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ABSTRACT: Convective boundary layer (CBL) depth can be estimated from dual-polarization WSR-88D radars using

the product differential reflectivity ZDR because the CBL top is collocated with a local ZDR minimum produced by Bragg

scatter at the interface of the CBL and the free troposphere. Quasi-vertical profiles (QVPs) of ZDR are produced for each

radar volume scan and profiles from successive times are stitched together to form a time–height plot of ZDR from sunrise

to sunset. QVPs of ZDR often show a low-ZDR channel that starts near the ground and rises during the morning and early

afternoon, identifying the CBL top. Unfortunately, results show that this channel within the QVP can occasionally be mis-

leading. This motivated creation of a new variable DVar, which combines ZDR with its azimuthal variance and is particu-

larly helpful at identifying the CBL top during the morning hours. Two methods are developed to track the CBL top from

QVPs of ZDR and DVar. Although each method has strengths and weaknesses, the best results are found when the two

methods are combined using inverse variance weighting. The ability to detect CBL depth from routine WSR-88D radar

scans rather than from rawinsondes or lidar instruments would vastly improve our understanding of CBL depth variations

in the daytime by increasing the temporal and spatial frequencies of the observations.

SIGNIFICANCE STATEMENT: The daytime convective boundary layer (CBL) can increase in depth from a few

hundred to a few thousand meters between sunrise and sunset and is strongly connected to temperature changes at

Earth’s surface. Unfortunately, current observations of CBL depth primarily consist of measurements from twice daily

rawinsonde launches at 97 locations across the United States. As a result, CBL depth observations lack fine spatial and

temporal resolution and miss the daily cycle of CBL growth. This study seeks to fill the gaps in CBL depth observations

by developing an automated method to estimate CBL depth from dual-polarization WSR-88D radar observations with

a temporal resolution as fine as 5–10 min. These observations will greatly enhance our ability to observe and monitor

CBL depth in real time.
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1. Introduction

The planetary boundary layer (PBL) is the atmospheric

layer that directly interfaces with Earth’s surface, with depths

that can vary from a few hundred meters to a few thousand

meters during the daytime (Stull 1988). The PBL can be sub-

divided into several vertical layers: the surface layer, the

mixed layer, the entrainment zone, the residual layer, and

the stable (nocturnal) boundary layer at various times during

the diurnal cycle. The mixed layer is called the convective

mixed layer or convective boundary layer (CBL) when the

turbulence associated with it is driven by convective heat

transfer from the surface, often leading to vertically well-

mixed profiles of potential temperature u, water vapor mixing

ratio qy, and wind speed (Stull 1988). The CBL grows primar-

ily via entrainment in which thermals rising from the surface

overshoot the top of the CBL and mix air from the overlying

free troposphere into the CBL (Wyngaard 1985). The top of

the CBL is defined as the middle of the entrainment zone,

which is characterized by large vertical gradients of u, qy, and

wind speed (Stull 1988). The value of u increases within the

entrainment zone, whereas in contradistinction, qy decreases

in the entrainment zone due to mixing with drier free tropo-

spheric air. CBL depth depends on a variety of factors, includ-

ing incoming solar radiation, surface sensible heat flux,

horizontal thermal advection, large-scale vertical motion, lo-

cal terrain features, the structure of the residual layer, and the

presence of clouds. As a result, the structure and evolution of

the CBL can have large daily variations and are influenced by

location, atmospheric and land conditions, and season.

CBL depth impacts pollutant concentrations (Garc et al.

2002; Ching et al. 1988; Liu et al. 2020), convection initiation

(Crook 1996; Browning et al. 2007), and precipitation amounts

(Holzworth 1964; Johnson and Mapes 2001; Bright and Mullen

2002; McCaul and Cohen 2002). In addition, wildfire behavior

and the diffusion of hazardous airborne materials can be influ-

enced by boundary layer structure (Dabberdt et al. 2004;

Clements et al. 2007; Erickson et al. 2016). Improved observa-

tions of CBL depth and evolution would impact forecasting

and modeling of these crucial areas by providing insight into

the structure of the boundary layer.

In the CONUS, CBL depth is the smallest on average in

the winter months due to decreased solar heating of the sur-

face and the largest in the summer months when greater sur-

face fluxes encourage more vertical mixing and entrainment.

Holzworth (1964) found that average CBL depths are the
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smallest in the months of December and January, ranging

from 200 to 800 m, and the largest in May–August, reaching

up to near 1600 m in most of the eastern United States and

exceeding 3000 m in the Rocky Mountains. Along the Atlan-

tic and Pacific coastlines, the average CBL is shallow and its

depth does not vary greatly in fall and summer, likely due to the

lower ocean temperatures impacting CBL growth (Holzworth

1964). Holzworth (1964) noted that there can be significant day-

to-day variation in CBL depth, particularly in continental regions

where the diurnal cycle of the CBL is strong. This observation

suggests that CBL structure is an important feature that requires

further study at a finer temporal scale.

The most readily available CBL depth estimates are ob-

tained from rawinsonde data by measuring vertical gradients

in u and relative humidity (RH). Unfortunately, rawinsondes

are only launched twice daily at 0000 and 1200 UTC at 97 lo-

cations in the United States (U.S. Department of Commerce

2023). Additionally, rawinsondes provide a single vertical pro-

file of observations along the balloon’s ascending path which

may not be representative of the surrounding area (Stull

1988). Lidar and wind profilers can be used to estimate CBL

depth (White 1993; Angevine et al. 1994; Cohn and Angevine

2000), but these instruments typically are available only in

field campaigns, limiting their availability for routine esti-

mates of the CBL depth across the CONUS. Ceilometers also

can provide CBL depth estimates by measuring aerosol back-

scatter profiles (Münkel et al. 2007). However, estimating

CBL depth using ceilometers over a wide range of locations

and stability conditions has proven to be difficult and requires

further development (Zhang et al. 2022). Additionally, lidar

ceilometers struggle to detect morning growth of the CBL

since the gradients in aerosol concentration are weak in the

CBL and instead are dominated by gradients at the top of the

residual layer (Münkel et al. 2007). As a result, the currently

available spatial and temporal resolution of CBL depth obser-

vations is less than ideal. Thankfully, dual-polarization WSR-

88D radars have been shown to detect the top of the CBL as

shown by Melnikov et al. (2011, 2013), Richardson et al.

(2017a,b), and Banghoff et al. (2018) and have the potential

to tremendously increase our ability to observe CBL depth

routinely.

The dual-polarization upgrade to the 10-cm wavelength

(S band) WSR-88D radars was completed in the United States in

2013, and with their installment came a wealth of untapped infor-

mation (Kumjian 2013). With 160 locations covering much of the

CONUS (NEXRAD Radar Operations Center 2023), and with

routine scanning of the atmosphere every 5–10 min, WSR-88D

radar observations provide high temporal and spatial resolution

observations of the boundary layer. Differential reflectivity ZDR,

a dual-polarization radar variable available from WSR-88D ra-

dars, provides information about the shape and/or orientation of

scatterers (Seliga and Bringi 1976) by taking the difference be-

tween the horizontally and vertically polarized reflectivity returns

(in dB scale). Scatterers that are small compared to the radar

wavelength with their mass oriented primarily horizontally pro-

duce positive ZDR values, whereas those with their mass oriented

primarily vertically produce negative values. Scatterers that have

mass equally distributed horizontally and vertically, and/or have

random orientations, produce ZDR values near 0 dB. Biota (in-

sects and birds) tend to be nonspherical and oriented horizontally

and are common in the CBL and just above it, producing ZDR

values of 2–6 dB. Bragg scattering}constructive interference of

the backscattered electromagnetic waves caused by isotropic

small-scale turbulence that mixes air with different refractive indi-

ces at scales half the radar wavelength and leads to ZDR values

near 0 dB (Doviak and Zrnić 1993; Melnikov et al. 2011)}is

often present at CBL top. When combined with the scatter from

biota, Bragg scattering produces a local minimum in ZDR at the

CBL top and values of the copolar correlation coefficient (rhv)

between horizontally and vertically polarized signals near 1

(Melnikov et al. 2011). Using this information, Banghoff et al.

(2018) manually estimated CBL depth from ZDR signals in cen-

tral Oklahoma for calendar year 2014 and compared them with

nearby 0000 UTC rawinsonde-derived CBL depths. Results indi-

cate that the CBL depths estimated from the WSR-88Ds and

rawinsondes had a correlation of 0.90 and an RSME of only

254 m, with CBL depths varying from 200 to 3000 m over the 1-yr

period. Banghoff et al. (2018) clearly demonstrate the ability of

dual-polarization WSR-88D radar data to estimate CBL depth

and suggest that this approach could be applied to observations

from all WSR-88D radars.

The goal of this study is to develop an algorithm to auto-

matically detect the CBL depth from WSR-88D radar ZDR

observations. Section 2 discusses the data and methods used

in this study, and section 3 provides details of the CBL depth

algorithm, including a few simple quality control procedures.

Results from the CBL depth calculations and quality control

process are summarized in section 4, with conclusions in

section 5.

2. Data and methods

The main data source for this study is observations from

the National Weather Service’s dual-polarization WSR-88D

radars. The radars operate with several different volume cov-

erage patterns (VCPs) comprising a set of constant-elevation-

angle surveillance scans completed every 4–10 min. During

clear-air conditions when no precipitation signals are ex-

pected, data are collected roughly every 10 min from eleva-

tion angles between 0.58 and 4.58; these are the primary

observations used in this study. For other VCPs, the observa-

tions are collected more frequently; the time between volume

scans depends upon the VCP selected, such that 10 min is the

longest time interval between successive volume scans. The

first WSR-88D range gate is from 2000 to 2250 m from the ra-

dar, with observations available every 250 m in range.

The ZDR observation is the key to sensing Bragg scatter and

needs to be calibrated, which is accomplished routinely for the

WSR-88D radar network by evaluating ZDR measurements for

environmental conditions when ZDR should be near 0 (Zittel

et al. 2014). One of these conditions is the clear-air return from

Bragg scatter used in this study; other conditions include light

rain and dry snow (Zittel et al. 2014; Richardson et al. 2017b).

Calibration tests indicate that 60% of the WSR-88D radars have

a system bias within 60.2 dB of 0 dB (Cunningham et al. 2013).

Thankfully, even with some bias in the ZDR measurement, the
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Bragg scatter signal for CBL top would still be identified as a lo-

cal vertical minimum. The radar scan elevation angle also influ-

ences the ZDR value, but the influence is negligible for elevation

angles less than 208 (Ryzhkov et al. 2016).

The constructive interference of the backscattered electro-

magnetic waves produced by Bragg scatter also creates a local

enhancement of radar reflectivity factor Z at the CBL top

(Doviak and Zrnić 1993; Melnikov et al. 2013). Unfortu-

nately, the enhancement of Z from Bragg scatter often is

overwhelmed in the CBL owing to signal contamination from

biota (Heinselman et al. 2009; Melnikov et al. 2011, 2013),

leading to Z not being helpful for observing CBL top.

When viewing ZDR observations within the CBL on a radar

plan position indicator (PPI), the Bragg scatter layer at CBL

top is discernable as a ring of local minimum in ZDR sur-

rounding the radar site (Fig. 1) even when biota is present

(Melnikov et al. 2011, 2013; Banghoff et al. 2018). The further

the low-ZDR ring is from the radar location (i.e., the center of

a PPI scan), the higher in the atmosphere the scattering layer

is located, providing information on the mean height of the

Bragg scatter layer over this region. The height of this Bragg

scatter layer is equivalent to the mean CBL depth above the

radar site. CBL depths at other locations within the clear-air

radar sampling umbrella can be determined by adding the dif-

ference in terrain height between the radar site and the de-

sired location to the CBL depth.

To track the daytime evolution of CBL depth as indicated

by a Bragg scatter layer, quasi-vertical profiles (QVPs) of ZDR

are constructed from radar observations at each range gate av-

eraged azimuthally over 3608 (Kumjian et al. 2013; Ryzhkov

et al. 2016) for the 4.58 elevation angle. This elevation angle is

chosen to minimize the effects of ground clutter and is the

highest elevation angle for clear-air sampling; if not available,

then the first elevation angle $ 48 is used. Once the ZDR ob-

servations are averaged azimuthally (in dB) for each range

gate, range is converted to height AGL assuming standard at-

mospheric refraction (Doviak and Zrnić 1993), to create a ver-

tical profile of the azimuthal mean ZDR for a given volume

scan and observation time. Since the center of the first range

gate is located 2125 m from the radar, the lowest vertical ob-

servation in the QVP is 148 m AGL for the 4.58 elevation an-

gle. Successive volume scans are combined to create a time–

height plot for each day from sunrise to sunset. Following

Banghoff et al. (2018), the QVP of ZDR is smoothed via a run-

ning mean over five time steps and three height levels to re-

duce noise in the QVPs for interpretability (Fig. 2). A QVP

shows the temporal evolution of the vertical profile of radar

observations and can be calculated for any radar variable or

sample measure.

In an ideal situation, the QVP depicts a clear channel, or

corridor, in which the azimuthal mean ZDR is a relative mini-

mum (excluding negative values), starting near the ground a

few hours after sunrise and rising to greater heights during

the daytime hours. The center of this channel indicates the

CBL top (Fig. 2, white line), where ZDR values are between 0

and 1 dB throughout most of the channel. Examination of

thousands of daytime QVPs from across the WSR-88D net-

work for two different years (2014 and 2022), however, shows

FIG. 1. Standard PPI scan of ZDR taken at 48 elevation angle at

1401 LST (14 h for UTC) 28 Jun 2022 from the State College, PA,

WSR-88D radar (KCCX) showing a blue ring of near-0-dB ZDR

around the center of the radar indicative of Bragg scattering.

FIG. 2. QVP of ZDR from 3 Aug 2022 using observations from

KCCX between 0800 and 2000 LST (1200 and 2400 UTC). The

white line indicates the estimated top of the CBL, which tracks

through a channel of local vertical minima in ZDR.

C OMER E T A L . 769AUGUST 2024

Brought to you by Pennsylvania State University, Paterno Library | Unauthenticated | Downloaded 08/14/24 03:08 PM UTC



that this ideal situation is relatively rare. One common QVP

type has ZDR values that decrease with height, perhaps with a

weak vertical minimum, such that the ZDR channel is not obvi-

ous and is difficult to track (Fig. 3a). These uncapped QVPs led

to the exploration of other radar variables that could assist in

determining CBL top. As also shown in Heinselman et al.

(2009), Melnikov et al. (2011, 2013), and Banghoff et al. (2018),

a subjective analysis indicates clearly that while Z and rhv can

be helpful in identifying CBL top in nearly ideal situations

(Figs. 3c,d), these radar variables are unreliable for routinely

identifying CBL top for most days. Thus, ZDR remains as the

best dual-polarization radar variable for CBL top identification.

We hypothesize that, in addition to the central tendency as

provided by the azimuthal mean ZDR, a measure of dispersion

could provide additional information to help identify CBL

top. In particular, the azimuthal variance of ZDR should have

a local minimum where ZDR is reduced from Bragg scattering,

as Bragg scatterers should shift all the ZDR observations

within the Bragg layer toward 0 dB. In addition, the ZDR vari-

ance would likely increase above the CBL top as scatterers

have lower concentrations and their ZDR values become more

variable. Visual inspection of thousands of QVPs confirms

that azimuthal ZDR variance is often just as helpful as ZDR in

identifying and tracking CBL top (Fig. 3b), as further con-

firmed by comparisons with QVPs of Z and rhv under ideal

conditions. The two different ZDR sample measures often

provide independent information as would be expected if the

ZDR observations have a Gaussian distribution. Histograms

of the azimuthal values of ZDR at constant range often show a

Gaussian distribution within the CBL (not shown), although

as the number of scatterers decreases above the CBL top, the

distributions clearly are not Gaussian.

FIG. 3. QVPs of (a) ZDR, (b) ZDR variance, (c) Z, and (d) rhv from 0800 to 2000 LST (1200–2400 UTC) 28 Jun 2022

from KCCX. The CBL top reaches a depth of;1.4 km by 1800 LST.
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It is not unusual to find a local minimum of ZDR in regions

of high ZDR variance, indicating that the low ZDR layer is un-

related to the Bragg scatter signal. To minimize the occur-

rence of this failure mode in the identification of CBL top, the

two measures of the azimuthal ZDR distribution are combined

to create a new variable DVar (units of dB3) with

DVar 5 ( |ZDR | 1 1) 1

n 2 1
∑
n

i50
(ZDRi

2 ZDR )
2

[ ]

, (1)

where the overbar indicates the azimuthal mean, i represents

the ith azimuth angle, and n is the number of azimuth angles

in the elevation scan. The 11 dB is added to |ZDR | so that

DVar remains large when ZDR variance is large, even when

ZDR is small. On many days, detecting the CBL depth using

DVar both reduces the noise in the ZDR Bragg scatter signal

and provides a means for detecting the CBL depth even in

the occurrence of uncapped Bragg scatter signals. DVar

homes in on the ZDR values near 0 dB that are relevant to

Bragg scattering because the ZDR variance within the Bragg

scatter region is also reduced while the variance tends to be

large outside of the channel. As a result, DVar retains values

near 0 dB3 within the Bragg scatter channel, with even larger

values outside of the Bragg scatter channel, than seen with

ZDR alone. This behavior is particularly helpful in identifying

CBL top early in the daytime hours when a residual layer is

present. A winter example for State College, Pennsylvania

(KCCX), on 15 February 2022 (Fig. 4) demonstrates the use

of DVar to locate the Bragg scatter region even though it is

difficult to detect inspecting ZDR alone.

As can be seen from Figs. 2–4, the structures seen in the

QVPs of ZDR are often complex and are influenced by more

than just Bragg scattering at CBL top. Melnikov et al. (2013)

and Melnikov and Zrnić (2017) discuss several additional at-

mospheric Bragg scatter signatures that can be detected from

ZDR observations, including nonprecipitating clouds and tur-

bulent motions within strong vertical gradients in RH. Thus, it

is not surprising that even when using DVar, there can be

missed or inaccurate CBL depth identification, as radar obser-

vations of CBL and lower-atmospheric structures can be irreg-

ular and tracking a channel of noisy observations is difficult to

automate. Herein, two separate methods for tracking the low-

ZDR channel are developed; the best results are found when

results from both approaches are combined.

To evaluate the accuracy of the CBL depth algorithm, small

rawinsondes called Windsonds are launched from the Pennsyl-

vania State University campus in University Park, PA, to com-

pare with the CBL depth estimated using WSR-88D radar

observations from the State College (KCCX) radar located ap-

proximately 20 km to the northwest of campus. Windsonds are

lightweight rawinsonde systems manufactured by Sparv Em-

bedded that use a small helium balloon and provide standard

measurements of atmospheric pressure, temperature, RH, and

winds, with observations every second (typical rise rates of

2–3 m s21, providing observations every 2–3 m), up to several

kilometers above ground level (AGL). Windsond observations

compare favorably to a commonly used rawinsonde system

(Bessardon et al. 2019), and the sondes have been used as

pseudo-Lagrangian drifters to study convective storms by

Markowski et al. (2018) and Bartos et al. (2022). Following

Banghoff et al. (2018), values of the atmospheric refractive

index for S-band radiation, converted to refractivity N (e.g.,

Doviak and Zrnić 1993), u, and qy, are calculated from the

soundings and the heights with the maximum vertical gradients

determined. Results from Seidel et al. (2010) suggest that mean

CBL depths from these three variables selected differ by,250 m.

Following Banghoff et al. (2018), the modal height among the

three variables is used to determine CBL height and avoid out-

liers, and when multiple vertical gradient maxima are present,

then the height of the lower maxima is used as the CBL depth

FIG. 4. Daytime QVP on 15 Feb 2022 from KCCX of (a) ZDR, (b) ZDR variance, and (c) DVar from 0800 to 2000 LST (1200–2400 UTC).
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estimate. The Windsond-determined CBL height is adjusted for

the 381-m difference in terrain height between the radar station

KCCX and theWindsond launch site.

3. Algorithm to estimate CBL depth

QVPs of ZDR and DVar are created between local sunrise

and sunset at 50 selected WSR-88D radar locations spread

across CONUS for each day during 2014 and 2022 to develop

and assess the algorithm. These 2 years are chosen owing to

contiguous U.S. rainfall total being 0.92 in. above the 1901–

2000 mean in 2014 and 1.49 in. below the 100-yr mean in 2022,

with different statewide rainfall distributions, allowing for the

exploration of QVP behaviors under different environmental

conditions (NCEI 2024). As each day is processed, a few qual-

ity control metrics are applied to the QVP to remove days

where a CBL top signal is not expected. The presence of rain

is diagnosed in the QVP using a combination of Z and rhv. If

Z . 10 dBZ and rhv . 0.8 for more than 2 h in succession

over multiple heights, then rain is considered present and no

CBL depth is calculated for the day (Banghoff et al. 2018).

Light or frozen precipitation is diagnosed similarly when

there are four consecutive volume scans where the value of

DVar is,3 dB3 (this threshold was determined experimentally)

and CBL depth is not calculated for the day. Banghoff et al.

(2018) applied a similar approach using ZDR values , 2 dB for

an entire column to identify light precipitation. However, we

found this approach to be inadequate at many stations, particu-

larly in winter, resulting in a high rate of false detection of light

precipitation. CBL depth also is not calculated for the day when

the radar is offline for.1 h during the daytime hours.

Out of the total 35 105 QVPs created for these 2 years of ra-

dar observations, 8792 (25%) were removed due to rain,

541 (1.54%) were removed due to light/frozen precipitation,

and 1435 (4.09%) were removed due to the radar being down.

CBL depth is estimated for every volume scan from the re-

maining 24 337 QVPs. As the final quality control step, and

prior to processing the radar observations to compute the

CBL depth, each QVP is inspected manually to see if there is

a visible signal of the ZDR channel indicating the CBL top is

detectable. A flowchart showing the steps taken to determine

CBL depth from the QVPs is shown in Fig. 5.

a. Method 1: Continuous vertical minimum in DVar

The first method developed to identify CBL depth is based

on a QVP of DVar. The method begins by analyzing the verti-

cal DVar profiles 2.5–3.5 h after sunrise to identify the first lo-

cal minimum of DVar situated above the ground. By this

time, solar heating should be warming the ground and the

CBL should be deepening (Angevine 2008). Prior to locating

the first local minimum in DVar, the CBL depth is set to 0 m

to avoid the detection of residual layers. Unless there are data

missing in this time window, an initial minimum is always

detected.

Once the initial local vertical minimum in DVar is found,

the algorithm searches for a local minimum within the next

volume scan at a higher height, as it is assumed that the CBL

depth does not decrease during the early daytime hours.

Through trial-and-error testing, maximum growth rates are used

to constrain the CBL depth growth rate, with the values set

based on the season. For April through October, the maximum

growth rate of CBL depth is set to 0.25 m s21 (900 m h21), a

value based on observations, whereas for the remaining months,

FIG. 5. Flowchart of the methodology used to determine CBL depth from the WSR-88D radars using ZDR observations.
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it is set to 0.14 m s21 (500 m h21). To also allow the CBL depth

to decrease in the afternoon, a minimum growth rate is set to

20.055 m s21 (2200 m h21) for all months and applied starting

3 h before sunset. The time increments between radar volume

scans are used to determine the maximum depth increase/de-

crease from one volume scan to the next. After the first 3 h, the

CBL height is allowed to either increase or remain steady while

searching for the CBL depth based on DVar minima within the

growth rate constraints. The algorithm yields estimated CBL

depths at every volume scan from sunrise to sunset (Fig. 6b). Vi-

sual inspection of the results suggest that this method is particu-

larly good at identifying the low DVar channel in the morning

hours into the early afternoon, but occasionally runs into difficul-

ties late in the afternoon when the channel can become very

deep.

b. Method 2: Continuous wavelet transform applied

to ZDR

The second method developed to identify CBL depth uses

the QVP of ZDR and a local continuous wavelet transform

(CWT) to identify the local minima in ZDR within each vol-

ume scan. As the name suggests, a local CWT provides infor-

mation related to the local behavior and characteristics

contained within the signal (Gamage and Hagelberg 1993).

The CWT is performed on a vector of interest; in this case,

the vector is the vertical profile of ZDR at a given time. The

CWT produces a collection of coefficients that contain infor-

mation about the strength of the relationship between the

wavelet and the signal. The only specification required is a

range of peak widths describing the desired scale of the wave-

let function to be applied. The CWT method has been used in

the study of many meteorological phenomena ranging from

El Niño–Southern Oscillation to cold fronts (Torrence and

Compo 1998) as well as CBL depth detection using lidar and

wind profilers (Brooks 2003; Compton et al. 2013). A major

benefit of a CWT is that it can be used directly on raw data

without any prior filtering or baseline removal (Du et al.

2006) and is easily repeatable, making it a desirable technique

for locating minima in QVPs of ZDR. However, results sug-

gest that some filtering is beneficial prior to applying the

CWT. First, values of ZDR , 20.75 dB are set to missing

since any large negative ZDR values are not indicative of

Bragg scattering (Melnikov et al. 2011). Second, the mean

ZDR and its standard deviation are calculated from observa-

tions within the entire PPI scan, and values of ZDR greater

than the mean plus one standard deviation in a scan are re-

moved to limit peak detection of local minima found in areas

of high ZDR.

For this study, a CWT with a Ricker wavelet is used to find

the local minima of ZDR in QVPs (Fig. 7). Ricker wavelets

are designed for finding localized maxima or minima in a

FIG. 6. Daytime (a) QVP of ZDR, (b) QVP of DVar used in method 1, and (c) local minima in ZDR detected by the CWT used in

method 2. The white line in (b) indicates the CBL depth estimated from method 1. The QVP is from radar observations at State College,

PA (KCCX), from 0800 to 2000 LST (1200–2400 UTC) 28 Jun 2022.

FIG. 7. Example of a Ricker wavelet with peak width a 5 10,

with wavelet amplitude on the y axis and data levels on the x axis.

Larger values of peak widths produce wavelets with larger spatial

scale.
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signal owing to its own sharp peak. The CWT equations for

the Ricker wavelet are as follows (Daubechies 1992; Ryan

et al. 1994):

C(a, b) 5
�

s(l)ca,b(l)dl, (2)

ca,b(l) 5
1
��

a
√ c

l 2 b

a

( )

, (3)

c(x) 5 1 2 (2p2f 2x2)e(2p2f 2x2), (4)

where C is the 2D matrix of wavelet coefficients, s(l) is the

vector signal (in this study, the vertical profile of ZDR for a

given time), ca,b(l) is the scaled and translated wavelet, a is

the scaling term (i.e., the specified peak widths ranging from 1

to 10 in the morning and from 1 to 30 for the afternoon

hours), l is the vertical level of the ZDR observations, b is the

vertical level of the wavelet center, c(x) is the mother wavelet

(the Ricker wavelet), and f 5 2p/a is the wavenumber. The

wavelet coefficients reflect the strength of the pattern match-

ing between the signal and ca,b(l), with larger coefficient val-

ues indicating stronger matching.

Once the CWT matrix is calculated, peak detection is ap-

plied on the data using the approach of Du et al. (2006). The

local maximum of the CWT coefficients at each scale is found,

as these are correlated with local minima in ZDR. Ridgelines

are created at the levels of the local maxima in the CWT coef-

ficients, and the CWT coefficients are used to determine the

signal-to-noise ratio (SNR; Du et al. 2006). From the SNR and

detected ridges, the algorithm finally identifies the true minima

in the ZDR signal. By determining SNR in the wavelet space,

rather than the signal space, this method removes the need for

baseline correction and other data filtering (Du et al. 2006).

As in method 1, the CBL depth is set to the lowest local mi-

nima detected by the CWT if it is found below 250 m within

the first 3.5 h after sunrise and set to 0 m if there are no mi-

nima detected below 250 m. The maximum and minimum

growth rates between consecutive points are set to the same

values as those used in method 1. The algorithm yields esti-

mated CBL depths for every volume scan from sunrise to sun-

set. If the CWT approach fails to identify a CBL depth for a

single volume scan, then linear interpolation is applied to fill

the gap. If the CWT approach fails to identify a CBL depth

for two successive volume scans, then the CWT approach

ends and no CBL depth is determined for the day.

An example of the Ricker CWT method applied to a QVP

of ZDR is shown in Fig. 6c. Each point represents a local mini-

mum in ZDR found in the QVP by the Ricker CWT using

peak widths a from 1 to 10 in the morning and from 1 to 30 in

the afternoon and evening. The range of peak widths tells the

CWT how significant the minima must be to be detected.

Larger peak widths mean that the CWT only detects very no-

ticeable, broader minima, while smaller peak widths mean

that the CWT finds many smaller-scale local minima. Peak

width is related to the data interval, which is about 20 m for

the QVP. Thus, peak widths a5 1–10 are used in the morning

because the peaks in the ZDR signals at those times have

smaller scale. During the afternoon hours, however, the CWT

need only locates the major minima in the ZDR signal. Visual

inspection of many QVPs suggests that method 2 works par-

ticularly well late in the afternoon when wide channels are of-

ten observed in the QVP.

c. Combined algorithm

The two CBL depth estimates determined from methods 1

and 2 are combined using an inverse variance weighting ap-

proach. Since method 2 uses values of ZDR only to calculate

CBL depth, the observed root-mean-square error of s2 5 250 m

from Banghoff et al. (2018) is used as the variance for this

method. The variance for method 1 that uses DVar to calculate

CBL depth is determined after extensive subjective comparisons

against observed ZDR channels. The best results are found using

s1 5 175 m. The CBL depth estimates from method 1 (h1) and

method 2 (h2) are then combined to calculate the CBL depth h

at each observation time using

h 5
s2

2h1 1 s1
2h2

s1
2 1 s2

2
: (5)

Since s1 , s2, the CBL depth estimate from method 1 re-

ceives more weight than the CBL depth estimate from

method 2. This weighting is particularly helpful during the

early daytime hours when DVar captures the initial growth of

the CBL.

Once the variance-weighted CBL depth for a single time is

determined, the algorithm repeats for the volume scan at the

next time. After the inverse variance weighting method has

been applied over all times, the result is smoothed separately

in time using one application of a 1D Gaussian filter:

G(l) 5 1
�������

2ps2
√ e2(l2m)2/(2s2), (6)

in which l andm are the time intervals and s5 4 time units.

After applying the inverse variance weighting and Gaussian

smoothing, the result is a time series of CBL depths for the se-

lected day. The result of the combined algorithm using the

CWT minima and DVar for observations at KCCX on

28 June 2022 demonstrates the ability of the algorithm to de-

tect CBL depth even when the top of the CBL is not clearly

bounded by scatterers from above (Fig. 8). This is one of the

merits of including ZDR variance, as biota are not always present

above the CBL to scatter significant radiation, particularly in win-

ter. In these instances, the ZDR variance is noticeably lower in

the region of Bragg scatter than the area above and below and

helps identify the CBL top.

4. Algorithm results

Comparisons of the CBL depths estimated from the algo-

rithm with Windsond measurements collected on selected

days at State College, Pennsylvania, during 2022 show very

good agreement (Fig. 9). On 28 June 2022, the evolution of

the CBL as determined by the algorithm shows that the CBL

begins to deepen shortly after 0800 LST (Fig. 9a) and grows
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sharply over the next few hours before levelling off to a more

gradual increase in depth during the afternoon. After reach-

ing its peak at 1800 LST, the CBL depth begins to decrease in

the evening. During this day, four Windsonds were launched

at 1006, 1159, 1358, and 1555 LST. The CBL depth diagnosed

from the first three soundings shows that the CBL depth algo-

rithm values are within 100 m of the CBL depths from rawin-

sondes; for the last sounding, the rawinsonde CBL depth is

200 m greater than the value from the algorithm.

On 3 August 2022, the channel of low ZDR values from

KCCX is much thinner and bounded by scattering from biota

above and below (Fig. 9b). The growth of the CBL after sun-

rise begins linearly and continues until near 1400 LST when

the CBL depth remains nearly steady for a few hours. The

CBL depth then decreases around 1730 LST before increasing

slightly again at 1900 LST. The diagnosed CBL depth from

Windsond launches at 1226, 1354, and 1520 LST all fall within

100 m of the values from the CBL depth algorithm.

An even thinner Bragg scatter channel is seen from KCCX

on 15 September 2022 (Fig. 9c), with the CBL slowly deepen-

ing through the day before decreasing beginning at 1700 LST.

CBL depths diagnosed from the Windsond launches at 1134

and 1301 LST align well with those from the CBL depth algo-

rithm: the 1134 LST Windsond-derived CBL depth is ,50 m

below the algorithm’s computed CBL depth and the 1301

LST Windsond-derived CBL depth is ,100 m above the algo-

rithm’s computed CBL depth.

Last, a QVP typical of the late fall and winter months with

ZDR , 3 dB throughout the day occurs on 8 November 2022

at KCCX (Fig. 9d). Despite the small ZDR values, there is still

a visible signal in the QVP that identifies the CBL top, which

increases from 1000 to 1600 LST before decreasing after

1600 LST. The Windsond launches at 1337 and 1433 LST both lie

nearly on the algorithm-computed CBL depth, with differences of

,15 m. This suggests that the CBL depth algorithm successfully

detects the CBL depth fromWSR-88DQVPs ofZDR data.

Using the observations collected from 43 Windsond launches

during 2022, the CBL depth algorithm applied at KCCX radar

had a mean error (bias) of 236 m and an RMSE of 148 m. The

RMSE of 148 m is less than the RMSE of 254 m calculated by

Banghoff et al. (2018) when manually estimating CBL depth

from ZDR observations and comparing with nearby rawinsondes.

We visually inspected thousands of ZDR QVPs to ascertain

if the algorithm placed the CBL depth within a visible low-

ZDR or low-DVar layer that had a characteristic CBL evolu-

tion. With complex ZDR and DVar structures within the

QVPs and no verifying observations, the actual CBL depth

on these days is unknown}we can only evaluate whether the

CBL depth algorithm yielded a reasonable path through the

low ZDR and DVar layers. To provide more context for this

subjective analysis, the CBL depth algorithm results are

shown for a variety of days and WSR-88D radars, with esti-

mated maximum CBL depths ranging between 1 and 2.5 km

(Fig. 10). The ZDR channels are apparent on each day, but the

structure and complexity of the ZDR fields vary. Overall, the

CBL depth algorithm is highly effective at locating the visible

ZDR minima and capturing the growth of the CBL throughout

the day. The CBL for KLRX (Elko, Nevada) on 4 May 2022

grows sharply after sunrise and then transitions to constant depth

after 1200 LST (Fig. 10a), with the algorithm-computed CBL fol-

lowing exactly where the minimum in ZDR lies. The QVP for

KYUX (Yuma, Arizona) on 9 June 2014 shows a Bragg scatter

layer that is less defined, but still present (Fig. 10b), with the

CBL growing rapidly from 0800 to 1300 LST and decreasing in

depth after 1530 LST. For KAMA (Amarillo, Texas) on 10 June

2022, the CBL top is very clear in the beginning of the day, from

0800 to 1300 LST, before the signal is contaminated by large

ZDR values (Fig. 10c). Despite this signal contamination, the

CBL depth algorithm interpolates the approximate location of

the CBL top using local minima of ZDR and DVar. The QVP

from KGRK (Fort Worth, Texas) on 3 January 2014 shows a

CBL case for a winter day (Fig. 10d). Inspection of many QVPs

in winter indicates that the ZDR values are reduced due to the

lack of biological scatterers in the atmosphere, yet the CBL

depth algorithm still tracks the channel. On 5 July 2022, the

KAMA QVP (Fig. 10e) shows a very high CBL top, which in-

creases steeply from the morning through the late afternoon. In

this case, evening rain develops. Last, observations from KYUX

on 10 May 2014 (Fig. 10f) show the development of a Bragg scat-

ter layer that begins as a narrow channel and then becomes un-

bounded at the top. For all six of these cases, the CBL depth

algorithm performed well, showing promise for its application to

a wide range of days and locations. Manual inspection of thou-

sands of QVPs with overlaid CBL depth algorithm results yield a

similar conclusion, and subjectively, we estimate that the CBL

depth algorithm calculates a reasonable depth that fits within the

ZDR signal channel more than 95% of the time.

Note that CBL depth estimation from dual-polarization ra-

dars is impossible when it rains, since raindrops also yield low

ZDR values and produce large ZH that overwhelms any signal

FIG. 8. Daytime QVP of ZDR with the white line indicating the

computed CBL depth from combined methods 1 and 2 from radar

observations at State College, PA (KCCX), from 0800 to 2000 LST

(1200–2400 UTC) 28 Jun 2022.
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from Bragg scattering, thereby rendering it useless for CBL de-

tection. Additionally, chaff also creates problems for radar loca-

tions near military bases (Zrnić and Ryzhkov 2004). Finally,

applying this algorithm within regions of complex terrain introdu-

ces additional challenges, as mountains can interrupt radar

beams, creating missing azimuths in the datasets that complicate

the identification of the CBL top signature.

Two distinct CBL growth modes are suggested in many of

the QVPs. In the first and most common mode, the low DVar

layer (and low ZDR layer, not shown) takes on a characteristic

S shape, as seen in a QVP from Sterling, Virginia (KLWX;

Fig. 11a), in which the CBL deepens slowly for a few hours,

then deepens much quicker until it reaches a maximum depth,

and stays at a nearly constant value until sunset. The Sterling,

Virginia, 0800 LST (1200 UTC) sounding (Fig. 11b) shows a

shallow stable layer and a residual layer that extends upward

to near 800 hPa (;1.9 km AGL) with a strong capping inversion

on top. The 2-m temperatures observed near Sterling first be-

come warm enough for undiluted surface parcels ascending along

a dry adiabat to remain positively buoyant and rise through the

residual layer sometime between 1000 and 1100 LST (1400 and

1500 UTC). This time interval corresponds to when the low

DVar layer is rising quickly in the QVP (Fig. 11a). Maximum

2-m temperatures reach 278C and are not warm enough for the

CBL to grow above the strong capping inversion. The 2000 LST

(2400 UTC) evening sounding from Sterling (not shown) indi-

cates a CBL depth between 1.5 and 2 km, in good agreement

with the low DVar layer in the QVP at this time. Analyses of

soundings from other days suggest that the S-shaped CBL

growth mode occurs when the CBL entrains a residual layer

from the previous day and does not deepen much further.

The second distinct QVP growth mode has the low DVar

layer deepening consistently with time throughout the day, as

again as seen in a QVP from KLWX (Fig. 12a). For this case,

the 0800 LST Sterling sounding shows a shallow stable layer,

with an 800-m deep residual layer above and a weak capping

inversion (Fig. 12b). As the surface warms, the CBL depth in-

creases quickly, the residual layer is entrained into the CBL,

and the CBL continues to deepen into and above the capping

inversion as the ground surface continues to warm. Maximum

2-m temperatures near Sterling reach 278C; assuming a well-

mixed CBL, an undiluted surface parcel would become neu-

trally buoyant just above 800 hPa. The 2000 LST (2400 UTC)

sounding from Sterling indicates a CBL depth of approximately

FIG. 9. QVPs of ZDR with the CBL depth algorithm calculated CBL depth (white line) and Windsond-diagnosed

CBL depth (white circle) for KCCX on (a) 28 Jun 2022, (b) 3 Aug 2022, (c) 15 Sep 2022, and (d) 8 Nov 2022 from

0800 to 2000 LST (1200–2400 UTC).

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 41776

Brought to you by Pennsylvania State University, Paterno Library | Unauthenticated | Downloaded 08/14/24 03:08 PM UTC



2.5 km AGL (not shown), in good agreement with the low

DVar layer in the QVP at this time. Thus, this CBL growth

mode occurs when the CBL deepens to well above the top of

the residual layer (if any) present in the morning sounding, as

can occur after cold frontal passage. Similar CBL growth modes

are suggested in the range-corrected boundary layer profiler sig-

nal-to-noise ratio time–height plots in Angevine et al. (1994).

5. Conclusions

We developed an algorithm to estimate CBL depth fromQVPs

of ZDR and DVar using observations from dual-polarization

WSR-88D radars. Two methods to compute CBL depth are

developed and combined using an inverse-variance weighting

approach to yield the best results across a variety of QVP

structures. Comparisons of the calculated CBL depth from

the KCCX radar against nearby Windsond observations yield

a CBL depth RMSE of 148 m; this RMSE is below the

RMSE range for CBL depth estimation algorithms from

wind profilers ranging from 152 to 424 m and very close to

the RMSE of CBL depth estimation among experts (109–135 m;

Bianco et al. 2008). Subjective assessments suggest that the

algorithm can accurately handle a variety of complex QVP

structures to arrive at reasonable CBL depths based on our

understanding of QVPs of ZDR. Winter months prove to be

the most difficult due to the lack of biological scatterers in

FIG. 11. (a) QVP of DVar at KLWX (Sterling, VA) from 0800 to 2000 LST (1200–2400 UTC) and (b) the Sterling, VA,

rawinsonde launch at 0800 LST (1200 UTC) 28 Jun 2022.

FIG. 10. QVPs of ZDR for (a) KLRX (Pacific station) 4 May 2022, (b) KYUX (mountain station) 9 Jun 2014, (c) KAMA (central

station) 10 Jun 2022, (d) KGRK (central station) 3 Jan 2014, (e) KAMA 5 Jul 2022, and (f) KYUX 10 May 2014. All times are LST. The

white lines are the CBL depths determined by the algorithm.
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the atmosphere and a decreased moisture gradient at the top

of the CBL, which contribute to fewer identifiable CBL top

signals in the QVPs.

The ability of WSR-88D ZDR observations to detect CBL

depth is clear, although there will always be days in which the

CBL depth signature is overwhelmed by falling precipitation or

is otherwise unidentifiable. There also can be horizontal varia-

tions in CBL depth, as produced by sea breezes, lake breezes,

convective outflows, or frontal zones, which could influence the

calculation. Exploration of several months of observations from

WSR-88Ds near coastal regions indicates that sea breezes have

only a minor impact on the estimated CBL depth, although fur-

ther study is warranted. The potential value of an automated

CBL depth algorithm from radar in operations is significant, as

such an approach could provide reasonable estimates of CBL

depth at any given radar location with a 5–10-min temporal res-

olution and thereby assist daily forecasts of air pollution and

convection initiation. Modeling efforts also could benefit from

frequent estimates of CBL depth, providing key verification in-

formation to improve PBL parameterization schemes without

increased rawinsonde launches. The implementation of auto-

mated CBL depth estimation from radar could revolutionize

our observations of CBL depth without added costs of new in-

struments and could lead to improvements in modeling CBL

structure and its impact on weather.

To further automate the process of identifying the CBL height

in QVPs, artificial intelligence could be used to identify the

QVPs with a detectable Bragg scatter signal rather than the

methods developed here. It also would be helpful to quality con-

trol the estimated CBL depth based on the WSR-88D observa-

tions, such that days when the CBL depth cannot be accurately

estimated are identified easily in real time. Finally, the unique

terrain and vegetation characteristics of the WSR-88D sites sug-

gest that some tuning of the adjustable parameters (i.e., maxi-

mum and minimum growth rates) would likely improve results.
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