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A B S T R A C T

As car ownership and urbanization continue to rise worldwide, traffic crashes have become growing concerns
globally. Measuring crash risk provides insight into understanding crash patterns, which can eventually support
proactive transport planning and improve road safety. However, traditional spatial analysis methods for crash
risk assessment, such as the hotspot detection method, are mainly focused on identifying areas with higher crash
frequency. These methods are subject to critical issues in risk analysis due to ignoring crash impacts and
background traffic volume information. Aside from the two issues, current crash risk assessment methods,
especially those aiming for cluster detection, are subject to the modified temporal unit problem, referring to the
temporal effects (i.e., aggregation, segmentation, and boundary) in cluster detection. To alleviate these issues,
this paper applies an emerging hot spot detection method, called the prospective space-time scan statistic (STSS)
method, for assessing the crash risk at a refined network scale and over multiple years in a case study of Hartford,
Connecticut. By identifying the spatial and temporal clusters of the crash risk, the study can provide evidence for
tailoring road safety management strategies in neighborhoods characterized by high crash risk.

1. Introduction

As car ownership and urbanization continue to rise worldwide,
traffic crashes have become growing concerns globally, incurring sub-
stantial deaths, injuries, and economic losses on a daily basis. Although
many policy attempts, such as improving vehicle standards, have been
made to mitigate the impact of traffic crashes, road traffic deaths and
injuries remain a major global development challenge (WHO, 2023). In
particular, the United Nations’ Sustainable Development Goals (SDG)
3.6, originally set to halve the global deaths and injuries from traffic
crashes by 2020, has been extended to 2030 due to the rising scope and
frequency of traffic accidents (United Nations, 2020; Mohan et al., 2021;
WHO, 2023b).

The occurrence of traffic crashes is closely associated with environ-
mental factors, including land use patterns (Ouyang and Bejleri, 2014),
road infrastructure (Papadimitriou et al., 2019), and lighting conditions
(Haleem et al., 2015). As these environmental factors vary across space,
traffic crashes are subject to a high degree of spatial variations (Ziako-
poulos and Yannis, 2020). Therefore, spatial analysis methods, such as
summarizing cases delineated by census units or identifying the hot
spots of crashes, are frequently employed to identify high-risk areas

(Ziakopoulos and Yannis, 2020; Shahzad, 2020). These methods, how-
ever, are subject to three methodological issues in risk analysis. First,
risk is a combined measure of both the likelihood for a hazardous event
to occur and the potential impact when it occurs (Rausand, 2013;
Stoneburner et al., 2002). Past assessments of the crash risk focusing on
the historical occurrences (which represent the likelihood) have rarely
accounted for the crash impact. For example, locations with fewer
crashes but higher mortality rates could be overlooked if the impact
component is missing in the assessment. Second, using the total number
of cases to represent the crash risk does not account for the variation of
traffic volume in space and over time. More specifically, the total cases
may not be an appropriate risk indicator, as the traffic volume
contributing to the likelihood of crashes is overlooked. This issue shares
similarities with the data normalization issue in epidemiology, where
the risk for an epidemic outbreak is not only dependent on the absolute
disease cases but also the total population susceptible to the disease
(Adams et al., 2023). Third, existing crash risk assessment is subject to
the Modified Temporal Unit Problem (MTUP) (T. Cheng and Adepeju,
2014). The MTUP arises as the modeling results can be influenced by
how the data is organized temporally, including the different temporal
durations of data, the different ways of segmenting the temporal data,
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and the smallest unit used for such segmentation. While the MTUP exists
in all temporal data modeling, it will have considerable influence on
long-time series data, such as multiple-year traffic crashes. Traditional
risk assessment models (e.g., kernel density) are unable to tackle the
MTUP.

In this study, we have modeled traffic crash risk on road networks by
considering these issues. Our model identifies the spatial-temporal
patterns of traffic crash risk on road networks using the prospective
space-time scan statistic (STSS) method. The prospective STSS method
has gained wide recognition in epidemiology for its effectiveness in
detecting clusters of diseases with a moving space-time window (Kull-
dorff et al., 1998). This method is particularly helpful for continuous
surveillance of hazardous events, as it detects clusters that are active or
emerging towards the end of the study period (Kulldorff, 2001). Also, as
the STSS can identify the high or low risk clusters without being con-
strained by a given temporal duration or unit, it can alleviate the issue of
MTUP. By using the prospective STSS method, we have derived network-
based traffic crash risk using a seven-year crash dataset. To the best of
our knowledge, this study is the first to utilize this new method for
modeling traffic crash risk and can help support transport planning and
policy initiatives that aim to mitigate crash risk in vulnerable
neighborhoods.

The rest of the paper is organized as follows: Section 2 provides a
review of the spatial and temporal analysis methods for modeling traffic
crash risk. Section 3 introduces the prospective STSS method for
assessing traffic crash risk. Section 4 presents the result of applying the
method to a seven-year traffic crash dataset of Hartford, Connecticut.
Section 5 provides a further discussion of the result in terms of the policy
implications, advantages, and limitations, followed by the last section
that concludes the paper.

2. Literature review

2.1. Spatial modeling of traffic crash risk

Traffic crashes are typically represented as spatial points based on
the locations where they occur. Thus, the modeling of traffic crash risk
can be guided by two essential properties of spatial point data: spatial
heterogeneity and spatial dependence (Mohaymany et al., 2013; Zia-
kopoulos and Yannis, 2020).

The spatial heterogeneity of traffic crashes relates to the fact that
traffic crashes are unevenly distributed over space due to the differences
in risk factors within the built environment (Mohaymany et al., 2013).
This property can be measured by aggregating crash counts within
certain spatial units, such as road intersections (Abdel-Aty and Wang,
2006), road segments (Aguero-Valverde et al., 2016), traffic analysis
zones (TAZs) (Ng et al., 2002), and census tracts (Wier et al., 2009).
However, the measurement precision could be limited by the scale of the
chosen spatial units, and thus, modeling results across different spatial
units can be inconsistent (Abdel-Aty et al., 2013; Cai et al., 2017). To
complement the lack of consistency, the kernel density estimation (KDE)
model was employed for identifying the spatial heterogeneity of traffic
crashes (Hashimoto et al., 2016). Specifically, the KDE creates a smooth,
continuous density surface, where the hotspots of crashes can be visu-
alized (T. Anderson, 2007; T. K. Anderson, 2009). As traffic crashes
happen mostly on road networks, the NetKDE method, which is a
network-based KDE, was developed for measuring network-based
spatial heterogeneity (Xie and Yan, 2008), and was utilized for identi-
fying high-risk road segments in various case studies (Chen et al., 2018;
Loo et al., 2011; Mohaymany et al., 2013). However, a common weak-
ness of all the KDE methods is the relative subjectivity in parameter
selection. Specifically, the modeling results can be largely influenced by
a smoothing parameter called the bandwidth, and the selection of the
bandwidth is relatively difficult (Loo et al., 2011; Xie and Yan, 2008).

The spatial dependence characterizes the interactive effects between
nearby crashes (Mohaymany et al., 2013; Ziakopoulos and Yannis,

2020). This property is due to the fact the influence of one crash at a
particular location can be related to the occurrence of another crash
nearby, as the crashes in near proximity can be induced by similar
environmental risk factors. This effect can be measured by Moran’s I
Index and Geary’s C Ratio (Yao et al., 2016; Ziakopoulos and Yannis,
2020; Shahzad, 2020), whereas many analysts prefer Moran’s I due to its
more favorable distribution characteristics and its greater overall sta-
bility and flexibility (Mitra, 2009). When detecting crash-prone loca-
tions, the local versions of Moran’s I and Geary’s C are more suitable, as
they can calculate for individual locations and reveal their spatial
autocorrelation with nearby locations (Anselin, 1995; Yamada and Thill,
2007, 2010; Tortum and Atalay, 2015). However, the local Moran’s I
and Geary’s C cannot differentiate high-value clusters from low-value
clusters (Erdogan, 2009). To solve this issue, another index for local
spatial autocorrelation, Getis-Ord Gi*, has been proposed to distinguish
between high-value clusters and low-value clusters in terms of the Gi*
value (Ord and Getis, 1995; Yamada and Thill, 2010). The Gi* value has
been used to identify hotspots and cold spots of different types of traffic
crashes at different zonal levels, such as road buffer polygons (Rankavat
and Tiwari, 2013), traffic analysis zones (Soltani and Askari, 2017), and
administrative regions (Erdogan, 2009). The traditional local Moran’s I
and Getis-Ord Gi* have also been extended to the network, known as the
local indicators of network-constrained clusters (LINCS) method
(Yamada and Thill, 2010). The LINCS considers the spatial separation
between observations based on the distance along a specific network
(Yamada and Thill, 2007, 2010), making it more suitable for analyzing
network-constrained scenarios, including traffic crashes (Liu et al.,
2019; Nie et al., 2015).

These existing spatial methods aim to identify hotspots of crash lo-
cations across space, rather than detecting true clusters based on the
nature of crash occurrence. In contrast, STSS searches for significant
clustering that exceeds expectations under baseline conditions and can
incorporate relevant environmental factors into risk assessment.

2.2. Temporal modeling of traffic crash risk

In recent years, many scholars have attempted to bring the temporal
dimension into the spatial modeling of traffic crash risk. The majority of
these studies analyze the spatial and temporal characteristics of traffic
crashes separately. Specifically, a common approach is aggregating
traffic crashes based on a certain time scale, for which the space-time
cube is frequently used as a framework for spatiotemporal aggregation
(Z. Cheng et al., 2018; Wu et al., 2022; Yoon and Lee, 2021). Then,
traffic crash clusters were detected through cluster detection methods,
such as Getis-Ord Gi* (Hazaymeh et al., 2022; Soltani and Askari, 2017)
and KDE (Fan et al., 2018; Kazmi et al., 2022; Ouni and Belloumi, 2018;
Özcan and Küçükönder, 2020), and these identified clusters were
compared over different time periods. For example, Bíl et al. (2019)
applied a fixed moving window in time and computed spatial clustering
within each time window. Kang et al. (2018) utilized space-time kernel
density estimation (STKDE) to identify the change in traffic crash con-
centration over time, whereas the identification results were a com-
parison of spatial patterns at different points in time (i.e., hourly).

One issue in these temporal modeling studies refers to the MTUP
(Cheng and Adepeju, 2014). The MTUP is a problem similar to the
classic modifiable areal unit problem (MAUP), whereas it refers to the
data uncertainty in the temporal dimension. The MTUP arises as the
modeling results can be influenced by how the data is organized
temporally, including the different temporal durations of data (i.e.,
boundary), the different ways of segmenting the temporal data (i.e.,
segmentation), and the smallest unit used for such segmentation (i.e.,
aggregation). While the MTUP exists in all temporal modeling, it will
have considerable influence on long time series data, such as multiple
years of traffic crashes. As such, existing traffic crash risk assessments
are generally restricted to revealing high/low clusters in a single tem-
poral unit (e.g., one week) instead of identifying different temporal
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periods (e.g., from several weeks to several months) that represent sta-
tistically significant high/low clusters.

The MTUP can be alleviated by the prospective STSS method. The
STSS method utilizes a cylindrical scanning window, where the base of
the window represents the spatial scope and the height of the window
represents the time interval (Kulldorff et al., 1998). The scanning pro-
cess involves adjusting the location, size, and height of the cylindrical
window continuously while conducting statistical analyses to detect
clusters. As the scanning window is not bounded by a fixed unit on the
vertical axis or in time, it can generate temporally unrestricted clusters,
eventually overcoming the MTUP.

The STSS method can be generally divided into two groups, the
retrospective method and the prospective method. While the retro-
spective STSS method considers historic clusters for a fixed study period,
the prospective STSS method prioritizes the detection of active or
emerging clusters. For this reason, the prospective STSS method is more
suitable for periodic surveillance, such as disease surveillance (Hohl
et al., 2020; Kulldorff, 2001; Takahashi et al., 2008; Vicente Ferreira
et al., 2022) and crime prediction (Gao et al., 2013), as it prioritizes
clusters that continue to be active until the end of the study period
(Kulldorff, 2001). The applications of the STSS method to traffic crash
analysis have been relatively limited. We have only identified two case
studies. Dai (2012) utilized the STSS method to study clusters of
pedestrian injuries, in which the Bernoulli model was employed to
evaluate the risk of pedestrian injuries given a traffic crash occurred.
Song et al. (2018) employed the STSS method for the detection of traffic
crash clusters by employing the space-time permutation model.

However, both of these two studies are retrospective analyses, which are
unable to detect active or emerging clusters.

3. Method

3.1. Study area and data

Hartford is the capital city of Connecticut in the United States. As of
2020, Hartford has a population of 121,054 with a land area of 17.4
mile2. Along with the exurbanization process and more reliance on
private vehicles, Hartford has experienced a substantial surge in auto-
mobile usage over the past decades (McCahill and Garrick, 2010a;
McCahill and Garrick, 2010b). The road network of Hartford consists of
diverse types and varying traffic volumes. In addition to the densely
distributed local roads, the city is intersected by two major interstate
highways: I-84 and I-91. I-84 primarily traverses this area in the east-
west direction, while I-91 serves as a prominent north-south thorough-
fare, running through the eastern part of the region.

The traffic crash dataset (Fig. 1) was gathered from the Connecticut
Crash Data Repository (CTCDR) maintained by the Connecticut Trans-
portation Safety Research Center (CTSRC). The dataset encompasses
seven-year traffic crashes between January 1, 2015, and December 31,
2021. The dataset included comprehensive information for each crash,
including date, time, geographical coordinates, crash severity (fatal,
injury, or property damage only), and other relevant details. In total,
there were 46,515 crashes in the dataset, comprised of 100 fatal crashes,
12,487 nonfatal injury crashes (including serious, minor, or possible

Fig. 1. Three types of traffic crashes recorded from 2015 to 2021 in Hartford, Connecticut. Arterial roads are labeled in red text and neighborhoods are labeled in
black text. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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injury), and 33,928 property damage-only (PDO) crashes.
The road network and traffic volume information were collected

from the Connecticut Department of Transportation (CTDOT) Open Data
portal. The road network includes all public roads and routes as defined
by the Federal Highway Administration (FHWA). The traffic volume
data was provided as the road-based Annual Average Daily Traffic
(AADT). Certain local road segments lack available AADT information,
primarily due to their assumed lower traffic volumes and consequent
lack of monitoring. We then performed a sensitivity analysis to deter-
mine the missing value, identifying that any value below 350 had a
minimal impact on the cluster detection result. We then chose AADT =

100 to represent the significantly low traffic on unmonitored roads.

3.2. Crash severity

One contribution of our model is to incorporate the crash impact in
terms of crash severity. Severity denotes the intensity level of damage
resulting from a crash. While a crash might lead to multiple damages or
injuries with varying degrees of severity, the term “crash severity”
pertains to the most severe injury caused by the crash (AASHTO, 2010).

In this study, we utilized the Equivalent Property Damage Only
(EPDO) method, as documented in the Highway Safety Manual (HSM)
(AASHTO, 2010), to represent the severity-weighted number of traffic
crashes. For each specific location, its observed EPDO value (c) is
calculated from Eq. (1), which combines the severity weight (w) and the
observed counts of crashes (f).

c =
∑

(w × f) (1)

where w is the severity weight corresponding to a severity level, and f
represents the number of crashes on this severity level.

The severity weight w was established in consideration of the
comprehensive societal costs associated with crashes, which take into
account factors such as medical care, emergency services, property
damage, and other relevant expenses in the estimation (AASHTO, 2010;
Young and Park, 2014). The severity weights, which were derived from
the inflation-adjusted value of the comprehensive cost on each crash
severity level, are presented in Table 1 (CTSRC, 2020).

The assessment of traffic crash risk is based on specific points of
measurement that are subsequently utilized to interpolate information
for the entire network (Steenberghen et al., 2010). Thus, we employed
road intersections as these measurement points. First, we aggregated
point-based traffic crashes onto road intersections by the Thiessen
polygons generated for these intersections, as the Thiessen polygon has
been widely used as the spatial unit for network-based risk assessment in
past studies (Chen et al., 2012; Church and Cova, 2000; Cova and
Church, 1997). We also derived the EPDO value of each road intersec-
tion by summarizing the weighted traffic crashes within its Thiessen
polygon. Second, as the traffic volume is a critical variable used in our
STSS method, we derived the traffic volume of each intersection by
overlaying its Thiessen polygon with the road network. In cases where
one polygon overlaps multiple road segments with varying traffic vol-
umes, the highest value was selected to represent the traffic volume at
the intersection.

3.3. Prospective space-time scan statistic

To identify clusters of traffic crashes that are posing threats to road

safety, we employed the prospective STSS method. The STSS method
employs a cylindrical window, where the circular base represents the
spatial extent, and the height corresponds to the time interval. The cy-
lindrical window is sequentially positioned at the intersections within
the study area and gradually expanded until the maximum spatial and
temporal limits are reached. This process generates an unknown large
number of overlapping cylinders with varying sizes, each representing a
potential cluster.

Compared with the retrospective STSS, the prospective analysis only
focuses on significant clusters that remain active or emerging at the
ending time of the scan. Specifically, the starting time of the scanning
window varies in time, and the ending time of the window is the end of
the study period. In mathematical notation, [T1, T2] represents the study
period for the analysis (where T1 is the start time and T2 is the end time),
and [s, e] represents the time interval of the cylindrical scanning window
(where s is the start time of the window and e is the end time), the
prospective analysis examines the cylindrical windows for which T1 ≤

s ≤ e = T2. Therefore, the prospective analysis is suitable for the sur-
veillance of recent observations. For example, by conducting the anal-
ysis periodically as T2 increases, we can consistently monitor the
concentration of the risk that is induced by recent crashes. The method is
illustrated in Fig. 2.

We selected the discrete Poisson model for cluster detection, as the
expected number of crashes is assumed to follow a Poisson distribution
(Kulldorff, 2022). In the analysis of traffic crashes within each cylin-
drical scanning window, we used the EPDO value to represent the
severity-weighted number of crashes. Under the null hypothesis, the
expected EPDO value within each cylinder (E(c)) is directly proportional
to its traffic volume when no covariates are present. This relationship is
shown in Eq. (2):

E(c) = a ×

⋃
(c)

⋃
(a)

(2)

where a is the traffic volume within a cylinder,
⋃

(c) is the total EPDO
values across the study area within the study period, and

⋃
(a) is the

total traffic volume across the study area within the study period.
Under the Poisson assumption, the likelihood ratio L(Z)/L0for a

specific cylindrical scanning window Z is given by Eq. (3):

L(Z)

L0
=

(
cZ

E(cZ)

)cZ ( ⋃
(c) − cZ

⋃
(c) − E(cz)

)⋃
(c)−cZ

(3)

where L(Z) is the likelihood function for cylinder Z, L0 is the likelihood
under the null hypothesis, which is an identical constant for all cylinders
(Kulldorff, 2001; Ma et al., 2016). cZ is the observed EPDO value in
cylinder Z, E(cZ) is the expected EPDO value in cylinder Z under the null
hypothesis, and

⋃
(c) is the total observed EPDO value over the study

period for the entire study area. In essence, the likelihood ratio L(Z)/L0
measures the traffic crash risk within a cylinder on the basis of that
outside the cylinder (Hohl et al., 2020).

The definition of the scan statistic S is the maximum likelihood ratio
over all possible cylinders, given by Eq. (4) (Kulldorff, 2001):

S = max
{

L(Z)

L0

}

(4)

When the likelihood ratio is maximized over all locations and sizes of
the cylindrical window, the window with the maximum likelihood ratio
S is identified as the most likely space-time cluster. To determine the
statistical significance of the space-time clusters, we obtained the p-
value through the Monte Carlo hypothesis testing with 999 rounds of
simulations (Kulldorff, 2022).

3.4. Relative risk of traffic crash

The relative risk (RR) of the traffic crash for each cluster is calculated

Table 1
Estimated monetary costs and severity weights by crash severity.

Crash severity Mean comprehensive cost Severity weight (w)

Fatal $6,415,389 574
Injury $123,646 11
PDO $11,186 1

C. Miao et al.
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by Eq. (5):

RR =
c/E(c)

(
⋃

(c) − c )/(
⋃

(c) − E(c) )
(5)

where c is the observed EPDO value within the cluster, E(c) is the ex-
pected EPDO value for the same cluster as derived by Eq. (2), and

⋃
(c) is

the total observed EPDO value of the entire study area within the study
period. In essence, RR indicates the estimated risk within the cluster in
comparison to the estimated risk outside of the cluster (Desjardins et al.,
2020).

Based on the identified clusters, we further calculated the network-
based relative risk. This calculation was based on the intersections of
the road network. The intersections within the same cluster may not
have a uniform value of relative risk, as they may vary in terms of traffic
volume and EPDO values. For each intersection within the identified
clusters, the relative risk (RRi) was calculated by Eq. (6):

RRi =
ci/E(ci)

(
⋃

(c) − ci )/(
⋃

(c) − E(ci) )
(6)

where ci is the observed EPDO value of intersection i, E(ci) is the ex-
pected EPDO value for intersection i, and

⋃
(c) is the total sum of

observed EPDO values of the entire study area during the study period.
The calculation of E(ci) is similar to Eq. (2) but uses the traffic vol-

ume of the intersection instead of within the entire cylindrical cluster.
For those intersections located outside the identified clusters, we
consider their RRi values to be 1, implying their traffic crash risk values
are not significantly different from the rest of the study area.

The relative risk of the traffic crash along the road network can be
derived from road segments. Based on a past study on risk modeling
(Chen et al., 2012), the relative risk of a road segment (RRs,t) can be
determined by averaging the RR values of the two endpoints (s and t) of
that segment, as shown in Eq. (7):

RRs,t =
RRs + RRt

2
(7)

where RRs and RRt are the RR values of the two endpoints of the road
segment (s, t).

3.5. Coefficient of variation

In this study, we performed risk assessments for a seven-year traffic
crash dataset using the prospective STSS method. In essence, we derived

the spatial distribution of the network-based crash risk values annually.
This analysis can be quantified on the temporal scale by analyzing the
temporal variation of risk, which is a crucial aspect of traffic safety
analysis and can reflect both the likelihood and the resulting severity of
future traffic crashes (Mannering, 2018). For example, roads consis-
tently exhibiting a high risk (meaning low-variation, high-risk roads)
should be prioritized for proactive transportation planning, such as
investigating the underlying environmental factors that can lead to
increased risk levels.

In this regard, we applied the coefficient of variation (COV) as a
variation index for the RR value. The COV is defined as the standard
deviation of the target variable divided by its mean value. In our study,
the value of COV reflects the temporal variation of traffic crash risk. A
higher COV value indicates greater variation in the RR value, while a
lower COV value indicates less variation. For any given road segment,
the calculation of its COV is given in Eq. (8).

COV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
t=1

(RRt−RR)2

n−1

√

RR
(8)

where RRt is the RR value of a road segment at time point t, RR is the
average RR value of this road segment across all time points, and n
represents the number of times the analysis is conducted (i.e., n = 7 in
our case).

3.6. Covariate adjustment

The STSS method allows for adjustments based on specific cova-
riates. The objective is to identify clusters that cannot be explained by
the covariates (Kulldorff, 2022). When selecting a covariate for adjust-
ment, two conditions should be met: 1) the covariate is related to the
phenomenon under study and 2) the covariate is not randomly distrib-
uted geographically. Previous research has established significant as-
sociations between land use characteristics and traffic crash frequency
(Huang et al., 2018; Pulugurtha et al., 2013; Wier et al., 2009). For this
reason, we attempted to adjust for land use characteristics. The land use
characteristics of the study area were collected from Hartford zoning
regulations (City of Harford, 2022). There were nine different land use
types in this study area, as further described in the Appendix.

To detect risk clusters that cannot be explained by the covariates, we
need to first estimate the expected EPDO value for each location based
on the covariates. Then, this estimated expected EPDO value will be
used in the scanning process to determine whether the observed EPDO

Fig. 2. An illustration of the prospective STSS.
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value is significantly higher or lower than expected. In practice, we
overlaid the Thiessen polygons generated from the road intersections
with the zoning map of land use to calculate the area of each land use
type in square kilometers within each polygon. Considering the Thiessen
polygon provides coverage for each intersection, we also included the
length of roads in kilometers within each polygon as a covariate. We
then developed a regression model to estimate the covariate-adjusted
expected EPDO values of road intersections, considering the AADT,
the road length, and the area of each land use as the independent vari-
ables. We used the negative binomial model with log-link for the
regression as it is suitable for area-level estimation of traffic crashes
(Pulugurtha et al., 2013; Schneider et al., 2010). The covariate adjust-
ment in greater detail is included in the Appendix.

4. Results

4.1. Prospective analysis of traffic crash risk

We implemented the prospective STSS method in the SaTScan 10.1
(Kulldorff, 2022). We conducted a periodical analysis of the traffic crash
data from 2015 to 2021. Let [T1, T2] represent the entire study period, T1
remained the same on January 1, 2015, while T2 advanced from
December 31, 2015, to December 31, 2021 (Table 2). This setting served
the purpose of periodical surveillance—as T2 extended further in time, a
larger amount of data and more recent data were included in the
assessment. For this study, we set the maximum spatial cluster size as a
radius of 1.0 km to prevent extremely large clusters. Also, we set the
upper temporal boundary of the window as 50% of the study period.
This setting aligned with other studies using the STSS method (Kulldorff
et al., 1998; Kulldorff, 2001; Song et al., 2018; Xu and Beard, 2021).

Fig. 3 illustrates the identified statistically significant clusters and
their RR values calculated by Eq. (5). The seven maps reveal the active
clusters by the end of each year from 2015 to 2021. The areas with RR
values <1 indicate a significantly lower risk compared to other areas.
The areas with RR values >1 are considered high risk, which are further
divided into four levels. Areas not covered by any cluster mean that their
traffic crash risks are neither significantly higher nor significantly lower
than other areas. The figure shows that a substantial portion of the low-
risk clusters are identified near the two interstates, I-84 and I-91, which
is especially evident by the end of year 2018. Conversely, areas with
primarily local roads are on the lower end of the high risk, with RR
values ranging from 1 to 10.

Table 3 presents a summary of the 27 statistically significant active
clusters (20 high-risk clusters and 7 low-risk clusters) identified by the
end of 2021 (Fig. 3, 2021/12/31). The recurrence interval serves as an
alternative to the p-value for assessing statistical significance in the
prospective analysis by reflecting how often the observed value could
occur under the null hypothesis (Kleinman, 2004; Kulldorff, 2022). One
advantage of the recurrence interval is that a larger value indicates a
higher level of statistical significance, contrasting with the counterin-
tuitive interpretation of smaller p-values as more alarming.

Fig. 4 shows the RR values of the intersections within the active
clusters in Fig. 3. This figure was derived by applying Eq. (6) to the 1555

intersections in the study area. Further, by applying Eq. (7) to the 2754
road segments, we derived the network-based RR, as shown in Fig. 5. It
should be noted that this figure combines the low-risk segments (RR
value <1) and no statistically different risk segments (RR value = 1),
while the high-risk segments (RR value >1) are divided into four levels.
Fig. 4 as a point-based visualization allows for a closer examination of
the spatial heterogeneity of the risk level, while Fig. 5 as a line-based
visualization is helpful for policy interventions to target high-risk
roads. The detected risk distributions in Figs. 3 through 5 are summa-
rized in Table 2.

4.2. The temporal variation of traffic crash risk

The RR values at the end of 2021 and the COV of RR from 2015 to
2021 across the road network are illustrated by the bivariate map in
Fig. 6, where the red gradient represents the value of RR, and the blue
gradient represents the COV. This figure visualizes the current spatial
patterns and temporal variation of the crash risks. Based on the two
dimensions of measurement, we can roughly categorize the road seg-
ments into four risk types: (a) low-risk, low-variation, (b) high-risk, low-
variation, (c) high-risk, high-variation, and (d) low-risk, high-variation.

4.3. The land use adjusted traffic crash risk

Using the negative binomial regression model, we estimated the
expected EPDO values for each road intersection on a monthly basis
from 2015 to 2021. Subsequently, we conducted a prospective STSS
analysis based on these model-estimated expected EPDO values and the
corresponding observed EPDO values from 2015 to 2021. The statisti-
cally significant clusters identified in this analysis are the active clusters
by the end of 2021 that cannot be explained by AADT, road length, and
land use variables. We also derived the RR values for the intersections
within these clusters and the network-based RR for the road network, as
shown in Fig. 7.

Compared to the clusters revealed without covariate adjustment
(Fig. 3, 2021/12/31), there is a noticeable reduction in the coverage
area of high-risk clusters identified by the covariate-adjusted analysis
(Fig. 7a). Only a few intersections have aggregations of high-risk clus-
ters. Some areas exhibit significantly high traffic crash risks regardless of
whether the covariates are adjusted for, such as the Upper Albany
neighborhood section along US-44 (Fig. 7b and c). This result indicates
that beyond the land use, traffic volume, and road length, there are other
environmental factors contributing to the elevated traffic crash risks in
these areas. These consistently high-risk areas need to be prioritized in
transport safety management.

5. Discussion

We would like to further discuss how these risk types manifest in the
study area (Fig. 6). First, it is observed that two interstate highways (I-91
and I-84) are all categorized under low-risk low-variation (light blue
segments, Fig. 6a). This pattern shows that considering the notably
higher traffic volume along the highways, both the relative risk and the

Table 2
Summary of the detected high/low-risk distribution in seven periods.

Analysis ID Time span of data High-risk clusters Low-risk clusters High-risk
intersections

Low-risk
intersections

High-risk road
length

Low-risk road
length

# # # % # % km % km %

1 2015/1/1–2015/12/31 19 10 367 23.96 595 38.84 162.34 37.61 133.41 30.91
2 2015/1/1–2016/12/31 15 6 515 33.62 471 30.74 192.40 44.58 94.11 21.8
3 2015/1/1–2017/12/31 20 10 522 34.07 460 30.02 200 46.34 110.28 25.55
4 2015/1/1–2018/12/31 20 13 442 28.85 430 28.07 170.55 39.52 117.93 27.33
5 2015/1/1–2019/12/31 21 11 477 31.14 378 24.67 177.54 41.14 100.04 23.18
6 2015/1/1–2020/12/31 17 10 546 35.64 423 27.61 200.06 46.36 98.99 22.93
7 2015/1/1–2021/12/31 20 7 558 36.42 417 27.22 204.13 47.3 87.97 20.38

C. Miao et al.



Journal of Transport Geography 119 (2024) 103958

7

risk variation in these areas are significantly low. As the relative risk is a
space-time weighted measure of the EPDO value, it suggests that the
most severe crashes did not occur along the highways and are more
likely to happen on the local roads. Second, the high-risk low-variation
areas (dark blue segments) mean that their crash risks have been
consistently high (e.g., Fig. 6b). These areas could be regarded as the
most vulnerable neighborhoods that need further investigations on the
environmental factors inducing the risk. For example, Fig. 6b depicts a
section of the Upper Albany neighborhood, with US-44 acting as a
central spine with densely populated residential streets on both sides. A

further investigation shows that this neighborhood has experienced a
shift in modal split from mass transit to private cars (Patel et al., 2005),
which might have made the local built environment unable to accom-
modate the increasing traffic volume. US-44 within this area serves not
only as a major commuting route for residents but also as a commercial
corridor for local businesses (Patel et al., 2005). This mixed road func-
tion could have further intensified traffic complexity, contributing to the
consistently high risk levels in this area.

We would like to highlight four advantages of applying the pro-
spective STSS method for proactive transportation planning. First, the

Fig. 3. High-risk clusters (four levels of red circles) and low-risk clusters (blue circles) calculated by the prospective STSS method in seven periods, where each panel
starts from 2015/1/1 and ends on the given date. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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method incorporates the crash impact, which is a largely missing yet
critical risk component, in crash risk assessment. Modeling the crash
impact in terms of different severities is a necessary step to quantify
different degrees of societal losses, as it extends the risk analysis from a
pure physical assessment into a socioeconomically weighted evaluation.
Second, the method offers a solution to alleviate the MTUP effect in
crash risk assessment by handling the time scale, as the STSS method are
not constrained by a fixed temporal unit. This relaxation in the temporal
component is essentially useful for studying traffic crashes over a long
term, as high-risk clusters could appear not within a predefined time
unit (e.g., a week) but can last for different time periods (e.g., from
several days to several months). Traditional risk assessment models (e.
g., KDE), however, are not able to unveil these different time periods
with statistical significance. Third, the method can alleviate the
regression-to-the-mean (RTM) effect. The RTM is a statistical

phenomenon where short-term observations fluctuate around the data
average due to inherent data randomness (Sharma and Datta, 2007). The
STSS method runs the Monte Carlo tests on cumulative long-term his-
torical data. This simulation-based method applied to the longitudinal
data can identify clusters that are not likely to be affected by data
randomness (Kulldorff, 2022), and thus this identification is less subject
to the RTM effect. Fourth, the prospective STSS method is suitable for
continuous risk monitoring, as it focuses on the detection of currently
active clusters. This feature can be of importance for traffic safety
analysis since active clusters might be linked to certain risk factors that
require urgent attention. As time progresses, more recent data can be
incorporated into recurrent analyses, eventually allowing for time series
analysis or even near-real-time monitoring of risk fluctuation.

Three issues regarding applying the prospective STSS method for
crash risk modeling need further attention. First, as the spatial size of

Table 3
Attributes of prospective space-time clusters (2015/1/1–2021/12/31).

Cluster
ID

Start date End date Duration
(month)

Radius
(km)

Observed
EPDO

Expected
EPDO

Relative
risk

p-value Recurrence
interval

# of
intersections

1 2018/7/
1

2021/12/
31

42 0.97 14,701 2585.94 6.01 <0.0001 >100 years 114

2
2018/7/

1
2021/12/

31 42 0.89 14,194 2543.04 5.88 <0.0001 >100 years 88

3
2018/7/

1
2021/12/

31
42 0.90 16,802 41,171.80 0.36 <0.0001 >100 years 277

4 2018/7/
1

2021/12/
31

42 0.99 10,420 2831.26 3.81 <0.0001 >100 years 133

5 2018/7/
1

2021/12/
31

42 0.52 2297 11,752.13 0.19 <0.0001 >100 years 57

6
2021/
11/1

2021/12/
31 2 0 601 0.032 18,858.86 <0.0001 >100 years 1

7
2021/7/

1
2021/12/

31
6 0.1 1187 11.85 100.65 <0.0001 >100 years 2

8 2020/4/
1

2021/12/
31

21 0 574 0.17 3433.06 <0.0001 >100 years 1

9
2019/8/

1
2021/12/

31 29 0 1175 16.12 73.25 <0.0001 >100 years 1

10
2021/5/

1
2021/12/

31 8 0.29 1262 32.98 38.47 <0.0001 >100 years 14

11
2018/7/

1
2021/12/

31
42 0.94 6266 1810.47 3.53 <0.0001 >100 years 112

12 2018/7/
1

2021/12/
31

42 0.97 3109 633.40 4.96 <0.0001 >100 years 40

13
2021/2/

1
2021/12/

31 11 0.74 756 15.31 49.55 <0.0001 >100 years 12

14
2018/7/

1
2021/12/

31 42 0.56 441 3477.01 0.13 <0.0001 >100 years 20

15
2021/3/

1
2021/12/

31
10 0 598 9.54 62.87 <0.0001 >100 years 1

16 2019/6/
1

2021/12/
31

31 0 693 20.63 33.69 <0.0001 >100 years 1

17
2018/7/

1
2021/12/

31 42 0.30 711 3222.68 0.22 <0.0001 >100 years 9

18
2019/
11/1

2021/12/
31 26 0 585 22.67 25.87 <0.0001 >100 years 1

19 2018/7/
1

2021/12/
31

42 0.29 301 2160.99 0.14 <0.0001 >100 years 6

20 2019/8/
1

2021/12/
31

29 0 635 38.21 16.66 <0.0001 >100 years 1

21
2018/7/

1
2021/12/

31 42 0.28 626 2459.61 0.25 <0.0001 >100 years 12

22
2021/8/

1
2021/12/

31 5 0 593 46.76 12.71 <0.0001 >100 years 1

23 2018/7/
1

2021/12/
31

42 0.95 2297 1386.65 1.66 <0.0001 >100 years 54

24 2018/7/
1

2021/12/
31

42 0 274 65.46 4.19 <0.0001 >100 years 1

25
2018/8/

1
2021/12/

31 41 0.18 62 1.96 31.60 <0.0001 >100 years 6

26
2018/
10/1

2021/12/
31 39 0.40 135 429.72 0.31 <0.0001 >100 years 8

27 2018/7/
1

2021/12/
31

42 0.035 275 118.95 2.31 <0.0001 >100 years 2
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emerging clusters expands, the effectiveness of the method becomes less
reliable. For example, we observed that high-risk clusters may contain
low-risk locations and vice versa. Thus, a careful selection of the upper
bound of the spatial scanning window is key to the utilization of the
method. In this study, we set this upper bound as 1.0 km. This variable,
which represents the maximum search radius of the algorithm, needs to
be appropriately evaluated by sensitivity analysis as it may not apply to
another study area where the distribution patterns of crashes are
different. For example, in areas with fewer crashes (e.g., rural areas), the
upper bound of the spatial scanning window must be appropriately
increased. Second, we used the Thiessen polygon as our spatial unit.

Polygons’ shape and size are subject to road density. While Thiessen
polygons have less variation in urban areas than in rural areas, this
variation can lead to uncertainties in the risk distribution. Third, crash
risk modeling is highly data-dependent. Data on the long-term obser-
vation of the traffic volume over the road network are not always
available. In our case, road segments lacking the traffic volume were
assigned a small AADT value, as these road segments were assumed to
carry a low traffic volume. While this substitution is necessary for model
implementation, in the future, more accurate data interpolation
methods are needed to solve the missing data issue.

Fig. 4. High-risk intersections (four levels of red dots) and low-risk intersections (blue dots) in seven periods, where each scan starts from 2015/1/1 and ends on the
given date. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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6. Conclusions

In this paper, we have developed a new crash risk modeling method
based on the prospective STSS method. Unlike traditional hot spot
detection methods that require a pre-defined bandwidth for smoothing
or a weight matrix representing the proximity between locations, the
STSS method operates with less dependency on these arbitrary param-
eters. With more refined spatial and temporal traffic volume data, this
method can be applied to periodic monitoring of traffic crash risk across
the road network. Such applications can reveal the space-time patterns

of crash risk and can further support proactive traffic safety
management.
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scan starts from 2015/1/1 and ends on the given date. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 6. Traffic crash relative risk by the end of 2021 and the coefficient of variation of relative risk from 2015 to 2021 with four featured neighborhoods: (a) low-risk,
low-variation, (b) high-risk, low-variation, (c) high-risk, high-variation, (d) low-risk, high-variation.

Fig. 7. Covariate-adjusted traffic crash risk in terms of (a) clusters, (b) intersections, and (c) networks.
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