datasets.

2. Leveraging slow timescale data for high-resolution
output: Our model produces high-resolution (1-minute
interval) load profiles using average power consumption
data obtained at 15-minute intervals from smart meters.
This addresses the challenges posed by the scarcity of
high-resolution training datasets in distribution systems.

3. Exhibiting temporal consistency: The generated profiles
not only exhibit statistical realism but also maintain
temporal consistency. This makes them suitable for
important applications such as high-speed DSSE and fast
voltage control.

II. BAsic GAN MODEL

GAN is made up of two NNs that compete against each
other. The first NN is the generator, G, which creates synthetic
samples, while the second NN is the discriminator (or critic),
D, that distinguishes between the real and generated samples
[19]. The primary goal of GAN is to generate new statistically
similar (but not identical) samples for an existing (real) dataset
by first learning the distribution of the real dataset, and then
mapping it to a separate latent space. The initial focus is on
optimizing the D, given the G. The training process for the D
entails minimizing the cross-entropy loss, which is formulated
as shown below [20]:

Loss(D) = —é ErpyaramlogD(m)] —

~Er ) [log (1 - D(G(f)))] (1)

where, 7 is sampled from real data with probability pgaw (1), f
is sampled from the prior distribution p¢(f) such as uniform or
Gaussian, and E denotes the expectation operation. The training
data consists of two parts: one obtained from the real data
distribution pgaca(r), while the other obtained from the
generated data distribution pg (7). Given the G, we minimize
(1) to obtain the optimal solution. Now, (1) can be reformulated
as shown below:

Loss(D) = =3 [, Paata(r) log D(r) dr —
> L pr(P1og (1-D(G())) df

= —é J, [Pdata(M 1og D(r) + ps(r) log(1 = D())]dr  (2)

where, D(r) denotes the probability of r being sampled from
the real data rather than the generated data. Now, for any
(a,b) € R?\{0,0} and c € [0,1], the expression: —a log(c)
—b log(1 — ¢) achieves its minimum value at c = a/(a + b).
Hence, given G, (2) achieves its minimum value at:

Pdata (1) 3)
Pdata() + pe(r)

From the optimal solution shown in (3), it can be realized
that the D of the GAN estimates the ratio of two probability
densities. When the input data is from the real data r, the D
strives to make D(r) approach one. Conversely, if the input
data is from the generated data G(f), the D strives to make
D(G( f )) approach zero, while the G tries to make it approach
one. Since this is a zero-sum game between G and D, the loss
function of G is the negative of the loss function of D; i.e.,
Loss(G) = —Loss(D). Therefore, the overall optimization
formulation of the GAN can be expressed as a two-player
minimax game with value function V (G, D), as shown below:

minmaxV(G,D) =
G D

Erpaaam[108(DM)] = Ep i [log(1 = DG(H)]  #)

Finally, we must train G to minimize log(1 — D(G(f)). To
do this, we fix G and optimize D to maximize the discrimination
accuracy of D. Then, we fix D and optimize G to minimize the
discrimination accuracy of D, as seen in (4). This process
alternates, with the global optimal solution achieved only when
Pdata = Pg- Note that during the training process, the

Dgry =



parameters of D undergo empirical updates multiple times
before the parameters of G are updated. This sequential
updating strategy contributes to the convergence of the GAN
and the attainment of a more effective generative model. For a
detailed explanation of the working of GAN, please see [19].

III.  PROPOSED CONSTRAINED GAN

Without any loss of generality, it can be assumed that the
slow timescale aggregated AMI data are m times slower than
the fast timescale data, say, coming from SCADA. Since the
SCADA system is not deployed throughout the distribution
system to observe it at high-speeds, the goal is to create realistic
statistically accurate SCADA-like data using smart meter
measurements. In the proposed approach, we use historical
average power data from smart meters to train a GAN with
inter-neuron constraints inside the generator network through
the CVXPY layer. The generator produces fast timescale
synthetic profiles of size m X s from the CVXPY layer, which
are then aggregated column-wise to generate s smart meter-like
measurements for comparison by the discriminator.

A. Generator Block of Proposed GAN

The proposed GAN is trained by incorporating a CVXPY
layer after the dense layers of the generator’s deep NN (see Fig.
1). This creates an end-to-end trainable network that enables
addition of inter-neuron constraints. The CVXPY layer is a
convex optimization model that trains the GAN with user-
defined inputs. Note that the CVXPY layer is the penultimate
layer of the generator. After this layer, we have the Aggregator
function layer, which is non-trainable. This layer performs the
average operation on the outputs of the CVXPY layer to match
the generator’s outputs with the dimensions of the slow
timescale AMI data. Finally, the aggregated data is sent to the
discriminator of the proposed GAN. The input of the generator
is a noise vector that is sampled from a uniform distribution.
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Figure 1. Proposed generator network model.

B. CVXPY Layer

The CVXPY layer is a differentiable optimization layer
[18]. Optimization layers add domain-specific knowledge or
learnable hard constraints to machine learning (ML) models.
They solve convex, constrained optimization problems of the
form:

x(0) = argminJ(x, 8) such that
X

I(x;0)<0
h(x;8) =0 (%)

with objective J and constraint functions [ and h doing end-to-
end learning with respect to parameter 6. These constraints are
vital in scenarios where the desired outcomes of a model must
satisfy particular conditions.

In our case, the CVXPY layer optimizes the generator’s NN
as it ensures creation of synthetic data that satisfies conditions
specified via the inter-neuron constraints. The imposition of
such constraints elevates the generator's capability from merely
mimicking data patterns to actively conforming to the intricate
dynamics of the system. The proposed CVXPY layer solves a
parameterized convex problem in the forward pass to produce
a solution. In the backward pass, it computes the derivative of
the solution with respect to the parameters. Through this
process, the CVXPY layer learns a parameterized objective
function and multiple hard constraints from data that are
initially unknown to the model. The details of the objective
function and constraints is provided in Section II1.D.

C. Discriminator Block of Proposed GAN

The discriminator is a vanilla deep NN with dense layers
and a Sigmoid activation function as its output. It acts similar
to a switch (see Fig. 2). The discriminator is first trained with
actual AMI data. Subsequently, it is trained with the fake
dataset created from the generator. At the end, it outputs a
continuous probability score indicating the likelihood that a
given input is real or fake.
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Figure 2. Discriminator network model.

D. Overall Structure of the Proposed GAN

The objective function of the proposed GAN model is a
two-player minimax game given by:

mGin max V(G,D) = E,[log(D(x))] —

E,[log(1 — D(G(T CVXPY(2)))] ©6)

Equation (6) is obtained by modifying the objective
function of the basic GAN model (see (4)) by including the
CVXPY and Aggregator function layers inside the GAN
framework. The final structure is shown in Fig. 3. Both
generator and discriminator have two hidden (dense) layers
with 128 neurons in each layer. Batch normalization and
dropout rate of 0.3 are used in these layers. The third hidden
layer of the generator is the CVXPY layer, which contains 15
neurons and is followed by an Aggregator as the output layer,
which has non-trainable parameters. Note that this structure
corresponds to a SCADA availability of one sample every
minute, while AMI data is assumed to be available for 15
aggregated samples, i.e., m = 15.

To learn the fast timescale load distribution using the smart
meter measurements, we made the following modifications. As
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Figure 3. Proposed constrained GAN model.

an alternative to generating one sample from the CVXPY
layer, we generated 15 samples from it (since m = 15) and
averaged them to imitate a measurement from smart meters at
each slow timescale interval. Next, to embed temporal
correlations into our data generation process, the following
constraints were added in the CVXPY layer:

z" = argmin X%, ((z; — @;);)° (7.1)
ki L<z <ky,U (7.2)
(A—k3)zig <z < (1+ks)ziy (7.3)

Equation (7.1) represents the core objective of minimizing
the sum of squared deviations between the generated samples
z; and the inputs a;, where z* denotes the optimized output
vector, and a; represents the input values to the CVXPY layer.
This process aims to generate power consumption values that
are closely aligned with the inputs. Next, to ensure the
generated values remain within practical bounds, the model
imposes two critical constraints. First, in (7.2), each z; is forced
to lie between a lower bound and an upper bound, scaled from
historical minimum (Z) and maximum (U) values by factors k,
and k,, respectively. This scaling accommodates expected
fluctuations in power usage while maintaining adherence to
observed historical data. Secondly, (7.3) imposes restrictions
on the rate of change from one sample to the next. It ensures
that each generated sample z; does not deviate from its
predecessor z;_; by more than a predetermined percentage,
encapsulated by the parameter k5. This constraint is pivotal for
capturing the inherent energy consumption temporal patterns,
where drastic shifts within small time intervals do not occur.
The parameters k4, k,, and k3, along with the bounds L and U,
are user-defined quantities. For obtaining practical insights
into the values that can be used for these parameters, please see
the next section.

Generator Update

Fast timescale power injection profile

IV. SIMULATION RESULTS

We used the profiles of load injection from the Pecan Street
(PS) database [21] for describing the operation of our GAN.
The load-level measurements occurring at 1-minute and 15-
minute intervals from this database were employed in this
analysis. Note that only the 15-minute data was used to train the
GAN, while the 1-minute data was used to determine the values
of the parameters k4, k,, k3, L, and U. Since PS data represents
actual data from a distribution system, the values of the
parameters calculated from the PS data can be treated as a
representative of other distribution systems as well in which
such fast timescale data are not available.

Next, to further increase efficacy of the deep learning
model, samples were selected from historical data with similar
features, such as same season and hour of the day. Therefore,
for each load of the PS database, we selected load data from
June 1% through August 31% of 2018 between 12 Noon and 1
PM. This targeted approach allowed us to train the GAN with
highly relevant samples. After training using the 15-minute
interval data, we employed the GAN's generator to create
multiple high-resolution, temporally-correlated load profiles.
To wvalidate the generated profiles, we compared their
cumulative distribution function (CDF) with that of the 15-
minute smart meter readings from the PS database. Fig. 4 shows
the CDFs for a particular load. The comparison revealed a close
match between the CDFs, indicating the generator's ability to
effectively replicate load injections.

Note that although the generator produces outputs at the
slow timescale rate of one sample per 15 minutes (i.e., the
output of the Aggregator layer in Fig. 3), the fast timescale
measurements at 1-minute intervals, namely z, are available at
the output of the CVXPY layer (penultimate layer). This
output is the required SCADA-like data that the proposed



GAN can produce at every location where a smart meter is
placed. Thus, our method ensures SCADA-timescale
observability for all loads with smart meters (irrespective of
the load model or load type).
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—®- Generated Dataset
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Power Injection[kW]

Figure 4. CDF comparison. Blue curve is the CDF of 15-minute data; Red
curve is the CDF of imitated 15-minute measurements from learnt distribution.

Next, we compare the proposed constrained GAN with the
traditional GAN developed in [5]. This comparison is meant to
highlight the significance of the CVXPY layer in enforcing
essential inter-neuron constraints that play a pivotal role in the
fidelity of the generated data. The method proposed in [5]
demonstrated high degree of similarity in the aggregated
values, reaffirming the overall effectiveness of using GAN in
capturing statistical characteristics of AMI data (similar to
what was shown in Fig. 4). However, a significant difference
emerges when we delve into the fast timescale measurements,
as the traditional GAN framework is unaware of the power
system constraints. This is elaborated below.

For the same load (that was used for Fig. 4), it was observed
that for the season and hour that were the focus of this study,
the 1-minute power injection data varied between 0 and 10.26
kW, while the aggregated 15-minute AMI data varied between
0.55 and 7.38 kW. Therefore, we chose k; = 0%, k, = 139%,
L = 0.55, and U =7.38. Furthermore, it was observed that a
valid 1-minute measurement never changed by more than 50%
of its predecessor; as such, we put k; = 50%. Note that the
choice of the values for these parameters depends on the
selected load and would be different if another load had been
chosen instead. The proposed constrained GAN was able to
account for the power system constraints through the CVXPY
layer, while the traditional GAN (that did not have the CVXPY
layer) could not. The difference is observed in Fig. 5, which
shows 1-minute samples for a period of 15 minutes.

As the traditional GAN is not aware of the constraints
present in the load injection profiles, it often outputs values
that are outrageous (e.g., 385% difference between two
consecutive generated samples). However, the proposed GAN
generates much more reasonable (realistic) values by enforcing
the physical constraints during high resolution sample
generation. Moreover, it is worth noting that the averages of
both profiles are relatively close to each other, with the
constrained GAN profile averaging 2.48 kW and the traditional
GAN averaging 2.9 kW. This highlights that although 15-
minute data can show similar values for both the profiles, their
corresponding high-resolution profiles can be significantly

different, leading to severe violations of realistic load
consumption profiles. Therefore, while matching CDFs for 15-
minute intervals is necessary (as shown in Fig. 4), additional
changes must be made into the structure of the GAN (such as
the inclusion of the proposed constraints) to ensure that the
high-resolution 1-minute data produced by them are realistic.
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Figure 5. A high-resolution instantaneous power injection profile with
traditional GAN and constrained GAN. Numbers on each line segment show
the percent change for two consecutive samples. Green circle shows violation
of (7.2) and red circles show violation of (7.3) for the traditional GAN.

To further evaluate the performance of our method in
comparison to the traditional GAN, we analyzed a dataset
consisting of 500 synthetic load profiles, each comprising 1-
minute sequence of 15-minute interval values. This allowed us
to calculate the percentage increase or decrease between two
consecutive minutes over a statistically large dataset. The key
differences between the two GANSs are readily apparent in
Table 1. For the proposed constrained GAN, the maximum
percentage increase or decrease for any two consecutive
minutes within each 15-minute time-frame consistently
remained at or below 50% (see second column). This finding
attests to the efficacy of our approach in enforcing the
constraint between consecutive time intervals via the CVXPY
layer. Conversely, for the traditional GAN, the percentage
increase or decrease for two consecutive time-frames could be
extremely large (e.g., 5000%) resulting in abrupt changes in
the generated consecutive power injection values, which is not
realistic. In addition, the third column in Table I indicates that
for the traditional GAN, we do not have any control on the
maximum value generated for high resolution power injections
(it went up to 13.21 kW in our simulations), while by adding
the CVXPY layer we were able to limit the maximum value
for generated high-resolution power injections to 10.26 kW
(which matches with the limits of the actual 1-minute data as
seen in the third row). Lastly, it is crucial to highlight that the
ground truth values in Table I come from the PS database,
where observed maximum increases and decreases in load
data, as well as the peak load injection values, closely match
the performance of our proposed constrained GAN. This parity
underscores the enhanced realism and practical applicability of
our model, aligning closely with empirical data patterns and
supporting the need for incorporating physical constraints into
synthetic data generation frameworks.

The proposed constrained GAN had an overall complexity

of 0(n?), where n denotes the numbers of variables involved.
This complexity, combined with the iterative nature of GAN



training, contributes to a training time of approximately 6
hours on a computer with 256 GB RAM, Intel Xeon 6246R
CPU @3.40GHz, Nvidia Quadro RTX 5000 16 GB GPU.
However, this is not a major concern since the selected
application is an offline problem.

Table 1. Maximum percentage change for two consecutive samples and
maximum instantaneous value for 500 high-resolution power injection profiles

I-minute Maximum Maximum power
resolution data decrease/increase [%] injection [kW]
Traditional GAN 5000 13.21
Constrained GAN 50 10.26
Ground Truth 50 10.26

V. CONCLUSION

In this work, we proposed a novel GAN-based method for
generating, from AMI measurements, SCADA-like fast time-
scale data that currently do not exist in the secondary side of
the distribution system. A key feature of the proposed GAN is
that it learns a distribution when the samples are not directly
observable. Thus, the generated data can be used as training
data for ML-based DSSE and voltage control algorithms.

By embedding convex optimization layers into the
proposed GAN framework, the proposed approach is able to
create datasets that conform to specific constraints that were
previously impossible to achieve. This new methodology holds
great promise for various applications that require high-quality
datasets with specific domain knowledge embedded inside the
training process. It also opens up new possibilities for the
development of more robust and accurate ML models that can
manage complex power system tasks. The future work will
involve  focusing on  generating  higher-resolution
instantaneous power injection profiles with both temporal and
spatial correlations and using them for enhanced monitoring
and control of active distribution systems.
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