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ABSTRACT This paper tackles the problem of solving stochastic optimization problems with a decision-
dependent distribution in the setting of stochastic strongly-monotone games and when the distributional
dependence is unknown. A two-stage approach is proposed, which initially involves estimating the distribu-
tional dependence on decision variables, and subsequently optimizing over the estimated distributional map.
The paper presents guarantees for the approximation of the cost of each agent. Furthermore, a stochastic
gradient-based algorithm is developed and analyzed for finding the Nash equilibrium in a distributed fashion.
Numerical simulations are provided for a novel electric vehicle charging market formulation using real-world
data.

INDEX TERMS Decision-dependent distribution, learning, optimization, stochastic monotone games.

I. INTRODUCTION
The efficacy of stochastic optimization [1] and stochastic
games [2], [3], [4], [5], [6] generally hinges on the premise
that the underlying data distribution is stationary. This means
that the distribution of the data, which parameterize the prob-
lem or the game, does not change throughout the execution of
the algorithm used to solve the stochastic problem or game,
and is neither influenced or dependent on time nor the opti-
mization variables themselves. This is a common setup that
has been considered when game-theoretic frameworks have
been applied to problems in, for example, ride hailing [7],
routing [8], charging of electric vehicles (EVs) [9], [10],
power markets [11], power systems [12], and in several ap-
proaches for training of neural networks [13]. However, this
assumption can be invalid in a variety of setups in which
the cost to be minimized is parameterized by data that is
received from populations or a collection of automated control
systems, whose response is uncertain and depends on the
output of the optimization problem itself. As an example, in
a competitive market for electric EV charging [9], [14], the

operators seek to find the charging prices (i.e., the optimiza-
tion variables) to maximize the revenue from EVs; however,
the expected demand (i.e., the “data” of the problem) is
indeed dependent on the price itself. More broadly, power
consumption in power distribution grids depends on electric
prices [15]. A similar example pertains to ride hailing [7].

To accommodate this scenario, the so-called stochastic op-
timization with decision-dependent distributions (also known
as performative prediction [16]) posits that we represent the
data distribution used in optimization instead as a distribu-
tional map x !→ D(x) where x are decision variables [16],
[17], [18], [19], [20]. In this work, we study decision-
dependent stochastic games in which players seeks to mini-
mize their cost (based on their optimization variables) subject
to other players optimization variables, and where the data
distribution of each player depends on the actions of all play-
ers (we will use the term player and agent interchangeably).

We focus on solving the Nash equilibrium problem of
a game, which is to find a decision from which no agent
is incentivized by their own cost to deviate when played.
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Formally, the stochastic Nash equilibrium problem with
decision-dependent distributions considered in this paper is to
find a point x∗ = (x∗

1, . . . , x∗
n ) ∈ Rn such that

x∗
i ∈ arg min

xi∈Xi

Fi(xi, x∗
−i ), ∀ i ∈ {1, . . . , n} (1)

with Fi(xi, x∗
−i ) defined as:

Fi(xi, x∗
−i ) := E

zi∼Di (xi,x∗
−i )

fi(xi, x∗
−i, zi ) (2)

where: zi denotes a random variable supported on Rki , fi :
Rd × Rki → R is a scalar valued function that is convex and
continuously differentiable in xi, Xi ⊆ Rdi is a compact con-
vex set, and Di : Rd → P(Rki ) is a distributional map whose
output is a probability distribution supported on Rki .

Standard stochastic first-order methods are insufficient for
solving problems of this form. As we will demonstrate later in
the paper, even estimating the expected gradient from samples
requires knowledge of the probability density function associ-
ated with Di—which is not possible in a majority of practical
applications.

Hereafter, we use the term “system” to refer to a population
or a collection of automated controllers producing a response
zi ∈ Rki upon observing x. To illustrate our setup, consider
again the example where each agent represents an EV charg-
ing provider. Here, xi ∈ Rdi represents the charging price at
a station managed by provider i, expressed in $/kWh. Corre-
spondingly, zi indicates demand for the service at that price,
while fi is the service cost (or the negative of the total profit)
for provider i. This is an example of a competitive market in
which the demand for service is a function of the price of all
providers; see, for example, the game-theoretic approaches
presented in [9], [21] and the Stackelberg game presented
in [14]. However, compared to existing game-theoretic models
for EV markets, the framework proposed in this paper allows
for an uncertain response of EV owners to price variations;
this randomness is difficult to model, as it related to the
drivers’ preferences and other externalities such as the loca-
tions of the charging stations, etc., as explained in, e.g., [21],
[22], [23].

Challenges in solving problems of this form typically stem
from the fact that the distributional maps Di are often un-
known [24], [25], [26], [27]. To overcome this challenge,
we propose a learning-based optimization procedure – in
the spirit of the methods proposed for convex optimization
in [18], [28] – to tackle the multi-player decision-dependent
stochastic game. The key idea behind this framework is that
we first propose a parameterization for the distributional map
in the system and estimate it from responses. Then, we use
the estimated distributional map throughout the game without
requiring further interaction with the system.

A. RELATED WORK
Our work incorporates themes from games, learning, as
well as stochastic optimization with decision-dependent
distributions. We highlight the relationship with this relevant
literature below.

Games: Within the context of games, our work is specif-
ically focused on solving Nash equilibrium problems using
gradient-based methods and a variational inequality (VI)
framework. The literature on stochastic games is extensive;
for a comprehensive yet concise review of the subject, we
refer the reader to the tutorials [29] and [2]; see also perti-
nent references therein. A common denominator of existing
frameworks is that the data distribution is stationary. The
work of [30] demonstrates that strictly monotone games have
unique solutions and that gradient play converges to it. The
modern approach of solving Nash equilibrium problems for
continuous games via variational inequalities can be attributed
to Facchinei and Pang [31], [32]. For solving strongly mono-
tone variational inequalities, the projected gradient method is
capable of converging linearly.

Our work introduces the additional complexity of mini-
mizing communication between agents and hence we use a
distributed gradient approach in our optimization algorithm.
Distributed gradient methods have been explored extensively
in the literature on convex optimization, though less so in
that of variational inequalities. We refer the reader to [33]
for a review in the convex optimization setting, and [34] for
variational inequalities.

Decision-Dependent Data: This paper contributes to the
growing body of literature that studies stochastic optimization
with decision-dependent data distributions. While the con-
cept of decision-dependent uncertainty has existed within the
optimization literature for some time, the formalization via
distributional maps is attributed to “Performative Prediction”
and its use within the machine learning community [16].
This work posits the formulation of optimization problems
in which the data distribution is explicitly dependent on the
optimization variables, and proposes repeated retraining (and
the limit points thereof) as a solution; these points are re-
ferred to as “performatively stable” to distinguish them from
“performatively optimal” points as they solve the stationary
optimization problem that they induce. Convergence of var-
ious stochastic gradient algorithms to performatively stable
points are studied in [17], [35] in the batch setting, and in
the time-varying setting in [36], [37]. The extension of prob-
lems to games includes two-player zero-sum games in [37],
and general multiplayer games in [19]. Additional recent ex-
tensions to this line of work include distributionally robust
optimization [38], [39] and time varying optimization [36],
[37].

The prevailing method for finding optimal points, and
by extension Nash equilibrium, involve prescribing a model
of the distributional map(s) to leverage standard stochas-
tic optimization methods. While derivative free optimization
is possible, the necessary restriction to estimators using a
single cost evaluation prevents any reasonable rate of conver-
gence [18], [19], [20].

Optimization algorithms for linear parameterizations (i.e.
location scale families) are discussed in [18] using a
multi-phase approach, where a model is learned before the
optimization phase, and in [19] where a model is learned
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during the optimization phase using an adaptive approach. A
multi-phase approach suitable for a general class of param-
eterizations, which is referred to as “regular”, is developed
in [28]; here, bounds on the resulting excess risk are provided.

This work complement the technical findings of [28] by
generalizing the so-called “plug-in” optimization approach
of [28] to non-cooperative multiplayer games. Like [19], we
focus on finding the Nash equilibrium of strongly-monotone
games with decision-dependent distributions. However, i) our
optimization framework works for a more general class of
models, as opposed to merely linear parameterizations; addi-
tionally, ii) our algorithm learns a model before optimization
rather than during. In this way, we can separate the number
of required interactions with the system from the number of
optimization steps.

B. CONTRIBUTIONS
In this work, we provide the following contributions to the
body of work on stochastic optimization and Nash equilibrium
problems with decision-dependent distributions.

i) We propose an algorithm for finding a Nash equilibrium
in stochastic games with decision-dependent distribu-
tions where: (i) the distributional map for each player’s
cost is estimated from samples, and (ii) the estimated
distributional map is used in gradient-based strategies.

ii) We provide guarantees on the approximation error
of distributional maps for a class of map learning
problems.

iii) We show that the parameterized cost approximates the
ground-truth in high-probability.

iv) We propose a stochastic gradient-based algorithm for
solving a parameterized strongly-monotone game, and
we demonstrate linear convergence in expectation.

v) Finally, we provide numerical simulations of an EV
charging market formulation using real-world data. The
EV market formulation is new in the context of energy
markets, thus providing contributions in this area.

C. ORGANIZATION
In Section II, we provide necessary notation and background
for our analysis. In Section III we discuss the proposed
learning algorithm in detail and present our primary result.
Section IV discusses the details of the optimization stage. We
provide our numerical simulations in Section V. Proofs of the
results are provided in the Appendix.

II. NOTATION AND PRELIMINARIES
Throughout the paper, Rd denotes the d-dimensional Eu-
clidean space with inner product ⟨·, ·⟩, and Euclidean norm
∥ · ∥. For a matrix X ∈ Rn×m, ∥X∥ denotes the spectral norm.
For a given integer n, [n] denotes the set {1, 2, . . . , n} and
Sn−1 denotes the Euclidean hypersphere in n dimensions,
{x ∈ Rn| ∥x∥2 = 1}. The symbol 1d is used to denote the
d-dimensional vector of all ones. Given vectors x ∈ Rn and
z ∈ Rm, we let (x, z) ∈ Rn+m denote their concatenation.

For a symmetric positive definite matrix W ∈ Rd×d , the
weighted inner product is defined by ⟨x, y⟩W = ⟨x,Wy⟩ and
corresponding weighted norm ∥x∥W =

√
⟨x, x⟩W for any

x, y ∈ Rd . The weighted projection onto a set X ⊆ Rd with
respect to the symmetric positive definite matrix W ∈ Rd×d is
given by the map

projX,W (x) := arg min
y∈X

1
2

∥x − y∥2
W (3)

for any x ∈ Rd .

A. PROBABILITY MEASURES
Throughout this work, we restrict our focus to random vari-
ables drawn from continuous probability distributions sup-
ported over the Euclidean space. When random variables
X,Y ∈ Rk are equal in distribution, i.e., P(X ≤ x) = P(Y ≤
x) for all x ∈ Rk , we write X d= Y .

Our analysis includes study of sub-exponential random
vectors. A univariate random variable X ∈ R is said to be sub-
exponential with modulus θ > 0 provided that the survival
function satisfies P(|X | ≥ t ) ≤ 2 exp(−t/θ ) for all t ≥ 0. By
extension, a random vector X ∈ Rk is sub-exponential pro-
vided that ⟨u, X ⟩ is a sub-exponential random variable for all
u ∈ Sk−1.

To compare probability distributions, we will be interested
in computing the distance between their associated probability
measures—for which we need a complete metric space. We let
P(Rk ) denote the set of finite first moment probability mea-
sures supported on Rk and write the Wasserstein-1 distance
as

W1(µ, ν) = sup
h∈L1

{
EX∼µ[h(X )] − EY ∼ν[h(Y )]

}

for any µ, ν ∈ P(Rk ), where L1 is the set of all 1-Lipschitz
continuous functions h : Rk → R. Under these conditions, the
set (P(Rk ),W1) forms a complete metric space [40].

B. GAMES
We consider a game that consists of n players. Each player
has a cost function Fi, distributional map Di, and decision set
Xi ⊆ Rdi . Hence, each player chooses a decision, or strategy
xi ∈ Xi ⊆ Rdi . The concatenation of the decision variables
is written as x = (x1, . . . , xn) ∈ X ⊆ Rd where X =

∏n
i=1 Xi

and d =
∑n

i=1 di. For a fixed agent i, we will decompose the
decision x as x = (xi, x−i ) where x−i ∈ Rd−di is the strategy
vector of all agents excluding the ith one.

The collection of costs Fi and decision sets Xi defines the
game

min
xi∈Xi

Fi(xi, x−i ), i ∈ [n]. (4)

A Nash equilibrium of this game is a point x∗ ∈ X provided
that

x∗
i ∈ arg min

xi∈Xi

Fi(xi, x∗
−i ) (5)
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for all i ∈ [n]. Intuitively, x∗ is a strategy such that no agent
can be incentivized by its cost to deviate from x∗

i when all
other agents play x∗

−i. Finding Nash equilibria is the primary
focus of this work.

Games of this form are commonly cast into a variational
inequality framework. This is due, in part, to the observation
that the Nash equilibria x∗ ∈ X are the solutions to the varia-
tional inequality

⟨x − x∗, G(x∗)⟩ ≥ 0, ∀ x ∈ X,

where the gradient map G : Rd → Rd is defined as

G(x) = (∇1F1(x), . . . ,∇nFn(x)) . (6)

Here, the notation ∇i is used to represent the partial gradient
∇xi . We will denote the set of Nash equilibria of a game with
gradient map G and domain X as NASH(G,X). Existence of
solutions to variational inequalities of this form is guaran-
teed provided that the set X is convex and compact and the
gradient map G is monotone; uniqueness is guaranteed when
G is strongly-monotone [31]. We say that G is α-strongly-
monotone on X provided that there exists α > 0 such that

⟨x − y, G(x) − G(y)⟩ ≥ α ∥x − y∥2 , ∀ x, y ∈ X, (7)

and monotone when α = 0. In this work, we primarily fo-
cus on strongly-monotone games. While monotone games are
tractable, methods for solving them with decision-dependent
distributions require alternative gradient estimators—a topic
we leave to future work.

C. MONOTONICITY IN DECISION-DEPENDENT GAMES
In this work, we introduce the additional complexity to the
formulation in (4) that the Fi’s are the expected cost over a
distributional map Di : Rd → P(Rki ). In particular, we write
the cost as

Fi(xi, x−i ) := E
zi∼Di (xi,x−i )

fi(xi, x−i, zi ). (8)

This can be written alternatively as the integral

Fi(x) =
∫

Rki
fi(x, zi )pi(zi, x)dzi (9)

where pi is the probability density function for the distribution
Di(x). When the integral satisfies the Dominated Convergence
Theorem, computing the gradient amounts to differentiating
under the integral and using the product rule. We then obtain

∇iFi(x) = E
zi∼Di (x)

[
∇xi fi(x, zi ) + fi(x, zi )∇i log pi(zi, x)

]
,

(10)
where we recall that G(x) = (∇1F1(x), . . . ,∇nFn(x)). In
short, characterizing the gradient of this decision-dependent
game requires assumptions not only on fi, but also on the
properties of the distributional map Di. Sufficient conditions
for strong monotonicity of the game in (4) are due to [19] and
are stated in terms of the decoupled costs, given by

Fi(x, y) = E
zi∼Di (y)

fi(x, zi ) (11)

for all x, y ∈ Rd , and their associated decoupled partial
gradients

Gi(x, y) = E
zi∼Di (y)

∇i fi(x, zi ), (12)

for all x, y ∈ Rd and

Hi(x, y) = ∇yi E
zi∼Di (y)

fi(x, zi ) (13)

for all x, y ∈ Rd . A key observation used in the proof is that
Gi(x) = ∇iFi(x) = Gi(x, x) + Hi(x, x).

Theorem 1 (Strong Monotonicity, [19]): Suppose that,
i) For all y ∈ X, x !→ G(x, y) is λ-strongly monotone,

ii) For all x ∈ X, y !→ H (x, y) is monotone, and that for
all i ∈ [n],

iii) For all x ∈ X, zi !→ ∇i fi(x, zi ) is Li-Lipschitz
continuous,

iv) y !→ Di(y) is γi-Lipschitz continuous on (P(Rki ),W1).

Set κ =
√∑n

i=1( γiLi
λ )2. Then if κ < 1/2, x !→ G(x) is α =

(1 − 2κ )λ-strongly monotone. !

III. LEARNING-BASED DECISION-DEPENDENT GAMES
In this work, we aim to solve the stochastic Nash equilib-
rium problem with decision-dependent data distributions as
formulated in (1). Methods for finding Nash equilibrium for
games with decision dependent data distributions either use
derivative free optimization, at the expense of an extremely
slow rate, or use derivative information in conjunction with a
learned model of the distributional map [19].

In [28], it is shown that a “plug-in” optimization approach,
whereby a model for the distributional map is learned from
samples prior to optimization, yields a bounded excess risk for
the convex optimization problems with decision-dependent
data. In this work, we leverage the properties of the system to
simplify the communication structure of our approach, which
we depict in Fig. 1.

We assume that each agent i deploys a decision xi to the
system in order to receive realizations zi. Once deployed,
the decisions {xi} are made public and available to all other
agents. Given that we assume that elements of the system
are able to respond to deployed decisions {xi}, such as a
population of strategic human users of a service provided
by competitors i ∈ [n], it is reasonable to assume that other
agents may respond to the decisions of agent i as well. In this
way, agent i may receive x−i without requiring cooperation or
coordination with other agents.

To accommodate this setting, our algorithm proposes a
multi-phase approach consisting of the following phases:
(i) sampling; (ii) learning; (iii) optimization. It is important to
note that, following the learning phase, players only need to
participate in gradient play without receiving any additional
feedback from the system in the form of zi ∼ Di(x). This
is distinct from existing approaches in which performatively
stable points can only be reached after several (even thousands
of) rounds of feedback [16], [19], [20], and performatively
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FIGURE 1. Communication structure allows agents to interact with the
system in square by sending decision xi . After deploying, agents can
receive feedback from the system in the form of other agents decisions x−i
and data zi .

Algorithm 1: Multi-phase Optimization.

optimal points can only be reached for models known to be
location scale families a priori [18], [19].

Sampling: In the sampling phase, we require that each
player to design a distribution of decisions Dxi and to deploy

decision samples {x( j)
i }m

j=1
i.i.d∼ Dxi so that they can collec-

tively receive feedback z( j)
i ∼ Di(x( j) ) from the system (in

response to their deployed decisions {x( j)
i }m

j=1). The result is

that each agent has access to a dataset {x( j), z( j)
i }m

j=1 which
they can use to learn their distributional map Di.

Learning: In this procedure, each player will choose a hy-
pothesis class of parameterized functions

HBi =
{

Dβi | βi ∈ Bi ⊆ Rℓi
}

, (14)

as well as a suitable criterion or risk function Ri, to formulate
their own expected risk minimization problem

β∗
i ∈ arg min

βi∈Bi

E
x∼Dx,zi∼Di (x)

Ri(x, zi,βi ) (15)

over the random variable (x, zi ) drawn from the coupled dis-
tribution (Dx, Di(x)). Then, using the set of samples from the
previous sampling phase, they can formulate the correspond-
ing empirical risk minimization (ERM) problem

β̂i ∈ arg min
βi∈Bi

1
m

m∑

j=1

Ri(x( j), z( j)
i ,βi ). (16)

The result is a learned distributional map Dβ̂i
approximating

Di, which we can now use to solve the approximate Nash
equilibrium problem.

Optimization: Following the approximation phase, each
player now has a learned model of their distributional map
Dβ̂i

, which can be used to formulate an approximation of the
ground-truth cost Fi and hence an approximate Nash equilib-
rium problem:

x̂i ∈ arg min
xi∈Xi

Fβ̂i
(xi, x̂−i ) (17)

for all i ∈ [n], where

Fβ̂i
(xi, x̂−i ) := E

zi∼Dβ̂i
(xi ,̂x−i )

fi(xi, x̂−i, zi ) . (18)

Hereafter, we denote the Nash equilibrium of the approxi-
mate game as x̂ to distinguish it from the ground truth x∗.
In Algorithm 1, we write the set of Nash equilibria for the
operator Gβ̂ with domain X as Nash(Gβ̂ ,X). In practice, we
will assume the necessary hypotheses to guarantee uniqueness
of this assignment; in which case the set inclusion is simply
an equality.

By solving (17) instead of (1) we have introduced two
errors: (i) the approximation error of the distributional
map Di by elements of the hypothesis class HBi , and
(ii) the estimation or statistical error by solving the ERM
problem instead of the expected risk minimization prob-
lem. In [28], the main result demonstrates that these two
sources of error propagate through the optimization prob-
lem, and that the resulting excess risk can be bounded
in terms of the sample complexity m. Our goal is to ex-
pand this result and provide additional analysis to our
setting.

A. PARAMETER ESTIMATION FOR REGULAR PROBLEMS
A critical component of our analysis is the estimation or
learning of the distributional map and the subsequent char-
acterization of the estimation error. In this section, we outline
a class of expected risk minimization problems, which we call
regular problems, for which we can characterize the distance
between expected risk minimization solutions and empirical
risk minimization solutions. Throughout, we write Ri(βi ) =
E(x,z)[R(x, zi,βi )] and R̂i(βi ) = (1/m)

∑m
j=1 Ri(x( j), z( j)

i ,βi )
for βi ∈ Rℓi to denote the expected and empirical risk,
respectively.

Definition 1 (Map Learning Regularity): A map learning
problem, consisting of the optimization problems with costs
Ri and R̂i over Bi, is regular provided that:
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a) Convexity: The expected risk βi !→ Ri(βi ) is µi-strongly
convex, and the empirical risk βi !→ R̂i(βi ) is convex.

b) Smoothness: For all realizations of x ∈ X and zi ∈ Rki ,
βi !→ ∇βi Ri(x, zi,βi ) is Lβi -Lipschitz continuous.

c) Boundedness: The set Bi ⊆ Rℓi is convex and compact.
d) Sub-Exponential gradient: For all βi ∈ Bi, ∇βi Ri(x,

zi,βi ) is a sub-exponential vector with parameter
θi > 0. !

Items (a) and (c), taken together, guarantee existence of
β̂ and uniqueness of β∗ as defined in (16) and (15), respec-
tively. Furthermore, the inclusion of item (b) is necessary
to guarantee that first-order stochastic gradient methods will
converge at least sub-linearly to β̂. Lastly, the heavy-tail as-
sumption [41] will allow us to describe the concentration of
the gradient estimates. Together, they allow us to relate the
solutions to the sample complexity in the following lemma.

Lemma 2 (Uniform Gradient Bound): If the smoothness
and sub-exponential gradient assumptions in Definition 1 hold
for player i ∈ [n], then for any δ ∈ (0, 1/2) and any m such
that m/ log(m) ≥ 2(ℓi + log(1/δ)), we have that:

sup
β∈B

∥∥∇R̂i(β ) − ∇Ri(β )
∥∥ ≤ Ci

√
log(m)(ℓi + log(1/δ))

m
(19)

with probability at least 1 − δ, where Ci =
4 max{Lβi/15ri, θi}. !

The proof of this result is provided in the Appendix A1.
This result offers a broad generalization of [42, Equation
(19b)] to any risk with Lipschitz-continuous sub-exponential
gradients over any convex and compact set. Our result is
comparable to the O(

√
ℓim) rate that can be found for specific

problem instances such as linear least squares regression and
logistic regression, but with the addition of a

√
log m factor.

Indeed, the generality of the risk function requires that we
enforce compactness of the domain, thus giving rise to this
extra logarithmic factor. This gradient estimation result will
now allow us to reach our desired bounded distance result,
which we present in the following theorem.

Theorem 3 (ERM Approximation): If the map learning
problem is regular for player i ∈ [n] (i.e., it satisfies the as-
sumptions in Definition 1), then for any δ ∈ (0, 1/2) and any
m such that m/ log(m) ≥ 2(ℓi + log(1/δ)) we have that:

∥∥β̂i − β∗
i

∥∥ ≤ C′
i

√
log(m)(ℓi + log(1/δ))

m
(20)

with probability at least 1 − δ, where C′
i = (4/µi )

max{Lβi/15ri, θi}. !
The proof of Theorem 3 is provided in the Appendix A2.

The power in this characterization lies in the fact that it holds
for any statistical learning problem satisfying the assumptions
listed in Definition 1, and is not specific to the setting of
learning distributional maps. We note that our Definition 1,
which is a property used in the Theorem 3, is different from
the one in [28] and it involves conditions that are easier to
check.

As an example, we provide conditions for which a linear
least squares problem satisfies the regularity conditions and
hence is subject to the above ERM approximation result.

Proposition 4 (Linear Least Squares Regularity): Consider
the linear least squares problem with expected risk problem

B∗
i ∈ arg min

B∈Bi

1
2
E(x,zi ) ∥Bx − zi∥2 ,

and empirical risk minimization problem

B̂i ∈ arg min
B∈Bi

1
2m

m∑

j=1

∥∥∥Bx( j) − z( j)
i

∥∥∥
2
.

Let x ∼ Dx with zero mean and covariance matrix *. If
i) There exist γi, Li > 0 such that γiI ≤ *i ≤ LiI ,

ii) The entries of xxT and zixT are sub-exponential,
iii) The constraint set Bi is convex and compact.
Then, the map learning problem is regular. !
The proof of Proposition 4 is provided in Appendix A3.

Deriving conditions for the more general case of non-linear
regression is attainable but outside the scope of this work.

B. BOUNDING THE APPROXIMATION ERROR
Finding a relationship between x̂ and x∗ will require that
we first characterize an appropriate hypothesis class of dis-
tributions for learning. Here, we formalize the notion of
misspecification and sensitivity for a hypothesis class HBi .

Definition 2 (Misspecification [28]): A hypothesis class
HBi is ηi-misspecified provided that there exists a ηi > 0 such
that

W1(Dβ∗
i
(x), Di(x)) ≤ ηi (21)

for all x ∈ X. !
We note that, although ηi is not known to agents in prac-

tice, it is a useful conceptual quantity that can be used to
represent the expressiveness of the parameterization relative
to the ground truth; it also captures the ability of the cho-
sen risk function to fit a parameterization. This is similar to
the notion of approximation error used in classical statistical
learning methods [43]. However, unlike this setting, we note
that ηi = 0 implies that Dβ∗

i
(x) = Di(x) for all x ∈ X; hence,

z ∼ D(x) and z′ ∼ Dβ∗
i
(x) yields z d= z′ but not necessarily

z = z′ almost everywhere as we might like.
Definition 3 (Sensitivity [28]): The hypothesis class HBi is

εi-sensitive if, for any βi,β
′
i ∈ Bi,

W1(Dβi (x), Dβ ′
i
(x)) ≤ εi

∥∥βi − β ′
i

∥∥ (22)

for all x ∈ X. !
Sensitivity of HBi is merely a convenient name for the

condition that β !→ Dβi (x) be εi-Lipschitz continuous for
all realizations of x ∈ X. In the result that follows, we
demonstrate that an appropriately misspecified and sensitive
hypothesis class induces a cost that has bounded distance to
the ground truth cost in (1).

Theorem 5 (Bounded Approximation): Suppose that the
following conditions hold for all i ∈ [n]:
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i) The hypothesis class HBi is ηi-misspecified, and εi-
sensitive.

ii) The map learning problem is regular.
iii) For all x ∈ Xi, zi !→ fi(x, zi ) is Lzi -Lipschitz

continuous.
Then, the bound

|Fβ̂i
(x) − Fi(x)| ≤ ηiLzi + LziεiC′

iζi(m, δ), (23)

holds with probability 1 − δ for any x ∈ X, where

ζi(m, δ) :=
√

log(m)(ℓi + log(1/δ))
m

. (24)

and where C′
i is as in (20). !

The proof of Theorem 5 is provided in the Appendix A4.
Note that since each Fβi is assumed to be continuously
differentiable and X ⊆ Rd is compact, then x !→ Fβi (x) is
Lβi -Lipschitz continuous on X with

Lβi = max
x∈X

∥∥∇Fβi (x)
∥∥ . (25)

Leveraging this fact allows us to demonstrate that the excess
cost can be bounded—an analog of the main result in [28].

Corollary 6: Suppose that the hypothesis of Theorem 5
holds. Then,

|Fi(x̂) − Fi(x∗)| ≤ 2ηiLzi + 2LziεiC′
iζi(m, δ)

+ 2 max{Lβ̂i
, Lβ∗

i
}diam(X−i ) (26)

hold with probability 1 − δ for any x̂ ∈ NASH(Gβ̂ ,X) and
x∗ ∈ NASH(G,X), where C′

i is as in (20) and X−i =∏
j ̸=i X j . !
The analysis in this section demonstrates that the estimation

procedure in Algorithm 1 yields a cost function that approx-
imates the original cost in (1) with an error that decreases
as the number of samples increases. Furthermore, this bound
exists independent of the conditioning of the Nash equilibrium
problem we solve in the optimization phase. We note that (23)
is similar to the result in [28], but it is based on a different def-
inition of regular problem (see Definition 1); the bound (26)
is unique to this paper.

In the section that follows, we examine a family of hypothe-
sis classes that allows the approximated game to be monotone,
and provide suitable algorithms for solving them with conver-
gence guarantees.

IV. SOLVING STRONGLY-MONOTONE
DECISION-DEPENDENT GAMES
Since the agents lack full knowledge of the system and hence
the ground truth distributional map Di in (1), we cannot
hope to enforce that Di satisfy any assumptions to encourage
tractability of our optimization problem. We can however
impose conditions on the hypothesis class HBi , which is
chosen by the agents. To successfully find a Nash equilib-
rium of the approximate problem in (17), it will be crucial
that agents choose a class that balances expressiveness of
the system (thereby making ηi small) with tractability of the
optimization.

Perhaps the simplest model capable of achieving this goal
is the location-scale family [18], [19], [20]. In our setting, a
location scale family parameterization for agent i is a distri-
butional map DBi having matrix parameter Bi ∈ Rki×d where
zi ∼ DBi if and only if

zi
d= ξi + Bix (27)

for stationary random variable ξi ∼ Dξi . We note that this pa-

rameterization can be written alternatively as zi
d= ξi + Bi

ixi +
Bi

−ix−i, where Bi
i ∈ Rki×di and Bi

−i ∈ Rki×(d−di ) are block
matrices such that Bix = Bi

ixi + Bi
−ix−i due to linearity. The

resulting partial gradient has the form

∇iFBi (x) = Ezi∼D(x)
[
∇i fi(x, zi ) + (Bi

i )
T ∇zi fi(x, zi )

]
,

which is typically much simpler to analyze than alternative
models. Intuitively, this model allows us to express zi as the
sum of a stationary random variable from a base distribution
with a linear factor depending on x, where the matrix param-
eter Bi weights the responsiveness of the population to the
agents decisions.

This model is particularly appealing since guarantees for
learning Bi are known and established in Proposition 4. More-
over, the matter of expressiveness is due to the fact that
location scale families are a particular instance of strategic
regression [16], [28], in which member of the population
interact with agents by modifying their stationary data (such
as features in a learning task) ξi in an optimal way upon
observing x:

zi
d= arg miny

[
−uβi (x, y) + 1

2
∥y − ξi∥2

]
,

where uβi is a utility function parameterized by βi ∈ Bi
corresponding to the utility that members of the popula-
tion derive from changing their data in response to the
decisions in x; and the quadratic term 1/2∥y − ξi∥2 is the
cost of changing their data from ξi to y. Indeed when
uβi (x, ) = ⟨y, Bix⟩ for βi = Bi ∈ Rki×d , we recover the form
in (27).

Furthermore, location scale families immediately satisfies
several of the assumption required for further analysis. In
particular, it is known that Sensitivity (Definition 3) holds with
εi = maxx∈X ∥x∥2, Lipschitz continuity of x !→ DBi holds
with γi = ∥Bi∥2, and Lipschitz continuity of GBi holds due
to the following result.

Lemma 7 (Lipschitz Gradient, [19]): Suppose that Dβi

is such that zi
d= Bix + ξi with βi = Bi, and that for each

i ∈ [n] there exists ζi ≥ 0 such that (x, zi ) !→ ∇i,zi fi(x, zi ) is
ζi-Lipschitz continuous. Then Gβi is L-Lipschitz continuous
with

L :=
√∑n

i=1
ζ 2

i max{1,
∥∥Bi

i

∥∥2}(1 + ∥Bi∥2) . (28)

!
Strong monotonicity will follow from Theorem 1 provided

that Gβi satisfy the remaining hypothesis on the fβi —which
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tends to be on a case-by-case basis. We will not require that
Gβi use this parameterization in our analysis, however we can
proceed with the knowledge that a model class satisfying our
hypotheses does exist.

A. DISTRIBUTED GRADIENT-BASED METHOD
In our optimization phase, we seek to use a gradient-based
algorithm that respects the agent’s communication structure
with the system. For the sake of readability, we will suppress
the βi subscript and instead refer to quantities Gi keeping
in mind that they will correspond to the approximate Nash
equilibrium problem in (17) with solution x̂.

We will assume that each agent has access to an estimator
of the gradient ∇iFi and is capable of projecting onto their
decision set Xi. In the constant step-size setup, each agent
chooses a rate ωi > 0 and performs the update

xt+1
i = projXi

(
xt

i − ω−1
i gt

i
)
,

where gt
i is a stochastic gradient estimator for ∇iFi used at

iteration t , which is then reported to the system and made
available to all agents. For the sake of analysis, we will as-
sume without loss of generality that the step-sizes satisfy the
ordering

ω1 ≥ ω2 ≥ . . . ≥ ωn

and hence ω1 = maxi∈[n] ωi and ωn = mini∈[n] ωi. The collec-
tive update can be written compactly as

xt+1 = projX,W
(
xt − W −1gt ) , (29)

where W = diag(ω11d1 , . . . ,ωn1dn ) and gt is an estimator
for G(xt ) at iteration t . Convergence of this procedure hinges
on the following assumptions.

Assumption 1: The gradient function G : X ⊆ Rd → Rd is
α-strongly monotone and L-Lipschitz continuous.

Assumption 2 (Stochastic Framework): Let F = (Ft )t≥0
with elements

Ft = σ (gτ , τ ≤ t ) (30)

be the natural filtration of the Borel σ -algebra over Rd

with respect to gt , and use the short-hand notation Et · :=
Ez∼D(xt )[·|Ft ] as the conditional expectation over the prod-
uct distribution D(xt ) =

∏n
i=1 Di(xt ). There exist bounded

sequences {ρt }t≥0, {σ t }t≥0 ⊆ R+ such that

(Bias)
∥∥Et gt − G(xt )

∥∥ ≤ ρt

(Variance) Et
∥∥gt − Et gt

∥∥2 ≤ (σ t )2

where ρt ≤ ρ and σ 2 ≤ σ for all t ≥ 0.
Assumption 1 is standard for guaranteeing convergence

of gradient play [31], and the uniformly bounded variance
component of Assumption 2 is standard for convergence for
stochastic algorithms. As we will show shortly, convergence
with bias is possible and the result reduces to the unbiased
case when ρt = 0 for all t . The next result will quantify the
one-step improvement of (33).

Lemma 8 (One-step Improvement): Let Assumptions 1
and 2 hold. Then, the sequence generated by iteration (29)
satisfies:

Et
∥∥xt+1 − x̂

∥∥2
W ≤ ω1

ωn + α

∥∥xt − x̂
∥∥2

W

+
2ω1

(
ω1ρ

2 + ασ 2)

αωn (ωn + α)

for all t ≥ 0, provided that ω1/ω
2
n ≤ α/(4L2). !

The proof of Lemma 8 is provided in the Appendix A6. We
note that setting ωi = ω for some ω > 0 recovers the result
in [19, Theorem 15]. Following this one-step analysis, we can
show convergence to a neighborhood of the Nash equilibrium.

Theorem 9 (Neighborhood Convergence): Let
Assumptions 1 and 2 hold, and suppose that (ω1 − ωn) < α.
Then,

lim sup
t→∞

E
∥∥xt − x̂

∥∥2 ≤
2ω1

(
ω1ρ

2 + ασ 2)

αωn (ω1 − ωn + α)
. (31)

The proof can be found in Appendix A7. The result shows
that the algorithm converges linearly to a neighborhood of
the Nash equilibrium x̂, where the radius of the neighbor-
hood is dictated by the step-size, variance, and bias bounds.
When ρ = σ = 0, we retrieve linear convergence. In or-
der to converge to x̂ directly, we will require a decaying
step-size policy. For example, we consider the following
policy:

ωt = α(r + t − 2)
2

(32)

for fixed constant r > 2, which we assumed to be shared by
all agents. Hence, the decaying step-size update is given by

xt+1 = projX
(
xt − (ωt )−1gt ) . (33)

In the theorem that follows, we show that this sequence con-
verges to x̂ provided that the bias shares an asymptotic rate
with (ωt )−1.

Theorem 10 (Convergence): Suppose that Assumptions 1
and 2 hold and that there exists ρ̄, s > 0 such that

∥∥Et gt − G(xt )
∥∥ ≤ ρ̄

s + t
(34)

for all t ≥ 0. Then,

E
∥∥xt − x̂

∥∥2 ≤ A
α2(r + t )

(35)

where

A = max
{
α2r

∥∥x0 − x̂
∥∥2

, 4ρ̄2 max
{ r

s
, 1
}

+ 8rσ 2

r − 2

}
.

!
The proof of this result follows by a standard induction

argument, and can be found in Appendix A8.
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FIGURE 2. Standardized demand data for six medium demand EVCS’s
consisting of either 2 or 6 ports and port power values of 50, 150, and
350 kWh. Standardization maps raw demand instances to instances of
demand that are deviations from the average at each station.

V. NUMERICAL EXPERIMENTS ON ELECTRIC
VEHICLE CHARGING
In this section, we consider a competitive game between n
distinct electric vehicle charging station operators, where sta-
tions are equipped with renewable power sources. The goal of
each player is to set prices to maximize their own profit in a
system where demand for their station will change in response
to the prices set by other competing stations as well. The cost
function (negative profit) takes the form

fi(x, zi ) = −zixi + λi

2
x2

i
︸ ︷︷ ︸

service profit

− pwφ(wi − zi )︸ ︷︷ ︸
renewable profit

+ prφ(zi − wi )︸ ︷︷ ︸
operational cost

where φ(y) = log(1 + exp(y)) for all y ∈ R. The renewable
profit and operational cost terms allow us to describe the
trade-off between profit from renewable power generation
sold to the grid at rate pw, and surplus power required from
the grid to meet demand at rate pr . To set prices, we can
formulate a Nash equilibrium problem over the expected costs
Fi(x) = Ezi∼Di (x)[ fi(x, zi )] for i ∈ [n] and x ∈ X = 4n

i=1Xi,
where Xi = [pw, pr] is the interval of price values between
the wholesale and retail price.

Since the set of reasonable prices will be quite small,
we hypothesize that the the price and demand have a lin-

ear relationship of the form zi
d= ξi + ⟨bi, xi⟩ where bi ∈ Rn

with ξi ∼ Dξi corresponding to the base demand. Since we
have a simple model, the first and second derivatives can
be computed in closed form, and the relevant constants can
be computed directly. Indeed, we find that the hypothesis
of Theorem 1 are satisfied with λ = mini λi which we set
to 1, Li = 1,and γi = ∥bi∥2. We conclude that G : Rn → Rn

is α = (1 − 2∥B∥F )-strongly monotone with where B is the
parameter matrix whose columns are bi.

Our data in Fig. 2 depicts the demand of electricity across
an hour-long period for 6 ports of varying power profiles for
each day in year. We standardize the data to be zero mean and

FIGURE 3. Expected error curve and confidence interval for regularized
stochastic gradient descent with decaying step size for a location-scale
model.

unit variance across each station. Solutions are calculated by
performing expected gradient play with constant step size; the
expected mean is estimated via the empirical mean over the
data set.

We set bii = −1/18 + ν and bi j = 1/18 + ν, where we use
ν ∼ N(0, 10−5) to simulate learning B from samples. Hence
demand for agent i decreases as their own price increases,
and increases as the price of other agents decreases. We run
the stochastic gradient play algorithm initialized at x0 = pr1n
with a single sample at each round and a decaying step size
policy ωt = α(r + t − 2)/2 for r = 3. In Fig. 3 we plot the
mean error trajectory an confidence interval over 50 trials of
2000 iterations.

VI. CONCLUSION
In this work, we studied a class of stochastic Nash equilib-
rium problems, characterized by data distributions that are
dependant on the decisions of all involved players. We showed
that a learning-based approach enables the formulation of
an approximate Nash equilibrium problem that is solvable
using a stochastic gradient play algorithm. The results of
this procedure is a cost that can be related to cost of the
original Nash equilibrium problem via an error that depends
on both our approximation and estimation error. To demon-
strate the flexibility of these findings, we simulated these
techniques in an electric vehicle charging market problem in
which service providers set prices, and users modify their
demand based on prices set by providers. Future research
will look at a scenario where the estimate of the distribu-
tional map is improved during the operation of the algorithm,
based on the feedback received. Future applications will
demonstrate the efficacy of more complex models (beyond
linear)
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APPENDIX
A1 PROOF OF LEMMA 2
For the sake of notation convenience, and visual clarity, we
will suppress the i index throughout the proof. We denote the
gradient error by J (β ) = ∇R̂(β ) − ∇R(β ) for all β ∈ Rℓ.

To begin, we will generate coverings for the unit sphere in
Rℓ and B ⊆ Rℓ and use a discretization argument to create
bounds over these finite sets. Fix β ∈ B and u ∈ Sℓ−1. Let
{u j}N

j=1 be an arbitrary 1/2-covering of the sphere Sdℓi with
respect to the Euclidean norm. From [44, Lemma 5.7], we
know that N ≤ 5ℓ. From our covering, we have that there
exists u j in the covering such that ∥u − u j∥ ≤ 1/2. Hence,

⟨u, J (β )⟩ = ⟨u j + (u − u j ), J (β )⟩

= ⟨u j, J (β )⟩ + ⟨u − u j, J (β )⟩

≤ ⟨u j, J (β )⟩ +
∥∥u − u j

∥∥ ∥J (β )∥

≤ ⟨u j, J (β )⟩ + 1
2

∥J (β )∥

≤ max
j∈[N]

⟨u j, J (β )⟩ + 1
2

∥J (β )∥ .

Since this is true for any u ∈ Sd−1, then it holds for u =
J (β )/∥J (β )∥. Thus the above becomes

∥J (β )∥ ≤ 2⟨u j, J (β )⟩ ≤ 2 max
j∈[N]

⟨u j, J (β )⟩. (36)

Now we fix ε ∈ (0, 1], and choose and ε-covering for the set
B, which we will write as {βk}M

k=1. Recall that B is bounded, so
there exists a constant r > 0 such that for all β ∈ B, ∥β∥ ≤ r.
Hence B ⊆ B(r). From [41, Proposition 4.2.12], we have that

M ≤
vol

(
B(r) + ε

2 B(1)
)

vol
(

ε
2 B(1)

) =
vol

( 3
2 B(r)

)

vol
(

ε
2 B(1)

) =
(

3r
ε

)ℓ

. (37)

Thus, we conclude that M ≤ (3r/ε)ℓ.
Now by our discretization argument, there exists k ∈ [M]

such that ∥β − βk∥ ≤ ε and hence

max
j∈[N]

⟨u j, J (β )⟩ = max
j∈[N]

⟨u j, J (βk ) + (J (β ) − J (βk )⟩

= max
j∈[N]

⟨u j, J (βk )⟩ + ⟨u j, J (β ) − J (βk )⟩

≤ max
j∈[N]

⟨u j, J (βk )⟩ + max
j∈[N]

⟨u j, J (β ) − J (βk )⟩

≤ max
k∈[M]

max
j∈[N]

⟨u j, J (βk )⟩

+ sup
∥α−α′∥≤ε

max
j∈[N]

⟨u j, J (α) − J (α′)⟩.

We observe that if α,α′ ∈ B are such that ∥α − α′∥ ≤ ε, then
applying our smoothness assumption yields

⟨u j, J (α) − J (α′)⟩

= ⟨u j, (∇R̂(α) − ∇R(α)) − (∇R̂(α′) − ∇R(α′))⟩

= ⟨u j,∇R̂(α) − ∇R̂(α′)⟩ + ⟨u j,∇R(α′) − ∇R(α)⟩

≤
∥∥u j

∥∥ ∥∥∇R̂(α) − ∇R̂(α′)
∥∥+

∥∥u j
∥∥ ∥∥∇R(α) − ∇R(α′)

∥∥

≤ Lβi

∥∥α − α′∥∥+ Lβi

∥∥α − α′∥∥

≤ 2Lβε,

where the second-to-last inequality uses ∥u j∥ = 1.
To bound the remaining term, we use the concentration of

sub-exponential random variables, due to Bernstein’s Inequal-
ity combined with the Union Bound. We have that

P
(
⟨u j, J (βk )⟩ ≥ t

)
≤ 2 exp

(
−mt2

2θ2

)

for all t ≤ θ , and hence

P
(

max
k∈[M]

max
j∈[N]

⟨u j, J (βk⟩ ≥ t
)

= P

⎛

⎝
⋃

k∈[M]

⋃

j∈[N]

{⟨u j, J (βk⟩ ≥ t}

⎞

⎠

≤
∑

k∈[M]

∑

j∈[N]

P
(
{⟨u j, J (βk⟩ ≥ t}

)

≤
∑

k∈[M]

∑

j∈[N]

2 exp
(

−mt2

2θ2

)

= M · N · 2 exp
(

−mt2

2θ2

)

≤ 2
(

15r
ε

)ℓ

exp
(

−mt2

2θ2

)

for all t ≤ θ , where we used the fact that M ≤ (3r/ε)ℓ and
N ≤ 5ℓ. Setting the right hand side equal to 2δ yields

t =
√

2θ

√
ℓ log(15r/ε) + log(1/δ)

m
. (38)

Next we choose ε = 1
15r

√
ℓ+log(1/δ)

m so that

t =
√

2θ

√
ℓ log(15r/ε) + log(1/δ)

m

=
√

2θ

√
ℓ
2 log(m) − ℓ

2 log(ℓ + log(1/δ)) + log(1/δ)

m

≤
√

2θ

√
ℓ log(m) + log(1/δ)

m

≤
√

2θ

√
log(m)(ℓ + log(1/δ))

m
.

By requiring that m satisfy m/ log(m) ≥ 2(ℓ + log(1/δ)), we
enforce that t ≤ θ . In combining, we observe that

t + 2εL

≤
√

2θ

√
log(m)(ℓ + log(1/δ))

m
+ 2L

15r

√
ℓ + log(1/δ)

m

≤ 2
(

θ + L
15r

)√
log(m)(ℓ + log(1/δ))

m
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≤ 4 max
{

L
15r

, θ

}√
log(m)(ℓ + log(1/δ))

m
,

and the result follows.

B. PROOF OF THEOREM 3
We suppress the subscript i for notational simplicity. We recall
that that the µ-strong convexity of the map β !→ R(x, z;β )
implies µ-strong monotonicity of ∇R(β ), and ∇R̂(β ). It fol-
lows that

µ
∥∥β̂ − β∗∥∥2 ≤ ⟨β̂ − β∗,∇R(β̂ ) − ∇R(β∗)⟩

= ⟨β̂ − β∗,∇R(β̂ )⟩ − ⟨β̂ − β∗,∇R(β∗)⟩

≤ ⟨β̂ − β∗,∇R(β̂ )⟩

≤ ⟨β̂ − β∗,∇R(β̂ )⟩ + ⟨β∗ − β̂,∇R̂(β̂ )⟩

= ⟨β̂ − β∗,∇R(β̂ ) − ∇R̂(β̂ )⟩

≤
∥∥β̂ − β∗∥∥ sup

β∈B

∥∥∇R(β ) − ∇R̂(β )
∥∥

and hence

∥∥β̂ − β∗∥∥ ≤ 1
µ

sup
β∈B

∥∥∇R(β ) − ∇R̂(β )
∥∥ . (39)

The result now follows by applying Lemma 2. !

C. PROOF OF PROPOSITION 4
We suppress the i index throughout. The associated risk func-
tion is R(x, z, B) = 1

2∥Bx − z∥2, so that ∇R(x, z, B) = (Bx −
z)xT = BxxT − zxT and ∇2R(x, z, B) = xxT are the corre-
sponding gradient and hessian. We observe that enforcing
γ I ≤ E[xxT ] ≤ LI for some γ , L > 0 ensures γ -strong con-
vexity and L-smoothness of the expected risk. Similarly, the
empirical risk has gradient ∇Rm(B) = 1/m(BXX T − ZX T ),
and hessian ∇2Rm(B) = (1/m)XX T . Thus Rm is convex the
hessian is symmetric, then it is positive semi-definite and thus
Rm is convex. Furthermore, smoothness of Rm follows with
constant max{L, ∥XX T ∥2}. Lastly, since zxT and xxT have
sub-exponential entries, the gradient is sub-exponential and
the result follows. !

D. PROOF OF THEOREM 5
We observe that for any fixed x ∈ X, we have that |Fβ̂i

(x) −
Fi(x)| ≤ |Fβ̂i

(x) − Fβ∗
i
(x)| + |Fβ∗

i
(x) − Fi(x)|. The first term

describes our statistical error at x. We denote 4(Dβ̂i
, Dβ∗

i
) as

a coupling on P(Rmi ) so that

|Fβ̂i
(x) − Fβ∗

i
(x)|

=
∣∣∣∣∣ inf
4(Dβ̂i

(x),Dβ∗
i

(x))
E(z,z′ )∼4(Dβ̂i

(x),Dβ∗
i

(x))
(

f (x, z) − f (x, z′)
)
∣∣∣∣∣

≤ inf
4(Dβ̂i

(x),Dβ∗
i

(x))
E(z,z′ )∼4(Dβ̂i

(x),Dβ∗
i

(x))
∣∣ f (x, z) − f (x, z′)

∣∣

≤ Lzi

(

inf
4(Dβ̂i

(x),Dβ∗
i

(x))
E(z,z′ )∼4(Dβ̂i

(x),Dβ∗
i

(x))
∥∥zi − z′

i

∥∥
)

= LziW1(Dβ̂i
(x), Dβ∗

i
(x))

≤ Lziεi
∥∥β̂i − β∗

i

∥∥ .

By similar argument, we find that |Fβ∗
i
(x) − Fi(x)| ≤

LziW1(Dβ∗
i
(x), Di(x)) ≤ Lziγi. In combining, we get |Fβ̂i

(x) −
Fi(x)| ≤ Lziεi∥β̂i − β∗

i ∥ + Lziηi. Lastly, ∥β̂i − β∗
i ∥ can be

bounded as in Theorem 3. !

E. PROOF OF COROLLARY 6
Observe that

Fi(x̂) − Fi(x∗)

=
[
Fi(x̂) − Fβ∗

i
(x̂)
]

+
[
Fβ∗

i
(x̂) − Fβ̂i

(x̂)
]

+
[
Fβ̂i

(x̂) − Fβ̂i
(x∗∗)

]
+
[
Fβ̂i

(x∗∗) − Fβ∗
i
(x∗∗)

]

+
[
Fβ∗

i
(x∗∗) − Fβ∗

i
(x∗)

]
+
[
Fβ∗

i
(x∗) − Fi(x∗)

]

≤ 2
∥∥∥Fi − Fβ∗

i

∥∥∥
∞

+ 2
∥∥∥Fβ∗

i
− Fβ̂i

∥∥∥
∞

+
[
Fβ̂i

(x̂) − Fβ̂i
(x∗∗)

]
+
[
Fβ∗

i
(x∗∗) − Fβ∗

i
(x∗)

]

where x∗∗ ∈ X is the Nash equilibrium satisfying

x∗∗
i ∈ arg min

xi∈Xi

Fβ∗
i
(xi, x∗∗

−i ), i ∈ [n]. (40)

It follows from (25) that

Fβ̂i
(x̂) − Fβ̂i

(x∗∗) ≤
[
Fβ̂i

(x̂i, x̂−i ) − Fβ̂i
(x∗∗

i , x̂−i )
]

+
[
Fβ̂i

(x∗∗
i , x̂−i ) − Fβ̂i

(x∗∗
i , x∗∗

−i )
]

≤ Fβ̂i
(x∗∗

i , x̂−i ) − Fβ̂i
(x∗∗

i , x∗∗
−i )

≤ Lβ̂i

∥∥x̂−i − x∗∗
−i

∥∥ .

Similarly,

Fβ∗
i
(x∗∗) − Fβ∗

i
(x∗) =

[
Fβ∗

i
(x∗∗

i , x∗∗
−i ) − Fβ∗

i
(x∗∗

i , x∗
−i )
]

+
[
Fβ∗

i
(x∗∗

i , x∗
−i ) − Fβ∗

i
(x∗

i , x∗
−i )
]

≤ Fβ∗
i
(x∗∗

i , x∗
−i ) − Fβ∗

i
(x∗

i , x∗
−i )

≤ Lβ∗
∥∥x∗∗

−i − x∗
−i

∥∥ .

Combining the bounds yields

Fi(x̂) − Fi(x∗)

≤ 2
∥∥∥Fi − Fβ∗

i

∥∥∥
∞

+ 2
∥∥∥Fβ∗

i
− Fβ̂i

∥∥∥
∞
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+ Lβ̂

∥∥x̂−i − x∗∗
−i

∥∥+ Lβ∗
∥∥x∗

−i − x∗∗
−i

∥∥

≤ 2γiLzi + 2εLzi

∥∥β̂i − β∗
i

∥∥

+ Lβ̂diam(X−i ) + Lβ∗diam(X−i )

≤ 2γiLzi + 2εLzi

∥∥β̂i − β∗
i

∥∥+ 2 max{Lβ̂i
, Lβ∗

i
}diam(X−i )

Then, (26) follows using the bound on ∥β̂i − β∗
i ∥ from

Theorem 3. !

F. PROOF OF LEMMA 8
Consider the function ϕ : Rd → R defined by ϕ(y) = 1

2∥xt −
W −1

i gt − y∥2
W for all y ∈ X. Then, ϕ is ωn-strongly convex

over X and has a unique minimizer xt+1 ∈ X. This implies
that:

ϕ(x∗) ≥ ϕ(xt+1) + ⟨x∗ − xt+1,

∇ϕ(xt+1)⟩ + ωn

2

∥∥xt+1 − x∗∥∥2
.

Since ⟨x − xt+1,∇ϕ(xt+1)⟩ ≥ 0 for all x ∈ X, we obtain

ωn
∥∥xt+1

i − x∗
i

∥∥

≤
∥∥xt

i − ηigt
i − x∗

i

∥∥2
W −

∥∥∥xt
i − ηigt

i − xk+1
i

∥∥∥
2

W
.

It follows that
ωn

ω1

∥∥xt+1 − x̂
∥∥2

W ≤
∥∥xt − x̂

∥∥2
W −

∥∥xt − xt+1
i

∥∥2
W

− 2⟨xt − x̂, gt ⟩ + 2ηi⟨xt − xt+1, gt ⟩.

We now consider the above in the conditional expectation
Et · := Ezi∼D(xt )[ · |Ft ] with Ft = σ (gt , τ ≥ t ). We find that

ωn

ω1
Et
∥∥xt+1 − x̂

∥∥2
W

≤ Et
∥∥xt − x̂

∥∥2
W − Et

∥∥xt − xt+1∥∥2
W

− 2Et ⟨xt − x̂, gt ⟩ − 2Et ⟨xt+1 − xt , gt ⟩

=
∥∥xt − x̂

∥∥2
W − Et

∥∥xt − xt+1∥∥2
W

− 2⟨xt − x̂, µt ⟩ − 2Et ⟨xt+1 − xt , gt ⟩

=
∥∥xt − x̂

∥∥2
W − Et

∥∥xt − xt+1∥∥2
W

+ 2Et ⟨xt − xt+1, gt − µt ⟩ + 2Et ⟨̂x − xt+1, µt ⟩

=
∥∥xt − x̂

∥∥2
W − Et

∥∥xt − xt+1∥∥2
W − 2⟨xt+1 − x̂, G(xt+1)⟩

+ 2Et ⟨̂x − xt+1, µt − G(xt+1)⟩

+ 2Et ⟨xt − xt+1, gt − µt ⟩.

To proceed, we bound the inner product terms. Using strong
monotonicity, we have that

Et ⟨̂x − xt+1, G(xt+1)⟩ ≥ αEt
∥∥xt+1 − x̂

∥∥2

≥ α

ω1
Et
∥∥xt+1 − x̂

∥∥2
W .

Furthermore, we observe that

Et ⟨̂x − xt+1
i , µt − G(xt+1)⟩

= Et ⟨̂x − xt+1, µt − G(xt )⟩

+ Et ⟨̂x − xt+1, G(xt ) − G(xt+1)⟩.

To bound the remaining terms, we use arguments based on
a weighted Young’s inequality. Let 61,62,63 > 0 be fixed
constants. It follows that

2Et ⟨xt − xt+1, gt − µt ⟩

≤ 61Et
∥∥xt+1 − xt

∥∥2 + 1
61

Et
∥∥gt − µt

∥∥2

≤ 61

ωn
Et
∥∥xt+1 − xt

∥∥2
W + 1

61

n∑

i=1

Et
∥∥gt − µt

∥∥2

≤ 61

ωn
Et
∥∥xt+1 − xt

∥∥2
W + 1

61

n∑

i=1

σ 2
i

≤ 61

ωn
Et
∥∥xt+1 − xt

∥∥2
W + σ 2

61
,

and

2Et ⟨̂x − xt+1, µt − G(xt )⟩

≤ 62Et
∥∥xt+1 − x̂

∥∥2 + 1
62

Et
∥∥µt − G(xt )

∥∥2

≤ 62

ωn
Et
∥∥xt+1 − x̂

∥∥2
W + 1

62

n∑

i=1

Et
∥∥µt − G(xt )

∥∥2

≤ 62

ωn
Et
∥∥xt+1 − x̂

∥∥2
W + 1

62

n∑

i=1

ρ2
i

≤ 62

ωn
Et
∥∥xt+1 − x̂

∥∥2
W + ρ2

62
.

Additionally, we have that

2Et ⟨̂x − xt+1, G(xt ) − G(xt+1)⟩

≤ 63Et
∥∥xt+1 − x̂

∥∥2 + 1
63

Et
∥∥G(xt ) − G(xt+1)

∥∥2

≤ 63

ωn
Et
∥∥xt+1 − x̂

∥∥2
W + L2

63
Et
∥∥xt+1 − xt

∥∥2

≤ 63

ωn
Et
∥∥xt+1 − x̂

∥∥2
W + L2

ωn63
Et
∥∥xt+1 − xt

∥∥2
W .

Combining these estimates yields
ωn

ω1
Et
∥∥xt+1 − x̂

∥∥2
W

≤
∥∥xt − x̂

∥∥2
W − Et

∥∥xt+1 − xt
∥∥2

W − 2α

ω1
Et
∥∥xt+1 − x̂

∥∥2
W

+
(

61

ωn
Et
∥∥xt+1 − xt

∥∥2
W + σ 2

61

)
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+
(

62

ωn
Et
∥∥xt+1 − x̂

∥∥2
W + ρ2

62

)

+
(

63

ωn
Et
∥∥xt+1 − x̂

∥∥2
W + L2

ωn63
Et
∥∥xt+1 − xt

∥∥2
W

)

=
∥∥xt − x̂

∥∥2
W +

(
61

ωn
+ L2

ωn63
− 1

)
Et
∥∥xt+1 − xt

∥∥2
W

+
(

62

ωn
+ 63

ωn
− 2α

ω1

)
Et
∥∥xt+1 − x̂

∥∥2
W

+
(

σ 2

61
+ ρ2

62

)

and simplifying gives
(

ωn

ω1
+ 2α

ω1
− 62

ωn
− 63

ωn

)
Et
∥∥xt+1 − x̂

∥∥2
W

≤
∥∥xt − x̂

∥∥2
W +

(
σ 2

61
+ ρ2

62

)

+
(

61

ωn
+ L2

ωn63
− 1

)
Et
∥∥xt+1 − xt

∥∥2
W .

To proceed, we choose 62 = 63 = αωn
2ω1

and 61 = ωn −
2ω1L2/(αωn) to ensure that the coefficient on the Et∥xt+1 −
xt∥2

W term is zero. Furthermore, enforcing that ω1
ω2

n
≤ α

4L2 guar-

antees that 6−1
1 ≤ 2ω−1

n . Hence the variance term is finite.
Substituting these values and simplifying yields the result. !

G. PROOF OF THEOREM 9
For notational convenience, we will use the short-hand nota-
tion et := ∥xt − x̂∥2

W , c = ω1/(α + ωn), and

A = 2
ασ 2 + ω1ρ

2

αωn
.

Hence, the result in Lemma 8 can be written compactly as

Et−1et ≤ cet−1 + cA.

By recursively applying this result and applying the law of
total expectation, we find that

Eet ≤ ct e0 + cA
t−1∑

j=1

c j ≤ ct e0 + cA
1 − ct

1 − c
.

Furthermore, if (ω1 − ωn) < α, then c < 1 and the geometric
series converges and is equal to its limit 1/(1 − c). Hence
Eet ≤ ct e0 + A c

1−c . !

H. PROOF OF THEOREM 10
Fix t ≥ 0. For notational convenience, we will denote et =
∥xt − x̂∥2. Replacing the step-size matrix in Lemma 8 with
W = ωt Id×d yields

Et et+1 ≤ ωt

ωt + α
et + 2σ 2

ωt (ωt + α)
+ 2(ρt )2

α(ωt + α)
. (41)

To proceed, we will use the observation that

1
(s + t )(r + t )

= r + t
(s + t )(r + t )2 ≤

max{ r
s , 1}

(r + t )2 (42)

and

1
(r + t )(r + t − 2)

≤
r

r−2

(r + t )2 . (43)

By substituting our expression for ωt , ρt , and et into (41) we
obtain

Et et+1 ≤ r + t − 2
α2(r + t )2 A + 8σ 2

α2(r + t − 2)(r + t )

+ 4ρ̄

α2(s + t )(r + t )

≤ r + t − 2
α2(r + t )2 A +

8σ 2
(

r
r−2

)

α2(r + t )2 +
4ρ̄ max

{ r
s , 1

}

α2(r + t )2

= r + t − 1
α2(r + t )2 A

+
−A + 8σ 2

(
r

r−2

)
+ 4ρ̄ max

{ r
s , 1

}

α2(r + t )2

≤ r + t − 1
α2(r + t )2 A

≤ A
α2(r + t + 1)

.

Here, the last steps follow from construction of A, and the fact
that (r + t + 1)(r + t − 1) ≤ (r + t )2. !
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