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Abstract—Traditional smart meters, which measure energy usage 

every 15 minutes or more and report it at least a few hours later, 

lack the granularity needed for real-time decision-making. To 

address this practical problem, we introduce a new method using 

generative adversarial networks (GAN) that enforces temporal 

consistency on its high-resolution outputs via hard inequality 

constraints using convex optimization. A unique feature of our 

GAN model is that it is trained solely on slow timescale 

aggregated historical energy data obtained from smart meters. 

The results demonstrate that the model can successfully create 

minute-by-minute temporally correlated profiles of power usage 

from 15-minute interval average power consumption information. 

This innovative approach, emphasizing inter-neuron constraints, 

offers a promising avenue for improved high-speed state 

estimation in distribution systems and enhances the applicability 

of data-driven solutions for monitoring and subsequently 

controlling such systems. 

Index Terms—Convex optimization, Generative adversarial 

networks (GAN), Load injection profile, Smart meters. 

I. INTRODUCTION AND MOTIVATION 

Distribution systems were once considered passive 
components of the grid due to the absence of generation within 
them. However, with the increasing installation of distributed 
energy resources (DERs), distribution systems are trans-
forming from passive elements to active market-ready entities. 
At the same time, the inherent variability of DERs poses a 
significant challenge to the reliable operation of active 
distribution systems [1], necessitating an evolution of their 
monitoring infrastructure. In this regard, the introduction of 
advanced metering infrastructure (AMI) in the form of smart 
meters has ushered in a new era, furnishing additional 
measurement sources that significantly amplify the 
observability of distribution systems. At the same time, it must 
be pointed out that AMI data is primarily used to perform 
energy-related tasks, such as monthly billing calculations. As 
such, their records capture the average power consumption 
over 15 or 60-minute intervals [2]. However, this aggregated 
reading is unable to capture the fast variations in instantaneous 

power usage values. More importantly, smart meters send data 
after a latency period that can range from a few hours to a day 
[3]. This means that AMI data are not available for real-time 
decision-making, which limits their use for important 
applications such as high-speed distribution system state 
estimation (DSSE) and voltage control [4]. Note that the terms 
averaged power and aggregated power used in this paper refer 
to the same thing, namely, power reported by smart 
meters/AMI over a given time interval. 

Recently, it has been demonstrated that learning-based 
methods can enhance utilization of all available measurements 
in distribution systems by segregating the use of different time 
resolution data between offline training and real-time 
operation [3]-[6]. Historical AMI data can be employed in the 
offline training stage, thus overcoming the aforementioned 
limitations of smart meter measurements, while a limited set 
of high-speed data coming from sensors such as supervisory 
control and data acquisition (SCADA), phasor measurement 
unit (PMU), or micro-PMU, located at the feeder-head, can be 
used exclusively during online operation to bypass the need to 
fully observe the system in real-time using the high-speed 
sensors alone. In this way, the learning-based methods can 
provide fast and accurate state estimates for real-time 
unobservable distribution systems [7], while out-performing 
conventional methods that rely on pseudo-measurements 
achieved from load forecasting techniques [8].  

A vital component of these learning-based methods that 
rely on fast timescale measurements during their online 
operation, is their training database. This is because the 
scenarios present in the database must effectively represent the 
load profile variations occurring at those fast timescales. 
Unfortunately, for creating such a database, one needs load 
injection profiles at a higher resolution than what AMI can 
provide. To address this practical problem, data-driven 
generative models can be employed to create fast timescale 
measurements from slow timescale measurements, similar to 
the concept of super-resolution [9]. Super-resolution, a well-
known theory in image processing, involves generating high-
resolution images from low-resolution images. In power 
system applications, Liu et al. introduced super-resolution 
perception for processing AMI data [10]. However, they 
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oversmoothed the reconstructed high-resolution data resulting 
in unrealistic profiles.  

There is a growing body of literature that is employing 
generative adversarial networks (GAN) to create load profiles 
[11]. For instance, Song et al. proposed ProfileSRGAN, which 
aims to up-sample load profiles from low-resolution to high-
resolution, thereby restoring high-frequency components lost 
during the down-sampling process [12]. However, the physics 
of the system were not considered in their formulation. If we 
overlook the inherent dynamics of the power system (such as 
the temporal correlations), the generated dataset may exhibit 
significant fluctuations for a given time frame, making them 
unrealistic. Thus, embedding the system’s knowledge into the 
learning model by incorporating appropriate constraints during 
training of the generative models is crucial. 

In the context of deep learning, constrained optimization is 
receiving significant attention as it is being widely recognized 
that simple constraints can be effectively incorporated within 
deep learning models to improve performance [13]. 
Constrained optimization can be done by adding penalty terms 
to the loss function of the deep learning model in order to 
enforce soft boundary constraints [14]. However, such 
approaches only penalize infeasibility without guaranteeing 
feasibility. Alternatively, hard constraints can be enforced by 
either processing the output of an unconstrained model [15],  
or designing a model that inherently produces feasible 
predictions [16]. Most recent works have investigated 
differentiable optimization layers for neural networks (NNs), 
as such approaches could be used to directly enforce the 
constraints, e.g., by projecting NN outputs onto a constraint set 
using quadratic programming layers in the case of linear 
constraints [17], or convex optimization layers in the case of 
convex constraints [18]. 

A. Summary of Our Contributions 

In this study, we introduce an innovative approach using 
GAN to create high-resolution temporally correlated power 
consumption datasets that mimic actual load injections. This 
method is particularly beneficial when the available training 
data lacks detail or frequency. Our main contributions are: 

1. Incorporating constraints within the GAN: By using a 
convex optimization (CVXPY) layer, we embed a set of 
rules within our GAN that dictate how its internal 
components should interact. This ensures that the data 
produced by the GAN adheres closely to realistic patterns 
and constraints, enhancing the quality and applicability of 
the generated datasets. 

2. Leveraging slow timescale data for high-resolution 
output: Our model produces high-resolution (1-minute 
interval) load profiles using average power consumption 
data obtained at 15-minute intervals from smart meters. 
This addresses the challenges posed by the scarcity of 
high-resolution training datasets in distribution systems.  

3. Exhibiting temporal consistency: The generated profiles 
not only exhibit statistical realism but also maintain 
temporal consistency. This makes them suitable for 
important applications such as high-speed DSSE and fast 
voltage control.  

II. BASIC GAN MODEL 

GAN is made up of two NNs that compete against each 
other. The first NN is the generator, 𝐺, which creates synthetic 
samples, while the second NN is the discriminator (or critic), 
𝐷, that distinguishes between the real and generated samples 
[19]. The primary goal of GAN is to generate new statistically 
similar (but not identical) samples for an existing (real) dataset 
by first learning the distribution of the real dataset, and then 
mapping it to a separate latent space. The initial focus is on 
optimizing the 𝐷, given the 𝐺. The training process for the 𝐷 
entails minimizing the cross-entropy loss, which is formulated 
as shown below [20]: 

Loss(𝐷) =  −
1

2
 𝐸𝑟~𝑝data(𝑟)[log𝐷(𝑟)]  −                              

 
1

2
𝐸𝑓~𝑝𝑓(𝑓) [log (1 − 𝐷(𝐺(𝑓)))]                                          (1)  

where, 𝑟 is sampled from real data with probability 𝑝data(𝑟), 𝑓 
is sampled from the prior distribution 𝑝𝑓(𝑓) such as uniform or 

Gaussian, and 𝐸 denotes the expectation operation. The training 
data consists of two parts: one obtained from the real data 
distribution 𝑝data(𝑟), while the other obtained from the 
generated data distribution 𝑝𝐺(𝑟). Given the 𝐺, we minimize 
(1) to obtain the optimal solution. Now, (1) can be reformulated 
as shown below: 

Loss(𝐷) =  −
1

2
 ∫ 𝑝data(𝑟) log 𝐷(𝑟) d𝑟
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∫ 𝑝𝑓(𝑓) log (1 − 𝐷(𝐺(𝑓))) d𝑓

 

𝑓
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 ∫ [𝑝data(𝑟) log 𝐷(𝑟) + 𝑝𝐺(𝑟) log(1 − 𝐷(𝑟))]d𝑟

 

𝑟
      (2)     

where, 𝐷(𝑟) denotes the probability of  𝑟 being sampled from 

the real data rather than the generated data. Now, for any 

(𝑎, 𝑏) ∈ ℝ2 \{0,0}  and 𝑐 ∈ [0,1], the expression: −a log(𝑐) 

− b log(1 − 𝑐) achieves its minimum value at 𝑐 = 𝑎/(𝑎 + 𝑏). 

Hence, given 𝐺, (2) achieves its minimum value at: 

𝐷𝐺(𝑟)
∗ =  

𝑝data(𝑟)

𝑝data(𝑟) + 𝑝𝐺(𝑟)
                                                         (3) 

From the optimal solution shown in (3), it can be realized 
that the 𝐷 of the GAN estimates the ratio of two probability 
densities. When the input data is from the real data 𝑟, the 𝐷 
strives to make 𝐷(𝑟) approach one. Conversely, if the input 
data is from the generated data 𝐺(𝑓), the 𝐷 strives to make 

𝐷(𝐺(𝑓)) approach zero, while the 𝐺 tries to make it approach 

one. Since this is a zero-sum game between 𝐺 and 𝐷, the loss 
function of 𝐺 is the negative of the loss function of 𝐷; i.e., 
Loss(𝐺) =  −Loss(𝐷). Therefore, the overall optimization 
formulation of the GAN can be expressed as a two-player 
minimax game with value function 𝑉(𝐺, 𝐷), as shown below: 

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) = 

𝐸𝑟~𝑝data(𝑟)[log(𝐷(𝑟))] − 𝐸~𝑝𝑓(𝑓)[log(1 − 𝐷(𝐺(𝑓))]          (4) 

Finally, we must train 𝐺 to minimize log(1 − 𝐷(𝐺(𝑓)). To 

do this, we fix 𝐺 and optimize 𝐷 to maximize the discrimination 
accuracy of 𝐷. Then, we fix 𝐷 and optimize 𝐺 to minimize the 
discrimination accuracy of 𝐷, as seen in (4). This process 
alternates, with the global optimal solution achieved only when 
𝑝data =  𝑝𝐺. Note that during the training process, the 



parameters of 𝐷 undergo empirical updates multiple times 
before the parameters of 𝐺 are updated. This sequential 
updating strategy contributes to the convergence of the GAN 
and the attainment of a more effective generative model. For a 
detailed explanation of the working of GAN, please see [19]. 

III. PROPOSED CONSTRAINED GAN 

Without any loss of generality, it can be assumed that the 
slow timescale aggregated AMI data are 𝑚 times slower than 
the fast timescale data, say, coming from SCADA. Since the 
SCADA system is not deployed throughout the distribution 
system to observe it at high-speeds, the goal is to create realistic 
statistically accurate SCADA-like data using smart meter 
measurements. In the proposed approach, we use historical 
average power data from smart meters to train a GAN with 
inter-neuron constraints inside the generator network through 
the CVXPY layer. The generator produces fast timescale 
synthetic profiles of size 𝑚 × 𝑠 from the CVXPY layer, which 
are then aggregated column-wise to generate 𝑠 smart meter-like 
measurements for comparison by the discriminator. 

A. Generator Block of Proposed GAN 

The proposed GAN is trained by incorporating a CVXPY 
layer after the dense layers of the generator’s deep NN (see Fig. 
1). This creates an end-to-end trainable network that enables 
addition of inter-neuron constraints. The CVXPY layer is a 
convex optimization model that trains the GAN with user-
defined inputs. Note that the CVXPY layer is the penultimate 
layer of the generator. After this layer, we have the Aggregator 
function layer, which is non-trainable. This layer performs the 
average operation on the outputs of the CVXPY layer to match 
the generator’s outputs with the dimensions of the slow 
timescale AMI data. Finally, the aggregated data is sent to the 
discriminator of the proposed GAN. The input of the generator 
is a noise vector that is sampled from a uniform distribution. 

 

Figure 1. Proposed generator network model.  

B.  CVXPY Layer 

The CVXPY layer is a differentiable optimization layer 
[18]. Optimization layers add domain-specific knowledge or 
learnable hard constraints to machine learning (ML) models. 
They solve convex, constrained optimization problems of the 
form: 

𝑥(𝜃) = arg min
𝑥

𝐽(𝑥, 𝜃)  such that  

𝑙(𝑥; 𝜃) ≤ 0                                                                                 

ℎ(𝑥; 𝜃) = 0                                                                                  (5) 

with objective 𝐽 and constraint functions 𝑙 and ℎ doing end-to-
end learning with respect to parameter 𝜃. These constraints are 
vital in scenarios where the desired outcomes of a model must 
satisfy particular conditions.  

In our case, the CVXPY layer optimizes the generator’s NN 
as it ensures creation of synthetic data that satisfies conditions 
specified via the inter-neuron constraints. The imposition of 
such constraints elevates the generator's capability from merely 
mimicking data patterns to actively conforming to the intricate 
dynamics of the system. The proposed CVXPY layer solves a 
parameterized convex problem in the forward pass to produce 
a solution. In the backward pass, it computes the derivative of 
the solution with respect to the parameters. Through this 
process, the CVXPY layer learns a parameterized objective 
function and multiple hard constraints from data that are 
initially unknown to the model. The details of the objective 
function and constraints is provided in Section III.D. 

C. Discriminator Block of Proposed GAN 

The discriminator is a vanilla deep NN with dense layers 
and a Sigmoid activation function as its output. It acts similar 
to a switch (see Fig. 2). The discriminator is first trained with 
actual AMI data. Subsequently, it is trained with the fake 
dataset created from the generator. At the end, it outputs a 
continuous probability score indicating the likelihood that a 
given input is real or fake. 

 

Figure 2. Discriminator network model. 

D. Overall Structure of the Proposed GAN 

The objective function of the proposed GAN model is a 
two-player minimax game given by: 

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) = 𝐸𝑥[log(𝐷(𝑥))] −                                 

𝐸𝑧[log(1 − 𝐷(𝐺(∑ CVXPY(𝑧)))]                                       (6)  

Equation (6) is obtained by modifying the objective 
function of the basic GAN model (see (4)) by including the 
CVXPY and Aggregator function layers inside the GAN 
framework. The final structure is shown in Fig. 3. Both 
generator and discriminator have two hidden (dense) layers 
with 128 neurons in each layer. Batch normalization and 
dropout rate of 0.3 are used in these layers. The third hidden 
layer of the generator is the CVXPY layer, which contains 15 
neurons and is followed by an Aggregator as the output layer, 
which has non-trainable parameters. Note that this structure 
corresponds to a SCADA availability of one sample every 
minute, while AMI data is assumed to be available for 15 
aggregated samples, i.e., 𝑚 = 15. 

To learn the fast timescale load distribution using the smart 
meter measurements, we made the following modifications. As  



 

Figure 3. Proposed constrained GAN model. 

an alternative to generating one sample from the CVXPY 
layer, we generated 15 samples from it (since 𝑚 = 15) and 
averaged them to imitate a measurement from smart meters at 
each slow timescale interval. Next, to embed temporal 
correlations into our data generation process, the following 
constraints were added in the CVXPY layer: 

𝑧∗ = argmin
𝑧

∑ ((𝑧𝑖 − 𝑎𝑖)𝑖)
2𝑚

𝑖=1  (7.1) 

𝑘1. 𝐿 ≤ 𝑧𝑖 ≤ 𝑘2𝑈 (7.2) 

(1 − 𝑘3) 𝑧𝑖−1 ≤ 𝑧𝑖 ≤ (1 + 𝑘3) 𝑧𝑖−1 (7.3) 

Equation (7.1) represents the core objective of minimizing 
the sum of squared deviations between the generated samples 
𝑧𝑖 and the inputs 𝑎𝑖, where 𝑧∗ denotes the optimized output 
vector, and 𝑎𝑖 represents the input values to the CVXPY layer. 
This process aims to generate power consumption values that 
are closely aligned with the inputs. Next, to ensure the 
generated values remain within practical bounds, the model 
imposes two critical constraints. First, in (7.2), each 𝑧𝑖 is forced 
to lie between a lower bound and an upper bound, scaled from 
historical minimum (L) and maximum (U) values by factors 𝑘1 
and 𝑘2, respectively. This scaling accommodates expected 
fluctuations in power usage while maintaining adherence to 
observed historical data. Secondly, (7.3) imposes restrictions 
on the rate of change from one sample to the next. It ensures 
that each generated sample 𝑧𝑖 does not deviate from its 
predecessor 𝑧𝑖−1 by more than a predetermined percentage, 
encapsulated by the parameter 𝑘3. This constraint is pivotal for 
capturing the inherent energy consumption temporal patterns, 
where drastic shifts within small time intervals do not occur. 
The parameters 𝑘1, 𝑘2, and 𝑘3, along with the bounds L and U, 
are user-defined quantities. For obtaining practical insights 
into the values that can be used for these parameters, please see 
the next section. 

IV. SIMULATION RESULTS 

We used the profiles of load injection from the Pecan Street 
(PS) database [21] for describing the operation of our GAN. 
The load-level measurements occurring at 1-minute and 15-
minute intervals from this database were employed in this 
analysis. Note that only the 15-minute data was used to train the 
GAN, while the 1-minute data was used to determine the values 
of the parameters 𝑘1, 𝑘2, 𝑘3, L, and U. Since PS data represents 
actual data from a distribution system, the values of the 
parameters calculated from the PS data can be treated as a 
representative of other distribution systems as well in which 
such fast timescale data are not available. 

Next, to further increase efficacy of the deep learning 
model, samples were selected from historical data with similar 
features, such as same season and hour of the day. Therefore, 
for each load of the PS database, we selected load data from 
June 1st through August 31st of 2018 between 12 Noon and 1 
PM. This targeted approach allowed us to train the GAN with 
highly relevant samples. After training using the 15-minute 
interval data, we employed the GAN's generator to create 
multiple high-resolution, temporally-correlated load profiles. 
To validate the generated profiles, we compared their 
cumulative distribution function (CDF) with that of the 15-
minute smart meter readings from the PS database. Fig. 4 shows 
the CDFs for a particular load. The comparison revealed a close 
match between the CDFs, indicating the generator's ability to 
effectively replicate load injections. 

Note that although the generator produces outputs at the 
slow timescale rate of one sample per 15 minutes (i.e., the 
output of the Aggregator layer in Fig. 3), the fast timescale 
measurements at 1-minute intervals, namely 𝑧, are available at 
the output of the CVXPY layer (penultimate layer). This 
output is the required SCADA-like data that the proposed 



GAN can produce at every location where a smart meter is 
placed. Thus, our method ensures SCADA-timescale 
observability for all loads with smart meters (irrespective of 
the load model or load type). 

 

Figure 4. CDF comparison. Blue curve is the CDF of 15-minute data; Red 

curve is the CDF of imitated 15-minute measurements from learnt distribution. 

Next, we compare the proposed constrained GAN with the 
traditional GAN developed in [5]. This comparison is meant to 
highlight the significance of the CVXPY layer in enforcing 
essential inter-neuron constraints that play a pivotal role in the 
fidelity of the generated data. The method proposed in [5] 
demonstrated high degree of similarity in the aggregated 
values, reaffirming the overall effectiveness of using GAN in 
capturing statistical characteristics of AMI data (similar to 
what was shown in Fig. 4). However, a significant difference 
emerges when we delve into the fast timescale measurements, 
as the traditional GAN framework is unaware of the power 
system constraints. This is elaborated below. 

For the same load (that was used for Fig. 4), it was observed 
that for the season and hour that were the focus of this study, 
the 1-minute power injection data varied between 0 and 10.26 
kW, while the aggregated 15-minute AMI data varied between 
0.55 and 7.38 kW. Therefore, we chose 𝑘1 = 0%, 𝑘2 = 139%, 
𝐿 =  0.55, and 𝑈 =7.38. Furthermore, it was observed that a 
valid 1-minute measurement never changed by more than 50% 
of its predecessor; as such, we put 𝑘3 = 50%. Note that the 
choice of the values for these parameters depends on the 
selected load and would be different if another load had been 
chosen instead. The proposed constrained GAN was able to 
account for the power system constraints through the CVXPY 
layer, while the traditional GAN (that did not have the CVXPY 
layer) could not. The difference is observed in Fig. 5, which 
shows 1-minute samples for a period of 15 minutes.  

As the traditional GAN is not aware of the constraints 
present in the load injection profiles, it often outputs values 
that are outrageous (e.g., 385% difference between two 
consecutive generated samples). However, the proposed GAN 
generates much more reasonable (realistic) values by enforcing 
the physical constraints during high resolution sample 
generation. Moreover, it is worth noting that the averages of 
both profiles are relatively close to each other, with the 
constrained GAN profile averaging 2.48 kW and the traditional 
GAN averaging 2.9 kW. This highlights that although 15-
minute data can show similar values for both the profiles, their 
corresponding high-resolution profiles can be significantly 

different, leading to severe violations of realistic load 
consumption profiles. Therefore, while matching CDFs for 15-
minute intervals is necessary (as shown in Fig. 4), additional 
changes must be made into the structure of the GAN (such as 
the inclusion of the proposed constraints) to ensure that the 
high-resolution 1-minute data produced by them are realistic.  

 

Figure 5. A high-resolution instantaneous power injection profile with 

traditional GAN and constrained GAN. Numbers on each line segment show 

the percent change for two consecutive samples. Green circle shows violation 

of (7.2) and red circles show violation of (7.3) for the traditional GAN. 

To further evaluate the performance of our method in 
comparison to the traditional GAN, we analyzed a dataset 
consisting of 500 synthetic load profiles, each comprising 1-
minute sequence of 15-minute interval values. This allowed us 
to calculate the percentage increase or decrease between two 
consecutive minutes over a statistically large dataset. The key 
differences between the two GANs are readily apparent in 
Table I. For the proposed constrained GAN, the maximum 
percentage increase or decrease for any two consecutive 
minutes within each 15-minute time-frame consistently 
remained at or below 50% (see second column). This finding 
attests to the efficacy of our approach in enforcing the 
constraint between consecutive time intervals via the CVXPY 
layer. Conversely, for the traditional GAN, the percentage 
increase or decrease for two consecutive time-frames could be 
extremely large (e.g., 5000%) resulting in abrupt changes in 
the generated consecutive power injection values, which is not 
realistic. In addition, the third column in Table I indicates that 
for the traditional GAN, we do not have any control on the 
maximum value generated for high resolution power injections 
(it went up to 13.21 kW in our simulations), while by adding 
the CVXPY layer we were able to limit the maximum value 
for generated high-resolution power injections to 10.26 kW 
(which matches with the limits of the actual 1-minute data as 
seen in the third row). Lastly, it is crucial to highlight that the 
ground truth values in Table I come from the PS database, 
where observed maximum increases and decreases in load 
data, as well as the peak load injection values, closely match 
the performance of our proposed constrained GAN. This parity 
underscores the enhanced realism and practical applicability of 
our model, aligning closely with empirical data patterns and 
supporting the need for incorporating physical constraints into 
synthetic data generation frameworks. 

The proposed constrained GAN had an overall complexity 
of 𝑂(𝑛3), where 𝑛 denotes the numbers of variables involved. 
This complexity, combined with the iterative nature of GAN 



training, contributes to a training time of approximately 6 
hours on a computer with 256 GB RAM, Intel Xeon 6246R 
CPU @3.40GHz, Nvidia Quadro RTX 5000 16 GB GPU. 
However, this is not a major concern since the selected 
application is an offline problem. 

Table I. Maximum percentage change for two consecutive samples and 
maximum instantaneous value for 500 high-resolution power injection profiles 

1-minute 

resolution data 

Maximum 

decrease/increase [%] 

Maximum power 

injection [kW] 

Traditional GAN 5000 13.21 

Constrained GAN 50 10.26 

Ground Truth 50 10.26 

V. CONCLUSION  

In this work, we proposed a novel GAN-based method for 
generating, from AMI measurements, SCADA-like fast time-
scale data that currently do not exist in the secondary side of 
the distribution system. A key feature of the proposed GAN is 
that it learns a distribution when the samples are not directly 
observable. Thus, the generated data can be used as training 
data for ML-based DSSE and voltage control algorithms.  

By embedding convex optimization layers into the 
proposed GAN framework, the proposed approach is able to 
create datasets that conform to specific constraints that were 
previously impossible to achieve. This new methodology holds 
great promise for various applications that require high-quality 
datasets with specific domain knowledge embedded inside the 
training process. It also opens up new possibilities for the 
development of more robust and accurate ML models that can 
manage complex power system tasks. The future work will 
involve focusing on generating higher-resolution 
instantaneous power injection profiles with both temporal and 
spatial correlations and using them for enhanced monitoring 
and control of active distribution systems. 
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