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Abstract—This article considers the problem of controlling
inverter-interfaced distributed energy resources (DERSs) in a dis-
tribution grid to solve an ac optimal power flow (OPF) problem
in real time. The ac OPF includes voltage constraints and seeks
to minimize costs associated with the economic operation, power
losses, or the power curtailment from renewables. We develop an
online feedback optimization method to drive the DERs’ power
setpoints to solutions of an ac OPF problem based only on voltage
measurements (and without requiring measurements of the power
consumption of noncontrollable assets). The proposed method—
grounded on the theory of control barrier functions (CBFs)—is
based on a continuous approximation of the projected gradi-
ent flow, appropriately modified to accommodate measurements
from the power network. We provide results in terms of local
exponential stability and assess the robustness to errors in the
measurements and in the system Jacobian matrix. We show
that the proposed method ensures anytime satisfaction of the
voltage constraints when no model and measurement errors are
present; if these errors are present and are small, the voltage
violation is practically negligible. We also discuss extensions of
the framework to virtual power plant (VPP) setups and cases
where constraints on power flows and currents must be enforced.
Numerical experiments on a 93-bus distribution system with
realistic load and production profiles show superior performance
in terms of voltage regulation relative to existing methods.

Index Terms— AC optimal power flow (OPF), distributed
energy resources (DERs), distribution networks, real-time
control.

I. INTRODUCTION

HIS work seeks to contribute to the domain of real-time
control and operation of distribution systems with high
integration of inverter-interfaced distributed energy resources
(DERs). The steady increase in energy costs, combined
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with government incentives advocating for the utilization
of renewable energy sources and energy-efficient automated
load control, has reshaped the operation of distribution
networks [1], [2]. Historically, distribution networks were
designed to manage unidirectional power flows; however, the
increased integration of renewable resources and load manage-
ment strategies led to operational and reliability challenges
related to reversed power flows, voltage fluctuations, and
power quality.

Traditional techniques based on solving an ac optimal power
flow (OPF) problem [3], [4] require collecting information of
all noncontrollable powers and running an iterative method;
this process may be long compared to the fast-changing
conditions of a modern distribution system [1], [2]; existing
Volt/Var techniques may not fully resolve voltage regulation
and may in fact increase line currents; and recent works on
emulating OPF solutions via neural networks can alleviate the
computational burden [5], [6] but still require measurements
of all the noncontrollable powers (which are the inputs to the
neural network) and may not even produce feasible power
setpoints.

Collecting measurements of noncontrollable powers in
distribution networks in real time (e.g., at the second
level) is challenging as distribution systems are historically
measurement-scarce, as discussed in [7]. Even though new
types of sensing and communication infrastructures can cap-
ture real-time data, traditional techniques for solving the
ac OPF problem in distribution systems require collecting
load measurements in real time from each meter and dis-
tribution transformer, which is impractical and economically
unfeasible [8]. In this work, we focus on real-time ac OPF
methods [9], [10], [11], [12], [13], [14] and seek new strategies
that exhibit strong performance in terms of achieved opera-
tional cost and voltage limit satisfaction (both from analytical
and numerical standpoints) while using limited measurements.
In particular, we seek methods that do not require a complete
ac model and knowledge of all the noncontrollable powers
throughout the nodes of the system.

A. Prior Work

Several approaches have been explored to develop real-time
OPF algorithms. In general, existing solutions leverage online
optimization techniques and incorporate measurements of
some network quantities to bypass the need for a system-
level model. In the following, we present a list that is by no
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means exhaustive. Feedback algorithms using voltage mea-
surements based on linearized models were developed in [9]
and recently [15] combined with data-driven learning to syn-
thesize decentralized strategies; online primal-dual methods
with voltage and/or power measurements have been proposed
in [10] and [16]; and model-free counterparts were proposed
in [17] and [18]. Discrete-time projected gradient algorithms
for the OPF problem are employed in [13] and [19], while
projected gradient flows were used in [11]. Projection of
gradient iterates onto a linearization of the feasible set around
the current state was used in [14] for reactive power control.
Power control for aggregations of DERs to track setpoints at
the point of common coupling via gradient-type methods was
proposed in, e.g., [20]. Online quasi-Newton methods were
used in [21], and online interior-point methods were proposed
in [22]. In addition to [9], distributed methods were explored
in, e.g., [23].

B. Contributions

Compared to the works in the context of real-time OPF
methods mentioned above, the contributions of our article can
be described as follows.

(c1) We propose a new approach for the design of real-time
OPF algorithms, which is grounded on the theory of control
barrier functions (CBFs) [24]. We leverage a continuous
approximation of projected gradient flows [25], appropriately
modified to accommodate voltage measurements from the
power network. Inheriting the properties of CBF methods, the
proposed algorithm—here termed feedback-based safe gradi-
ent flow (SGF)—ensures anytime satisfaction of the voltage
constraints while reaching solutions of the OPF.

(c2) From a theoretical standpoint, we show that the pro-
posed feedback-based SGF renders isolated optimal solutions
of the ac OPF problem locally exponentially stable and ensures
the anytime satisfaction of the voltage constraints. On the
other hand, existing feedback-based optimization methods for
distribution systems [9], [10], [11], [12], [13], [14] do not
guarantee anytime satisfaction of the voltage constraints.

(c3) We provide results in terms of practical exponen-
tial stability and practical forward invariance when voltage
measurements are affected by errors and when the Jacobian
matrix of the ac power flow equations is computed only
approximately (for example, when a linear approximation of
the power flow equations is used).

(c4) We perform numerical experiments on a 93-bus distri-
bution system [26] and with realistic load and solar production
profiles from the Open Power System Data. We show that our
method shows far superior performance in terms of voltage
regulation relative to existing online primal-dual methods and
Volt/Var strategies.

We note that relative to [14], our design leverages the theory
of CBFs [24], [25], our method can handle constraints that
are nonlinear, and we provide practical stability and forward-
invariance guarantees.

From a practical standpoint, we provide remarks throughout
this article on how the proposed method can be integrated into
the existing distribution system infrastructure, for instance,
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by leveraging DER management systems (DERMSs) for distri-
bution operators and existing communication infrastructure or
a supervisory control and data acquisition (SCADA) system.

II. PROBLEM FORMULATION

Notations: Uppercase (lowercase) boldface letters are used
for matrices (column vectors), (.)" denotes the transposition,
and (.)* the complex conjugate; j denotes the imaginary unit,
and |.| denotes the absolute value of a number. If we consider a
given vector x € R", diag(-) returns a N x N matrix with the
element of x in its diagonal. For vectors x € R"” and u € R™,
x|l denotes the £;-norm, and (x,u) € R"™™ denotes their
vector concatenation. We denote as 0 a vector or matrix with
all zeros (the dimensions will be clear from the context). C
denotes the set of complex numbers, and for a vector x € CV,
R(x) € RY denotes its real part and J(x) € RV denotes its
imaginary part.

A. Distribution System Model

Consider an electrical distribution system with N + 1 nodes
and hosting G DERs; these may include inverter-interfaced
photovoltaic (PV) systems, energy storage systems, variable-
speed drives, and electric vehicles or small-scale generators
if any. The node O is taken to be the substation or the
point of common coupling, while A := {1,..., N} is the
set of remaining nodes. We consider a steady-state model
where voltages and currents are represented in the phasor
domain. Accordingly, let v, = weld e C, v := |ul, and
iv = |ixle/¥ € C be the line-to-ground voltage and current
injected at node 7, respectively. Moreover, the voltage at node
0 is set to vy = Vye/% [27].

Using Ohm’s law and Kirchhoff’s law, one has the usual

phasor relationship
. _T
| _ [y Vo (1)
i y Y||lv

where v € CV collects the voltages {vi}ren, i € CV
collects the currents {iz}renr, and ¥ € CV*¥ 'y € CV, and
yo € C are based on the series and shunt admittances of the
distribution lines represented by a standard IT-model (see, for
example, [27], [28]). Using (1), it is possible to relate complex
powers at the nodes N with voltages as

s = diag(v) (jf*vfj + Y*v*) ()

where s = pnet+jqnet € (CN’ with Phet = [pnet,lv R pnet,N]T
and ¢, = [Gnet.15 - - - » Inet. ~]1T vectors collecting the net active
and reactive power injections at nodes A. Note that p,. and
q.: account for both the powers (injected or consumed) of the
DERs and the aggregate powers of the noncontrollable loads
that are connected to each of the nodes N. In particular, let
pr=1Ips o onlT €Woq = laia, - qinl’ €W,
with compact sets W, C R and W, C RV be vectors
collecting the net active and reactive power consumed at the
nodes by noncontrollable devices (positive when the power
is consumed). For the G DERs, consider the vector u =
[p1, P2y s PG> q1, G2y - -, qc] | collecting their active and
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reactive powers (with a positive sign denoting generation).
Moreover, let G := {1, ..., G} be the index for the DERs, and
define a function m : G — N/, which maps a DER index to the
node where the DER is connected to. With this notation, note
that G, := {i € G : n = m(i)} is the set of DERs connected
at node n € N. Then, the net active and reactive powers are
given by pnecn = 2 jcg, Pj— Pin A0 Gnein = 2 jcg, 4 —4in
at each n. In what follows, we consider a set of nodes M C N
with cardinality M = | M| where voltages are to be regulated
(if the operator would like to monitor and regulate all the
voltages, then M = A/). Finally, let ; C R?> be a compact
set of admissible power setpoints such that (p;, g;) € U; for
ie€eG Wedefineld :=U; x Up x --- x Ug so that u € U.

Equation (2) describes the power flow equations. For a given
vector of net power injection s, one can solve this nonlinear
system of equations using numerical methods to find the vector
of voltage phasors v. Notice that the system of equations (2)
may have no, one, or many solutions. For the rest of this
article, we make the following assumption when restricting to
a neighborhood of the nominal voltage profile.

Assumption 1 (Mapping in a Neighborhood of the Nom-
inal Voltage Profile): There exists a unique continuously
differentiable function H : U x W, x W, — RM such

that H;(u; p;,q,) = vi = |v;| for i € M. The Jaco-
bian Jy (u; p;, q;) := (0H (u; p;, q,;)/9u) is locally Lipschitz
continuous. O

If multiple solutions exist, we only consider the practical
solution, i.e., in the neighborhood of the nominal voltage
profile, we restrict the attention to the solution that leads to
high voltages and small line currents. The existence of the
map H is based on the implicit function theorem and the
results of, e.g., [28], [29], [30] for single-phase and multiphase
distribution networks.

Remark 1 (Jacobian of Map H): For the sake of general-
ity, we write the Jacobian Jy(u; p,, q;) as dependent on the
controllable and noncontrollable power injections. However,
in this article, we will leverage approximations of the Jacobian
matrix; these estimates can be obtained without any knowledge
of noncontrollable power injections. We will provide remarks
on linear approximations in Section III-B. g

Remark 2 (Model and Notation): It is important to note
that the framework proposed in this article works for
multiphase distribution systems with both wye and delta
connections under the same Assumption 1. The existence of
the map H for unbalanced multiphase networks is discussed
in [30]. However, to simplify the notation and streamline the
exposition, we outline the framework using a single-phase
model. 0

B. OPF for Voltage Regulation in Distribution Systems

In this section, we outline a formulation of the OPF prob-
lem for distribution systems. By solving an OPF problem,
one seeks power setpoints for the DERs that minimize the
operational cost (or maximize performance objectives) for the
utilities and the customers, subject to operational constraints
that may include voltage limits, line ampacity, or hardware
limits [3], [4]. The cost associated with the utility companies
may favor the minimization of system losses or the usage of

controllable resources or may perform voltage regulation (e.g.,
thus including the cost of active power curtailment or reactive
power compensation [9], [23]); on the other hand, customers
may want to minimize the power curtailed by renewables or
maximize their revenue by providing ancillary services.

To outline our framework, we start with the following
formulation of the OPF problem (we present some extensions
later in Section III-D):

Co(v) +Cp(u)

veRM ueR26
st. V<py <V Vie M
v = H;(u; p;,q,) VieM
(pi,gi)) el; Yieg 3)

where the functions C, : RY — R and C p R?6 — R have
locally Lipschitz continuous gradients, V and V are predefined
voltage bounds that the operator wants to enforce at nodes
i € M, and H;(u; p;, q,;) is the ith component of the function
H(u; p,;, q;) (specifying the voltage magnitude v;). We note
that (3) can be equivalently rewritten as

min C,(H (u; P q/)) + Cp(u)

ucR26
st. V< Hiu;p.q)<V VieM
(pi,gi)el; Yieg 4)

where u is the only optimization variable. Hereafter,

we assume that the set I4; can be expressed as
U ={(pi.q) € R*: i(pi.qi) <0, ) (5)

where ¢; : R> — R is a vector-valued function model-
ing power limits and the inequality is taken entrywise. For
example, if the ith DER is an inverter-interfaced controllable
renewable source, then ¢;(p;,q;) = [pi2 + qiz — 53,1‘1 pi —
DPmax.is — pi]T, where s,; and pmax; denote the inverter rated
size and the maximum available active power, respectively;
that is, U = {(pi.q;)) € R: p} + ¢} < s7;. pi < Pmaniiv Pi =
0}. Moreover, we denote as

F={u:V <H@u;p.q)<V,VieMuecld} (6

the feasible set of (4). We impose the following assumption
on (4), which is typical in the ac OPF context.

Assumption 2 (Regularity of Isolated Solutions): Assume
that (4) is feasible, and let u* be a local minimizer and an
isolated Karush—Kuhn—Tucker (KKT) point for (4) for given
D, q;- Assume that the following holds.

1) Strict complementarity slackness [31] and the linear
independence constraint qualification (LICQ) [32] hold
at u*.
2) The maps u — Cp(u), u — C,(H(u; p;,q;)) and
u — H(u; p,;, q,) are twice continuously differentiable
over some open neighborhood B(u*,r) := {u : ||lu —
u*|| < ri} of u*, and their Hessian matrices are positive
semidefinite at u*.
3) The Hessian V2C,(u*) is positive definite. O
Assumption 2 imposes some mild regularity assumptions on
a neighborhood of a strict locally optimal solution. If (4) is for-
mulated based on the linearized ac power flow equations [9],
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[10] and the cost is strongly convex, then Assumption 2 is
satisfied. For the most general nonlinear ac OPF problem [21],
Assumption 2 is supported by the results of [32], where LICQ
is investigated.

Problem (4) can be solved using traditional optimization
methods for nonlinear programs. However, (c/) these batch
methods require collecting measurements of all the non-
controllable powers p;, q; in a distribution network that is
known to be historically measurement-scarce [7]; moreover,
(c2) the time required to collect the measurements of the
noncontrollable powers (if available in real time) and run an
iterative method to convergence may be long compared to the
fast-changing conditions of a modern distribution system [1],
[2]. Although recent work on neural networks for ac OPF can
alleviate the computational burden (see, e.g., the representative
works [5], [6]), they still require measurements of all the
noncontrollable powers p;, q; as in (cl), and they often rely
on heuristics to return a feasible solution. Motivated by the
challenges (cl)—(c2) and by the need to generate power
setpoints that ensure the satisfaction of voltage limits even
under uncertain and time-varying operational setups, in this
article, we seek to solve to the following problem.

Problem 1: Design an online feedback-optimization
algorithm that drives the DERs’ power setpoints u to
solutions of the problem (4) while ensuring that voltage
constraints are always met. The feedback optimization
method should use measurements of the voltages instead of
requiring knowledge of the noncontrollable powers p;, q;. [

We note that in Problem 1, we focus on voltage mea-
surements because (4) includes voltage constraints; if (4) is
modified to include cost and constraints associated with power
flows or currents, then the feedback optimization method
would require measurements of those quantities too [16].

From a practical standpoint, in this article, we focus on
feedback-optimization algorithms that are implemented in a
centralized unit; for instance, these algorithms can be inte-
grated into a DERMS for distribution operators. We also
assume that the unit implementing our feedback-based online
algorithm has access to synchronized voltage measurements at
nodes where voltage constraints are enforced and can transmit
new power setpoints to the DERs. This can be done by
leveraging existing communication and metering infrastructure
or through a SCADA system.

III. SAFE OPF PURSUIT
A. Feedback-Based Online Algorithm

To solve our regulation problem, we propose the following
feedback-based algorithm:

uw=nFg(u,v) (7)
Fy(u, %) := arg min [+ VCy@) + Ju(w; p,4) " VC.(®)I
st. —VHiu; p.,q)'0<—pV—-7) VieM
VH;(u; p;, q;)T0 < —ﬁ(ljj - ‘_/) Vie M
Jo,(piyqi) "0 < —Bli(piqi) Vieg (8)

where ¥; is a measurement of |v;| at node i, Ju(u; p;, q;)
is the Jacobian matrix of H(u; p;.q;), VHi(u; p;,q,) =
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{(Jy (u; p,,ql)),;j}jeg]T is a 2G x 1 vector collecting the
entries of Jy(u; p;,q;) in the ith row and columns cor-
responding to nodes in G, Ji,(p;,q;) is the Jacobian of
(pisqi) — Li(pi,qi), B > 0 is a design parameter, and
n > 0 is the controller gain and is a design parameter. For
given u and v, problem (8) is a convex quadratic program
(QP) with a strongly convex cost; it can be efficiently solved
using standard or high-performance embedded solvers for QPs,
e.g., [33].

The online feedback optimization algorithm (7) is inspired
by CBFs methods [24] and the SGF in [25]; we provide
more details on the CBF-based design in Appendix A. In par-
ticular, (7) is an approximation of the projected gradient
flow & = proj;_, {—VC,m)—J;VC,(H(u: p;. q,))}, where
Tr(u) is the tangent cone of F(u) at u; in fact, one can
show [25, Proposition 4.4] that limg_, o, Fg(u, H(u; p,;, q,)) =
POy (—VCp () — J ] VC,(H (w5 py, g1)}.

The algorithm (7) is designed to steer the power setpoints
of the DERs u to optimal solutions of the ac OPF while con-
tinuously guaranteeing feasibility (i.e., satisfaction of voltage
limits). As shown in Fig. 1, (7) effectively acts as a feedback
controller by replacing the voltage model H (u; p;,q;) with
measurements v of the voltage magnitudes that automatically
satisfy the power flow equations [21], [34]. This is a key
modification that allows one to avoid collecting measurements
of p;,q, [9], [10], [16]. However, we note that (7) requires
the computation of the Jacobian matrix of H (u; p,, q;). One
cannot derive an explicit formulation of the Jacobian matrix
of H(u; p;,q;) as this map does not have an analytical
formulation. Therefore, we modify (7) as follows:

i=nFy,v) ©)
- - . )
Fg(u,v) := argamﬂégy ”0 +VC,(u) + JFT]VCv(v)H
€
st. —VH] 0 <—-B(V-17;) VieM
VA9 < -B(3; — V) VieM
Jo, )"0 < —Bli(pi,q) Vieg
where J and {Ifl i}iem are estimates or approximations of Jy
and {H;};em, respectively. These estimates can be obtained
using online estimation methods (see, e.g., [35], [36]), or they

can be computed based on a linear approximation of the ac
power flow equations of the form

(10)

H,(u; P ‘Iz) = Z(rn,m(i)pi + bn,m(i)qi) + cn(p]’ ‘Iz) (11
ieG

n € N, where the coefficients {Fn.ma)> bu.mi)lieg can be
found, as explained in e.g., [9], [28], [29], [37], [38] (note
that linear approximations of the power flow equations are
available for both single-phase and unbalanced multiphase
distribution networks). We will provide more remarks on the
linear approximation shortly in Section III-B.

The proposed feedback-based SGF is summarized in
Algorithm 1 and illustrated in Fig. 1.

In terms of implementation of Algorithm 1, we highlight
the following practical aspects.

1) The main step [S2a] is performed at a central unit
(i.e., the blue box in Fig. 1). This central unit can be
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Collect active and
reactive powers at
DER i

' pi(t), 4i(t)

! Collect

: voltage

measurement
at node j

U P,

i T y

Update power setpoints

: L | = nFs(u(t), 2(1)

Fig. 1. Closed-loop implementation of the proposed online feedback
optimization algorithm. A central unit (blue box) receives measurements of
voltages (from measurement units, green box) and the DERs’ output powers
from inverters (red box); based on these measurements, 1} updates the DERs’
setpoints based on the proposed controller #(t) = nFpg(u(t), v(¢)). Once
the setpoints u () are computed, the central unit transmits u(¢) to the DERs’
inverters. Through this closed-loop scheme, the proposed controllers drive the
distribution system to solutions of the ac OPF problem (4).

Algorithm 1 Feedback-Based SGF

Initialization: Compute Jz and {I:I iyi € M}. Set 8 > 0,
n > 0.
Real-time operation: for r > 0, repeat:
[S1a] Measure output powers {p;(t), g;(t),i € G}
[S1b] Measure voltages {;(¢),i € M}
[S2a] Update power setpoints via u(t) = nI:“,g(u(t), V(1))
[S2b] Implement setpoints u(¢)
Go to [Sla] and [S1b]

integrated, for example, into a DERMS or an advanced
distribution management system for distribution opera-
tors. After performing step [S2a], the central unit sends
the updated setpoints to the DERs’ inverters.

2) Step [Sla] is performed at the DERs (a DER is repre-
sented by a red box in Fig. 1); the inverters measure
the output powers {p;(t),q;(¢t),i € G} and send the
measurements to the central unit. The inverters also
implement step [S2b] after they receive the setpoints
from the central unit.

3) The SGF (9) relies on measurements of the voltages at
the network locations M, as required in the step [S1b].
It is assumed that those measurements are obtained in
real time using sensing devices communicating with the
centralized controller, e.g., uPMUs [39], or through the
advanced metering infrastructure (a meter is represented
by a green box in Fig. 1).

In practice, the proposed measurement-based SGF (9) can be
implemented with discretization (similar to well-established

CBF-based methods [24]). The discretization interval depends
on the time required to collect voltage measurements and
solve the QP. Linearly constrained convex QP programs are
known to be solved efficiently (e.g., in milliseconds) by
both existing open-source solvers (such as [IPOPT) and com-
mercial solvers. Synchronized voltage measurements can be
obtained via SCADA at a fast scale (i.e., second or subsecond
level) [7], [39].

Remark 3 (Pseudo-Measurements): Our  framework is
applicable to the case where the system operator may
utilize a mix of actual voltage measurements and pseudo-
measurements [40]. For example, suppose that the system
operator can measure voltages at some nodes Mpyeer C M
and relies on pseudo-measurements at the other nodes. Then,

17‘ _ Hi(u;pla q[)+niv i€ Mmeter (12)
l Hi,pseudo(u; D, lIz), ieM \Mmeter
where n is a Dbounded measurement noise and

H; pseudo (5 p;, q;) tepresents a model used to generate
the pseudo-measurements (i.e., using a state estimator). [

Remark 4 (Measurement of Setpoints): If the embedded
controllers of inverters are guaranteed to implement the power
setpoints, in principle, the step [Sla] in Algorithm 1 is not
needed. However, the operator may want to measure current
setpoints {p;(t), q;(t),i € G} for verification purposes and to
monitor the state of the DERs’ inverters. (|

B. Remarks on the Linear Model

In the following, we comment on the linear approximation
used in this article. We start with the power flow equa-
tions (2) that we linearize around a given voltage profile
v = [U1,...,0n]". Let us consider d € R" capturing the
deviations around the linearization point. We have

s = diag(® + d) (y*vg n Y*f:*) + diag(d) (Y*5%)

+ diag(d) (Y*d*). (13)

If we discard the second-order terms diag(d)(Y*d*) and
consider the following choice for the nominal voltage profile:

v=—-Y""yy, (14)

(13) becomes

diag(3*)Yd = s*. (15)

Let p € RY be the vector collecting the magnitudes of voltages
v, and define @ := {cos(0,)}nen and b = {sin(0,)}pen With
0; being the angle of the nominal voltage v;. A solution of (15)
can be expressed as d = Y 'diag™!(9*)s*. Expanding this

expression and defining matrices

R = Zydiag(a)(diag(p)) ™' — Z,diag(h)(diag(p)) "'

B = Zdiag(a)(diag(p)) "' + Zrdiag(h)(diag(p))™' (16)
where Zz := %Y} and Z, := J{Y "'}, one can write
VA (R+ jB)po+ (B — jR)qpe + . (17)

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on January 07,2025 at 13:52:55 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

If the entries of ¥ dominate those in d, then p+9%t{d} serves as
a first-order approximation for the voltage magnitudes. Thus,
one can write

H(; p,.q):=RTgu+p)+BTut+gq)+p (»18)

with Tg € RV*26 and T'y € RY*2C matrices filled with 0 and
1 such that T'ru 4+ p, = p, and T'pu + q, = q,. Notice
that (18) can be written as in (11). Effectively, the approximate
Jacobian J; = RT z + BT 3 no longer depends on u and the
noncontrollable powers p;, q;; accordingly, it does not need
to be recomputed when running (9).

Remark 5 (Validity of the Linear Approximation): The lin-
ear model is based on the bus admittance matrix ¥ and
has constant matrices. This approximation is accurate for
lightly loaded systems [41]. For heavily loaded systems, [10],
[42] showed that feedback-based methods are robust against
model mismatch because of the closed-loop implementation;
this feature is also pointed out in [34], and our analy-
sis in Section III-C will characterize this robustness. The
bus admittance matrix may be hard to obtain because it
requires knowledge of the feeder characteristics, i.e., the line
impedances, and the network configuration. However, one can
assume that the system operator can obtain some estimates.
Furthermore, in the case of network reconfiguration, the bus
admittance matrix changes, leading to an incorrect linear
model. However, this is not a frequent event, and the system
operator can update its linear model approximation when such
reconfiguration occurs. ([

In Section III-C, we analyze the convergence and stability
properties of the proposed feedback-based SGF (9).

C. Stability Analysis and Constraint Satisfaction Guarantees

In our technical analysis, we make use of the following
assumptions. The assumptions are stated for given values of
the noncontrollable powers p,, q;.

Assumption 3 (Jacobian Errors): 3 E;, < 400, E; < 400
such that ||[H (u; p;, q;) — Hw; p;, q)|l < Ej, and ||Jg(u) —

Ju@)|| < E; for any u € B(u*, r). O
Assumption 4 (Measurement Errors): 3 Ey < 400 such
that || — v|| < Ep. O

Assumptions 3 and 4 are motivated by the following obser-
vations: 1) the linear map error ||I:I(u; p;.q,)—Hu; p;,q)|
is bounded and small in a neighborhood of the optimizer
(as confirmed in our numerical results and by the analytical
findings in [28] and [37]) and 2) in realistic monitoring and
SCADA systems, the measurement of the voltage magnitudes
are affected by a small (or even negligible) error.

In our analysis, we view (9) as a perturbed version of (7).
To begin with, we have the following result.

Lemma 1 (KKT and Equilibrium): Consider the problem
(4) satisfying Assumptions 1 and 2. There exists u* such
that (u*, u*) is a KKT point for (4) if and only if #* is an
equilibrium of &t = nFg(u, H(u; p;, q,)). (Il

Before analyzing the stability of the proposed feedback-
based SGF, we provide some notation and intermediate results
that will be used in the proof of our main result.

Let Q := Ji(u) — Jy(u) and denote by w; the ith row of
Q. Moreover, let e := v — v denote the measurement errors.
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Then, define Fg(u, 2, e) as
Fp(u, 2, e)
= arg rrgn 10+VC,@)+(Jy@)+Q) " VC,(v +e)|*

st. — (VHiw) +w)'0 <—B(V—v; —e;) VieM
(VH;(u) + ;)"0 < —B(vi+e;, — V) VieM
T, )"0 < —Bti(pi.qi) Vieg

where v = H(u; p;, q;). Note that Fg(u, H(u; p;, q,)) =
Fgp(u,0,0) and Fg(u,v) = Fgu, Jym) — Ju(u),» — v).
Let & == {Q : |Q| < E;} and &y = {e : |le| < Ep} for
brevity. We make the following assumption on F 8-
Assumption 5 (Regularity): For any u € B(u*, r), and any
Q and e satisfying Assumptions 3 and 4, problem (10) is
feasible and satisfies the Mangasarian—-Fromovitz constraint
qualification and the constant-rank condition [43]. O
Since the constraints in the problem defining F s(u, 2, e)
(and, hence, our SGF (9)) are based on techniques from
CBFs [24], [25], Assumption 5 guarantees that there always
exists a direction for the setpoints to satisfy the constraints of
the OPF. Moreover, this assumption allows us to derive the
following result.
Lemma 2 (Lipschitz Continuity): Let Assumption 5 hold,
and assume that u — C,(u) and v — C,(v) are twice
continuously differentiable over B(u*,r;) and V := {v ¢ RM :
V<vite =<V, VieMv=Hu p.q) el <Ey.uc
B(u*, r1)}, respectively. Then, the following holds.
1) Forany Q € £; ande € Ey, u F,g(u, Q, e) is locally
Lipschitz at u, and u € B(u*, r).

2) For any u € B(u*,r;) and Q € £y, e — I:",g(u, Q,e)is
Lipschitz with constant £z, > 0 over Ey.

3) Forany u € B(u*,r;) and e € &y, Q — Fﬁ(u, v,Q2,e)
is Lipschitz with constant £, > 0 over &;. O

Lemma 2 follows from [43, Th. 3.6] and by the compactness
of the sets &y and &;. This result ensures the existence
and uniqueness of solutions for the proposed feedback-based
SGF [44, Ch. 3].

Our main stability result critically relies on these results.
Before stating it, we introduce some useful quantities that
play a role in the main result; in particular, they are related
to local properties of Fg(u, H(u; p;, q;)). Recall that u* is
the local optimizer of (4). We define v* := H(u*; p;, q,),
E = (8Fﬁ(ua H(u; D ql))/au) lu=u> €1 = —Amax(E),
and e; := —Ayin(E). Then, we can write the dynamics as
Fg(u, H(u; p;, q;)) = E(u—u*)+ g(u), where g(u) satisfies
lg@)|| < L|lu — u*||?, Yu € B(u*,r,), for some L > 0 and
rp > 0 (see [44]). Define r := min{ry, r,} and

0, ifrz%

Smin ‘= rL e
e 1 - —, ifr<—1.
€] L

Since U is compact, Jy(u) is Lipschitz on U with constant
£. We are now ready to state the main stability result for (9).
Theorem 1 (Practical Local Exponential Stability):
Consider the OPF problem (4) satisfying Assumptions 1
and 2, a linear map H satisfying Assumption 3,
measurements v satisfying Assumption 4, and the
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controller (9) satisfying Assumption 5. Let u(z), t > fo,
be the unique trajectory of (9). Assume that the set
S:i=1{s:85mn<s =<1, el_3ezL(€ijJ +Lp Ey) <s—s2}is

not empty. Then, for any s € S, it holds that

€ _ _
lu() —u*| < 1/e—e ) u(ty) — u¥||
1

+ eZ(EFJ EJ + eFu EM) (1 _ efems(tffo))

2
seq

19)

for any initial condition u(fy)) such that |lu(z) — w*|| <
(e1/e2)'*(er/L)(1 = s). A
The proof of the result is provided in Appendix B. The
assumption that S is not empty is necessary to guarantee that
the trajectory of u(z) never exits the region of attraction of
the optimizer u*. We can notice that the first term on the
right-hand side of (19) decays over time; the second term
models the effect of the measurement errors and the errors in
the computation of the Jacobian. In particular, we can notice
that as + — +o00, the right-hand side of (19) becomes

Jim Jlu() —wl| < s7'e e (Cr, Eg + L En). (20)
The asymptotic error can be reduced by increasing the accu-
racy in the measurement of the voltages (i.e., reducing Es) or
allocating more computational power to compute the Jacobian
of the power flow equations (i.e., reducing E;). The following
result characterizes the feasibility of the solution u(z).

Lemma 3 (Practical Forward Invariance): Let the condi-
tions in Theorem 1 be satisfied, and let u(z), t > t(, be the
unique trajectory of (9) and v(¢) be the corresponding voltage
magnitudes. Define the set

Foo={u:uecl,V,<Hu;p,q)<V.,VieM} 2l

with V, .= V. — Ey —2Ep, V. := V + Ey + 2Ey,
and Ep = maxuey ||H(w; p;, q,) — H(u; p;, q))|l. Then, the
feedback-based SGF (9) renders a set F;, with F C F; C F,,
forward invariant. O

The proof is provided in Appendix C. Lemma 3 establishes
forward invariance of a set JF;, which is a subset of F,
and inflation of F (more details about F; are provided in
the proof); it is clear that F, tends to the set F with the
decreasing of the error in the computation of the Jacobian and
the measurement errors, which implies that F; tends to F too.
If these errors are small, the voltage violation is practically
negligible.

In the case of no errors in the measurements and in the
computation of the Jacobian, we have the following results.

Corollary 1 (Error-Free Implementation): Let all the con-
ditions in Theorem 1 be satisfied, and assume that there are
no measurement errors, i.e., £y = 0, and no errors in the
Jacobian, i.e., E; = 0. Let u(¢), t > ty, be the unique
trajectory of (7). Then, it holds that

[e2 —ens(i—
() —u™| < e—IIu(to)—u*lle emst=)
1

and lim;_ 1o ||u(®) —u*|| = 0. A

Lemma 4 (Forward Invariance in Error-Free Implementa-
tion): Let the conditions in Theorem 1 be satisfied, and assume
that there are no measurement errors (i.e., Ey = 0). Let
u(t), t > to, be the unique trajectory of (7) and v(¢) be the
corresponding trajectory of the voltages. Then, (7) renders the
set F forward-invariant. In particular: 1) if v;(t) € [V, V1,
then v; (r) € [V, V] forall t > o and 2) if v; (o) ¢ [V, V], then
there exists ' > o such that v;(¢) € [V, Vlforallr>¢. O

Corollary 1 quantifies the error in the convergence to u*
and certifies local exponential stability properties for the
proposed method. Lemma 4 establishes that for the case with
no measurement errors and with the exact computation of the
Jacobian matrix, the proposed method ensures that voltages
are satisfied anytime.

D. Extensions

1) Virtual Power Plants: In this section, we introduce an
extension of our formulation for virtual power plants (VPPs).
In this case, the goal is to coordinate the operation of the
DERs to regulate voltages and provide ancillary services to
the bulk power system. In particular, the coordination is to
ensure that the active and reactive powers at the substation
track a reference { Py st, Qo set}. The reference setpoint can be
sent by the transmission system operator in order to provide
frequency regulation or ancillary services.

Using an expression for the powers at the substation such as
po=G,(u; p;,q)) and g0 = G,(u; p;, q,), the OPF problem
in (4) can be extended to include constraints of the form
|(Gp(u§ D, ql)_PO,sel)| =< Ep and |(Gq(u; P ql)_QO,set)| =<
E,, where E, > 0 and E; > 0 are tolerable tracking errors for
the setpoints Py g and Qg ser, respectively. As an additional
example, one can consider the constraint

H [Gp(u; P ql)i| _ [ PO,set i|
Gq (u; P q[) QO,set
with £ > 0 again a given tracking error. In the pro-
posed measurement-based SGF, the maps G,(u; p;, q,;)
and G,(u; p;,q;) would be replaced by measurements of
the active and reactive powers at the substation, respec-
tively. Moreover, the Jacobian matrix of G,(u; p;, q;) and
G, (u; p;, q;) with respect to u can be approximated by using

a linear model [37].

2) Other Constraints: The ac OPF formulation (4) can be
extended to include constraints on the power flows or currents.
The proposed feedback-based SGF can be naturally modified
to enforce constraints on power flows or currents; to this end,
one can use a linear model approximating the relationship
between power injections at the DERs’ nodes and power
flows and currents in the controller design [16]. During the
operational phase, the controller would rely on measurements
of power flows and currents (or measurements) in addition to
voltages; see, for example, the discussion in [16].

<E (22)

IV. NUMERICAL EXPERIMENTS

We consider the medium voltage network (20 kV) shown
in Fig. 2(a). We used a modified network from [26],
in which PV power plants have been randomly placed, with
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Fig. 2. (a) Distribution network used in the simulations. (b) Aggregated load consumption (P, Q) and PV production profiles (Pnax) used in the simulations.
(c) Operational set compared to grid code requirements inspired from the IEEE Std 1547-2018, where s, is the inverter-rated power.

inverter-rated size picked randomly among {490, 620, 740}
kVA. The dynamics of the output power for the inverters are
not implemented, as they are much faster than the controller
dynamics (see, e.g., [45]). Accordingly, when the controller
updates the power setpoints, the inverter implements them
instantaneously. In the numerical experiments, we consider a
system with PV plants; however, we note that any type of
inverter-interfaced DERs can be considered. Fig. 2(b) shows
the aggregated loads and maximum available active power for
PV plants throughout the day. The data are from the Open
Power System Data,' and have been modified to match the
initial loads and PV plants’ nominal values present in the
network. The reactive power demand is set such that the power
factor is 0.9 (lagging). This would represent a typical summer
day, with high PV production. We will show that under these
conditions, the electrical distribution network would undergo
overvoltages.

A. Simulation Setup

We compare the proposed measurement-based SGF with:
1) no control (NC); 2) the online primal-dual method (PDM)
proposed in [10]; and 3) a Volt/Var control (VVC). We also
compute the solution of a batch optimization (BO) method,
where the ac OPF problem, with the power flow equations
modeled using the nonlinear branch flow model [46], is solved.

1) Simulation Parameters: The voltage service limits V
and V are set to 1.05 and 0.95 p.u., respectively. The load
and PV production profiles have a granularity of 10 s, i.e.,
active/reactive power consumption and maximum available
active power for PV plants change every 10 s. For the SGF,
it means that every 10 s, we pursue a new optimal solution.
The SGF (using a forward Euler discretization), PDM, and
VVC algorithms are run every second.

Based on the IEEE standard IEEE Std 1547-2018, we con-
sider the feasible set for the PV plants shown in Fig. 2(c).
Although the inverter feasible set consists of a semicir-
cle, there is no interest for PV owners to operate the PV
plant at low power factors, i.e., large reactive power absorp-
tion/consumption and low active power production. Usually,

'Data available at
data/2020-04-15.

https://data.open-power-system-data.org/household

0.44

—0.44

0.90 0.95 0.99 1.01

[v] [pu]

1.05 1.10

Fig. 3. Implementation of IEEE standard IEEE Std 1547-2018 with Q being
the reactive power injection, S the nominal apparent power of the DER, Q/S
the ratio between Q and S, and |v| the voltage magnitude at the node.

PV plants are operated at unity power factor, i.e., on the ver-
tical line passing through 0. The distribution system operator
(DSO) often imposes grid requirements when a PV plant is
connected to its network in order to provide support if needed.
The grid requirements vary from one DSO to another. In this
article, we consider that the maximum reactive power that the
inverter can produce/consume is set to 44% of its nominal
apparent power. The vector-valued function modeling power
limits is therefore

p;+al =,

Pi — Pmax,i
—Pbi
—0.443‘,,,,' — 4
qi — O.44Sn’i

Ci(pisqi) = (23)

It is assumed that pp,y; is known at the DERs. For example,
one can use the method proposed in [47] to estimate the max-
imum power point of PV arrays and, therefore, the maximum
available power pp.y ;. Finally, we consider the following cost
function for the SGF, PDM, and BO:

2 2
Sn,i — Pi i
Cp(pi,qi) = ZC,;(S—) + ¢y (sq—) (24)

ieg )
with ¢, = 3 and ¢, = 1. This cost function seeks to minimize
active power curtailment and inverter power losses. The first
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map error: ||H (u; p;, q;) — H(u; p;, q;)|| and Jacobian error: ||Jz — Ju (u; p;, q;)||, where u is picked from the SGF algorithm.

part minimizes the active power curtailment, and the second
part minimizes the reactive power usage, which is also related
to the inverter losses as less reactive power usage means less
currents and, thus, less Joules losses.

2) Volt/Var Control: The VVC is inspired by the IEEE stan-
dard IEEE Std 1547-2018. The parameters of the VVC have
been adapted to match the voltage service limits considered in
this article. The maximum reactive power consumed/absorbed
is set to 44% of the nominal apparent power of the PV
plant. The maximum power absorbed/produced is reached for
voltages 1.05/0.95 p.u., respectively. Finally, we implemented
a deadband for voltages between 0.99 and 1.01 p.u. Our
implementation of the IEEE standard /EEE Std 1547-2018 is
shown in Fig. 3.

3) No Control: For the no-control test case, we consider
an overvoltage protection of PV plants, i.e., the plant is
disconnected if the voltage level is too high. We consider
three different statuses for the PV plant: running, idling,
and disconnected. When the PV plant is in status idling
or disconnected, it does not inject active power or provide
reactive power compensation. The disconnection scheme is
inspired by the CENELEC EN50549-2 standard [48] and has
been adapted considering the voltage service limits used in
this article. The PV plant changes status from running to
disconnected if: 1) the voltage at the point of connection
goes above 1.06 p.u. and 2) the root mean square value of
the voltages measured at the point of connection for the past
10 min goes above 1.05 p.u. (the voltages are measured every
10 s).

- T T T T T T
80— sar ] e R
=== PDM
7000 —.- vve 3
5 NC
g 0000%--- B0 H J -
E] A
< 5000 800 : 2 3
8 e
S 4000 F { 3
2 775 B
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Time (h) [At =10.00 s]

Fig. 5. Achieved values of cumulative cost (24).

The PV plant switches to status idling if the voltage at the
point of connection stays below 1.05 p.u. for 1 min. To switch
back to rumning status, the PV plant has to be in idling
status. The switching to running status occurs randomly in
the interval [1, 10 min] (random, uniformly distributed).

B. Results

In the following, we compare the different methods in
terms of their cost function values, the system losses, and the
voltage levels. Notice that system losses are not integrated into
the cost function (24) since they conflict with the term that
considers active power curtailment. In this article, we design
the cost function to promote renewable energy resources,
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Fig. 6. Sum of energy losses throughout the day.

hence maximizing solar production while keeping voltage
levels within predefined bounds. However, the DSO is also
concerned by the system losses. Thus, one needs to look at
how the different methods perform with respect to them.

1) Voltage Regulation: In Fig. 4, one can see the maximum
voltage observed at every time step, as well as the number of
impacted nodes where we observed a voltage greater than V.
It can be seen that only the SGF method does not lead to
voltage violations. This is precisely because our approach is
based on the theory of CBFs. PDM leads to voltage violations
not only because of the transient of the dual variables but
also because it is designed based on a regularization of the
Lagrangian function, as explained in [10]. VVC performs
well although, as shown hereafter, it leads to larger system
losses and a greater cumulative cost than SGF or PDM. The
overall voltage profile is also shifted downward due to its
proportional feedback control. One can observe the spikes
in the NC method due to multiple disconnections of DERs
because of a prolonged overvoltage duration. Finally, one can
see that with PDM, the voltages oscillate around the threshold
voltage of 1.05 p.u.

2) Overvoltage Duration: In Fig. 4(e), we show the dura-
tion of overvoltages. We define 7>,.; as a vector containing
the number of consequent time steps during which node i sees
the voltage above the value . The value max 7%, corresponds
to the maximum value among all Ts,; for i € AN and
corresponds to the maximum consequent time duration during
which one nodal voltage was above «. The value mean 7,
is the maximum of the mean absolute values of every vector
Tsq; for i € N, representing the average time duration of
overvoltage. Since the SGF algorithm does not yield overvolt-
ages, it does not appear on this graph. One can see that the NC
method does not perform well, as the active power curtailment
is activated only for large overvoltage (above 1.06 p.u.) or for
prolonged overvoltage (above 1.05 p.u.).

3) Achieved Cost: We show the cumulative cost function
in Fig. 5, i.e., the cumulative sum of the cost function at
every time step. It is clear that the NC method leads to
the largest cumulative costs, as its implementation leads to
full curtailment of solar production and no usage of reactive
power. The VVC shows the second highest cost because
of its inefficient usage of reactive power reserves. We have
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to bear in mind that these two solutions cannot practically
achieve the optimal solutions of the BO method since they
can only play with either the active or reactive power output of
solar inverters. Furthermore, they are, by design, decentralized
control algorithms and do not have full information on the
system state. We observe that PDM has the lowest cumulative
cost, which comes at the detriment of voltage violations,
as observed in Fig. 4(c). The SGF cumulative cost superposes
the BO cost.

4) System Losses: The cumulative system losses for the
different methods are shown in Fig. 6. The NC method leads
to the lowest system losses as it drastically reduces the amount
of active power flows in the network by fully curtailing solar
production. The VVC leads to the highest system losses as
it overuses reactive power compensation to mitigate voltage
issues. This results in larger power flows throughout the
network, hence larger power system losses. We can observe
that PDM, SGF, and BO have similar system losses.

Finally, Fig. 4(f) shows the error between the linear approx-
imation of the power flow equations and the nonlinear power
flow equations, validating our choice for the linear map. It also
shows the error between the approximate Jacobian (which is
constant) and the true Jacobian computed numerically.

V. CONCLUSION

This article has addressed the problem of continuously
adjusting the power outputs of DERs to pursue feasible
solutions of ac OPF problems. We have employed a con-
tinuous approximation of projected gradient flows, modified
to accommodate voltage measurements from the electrical
network, to ensure the satisfaction of voltage constraints at all
times. We showed practical exponential stability for scenarios
where voltage measurements are subject to errors and where
only an approximation of the Jacobian matrix of the power
flow equations is available. Our method was experimentally
validated on a 93-bus distribution system with realistic load
and production profiles. Our approach exhibited a performance
significantly superior in terms of voltage regulation to existing
online primal-dual methods and Volt/Var strategies. Future
research efforts will look at data-driven implementations and
event-triggered implementations of the feedback-based SGF.

APPENDIX

A. CBF-Based Design Principles

In this section, we provide insights into the CBF-based
design approach for the proposed measurement-based SGF.
Consider rewriting the OPF problem defined in (4) in the
following general form:

min f(x)

xeR26

s.t. g(x) <0 (25)

with f : R?® — Rand g : R?® — R, where P is the number
of voltage and power constraints. Let F = {x € R?¢ | g(x) <
0} and x* be a local optimizer of (25). This point, along with
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the optimal dual variables y* € RP, satisfies the Karush—
Kuhn—Tucker conditions

g( "‘)T

=0

g(x*) <0
y* >0,

Vfx*)+

0" Tgx*) = 0.

As proposed in [25], the optimization problem (25) can be
solved using nonlinear dynamics of the form

agx)’
)C

(26)

=-Vflx) - ——

which can be interpreted as a modification of the gradient flow
—V f(x), where the input y can be designed to ensure that the
set F is forward invariant. To this end, define the following
admissible set for y:

27)

0g 0 0
g8 _a—gi(x)

K = RP
p() [y € %20 dx 0x

ﬂg(X)l
(28)

where B > 0 is a design parameter, which is inspired by
CBF arguments [24] (see [25]). Since we want the drift term
(3g(x)T/0x)y as small as possible while ensuring that the set
F is feasible, the input is computed as [25]

8g )c)-r H

X) = ar Hlln
y(x) g o

(29)

for each x. The overall modified gradient flow is then given
by (27) with the input y(x) in (29).

In [25], it is shown that (27) with the input y(x) in (29)
is equivalent to dynamics of the form x = Fg(x), where the
flow Fg(x) is defined as

1
Fg(x) 1= arg min‘ -||9 + Vix)|?

ag(x )T

st ——= 0 < —Bg(x). (30)
0x

In this article, we leverage dynamics of the form (30) to solve
our ac OPF problem; however, as explained in Section III, the
dynamics are modified to accommodate measurements.

B. Proof of Theorem 1

We recall that v is a short-hand notation for the real
voltages, i.e, v = H(u;p,;,q,), and v is the vector
of (pseudo)measurements. Recall also that Fg(u,v) =
Fg(u,0,0) and Fy(u, %) = Fy(u, Jg(u)—J g (u), —v). First,
we express our controller as

u= nﬁﬁ(u, V)
=nFs(u,0,0)
+ 0l Fgu, Jg(u)—Jy(u), v—v) — Fp(u, 0, 5—v)]
+nlFp(u,0,5—v) — Fg(u, 0, 0)]

where we added and subtracted F g(u,0,0) and F g(u, 0, v-v),
and we reorganized the terms. The feedback-based SGF can
then be understood as a perturbation of the nominal gradient
flow Fg(u, 0, 0).

By [25, Lemma 5.11 and Th. 5.6(iii)], I*_“,g (u, 0, 0) is differ-
entiable at #* and its Jacobian E = (8Fﬂ(u, 0,0)/0u) |y—u
is negative definite. Recall that e = —A\x(E) and e; =
—Amin(E). Let P := [“(exp(E¢)T exp(E{)d¢, and then,
by [44, Th. 4.12], it holds that PE + E'P = —I,, and
(1/2ex)[lu —u*||3 < (u —u*) T P(u—u*) < (1/2¢1)|lu —u*|3.
Let Vi(u) := (u — u*)" P(u — u*); then, we bound 2(u —
q*)TPF g(u,0,0) and then leverage this bound to estimate
Vi

2 —u*) PFy(u,0,0)
= (u-— u*)T(PE + ETP)(u —u")
+2u—u")"Pg(u)

A

1
—llu —u*|* + e — L — u*||?
1

(=1 Sl ) = [ < st
where the last inequality holds if |ju — u*|| < (e;/L)(1 —s)
for any s € (Smin, 1]. Then,
Vi=2u—u*)"Pi
=2n(u —u*)" PFg(u,0,0)) +2nu—u*)"
x P[Fg(u, Jg—Jy,v—v) — Fg(u,0,v—v)]
+2n(u —u*) " P[Fg(u,0,9—v) — Fg(u,0,0)]
< —nsllu — w*||* + 2n€p, lu — w*| | Pl|[| T — T4l
+ 20l llu — w* [ PP — vl
L, Ey+Lp Ey

IA

< —nsllu—u*|* + n—————lu —u’]|
1
bp E;+Lp E
< —2einsVi + n\/Zezw\/Vl.
1

Define V,(u) := +/Vi(u). Then,

. bp, E;j+er E
V. — Vi <—261nSV1+n«/262W«/V1
2T 2JV 2JV,
p E;+0p E
— —emnsVat ﬁ%
1

In addition, we note that that for any a > 0, b > 0,
y(&) = y(to) exp (=b(t — 19)) + (a/b)(1 — exp (=b(t — 1)) is
the solution of y = —by +a and y(¢y) = y(fy). Hence, by the
comparison lemma [44, Lemma 3.4], it follows that

V(1) < Va(tg)e 1m0

n V2e(8p, Ej + L, EM)(
2se?

_ efelfls(f*fo)) .

Thus, one has that

lu@) —u™| < 2e2V2(t)
< V2e,Va(tg)e~ 1m0
262(£FJEJ +£F EM)( _ e_elng(l tO))
2se1

,/ 2e2e” ) lu(tg) — u¥|

ez(eF, E;+1Lr Ey)

> (1

seq

_ e—flnb(f fo))
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e
= /e ) —uf|

€l
4 eUrE +trEu) (1 — emems=)

2
sej

which proves the result. The limits for t — 400 can be
computed straightforwardly.

C. Proof of Lemma 3

The proof leverages Nagumo’s theorem [49]. For
the feedback-based SGF Fy(u,v) in (9), it holds
that —VH;w) Fy < —B(V — 7). Recall that
v; = H(u; p;, q;) + e for i € M. It follows that

—VH; () Fyg

= —,B(K— H(u; p;,q)) — ei)

= —B(V—H(u: p;.q;)—ei+(H(u; p;.q)— H(u; p;.q))))
< —B((V.— Ey — Ef) — H(u; p;, q)))

where Ej = maxuey | H(u: p;, q) — H(: p.q)|. Simi-
la_rly, it also holds that VH,-(u)TFﬁ < —B(Hw; p;,q;) —
(V+ Ey + Ep)). Thus, the set

Fs :={u:K—EM—E1;SI:Ii(WI’z»‘II)SV"‘EM"‘EI-?
Vie M,u e}

is forward invariant under (9). Note that JF; is a subset of F,,
and this concludes the proof.
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